
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1997-03

Analysis, experimental evaluation, and
software upgrade for attitude estimation by
the Shallow-Water AUV Navigation System (SANS)

Roberts, Ricky L.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/31936

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ANALYSIS, EXPERIMENTAL EVALUATION, AND
SOFTWARE UPGRADE FOR ATTITUDE ESTIMATION

BY THE
SHALLOW-WATER AUV NAVIGATION SYSTEM(SANS)

by

Ricky L. Roberts

March 1997

Thesis Co-Advisors: Robert B. McGhee
Eric Bachmann

Approved for public release; distribution is unlimited.

19971121 123

.r ..
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data souroes

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions lor reducing this burden to Washington Headquarters Services, Directorate lor Information Operations and Reports, 1215 Jefferson

Davis Highway, Su~e 1204, Arlington, VA 22202-4302, and_to the Ollioe of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) r- REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1997 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ANALYSIS, EXPERIMENTAL EVALUATION, AND SOFfWARE

UPGRADE FOR ATTITUDE ESTIMATION BY THE

SHALLOW-WATER AUV NAVIGATION SYSTEM (SANS)

6. AUTHOR(S)

Roberts, Ricky L.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Computer Science Dept. REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)
The main problem addressed by this research is the lack of a small, low-cost integrated navigation

system to accurately determine the position of an Autonomous Underwater Vehicle (AUV) during all

phases of an underwater search or mapping mission. The approach taken utilized an evolving prototype,
called the Shallow-Water AUV Navigation System (SANS), combining Global Positioning System (GPS),
Inertial Measurement Unit (IMU), water speed, and magnetic heading information using Kalman, low-
pass, and complimentary filtering techniques. In previous work, addition of a math coprocessor improved

system update rate from 7 to 18Hz, but revealed input/output coordination weaknesses in the software.
The central focus of this thesis is on testing and programming improvements which resulted in reliable
integrated operations and an increased processing speed of 40 Hz. This now allows the filter to perform
in real time. A standardized tilt table evaluation and calibration procedure for the navigation filter also
was developed.

The system was evaluated in dynamic tilt table experiments. Test results and qualitative error estimates
using differential GPS suggest that submerged navigation with SANS for a period of several minutes will
result in position estimation errors typically on the order of 10 meters rms, even in the presence of
substantial ocean currents.

14. SUBJECT TERMS
Autonomous Underwater Vehicles, GPS/INS integration, navigation, NPS

AUV, Low Pass Filtering, Complementary Filtering Kalman filtering,

Attitude Estimation
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

209
11). 1-'HII,;c I,;UUc

20. LIMITATION OF ABSTRACT

UL

Standard-Fonn 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

' '''\.

ii

Approved for public release; distribution is unlimited

ANALYSIS, EXPERIMENTAL EVALUATION, AND
SOFTWARE UPGRADE FOR ATTITUDE ESTIMATION

BY THE
SUALLOW -WATER AUV NAVIGATION SYSTEM (SANS)

Author:

Approved by:

Ricky L. Roberts
Lieutenant-Commander, United States Navy

B.S., United States Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVALPOSTGRADUATESCHOOL
March 1997

: I I - : ~~ I - - I - I • I

Eric Bachmann, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

lll

iv

ABSTRACT

The main problem addressed by this research is the lack of a small, low-cost integrated naviga

tion system to accurately determine the position of an Autonomous Underwater Vehicle (AUV)

during all phases of an underwater search or mapping mission. The approach taken utilized an

evolving prototype, called the Shallow-Water AUV Navigation System (SANS), combining Glo

bal Positioning System (GPS), Inertial Measurement Unit (IMU), water speed, and magnetic

heading information using Kalman, low-pass, and complimentary filtering techniques. In previ

ous work, addition of a math coprocessor improved system update rate from 7 to 18Hz, but

revealed input/output coordination weaknesses in the software. The central foyus of this thesis is

on testing and programming improvements which resulted in reliable integrated operations and an

increased processing speed of 40 Hz. This now allows the filter to perform in real time. A stan

dardized tilt table evaluation and calibration procedure for the navigation filter also was devel

oped.

The system was evaluated in dynamic tilt table experiments. Test results and qualitative error

estimates using differential GPS suggest that submerged navigation with SANS for a period of

several minutes will result in position estimation errors typically on the order of 10 meters rms,

even in the presence of substantial ocean currents.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND .. 1

B. RESEARCH QUESTIONS .. 4

C. SCOPE, LIMITATIONS AND ASSUMPTIONS 5

D. ORGANIZATION OF THESIS ... 6

IT. SURVEY OF RELATED WORK .. ?

A. INTRODUCTION .. ?

B. GPS NAVIGATION ... 8

C. INS NAVIGATION .. 12

D. INTEGRATED GPS!INS NAVIGATION .. 13

E. AUV SUBMERGED NAVIGATION .. 15

F. NAVIGATION FILTER THEORY•.. 19

G. SUMMARY .. 22

Ill. SYSTEM HARDWARE CONFIGURATION ... 25

A. INTRODUCTION .. 25

B. HARDWARE DESCRIPTION .. 28

1. Computer ... 28
2. Inertial Measuring Unit ... 29
3. GPS/DGPS Receiver Pair ... 30
4. Compass .. 31
5. Other Components .. 32

C. SUMMARY .. 33

IV. SOFTWARE DEVELOPMENT35

A. INTRODUCTION .. 35

B. SOFTWARE FILTER .. 38

C. IMPLEMENTATION DESCRIPTION .. 43

1. Compass Data ... 45
2. GPS Data ... 45
3. Inertial Sensor Data ... 46

Vll

4. Sampler .. 48
5. INS .. 51
6. Navigator ... 54
7. Communication Objects .. 56

D. SUMMARY .. 51

V. SYST-EM TESTING ... 59

A. IN'TR.ODUCTION .. 59

B. LOW PASS FILTER BIAS RESPONSE ... 59

C. FILTER TESTING METHODOLOGY ... 63

D. IMU TEST RESULTS .. 65

E. SUMMARY .. 76

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 77

A. CONCLUSIONS ... 77

B. RECOMMENDATIONS FOR FUTURE WORK 78

APPENDIX A: Real Time Navigation Source Code (C++) 81

C. TOWTYPES.H ... 81

D. TOEFISH.CPP .. 83

E. NAV.H .. 90

F. NA V.CPP .. 92

G. GPS.H ... 100

H. GPS.CPP ... 101

I. INS.CFG ... 102

J. INS.H .. 103

K. INS.CPP .. 105

L. SAM.CFG ... 116

M. SAMPLER.H .. 116

N. SAMPLER.CPP .. 119

0. COMPASS.H .. 124

P. COMPASS.CPP .. 125

Q. A2D.CFG .. 130

Vlll

R. A2D.H , ... 131

S. A2D.CPP ... 134

APPENDIX B: Serial Port Communications Source Code (C++) 155

T. GLOBALS.H .. 155

U. BUFFER.H .. 156

V. BUFFER.CPP ... 157

W. GPSBUFF.H ... 159

X. GPSBUFF.CPP ... 160

Y. COMPBUFF.H ... 163

Z. COMPBUFF.CPP ... 164

AA. SERIAL.H ... 167

AB. SERIAL.CPP ... 169

AC. GPSPORT.H ... 174

AD. GPSPORT.CPP ... 175

AE. COMPPORT.H ... 178

AF. COMPPORT.CPP ... 179

APPENDIX C: SANS Tll.. T-TABLE TEST TUNING AND

CALffiRATION PROCEDURE .. 183

A. Isolate Accelerometer Input From Integrator ... 183

B. Choose Initial Bias Weight (biasWght) .. 183

C. Determine Angular Rate Scale Factor .. 183

D. Adjust Gain Value Above Zero .. 183

E. Determine Accelerometer Scale Factor .. 183

F. Fine Tuning ... 183

LIST OF REFERENCES .. 185
INITIAL DISTRIBUTION LIST .. 189

1.X

X

LIST OF FIGURES

1. Discrete Low Pass Filter Block Diagram ... 21

2. Discrete Low Pass Filter Signal Flow Graph ... 21

3. Redesigned SANS Hardware Configuration (Walker 96) ... 26

4. SANS H3:fdware Configuration (Walker 96) ... 27

5. E.S.P. 486SLC DX2 50 MHz Computer (Walker 96) ... 28

6. Systron-Donner Inertial Measuring Unit (Bachmann 95) .. 30

7. ONCORE GPS/DGPS Receiver (Walker 96)31

8. SANS Code Classes and Objects ... 37

9. SANS Software Navigation Filter (Bachmann 96)40

10. Complementary Filter Feedback Loop for Euler Angle Estimation42

11. SANS Data Flow Between Software Objects .. 44

12. Buffer Data Structures ... 46

13. samplerClass Summary .. 49

14. samplerClass Data Flow .. 50

15. Model of the A2D Sample Array (Walker 96) .. 51

16. insClass Summary ... : 53

17. Navigation Class and Initialization Summary ... 55

18. Navigation Position Format Utilization (Bachmann 95) ... 51

19. Bias Filter Response to a Roll Rate Step Input of 10°/sec ... 60

20. Estimated Short Term Bias Response to a 45° Roll Completed in 4.5 Seconds 62

21. Estimated Long Term Bias Response to a 45° Roll Completed in 4.5 Seconds 62

22. Initial Pitch Test, K1 = 0.0, 't = 1000, qScale = 4.02, 10°/sec 67

23. Pitch Test, K 1 = 0.0, 't = 5000, qScale = 4.02, 10° /sec .. 67

24. Initial Roll Test, K 1 = 0.0, 't = 1000, pScale = 4.0 1, 10° /sec 68

25. Roll Test: K1 = 0.0, 't = 1000, pScale = 4.01, 40 °/sec .. 69

26. Roll.Test: K1 = 0.01, 't = 1000, pScale = 4.01, 40 °/ sec .. 69

27. Roll Test: K 1 = 0.05, 't = 200, pScale = 4.01, 40 °/sec ... 70

28. Roll Test: K 1 = 0.05, 't = 200, pScale = 4.01, 10°/sec ... 71

29. Same as Previous, with y AccelScale = 1.405 .. 71

30. Roll Test: K 1 = 0.1, 't = 1000, 10 /sec, yAccelScale = 1.405 72
31. Roll Test: K 1 = 0.1, 't = 1000, 10 /sec, yAccelScale = 1.317 73

32. Roll Test: K 1 = 0.1, 't = 1000, pScale = 3.923, 10°/sec ... 73

33. Roll Test: K 1 = 0.1, 't = 1000, yAccelScale = 1.347, 10°/sec 74

34. Roll Test: same as previous, with 45°/ sec vice 10 ... 75

35. Roll Test: same as previous, with 90°/sec vice 45 .. 75

xi

xii

LIST OFT ABLES

Expected RMS GPS Accuracy Levels (Logsdon 92) ... 10
2 State Variables of the Kalman Filter (Bachmann 96) .. .39
3 A2D OC-to-Digital Conversion Mapping (Walker 96) .. 47

xiii

xiv

. ACKNOWLEDGMENTS

The most important of a group of people whose support made completion of this work

possible is my wife, Julie. She delivered and performed the lion's share of the early care

for our first child, Tristan, while I was devoting long hours to my studies. Her support at

home enabled me to remain focused and, along with the joy of Tristan's arrival and daily

growth, have provided essential perspective and emotional release. Thank you, Julie.

My appreciation to Dr. McGhee can not be overemphasized. He is as fine a teacher

as I have had the pleasure of learning from. His genuine concern for the students is obvious

from his priority of learning over administrative research milestones. Dr. McGhee's real

world perspective unfailingly kept me from losing sight of the real goals. His incredible

patience is reflected in his achievement of taking a student with no real computer science

or kinetics background, and very little electrical engineering background, and enabling me

to not only understand the SANS filter, but be able to improve upon the software.

Eric Bachmann went far beyond providing the historical background to get me started

and reviewing this thesis. He never hesitated to help with the myriad of issues which at any

time could have overwhelmed me. Always ready to answer even the most mundane

questions or to provide assistance on a major software design consideration, his efforts as

Co-Advisor were crucial to successful completion.

Last, but on a routine, day-to-day basis, most important, was the assistance and

friendship of Russ Whalen. From sharing office space and providing encouragement and

counsel to unfailingly supplying computer expertise and hardware support, Russ is the

cornerstone of the continued success of the SANS project. I only wish that as students we

could provide something in return to him other than incessant demands on his time and

expertise.

XV

xvi

Dedication

For Julie and Trey

xvii

xviii

t INTRODUCTION

A. BACKGROUND

Autonomous Underwater Vehicles (AUVs) are capable of a variety of overt and

clandesti~e missions. Such vehicles have been proposed for inspection, mine

countermeasures, survey, and observation. Recent research trends in underwater robotics

have emphasized minimizing the need for human interaction by increasing AUV

autonomy. (Yuh 95)

The NPS Phoenix AUV is an experimental vehicle designed primarily for research in

support of shallow-water mine countermeasures and coastal environmeJ:?.tal monitoring

(Healey 93, 95, Brutzman 96). The clandestine nature of the missions for which Phoenix

was designed necessitates minimum surfaced exposure time while in the operating area, the

ability to submerge in order to investigate targets, and a navigation system that is accurate

enough to allow target revisit if desired.

Many missions of the Phoenix class of vehicles can be separated into two distinct

phases: transit and search. After being launched from an aircraft, submarine, or surface

vessel, the AUV would execute a transit phase in order to arrive at the search area. Once

established in the mission area, it would enter a search phase, which might include missions

such as mine hunting, mapping, or environmental data collection. Navigation is one of the

most important and difficult aspects of an AUV mission. Therefore, a robust, real-time

navigation system is critical for a multi-mission capable AUV. Typically, a search phase

would require more precise navigation than a transit phase. This could be accomplished by

obtaining more frequent Global Positioning System (GPS) fixes, or by using Differential

GPS (DGPS) either in real-time if available, or after mission completion using post

processing (Walker 96). After the search is completed, the AUV would commence a

second transit phase and return to a recovery position. Both kinds of mission phases would

typically involve waypoint steering, and possibly obstacle avoidance.

An approach is described in Kwak (93) for determining the position of submerged

detected objects by executing a "pop-up" maneuver to obtain a GPS fix. This fix is then

extrapolated backwards to the submerged object location using recorded inertial data.

Navigation accuracy during such a surfacing maneuver is strongly enhanced by the use of

accurate depth information available from low-cost pressure cells (Kwak 93). However,

this form of "aided" inertial navigation is not applicable to a surfaced or near surface AUV

(Brown 92).

Continuously reliable GPS reception would not be possible unless the AUV were to

be fitted with an extensible mast mounted antenna. Extending an antenna above the effects

of wave action is not desirable for a military application and, at any rate, would probably

be mechanically impractical for a small AUV. As a result, any system relying solely upon

GPS would not be sufficiently robust to provide accurate navigation information during

surfaced or near surface operations due to intermittent reception. Therefore, inertial

navigation is needed between periods where continuous reliable reception of GPS satellite

signals is not possible. (Bachmann 95)

Inertial navigation hardware is sometimes based on rotating gyros, which provide

attitude information needed to stabilize a platform that holds acceleration sensors. The

limiting factors to this approach include: high expense due to required precision, inordinate

2

power consumption, high ·failure rates, and acoustic and structure-borne noise (Cox 94).

These factors counter the Phoenix AUV philosophy of providing a low cost, general

purpose platform capable of long-term independent operation, despite relatively small

vehicle size (McGhee 95). Additionally, the rotating gyros now installed in Phoenix are

aging and mechanically unreliable. It is therefore desirable to find a solution to the AUV

navigation and control problem not requiring such components.

In order to achieve robust navigation, the AUV should be capable of navigating with

GPS and/or an Inertial Navigation System (INS). GPS is capable of highly accurate

positioning when the AUV is surfaced, while an INS can be used for submerged navigation

and periods between GPS satellite reception. In order to ensure accurate navigation for a

wide variety of missions, GPS and INS components can be combined. A favorable analysis

of this type of navigation system was conducted in Mckeon (92). The hardware and

software architecture required for a typical mapping scenario was evaluated in Norton (94).

Bachmann (95) made the architecture evaluated in Norton (94) a reality, and

subsequently developed the first working prototype of the proposed Shallow-Water AUV

Navigation System (SANS). The SANS was designed to overcome the problem of

intermittent GPS satellite tracking. It is an experimental system that uses a low-cost,

strapped-down inertial measurement unit (IMU), complemented with magnetic heading

and water speed sensors, to enable inertial navigation between GPS fixes. This system is

well suited for pop-up navigation. Finding this means of navigating near the sea surface

provides a complete solution to the overall navigation problem associated with transiting

an AUV to a shallow water work site, recording the position of detected submerged objects,

3

and then returning to a recovery site where stored mission data can be uploaded (McGhee

95).

Additionally~ the navigation filter developed by McGhee (95) solves the problems of

cost and ·power consumption by eliminating rotating gyros and replacing them with

acceleration and angular rate sensors. This filter is implemented in SANS by Bachmann

(95). One application of SANS is to upgrade the Phoenix navigation system. Others,

particularly as component miniaturization continues, include marine mammal and diver

navigation.

With the prototype SANS having achieved favorable results in open-water, at-sea test

trials, Walker (96) advanced the SANS to another level of maturity, making it a truly

integrated system ready for direct application to a real-world AUV. The physically

redesigned system includes an on-board processor and consolidated the diverse

components into a compact unit, while improving individual component reliability and

performance. The research reported in this thesis continues the evolution of the SANS by

incorporating software improvements to accommodate the dramatically improved

processing speed, implementing a networking capability to monitor at-sea tests and prepare

for installation into the AUV, and developing a standardized calibration procedure for the

navigation filter.

B. RESEARCH QUESTIONS

This thesis will examine the following research topics:

- Evaluate the hardware and software architecture of the SANS.

- Develop a calibration procedure for the SANS navigation filter.

4

- Evaluate the performance of the SANS navigation filter in a laboratory environment.

-Evaluate the SANS hardware and software architecture for installation in Phoenix.

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

This thesis reports part of the findings of the fifth year of research in an ongoing

research project. The scope of this thesis is to evaluate SANS attitude estimation

capabilities for eventual installation as a replacement for the older technology gyros now

used on board the Phoenix AUV. The requirements for an ideal SANS described by Kwak

(93) which impact this project are:

-Low power consumption. Operation from a small external battery pa~k for 12 hours

is desirable.

- Limited exposure time. The amount of time that the GPS antenna is exposed in the

search phase should be as short as possible. Up to 30 seconds of exposure is allowed,

but less is better, and time between exposures should be maximized.

- Maintain clandestine operation. The GPS antenna should present a very small cross

section when exposed and should not extend more than a few inches above the

surface of the water.

-Maximize accuracy. During the search phase of the mission, system accuracy of 10

meters or better is required following postprocessing, both while submerged and

surfaced.

-Total volume not to exceed 120 cubic inches. Elongated, streamlined packaging is

preferred.

5

D. ORGANIZATION OF THESIS

The purpose of this thesis is to present the development of a prototype system intended

to meet the mission requirements of the SANS. The term AUV is understood to include

any small underwater vehicle (including human divers) which can easily carry such a

compact device. The term "towfish" refers to the test vehicle used to evaluate the SANS

during at-sea testing.

This thesis provides an evaluation of the hardware and software used to provide

accurate navigation for the NPS AUV. The major thrust of the thesis is to evaluate the

attitude estimation capabilities of the SANS both statically and dynamically in a laboratory

environment.

Chapter II reviews previous work on this project as well as on GPS and INS

navigation, AUV submerged navigation, and navigation filtering theory. Chapter Ill

provides a summary description of both the original and current SANS prototype hardware.

Chapter IV provides a detailed description of the software architecture, including the

navigation filter. Particular emphasis is placed on changes, additions, and updates made to

the C++ code in support of this portion of the project. Chapter V is a description of the

experiment design and an analysis of the experimental results. Finally, Chapter VI presents

the thesis conclusions and provides recommendations for future research.

6

II. ·SURVEY OF RELATED WORK

A. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have the potential to be used in an efficient

and cost. effective manner in a variety of missions involving military and non-military

applications. Accurate navigation is one of the most important capabilities supporting

AUV mission effectiveness. Many possible AUV missions, such as mine hunting, require

a high degree of navigation accuracy. This chapter will discuss some of the possible AUV

navigation solutions.

Navigation systems are generally categorized by whether they are based on external

signal reception or internal sensors. External-signal-based navigation systems, such as

Loran, Omega, and Global Positioning System (GPS), are limited to determining position

only while the receiver is exposed to the signal. Loran and Omega are relatively inaccurate

compared to GPS. While Loran covers most of the northern hemisphere, it has almost no

coverage in the southern hemisphere (Bowditch 84). GPS provides an attractive,

affordable system for the surfaced portion of an AUV mission because it is capable of

world-wide coverage with a high degree of navigational accuracy.

Internal-sensor-based navigation can be implemented as a self-contained unit which

can be composed of various types of equipment such as inertial measuring units (IMUs),

acoustic transponders, or geophysical map comparison. All sensors are subject to some

amount of error, which may compound to unacceptable levels for some AUV missions if

not accounted for. Each of these components also has unique disadvantages. Acoustic

transponders must be pre-deployed at precisely known locations and may require costly

7

maintenance. Geophysical map interrogation requires a precise bottom contour map be

previously stored in the AUV's computer. IMU-based navigation is prone to sensor drift,

which if left uncorrected, can become very large. However, it has advantages relative to

the other· navigation options due to a lack of dependence on external signals and no

requirement to transmit any signals which might reveal its presence.

B. GPS NAVIGATION

The Navigation Satellite Timing and Ranging (NA VST AR) Global Positioning System

(GPS) is a space-based radio positioning, navigation and time-transfer system sponsored

by the U.S. Department of Defense (DoD). It was originally intended_ to provide the

military with precise navigation and timing capabilities (Parkinson 80). The system is

designed to provide 24-hour, all-weather navigation anywhere on earth. It is comprised of

24 satellites in 22,200 km orbits that are inclined at 55° to the earth's spin axis, with 12

hour periods. The satellites broadcast two L-band frequencies: Ll (1575.4 MHz) and L2

(1227.6 MHz). Navigation and system data, predicted satellite position (ephemeris)

information, atmospheric propagation correction data, satellite clock error information, and

satellite health data are all superimposed on these two carrier frequencies. (Logsdon 92,

Wooden 85)

There are two different navigation services available from the GPS satellites depending

on the type of receiver being used: the Standard Positioning Service (SPS), and the Precise

Positioning Service (PPS). The SPS is based on receiving the Ll carrier signal, which is

broadcast with an intentional inaccuracy called Selective Availability (SA). SA limits

world-wide navigation to 100m horizontal accuracy with a 95% confidence level (Logsdon

8

92). PPS is based on the L2 signal. It is limited to U.S. and allied military, and specific

non-military uses that are in the national interest. Access to PPS is restricted by use of

special cryptographic equipment. PPS provides the highest stand alone accuracy: 16 m

Spherical- Error Probable (SEP), a velocity accuracy of 0.1 m/sec, and a timing accuracy of

better than 100 nanoseconds. (Logsdon 92, Wooden 85)

Civilian customers have determined a way to improve the accuracy of the SPS in order

to take full advantage of GPS precision without having access to cryptographic equipment.

This method, called Differential GPS (DGPS), provides a way of working around the

inaccuracies of the SPS. It may be used in real-time or during post-processing. The general

idea is to place a receiver at a surveyed stationary site. The receiver is then able to

determine the difference between its actual position and its computed GPS position, and

broadcast the resulting pseudorange (distance to satellite) corrections to any DGPS capable

receivers. Real-time differential processing can reduce the typical 100m accuracy of the

SPS to 2-4 m regardless of the status of SA (Logsdon 92). It is also possible to record the

raw PPS or SPS GPS information for later comparison to a known geographical site using

post-processing. Precise procedures can be used to reconstruct extremely accurate

positioning information, typically in the submeter range. Table 1 shows a comparison of

expected GPS accuracies.

The size and cost of GPS receivers have decreased drastically as GPS technology has

matured. Miniaturization is continuously progressing while maintaining or increasing GPS

receiver performance capability. Since as early as 1992, the GPS industry has been able to

produce receivers that are essentially a single printed circuit board. Souen (92) repons

9

POSITIONING SERVICE PPS (m) SPS (m)

Non-Differential 16 100

Differential 2-4 2-4

TABLE 1: Expected RMS GPS Accuracy Levels (Logsdon 92)

that the Furuno GPS receiver module LGN-72 is an eight-channel receiver implemented on

a single printed circuit board measuring 100 mm x 70 mm x 20 mm and requiring only 2

W of power.

There is currently a performance trade-off associated with the miniaturization of GPS

receivers. For instance, Trimble offers the PC Card 110 GPS miniature receiver in the form

of a Personal Computer Memory Card International (PCMCIA) interface. This credit card

sized device simply slides into any laptop, most palmtops, or pen-based computers

compliant with PCMCIA (release 2.0). It is capable of tracking eight satellites using three

channels. However, because it does not have an allocated channel for each of the satellites,

it does not use a continuous tracking scheme. This degrades its acquisition time

performance. In order to reduce receiver size, manufacturers often reduce the number of

channels on the receiver. GPS receivers in this configuration are called "sequencing"

receivers (Logsdon 92). Sequencing receivers utilize a time-sharing technique to "dwell"

on each satellite for a brief interval before switching to the next satellite in the sequence.

They have a typical acquisition time of about two minutes. Continuous tracking GPS

receivers have typical acquisition times of about 30 seconds or less. However, their larger

number of receiver channels results in a less compact size. Given this trade-off between

10

size and performance, the choice of GPS receiver must be made with the particular

application in mind. A sequencing receiver offers an adequate compromise for applications

such as mobile navigation that are not so dynamic. However, if the application requires a

short time to initial acquisition, the most viable option is the continuous tracking receiver.

GPS is an obvious choice for AUV navigation given the level of miniaturization and its

excellent accuracy performance.

One manner of using GPS to locate an A UV is to place buoys with GPS receivers at

appropriate locations. These buoys would translate the GPS signal and retransmit an

underwater acoustic signal. The AUV would then determine its position via ranging and

position fixes to the buoys. Youngberg (91) suggests that the GPS antenna, receiver,

processing and control subsystem, acoustic transmitter, battery power, and homing beacon

could all be contained in a buoy measuring 123 mrn diameter x 910 mm long and weighing

5- 15 kg. A simulation which showed the feasibility of this approach is presented in Leu

(93). The simulation consisted of several sonobuoys spaced one kilometer apart. Due to

uncertainties in buoy position caused by wave action and variations in altitude, the study

proposed the use of Kalman filtering techniques to combine the outputs of an accelerometer

and DGPS to enhance accuracy. Each GPS buoy would essentially act as a GPS satellite

and broadcast its position via spread spectrum acoustic signals used by the AUV for

ranging. This technique would eliminate the requirement to predeploy a surveyed

transponder field.

Another possible method for using GPS to determine the AUV's position is to

physically mount the GPS antenna and receiver on-board the AUV. For areas covei"ed by

11

DGPS service, this has the advantage of making the system self-contained. One major

concern would be that the GPS receiver would be unable to acquire satellites in a timely

manner due to splash effects on the antenna. However, Norton (94) describes both static

and dynamic test results which show that a submersible system is able to meet the accuracy

and time requirements of the mission, even while being splashed by wave wash. Therefore,

this method was adopted in the SANS configuration.

C. INS NAVIGATION

Inertial navigation is essentially a complex method of dead reckoning. Its purest form

involves no outside references to fix position. All position data is calcula~ed relative to a

known starting point. An inertial navigation system (INS) continuously measures three

mutually orthogonal acceleration components using accelerometers. These measurements

are taken in short time increments and multiplied by elapsed time in order to determine an

estimate of instantaneous velocity. The three-dimensional change in position can then be

determined by integrating respective velocities over time. (Bachmann 95)

The primary drawback of any INS is the tendency for small sensor drift rates to

accumulate as errors over time. Without outside references for correction, these errors

grow relentlessly and eventually lead to large errors in the estimated position. Highly

accurate inertial navigation systems can be constructed, but they are large, costly, and

complex (Touhy 93). Size alone makes them unacceptable for the SANS. A compromise

solution to meet SANS requirements is to integrate a low-cost, miniature INS with GPS.

In such a system, GPS will provide the INS with the periodic position fixes necessary to

correct slowly building INS errors.

12

The acceleration measurements required by an INS can be made by several types of

IMUs. There are two fundamental categories: gimbaled and strapdown. Due to their large

size and power requirements, gimbaled systems are not suitable for the SANS. In a

strapdown unit, three mutually orthogonal accelerometers and three angular rate sensors

are mounted parallel to the three body axes of the vehicle. Linear accelerations and

rotational velocities are continuously measured. Strapdown systems are smaller and

simpler than gimbaled systems, but necessitate much larger computational capabilities.

(Logsdon 92)

D. INTEGRATED GPSIINS NAVIGATION

SPS mode GPS navigation could be used to adequately perform both the transit and

search phases of an AUV mission. During surfaced transit phases, non-differential SPS, a

water speed sensor, and a magnetic compass would provide the primary source of

navigation data. In order to utilize GPS as a meaningful correction to a low-cost INS

system, periods between GPS fixes during the transit phase must not exceed the time in

which the INS error has accumulated to an amount comparable to the horizontal accuracy

of SPS (100m) (Bachmann 95). The search or mapping phases of an AUV mission would

require the vehicle to maintain a more accurate navigational picture, both submerged and

on the surface. This would necessitate the use of periodic differentially corrected GPS

information in order to keep the INS system accurate while submerged. This differential

correction could be provided in real-time during overt missions along friendly shores where

a DGPS reference signal is available, or during mission post-processing following a

clandestine mission.

13

--

Integration of GPS and INS into a single system can produce continuously accurate

navigational information even when using relatively low-cost components. This

integration not only allows periodic reinitialization of the INS to correct accumulated

errors, but can also (with the aid of Kalman filtering techniques) improve the performance

of the INS between fixes. Complementary filtering of acceleration data with additional

sensor information such as water speed and heading will further improve system accuracy.

Overall, an integrated system will provide improved reliability, smaller navigation errors,

and superior survivability. (Logsdon 92)

Kalman filtering is a method of combining all available sensor data, regardless of their

precision, to estimate the current posture of a vehicle (Cox 90). The filter is actually a data

processing algorithm which minimizes the error of this estimate statistically using currently

available sensor data and prior knowledge of system characteristics. Each piece of data is

weighted relative to data from other system components based upon the expected accuracy

of the measurement it represents. In a complementary filter, low-frequency data, which is

trusted over the long term, and high-frequency data, which is trusted only in the short term,

are used to "complement" each other providing a much better estimate than either can

alone. (Brown 92)

Bachmann (95) demonstrated the use of the complementary filter technique by

combining low-frequency orientation data from accelerometers and a magnetic compass

with high-frequency angular rate information to estimate heading and attitude.

Intermediate position results were obtained by integrating high-frequency water-speed

data. GPS data was used to reinitialize the system each time a fix was obtained and to

14

develop an error bias, expressed-as an apparent ocean current. The current was utilized to

correct the system between GPS fixes. The concept of using a relatively inexpensive IMU

with limited accuracy, coupled with differentially-corrected GPS, has proven to be a viable

solution to the challenge of shallow-water AUV navigation. (Bachmann 95)

The above conclusion has been independently duplicated in Wolf (96). Utilizing an

integrated GPS/INS system using the same Systron-Donner IMU used in SANS, but

without incorporating DGPS, accuracies in attitude of better than 0.2° in roll and pitch and

0.3° in azimuth were achieved. Specific results from those tests, along with static tests

indicating the SANS software filter (described in Chapter IV) response to IMU inputs are

discussed further in Chapter VI, System Testing. (Wolf 96)

E. AUV SUBMERGED NAVIGATION

There are many techniques available for submerged navigation, including dead

reckoning, inertial, electromagnetic, and acoustic navigation. With acoustic navigation,

time of arrival and direction of propagation of acoustic waves are the two principal

measurements made. A wide variety of acoustic navigation systems have been developed

for underwater vehicle use. They are typically divided into long, short, and ultrashort

baseline systems. All involve the use of acoustic beacons or receivers whose positions

must be known to an accuracy somewhat better than the desired vehicle localization

accuracy (Tuohy 93). Unfortunately, most acoustic navigation systems require major

expeditions for their accurate set-up and periodic maintenance. This makes them

expensive, and in many ways reduces the level of autonomy achievable by an AUV. Also,

acoustic methods are affected by changes in the speed of sound in the ocean and suffer from

15

refraction and multipath propagation problems in restricted shallow water coastal and ice

covered areas. (Tuohy 93)

There are various alternative submerged navigation methods not dependent upon the

aid of external signals. Charge Coupled Device cameras, laser scanning, or variations in

the earth's magnetic field can aid in determining position (Bergem 93). Position can also

be estimated by the double integration of acceleration as sensed by an IMU.

Doppler sonar or correlation velocity log sensors can be utilized to determine speed

through the water or over the ground. Doppler velocity logs utilize the physics of

frequency shifts in the sound waves of sources and receivers with relative radial motion. A

critical assumption for two-way transmission in the ocean is that the sound scatterers,

(small particles and plankton) uniformly populate the environment, and at the average

move at the same horizontal velocity as the water. Correlation velocity logs, on the other

hand, use reflections from the sea bottom, even at great depths, and on-board sensor arrays

to detect forward and lateral motion occurring between sonar pings. (Gordon 96)

Doppler technology has been redesigned as the Acoustic Doppler Current Profiler

(ADCP). The ADCP measures water velocity more accurately, and allows measurement

in range cells over a depth profile. Throughout the 1980's, ADCPs were further improved

by production of self-contained, vessel-mounted, and direct-reading models, and by the

addition of broadband capability in 1991. Broadband ADCPs take advantage of having

typically 100 times as much bandwidth for measuring velocity as the original, narrow

bandwidth models, reducing variance nearly 100 times. (Gordon 96)

16

Broadband Doppler processing computes the phase change of propagation time delay.

Since longer propagation times provide greater accuracy, but incur phase changes beyond

360°, a mathematical autocorrelation function resolves ambiguity and allows transmission

of a series of coded pulses within a single long pulse. Multiple beams are utilized to obtain

velocity in three dimensions, under the assumption of uniform currents across layers of

constant depth. Non-homogenous current layers produce large velocity errors. (Gordon

96)

ADCP single-ping random or short-term error may range from just a few mm/s to as

much as 0.5 rn/s, depending on internal factors such as frequency, depth cell size, number

of pings averaged together, and beam geometry. Since this random error is uncorrelated

from ping to ping, the standard deviation of the velocity error can be reduced by the square

root of the number of pings through averaging. Although averaging can greatly reduce the

relatively large, single-ping error, at a certain point it fails to improve on overall error as

the random error becomes smaller than the bias. (Gordon 96)

The bias is typically less than 10 mm/s and depends on factors such as temperature,

mean current speed, signal/noise ratio, and beam geometry. It is not yet possible to

measure ADCP bias and calibrate or remove it in post-processing. External error factors

include turbulence, internal waves, and ADCP motion, and can dominate internal errors.

While the technology behind the ADCP is impressive and bears serious consideration for

future small AUV navigation development, the combination of relative affordability and

unpredictable bias make it ales attractive option for the SANS application. (Gordon 96)

17

For covert missions, an AUV may not be able to refer to external signals while

submerged. In this case, the system must rely on some sort of dead reckoning. Modern

dead reckoning systems typically use magnetic or gyroscopic heading sensors, and a

bottom or water-locked velocity sensor (Grose 92). The presence of an ocean current will

add a velocity component to the vehicle which is not detected by a water speed sensor. In

the vicinity of the shore, ocean currents can exceed two knots (Tuohy 93). Using dead

reckoning with currents which are relatively large in relation to the typical 4-6 knot speed

of an AUV can produce extremely inaccurate results (Tuohy 93). This inaccuracy

represents the central challenge of AUV submerged dead reckoning navigation.

There are many techniques for measuring acceleration and angular rates. These include

using ring laser and fiber optic gyros, rotating mass gyros, vibratory rate sensors, and high

performance IMU s. Inertial grade IMU s typically contain three angular rate sensors, three

precision linear accelerometers and a three-axis magnetometer. The acceleration

measurements required by an INS can be made by several types of IMU s. All of these

sensors are subject to drift errors which relentlessly increase with time. High quality

sensors are subject to less drift, but can cost up to $100,000 (Tuohy 93), making them

unattractive for small AUVs.

McKeon (92) proposes a combination of GPS and INS to allow an AUV to determine

position information. While submerged, the AUV uses a low-cost inertial navigation

system. However, when on the surface, the vehicle has access to GPS information. GPS/

INS information could be combined with Kalman filter techniques to reduce errors during

the next dive sequence as simulated in Nagengast (92) and demonstrated in McGhee (95).

18

The system described in McGhee (95) senses linear accelerations and angular rates with

respective sensors and processes the data in a twelve state Kalman filter, resulting in an

estimated position. A mechanical water speed sensor and a magnetic compass are added

to complement acceleration and angular rate data and further enhance navigation accuracy.

The twelve states can be divided into seven continuous-time states (three Euler angles, two

horizontal velocities, two horizontal positions), two discrete-time states derived from the

DGPS fixes (estimated east and north current), and three angular rate sensor bias estimates,

(subtracted from the output of these sensors). The DGPS fixes occur aperiodically

whenever the vehicle surfaces and is able to acquire a sufficient number of satellites.

(Bachmann 96)

F. NAVIGATION FILTER THEORY

The inherent sensor measurement errors plaguing inertial measurement systems may

be partially compensated for, but never eliminated. Drift is the tendency of bias errors in

the angular rate sensors of the inertial platform to cause relentlessly increasing orientation

measurement errors. The single integration of a bias-ridden angular rate signal will cause

a steady build-up of error over time. This leads to an incorrect estimation of the body

orientation relative to the earth-fixed coordinate system and a corresponding body position

estimate error. Angular rate sensor biases typically change unpredictably over time,

making a simple, complete compensation impossible. (Frey 96)

Standard inertial navigation procedures utilize fix updates if an alternative method of

determining instantaneous orientation exists. Drift is compensated for by periodic

adjustments of the inertial system to the external reference, returning the bias error

19

accumulation to zero. Short fix intervals then result in relatively insignificant bias errors.

Higher quality angular rate sensors typically have lower bias errors and correspondingly

longer fix intervals. (Frey 96)

Linear acceleration sensor drift errors are compounded by the double integration of the

linear acceleration measurements to obtain position data. This results in a position estimate

in error proportional to time-squared, rather than simply time. This error may be similarly

compensated. However, given the same sensor quality, the fix interval needed to maintain

comparable accuracy will be much shorter than that required for the angular rate sensor bias

compensation alone. (Frey 96)

Discrete low pass filter theory provides a method for obtaining a rate bias estimate.

Such filters may be represented by a signal-flow graph (SFG), which is a simplified version

of a block diagram. The SFG was introduced by S. J. Mason for the cause-and-effect

representation of linear systems that are modeled by algebraic equations (Kuo 95). A SFG

may be defined as a graphical means of portraying the input-output relationships between

the variables of a set of linear algebraic equations, or simply

Eq (2.1)

output = I_,gain x input

Corresponding block and signal flow graph diagrams for a single input discrete low pass

filter are shown in Figures 1 and 2 below.

20

+ *
input, u output, y

1/'t

Figure 1: Discrete Low Pass Filter Block Diagram

approximated by

input, u

1

L.xl{t)dt xl

-~-~I --'7._ __ 1 _ __...,~

--..... ~-

y

Figure 2: Discrete Low Pass Filter Signal Flow Graph

In this diagram, p -l stands for the time domain integration operator, and tau is the

relaxation time constant. Directly from Figure 2,

Eq (2.2)

or

Eq (2.3)

input- old output
new output = old output + !:lt

't

This is the classic relationship describing a low pass filter (McGhee 96). Rewritten,

Equation 2.3 becomes Eq (2.4)

Which can also be written

21

Eq (2.5)

and, finally

Eq (2.6)

or, in more common terminology, and the terms used in the SANS code

Eq (2.7)

new output = output Weight x old output+ input x sample Weight

The above general result can be applied to the SANS system for rate sensor bias

estimation. In this case, the signal used for attitude estimation is the raw rate sensor reading

with the estimated bias subtracted. An alternative formulation is to add the negative of the

bias to the sensor reading. This formulation is derived similarly, and is implemented in the

SANS code as,

Eq (2.8)

new negative bias = bias Weight x old negative bias- input x sample Weight

In this form, the bias estimation integrator is initialized to a negative average value and the

bias is then added to the sensor input.

G. SUMMARY

Many approaches to the problem of AUV navigation have been devised. New ones

are still emerging and technological improvements are improving current approaches.

Choices range from simple dead reckoning, to systems which use acoustic information

from floating or stationary transponders, to complex systems which use sophisticated IMU s

and GPS receivers combined with Kalman filtering techniques. Most of the described

22

approaches can only be used in very specialized applications. Most are also limited by

dependence on previously deployed external means and by some requirement to actively

exchange data with those means. The preferred method of many developers is the acoustic

approach. However, most of these systems have a higher degree of complexity and

dependence on external means than the system implemented in McGhee (95).

It can be seen that high accuracy and other design goals for an inertial navigation

system are achievable. But clearly, the cost increases rapidly with the degree of

sophistication and the desired precision. From this point of view the NPS Phoenix AUV,

described in Healey (94), together with the SANS navigation system developed by

Bachmann (95), McGhee (95), Steven (96), and Walker (96), promises to provide a very

effective means for achievement of clandestine missions in shallow water by a small AUV.

The remainder of this thesis continues an ongoing experimental study pertaining to the

development of the SANS system and associated problems. The current system under

evaluation is of small physical size and relatively low cost. The IMU selected is

representative and has limited accuracy, so additional water-speed and magnetic heading

information is required. Accelerometers are used mainly to derive low frequency attitude

information, and are not utilized for velocity or position estimation for periods of more than

a few seconds.

Previous research on the prototype SANS has produced test results and qualitative

error estimates which indicate that submerged navigation accuracy comparable to GPS

surface navigation is attainable (Bachmann 95). The research goal of this thesis is to refine

the hardware and softwar~ configuration to allow more accurate submerged navigation, and

23

I~---

1

to develop the SANS into a self contained system capable of being internally or externally

attached to any AUV, delivering regular, accurate, real-time position updates.

24

III. SYSTEM HARDWARE CONFIGURATION

A. INTRODUCTION

Bachmann (95) describes the initial prototype in the ongoing development of the

SANS. ·walker (96) redesigned the original prototype to consolidate components in one

integrated system. In addition, he presented an evaluation summary of the original

prototype hardware, with particular emphasis on the noise characteristics of the Systron

Donner MotionPak IMU, which is retained in the SANS.

Figure 3 presents a block diagram for the hardware making up the redesigned SANS.

Figure 4 presents a photograph of the SANS components fully assembled ~to their testing

configuration. The project box in which the components are currently mounted is an

interim solution. A more permanent, water-tight, streamlined housing is currently in

development

This configuration is significantly different from the previous prototype presented in

Bachmann (95). The SANS components are no longer separated; all components are

physically located in one self-contained package. When joined with its accompanying

power source (a 12 VDC battery), the complete system can now be strapped-down to a tilt

table or inserted into a towfish for at-sea testing. In its current configuration, the SANS has

its processor and GPS/DGPS components "on-board," thus no longer requiring the transfer

of sensor data via modem to an external processor or GPS/DGPS receiver. (Bachmann 95,

Walker 96)

The SANS processor is linked with an external processor via a DOS TCP/IP network

connection to allow for human monitoring and interaction during the course of an

25

DC-DC Regulator
DCOut &

IMU

Water
Speed
Sensor

Depth
Sensor

Distribution
Block

12VDC Battery In

Network Adapter

Attitude and Position
Out

Network w/ Remote PC

Remote PC used during
development only

Figure 3: Redesigned SANS Hardware Configuration (Walker 96)

experiment. This external processor's only function is to maintain a remote control

session with the SANS processor and receive its attitude and position updates. Unlike the

original SANS proof of concept design presented in Bachmann (95), the SANS now

maintains the capability to on-board process its own data and interface with any other

higher-level processor via a network. This capability will directly enable smooth

incorporation of SANS into the Phoenix architecture. This chapter will summarize the

hardware component capabilities realized in Walker (96).

26

12 VDC In

I I
Ln-'

GPS ~tenna

Low-Pass Filter Board I ~rf . nte ace

r--------
1 25-Strand Ribbon Cable I
I I

WU L-------------'
DGPS Recei~'er

GPS Receiver

Thin Ethernet

Compass

Figure 4: SANS Hardware Configuration (Walker 96)

27

COM 1

486 DX2 50MHz

E.S.P. Computer

B. HARDWARE DESCRIPTION

1. Computer

The on-board processor is an Extremely Small Package (E.S.P.) Cyrix 486SLC DX2

50 MHz computer, pictured in Figure 5. It is specifically designed to offer off-the-shelf

PC-compatible solutions in space and/or power constrained environments. This particular

E.S.P computer possesses a total of eight modules which perform various system tasks.

Together, the processor and its accompanying modules provide a small, low-power system

with system performance comparable to a standard, desk-top type system. (MAXUS 95,

Walker 96)

Figure 5: E.S.P. 486SLC DX2 50 MHz Computer (Walker 96)

The CPU M.::,.dulc provides the processing capability, the interface for a standard

keyboard, the Flash PROM containing the system BIOS, and memory and bus controller

logic. The DC-DC Power Module provides for all the system power requirements up to a

maximum 35W total output. It accepts an unregulated 12 V DC and provides the required

+5, + 12, -12, and -28 V DC to power various system components and optional peripherals

28

(i.e., an external floppy and hard drive, as is used in the tilt-table test configuration).

(Maxus 95, Walker 96)

The VGA Adapter Module provides the interface to operate an external VGA monitor.

A PC 1/0 Module provides for two Serial ports and one parallel I/O port. It also provides

two type-III PCMCIA sockets which conform to PCMCIA Release 2.01 standard. These

two ports can be used for a variety of compatible devices (i.e., Ethernet Adapter, Modem,

GPS Receiver, etc.). This module was included in the current design to provide additional

secondary storage in the form of PCMCIA SRAM cards, as well as to enable possible

future expansion. An Ethernet Module provides the SANS with an external ethernet

interface. (Maxus 95, Walker 96)

The Analog to Digital (A/D) Module provides 8 differential or 16 single-ended input

channels at 12-bit resolution. In its current configuration, the AID module samples only 8

of the available 16 single-ended channels. It features a single-channel maximum sampling

rate of 333 KHz, and an input range from +/- 1.25m V to +/-lOV (MAXUS 95). The AID

module provides a 34-pin external connector (J3) to which developers can connect their

input signals. (Walker 96)

The DRAM Module provides for high-speed (70ns) memory storage available in 2, 4,

6, 8,or 16MB capacities (MAXUS 95). This module is to the E.S.P. as a hard disk is to a

standard desk-top PC. (Walker 96)

2. Inertial Measuring Unit

The inertial navigation component of the SANS is provided by a Systron-Donner

Model MP-GCCCQAAB-1 00 "MotionPak" inertial sensing unit, pictured in Figure 6. This

29

self-contained unit provides analog measurements in three orthogonal axes of both linear

acceleration and angular velocity. It consists of a cluster of three accelerometers and three

"Gyrochip" angular rate sensors. (Walker 96)

Figure 6: Systron-Donner Inertial Measuring Unit (Bachmann 95)

3. GPS/DGPS Receiver Pair

The GPS/DGPS receiver used is the ON CORE 8-channel receiver which incorporates

an imbedded DGPS capability (Oncore 95). The receiver is capable of tracking up to eight

satellites simultaneously. It can provide position accuracy of better than 25 meters

Spherical Error Probable (SEP) without Selective Availability (SA), and 100 meters (SEP)

with SA. Typical Time-To-First-Fix is 18 seconds with a typical reacquisition time of 2.5

seconds (Oncore 95). This receiver meets or exceeds the capabilities of the receiver

30

described in Norton (94}, which, under normal operating conditions, met the accuracy and

time requirements of the SANS project. Norton (94) also demonstrated that a receiver with

these qualities will perform well when using an antenna that is located on or near the sea

surface; as is necessary during a clandestine mission. Figure 7 shows the ONCORE GPS/

DGPS receiver used in the SANS project. (Walker 96)

Figure 7: ONCORE GPS/DGPS Receiver (Walker 96)

4. Compass

The compass used in the SANS project is a Precision Navigation model TCM2

Electronic Compass Module. This compass does not employ the mechanical gimbal

technology utilized in the compass described in Bachmann (95), but rather employs a three

axis magnetometer and a high-performance two-axis tilt sensor in a small form-factor

(TCM2 95). The TCM2 compass is capable of providing readings of pitch, roll, and

surrounding magnetic field strength in addition to heading. The TCM2 provides greater

accuracy by calibrating (performed by the user) for distortion fields in all tilt orientations,

providing an alarm when local magnetic anomalies are present, and giving out-of-range

warnings when the unit is being tilted too far (TCM2 95). (Walker 96)

31

5. Other Components

The water speed sensor and the depth sensor are those described in Bachmann (95) and

therefore are not depicted in Figure 5. The GPS antenna shown in Figure 5 is an active

antenna, :which was selected for its performance and low profile. Because the E.S.P.

Ethernet module's output media type is AUI, a standard AUI-to-BNC media converter is

employed to allow the use of durable RG-58 coax cable to span the roughly lOOm distance

required while pulling the towfish behind a towing vessel. The GPS/DGPS Interface box

is nothing more than an adapter to interface the GPS receiver signal with the serial port of

the E.S.P. computer. (Walker 96)

Based on the analysis given in Walker (96), the 2-pole anti-aliasing Bessel filters used

in Bachmann (95) were replaced with new low-harmonic distortion filters. These come

factory tuned to a user-specified comer frequency of 10 Hz, require no external components

or adjustments, and operate with a dynamic input voltage range from non-critical+/- 5V to

+/-18V power supplies (Frequency Devices 96). To implement these filters into the SANS,

a double-sided printed circuit board was designed and machined to receive all six filter

DIPs, as well as three quad op-amp LM324 DIPs configured as voltage-followers to

provide input and output circuit protection. (Walker 96)

To provide for the requisite +/-15 VDC, a DATEL model BWR-15/330-D12 DC-DC

Converter is used to convert the unregulated 12 VDC battery input into regulated +/-15

VDC needed to power the low-pass filter circuits and the IMU. This converter features

over-current and short-circuit protection, a compact form-factor, and high reliability at a

32

minimum efficiency of 8-2%. It employs switching regulator technology, which minimizes

heat generation and current usage. (DATEL 95, Walker 96)

Physically connecting the IMU, Low-pass Filters/DC-DC Converter PCB, the Analog

Digital Converter, input power, water speed sensor, and depth sensor, is a 25-strand flat

ribbon cable. This type of cable was chosen to allow all system components to be easily

interconnected. (Walker 96)

C. SUMMARY

The SANS design described in this chapter is significantly different from that

described in Bachmann (95). The processing capability, along with the GPS/DGPS

receiver, is now on-board the SANS, making it completely self-contained. The only

external link is a DOS ethernet environment to a remote PC utilized for test monitoring

purposes. The IMU sensor data, after low-pass filtering, along with water speed and depth

data, are converted from analog to digital form, with 12-bit resolution, and then passed to

the processor. GPS data is passed separately to the processor, which computes updated

attitude and position information to be exported over an ethemet socket. The hardware for

this version of the SANS was chosen to comply as far as possible with the requirements set

forth in Kwak (93). Though there are many possible choices of hardware for each of the

components in Figure 4, trade-offs between accuracy, size, power requirements, and cost

have been considered. As further advances in miniaturization are made, accuracy will

continue to increase while price and size decrease, thus making it easier to meet the

challenges of the SANS baseline requirements. The next chapter of this thesis will describe

the software which supports this hardware configuration.

33

I ··~---

34

IV. SOFTWARE DEVELOPMENT

A. INTRODUCTION

The purpose of the SANS software is to control some of the individual hardware

components, to control input/output interface communications between the components, to

assimilate all of the incoming data, and to implement a twelve state navigation filter. This

chapter will review the software structure inherited from Bachmann (95) and Walker (96),

and will concentrate particularly on the changes made to accommodate the greatly

improved processing speed that Walker (96) made possible.

The code is written in C++ and is designed for use on an IBM-compatible personal

computer using the Borland version 3.1 compiler under DOS 5.0. This project code choice

has proven to complicate the integration ofthe hardware interfaces. Additionally, the dated

software compiler formats and DOS system calls make the code specific to this application

only and increases the difficulty of troubleshooting or implementing changes. Although

most of the code is transportable to other C++ compiler environments, the interrupt

processing and input/output communications control uses obsolete type declarations and

function calls to the rapidly aging operating system.

This limitation could easily be resolved in future project work in either of two ways.

Utilizing a Borland version 5.0 compiler with updated communications code would allow

continued use of a traditional IBM-compatible environment. Converting those sections of

code to be compatible with Unix environment compilers could also be implemented on the

PC under the Linux operating environment.

35

The software design instantiates objects corresponding either to the individual

hardware components or to the purpose accomplished, in a straightforward manner. The

class and object relationships are shown in Figure 8. All of the concrete classes depicted

are speCifically instantiated by the class instance above them, in descending chronological

order as the program is initiated. All are instantiated as a single object, named as shown.

There is no need in this application for extensive polymorphism. The serialPortClass and

bufferClass classes are abstract parent classes containing the common definitions and

functions from which the specific compassPort, compassBuffer, gpsPort, and gpsBuffer

classes inherit. The stampedSample object, defined in the main program's header file,

contains the latest update of all pertinent navigation information. Therefore, it is the object

which is passed between the class objects. Other objects which support the calculations are

structures to hold such things as position in the various formats. For simplicity, they are

not shown in Figure 8.

This architecture represents a substantial change from the original design, while

retaining most of the functionality. As the project evolved, it was determined that much of

the flexibility originally envisioned did not prove to be necessary. This includes features

such as the capability to instantiate an array of serial ports, or a need for a wide variety of

buffers for the data received through the serial ports.

The above features were included in the original object oriented design approach, but

have been streamlined to a more specific, less complicated structure. Specifically, the

portbank and bytebuffer classes have been removed. Only two serial ports are required, for

the compass and gps interfaces, respectively. The serial port code was modified, and the

36

---- instantiation

- - - - - inheritance
I I concrete class

~ abstract class

Main

-~ mstant1ates
"navl"

navigatorClass

stamped Sample

(nav data struct,
latest fix info)

private member
"insl"

private member
"gpsl"

ins Class

private member
"saml"

samplerClass

private member
"compl"

a2dClass c0mpassClass

global member
"port2"

compassPortClass

private member
"headings"

compBufferClass

/ '
/ '

/ ' /
/ public buffers ' ,

/

Figure 8: SANS Code Classes and Objects

37

gpsClass

global member
"portl"

gpsPortClass

private member
"messages"

gpsB ufferClass

buffered serial port class-has been specialized to a compassPort class and a gpsPort class,

while retaining the same basic function. This resulted in the compassPort and gpsPort

classes representing a kind of serial port, similar to the way the compBuffer and gpsBuffer

classes already were a kind of bytebuffer and continue to be a kind of buffer. This

simplified the class membership hierarchy and variable passing across class lines. The

specific nature of the application made efficiency a higher priority than general

applicability.

Other improvements included the addition of configuration files containing such data

as gain settings to allow repeated testing without the necessisity of recompiling after every

change. The increased processing speed overwhelmed the DOS operating system's ability

to print information to the user's screen in real time, so an interval was added that reduced

screen output to a more usable human rate that also reduced input/output conflicts. All

screen output and data writing to files were consolidated to single points to further simplify

exchanges. And finally, some error checking was added to ensure such things as proper A/

D converter channel initialization.

B. SOFTWARE FILTER

The purpose of the software filter is to utilize IMU, heading, and water-speed

information to implement an INS, and then to integrate this with GPS information. This

results in a single system which can produce continuously accurate navigational

information in real time. The filter mitigates the effects of sensor inaccuracies (inherent,

electronic noise, and transitory), ocean current (the largest single factor affecting AUV

navigation), dynamic model uncertainty, measurement errors, and calculation errors.

38

Kalman filtering techniques are-used to implement the INS using DGPS fixes as "error-free

data". This allows periodic reinitialization of the INS to correct accumulated drift and

development of error biases. All sensor data is logged in raw form for post-mission

processing. (Bachmann 96)

Figure 9 is a data flow diagram for the SANS software filter. On this diagram, R

represents a rotation matrix and Tis a body rate to Euler rate transformation matrix. Table

2 gives the state variables for the navigation filter. The twelve state variables include the

outputs of the three integrator blocks, the estimated current in north and east direction

components, and the bias estimates for the angular rate readings. (Bachmann 96)

Euler Angles <P .e ·"'
North & East Velocity ie •Ye

North & East Position Xe .Ye

Apparent Current ic .Yc

Angular Rate Bias Estimates Pb ,qb ,rb

TABLE 2: State Variables of the Kalman Filter (Bachmann 96)

Ten of the state components are "continuous time": the three Euler angles (ell, e. 'I'),

two horizontal velocities (ie, Ye), two horizontal positions (xe , Ye), and three angular rate

bias estimates. Continuous time integration is approximated by numerical integration,

making these "continuous time" components discrete time values in the reality of the digital

filter. This is necessary due to the minimum integration sampling time limitation of the

computer and AID hardware. The apparent ocean current values (ic, yJ are updated

aperiodically as a result of both diving and wave action, which produce inherently discrete

39

Accelerometers ..
(Xa, Ya• Za) I e = asin Xa

a g_.
. Ya

E . dB' 1<1> = -asm-st:J.mate 1as a g. cose
(Pb• qb, rb)

Angular-rate
Sensors
(p, q, r)

T(<Jl, e, 'I')

Euler Angles
< <Jl, e, 'I')

<Pa ' ea +

$s, Ss

o/s

Magnetic Compass .., (
('JIJ

Water Speed
Uw

(iw, Yw)

R(<Jl, e, 'I')

Euler Angles
< <Jl, e, 'I')

I

Accelerometers Ua, Ya• i"")

X= xa-gsin8
Y = Ya + gsin$ · cos8
i" = za + gcos<j>. cos8

(.t, y, z)

R(<Jl, e, 'I') North &
East Accel
(x., Ye)

North & East Velocity North & East Position
Ue, Ye) I I I (xe, Ye)

+

Apparent
Current

(ic, Y c)

l

Weighted Reset

GPS Position

!J.t

Interval
Between

GPS Fixes

Note: Difference taken
before integrator reset.

.-
\0
Q\

= = ~ s .c
(j
~
~ --r..
~
~

= 0 0

"""" ·=
~ ·->
~ z
Q,l
r..
~
i:t:

ct:
0

00.
00. z
<
00.

6\
Q,l
r..

~ ·-~

gps fix information. This-discrete event dynamic system is well suited to application of

Kalman filter theory to obtain optimal time-varying values for the gain matrices Ki in

Figure 9. However, at the time of writing this thesis, there are inadequate statistics on

DGPS no_ise and AUV maneuvering as needed by this approach. Therefore, bandwidth

and steady-state error considerations were used to compute initial constant gains

(Bachmann 95, McGhee 95), which were subsequently adjusted based on the results of

experimental studies. (Bachmann 96)

One area for future project work involves obtaining the necessary statistical data

needed for refinement of the aperiodic, gps update portion of the filter. The optimum reset

weight for application to the final integrator block could then be determined. Additionally,

application of the gps fix interval (1/.l\t) just prior to K4 is under consideration for removal.

The principal difference between the current filter and that described in Bachmann

(95) regards the point in the filter process at which the apparent current error correction is

made. The previous filter added the apparent current to the water speed. The difference

between this value and the estimated north and east velocities was input to the north and

east accelerations with a gain K 3 • Poor initial sea test results in Bachmann (95) indicated

this approach was possibly underdamped or even unstable. The present approach is to

apply the apparent current as feedback to the output of the thjrd integrator block, prior to

input to the final, position integrator. (Bachmann 96)

The continuous state portion of Figure 9 shows that the Euler angle and linear velocity

outputs are fed back to the corresponding integrator inputs. Thus, with diagonal gain

matrices K 1 , K 2 , and K 3 , each of these integrators is in fact a low pass filter for its

respective inputs (Bachmann 96). Figure 10 isolates one feedback loop to help illustrate

41

this relationship. The integrator block is shown using s-domain (Laplace transform)

notation. This approach prevents unlimited state estimate growth caused by unmodeled

bias errors in state derivative inputs to the integrators (Bachmann 96). Complementary,

low frequency information from an independent source (accelerometers) is also furnished

to each integrator to correct for long-term decay of the state estimates resulting from this

feedback (McGhee 95). The low frequency information sources include attitude estimates

from accelerations sensed by the accelerometers (ia , ·ya , za), the magnetic compass

readings ('Pc), and water speed (uw). (Bachmann 96)

angle estimation
from
accelerometer

angular
rate sensor

estimated
Euler
angle

Figure 10: Complementary Filter Feedback Loop for Euler Angle Estimation

The IMU acceleration readings require correction in addition to filtering. The

accelerometer data is utilized as an inclinometer, to determine how much of the specific

force felt along each axis is due to gravity. Computed gravity is then subtracted from

specific force readings of the accelerometers (i, y, z), to transform them into

accelerations, prior to rotation into earth-fixed coordinate values (ie , Ye , ze). (Bachmann

96)

42

The rate sensor input in Figure 10 is added to accelerometer attitude estimates after the

gain matrix is applied. This signal already has the estimated bias removed utilizing the low

pass filter methodology derived in Chapter II and resulting in Equation 2.7. New biases are

calculated on each filter cycle by the calculateBiasCorrections function of the insClass,

and are applied to new navigational state information in the applyBiasCorrections function.

Filter response to example and real world inputs will be discussed in detail in Chapter VI,

System Testing.

C. IMPLEMENTATION DESCRIPTION

Figure 11 shows the revised data flow between software objects. The ~sks performed

by the SANS software can be divided into two basic categories. The primary tasks are

related to calculating the current position and other navigational state information. This

includes processing incoming GPS data, IMU data, water-speed, and heading information,

and integrating all of this information through the navigational filter to obtain a fix. These

tasks are performed by the gpsClass, insClass, and Navigator software objects respectively.

The secondary tasks involve hardware interfacing, communications, data filtering and unit

conversion. These basic but crucial tasks are handled by the Sampler, Buffer, compBuffer,

gpsBuffer, A2D, Serial Port, compassPort, and gpsPort software objects. The main

program serves to drive the other objects by continually querying the navigator for position

updates and performs output to the user screen and data files from a single location. Real

time navigation source code is provided in Appendix A. Supporting serial communication

and other administrative function code is provided in Appendix B. The following summary

43

ins position

ins

j~

Main

1 ~ 12 filtered state elements

Navigator

gps postion, time

l

- - validgps
position
messages

gps

jll

low pass filtered states
gps position
messages

sampler

acceleratioo/s,
angular rates,
water speed,
depth

.-----L----.

a2d compass

n
data messages

compBuffer

~

gpsBuffer

~

position
message
characters

gpsPort

position message characters

compassPort

Figure 11: SANS Data Flow Between Software Objects

44

of the source code is presented bottom-up to illustrate construction of the navigation state

from the individual data elements. (Bachmann 95)

1. Compass Data

The compassClass contains the code and member objects which implement reception

of compass messages in a design similar to, with the exception of specific hardware details,

the gpsClass. Private member compassPort instantiates a kind of serialPortClass object to

allow data communication on COM2. CompassPort in tum has private member

compBufferClass which provides a kind of bufferClass structure for temporary storage of

incoming compass messages. Figure 12 illustrates the compBufferClass and

gpsBufferClass data structures. The compassClass therefore contains code to

communicate with the serial port, as well as to check the "checksum" and header of each

compass message received. The samplerClass object instantiates compassClass object

"comp1" and periodically interrogates comp1 to empty the buffer of information.

(Bachmann 95, Walker 96)

2. GPS Data

The gpsClass, as previously mentioned, is similar in design to the compassClass, with

differences driven by the different message formats, and it utilizes COMl. It obtains GPS

position messages in the Motorola proprietary format (@@Ea). Before the code

recognizes a GPS message as being valid, the message must pass three conditions; 1) it

must have a valid checksum, 2) the fix must be based on at least 4 satellites, and 3) the

differential bit in the message must be set (i.e., the fix must have the differential correction

45

applied to it). The navigatorClass instantiates gpsClass object "gpsl" and interrogates gpsl

to empty its buffer directly. (Bachmann 95, Walker 96)

compBuffer "compData" I gpsBuffer "GPSdata"

'raw Message'

oyte 120 I 152

___ J twice as 1on~s_message in ~ach case) ___________ _

compBuffer "headings" gpsBuffer "messages"

last current

1 compData I GPSdata

putplace
block

8

Figure 12: Buffer Data Structures

3. Inertial Sensor Data

Inertial sensor data passes through the new filter circuit board. From there, it is input

directly to the AID converter module in the processor.

a. AID

The AID module came with demonstration C source code provided by the unit

manufacturer. Walker (96) modified the demo code and converted it to C++ for the SANS

application. The a2dClass provides all of the requisite software operation for the AID

module in the E.S.P. computer, which is completely controlled through softwar~. Control

is maintained through the manipulation of the A.'D Control Register and the AID Status

46

Register. These registers are manipulated by writing to and reading from specific memory

addresses. The a2dClass is designed with some degree of user flexibility. For instance, the

user can choose between one of two base addresses. (Walker 96)

·The SANS software only uses a few of the member functions in accomplishing

its mission. Those member functions not directly utilized in this particular application are

useful for troubleshooting, or allow a variety of options for specific applications. The

following general discussion explains how the AID module works in the SANS application.

(Walker 96)

The AID provides 12 bits of resolution, or 2
12 = 4096 discrete quantization

levels. The AID module may be employed in differential mode or single-ended mode. The

SANS application employs the A2D in the single-ended mode of operation. The A2D

samples the dual-ended swing of the IMU sensor signals, and represents these voltages as

a digital value in the range 0 - 4095. A general AID conversion table is provided as Table

3 to further illustrate how the sensor voltages are mapped over to their digital equivalents.

(Walker 96)

Sensor DC Voltage Converted Equivalent

+10 Volts 4095

+5 Volts 3071

0 Volts 2047

-5 Volts 1023

-10 Volts 0

TABLE 3: A2D DC-to-Digital Conversion Mapping (Walker 96)

47

When an a2dClass object is instantiated, the class constructor sets several default

data member values, and then reads the AID configuration file A2D.cfg. This

configuration file provides simple user update of AID module operation without

recompiling the source code. The constructor initializes the system addresses, then

initializes the AID hardware using those variables that were loaded upon reading the

configuration file. The a2dClass object is instantiated by the samplerClass object as

"a2dl ". It is a private data member of the samplerClass. (Walker 96)

The AID module is set into operation by a call to the samplerClass function

initSampler(). It utilizes a2dClass member functions to program the sequencer and tell it

which channels to sample and in what order, resets the AID First-In-First-Out (FIFO) to

enable it to receive data, and then toggles the trigger bit in the AID Control Register from

a low to a high, which starts the AID into operation. (Walker 96)

4. Sampler

The samplerClass object prepares raw IMU, heading, and water speed data for use by

the INS. This preparation includes simple filtering, unit conversion, and time stamping.

Figure 13 provides a summary of the principal class members and functions, with

psuedocode descriptions of the principal methods. The samplerClass interface consists of

a single method (getSample) which controls the data formatting and returns a formatted

sample if valid raw data is available, and a negative response otherwise. (Bachmann 95)

Figure 14 provides an illustration of the process of obtaining samples from the A/D.

During SANS operation, the samplerClass member function readSamples() is called

repeatedly to retrieve inertial data from the AID FIFO. It first checks to ensure that the

48

saml

a2dl Constructor compl

--initializes scale factors (config file)

\
--samplePeriod(a2dl.chcnt)*(a2d l.delta _ t)

I
I

I

*(0.000001)
\

\ (channel count * period between channels
\

\
\

in microsec)

' initSampler()

I
I

compl.initCompass
a2dl.initA2d

insSetUp insPosit

getSample()

--if(readSamples(newSample))

filterSample(newSample)
formatSample(newSample)

filterSample()

--sums readings of ea. sensor
and averages

--general low pass filter I\
(filters out small, quick I ~

variations)

readSamples()

•• check a2d FIFO overflow

--! empty FIFO:
sample double array gets FIFO data
ensures samples ea. of 8 channels

--newSample.deltaT =
sampleCount * samplePeriod

formatSample

--converts voltage readings
(integers, 0 - 4095) to
useable ins values, ie

newSample.samle[O] =
xAccelUnits(newSample.sample[O])

xAccelUnits(return(xAcceiScale*linear)
- 2047.0) I 2047) *gravity

Figure 13: samplerCiass Summary

49

Sampler Object
"saml"

private member ,,
a2d Object
"a2dl"

r
initSampler()

-- sample channels

-- reset FIFO

--trigger bit LO --> ID

readSamples() ,
-- notFULL:

retrieve FIFO IMU data

--FULL:

continues navigation with slight data loss

' data in FIFO?

FIFO emptied into double array:

x-accel
y-accel
z-accel
x-ang
y-ang
z-ang
waterspeed
depth

0 1 2

timeCounter + 1 I sample
timeCounter *sample period= deltaT

Figure 14: samplerCiass Data Flow

50

999

FIFO is not FULL. If the FIFO ever gets filled without being immediately emptied, data

will continue to push into the FIFO. There is no room for this additional data and all

information from that point on will be lost. Preventing the FIFO from overflowing is

critical for proper SANS operation. If this check is ever true, the SANS software has been

rewritten to reinitialize the a2d and continue to navigate. One full FIFO plus the data

received in the time since the overflow will be discarded. This will result in a very short

period of lost data with a minimal impact on navigation accuracy.

To prevent FIFO overflow, one need only be mindful of the rate at which the AID is

sampling its inputs and be sure the AID FIFO is emptied at the same rate or faster. If the

FIFO does have data in it, this data is emptied from the FIFO and stored in a doubly-

subscripted array with 8 rows and 1000 columns to coincide with storing up to 1000, 8

channel samples of sensor data. This type of data structure is used to temporarily store the

data to enable access to a history of samples. Figure 15 presents a model of this array.

(Walker 96)

x-acc x-acc . . .
y-acc y-acc . . .
z-acc z-acc . . .
x-ang x-ang . . .
y-ang y-ang . . .
z-ang z-ang . . .
waterspeed !Waters peed . . .

·depth depth . .
0 1 999

Sample Number/ Array Index
Figure 15: Model of the A2D Sample Array (Walker 96)

51

! --;--------------------------------------~~-

1

The first action taken by the Sampler when a packet is received is to time stamp it.

Since the time difference between the eight samples contained in a single message packet

is relatively small, the Sampler object then respectively averages the eight corresponding

data variables contained in a packet. As the samples are emptied from the FIFO, the

variable "timeCounter" is incremented once for every 8 samples. This variable is then

multiplied by the sample period to calculate the "deltaT", or the time between adjacent

samples. The samplerClass code then averages over all the samples received since the last

sample was taken from this array. The averaged measurements which result represent a

simple low-pass filtering of the samples. This has the effect of filtering out small

fluctuations in the data. (Bachmann 95, Walker 96)

The integers contained in a sample are digital measurements of analog voltages output

by the SANS sensors. Once these eight filtered measurements are obtained they are

converted from voltages to units which are usable by the INS object (i.e., feet and radians).

Finally, each of the measurements is checked to ensure that it is within the limits of the

sensor from which it came. If any values fall outside the capabilities of the sensor from

which it came, the entire packet is considered invalid and discarded. (Bachmann 95)

5. INS

The INS class implements the SANS inertial navigation. It is the most complex class

in the software. It has been changed very little as the project has evolved. Figure 16

provides a summary of the principal member objects and functions which constitute the

INS methods. The interface consists of three public methods. Each is directly involved in

the implementation of the twelve-state Kahnan filter. The primary method (insPosition)

52

private member .

Constructor

insSetUp -- read config file (K values, 't)
-- set initial true heading,

speed
-- velocities[O]--> [5] = 0.0 (x, y, i, ~' e, 'i')
-- posture[0]-->[5] = 0.0 (x, y, z, <j>, e,"' - init current to 0.0

- lastGPStime =
origin Time -- current[O] --> [2] = 0.0

getS ample()

insPosition

- getSample(newSample)

-apply BiasCorrections(newSample)

- transformBodyRates ()(to euler rates)

- calculate estimated pitch/roll/yaw rates

- integrate estimated angular rate to
obtain angles

- transform accels and water speed to
earth coordinates

-calculate, apply waterSpeed Correction

- integrate accels to obtain velocities

- integrate velocities to obtain posture

- save estimated positions

calculateBiasCorrection()

correctPosition

- correct for new day if nee.

- deltaT = positTime - lastGPStim

- calculate INS error

- Reinit posture to gps fix

- Add gain filtered error to to
previous errors

- update time

Admin Functions

- transformAccels (body to earth,
eliminate g from z)

- transform WaterSpeed(earth coord)

-transforrnBodyRates(body to earth,
Euler)

- buildBodyRateMatrix
- buildRotationMatrix
- postimultiplication operator
- readlnsConfig

Figure 16: insCiass Summary

53

combines all sensor information and uses the Kalman filter to produce a dead reckoning

position estimate. The other methods support the primary method by performing one-time

or periodic operations. Initialization of the INS is performed by the insSetUp method,

which sets the INS posture at the grid coordinate origin, sets an initial heading and speed,

and marks the beginning of the first integration intervals. The last public method of the

class (correctPosition) inputs GPS information to reinitialize the INS position while

determining a current and error correction bias. The INS class instantiates a samplerClass

object "saml", from which it obtains all sensor data except for GPS position fixes.

(Bachmann 95)

6. Navigator

The navigatorClass acts as coordinator of all navigational information. As such it

determines which source is currently providing the best information, converts various

position formats from one format to another, and instantiates the GPS and INS objects

"gpsl" and "insl ".Like the insClass, this portion of the code has been changed very little

as the project has evolved. Figure 17 provides a sumrilary of the class members and

functions that provide the principal navigation methods. The interface to the object is made

up of two public methods. (Bachmann 95)

The main program instantiates navigatorClass object "navl". The first method of the

navigatorClass (initializeNavigator), initializes navl, preparing it to begin providing the

current position upon request. This method obtains an initial GPS fix for use as the origin

of the grid used by the INS object to specify positions, and calls the initialization method

of the INS. (Bachmann 95)

54

Main

--instantiates "navl"

-- initializes navigator

-- prints initial posit,
screen set up

-- continuous loop:
while(T) fix received

= navl.navPosit(curLoc)
if so, print and file

initializeNav()

-- loops for gps fix, calling
gpsPosition()

-- saves initial fix as the origin

-- passes origin time to
insl.insSetUp()

stampedSample (nav structure)

main - 'curLoc' nav - 'posit'
ins & sam - 'newSample'

gps/ins flags
latLongPosition 'navLatLong'
grid 'est' (ins est. posit.)
GPSdata 'satPosition'
float rawSample[S] (pre-sampler)

x acceleration
y acceleration
z acceleration
phi (roll)

[0]
[1]
[2]
[3]
[4]

[5]
[6]
[7]

double sample[ll]
double deltaT
float bias[3]
float current[3]

theta (pitch)
psi (yaw)
water speed
heading

(sampler converted)

navPosit()

-- get gps, ins fixes

both?

gps posit-->
insl.correctPosition()

ins only?

update ins posit

gps only?

gps posit-->
insl.correctPosition()

new ins posit = gps posit

calculateBiasCorrections() initCompass()

Figure 17: Navigation Class and Initialization Summary

55

The second navigator method (navPosit) drives both the GPS and INS objects, and

provides the navigator's best estimate of current position in hours, minutes, seconds and

milliseconds of latitude and longitude. Each time the method is invoked, it interfaces with

the GPS and INS objects to determine if none, one, or both have an updated estimate of the

current position. If no update is available, the navigator returns a negative reply indicating

that it can not provide a position update. If only INS information is available, it is returned

as the current estimated position. Whenever GPS information is available, it overrides the

INS estimate of position. GPS information is also passed to the INS object as a reference

for reinitialization and error estimation purposes. (Bachmann 95)

The navigator deals with three different position formats. GPS positions from the

Motorola receiver are initially obtained entirely as latitude/longitude in milliseconds. INS

positions are expressed in x-y grid coordinates based upon a navigator-stored origin. GPS

positions must be converted to grid coordinates prior to utilization by the INS. The

positions produced by the navigator are expressed in hours, minutes and seconds of latitude

and longitude. A total of four methods are used to convert from one format to another.

Figure 18 illustrates uses and conversions of the different position formats. (Bachmann 95)

7. Communication Objects

The bufferClass and serialPortClass objects are abstract parent classes from which

specific instances are instantiated for the compassClass and gpsClass, respectively. As

such, they contain the common class members and functions to support the routine but

essential tasks of serial port communication and buffering received data.

56

USER

Positions expressed
in grid coordinates

Positions expressed in
hours, minutes11 seconds
and milliseconas of
latitude and longitude.

Positions expressed in
milliseconds of latitude
and longitude

Figure 18: Navigation Position Format Utilization (Bachmann 95)

D. SUMMARY

The SANS software is designed to produce continuously accurate navigational

information in real time. While submerged, IMU, heading and water-speed information are

processed by the SANS Inertial Navigation System (INS) to produce a dead reckoning

position estimation. This is integrated with DGPS information obtained during aperiodic

surfacings using Kalman filtering techniques. The DGPS information is used to reset the

position of the INS. It is also used to generate ar. apparent current vector to correct future

INS position estimates. (Bachmann 95)

57

The software was implemented using object oriented paradigms. It was written in

Borland version 3.1, c++ for use on an IBM-compatible processor. The primary tasks of the

software are estimation of current position and communication. The former is handled by

the Navigator, Sampler, a2d, Compass, INS, and GPS classes. The later is accomplished by

the bufferClass, compBufferClass, gpsBufferClass, serialPortClass, compassPortClass,

and gpsPortClass objects. (Bachmann 95)

The next chapter of this thesis will present the testing methodology and results for the

tilt-table tests of the operational code.

58

V~ SYSTEM TESTING

A. INTRODUCTION

This chapter presents both the testing methodology and the experimental results of the

tilt-table testing used to determine the functionality and accuracy of the SANS attitude

estimation. These tests focus on the operational C++ code, on determination of optimal

gain settings for the attitude portion of the navigation filter, and on evaluation of the

hardware accuracy and noise characteristics in a controlled environment. Factors which

control attitude response include the K 1 gain value, the bias weight (bias W ght), sample

weight (sampleWght), and the x andy axis accelerometer scale factors.

As a reminder from Chapter II, the rate sensor input in Figure 11 has the estimated bias

removed utilizing the low pass filter methodology resulting in Equation 2.7. Further

background on low pass filter bias response is provided below in order to show the

reasoning behind the testing methodology and to help explain the results.

B. LOW PASS FILTER BIAS RESPONSE

Applying Mason's formula to the signal-flow graph of Figure 2 from Chapter 2, in the

s (Laplace transform) domain gives the transfer function of a low pass filter as

1
'tS

G(s) = 1 + 'ts =
1

=
1 + 'tS

U(s)actual = L{output} =
U(s) commanded L{ input}

(Eq 5.1)

Y(s)
U(s)

A typical tilt-table test of the attitude and angular rate sensors involves a step input of

a constant roll rate to a commanded roll angle, for example, 10 degrees per second to an

59

f ····-------------------------------------

angle of 45 degrees, resulting in a 4.5 second input. The fllter bias estimation response can

be determined from x(t) = u(t), leading, in the s domain, to X(s) = U(s) = 1 Is, and

1
.f(s) = G(s)X(s) = s =

1 + 'tS

Thus

and

y(t) = !
't

1
s(l + 'ts)

t
't

l-e

1
(Eq 5.2)

(Eq 5.3)

(Eq 5.4)

which represents the bias filter output slope. Thus, the simplified response of the bias

estimation to the initial roll input is an exponential rise beginning at the instant the input is

initiated. After one time constant ('t), 63 percent of the input value has been reached. The

output value gradually approaches the limit of the input as time continues. This is

graphically represe~ted in Figure 19.

10.0
output

6.3 (since 1/e ~ . 37)

time

Figure 19: Bias Filter Response to a Roll Rate Step Input of 10° /sec

20 20 + 't

60

The developed testing· procedure for the SANS allows approximately 20 seconds of

initial stabilization time for the components and filter to "steady out". This was followed

by an initial roll input, a similar stabilization period after the platform had reached the

commanded angle, and then return to the zero position at the same rate. Typically, two of

these cycies were performed under each testing condition.

To shift a unit step to start at 20 seconds

0

y(t) =
l-e

for
(t- 20)

't

t< 20

for

The example input pulse of 4.5 seconds can be written

t~20

x(t) = lO(u(t- 20)- u(t- 24.5))

giving

0 for t< 20

10(1-e_
1

-'

20

) for 20::;; t::;; 24.5

y(t) =

10 ~(_t -'t20) (t- ~4.5l
~1-e - 1-e

for

Since

2
X X

e = 1 +x+
21

+ ...

then, for small x

[(t -20]~ (t -20) y(t) z 10 1 - 1 - -- z 10 --
1000 1000

for

61

(Eq 5.5)

(Eq 5.6)

(Eq 5.7)

24.5::;; t

(Eq 5.8)

(Eq 5.9)

20::;; t::;; 24.5

for a time constant of 1000 seconds. This produces the first part of the response illustrated

in Figure 20 .

. 05 - - - - - - - - - - - - - - - - - - -

20 24.5 time

Figure 20: Estimated Short Term Bias Response to a 45 Roll Completed in 4.5
Seconds

For times equal to or greater than 24.5,

(t- 24.5)

() :::::: 10(t- 20 _ t- 24.5} 10oo :::::: 0 045
y t 1000 1000 · e

(t- 24.5)
1000

(Eq 5.10)

This result is shown in Figure 21 on a longer scale to illustrate the gradual correction

over time.

0.1

.05

20 24.5
time

't = 1000

Figure 21: Estimated Long Term Bias Response to a 45° Roll Completed in 4.5
Seconds

Taken together, Figures 20 and 21 illustrate that the bias response of a low pass filter

to a time-shifted step roll input is a rapid rise to the calculated value, followed over the

62

length of the relaxation time constant by a gradual correction to zero. Combining this

response with the complementary filter design, incorporated as depicted in Figure 11,

results in the time domain filter response including a time lag effect which barely sees

minor transients. The initial response to a step change in attitude comes almost entirely

from the angular rate sensors. Over time, input from the accelerometers takes over and

compensates exactly for the decay of the rate sensors. The nature of this response

influenced development of the testing methodology and is directly reflected in the

following testing results.

C. FILTER TESTING METHODOLOGY

The tilt-table testing methodology has evolved through Bachmann (95) and Walker

(96). Although basically unchanged from the method used in Walker (96), it is presented

here in a standardized, sequential order with extensive background for the first time. It is

also presented at Appendix Din a checklist format. The testing methodology is designed

to separate the complementary effects of the filter and treat them individually before

evaluating the entire filter process.

The SANS is mounted to the tilt-table described in (Bachmann 96) for a series of pitch

and roll tests. If the unit is carefully leveled prior to testing, the actual commanded attitudes

are extremely accurate in reference to real-world pitch and roll angles. Relative angle

excursions are always extremely accurate on the tilt-table. The amount of the actual angle

excursion is the important value for the testing. In other words, a valid 45 degree pitch from

a beginning baseline of 2 degrees to 47 degrees, for example, is a successful test for the

IMU. Once calibrated and installed in Phoenix, the SANS becomes the reference for

63

attitude determination. That is; if roll and pitch SANS outputs are zero, then this defines

level orientation for Phoenix.

The general procedure is to allow a 15 to 20 second period for the sensors to initialize

and stabilize after the filter code begins execution. This is followed by a pitch or roll

excursion to 45 degrees at various commanded rates (consistent during each individual

run). The unit is then tilted back to the zero position, followed by a roll excursion in the

opposite direction, and then finally back again to zero. Each movement is followed by the

stabilization period to allow observation of filter effects. Those cases where the excursions

were both in the same direction reflected physical limitations as to how the SANS box

could be mounted on the tilt-table. Maximum tilt rate was 90 degrees per second, but tests

were normally conducted at either 10 or 45 degrees per second. These conditions are much

more severe than those encountered by the SANS in the real world, with the possible

exception of surfaced operations in a very heavy sea state, and therefore represent worst

case performance for the filter.

In order to determine the rate sensor bias value, K 1 is set to zero to prevent

accelerometer inputs from effecting the results. Therefore, only the high frequency angular

rate and bias get to the first integrator. Any errors in attitude can then be attributed to the

bias and scale factor. The appropriate initial angular rate scale factor (qScale for pitch, etc.)

is then determined by taking the commanded tilt-table angles as truth. The scale factor

adjusts the output of the IMU to the actual tilt results. Starting with a baseline of 1.0, it is

possible to continuously apply the ratio of indicated and actual angles to the current setting

in order to scale it to a proper value. For example, if the SANS says the unit pitched to 41°

64

when the actual pitch was 45°, the new scale factor is increased to 45/41 multiplied by the

old scale factor.

The initial. bias weight (biasWght) is chosen through a combination of project

experience and filter theory considerations. Extensive simulation and tilt-table

experiments can then refine the proper values prior to at-sea testing.

After setting the gain weight to some value other than zero, multiple test runs can

refine the proper settings. The accelerometer scale factors are then adjusted in the same

manner as the angular rate scale factors if indications show that the combined inputs result

in inaccurate angle excursions. A complete tuning of one axis may take an extensive set of

alternating adjustments to the various factors, as illustrated in the testing results provided.

D. IMU TEST RESULTS

The testing results included here utilized the current hardware configuration, along

with the original code from Bachmann (95) only slightly modified to improve input/output

rates. This resulted in update rates of approximately 18Hz. The complete code revision

described in this thesis resulted in an increased update rate of 40Hz, making the filter real

time capable for the first time. That update rate unfortunately overwhelms the internal data

storage of the SANS in the current configuration, so further testing will have to either be

done at reduced rates or be conducted after new, larger storage cards (now available) have

been obtained.

Figure 22 shows the initial pitch test run. Both K 1 values are set to 0.0, isolating the

angle-rate input from the accelerometer input. Pitch was at a rate of 10 degrees per second.

65

l .. -::!'1·'-------------------------------------

The qScale value had already been adjusted to 4.02 to reflect 45° of pitch. When compared

to previous project results (see Walker (96) and Bachmann (95)), the faster update rate

significantly reduced initial overshoot of the final pitch angles. The stabilization periods

following each pitch show that the effects of the filter cancel in that the initial slight

overshoots gradually return to the proper value, regardless of pitch direction, as expected

from the earlier explanation. In fact, for the pitch which is initiated at approximately 20

seconds, if no other pitch excursions occurred, the angle value would become essentially

45° by 1020 seconds (20 + 't). The stabilization period is only a small fraction of the time

constant, and the bias is subtracted from each new sample. Thus, the accumulated bias

from the excursion is only partially corrected for, with a slope in the direction of the

"correct" value.

Figure 23 shows a second pitch test with all values unchanged with the exception of 't,

which increased from 1000 to 5000. Ideally, the filter should be initialized for a period of

one time constant, however, the shorter stabilization periods here are sufficient to

demonstrate filter behavior. The stabilization periods of Figure 23 show a flatter slope than

those of Figure 22. This reduced slope shows that increasing 't minimizes the accumulated

rate bias.

Turning to the roll axis, Figure 24 shows the initial roll test. The time constant 't has

been reset to 1000 seconds. The roll rate is still 10 degrees per second and the initial scale

factor (pScale) was set to be 4.01. The nearly identical scale factors show the IMU to be

very consistent between axis. Otherwise, the roll results are similar to the pitch results.

66

50 ,_.
\pitch,tst" 9

40 i
I ~-

30 t l \ 20 I
10 _I ~

L 0

\ I -10

\ -20 ~

\ ~

-30 J \ -40 I
$

-50
0 w ~ ~ ~ ~ ~ ~ 00 ~ ~

Figure 22: Initial Pitch Test, K 1 = 0.0, 't = 1000, qScale = 4.02, 10° /sec

50

I
., "pitch2tst.dat" ..

40
~

30 \
20 I \ 10 f

1 \
" J 0 ... f -............

--,

I
-10 'i

~

-20

\ -30 I
-40 j L
-50

o ~ ~ ~ ~ m ~

Figure 23: Pitch Test, K 1 = 0.0, t = 5000, qScale = 4.02, 10° /sec

67

l~--
1

5.-----.-----.-----.------.-----.-----.-----.~----.-----,

-~ ~----~----~----~----~----~----~----~~----~--~

0 w ~ ~ ~ ~ ~ ~ w ~

Figure 24: Initial Roll Test, K 1 = 0.0, 't = 1000, pScale = 4.01, 10° /sec

The roll rate was increased to 40 degrees per second for the second roll test. This

becomes obvious with the more widely separated fix dots on the graph in Figure 25. Since

the update may occur at any point during it's cycle (worst case immediately before the

commanded angle is reached), more overshoot is possible, and in fact occurs. This leads

to a more pronounced return effect during the stabilization periods.

The third roll test, shown at Figure 26, has identical settings to the previous test with

the exception of K 1 , which has been set to 0.01 to allow an accelerometer effect to return.

This is what causes the wander in roll angle seen in the initial stabilization period. This

effect is also present in the stabilization following the initial roll, but is less pronounced

after the return to the zero position as the time grows closer to the initial time constant.

68

5~----~~--r-----r---~-----,----~----~-----r----~

~I !112 I " '

~----0 +------·· ·~ ·~ ·-.·
-5

-10

-15

-20

-25

-30
..

-35 ..

-40 ..
..

-45

-50L---~----~----~----~----~----~--~----~----~
0 10 20 ~ 40 ~ ro ro oo 90

Figure 25: Roll Test: K 1 = 0.0, 't = 1000, pScale = 4.01, 40 ° /sec

10~----~------~----~-------.------~----~------~----~

"roll5.tst" ~

5 L___,.~------~ ~ : ... -~ _:
0 ~····························· +

-5

-10

-15

-20

-25 ..
.,.

-30 ..
-35

-40 ~ -~~

~5 L-----~------~------~------~----~------~------~----~
0 20 40 60 80 100 120 140 160

Figure 26: Roll Test: K 1 = 0.01, 't = 1000, pScale = 4.01, 40 ° I sec

69

Increasing K 1 to 0.05 and reducing 't to 200 produces the results of Figure 27. These

stabilization periods are characterized by more aggressive corrections to the "proper"

angle. Both Figure 26 and 27 show the importance of increasing the filter update rate from

the 18 Hz rate shown to the 40 Hz rate achieved in this thesis to prevent undershoot and

overshoot due to sampling effects. The results of Figure 27 are essentially duplicated,

although at a reduced roll rate of 10 degrees per second, in Figure 28.

5r--------.--------.--------.--------.--------.--------.

0

"roll6. tst" ·~· ~
~ 4 ~

~ llisoiii ..

-5 ..

-10

-15

-20

-25

-30

-35

-40 ..
..

-45 ;...s-

~0 ~------~--------~------~--------~------~--------~

o ~ ~ ~ oo ~ m
Figure 27: Roll Test: K 1 = 0.05, 't = 200, pScale = 4.01, 40 °/sec

The following roll test, Figure 29, shows the effect of varying the accelerometer scale

factor (yAccelScale) from 1.34 to 1.405. The stabilization periods are flatter with respect

70

5

0

-5

-10

-15

-20

-25

-30

-35

-40

-45
0 20 40 60 100 120 140

Figure 28: Roll Test: K 1 = 0.05, t = 200, pScale = 4.01, 10° /sec

,_.. . .. , rm %'ll8.tst" . . t
-5 • ; : ! : ~ .

~ ~
. . • .

., ~ t
-10 ~ : i

,, . .
~ t ! ~ .
~ • ~ • !

-15 • s .
-~ . ~ $

!
~ : ~ . .

* ; -20 • <·
·> .
! .
• : ~

-25
~
1 t . ~ .
• . . .

-30 ! ~ 1 . . ., . . ~
~ ~ •

-35
. • : ~ • ., r .. 8 : " + .

-40
i i $

• ! ~ t
• • ~ !

-45 • ~ t :
~ • Ltqj

-50
20 40 60 80 100

Figure 29: Same as Previous, with y AcceiScale = 1.405

71

to the "correct" angle and the accelerometer effects less pronounced when compared to

Figure 28.

Figure 30 returns the time constant to 1000 seconds while also doubling K I. It was

determined at this point that they AccelScale value had been adjusted too high. Prior to the

next roll test (Figure 31), it was adjusted by (45/48) * 1.405 since the unit computed an

initial roll of 48° vice 45. Figure 31 shows a flatter response, but there is still some

overshoot. The pScale was adjusted again for the test shown in Figure 32 by the amount

(45/46) * 4.01. Finally, the yAccelScale was adjusted once again by (45/44) * 1.317 to

produce the output in Figure 33. This sequence clearly illustrates the altern~ting, gradually

"tiltl.dat" <·

0 ~ ~ ~ 00 ~ ~

Figure 30: Roll Test: K 1 = 0.1, 't = 1000, 10° /sec, y AcceiScale = 1.405

72

5

"tilt2.dat" .
0,_..,. ············11' ···········

-~ . k t . • s ; ..
-5 ~ . i • <

; ! 1 * -10 ! t .,
t t .,

*
J;

i .. • .,.
i t i ~ -15 ~

i i ~ • .. ,, ~ .
t i t i

-20 t .. ~ t
i ~ t t . t .. t . i i

*
-25 ; . •

*
• • .,.
+

~ ~ ,. t • ~ • t ~ -30 .. ·>
~

~ 3: ~ ! • .. 6 $ * t . * t
-35 • • i ~ .

~ ..
.t $
t i • .
! t • ..

-40 • • * t t 1 • ., .. ~

~
6 ~ * -45 • • .-.....: . -...

-50
0 20 40 60 BO 100 120

Figure 31: Roll Test: K 1 = 0.1, 't = 1000, 10° /sec, y AcceiScale = 1.317

5

"tilt3.dat' .

_: l 1
.... ,.., ..

t t t
~

<· i $
~

* i t t

! l l< .. : • .,.
t. t . • $ ~ • . .. t t i .. • . .

! £ ·• -15 .
~ • 1 t

*
~ .. J ~ ~ ..

-20 t
t + i .,

1 i £ i .
-25

. . ~ .,. • ~ ~ ! ~
~ ~ t

~ t t t -30 • •
• : ~ l
~ i t
l f

.
-35 ~ t

$; i • .
t *

~
• i -40 ~ • * f t t • i * ~ -45 • ~

-50
0 20 40 60 BO ~ 120

Figure 32: Roll Test: K 1 = 0.1, 't = 1000, pScale = 3.923, 10°/sec

73

finer tuning approach which must be taken in order to tune a filter of this complexity.

Figure 33 clearly has the least overshoot/undershoot and the flattest stabilization periods

while exhibiting a proper correction tendency before the next input is encountered.

Figures 34 and 35 are provided to illustrate filter response at the more radical rates of

45° /sec and 90° /sec. Although there is slightly more overshoot, as expected, even at these

extremes, the filter behaves predictably and well within acceptable accuracy for the

Phoenix or other small scale portable navigation applications.

5.--------.--------~-------.--------~--------.-------~

"tilt4.dat" "'

-50 ~------~--------~------~--------~--------L-------~
0 20 40 60 80 100 120

Figure 33: Roll Test: K 1 = 0.1, t = 1000, yAcceiScale = 1.347, 10°/sec

74

Sr---~--~~~--~------~------~------~------.

'tiltS.dat" ..

0 r--· ·,;,;·_. ·,;.;,· ·.;..;.·

-5

-10

-15

-20

-25

-30

-35

-40

-45 •·
"'

-~L-------~------~------~------~------~-------
0 20 40 60 8() 100 120

Figure 34: Roll Test: same as previous, with 45° I sec vice 10

"ti lt6.dat" ~

.... -
-5

-10

-15

-20

-25

-30

-35 ..
-40

-45

~~--~----~----~--~----~----~--~----~--~
0 ~ 20 30 40 ~ ~ ~ 8() ~

Figure 35: Roll Test: same as previous, with 90° /sec vice 45

75

E. SUMMARY

This chapter has provided a methodology for dynamic tilt-table testing with rationale

and illustrative experimental results. Taken together, the results graphically show that the

SANS design, code architecture, and filter implementation are performing as expected.

Additionally, while room for some improvement remains, the sensor/filter combination is

easily accurate enough to meet both the Phoenix AUV and other potential small scale

portable navigation applications. It is important in reviewing the results presented to

remember that these testing conditions are much more severe than are likely to be

encountered in actual SANS operation except when surfaced in significant sea states.

Other independent testing of the SANS approach (Henault 96) suggests that attitude

estimation to an accuracy of a few tenths of degrees should be realized in normal operating

conditions.

Addition of a math coprocessor to the E.S.P CPU module has increased performance

dramatically and decreased the undersampling seen, as expected by Walker (96).

Accompanying code revisions have resulted in a legitimate real-time navigation filter

which is expected to improve accuracy even further. The final chapter of this thesis will

review conclusions reached and recommendations for future project work.

76

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

A. CONCLUSIONS

The research topics addressed by this thesis were: 1) evaluate the hardware and

software architecture of the SANS, 2) develop a calibration procedure for the SANS

navigation filter, 3) evaluate the specific performance of the SANS navigation filter, and 4)

evaluate the SANS hardware and software architecture for installation in the Phoenix AUV.

Each incremental step in the SANS project work has provided evolutionary improvement

in capability and performance. Walker (96) built on the Bachmann (95) hardware

prototype and provided the current hardware capability. This thesis has improved on the

code architecture of Bachmann (95) to accommodate the greatly increased processing

speeds resulting from the Walker (96) hardware configuration and addition of a math

coprocessor.

A basic tilt-table testing methodology was utilized for an overall evaluation of the

SANS attitude estimation pursuant to addressing the research issues. Combining the

procedures used in Walker (96) and Bachmann (95) to produce a specific filter calibration

procedure simultaneously addressed all of the topics in a general manner. The results

showed that the filter is working correctly and as expected from the supporting theory.

Furthermore, the real-time capability now makes SANS a bonafide option as a new

navigation solution for Phoenix or alternative small scale portable navigation applications.

The SANS project is now poised for meaningful at-sea trials to further validate the recent

77

improvements to allow further development of the linear velocity and position estimation

portions· of the filter.

B. RECOMMENDATIONS FOR FUTURE WORK

There remain many areas for further research on the SANS project. The next major

step will be at-sea testing utilizing a tow fish as in Bachmann (95). Successful completion

of these tests will make the SANS ready for adaptation and installation in Phoenix if it is

chosen as the navigation solution. Incorporation into Phoenix is expected to be very

straightforward. The ethernet connection can be utilized to pass the Phoenix "Officer of

the Deck" software module the required navigation state elements. These elements are

currently stored at each update and written to a data flle. Compatibility issues should be

limited to data communication between SANS and the Phoenix navigator software. In the

meantime, purchase of a larger PCMCIA SRAM card will immediately alleviate the data

storage problem encountered during laboratory testing resulting from the faster processing

speeds.

Consideration should be given to updating the software utilized in SANS. Two

approaches exist. The first is to update the DOS/BORLAND PC environment by

upgrading to the latest versions. This option will entail rewriting some of the basic input/

output system function calls. The second option would be a complete rewrite to make the

software compatible with the final Linux or Lon Works implementation option that is

incorporated into Phoenix. Although more involved, this option is attractive because it

prevents a proliferation of different operating systems within the same architecture.

78

Postprocessing of the navigation data file remains an unfinished area from Bachmann

(95) and·Walker (96). Test runs could be repeated multiple times to more easily optimize

the Kalman filter gains. In a related matter, the incorporation of the aperiodic GPS updates

into the o-yerall Kalman filter scheme also still remains to be refined. The author hopes that

the results presented in this thesis will prove to be valuable in this ongoing effort.

79

80

APPENDIX A: Real Time Navigation Source Code (C++)

A. TOWTYPES.H

#ifndef __ TOETYPES_H
#define __ TOETYPES_H

#include "globals.h" II Types used by serial communications software

#define GPSBLOCKSIZE 76 II Size of Motorola @@Ea position message
#define PACKETSIZE 133 II Size of packet received via X-modem protocol
#define COMPSIZE 60

#define ONE_G 32.2185
#define GRAVITY 32.2185

II One g in feet per second
II In feet per second

#define TicksToSecs(x) ((double) ((10 * X) I 182))

typedef char ONEBYTE;
typedef short TWOBYTE;
typedef long FOURBYTE;

typedef unsigned char UNSIGNED_ONEBYTE;
typedef unsigned short UNSIGNED_TWOBYTE;
typedef unsigned long UNSIGNED_FOURBYTE;

struct latLongMilSec
long latitude;
long longitude;

II Holds latllong expressed in miliseconds

} ;

II Holds a latitude or longitude expressed in hours minutes and degrees
struct T_GEODETIC {

} ;

TWOBYTE degrees;
UNSIGNED_TWOBYTE minutes;
double seconds;

II Holds a latitude and longitude expressAd as T_GEODETICs
struct latLongPosition {

T_GEODETIC latitude;
T_GEODETIC longitude;

} ;

struct grid { II Holds a grid position
double x,y,z;

} ;

struct matrix { II 3 X 3 matrix
float element[3] [3];

) ;

81

f
I

struct vector {
flo~t element[3];

) ;

II 3 X 1 matrix or vector

II Oversize area to hold a GPS message
typedef BYTE GPSdata[2 * GPSBLOCKSIZE];

II Defines a type for holding compass messages
typedef.BYTE compData[2 * COMPSIZE];

II Structure for passing around various types of INS information.

II The positions in the sample field of a stampedSample structure

II sample[O]: x acceleration gnuplot: 2

II sample[l]: y acceleration 3

II sample[2]: z acceleration 4

II sample[3]: phi (roll) 5

II sample[4]: theta (pitch) 6

II sample[5]: psi (yaw) 7

II sample[6]: water speed
II sample[?]: heading

struct stampedSample
Boolean.gpsFlag; II True -- GPS fix obtained

II True -- INS fix obtained
II posit in hours, mins, sees

) ;

Boolean insFlag;
latLongPosition navLatLong;
grid est;
GPSdata satPosition;
float rawSample[8];
double sample[ll];
double deltaT;
float bias(3];
float current(3];

#endif

II position as estimated by the INS
II the latest GPS position

II Original readings for post processing
II sampler converted sample
II delta of the sample
II bias corrections
II error correction current

82

B. TOEFISH.CPP

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <io.stream.h>
#include <conio.h>
#include <dos.h>
#inclu~e <time.h>

#include "toetypes.h"
#include "nav.h"

extern compassPortClass port2;
extern gpsPortClass port1;

int breakHandler(void);

void screenSetUp(void);

II so breakhandler can call destructors
II to insure cleanup on program exit

void printPosition (const latLongPosition&);

void positOut(stampedSample& posit);

II Write an INS packet and its timeStamp to the outPut file

void writeData(const stampedSample& drPosition, ofstream&);

II Write a GPS message to the outPut file.
void writeGpsData(const GPSdata& satPosition);

!***

PROGRAM: Main
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, last modified January 1997
FUNCTION: Drives the navigator and its associated software. Counts

the positions & displays each to the screen. Exited only

when control break (Ctrl c) is entered at the keyboard.

RETURNS: 0
CALLED BY: none
CALLS: initializeNavigator (nav.h)

navPosit (nav.h)
printPosition
breakHandler

**~/

int
main {)
{

ctrlbrk(breakHandler);
setcbrk(1);
char dataFile[] = "att.dat";

II trap all breaks to release com ports
II turn break checking on at all times

83

cout << "\nWriting attitude data to " << dataFile << endl;

II Instantiate the navigator (also private members gpsl & insl)

navigatorClass navl;

ofstream attitudeData(dataFile);

stampedSample curLoc; II LatiLong of most recent fix

Boolean
int
float

fixReceived(FALSE);
fixCount(O);
timeCount(O.O);

II True if a new fix was received
II Count of navigation fixes received
II Counter for screen output

cerr << "\ninitializing . " << endl;

navl.initializeNavigator(curLoc);

II Check a2d initialization, channels off if y-accel != -32.2
while (curLoc.sample[2] <= -33.0 I I curLoc.sample[2) >= ~31.5)

cerr << "reinitializing for a2d channelization" << endl;
navl.initializeNavigator(curLoc);
navl.navPosit(curLoc);

clrscr();
gotoxy(1,6);
cerr <<"Initialization Complete!"<< endl;
cout << "Initial Position:" << endl;

II Print the initial position
cout << "latitude: " << curLoc.navLatLong.latitude.degrees <<

<< curLoc.navLatLong.latitude.minutes << 1
:

1

<< curLoc.navLatLong.latitude.seconds << endl;

I • I

cout <<"longitude: "<< curLoc.navLatLong.longitude.degrees << 1
:

1

<< curLoc.navLatLong.longitude.minutes <<
<< curLoc.navLatLong.longitude.seconds;

screenSetUp();

I • I

while (TRUE) II Attempt to get a fix from the navigator
fixReceived = navl.navPosit(curLoc);

if (fixReceived) (II New fix received
II Save fix info to the data file
writeData(curLoc, attitudeData);
II Print info to screen at designated print interval
fixCount++;
timeCount += curLoc.deltaT;

84

if (timeCount >=·1.0)
gotoxy(9,11);
cout << fixCount << endl;
positOut(curLoc);
timeCount = 0.0;

I**

PROGRAM: printPosition
AUTHOR:
DATE:

Eric Bachmann, Dave Gay
11 July 1995

FUNCTION:
RETURNS:

Displays position to the screen
void

CALLED BY: main
CALLS: none

***!

void printPosition (const latLongPosition& posit)
{

gotoxy(l1,14);
cout << posit.latitude.degrees << 1

:
1 <<

posit.latitude.minutes << 1
:

1 << posit.latitude.seconds << endl;

gotoxy(12,15);
cout << posit.longitude.degrees << 1

:
1 <<

posit.longitude.minutes << 1
:

1 << posit.longitude.seconds

<< endl;

I***

PROGRAM: breakHandler
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995
FUNCTION: Cleans up com ports upon program exit.
RETURNS: 0
CALLED BY: main
CALLS: compass port and gps port destructors

***I

int breakHandler(void)
{

port2.-compassPortClass();
port1.-gpsPortClass();
raturn 0; II keep the compiler happy

85

!*******************~***

PROGRAM: screenSetup
AUTHOR:
DATE:

Eric Bachmann, Randy Walker
12 May 1996

FUNCTION:
RETURNS:

Sets up the output screen
0

CALLED BY:
cAL-LS:

main
none

***/

void screenSetUp(void)
{

gotoxy(4, 11);
cout << "Fix ";

gotoxy(1, 14);
cout << "Latitude: "<< "\nLongitude: ";

gotoxy(1,17);
cout << "Roll: " << "\nPitch:

gotoxy (1, 25) ;
cout << "deltaT: ";

int col(45),row(1);

gotoxy(col,row++);
cout << "x accel:
gotoxy(col,row++);
cout << "y accel:
gotoxy(col,row++);
cout << "z accel:
gotoxy(col,row++);
cout << "phi dot:
gotoxy(col,row++);

II i

" .
I

II i

" . I

cout << "theta dot: ";
gotoxy(col,row++);
cout << "psi dot: ";
gotoxy(col,row++);
cout << "water speed: ";
gotoxy(col,row++);
cout << "heading: ";

col 45;
row 12;

gotoxy(col,row++);
cout << "x: ";
gotoxy(col,row++);
cout << "y: II •

I

II •
I

86

gotoxy(collrow++);
cout << "z: ";
gotoxy(collrow++);
cout << "phi: ";
gotoxy(collrow++);
cout << "theta: ";
gotoxy(col 1 row++);
cout << "psi: ";

gotoxy(45 1 20);
cout << "Bias Values";

gotoxy(60 1 20);
cout <<"Current Values";

!***

PROGRAM: positOut
AUTHOR: Eric Bachmann
DATE: 21 October 1996
FUNCTION: Updates the Screen
RETURNS: 0
CALLED BY: main
CALLS: none

***/

void positOut(staropedSample& posit)
{

printPosition(posit.navLatLong);

if (posit.gpsFlag)
gotoxy (20 I 11);
cout << "GPS";

else
gotoxy (20 I 11);
cout << " ";

II Output the bias values
for(int j = 3; j < 6; j++)

gotoxy(45 1 j+18);
cout << posit.bias[j];

II Set output precision and fixed format
llcout.precision(6);
llcout.setf(ios::fixed);

87

II _Display linear accelrations and angular rates
for (j = 0; j < 8; j ++)

gotoxy(59,j+1);
cout << posit.rawSample[j);

II Display time delta to the screen.
gotoxy (9, 2 5) ;
cout << posit.deltaT;

II Display roll and pitch
gotoxy (8, 17) ;
cout << (posit.sample[3] ~ radToDeg);
gotoxy(8,18);
cout << (posit.sample[4] * radToDeg);

II Display current location and posture
for (j = 0; j < 6; j ++) {

gotoxy (52, j+12);
cout << posit.sample[j];

II Display error current values
for (j = 0; j < 3; j ++) {

gotoxy (60, j+21);
cout << posit.current[j];

II Output the biases
for (j = 3; j < 6; j ++)

gotoxy(45,j+18);
cout << P?sit.bias[j];

!***

PROGRAM:
AUTHOR:
DATE:

FUNCTION:

RETURNS:
CALLED BY:
CALLS:

writeData
Eric Bachmann, Dave Gay
11 July 1995
Writes the packet and the time stamp contained in a stamped
sample to the out put file for post processing.
void
navPosit (nav.cppl
None

***T*j

88

void writeData(const·stampedSample& drPosition, ofstream& attitudeData)

{

static float elapsedTime(O.O)i

elapsedTime += drPosition.deltaTi

II Output attitude data to a file
atti:tudeData

<< elapsedTime << 1

<< drPosition.sample[O] << 1

<< -1.0 * drPosition.sample[l] << 1

<< drPosition.sample[2] << 1

<< (radToDeg * drPosition.sample[3]) <<
<< (radToDeg * drPosition.sample[4]) <<
<< (radToDeg * drPosition.sample[S]) <<
<< drPosition.sample[6) << 1

<< (radToDeg * drPosition.sample[7]) <<
<< drPosition.current[O] << 1

<< drPosition.current[l] <<endli

!***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS:
CALLED BY:
CALLS:

writeGpsData
Eric Bachmann, Dave Gay
11 July 1995
Writes a raw GPS message to a binary output file for

post processing.
void
navPosit (nav.cpp)
None

***/

I*
void
navigator::writeGpsData(const GPSdata& satPosition)
{

*I

for(int j = Oi j < GPSBLOCKSIZEi j++)
putc(satPosition[j], rawData)i

II end of file toefish.cpp

89

--

C. NAV.H

#ifndef _NAVIGATOR_H
#define _NAVIGATOR_;H
#include <stdio.h>
#include <fstrearn.h>
#include <iostrearn.h>
#includ·e <math.h>
#includ_e <dos.h>
#include "toetypes.h"
#include "globals.h"
#include "gps.h"
#include "ins.h"

I***

CLASS: navigatorClass
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, Modified January 1997
FUNCTION: Combines GPS and INS information to return the current

estimated position.

**********************·**~/

class navigatorClass

public:

II Constructor, initializes object slots
navigatorClass() : gpsSpeedSum(O.O}, insSpeedSum(O.O)

{ cerr << "\nconstructing nav1" << endl; };

-navigatorClass() {} II Destructor

II provides the navigator's best estimate of current position
Boolean navPosit (starnpedSample&);

II Initialize the navigator
Boolean initializeNavigator(stampedSample&);

void userinitNav(stampedSample&); II Allows user to initialize nav

private:

double gpsSpeed, insSpeed, gpsSpeedSum, insSpeedSum;

insClass ins1; II ins object instance

gpsClass gps1; II gps object instance

II Obtains system time to utilize for origin

90

double getSysteroTiroe();

latLongMilSec origin; II lat-long of navigational origin

II Returns the position in Miliseconds
latLongMilSec getMilSec(const GPSdata&);

11 Returns the position in degrees, minutes, seconds and milisecs
l~tLongMilSec latLongToMilSec(const latLongPosition&);

II Convert position in roilSec to degress, minutes, seconds and roilsec
latLongPosition milSecToLatLong(const latLongMilSec&);

} i

#endif

II Convert xy (grid) position to lat long
latLongMilSec gridToMilSec(const grid&);

II Converts latllong to xy position
grid milSecToGrid(const latLongMilSec&);

II Parses and returns the time of a GPS message.
double getGpsTiroe(const GPSdata& rawMessage);

II Parses and returns the velocity in fps of a GPS message.
double getGpsVelocity(const GPSdata& rawMessage);

91

D. NAV.CPP

#include <signal.h>
#include <dos .. h>
#include <time.h>
#include "nav.h"

#define SIGFPE 8 II Floating point exception

I***

PROGRAM: navPosit

AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Provides the navigator's best estimate of current position.

Attempts to obtain GPS and INS position fixes from the gps

and ins objects and copies the most accurate fix available

into the input argument 'navPosition'. Sets a return

flag to indicate whether a valid fix was obtained.

RETURNS: TRUE, a valid position fix is in the variable 'navPosition' .

FALSE, otherwise.
CALLED BY: towfish.cpp (main)
CALLS: gpsPosition (gps.h) gridToMilSec (nav.h)

correctPosition (ins.h) milSecToGrid (nav.h)
insPosition (ins.h) milSecToLatLong (nav.h)

getMilSec (nav.h) writeScriptPosit (nav.h)

***!

void fpeNavPosit(int sig)
{if (sig == SIGFPE) cerr << "floating point error in navPosit\n";}

Boolean navigatorClass::navPosit (stampedSample& posit)

{

signal (SIGFPE, fpeNavPosit);

latLongMilSec gpsMilSec; II the latest GPS position in milseconds

latLongMilSec insMilSec; II the latest INS position in milseconds

II Attempt to get the INS and GPS positions
posit.insFlag ins1.insPosition(posit);
posit.gpsFlag = gpsl.gpsPosition(posit.satPosition);

II INS and GPS positions obtained?
if (posit.insFlag && posit.gpsFlag)

II Parse position from GPS messsage
gpsMilSec getMilSec(posit.satPosition);

posit.est milSecToGrid(gpsMilSec);

92

II Pass GPS position to INS object for navigation corrections.

insl.correctPosition(posit, getGpsTime(posit.satPosition));

II Convert position in milisec to latitude and longitude.

posit.navLatLong = milSecToLatLong(gpsMilSec);

return TRUE;

els.e {
if (posit.insFlag) II Only INS position obtained?

insMilSec = gridToMilSec(posit.est);
posit.navLatLong = milSecToLatLong(insMilSec);
insSpeed = posit.sample[6];
return TRUE;

else {
if (posit.gpsFlag) II Only GPS position obtained?

II Parse position from GPS messsage
gpsMilSec getMilSec(posit.satPosition);
posit.est = milSecToGrid(gpsMilSec);

II Pass GPS position to INS object for navigation corrections.
insl.correctPosition(posit, getGpsTime(posit.satPosition));

II Convert position in milisec to latllong.
posit.navLatLong =

milSecToLatLong(getMilSec(posit.satPosition));

return TRUE;

else {
return FALSE; II No new position available

!***

PROGRAM:
AUTHOR:
DATE:

,FUNCTION:

RETURNS:
CALLED BY:
CALLS:

initializeNavigator
Eric Bachmann, Dave Gay, Rick Roberts
11 July 1995

Obtains an initial GPS fix for use as a navigational origin
for grid positions used by the INS object. Saves the origin

and passes it to the INS object in latLong form.
TRUE

towfish (main)
gpsPosition (gps.cpp)
correctPosition (ins.cpp)
writeinsData(nav.cpp)

writeGpsData(nav.cpp)
getMilSec (nav.cpp)
roilSecToGrid (nav.cpp)

***/

93

Boolean navigatorClass::initializeNavigator(stampedSample& posit)

(

Boolean gpsFlag(FALSE);

cerr << "Initializing Navigator." << endl;
cerr << Initializing GPS." << endl;

II Loop until an initial GPS fix is obtained.

for _(inti= 1 ; ((i < 100) && (gpsFlag ==FALSE))
if (gps1.gpsPosition(posit.satPosition)) {

gpsFlag = TRUE;

else (
delay(500);

if (gpsFlag == FALSE)

i++)

cerr << "\nWARNING: UNABLE TO OBTAIN INITIAL GPS FIX!"<< endl;

userinitNav(posit);

else (
cerr << GPS initialization complete." << endl;

II Save navigational origin for later grid position conversions.

origin= getMilSec(posit.satPosition);

II Pass time of first GPS fix to INS object initialization routine.

ins1.insSetUp(getGpsTime(posit.satPosition), posit);

cerr << "Navigator initialization complete." << endl;

return TRUE;

I**~

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS:
CALLED BY:
CALLS:

userinitNav
Rick Roberts
03 November 1996
Allows user to input current position and initialize

nav if no gps fix is available. (ie for testing)

void
initializeNavigator
getMilSec '(nav.cpp), getSystemTime (nav.cpp)

***/

94

void navigatorClass:~userinitNav(stampedSample& posit)

(

int· choice;

cerr << "\nEnter a 0 to enter posit and continue without GPS"
continue without GPS or initial posit, or"

exit: " << endl;
<< "\nEnter a 1 to
<< "\nEnter a 2 to

cin '>> choice;

if (choice -- 0)
cerr << "\nEnter current position in the following format: " << endl;

cerr <<"Latitude: (36, Enter, 35 Enter, 41.5 Enter)"<< endl;

cin
cin
cin
cerr
cin
cin
cin

>>
>>
>>

<<
>>
>>
>>

posit.navLatLong.latitude.degrees;
posit.navLatLong.latitude.minutes;
posit.navLatLong.latitude.seconds;
"Longitude: (-121, Enter, 52, Enter, 30.2, Enter)"<< endl;

posit.navLatLong.longitude.degrees;
posit.navLatLong.longitude.minutes;
posit.navLatLong.longitude.seconds;

else if (choice-- 2) (exit(1);}

II Save nav origin for later grid position conversions
origin= latLongToMilSec(posit.navLatLong);

II Pass system time of initialization to ins object
insl.insSetUp(getSystemTime(), posit);

/***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS:
CALLED BY:
CALLS:

latLongToMilSec
Rick Roberts
22 January 1997
Converts a position expressed in latitude and longitude

degrees, minutes and seconds to mili seconds & returns it.

latLongMilSec
userinitNav
none

***/

latLongMilSec navigatorClass::latLongToMilSec(const latLongPosition&

latLong)
(

latLongMilSec milSec;
double degrees, minutes, seconds;

milSec.latitude

milSec.longitude

(latLong .latitude .degrees * DEGREES_TO __ MSECS) +

(latLong.latitude.minutes ~· MINS_TO_MSECS) +

(latLong.latitude.seconds * 1000.0);

(latLong.longitude.degrees * DEGREES_TO_MSECS) +

95

(latLong.longitude.minutes * MINS_TO_MSECS) +

(latLong.longitude.seconds * 1000.0);

return milSec;

I***

PROGRAM:
AUT~OR:

DATE:
FUNCTION:
RETURNS:
CALLED BY:
CALLS:

getSystemTime
Rick Roberts
03 November 1996
Obtains system time to utilize for origin.

double (origin time in seconds)
userinitNav
dos time function

***!

double navigatorClass::getSystemTime()

{

dostime_t* sysTime;

_dos_gettime(sysTime);

II pointer to dos time structure

return double((sysTime->hour * 3600.0) + (sysTime->minute * 60.0)

+ (sysTime->second));

!***

PROGRAM:
AUTHOR:
DATE:

getMilSec
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Extracts a position in mi1iseconds from a Motorola (@@Ba)

position contained in the input argument 'rawMessage'.

RETURNS: The latitude and longitude in miliseconds.

CALLED BY: navPosit (nav.cpp)
initializeNavigator (nav.cpp)

CALLS: none.
***!

latLongMilSec navigatorC1ass::getMilSec(const GPSdata& rawMessage)

{

FOURBYTE temps4byte;
latLongMi1Sec position;

temps4byte
temps4byte
temps4byte
temps4byte

rawMessage[15];
(temps4byte<<8) + rawMessage[16];

(temps4byte<<8) + rawMessage[17];

(temps4byte<<8) + rawMessage[18];

position.1atitude = temps4byte;

96

temps4byte
te~ps4byte

temps4byte
temps4byte

position.longitude

return position;

rawMessage [19];
(temps4byte<<8) + rawMessage[20];
(temps4byte<<8) + rawMessage[21];
(temps4byte<<8) + ra'.vMessage [22] ;

temps4byte;

!***

PROGRAM: milSecToLatLong
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Converts a position expressed totally in miliseconds to

degrees, minutes, seconds and miliseconds.
RETURNS: The position in degrees, minutes, seconds and miliseconds.

CALLED BY: navPosit (nav.cpp)
CALLS: none

***!

latLongPosition navigatorClass::milSecToLatLong(const latLongMilSec&

milSec)
{

latLongPosition position;

double degrees, minutes;

degrees = (double)milSec.latitude * MSECS_TO_DEGREES;
position.latitude.degrees = (TWOBYTE)degrees;

if(degrees < 0)
degrees fabs(degrees);

minutes = (degrees - (TWOBYTE)degrees) * 60.0;
position.latitude.minutes (TWOBYTE)minutes;
position.latitude.seconds = (minutes - (TWOBYTE)minutes) * 60.0;

degrees = (double)milSec.longitude * MSECS_TO_DEGREES;
position.longitude.degrees = (TWOBYTE)degrees;

if(degrees < 0)
degrees fabs(degrees);

minutes = (degrees - (TWOBYTE)degrees) * 60.0;
position.longitude.minutes (TWOBYTE)minutes;
pcsition.longitude.seconds (minutes - (TWOBTE)minutes) * 60.0;

return position;

97

/***********************~***

PROGRAM: gridToMilSec
AUTHOR:
DATE:

Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Convert a grid position to a latitude and longitude in mili-
seconds and returns the result.

RETURNS: The latitude and longitude in miliseconds.
CALLED BY: navPosit (nav.cpp)
CALLS: none

***/

void fpeGridToMilSec(int sig)
{if (sig == SIGFPE) cerr << "floating point error in gridToMilSec\n";}

latLongMilSec navigatorClass::gridToMilSec(const grid& posit)
{

signal(SIGFPE, fpeGridToMilSec);
latLongMilSec latLong;

II converts grid in ft to latitude
latLong.latitude = origin.latitude + (posit.x I LatToFt)f
II converts grid in ft to longitude
latLong.longitude = origin.longitude +

HemisphereConversion * (posit.y I LongToFt);
return latLong;

!***

PROGRAM: milSecToGrid
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Convert a latitude and longitude expressed in milseconds to

a grid position in xy coordinates in feet from the origin.
RETURNS: The grid position
CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp)
CALLS: none
COMMENTS: altitude is always assumed to be zero.

***/

grid navigatorClass::milSecToGrid(const latLongMilSec& posit)
{

grid position;

position.x = (posit.latitude - origin.latitudel * LatToFt;
position.y = HemisphereConversion *

(posit.longitude - origin.longitude) * LongToFt;
position.z = 0;

return position;

98

I**************************~**

PROGRAM:
AUTHOR:
DATE:

getGpsTime
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Parse the time of a gps message.
RETURNS: The time of the gps message in seconds
CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp)

CALLS: none
***!

double navigatorClass::getGpsTime(const GPSdata& rawMessage)
{

UNSIGNED_ONEBYTE
UNSIGNED_FOURBYTE
double seconds;

tempchar, hours, minutes;
tempu4byte;

hours
minutes

rawMessage[8];
rawMessage[9];

tempchar rawMessage[10];
tempu4byte rawMessage[11];
tempu4byte = (tempu4byte<<8) + rawMessage[12];
tempu4byte (tempu4byte<<8) + rawMessage[13];
tempu4byte (tempu4byte<<8) + rawMessage[14];
seconds= (double)tempchar + (((double)tempu4byte)I1.0E+9);

return hours * 3600.0 + minutes * 60.0 + seconds;

!***

PROGRAM: getGpsVelocity
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Parse the velocity out of a gps message.
RETURNS: The velocitiy of the gps message in feet per second
CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp)

CALLS: none
***I

double navigatorClass::getGpsVelocity(const GPSdata& rawMessage)
(

UNSIGNED_ONEBYTE tempchar=rawMessage[31];

return (double) (3.2804 * ((tempchar << 8) + rawMessage[32]) I 100.00);
}

II end of file nav.cpp

99

E. GPS.H

#ifndef _GPS_H
#define _GPS_H

#include <iostream.h>
#include <fstream.h>
#include <conio.h>

#include "toetypes.h"
#include "globals.h"
#include "gpsPort.h"

I***

CLASS: gpsClass
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995, last modified January 1997
FUNCTION: Reads GPS messages from the GPS buffer. Checks for valid

checksum and minimun number of satellites in view.

***/

class gpsClass

} i

public:

II Class constructor and destructor
gpsClass() { cerr << "\nconstructing gps1" << endl; };

-gpsClass() {}

II returns the latest gps position and a flag
Boolean gpsPosition(GPSdata&);

private:

II calculates the check sum of the message
Boolean checkSumCheck(const GPSdata);

#endif

100

F. GPS.CPP

#include <math.h>
#include "gps.h"

II instantiates serial port communications on comml, global to allow

II interrupt processing, cleanup to function properly

gpsPort~lass portl;

I***

NAME:
AUTHOR:
DATE:
FUNCTION:

gpsPosition
Eric Bachmann, Dave Gay
11 July 1995
Determines if an updated gps position message is available

and copies it into the input argument 'rawMessage'. If the
message has a valid checksum and was obtained with at least

three satelites in view, a 'TRUE' is returned to the caller,
indicating that the message is valid.

RETURNS: TRUE, if a valid position message is contained in the
input argument.

CALLED BY: navPosit (navigator.h)
CALLS: Get (buffer.h)

checkSumCheck (gps.h)

***/

Boolean gpsClass::gpsPosition(GPSdata& rawMessage)
{

unsigned long Mask(4);
if (portl.Get(rawMessage))

II Check for a valid check sum and more the 3 satelites and DGPS

return Boolean((checkSumCheck(rawMessage)) && (rawMessage[39] > 3)
&& ((rawMessage[GPSBLOCKSIZE- 4] & Mask)== Mask));

else
return FALSE; II No updated position is available.

101

!***

PROGRAM: checkSumCheck
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Takes an exclusive or of bytes 2 through 78 in a Motorola

format (@@EA) position message and compares it to the
checksum of the message.

RETURNS: TRUE, if the message contains a valid checksum
CALLED BY: gpsPosition (gps)
CALLS: none

***/

Boolean gpsClass::checkSumCheck(const GPSdata newMessage)

}

BYTE chkSum (0) ;

for (int i = 2; i < GPSBLOCKSIZE - 3; i++)
chkSuro A newMessage[i];

return Boolean(chkSuro newMessage[GPSBLOCKSIZE- 3]);

II end of file gps.cpp

G. INS.CFG

0.1 //Konel
0.1 //Kone2
0.6 //Ktwo
0.5 //Kthreel
0.5 //Kthree2
0.5 //Kfourl
0.5 //Kfour2
1000 //tau

102

H. INS.H

#ifndef INS_H
#define INS_H

#include <time.h>
#include <math.h>
#includB <dos.h>
#incluqe <stdio.h>
#include <conio.h>
#include <fstream.h>
#include <iostream.h>

#include "toetypes.h"
#include "globals.h"

#include "sampler.h"

I***

CLASS:
AUTHOR:
DATE:

insClass
Eric Bachmann, Dave Gay

11 July 1995
FUNCTION: Takes in linear accelerations, angular rates, speed and

heading information and uses Kalman filtering techniques to

return a dead reconing position.

***!

class insClass

public:

insClass();
-insClass() {}

II Constructor, initializes gains

II destructor

Boolean insPosition(stampedSample&); II returns ins est. position

II Updates the x, y and z of the vehicle posture

void correctPosition(stampedSample&, double);

II Sets posture to the origin and develops initial biases

void insSetUp(double, stampedSample&);

private:

float posture[6]; II ins estimated posture (x y z phi theta psi)

double velocities[6]; II ins estimated linear and angular velocities

II x-dot y-dot z-dot phi-dot theta-dot psi-dot

float current[3]; II ins estimated error current

II (x-dot y-dot z-dot)

103

} i

float lastGPStime; II time of last gps position fix

int tau; II filter time constant

samplerClass saml; II sampler instance

matrix rotationMatrix; II body to euler transformation matrix

pouble biasCorrection[3]; II Software corrections,IMU rate sensors

II Kalman filter gains.
float Konel, Kone2, Ktwo, Kthreel, Kthree2, Kfourl, Kfour2;

II Transforms body coords to earth coords, removes gravity component

void transformAccels (double[]);

II Transforms water speed reading to x andy components

void transformWaterSpeed (double, double[]);

II Tranforms body euler rates to earth euler rates.

void transformBodyRates (double[]);

II Euler integrates the accelerations and updates the velocities

void updateVelocities (stampedSample&);

II Euler integrates the velocities and updates the posture

void updatePosture (stampedSample&);

II Builds the body to euler rate matrix
matrix buildBodyRateMatrix();

II Builds the body to earth rotation matrix

void buildRotationMatrix();

II Calculates the imu bias correction during set up

void calculateBiasCorrections(stampedSample&);

II Applies bias corrections to a sample
void applyBiasCorrections(stampedSample&);

II Reads filter constants from 'ins.cfg'
void readinsConfigFile();

II Post multiply a matrix times a vector and return result.

vector operator* (matrix&, double[]);

#endif

1M

I. INS.CPP

#include <iostream.h>
#include <signal.h>
#include "ins.h"
#define SIGFPE 8 II Floating point exception

!******~**

PROG..RAM: insClass (constructor)
AUTHOR:
DATE:

Eric Bachmann, Dave Gay, Rick Roberts
11 July 1995

FUNCTION: Constructor initializes kalman filter gains and linear and
angular velocities.

RETURNS: nothing
CALLED BY: navigator class
CALLS: none

***/

insClass::insClass() Kone1(0.5), Kone2(0.5), Ktwo(0.6), Kthree1(0.5),
Kthree2 (0. 5), Kfour1 (0. 5), Kfour2 (0 .5"), tau (1000)

cerr << "\nconstructing insl" << endl;

readinsConfigFile();

velocities[O] 0.0;
velocities[1] 0.0;
velocities[2] 0.0;
velocities[3] 0.0;
velocities[4] 0.0;
velocities[5] 0.0;

posture[O] = 0.0;
posture[l] 0.0;
posture[2] 0.0;
posture[3] 0.0;
posture[4] 0.0;
posture[5] 0.0;

current[O] 0. 0;
current[1] 0.0;
current[2] 0.0;

II Read the config file

II x dot
II y dot
II z dot
II phi dot
II theta dot
II psi dot

II Set posture to straight and level at the origin.

II Initialize error current to zero

105

!************************·***

PROGRAM: insPosit
AU~HOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Make dead reckoning position estimation using kalman

filtering. Inputs are linear accelerations, angular rates,

speed and heading. Primary input data is obtained from a

RETURNS:
CALLED BY:
CALLS:

sampler object via the getSample method. This data is stored

in the sample filed of a stampedSample structure called

newSample. The sample field is then used as a working

variable as the linear accelerations and angular rates it

contains are converted to earth coordinates and integrated

to determine current velocities and posture. The data is

complimentary filtered against itself, speed and magnetic

heading.
position in grid coordinates as estimated by the INS

navPosit (nav.cpp)
getSample (sampler.cpp)
findDeltaT (ins.cpp)
transforroBodyRates (ins.cpp)
buildRotationMatrix (ins.cpp)
transforroAccels (ins)
transformWaterSpeed (ins)

***!

void fpeinsPosit(int sig)
{if (sig == SIGFPE) cerr << "floating point error in insPosit\n";}

Boolean insClass::insPosition(stampedSample& newSample)

{

signal (SIGFPE, fpeinsPosit);

double thetaA, phiA, xincline, yincline; //Working variables

double waterSpeedCorrection[3]; II Filter correction for drift
II and water speed

if (sam1.getSample(newSample))

applyBiasCorrections(newSample);

newSample.rawSample[O]
newSample.rawSample[1]
newSample.rawSample[2]
newSample.rawSample[3)
newSample.rawSample[4]
newSample.rawSample[S]
newSample.rawSample[6]
newSample.rawSample[7]

newSample.sample[O];
newSample.sample[1];
newSample.sample[2];
newSample.sample[3];
newSample.sample[4];
newSample.sample[S];
newSample.sample[6];
newSample.sample[7];

xincline = newSample.sample[O] I GRAVITY;

106

yincline (newsample.sample[l] -
(newSample.sample[S] * newSample.sample[6]))

I (GRAVITY* cos(posture[4]));

if (fabs(yincline) > 1.0) {
static int inclineCount(O);
gotoxy(l,24);
cerr << "Inclination errors: " << ++inclineCount << endl;

return FALSE;

thetaA = asin(xincline); II Calculate low freq pitch and roll

phiA = -asin(yincline);

II Transform body rates to euler rates.

transformBodyRates(newSample.sample);

II Calculate estimated roll rate (phi-dot).

velocities[3] = newSample.sample[3] + Konel * (phiA- posture[3]);

II Calculate estimated pitch rate (theta-dot).

velocities[4] = newSample.sample[4] + Kone2 * (thetaA- posture[4]);

II Calculate estimated heading rate (psi-dot).

velocities[S] =
newSample.sample[S] + Ktwo ~ (newSample.sample[7] - posture[S]);

li integrate estimated angular rates to obtain angles

posture[3] += newSample.deltaT * velocities[3] ;II pitch rate to angle

posture[4] += newSample.deltaT * velocities[4]; II roll rate to angle

posture[S] += newSample.deltaT * velocities(S]; II yaw rate to angle

buildRotationMatrix();

il Transform accels to earth coordinates

transformAccels(newSample.sample);

II Transform water speed to earth coordinates

transformWaterSpeed(newSample.sample[6], waterSpeedCorrection);

il Subtract out previous velocity and apply statistical gain

waterSpeedCorrection[O] =
Kthreel * (waterSpeedCorrection[O] - velocities[O]);

waterSpeedCorrection[l] =
Kthree2 * (waterSpeedCorrection[l] - velocities[l]);

il Determine filtered accelerations
newSample.sample[O] += waterSpeedCorrection[O];

newSample.sample[l] += waterSpeedCorrection[l];

II Integrate accelerations to obtain velocities

velocities[O] += newSmnple.sample[O] * newSample.deltaT;

velocities[l] += newSample.sample[l] * newSample.deltaT;

107

velocities[2] += newSample.sample[2] * newSample.deltaT;

II Integrate velocities to obtain posture
posture[O] += (velocities[O] + current[O]) * newSample.deltaT;
posture[1] += (velocities[1] + current[1]) * newSample.deltaT;
posture[2] += velocities[2] * newSample.deltaT;

rrewSample.sample[O]
newSample.sample[1]
newSample.sample[2]
newSample.sample[3]
newSample.sample[4]
newSample.sample[5]

posture[O];
posture[1];
posture[2];
posture[3];
posture[4];
posture[5];

newSample.est.x
newSample.est.y =
newSample.est.z

posture[O];
posture[1];
posture[2];

return TRUE;

else {
return FALSE; II New IMU information was unavailable.

!***
PROGRAM: correctPosition
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Reinitializes the INS based on a known position and computes

apparent current based on past accumulated errors of the INS.
It is called by the navigator each time a new GPS (true) fix
is obtained.

RETURNS: void
CALLED BY: navPosit (nav)
CALLS: none

***/

void
insClass::correctPosition(stampedSample& posit, double positTime)
{

double deltaT;

if (positTime < lastGPStime)
positTime += 86400;

del taT positTime - lastGPStime;

II Correct for new day if necessary

II Find time since last gps fix.

108

II Determine INS error since last gps fix

double deltaX posit.est.x- posture[O];

double deltaY posit.est.y- posture[l];

II Reinitialize posture to known position (gps fix)

posture[O] = posit.est.x;
posture[l] = posit.est.y;
posture[2] 0.0; II Unit is assumed to be on the surface

II Add gain filtered error to previous errors

posit.current[O] current[O] += Kfourl * (deltaX I deltaT);

posit.current[l] = current[l] += Kfour2 * (deltaY I deltaT);

I I s'ave the time of the gps fix for next calculation

lastGPStime = positTime;

/***

PROGRAM:
AUTHOR:
DATE:

insSetUp
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Initializes the INS system. Sets the posture to the origin.

Initializes the heading using magnetic compass information.

Initializes the last GPS fix and last IMU information times.

RETURNS: void
CALLED BY: initializeNavigator (nav)
CALLS: calculateBiasCorrections (ins)

getSarople (sampler)
buildRotationMatrix (ins)
transforroWaterSpeed (ins)

***!

void fpeinsSetUp(int sig)
{if (sig == SIGFPE) cerr << "floating point error in inSetUp\n";)

void insClass::insSetUp(double originTime, staropedSample& posit)

{

cerr << " Initializing INS." << endl;
signal (SIGFPE, fpeinsSetUp);

sarol.initSampler(); II Initialize the sampler

calculateBiasCorrections(posit); II set imu biases

posture[S] = posit.sample[7]; //set initial true heading

buildRotationMatrix(); //set initial speed

transformWaterSpeed(posit.sarople[6], velocities);

109

posit.current[O] - 0.0;
pos~t.current[l] 0.0;
posit.current[2] 0.0;

lastGPStime originTime; II initialize times

cerr << " INS initialization complete." << endl;

!***

PROGRAM:
AUTHOR:
DATE:

transforrnAccels
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Transforms linear accelerations from body coordinates to
earth coordinates and removes the gravity component in the

z direction.
RETURNS: void
CALLED BY: navPosit
CALLS: none

***/

void insClass::transforrnAccels (double newSarnple[])

vector earthAccels;

newSarnple[O]
newSarnple[1]
newSarnple[2]

+=
+=

GRAVITY* sin(posture[4]);
GRAVITY* sin(posture[3])
GRAVITY* cos(posture[3])

earthAccels = rotationMatrix * newSample;

newSarnple[O]
newSarnple[1]
newSarnple[2]

earthAccels.element[O];
earthAccels.element[1];
earthAccels.element[2];

* cos(posture[4]);
* cos(posture[4]);

/***

PROGRAM: transformWaterSpeed
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995

FUNCTION: Transforms water speed into a vector in earth coordinates and
returns them in the speedCorrection variable.

RETURNS: void
CALLED BY: navPosit
CALLS : .none

***/

110

void insClass::transformWaterSpeed (double waterSpeed, double

speed~orrection[])

{
double water[3] = {waterSpeed, 0.0, 0.0};
vector waterVelocities = rotationMatrix * water;

speedCorrection [0]
spee·dcorrection [1]
spe~dCorrection [2)

waterVelocities.element[O];
waterVelocities.element[1];
waterVelocities.element[2];

/***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:
RETURNS:
CALLED BY:
CALLS:

transformBodyRates
Eric Bachmann, Dave Gay
11 July 1995
Tranforms body euler rates to earth euler rates
none
insPosit
buildBodyRateMatrix

***!

void insClass::transformBodyRates (double newSample[])
{

vector earthRates = buildBodyRateMatrix() * &(newSample[3]);

newSample[3)
newSample(4]
newSample[5]

earthRates.element[O];
earthRates.element[1];
earthRates.element[2];

!***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

buildBodyRateMatrix
Eric Bachmann, Dave Gay
11 July 1995
Builds body to Euler rate translation matrix.

RETURNS: rate translation matrix
CALLED BY: insPosit
CALLS: none

***!

matrix insClass::buildBodyRateMatrix()
{

matrix rateTrans;

float tth = tan(posture[4]),

111

sphi
cphi
cth

sin(posture[3]),
cos(posture[3]),
cos(posture[4j);

1. 0; rateTrans.element[O] [0]
rateTrans.element[O] [1]
rateTrans.element[O] [2]
rate~rans.element[1J [OJ
rateTrans.element[1] [1]
rateTrans.element[1J [2]
rateTrans.element[2J [OJ
rateTrans.element[2J [1]
rateTrans.element[2] [2]

tth * sphi;
tth * cphi;
0. 0;
cphi;
-sphi;
0.0;
sphi I cth;
cphi I cth;

return rateTrans;

I***

PROGRAM: buildRotationMatrix
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Sets the body to earth coordinate rotation matrix.
RETURNS: void
CALLED BY:
CALLS:

insPosit, insSetUp
none

***!

void insClass::buildRotationMatrix()
{

float spsi
cpsi
sth

sphi
cphi
cth

= sin(posture[S]),
cos(posture[S]),
sin(posture[4]),
sin{posture[3]),
cos(posture[3]),
cos{posture[4]);

rotationMatrix.element[O] [0]
rotationMatrix.element[OJ [1]
rotationMatrix.element[O] [2]
rotationMatrix.element[1] [0]
rotationMatrix.element[1] [1]
rotationMatrix.element[1] [2]
rotationMatrix.element[2J [0]
rotationMatrix.element[2] [1]
rotationMatrix.element[2J [2]

cpsi * ~th;

(cpsi * sth * sphi) - (spsi * cphi);
(cpsi * sth * cphi) + (spsi * sphi);
spsi * cth;
(cpsi * cphi) + (spsi * sth * sphi);
(spsi * sth * cphi) - (cpsi * sphi);
-sth;
cth * sphi;
cth * cphi;

112

!*******************~***

PROGRAM:
AUTHOR:

postmultiplication operator *
Eric Bachmann, Dave Gay

DATE: 11 July 1995
FUNCTION: Post multiply a 3 X 3 matrix times a 3 X 1 vector and

return the result.
RETURNS: 3 X 1 vector
CALLED BY:
CALLS: None

***!

vector operator* (matrix& transform, double state[])
{

vector result;

for (int i = 0; i < 3; i++)

resu1t.e1ement[i] 0. 0;

for (int j 0; j < 3; j++)

result.e1ement[i] += transform.element[i] [j] * state[j];
}

return result;

/***

PROGRAM: calculateBiasCorrections
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995
FUNCTION: Calculates the initial imu bias by averaging a number of

imu readings.
RETURNS: none
CALLED BY: insSetup
CALLS: none

***/

void fpeCalculateBiasCorrections(int sig)
{if (sig == SIGFPE) cerr << "floating point error in
CalculateBiasCorrections\n";}

void insClass::calculateBiasCorrections(stampedSample& biasSample)
{

signal (SIGFPE, fpeCalculateBiasCorrections);

113

b#

b#

int biasNumber(tau/10);

biasCorrection[O]
biasCorrection[1]
biasCorrection[2]

0. 0;
0. 0;
0. 0;

for (int i = 0; i < biasNumber; i++) {

II p roll rate
II q pitch rate
II r yaw rate

!I Find the average of the biasNumber packets

while{!sam1.getSample(biasSample)) {/* */);

biasCorrection[O] += biasSample.sample[3]/biasNumber; //roll-rate/

biasCorrection[1] += biasSamp1e.sample[4]/biasNumber; //pitch-rate/

biasCorrection[2] += biasSample.sample[5]/biasNumber; // yaw-rate/b#

II set biasSample correction fields to new bias correction values

II negative biasCorrection value is taken so biases are added to sensor

values
biasSample.bias[3]
biasSample.bias[4]
biasSample.bias[5]

biasCorrection[O]
biasCorrection[1]
biasCorrection[2]

-(biasCorrection[O]);
-(biasCorrection[1]);
-(biasCorrection[2]);

!***

PROGRAM: applyBiasCorrections
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995
FUNCTION: Applies updated bias corrections to a sample.

RETURNS: void
CALLED BY: insPosit
CALLS: none

***!

void insClass::applyBiasCorrections(stampedSample& posit)

{

canst float sampleWght(posit.deltaT/tau);

canst float biasWght(1- sampleWght);

//Calculate updated bias values
biasCorrection[O] (biasWght * biasCorrection[O])

- (sampleWght * posit.sample[3]);

biasCorrection[1] (biasWght * biasCorrection[1])
- (sampleWght * posit.sample[4]);

biasCorrection[2] (biasWght * biasCorrection[2])
- (sampleWght * posit.sample[5]);

114

posit.sample[3] +=-biasCorrection[O];
posit.sample[4] += biasCorrection[l];
posit.sample[S] += biasCorrection[2];

posit.bias[3] biasCorrection[O];
posit.bias[4] biasCorrection[l];
posit.bias[S] = biasCorrection[2];

//Apply the bias to the sample

//Save the bias to the sample

/***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:
RETURNS:
CALLED BY:
CALLS:

readinsConfigFile
Rick Roberts, Eric Bachmann
02 Nov 96
Reads filter constants from 'ins.cfg'
void
ins class constructor
none

***!

void insClass::readinsConfigFile()
{

cerr << "Reading ins configuration file."<< endl;

if stream insCfgFile ("ins. cfg", ios: :in) ;

if (! insCfgFile)
cerr << "could not open ins configuration file!" << endl;

else

char comment[128];

insCfgFile
>> Konel >> comment
>> Kone2 >> comment
>> Ktwo >> comment
>> Kthreel >> comment
>> Kthree2 >> comment
>> Kfourl >> comment
>> Kfour2 >> comment
>> tau >> comment;

insCfgFile.close();
}

II end of file ins.cpp

115

J. SAM.CFG

1.0
1.0
1.0
1.34
1.34
1.34
1.827

;pScale (roll)
;qScale(pitch)
;rScale(yaw)
;xAccelScale(pitch)
;yAccelScale(roll)
;zAccelScale(yaw)
;waterSpeedScale

K. SAMPLER.H

#ifndef _SAMPLER_H
#define _SAMPLER_H

#include <time.h>
#include <math.h>
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <fstrearn.h>
#include <iostrearn.h>

#include "toetypes.h"
#include "globals.h"
#include "a2d.h"
#include "compass.h"

#define MAX_SAMPLE_NUM 1000
#define xyAccelLimit ONE_G
#define zAccelLimit 2 * ONE_G
#define rateLimit 0.872665
#define speedLimit 25.3
#define headingLimit 2 * M_PI

const int INBUFFSIZE 512;

II Max accell in x andy direction
II Max accel in z direction

II Max rotational rate in radians
II Max water speed

!***

CLASS:
AUTHOR:
DATE:
FUNCTION:

COMMENTS:

samplerClass
Eric Bachmann, Dave Gay, Rick Roberts
11 July 1995, last modified January 1997
Formats, timestamps, low pass filters and limit checks IMU,
water-speed and heading information.
This class is extremely dependent upon the specific
hardware configuration. It is designed to isolate the
INS from these particulars.

***/

116

class samplerClass -{

public:

samplerClass();
-samplerClass() {}

-Boolean initSampler();

II Class constructor, destructor

II Initializes Sampler

II checks for the arrival of a new sample and formats it
Boolean getSample(stampedSample&);

private:

float pScale; II roll
float qScale; II pitch

float rscale; II yaw

float xAccelScale; II pitch
float yAccelScale; II roll
float zAccelScale; II yaw

float waterSpeedScale;

compassClass compl; II instantiate member compass object

a2dClass a2dl; II instantiate member a2d object

II stores incoming FIFO samples by channel
float sample[MAX_SAMPLE_NUM] [8];

int subSampleindex; II counts channels

int sampleindex; II indexes samples' array

int sampleCount; II counts samples

float samplePeriod;

Boolean readSamples(stampedSample& newSample);

void filterSample(stampedSample& newSample);

void formatSample(stampedSample& newSample);

void increment(int& index)
if (++index== MAX_SAMPLE_NUM) index 0;}

void decrement(int& index)
if (--index < 0) index MAX_SAMPLE_NUM - 1 ; }

117

} i

#end if

II Reads filter constants from 'sam.cfg'
void readSamplerConfigFile();

double pUnits(double angular)
(return

(pScale * (((angular-2047.0) I 2047.0) * 50.0) * (M_PI/180.0));}

double qUnits(double angular)
.(return

(qScale * (((angular-2047.0) I 2047.0) * 50.0) * (M_PI/180.0));}

double rUnits(double angular)
{ return

(rScale * (((angular-2047.0) I 2047.0) * 50.0) * (M_PI/180.0));}

double xAccelUnits(double linear)
{return (xAccelScale * ((linear-2047.0) I 2047.0) *GRAVITY);}

double yAccelUnits(double linear)
(return (yAccelScale * ((linear-2047.0) I 2047.0) *GRAVITY);}

double zAccelUnits(double linear)
(return

(zAccelScale * ((linear-2047.0) I 2047.0) * (2.0 *GRAVITY));}

double depthUnits(double depth)
(return (((depth- 819.0) I (4095.0-819.0)) * 180.0);}

double waterSpeedUnits(double speed) //feet per second
{return (waterSpeedScale * ((speed- 2047.0) I 2048.0) * 25.3);}

118

L. SAMPLER.CPP

#include "sampler.h"

!***

PROGRAM:
AUTHOR:
DATE_:

sarnplerClass Constructor
Eric Bachmann, Randy Walker, Rick Roberts
12 May 1995, last modified December 1996

FUNCTION: Constructs sam1, initializes default config values, calls
readSarnplerConfigFile to read any updated values.

RETURNS : sarn1
CALLED BY: insSetUp (ins.cpp)
CALLS: readSarnplerConfigFile

***!

samplerClass::samplerClass()
sarnpleindex(O), subSarnpleindex(O),
samplePeriod(a2d1.chcnt * a2d1.delta_t * 0.000001),
pScale(O.O), qScale(O.O), rScale(O.O),
xAccelScale(O.O), yAccelScale(O.O), zAccelScale(O.O),
waterSpeedScale(O.O)

cerr << "\nconstructing sampler w/ a2d1, comp1" << endl;
readSarnplerConfigFile();

!***

PROGRAM:
AUTHOR:
DATE:

initSarnpler
Eric Bachmann, Randy Walker, Rick Roberts
12 May 1995

FUNCTION: Instantiates the compass A2D objects.
RETURNS: TRUE
CALLED BY: insSetUp (ins.cpp)
CALLS: initCompass(), A2D member functions

***!

Boolean sarnplerClass::initSarnpler()

cerr << " Initializing Sampler" << endl;

comp1.initCompass();

cerr << " Initializing A2D." << endl;

a2d1.initA2d();

119

cerr << -A2D initialization complete." << endl;

cerr << " Sampler initialization complete." << endl;

return TRUE;

!*****~***

PROGRAM:
AUTHOR:
DATE:

get Sample
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Prepares raw sample data for use by the INS object
RETURNS: TRUE, if a valid sample was obtained
CALLED BY: insPosit (ins)

insSetup (ins)
CALLS: readSamples (sampler)

filterSample (sampler)
formatSample (sampler)

***!

Boolean samplerClass::getSample(stampedSample& newSample)
{

if (readSamples(newSample)) { II checks for the arrival of a new sample

filterSample(newSample);

formatSample(newSample);

return TRUE;

return FALSE; II Sample packet not available

/***

PROGRAM: readSamples
AUTHOR: Eric Bachmann, Randy Walker
DATE: 12 May 1996
FUNCTION: Retrieves all samples of the IMU, water speed, and depth

that are present in the A2D FIFO until the FIFO is EMPTY.
Calculates delta_t.

RETURNS: TRUE - There were new samples pulled from the FIFO
FALSE - There were no new samples

CALLED BY: getSample
CALLS: getFifoStatus(), getFifoData()

***!

120

Boolean samplerClass·::readSarnples(stampedSample& newSample)
{

static int overflowCount(O);
if (a2dl.getFifoStatus() ==FULL) II Did the FIFO overflow?

gotoxy(l,l9);
cout << "FIFO Overflowed, #: " << ++overflowCount

<< " reiniting a2d" << endl;
a2dl.reinitA2d();
:return FALSE;

if (a2dl.getFifoStatus () ! = EMPTY) { I I Does the FIFO have new samples?

sampleCount = 0; II Counts the number of samples taken

while (a2dl.getFifoStatus() !=EMPTY) { II Empty the FIFO

sample[sampleindex] [subSampleindex++] = a2dl.getFifoData();

II Has it pulled one sample of each channel from

if (subSampleindex == 8) (

subSampleindex= 0;
increment(sampleindex); II set to record

++sampleCount;

if (sampleCount > 0) {
II calculate time delta
newSample.deltaT = sampleCount * samplePeriod;
return TRUE;

else { II No full samples

return FALSE;

else II No new samples
return FALSE;

121

the FIFO?

next sample

/***

PROGRAM: filterSample
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Low pass filters eight closely spaced sets of sensor

readings by summing the readings of each sensor and computing

the average.
RETURNS: void
CALLED BY: getSample
CALLS: none

***/

void samplerClass::filterSample(stampedSample& newSample)

{

for (int i = 0; i < 8; i++)
newSample.sample[i] = 0;

int j(sampleindex);

for (i = 0; i < sampleCount; i++)

decrement(j);
newSample.sample[O] += sample [j] [0]
newSample.sample[1] += sample[j] [1]
newSample.sample[2] += sample[j] [2]
newSample.sample[3] += sample [j] [3]
newSample.sample[4] += sample [j] [4]
newSample.sample(5] += sample [j] [5]
newSample.sample(6] += sample[j] [6]
newSample. sampl.e [7] += sample[j] [7]

I sampleCount;
I sampleCount;
I sampleCount;
I sampleCount;
I sampleCount;
I sampleCount;
I sampleCount;
I sampleCount;

I***

PROGRAM: formatSample
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Converts integers representing voltage readings into

real world units which are useable by the INS.
RETURNS: void
CALLED BY:getSample
CALLS: none

~**************!

122

void samplerClass::formatSample (stampedSample& newSample)
{

newSample.sample[O] =
newSample.sample[l]
newSample.sample[2]

xAccelUnits(newSample.sample[O]);
yAccelUnits(newSample.sample[l]);
zAccelUnits(newSample.sample[2]);

newSample.sample[3]
newSample.sample[4]
new~ample.sample[S]

pUnits(newSample.sample[3]);
= qUnits(newSample.sample[4]);
= rUnits(newSample.sample[S]);

newSample.sample[6]
newSample.sample[7]

= waterSpeedUnits(newSample.sample[6]);
compl.getHeading();

!***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:
RETURNS:
CALLED BY:
CALLS:
COMMENTS:

readSamplerConfigFile
Rick Roberts, Eric Bachmann
02 Nov 96
Reads filter constants from 'ins.cfg'
void
ins class constructor
none
* Do not allow blanks in 'cororoent' section of sam.cfg *

***/

void samplerClass::readSamplerConfigFile()
{

FILE *samCfgFile;

if ((samCfgFile = fopen("sam.cfg", "r")) ==NULL){
cerr << "could not open sampler configuration file!" << endl;

else {

cerr << "\nReading Sampler configuration file." << endl;

char line [128] ;

fscanf(samCfgFile,"%f%s",&pScale,line);
cerr << "pScale: " << pScale << endl;

fscanf(samCfgFile,"%f%s",&qScale,line);
cerr << "qScale: " << qScale << endl;

fscanf(samCfgFile,"%f%s",&rScale,line);
cerr << "rScale: " << rScale << endl;

fscanf(samCfgFile,"%f%s",&xAccelScale,line);

123

}

cerr << "xAccelScale: " << xAccelScale << endl;

fscanf(samCfgFile,"%f%s",&yAccelScale,line);

cerr << "yAccelScale: " << yAccelScale << endl;

fscanf(samCfgFile,"%f%s",&zAccelScale,line);

cerr << "zAccelScale: " << zAccelScale << endl;

(scanf(samCfgFile,"%f%s",&waterSpeedScale,line);

cerr << "waterSpeedScale: " << waterSpeedScale << endl;

fclose(samCfgFile);

II end of file sampler.cpp

M. COMPASS.H

#ifndef _COMPASS_H
#define _COMPASS_H

#include <iostream.h>
#include <fstream.h>
#include <conio.h>

#include "toetypes.h"
#include "globals.h"
#include "compport.h"

BYTE asciiToHex(BYTE); II conversion function prototype

!***

CLASS: compassClass
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995, last modified January 1997

FUNCTION: Reads compass messages from the compass buffer. Checks for

valid checksum. Corrects heading for magnetic variation.

Heading is continuous. There is no branch cut at 360 degrees.

***I

class compassClass

public:

II class constructor and destructor

compassClass() : currentHeading(O.O)
{ cerr << "Compass constructed."<< endl; }

124

-compassClass() ()

float initCompass(); II initialize currentHeading

float getHeading(); II returns the latest heading

private:

II Maintains the most recently obtained heading.

float currentHeading;

II calculates the check sum of the message

Boolean checkSumCheck(const compData);

II Parses a selected field out of a compass message.

float parseCompData(const compData, canst BYTE);

II Converts magnetic direction based on magnetic variation.

float trueHeading(const float);

II Returns the heading without branch cuts

float continousHeading(const float);

) i

#end if

N. COMPASS.CPP

#include <math.h>
#include <stdlib.h>
#include "compass.h"

II instantiates serial port communications on comm2, global to allow

II interrupt processing, cleanup to function correctly

compassPortClass port2;

!***

NAME:
AUTHOR:
DATE:
FUNCTION:

RETURNS:
CALLED BY:
CALLS:

initCoropass
Eric Bachmann, Dave Gay, Rick Roberts

11 July 1995
Determines if a valid compass message is held in the

compass buffer and initializes currentHeading to that value.

Will attempt 10 times with a built in delay and then exit

with a warning if a valid heading is not obtained.

currentHeading
INSsetUp (ins.cpp)
Get (buffer.h)

checkSumCheck (gps.h)
trueHeading (compass.cpp)

parseCompData (coropass.cpp)
continuousHeading (compass.cpp)

**!

125

float compassClass::initCompass()
{

cerr << Initializing Compass" << endl;

Boolean compFlag(FALSE);
float tempHeading;
compData rawMessage;

II ~ry 10 times to get a valid message
for (inti= 1; ((i < 10) && (compFlag ==FALSE)); i++

if ((port2.headings.Get(rawMessage)) && (checkSumCheck(rawMessage))){
tempHeading = parseCompData(rawMessage, 'C') * degToRad;
currentHeading = continousHeading(trueHeading(tempHeading));

compFlag = TRUE;

else {
delay(lOOO);

if (compFlag == FALSE)

II invalid message -delay

cerr << "\nWARNING: UNABLE TO OBTAIN INITIAL COMPASS HEADING!"
<< endl;

delay (2000);

else {
cerr << " Compass initialization complete." << endl;

return currentHeading;

!***

NAME:
AUTHOR:
DATE:
FUNCTION:

getHeading
Eric Bachmann, Dave Gay, Rick Roberts
11 July 1995
Determines if an updated compass message is available and
copies it into the input argument 'rawMessage'. If the
message has a valid checksum, currentHeading is returned
to the caller, currentHeading is also the default return.

RETURNS: currentHeading
CALLED BY: navPosit (navigator.h)
CALLS: Get (buffer.h)

checkSumCheck (compass.cpp)

***/

float compassClass::getHeading()
{

126

float tempHeading;
Bo~lean checkSumFlag;
compData rawMessage;

if ((port2.headings.Get(rawMessage)) && (checkSumCheck(rawMessage)))

tempHeading = parseCompData(rawMessage, 'C') * degToRad;
currentHeading = continousHeading(trueHeading(tempHeading));

return currentHeading;

else {
return currentHeading; II No updated position is available.

I***

NAME:
AUTHOR:
DATE:

asciiToHex
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Administrative conversion function
RETURNS: Hex version of an ascii character
CALLED BY: checkSumCheck
CALLS: None

***!

BYTE asciiToHex(BYTE letter)
{

if (letter>= 'A')
return (letter- 'A' + 10);

else {
return (letter- 48);

!***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS:
CALLED BY:
CALLS:

checkSumCheck
Eric Bachmann, Dave Gay
11 July 1995
Calculates the checksum of the compass message and
compares it to the indicated checksum of the message.
TRUE, if the message contains a valid checksum
initCompass, getHeading
none

***!

127

Boolean compassClass·::checkSumCheck(const compData newMessage)

BYTE calChkSum(O);
BYTE mesChkSurn(O);

for (int i = 1; newMessage [i] ! = 1 * 1
; i++ l

calChkSurn A= newMessage[i];

mesChkSurn asciiToHex(newMessage[i+1]) * 16
+ asciiToHex(newMessage[i+2]);

return Boolean(calChkSurn == mesChkSurn);

!***

PROGRAM: trueHeading
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Converts magnetic direction to true based on local

magnetic variation.
RETURNS: true heading
CALLED BY: insPosit

ins SetUp
CALLS: none

***/

float compassClass::trueHeading(const float magHeading)
{

static double twoPi(2.0 * M_PI);
double trueHeading = magHeading + RADIANMAGVAR;

if (trueHeading > twoPi)

trueHeading twoPi;

return trueHeading;

128

!************************~**

PROGRAM:
AUTHOR:
DATE:

continousHeading
Eric Bachmann
11 July 1995

FUNCTION: Maintains track of branch cuts & returns a continous heading.
RETURNS:
CALL·ED BY:
CALI.;S:

continous true heading
insPosit, insSetUp
none

***!

float compassClass::continousHeading(const float trueHeading)
{

const float twoPi(2.0 * M_PI);
static int branchCutCount(O);
static float previousHeading(trueHeading);

if ((4.71 < previousHeading) && (trueHeading < 1.57)){
++branchCutCount; //Went through North in a right hand turn

else {
if ((1.57 > previousHeading) && (trueHeading > 4.71))

--branchCutCount; //Went through North in a left hand turn

previousHeading = trueHeading;

return trueHeading + (branchCutCount * twoPi);

!***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:
RETURNS:
CALLED BY:
CALLS:

parseCompData
Eric Bachmann
11 July 1995
Parses the heading out of a compass message.
the message heading as a float
insPosit, insSetUp
none

***!

float compassClass::parseCompData(const compData rawMessage,
const BYTE key)

float dataSum(O);

for(int j = 0; rawMessage[j] != key; j++) {}

129

}

j++;

for { int i = 0; rawMessage [i + j] ! = 1
•

1
; i++) {}

switch {i)

case 3:

dataSum

break;

case 2:

dataSum

break;

case 1:

dataSum

break;

return dataSum;

{rawMessage[j] - 48) * 100.0 +
{rawMessage[j+1] - 48) * 10.0 +

{rawMessage[j+2] - 48) + {rawMessage[j+4] - 48) * 0.1;

(rawMessage[j] - 48) * 10.0 +
(rawMessage[j+1] - 48) + (rawMessage[j+3] - 48) * 0.1;

{rawMessage[j] - 48) + {rawMessage[j+2] - 48) * 0.1;

II end of file coropass.cpp

0. A2D.CFG

8
0
1
8
3125
7
0
0

1
2
3

4
5
6
7
8
9

;seqcnt:nurober_of_seq_addresses_to_load
;mode_sel: __ DIFF=1 __ SE=0
;roode_acdc:_Signal_coupling_select __ DC=1 __ AC=0
;chcnt: _____ Number_of_channels_to_sequence_{hex,_1-F)
;delta_t: __ Sarople_rate_in_roicrosecs_3-8192
;saroprate: __ Sarople_rate_in_recurrent_roode __ O{fast)-7{slow)
;saropindex:_Which_channel_to_sample_in_recurrent_roode
0 0 0
1 0 0
2
3
4
5
6
7
8
A

0
0
0
0
0
0
0

2

0
0
0
0
0
0
0
0

130

A 5 2 0
B A 2 0
c 5 2 0
D A 2 0
E 5 2 0
F A 2 0

P. A2D.H

#ifndef _A2D_H
#define _A2D_H

#include <dos.h>
#include <math.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <iostream.h>
#include <fstream.h>

//ESP A2D General Global Definitions
#define DEFBASE
#define FIFOSIZE
#define MAX CHAN

//ESP A2D Status
//BASE+02h: OllD
#define INT_STAT
#define TRG_STAT

#define FULL
#define HALF
#define EMPTY

Ox100
1000
Ox10

Register
DDDD
Ox10
Ox08

Ox01
Ox05
Ox06

II Base address SEL=1->0x300 & SEL=0->0x100
II FIFO size (MAX=1000 decimal)
II Max channels

Definitions

II 0001 0000 INTERRUPT STATUS
II 0000 1000 TRIGGER STATUS

II 0000 0001 FIFO FULL
II 0000 0101 FIFO HALF FULL
II 0000 0110 FIFO EMPTY

(1=IRQ Pending)
(1=Triggered)

(001=Full)
(101=Half Full)
(110=Empty)

//ESP A2D Control Register Definitions
//BASE+08h: DDDD DDDD
//BASE+09h: DDDD DDRR
#define GATE10UT Ox0008 II 0000 0000 0000 1000 GATE10UT (Always Driven)

#define TRG_POS Ox0010 II 0000 0000 0001 0000 TRIG POS (Trig on +I-)
#define SET_TRG Ox0020 II 0000 0000 0010 0000 TRIG SET (Active LOW)

#define RST_TRG Ox0040 II 0000 0000 0100 0000 TRIG CLR (Active LOW)

#define INT_EN Ox0080 II 0000 0000 1000 0000 IRQ ENAB (Active HIGH)

#define DIFF Ox0400 II 0000 0100 0000 0000 DIFF/SE (1=DIFF O=SE)

#define RMS Ox0800 II 0000 1000 0000 0000 RMS Mode (1=0N O=OFF)

#define CAL Ox1000 II 0001 0000 0000 0000 CAL Mode (1=0N O=OFF)
#define PRG_SEQ Ox1000 II 0001 0000 0000 0000 SEQ Mode (1=PRG O=RUN)

131

I

#define ACDC
#define SAM_SEQ
#defin·e RST_FIFO

Ox2000. II 0010 0000 0000 0000 ACDC Mode (1=DC O=AC)
Ox4000 I I 0100 0000 0000 0000 SAMP/SEQ (l=SEQ O=SAMP)
Ox8000 II 1000 0000 0000 0000 FIFO Reset(1=EN O=R~~)

//ESP A2D Useful Definitions
#define CLRRATE OxFFF8 II CLEAR RATE TO HIGHEST RATE

//Class· Definition for the A2D Class
class a2dClass {

public:

a2dClass();
-a2dClass ()

II reads a2d.cfg file, initializes hardware

lockTrigger();

void readConfigFile(); //reads a2d.cfg file

void initA2d(); //initializes the a2d
void reinitA2d(); // reinitializes the a2d after FIFO overflow

void initSysAddr(void); //sets address mapping

void initHardware(void); //initializes the a2d control register

II Print out the variable ctrlw, for debug purposes
void printCtrlw(void);

II Sets the A2D Control Register for Single-Ended mode
void setSe(void);

II Sets the A2D Control Register for Differential mode
void setDiff(void);

II Loads sequencer memory with channel data
void setChannel(unsigned seq,unsigned ch,unsigned g10,unsigned g2);

II Sets sequencer to program mode
void setProgSeq(void);

II Sets sequencer to run mode
void setRunSeq(void);

II Loads sequencer address counter with number of channels to scan.

void setCount(unsigned nch);

void setAcDc(unsigned acdc); II sets AC or DC coupling

void lockTrigger(void); II prevents triggering

void unlockTrigger(void); II allows the trigger to function

132

II Toggle the trigger. (software triggering)
void setTrigger(void);

void resetTrigger(void); II clears the trigger

II Switches in the RMS measurement chip
void setRmsOn(void);

II Switches out RMS measurement chip
void setRmsOff(void);

II Sets the A2D module to sequencer mode
void setSequencer(void);

II Sets the A2D module to sampler mode
void setSamplerRate(unsigned);

II Set GATElOUT bit of control word high
void gateloutOn(void);

II Set GATElOUT bit of control word low
void gateloutOff(void);

II Sets timer channel 1 to square-wave input
void squareWaveTimerl(unsigned);

II Initialize the A2D timing using timer 2
void initTiming(unsigned dt);

void resetFifo(void); II rewind FIFO to beginning of memory

void setFifo(void); II enable FIFO to acquire data

unsigned getFifoStatus(void); II returns the state of the FIFO

II Returns next data word stored in FIFO
signed getFifoData(void);

II Program timer channel 0 to set the desired interrupt rate
void setintRate(unsigned intrate);

void intOff(void); II locks out the interrupt request line

void intOn(void); II enables system interrupt request

II Sets the trigger level; trigger level (0=-lOV, 128=0V, 255=+10V)
void setTriggerLevel(unsigned tl);

II Sets falling or rising edge trigger
void setTriggerPosition(unsign~d tp);

133

void zeroOffset(void);. II calibrates zero offset error

II Grounds the two differential inputs for zero adjust

void grndinput(void);

void freeinput(void); II ungrounds the two differential inputs

void·zeroAdjust(void); II adjust the trimmer on the PGA

int chcnt;
unsigned delta_t;

II Number of channels to sequence
II period between channels

private:

unsigned ctrlw; //Holds A2D Control Register update values

unsigned seqcnt; // Sequence Counter

unsigned rnode_sel; // Single-ended or Differential

unsigned rnode_acdc; // AC/DC Coupling

unsigned sarnprate; //Sample Rate in Recurrent Mode

unsigned sarnpindex; I I Which Channel to Sample in Recurrent Mode

unsigned seqaddr[MAXCHAN]; //Sequencer Address

unsigned chan[MAXCHAN]; //Channel

unsigned g10[MAXCHAN]; // x10 Gain
unsigned g2[MAXCHAN]; // x2 Gain

} i

#end if

Q. A2D.CPP

#include "a2d.h"

//ESP A2D Addresses
unsigned BASE
unsigned FIFO
unsigned MEM
unsigned STAT
unsigned COUNT
unsigned TIMERO
unsigned TIMER1
unsigned TIMER2
unsigned TIMERC
unsigned CNTL
unsigned DAC

DEFBASE;
OxOO;
OxOO;
Ox02;
Ox02;
Ox04;
Ox05;
Ox06;
Ox07;
Ox08;
OxOC;

II BASE I/0 ADDR
II FIFO READ ADDR

II SEQUENCER ADDR
II STATUS REGISTER
II SEQUENCER ADDR PTR

II TIMER 0
II TIMER 1
II TIMER 2
II TIMER CONTROL WORD
II A2D CONTROL REGISTER

II DAC DATA

134

[BASE] ()

[00-01] (R)
[00-01] (W)

[02] (R)
[02] (W)
[04] (R/W)
[05] (R/W)
[0 6] (R/W}
[07] (R/W)
[08-09] (W)
[OC] (W)

/!**

II FUNCTION NAME: a2dClass()
II AUTHOR: Randy Walker
II DATE: 27 March 1996
II DESCRIPTION: Reads a2d.cfg file, initializes address map and hardware
I I RETURNS: void
II CALLS: readConfigFile(), initSysAddr(), initHardware()
II CALLED BY: Object declaration

II
**

a2dClass::a2dClass(void)
{

cerr << "constructing a2d1" << endl;

II

ctrlw=O;
seqcnt=1;
mode_sel=O;
mode_acdc=1;
delta_t=3;
chcnt=1;
samprate=O;
sampindex=O;
readConfigFile();
initSysAddr();
initHardware();

**
II FUNCTION NAME: readConfigFile()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Reads the a2d.cfg file and sets variables
I I RETURNS: void
II CALLS: none
II CALLED BY: a2d class constructor
II
**

void a2dClass::readConfigFile()
{

FILE *configFile;
char junk [128] ;

if ((configFile = fopen("a2d.cfg", "r")) ==NULL){
fprintf(stderr, "Cannot open file A2D.CFG ... \n");
exit (1);

135

fscanf (configFi1e 1·" %x%s" 1 &seqcnt I junk);
if (:>eqcnt==O II seqcnt>OxOF) { I I seqcnt must be 1-F (15 max in seq mode)

cout << "\nseqcnt out of range in A2D.CFG ... \n";
exit (1);

fscanf(configFi1e 1 "%d%s" 1&mode_se1 1junk);
if (mode_se1 !=0 && mode_se1 != 1){

cput << "\nmode_se1 out of range in A2D.CFG ... \n";
exit(1);

fscanf (configFi1e, "%d%s" 1 &mode_acdcl junk);
if (mode_acdc !=0 && mode_acdc != 1){

cout << "\nmode_acdc out of range in A2D.CFG ... \n";

exit(1);

fscanf(configFi1e 1 "%x%s" 1&chcnt 1jUnk);
if (chcnt == 0 II chcnt > OxOF) { //chcnt must be 1-F (15 max in seq mode)

cout << "\nchcnt out of range in A2D.CFG ... \n";
exit (1);

fscanf (configFi1e 1 "%d%s"1 &de1ta_t, junk);
if (de1ta_t < 3 I I de1ta_t > 8192) {

cout << "\nde1ta_t out of range in A2D.CFG ... \n";
exit(l);

if (de1ta_t < 6 && chcnt > 1) (
. cout << "\nde1ta_t must be > 6 for chcnt > 1. .. \n";
exit (1);

fscanf (configFi1e 1 "%d%s" 1 &sampratel junk);
if (samprate > 7){

cout << "\nsamprate out of range in A2D.CFG ... \n";
exit (1);

fscanf(configFi1e 1 "%x%s" 1&sampindex,junk);
if (sampindex > OxOF){

cout << "\nsampindex out of range in A2D.CFG ... \n";
exit (1);

for (int i = 0; i < seqcnt; i++) (
fscanf(configFi1e 1"%x%x%x%x",&seqaddr[i],&chan[i]l&g10[i]l&g2[i]);

fc1ose(configFi1e);

136

/!***

II FUN9TION NAME: initSysAddr()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets system address mappings
II RETURNS: void
II CALLS: none
II CALLED BY: a2d class constructor
/!*****~***

void a2dClass::initSysAddr(void)
{

//clear BASE
FIFO &= OxOF;
MEM &= OxOF;
STAT &= OxOF;
COUNT &= OxOF;
TIMERO &= OxOF;
TIMER1 &= OxOF;
TIMER2 &= OxOF;
TIMERC &= OxOF;
CNTL &= OxOF;
DAC &= OxOF;

//set
FIFO
MEM
STAT
COUNT
TIMERO
TIMER1
TIMER2
TIMERC
CNTL
DAC

BASE
I= BASE;
I= BASE;
I= BASE;
I= BASE;
I= BASE;
I= BASE;
I= BASE;
I= BASE;
I= BASE;
I= BASE;

II FIFO READ ADDRESS
II SEQENCER MEM ADDRESS
II STATUS REGISTER
II SEQENCER ADDRESS PTR
II TIMER 0
II TIMER 1
I I TIMER 2
II TIMER CONTROL WORD
II CONTROL REGISTER
I I DAC DATA

II FIFO READ ADDRESS
II SEQENCER MEM ADDRESS
II STATUS REGISTER
II SEQENCER ADDRESS PTR
I I TIMER 0
II TIMER 1
II TIMER 2
II TIMER CONTROL WORD
II CONTROL REGISTER
II DAC DATA

[00,01]
[00,01]
[02]
[02]
[04]
[05]
[06]
[07]
[08]
[OC]

[00,01]
[00,01]
[02]
[02]
[04]
[05]
[0 6]
[07]
[08]
[OC]

(R)

(W)

(R)

(W)

(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(W)

(R)

(W)

(R)

(W)

(R/W)
(R/W)
(R/W)
(R/W)
(R/W)
(W)

!!***

II FUNCTION NAME: initA2d()
II
II
II
II
II
II
II
II
II

AUTHOR: Rick Roberts
DATE: 13 November 1996
DESCRIPTION: Performs necessary steps for initialization of the a2d

or to reinitialize if acceleration parameters are in
error due to a poor initial data transfer.

RETURNS: void
CALLS: setRmsOff(), setSequencer(), lockTrigger(), resetFifo(),
unlockTrigger(), and setTrigger(), all in a2d.cpp
CALLED BY: sampler class constructor

//***

137

void a2dClass::initA2d(void)

setRrnsOff();
setSequencer();
lockTrigger();
resetFifo();
setFifo();
unlockTrigger();
setT;rigger();

II***

II FUNCTION NAME: reinitA2d()
II AUTHOR: Rick Roberts
II DATE: 13 November 1996
II DESCRIPTION: Performs necessary steps for reinitialization of the a2d

II or to reinitialize if acceleration parameters are in

II error due to a poor initial data transfer.

II RETURNS: void
II CALLS: readConfigFile(), initSysAddr(), initHardware(),2

II setRrnsOff(), setSequencer(), lockTrigger(), resetFifo(),

II unlockTrigger(), and setTrigger(), all in a2d.cpp

II CALLED BY: sampler class readSamples if a2d FIFO has overflowed

//***

void a2dClass::reinitA2d(void)
{

readConfigFile();
initSysAddr();
initHardware();
setRrnsOff();
setSequencer();
lockTrigger();
resetFifo();
setFifo ();
unlockTrigger();
setTrigger();

!!***

II FUNCTION NAME: initHardware()
II AUTHOR: Randy Walker, based on [MAXUS 95] code

II DATE: 27 March 1996
II DESCRIPTION: Sets the A2D Control Register to 0020 and sets the data

II member, ctrlw=0060; initializes the module setup for

II software triggering of the A2D. Programs each channel.

I I RETURNS: void
II CALLS: outpw()
II CALLED BY: a2d class constructor
/!***

138

void a2dClass::initHardware(void)

outpw(CNTL,SET_TRG);
ctrlw = SE~_TRGIRST_TRG;

if (mode sel == 0)
setSe () ;

else
setDiff ();

for(int i = O;i < chcnt;i++){
setChannel(seqaddr[i],chan[i],g10[i],g2[i]);

setAcDc(mode_acdc);
initTiming(delta_t);
setCount(chcnt);

//***

II FUNCTION NAME: printCtrlw()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II
II
II
II
II
II
II

DESCRIPTION: Print A2D control register var, ctrlw.
The variable is used to set a byte in the
ESP A2D control register at BASE + 08hl09h
Used during application code debug

RETURNS: void
CALLS: none
CALLED BY: none

!!***

void a2dClass::printCtrlw(void)
{

printf("ctrlw: %04x\t", ctrlw);
for (int i=OxOO; i < Ox10; i++){

printf("%i",((ctrlw>>0x0F-i) & 1));
if ((i+1)%4==0)

printf(" ");

139

/!***********************~***

II FUNCTION NAME: setSe()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets ctrlw for single ended mode and writes ctrlw to
II A2D Control Register
II RETURNS: void
II CALuS: outpw()
II CAL~ED BY: initHardware()
II***

void a2dClass::setSe(void)
{

ctrlw &= -DIFF;
outpw(CNTL,ctrlw);

II***

II FUNCTION NAME: setDiff()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets ctrlw for differential mode and writes ctrlw to
II A2D Control Register
II RETURNS: void
II CALLS: outpw()
II CALLED BY: initHardware()
/!***

void a2dClass::setDiff(void)
{

ctrlw I= DIFF;
outpw(CNTL,ctrlw);

!!***~*************************

II FUNCTION NAME: setChannel()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Loads sequencer memory with channel data
II CALLS: progSeq(), outpw(), runSeq()
II CALLED BY: initHardware()
II VARIABLES: seq- sequencer number
II ch -channel number
II g10 - x10 gain value
II g2 - x2 gain value
!!***

140

void a2dClass::setChannel(unsigned seq,unsigned ch,unsigned g10,
unsigned g2)

unsigned d = 0;

setProgSeq();
outpw(COUNT,seq);

"//load sequencer memory
d I= ch<<8;
d I= (g2<<12) ;
d I= (g10<<14);
outpw (MEM, d) ;

setRunSeq();

II set sequencer program mode
II set sequencer address

II channel
II gain X2
II gain X10
II load sequencer

II set sequencer run mode

/!***
II FUNCTION NAME: setProgSeg()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
//.DATE: 27 March 1996
II DESCRIPTION: Sets sequencer to program mode
II RETURNS: void
II CALLS: outpw()
II CALLED BY: setChannel()
//***

void a2dClass::setProgSeq(void)
{

ctrlw I= PRG_SEQ;
outpw(CNTL,ctrlw);

!!***
II FUNCTION NAME: setRunSeq()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets sequencer to run mode
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
/!***

void a2dClass::setRunSeq(void)
{

ctrlw &= -PRG_SEQ;
outpw(CNTL,ctrlw);

141

!!*******************~****·***

II FUNCTION NAME: setCount()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Loads sequencer address counter with number of channels
II to scan.
I I RETURNS: vo~ . :
II CALLS: outpw(), setProgSeq(), setRunSeq()
II CALLED BY: initHardware()
II VARIABLES: nch -number of channels to sequence
!!***

void a2dClass::setCount(unsigned nch)
{

nch=nch<<4;
outpw(COUNT,nch);
setProgSeq();
setRunSeq();

II put in upper nibble
II out to register
II reset sequencer
II put it in run mode

//***

I I FUNCTION NAME.: setAcDc ()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets AC or DC Coupling
II RETURNS: void
II CALLS: outpw(}
II CALLED BY: initHardware()
II VARIABLES: acdc -holds coupling value
II***

void a2dClass::setAcDc(unsigned acdc)
{

if (acdc)
ctrlw I= ACDC; II acdc=1 ->

else
ctrlw &= -ACDC; II acdc=O ->

outpw(CNTL,ctrlw);

DC

AC

/!***
II FUNCTION NAME: lockTrigger()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Prevents triggering
I I RETURNS: void
II CALLS: outpw()
II CALLED BY: main
//***

142

void a2dClass:: lockTrigger (void)

ctrlw &= -RST_TRG;
outpw(CNTL,ctrlw);

//****~**

II FUNCTION NAME: unlockTrigger()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Allow the triger to function
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
II***

void a2dClass::unlockTrigger(void)
{

ctrlw I= RST_TRGISET_TRG;
outpw(CNTL,ctrlw);

/!***

II FUNCTION NAME: setTrigger()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Toggle the trigger (software triggering)
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
//***

void a2dClass::setTrigger(void)
{

outpw(CNTL,ctrlw&-SET_TRGIRST_TRG);
outpw(CNTL,ctrlwl SET_TRGIRST_TRG);

/!***
II FUNCTION NAME: resetTrigger()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Clears the trigger
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
/!***

143

void a2dClass::resetTrigger(void)

outpw(CNTL,ctrlwiSET_TRG&-RST_TRG);
outpw(CNTL,ctrlwiSET_TRGI RST_TRG);

II*****~***

II FUNCTION NAME: setRmsOn()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Switches in the RMS measurement chip
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
II***

void a2dClass::setRmsOn(void)
{

ctrlw I= RMS;
outpw(CNTL,ctrlw);

//***

II FUNCTION NAME: setRmsOff()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Switches out RMS measurement chip
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
//***

void a2dClass::setRmsOff(void)
{

ctrlw &= -RMS;
outpw(CNTL,ctrlw);

!/***
II FUNCTION NAME: setSequencer()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets the A2D module to sequencer mode
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
/!***

1M

void a2dClass::setSequencer(void)
{

ctrlw I= SAM_SEQi
outpw(CNTL,ctrlw)i

!!****~**

II FUNCTION NAME: setSamplerRate()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets the A2D module to sampler mode
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
II VARIABLES: rate -sampler rate
/!**~

void a2dClass::setSamplerRate(unsigned rate)
{

ctrlw &= -SAM_SEQi //Set to sampler mode
ctrlw &= CLRRATEi //Clear previous rate
ctrlw I= ratei //Set new rate
outpw(CNTL,ctrlw)i //Set Control Word

to 000

//***
II FUNCTION NAME: gate1out0n()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Set GATE10UT bit of control word high
II RETURNS: void
I I CALLS: outpw ()
II CALLED BY: main
/!***

void a2dClass::gate1outOn(void)
{

ctrlw I= GATE10UTi
outpw(CNTL,ctrlw)i

145

/!***********************~***

II F~CTION NAME: gate1outOff()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
I I DESCRIPTION: Set GATE10UT bit of control •.vord low
II RETURNS: void
I I CALLS: outpw ()
II CALliED BY: main
!!****~**

void a2dClass::gate1outOff(void)
{

ctrlw &= -GATE10UT;
outpw(CNTL,ctrlw);

II***

II FUNCTION NAME: squareWaveTimer1()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets timer channel 1 to square-wave input
II RETURNS: void
I I CALLS : out p ()
II CALLED BY: main
II VARIABLES: dt-micro seconds per period (1 to 8192)
II assuming 8 MHz clock input
II ch-timer channel 1
II ph-local variable
/I pl-local variable
!!***

void a2dClass::squareWaveTimer1(unsigned dt)
{

char

pl
ph

ph,pl;

(dt*8)&0xFF;
(dt*8)>>8;

outp(TIMERC,Ox76);
outp(TIMER1,pl);
outp(TIMER1,ph);

II 8 CLOCKS PER uS

II initialize timer
II dt uS delay
II with 8 MHz clock

146

!!***********************~***

II FUN~TION NAME: initTiming()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Initialize the A2D timing using timer 2
II RETURNS: void
II CALLS: outp()
II CALLED BY: initHardware()
II VAR~ABLES: dt -number of micro seconds (3 to 2730)
/!***

void a2dClass::initTiming(unsigned dt)
{

char

pl
ph

ph,pl;

(dt*8)&0xFF;
(dt*8)>>8;

outp(TIMERC,OxB6);
outp(TIMER2,pl);
outp(TIMER2,ph);

II 8 CLOCKS PER uS

II initialize timer2
II dt uS delay
II with 8 MHz clock

!!***
II FUNCTION NAME: resetFifo()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Rewind FIFO to beginning of memory
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
!!***

void a2dClass::resetFifo(void)
{

ctrlw &= -RST_FIFO;
outpw(CNTL,ctrlw);

!!***
II FUNCTION NAME: setFifo()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Enable FIFO to acquire data
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
!!***

147

void a2dClass::setFifo(void)
{

ctrlw I= RST_FIFO;
outpw(CNTL,ctrlw);

/!***

II FUNC~ION NAME: getFifoStatus()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Returns FIFO status
II RETURNS: RETURNS: 6 - empty
II 5 -half full
II 1 - full
II CALLS: inpw()
II CALLED BY: main
//***

unsigned a2dClass::getFifoStatus(void)
{

return (inpw(STAT)&7);

/!***

II FUNCTION NAME: getFifoData()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Returns next data word stored in FIFO
II RETURNS: 16bits of data. Lower 12 are A2D data
II CALLS: inpw()
II CALLED BY: a2d class constructor
II***

signed a2dClass::getFifoData(void)
{

return (inpw(FIFO)&OxOFFF); //Get data and mask upper nibble

!!***

II FUNCTION NAME: setintRate()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Program timer channel 0 to set the desired interrupt rate
II RETURNS: void
II CALLS: outp()
II CALLED BY: main
II VARIABLES: intrate-micro sees per period (1 to 8192)
II assuming 8 MHz clock inp~t
/!***

148

void a2dClass::setintRate(unsigned intrate)

{
outp(TIMERC,Ox36);
outp(TIMERO, (intrate*8)&0xFF};
outp(TIMERO, (intrate*8)>>8);

II Set timer 0 to mode 3
II Load Least Significant Byte
II Load Most Significant Byte

//*****~***

II FUNCTION NAME: intOff()
II AUTHOR: Randy Walker, based on [MAXUS 95] code

II DATE: 27 March 1996
II DESCRIPTION: Locksout the interupt request line

II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
!!***

void a2dClass::intOff(void)
{

ctrlw &= -INT_EN;
outpw(CNTL,ctrlw);

II INT_EN is active high

/!***

II FUNCTION NAME: intOn()
II AUTHOR: Randy Walker, based on [MAXUS 95] code

II DATE: 27 March 1996
II DESCRIPTION: Enables system interuppt request

II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
/!**~****************

void a2dClass::intOn(void)

{
ctrlw I= INT_EN;
outpw(CNTL,ctrlw);

II INT_EN is active high

/!***

II FUNCTION NAME: setTriggerLevel()
II AUTHOR: Randy Walker, based on [MAXUS 95] code

II DATE: 27 March 1996
II DESCRIPTION: Sets the trigger level

II RETURNS: void
II CALLS: outp()
II CALLED BY: main
II VARIABLES: tl-t~igger level (0=-10V, 128=0V, 255=+10V)

!!***

149

void a2dClass::setTrigger.Level(unsigned tl)
{

outp(DAC,tl);

!!***

II FUNGTION NAME: setTriggerPosition()
II AUT~OR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Sets falling or rising edge trigger

II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
II VARIABLES: tp: O=falling, 1=rising
/!***

void a2dClass::setTriggerPosition(unsigned tp)
{

ctrlw &= -TRG_POS; //Clear previous TRG_POS
ctrlw I= (tp)?TRG_POS:O; //Evaluate tp and set ctrlw

outp(CNTL,ctrlw);

!/***

II FUNCTION NAME: zeroOffset()
II AUTHOR: Randy Walker, based on [MAXUS 95] code
II DATE: 27 March 1996
II DESCRIPTION: Calibrates zero offset error
II RETURNS: void
II CALLS: outpw()
II CALLED BY: a2d class constructor
/!***

void a2dClass::zeroOffset(void)
{

unsigned d=O,i,g2,g10;
float sum;
float
float

offsetErr[4] [4];
bits [4] [4];

unsigned gains10[4]
unsigned gains2[4]

{1,10,100,100};
{1, 2, 4, 8};

clrscr ();
printf("\n\tG10\tG2\t OFFSET\t\t BITS");

for(g10 = 0; g10 < 4; g10++)
for(g2 = 0; g2 < 4; g2++)

printf ("\n\t%d\t%d\t+X.XXXXXX\t+XX.X", glO, g2);

150

setRrnsOff();
setAcDc(O);
setSequencer();
initTiroing(3);
setChanne~(O,O,g10,g2);

grndinput();
delay(5); //Let new gain values stabilize

whi~e (!kbhit()){
for (g10 = 0; g10 < 4; g10++){

for (g2 = 0; g2 < 4; g2++){
setChannel(O,O,g10,g2);
grndinput();
lockTrigger();
resetFifo();
setFifo ();
unlockTrigger();
setTrigger();
delay(l);
while (getFifoStatus() !=FULL);

lockTrigger();

for (i = 0, sum= 0.0; i < FIFOSIZE; i++){
d=getFifoData();
sum+=(float)d*l0/2048;

offsetErr[glO] [g2]=((float) (suro/FIFOSIZE)-10)/
(float) (gains10[g10]*gains2[g2]);

bits[g10) [g2] =
(float) (offsetErr[glO] [g2)*4096/20*gains10[g10]*gains2[g2]);

clrscr();
printf("\n\tG10\tG2\t OFFSET\t\t BITS");
for (g10 = 0; g10 < 4; g10++){

for (g2 = 0; g2 < 4; g2++){
printf("\n\t%d\t%d\t%+1.6f\t%+04.1f",g10,g2,

offsetErr[glO] [g2],bits[g10] [g2]);

freeinput();
getch();

151

/!***********************~***

II FUNCTION NAME: grndinput()
II AUTHOR: Randy Walker, based on [MAXUS 95] code

II DATE: 27 March 1996
II DESCRIPTION: Grounds the two diff input for zero adjust

II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
II***

void a2dClass::grndinput(void)
{

ctrlw I= CAL;
outpw(CNTL,ctrlw);

II***

II FUNCTION NAME: freeinput()
II AUTHOR: Randy Walker, based on [MAXUS 95] code

II DATE: 27 March 1996
II DESCRIPTION: Ungrounds the two diff inputs
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
!!***

void a2dClass::freeinput(void)
{

ctrlw &= -CAL;
outpw(CNTL,ctrlw);

!!***

II FUNCTION NAME: zeroAdjust()
II AUTHOR: Randy Walker, based on [MAXUS 95] code

II DATE: 27 March 1996
II DESCRIPTION: Adjust the trimmer on the PGA
II RETURNS: void
II CALLS: outpw()
II CALLED BY: main
!!***

void a2dClass::zeroAdjust(void)
{

int i;
unsigned d;
float sum,offsetErr;

clrscr();

152

}

printf("\n\nADJUST THE TRIM POT FOR 0.0 OFFSET\n\n");

setRmsOff();
setAcDc(O);
setSequencer();
initTirning(3);

whil-e (! kbhit ()) {
~etChannel(0,0,3,3);

grndinput();
lockTrigger();
resetFifo();
setFifo ();
unlockTrigger();
setTrigger();
while(getFifoStatus() !=FULL);
lockTrigger();

for (i = 0, sum= 0.0; i < FIFOSIZE; i++) {
d = getFifoData();
sum += (float)d*1012048;

offsetErr=((float) (surniFIFOSIZE)-10)18000.0;

printf("\tTHE MEASURED DC OFFSET IS: %+8.6f\r",offsetErr);

freeinput{);
getch();

II end of file a2d.cpp

153

154

APPENDIX B: Serial Port Communications Source Code (C++)

A. GLOBALS.H

#ifndef _GLOBALS_H
#define _GLOBALS_H

#include <dos.h>

II types
typedef unsigned charBYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;

#define MEM(seg,ofs)
#define MEMw(seg,ofs)

(*((BYTE far*)MK_FP(seg,ofs)))
(*((WORD far*)MK_FP(seg,ofs)))

enum Boolean {FALSE, TRUE};

II basic bit twiddles
#define set(bit)
#define setb(data,bit)
#define clrb(data,bit)
#define setbit(data,bit)
#define clrbit(data,bit)

II specific to ports
#define setportbit(reg,bit)
#define clrportbit(reg,bit)

(1<<bit)
(data I set(bit))
(data & !set(bit))
(data setb(data,bit))
(data clrb(data,bit))

(outportb(reg,setb(inportb(reg),bit)))
(outportb(reg,clrb(inportb(reg),bit)))

II navigation conversion factors and useful global variables
#define MSECS_TO_DEGREES (1.01(1000.0 * 3600.0)) II time conversion
factors
#define DEGREES_TO_MSECS 3600000.0
#define MINS_TO_MSECS 60000.0

II Conversion constants for location of 36:35:42.2N and 121:52:28.7W
#define LatToFt 0.10134 II converts degrees Latitude to ft
#define ~0ngToFt 0.08156
#define HemisphereConversion -1

II converts degrees Longitude toft
II -1 if west of of Greenwich

#define RADIANMAGVAR 0.261799 II Local Magnetic variation in radians

#define radToDeg
#define degToRad

#end if

(18 0 . 0 IM_PI)
(M_PII180.0)

155

B. BUFFER.H

#ifndef _BUFFER_H
#define _BUFFER_H

#include "toetypes.h"
#include "globals.h"

#define ONE (unsigned short)1

!***

CLASS: bufferClass
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

11 July 1995 DATE:
FUNCTION: Base class for use as a polymorphic reference in the

serial port code which defines a buffer to be used in

serial port communications.

**

class bufferClass

public:

II Constructor
bufferClass(WORD sz);
-bufferClass() (}

II Checks for the arrival of new characters in the buffer
Boolean hasData() (return Boolean(putPtr != getPtr);

II How much of the Buffer is used (rounded percentage 0 - 100)
int capacityUsed();

Boolean Get(BYTE&);
void Add (BYTE);

II read from the buffer
II write to the buffer

protected:

} i

#endif

II Increment the pointer to next position
void inc(WORD& index) (if (++index size) index = 0; }

WORD before(WORD index) II decrement the pointer

(return ((index== 0) ? size- ONE: index- ONE);}
WORD getPtr; II Location of unread data
WORD putPtr; II Location to read data to
WORD size; II Size of the buffer in bytes
BYTE* buf;

156

C. BUFFER.CPP

#include <iostrearn.h>
#include <stdio.h>

#include "globals.h"
#include "buffer.h"

II****~***

II FUNCTION NAME:
I I AUTHOR:
I I DATE:
II DESCRIPTION:
II RETURNS:
I I CALLS:
II CALLED BY:
II

bufferClass constructor
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
11 July 1995
Instantiates a buffer
void
none

cornpBuffer, GPSbuffer, bufferedSerialPort constructors

**

bufferClass::bufferClass(WORD sz) : getPtr(O), putPtr(O), size(sz)
{

buf =new BYTE[size];

II*****~**

II FUNCTION NAME:
I I AUTHOR:
I I DATE:
II DESCRIPTION:
I I RETURNS:
II CALLS:
II CALLED BY:
II

capacityUsed ()
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
11 July 1995
Returns the rounded percentage of the buffer used.
void
none
bufferedSerialPort::processinterrupt

**

int bufferClass::capacityUsed()
{

int cap = (putPtr + size) % size - getPtr;
return 100 * cap I size;

157

/!******************~***

II FUNCTION NAME:

II AUTHOR:
II DATE:
II DESCRIPTION:

II RETURNS:

II CALLS:
II CALLED BY:
II

Get
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

11 July 1995
Reads a character from the buffer
Boolean
hasData()
GPSbufferClass, coropBufferClass

**

Boolean bufferClass::Get(BYTE& data)
{

if (hasData ())
data= buf[getPtr];
inc(getPtr);
return TRUE;

return FALSE;

II**

II FUNCTION NAME: Add

II AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

II DATE: 11 July 1995

II DESCRIPTION: Writes a character to the buffer and checks for buffer

II overflow

II RETURNS: void

II CALLS: has Data

II CALLED BY: GPSbufferClass, coropBufferClass

II
**

void bufferClass::Add(BYTE ch)
{

buf[putPtr] = ch;
inc(putPtr);
if {!hasData()) II if no data after adding data, it overflowed

cerr << "\nError: byteBuffer overflow\n";

}

II end of file buffer.cpp

158

D. GPSBUFF.H

#ifndef _GPSBUFF_H
#define _GPSBUFF_H

#include "globals.h"
#include "toetypes.h"
#include "buffer.h"

#define GPSBLOCKS 4

#define LINE_FEED 10
#define CARR_ RETURN 13

I***

Class buffers GPS position messages via serial port communications.

Uses a multiple buffer system in which each buffer is capable of

holding a single position message. Buffers are filled and processed

sequentially in a round robin fashion. Messages are checked for

validity only upon attempted reads from the buffer.

***!

class gpsBufferClass : public bufferClass

use

} ;

public:

gpsBufferClass(BYTE GPSblocks = GPSBLOCKS);

-gpsBufferClass() { delete [] block; }

Boolean hasData();
Boolean Get(BYTE&)
Boolean Get(GPSdata);

void Add(BYTE ch);

protected:

II a complete structure is ready

return FALSE; }
II fill in a complete structure

II build the structure byte by byte

Boolean validHeader(GPSdata);
GPSdata *block;

II check a block for valid header
II hold the buffered GPS data

WORD current, last; II current and last G?S block in

BYTE *putPlace; II for the next character received

#end if

159

E. GPSBUFF.CPP

#include <iostream.h>
#include <stdio.h>

#include "gpsbuff.h"

I
**

PROGRAM:
AUTHOR:
DATE:

gpsBuffer (Constructor)
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Allocates message buffers, indicate that no data has been

received by equalizing current and last and set position

into which initial character will be read.

RETURNS: nothing.
CALLED BY: navigator class (nav.h)

CALLS: none.

***/

gpsBufferClass::gpsBufferClass(BYTE GPSblocks) : current(O), last(O),

bufferClass(GPSblocks) II Call to base class constructor

cerr << "constructing gpsBuffer" << endl;
block= new GPSdata[GPSblocks]; II Create an array of GPSdata elements

putPlace = &(block[current] [0]); II Set the place for first character

/***

PROGRAM: Add
AUTHOR:
DATE:

Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Interrupt driven routine which writes incoming characters

into the gps buffers
RETURNS: nothing.
CALLED BY: interupt driven by bufferedSerialPort

CALLS: none.

***!

void gpsBufferClass::Add(BYTE data)
{

static BYTE lastChar(data);
static Boolean lfFlag = FALSE;

II Holds last for <Cr> <lf> detection

II True when message end is detected

if (lfFlag && (data
last = current;
inc(current);

'@')) { II Is a new message starting?
II Set last to buffer with newest message.

II Set current to the next buffer

160

II Set putPlace to the beginning of the next buffer.
putPlace = &(block[current] [0]);
lfFlag =FALSE; //reset for end of next message.

*putPlace++ = data; II Write character into the buffer.

//Has the end of a message been received?
if (_(lastChar == CARR_RETURN) && (data == LINE_FEED))

lfFlag = TRUE;

lastChar = data;
detection

//Save last character for <cr> <lf>

/***

PROGRAM: Get
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Checks to see if a new message has arrived, copies it into

the input argument data and returns a flag to indicate
whether a new message was received.

RETURNS: TRUE, if a new valid position has been received.
FALSE, otherwise

CALLED BY: navPosit (nav.cpp)
initializeNavigator (nav.cpp)

CALLS: gpsBufferClass::hasData

***/

Boolean gpsBufferClass::Get(GPSdata data)
{

if (hasData()) II Has a new valid message been
received.

II Copy the message out of the buffer.
memcpy (data, block+ last, GPSBLOCKSIZE);
last = current;
return TRUE;

else {
return FALSE;

II Indicate that this message has been read.

161

!************************~**

PROGRAM: hasData
AUTHOR: Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Determines whether a new message has been received and

checks to see if it has a valid header.
RETURNS: TRUE, if a new valid message has been received.
CAL4ED BY: gpsBufferClass::Get (buffer.cpp)
CALLS: validHeader (buffer.cpp)

***/

Boolean gpsBufferClass::hasData()
{

II Has a new message with a valid header been received
if (last != current) {

if (validHeader(block[last]))
return TRUE;

else {
return FALSE;

return FALSE;

!***

PROGRAM:
AUTHOR:
DATE:

validHeader
Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Checks to see if a message has the proper header for a
Motorola position message. (@@Ea)

RETURNS: TRUE, if the header is valid. FALSE, otherwise.
CALLED BY: gpsBufferClass::hasData (buffer.cpp)
CALLS: none.

***/

Boolean gpsBufferClass::validHeader(GPSdata dataPtr)
{

if ((dataPtr[O]
(dataPtr[2]

return TRUE;

else {
return FALSE;

1@1) && (dataPtr[1]
1 E 1

) && (dataPtr[3]

II end of file gpsbuff.cpp

162

1@1) &&
I a I)) {

F. COMPBUFF.H

#ifndef _COMPBUFF_H
#define _COMPBUFF_H

#include "toetypes.h"
#include "globals.h"
#include "buffer.h"

#define COMPBLOCKS 8
#define LINE_FEED 10
#define CARR_RETURN 13
#define g 103
#define 0 111

I***

Class buffers COMPASS messages received via serial port communications.

Uses a multiple buffer system in which each buffer is capable of

holding a single message. Buffers are filled and processed

sequentially in a round robin fashion. Messages are checked for

validity only upon attempted reads from the buffer.

***/

class compBufferClass : public bufferClass

public:

compBufferClass(BYTE compBlocks = COMPBLOCKS);

-compBufferClass() {delete [] block;}

Boolean hasData(); II a complete structure is ready

Boolean Get(BYTE&) {return FALSE;} II satisfy inheritence

Boolean Get(compData); II get a complete structure filled in

void Add(BYTE ch); II build the structure byte by byte

protected: II for inheritance

} ;

Boolean validHeader(compData);
compData *block;
WORD current, last;

BYTE *putPlace;

#endif

II check a block for valid header
II points to array of compass msgs

II current and last comp block in use

II for the next character received

163

G. COMPBUFF.CPP ·

#include <iostream.h>
#include <stdio.h>

#include "compbuff.h"

/******·***

PROGRAM:
AUTHOR:
DATE:

compBuffer (Constructor)
Eric Bachmann, Randy Walker
28 April 1996

FUNCTION: Allocates message buffers, indicates that no data has been

received by equalizing current and last and sets the position

into which initial character will be read.

RETURNS: nothing.

CALLED BY: compassClass (compass.h)

CALLS: none.

***/

compBufferClass::compBufferClass(BYTE compBlocks): current(O), last(O),

bufferClass(compBlocks) II Call to base class constructor

cerr << "compBuffer constructor called" << endl;

block= new compData[compBlocks]; II Create array of message buffers

putPlace = &(block[current] [O]); II Set position for first character

cerr << "compBuffer constructed." << endl;

!***

PROGRAM:
AUTHOR:
DATE:

compBuffer: :Add
Eric Bachmann, Randy Walker
28 April 1996

FUNCTION: Interrupt driven routine which writes incoming characters

into the compass message buffers

RETURNS: nothing.
CALLED BY: interrupt driven by compassPort

CALLS: none.
***********************~***/

164

void compBufferClass::Add(BYTE data) (

static Boolean lfFlag =FALSE; //True, if message end detected
static int messageCount(O); //Counts characters in current message

if (lfFlag && (data

last = current;
~nc(current);

I$ I)) II Is a new message starting?

II Set last to buffer with newest message.
II Set current to the next buffer

II Set putPlace to the beginning of the next buffer.
putPlace = &(block[current] [0]);
lfFlag =FALSE; // reset for end of next message.

*putPlace++ = data;
messageCount++;

II Write character into the buffer.

//Has the end of a message been received (<cr><lf>)?
if (data == LINE_FEED)

lfFlag = TRUE;

!***

PROGRAM: compBuffer::Get
AUTHOR: Eric Bachmann, Randy Walker
DATE: 28 April 1996
FUNCTION: Checks to see if a new message has arrived, copies it

into the input argument data and returns a flag to indicate
whether a new message was received.

RETURNS: TRUE, if a new valid position has been received.
FALSE, otherwise

CALLED BY: compass.cpp
CALLS: compBuffer::hasData

***/

Boolean compBufferClass::Get(compData data)
{

if (hasData()) //Has a new valid message been received.
II Copy the message out of the buffer.
memcpy (data, block+ last, COMPSIZE);
last = current;
return TRUE;

else {
return FALSE;

II Indicate that this message has been read.

165

!***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

compBuffer::hasData
Eric Bachmann, Randy Walker
28 April 1996
Determines whether a new message has been received and
checks to see if it has a valid header.

RETURNS: TRUE, if a new valid message has been received.
CALLED BY: compBuffer::Get
CALLS: validHeader (compBuffer.cpp)

***!

Boolean compBufferClass::hasData()
{

if ((last !=current) && (validHeader(block[last])))

return TRUE;

else {
return FALSE;

!***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

RETURNS:
CALLED BY:
CALLS:

validHeader
Eric Bachmann, Dave Gay
11 July 1995
Checks to see if a message has the proper header for a
compass message. ($C)
TRUE, if the header is valid. FALSE, otherwise.
compBuffer::hasData
none.

***/

Boolean compBufferClass::validHeader(compData dataPtr)
{

if ((dataPtr[O] == '$') && (dataPtr[l] == 'C'))
return TRUE;

else {
return FALSE;

//end of file compbuff.cpp

166

H. SERIAL.H

#ifndef _SERIAL_H
#define _SERIAL_H

#include <dos.h>
#include <stdio.h>
#includ~ "globals.h"

#define ALMOST_FULL 80 II %full to turn off DTR (user defines)

II leave the following alone -hardware specific

enum COMport {COM1=1, COM2, COM3, COM4};

enum BaudRate {b300, b1200, b2400 1 b4800, b9600};

enum ParityType {ERROR=-1, NOPARITY, ODD, EVEN};

enum handShake {NONE, RTS_CTS, XON_XOFF};

enum Shake {off, on};
enum interrupt Type {rx_rdy, tx_rdy, line_stat, modem_stat};

#define BIOSMEMSEG Ox40
#define DLAB Ox80
#define IRQ PORT Ox21
#define EOI outportb(Ox20,0x20)

#define COM1base MEMW(BIOSMEMSEG,O)

#define COM2base MEMW(BIOSMEMSEG,2)

#define TX (portBase)
#define RX (portBase)
#define IER (portBase+1)
#define IIR (portBase+2)
#define LCR (portBase+3)
#define MCR (portBase+4)

#define LSR (portBas e+ 5)
#define MSR (portBase+6)
#define LO_LATCH (portBase)
#define HI_LATCH (portBase+1)

!***

CLASS:
AUTHOR:
DATE:
FUNCTION:

serialPortClass
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
11 July 1995, last modified January 1997
Parent class, defines a simple serial port.

***/

class serialPortClass

public:

167

serialPortClass(COMport port, BaudRate baud, ParityType parity,
BYTE wordlen, BYTE stopbits, handShake hs);

-serialPortClass() {)

Boolean
Boolean

Send(BYTE data);
Get(BYTE& data);

inline Boolean dataReady();
~oolean statusChanged()

{ return Boolean ((ifportbit (MSR, 0) I I ifportbit (MSR, 1))) ;

II the rest are only if handshake is specified as RTS_CTS
Boolean isCTSon() return ifportbit(MSR,4);
Boolean isDSRon() return ifportbit(MSR,5);

void
void
void

void
void
void

setDTRon()
setDTRoff ()
toggleDTR();

setRTSon()
setRTSoff ()
toggleRTS();

setportbit(MCR,O);
clrportbit(MCR,O);

setportbit(MCR,l);
clrportbit(MCR,l) ;-

protected:

) ;

#end if

WORD
handShake
Shake

inline Boolean
inline void

portBase;
ShakeType;
DTRstate, RTSstate;

ifportbit(WORD, BYTE);
toggle(Shake&);

168

I. SERIAL.CPP

#include <iostream.h>
#include <stdio.h>
#include "serial.h"

II Usage Note: Because of the interrupt handlers used, you MUST call

II your compassPort & gpsPort objects port2 & port1 so the

II r~ght handler gets called and can properly service the interrupt.

!***

PROGRAM: serialPortClass (Constructor)
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995, last modified January 1997

FUNCTION: Initializes one of the Serial Ports.

1) Determines the base IIO port address for the given COM port

2) Sets the 8259 IRQ mask value
3) Initializes the port parameters - baud, parity, etc.

4) Calls the routine to initialize interrupt handling

5) Enables DTR and RTS, indicating ready to go

********************~**/

serialPortClass::serialPortClass(COMport port, BaudRate speed,

ParityType parity, BYTE wordlen,
BYTE stopbits, handShake hs)
DTRstate(off), RTSstate(off), ShakeType(hs)

cerr << "serialPort constructor called" << endl;

delay (500);

switch (port)
case COM1: portBase

case COM2: portBase

II switch

COM1base;
break;

COM2base;
break;

II initialize appropriate port base

const WORD bauddiv[] {Ox180, Ox60, Ox30, Ox18, OxC};

II Change 1
outportb(IER,O); II disable UART interrupts

(void)inportb(LSR);
(void)inportb(MSR);
(void)inportb(IIR);
(void)inportb(RX);

outportb(LCR,DLAB); II set DLAB so can set baud rate (read only port)

outportb(LO_LATCH,bauddiv[speed] & OxFF);

outportb(HI_LATCH, (bauddiv[speed] & OxFFOO) >> 8);

setportbit(MCR,3); II turn OUT2 on

169

BYTE opt = 0;
{ if .(parity ! = NOPARITY)

setbit(opt,3); II enable parity
if (parity == EVEN)

setbit(opt,4);

II set even parity bit. if odd, leave bit 0

}
II now set the word length. len of 5 sets both bits 0 and 1 to
II 0

1
6 sets to 01, 7 to 10 and 8 to 11

opt I= wordlen-5;
opt I= --stopbits << 2;
outportb(LCR,opt);

if (ShakeType == RTS_CTS)
setDTRon();
setRTSon();

cerr << "serialPort constructed" << endl;

!***

PROGRAM: Get
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay
DATE: 11 July 1995
FUNCTION: Gets a byte from the port. Returns true if there's one

there, and fills in the byte parameter. If there's no
character, the parameter is left alone, and false is
returned.

***I

Boolean serialPortClass::Get(BYTE& aata)
{

if (dataReady())
data= inportb(RX);
return TRUE;

else
return FALSE;

II make sure there's a char there
II read character from 8250

170

!*******************~***~**~**

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

Send
Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995
Outputs a single character to the port. Returns Boolean
status indicating whether successful

***I

Boolean serialPortClass::Send(BYTE data)
{

II

while (! (ifportbit(LSR,5))) {}; II wait until THR ready

switch (ShakeType)

case NONE:

case RTS_CTS:

case XON_XOFF:
default:

return FALSE;

outportb(TX,data);
return TRUE;

if (isCTSon() && isDSRon())
outportb(TX,data);
return TRUE;

else {
return FALSE;

II add this later if needed

break;

!***

PROGRAM:
AUTHOR:
DATE:

dataReady
Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Checks port to see if a character has arrived.

***I

171

inline Boolean seriaiPortClass::dataReady()

/* Un-commenting this code increases transmission errors, but this
code is useful for troubleshooting, so is retained if needed

if (ifportbit(LSR,1))
cerr <<"\nOverrun Error\n";

if fifportbit(LSR,2))
c~rr <<"\nParity Error\n";

if (ifportbit(LSR,3))
cerr <<"\nFraming Error\n";

*I
return ifportbit(LSR,O);

!***

PROGRAM: ifportbit
AUTHOR:
DATE:

Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Checks for byte on inportb register

***!

inline Boolean serialPortClass::ifportbit(WORD reg, BYTE bit)
{

BYTE on= inportb(reg);
on&= set(bit);

return Boolean(on == set(bit));

!***

PROGRAM: toggleDTR
AUTHOR:
DATE:

Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: toggles Data Transmit Ready if RTS_CTS is off
*******~***/

void serialPortClass::toggleDTR()
{

if (ShakeType != RTS_CTS)
return;

if (DTRstate == off)
setDTRon();

else
setDTRoff();

tcggle(DTRstate);

172

!************************~**

PROGRAM: toggleRTS
AUTHOR:
DATE:

Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: toggle Ready to Send (RTS) if RTS_CTS is on.

******~**/

void serialPortClass::toggleRTS()
{

if (ShakeType != RTS_CTS)
return;

if (RTSstate == off)
setRTSon();

else
setRTSoff();

toggle(RTSstate);

!***

PROGRAM:
AUTHOR:
DATE:

toggle
Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: toggles value of the input variable

***!

inline void serialPortClass::toggle(Shake& h)

if (h

h
else

off)
on;

h = off;

II end of file serial.cpp

173

I"~· --

J. GPSPORT.H

#ifndef _GPSPORT_H
#define _GPSPORT_H

#include <dos.h>
#include <stdio.h>
#include "toetypes.h"
#include "globals.h"
#include "serial.h"
#include "gpsbuff.h"

II this is the type for a standard interrupt handler

typedef void interrupt (IntHandlerType) (...);

II com handler to interface with processinterrupt

void interrupt COMlhandler(...);

I***

CLASS:gpsPortClass
AUTHOR:Rick Roberts
DATE:28 January 1997
FUNCTION: Defines a buffered serial port which is interrupt driven

on receive, and buffers all incoming characters in the

gps buffer

***!

class gpsPortClass : public serialPortClass

public:

gpsPortClas·s (COMport portnum = COM1, BYTE irq = 4,
BaudRate speed = b9600,
ParityType parity = NOPARITY, BYTE wordlen 8,

BYTE stopbits = 1,
handShake hs = XON_XOFF);

-gpsPortClass();

Boolean Get(GPSdata& data);
void processinterrupt();

protected:

gpsBufferClass messages;

II buffered version
II buffers the incoming character

BYTE irqbit;
BYTE origirq;
BYTE comint;

II Value to allow enable PIC interrupts for COM port

II keep the original 8259 mask register value

174

IntHandlerType *origcomint; II keep original vector for restoring
II later

II this allows the actual handler to access processinterrupt()
friend IntHandlerType COM2handler;

extern gpsPortClass port1;

#end if

K. GPSPORT.CPP

#include <iostream.h>
#include <stdio.h>
#include "gpsPort.h"

I***

PROGRAM: gpsPortClass (Constructor)
Rick Roberts AUTHOR:

DATE: 28 January 1997
FUNCTION: Initializes the interrupts for the gps Serial Port.

1) takes over the original COM interrupt
2) sets the port bits, parity, and stop bit
3) enables interrupts on the 8250 (async chip)
4) enables the async interrupt on the 8259 PIC

***!

gpsPortClass::gpsPortClass(COMport portnum, BYTE irq, BaudRate baud,
ParityType parity, BYTE wordlen,
BYTE stopbits, handShake hs)

serialPortClass(portnum, baud, parity, wordlen,
stopbits, hs),

irqbit(irq), comint(irqbit+8)

cerr << "gpsPort constructor called" << endl;

if (ShakeType == RTS_CTS)
setDTRoff();
setRTSoff();

origcomint getvect(comint);

II turn it off first, it was enabled
II in the base class

II remember the original vector

175

setvect(comint,COMlhandler); II point to the new handler

setportbit(MCR,3); II turn OUT2 on

disable(); II disable all interrupts - critical section
1/ enable ints on receive only
II remember how it was

setportbit(IER,rx_rdy);
origirq = inportb(IRQPORT);
clrportbit(IRQPORT,irqbit);

if (ShakeType == RTS_CTS)
setDTRon();
setRTSon();

enable();

EOI;

1/ enable COM ints

cerr << "exiting gpsPort constructor" << endl;

/***

PROGRAM: -gpsPortClass
AUTHOR:
DATE:

Rick Roberts, Frank Kelbe, Eric Bachmann, Dave Gay

28 January 1997
FUNCTION: Resets the interrupts.

1) disables the 8250 (async chip)
2) disables the interrupt chip for async int

3) resets the 8259 PIC

***!

gpsPortClass::-gpsPortClass()
{

setvect(comint,origcomint);
outportb (IER, 0) ;
outportb(MCR,O);
outportb(IRQPORT,origirq);
EOI;

II set the interrupt vector back
1/ disable further UART interrupts
II turn everything off

!***

PROGRAM: Get
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay

DATE: 11 July 1995
FUNCTION: Calls Get based on buffer type

***!

176

Boolean gpsPortClass::Get(GPSdata& data)

{

return messages.Get(data);

I***

PROGRAM:
AUTHOR:
DATE:
FUNCTION:

showPorts
Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995
Prints interrupt vector addresses. This function is for

trouble shooting, it is not called in the code.

***I

I*
int showPorts ()
{

*I

BYTE* p = (BYTE*)COM2base;
p += 5;
fprintf(stderr,"%X ",*p++);
fprintf(stderr,"%X\n",*p++);
fprint f (stderr, "IRQ PORT = %X" , inportb (IRQ PORT)) ;

return 0;

I***

PROGRAM: COM1handler
AUTHOR:
DATE:

Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

11 July 1995, last modified January 1997

FUNCTION: Specific interrupt handler which maps each interrupt to

the proper ISR.

***I

void interrupt COM1handler(...)
{

port1.processinterrupt();
EOI;

!***

PROGRAM: processinterrupt
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts

DATE: 11 July 1995
FUNCTION: Calls the ISR based upon buffer type

***!

177

void gpsPortClass::processinterrupt()
(

if (dataReady())
BYTE data= inportb(RX);
messages.Add(data);

II make sure there's a char there
II read character from 8250

if (ShakeType == RTS_CTS && messages.capacityUsed() > ALMOST_FULL)
setDTRoff();

}
II end of file gpsport.cpp

L. COMPPORT.H

#ifndef _COMPORT_H
#define _COMPORT_H

#include <dos.h>
#include <stdio.h>
#include "toetypes.h"
#include "globals.h"
#include "serial.h"
#include •compbuff.h"

II this is the type for a standard interrupt handler
typedef void interrupt (IntHandlerType) (...);

II com handler to interface with processinterrupt
void interrupt COM2handler(...);

!***

CLASS:
AUTHOR:
DATE:
FUNCTION:

compassPortClass
Rick Roberts
28 January 1997
Defines a buffered serial port which is interrupt driven
on receive, and buffers all incoming characters in the
compass buffer

~**************************/

class compassPortClass : public serialPortClass

friend compassClass;

public:

compassPortClass(COMport portnum = COM2, BYTE irq = 3,
BaudRate speed = b9600,

ParityType parity = NOPARITY, BYTE wordlen 8,
BYTE stopbits = 1, handShake hs =NONE);

178

} i

-compassPortClass();

Boolean Get(BYTE& data); II buffered version

void processinterrupt(); I/ buffers the incoming character

private:

compBufferClass headings;

BYTE irqbit;
BYTE origirq;
BYTE comint;

II Value to allow enable PIC interrupts for COM port

II keep the original 8259 mask register value

IntHandlerType *origcomint; II keep original vector for restoring

II later

II this allows the actual handler to access processinterrupt()

friend IntHandlerType COM2handler;

extern compassPortClass port2;

#endif

M. COMPPORT.CPP

#include <iostrearn.h>
#include "compport.h"

!***

PROGRAM:
AUTHOR:
DATE:

compassPortClass (Constructor)

Rick Roberts
28 January 1997

FUNCTION: Initializes the interrupts for the compass Serial Port.

1) takes over the original COM interrupt

2) sets the port bits, parity, and stop bit

3) enables interrupts on the 8250 (async chip)

4) enables the async interrupt on the 8259 PIC

***/

compassPortClass::compassPortClass(COMport portnum, BYTE irq,
BaudRate baud, ParityType

parity, BYTE wordlen, BYTE
stopbits, handShake hs)

serialPortClass(portnurn, baud, parity, wordlen,
stopbits, hs)

179

cerr << "compassPort constructor called" << endl;

irqbit
comint

irq;
irqbit + 8;

if (ShakeType == RTS_CTS)
s·etDTRoff () ;
s.etRTSoff();

origcomint = getvect(comint);

setvect(comint,COM2handler);

setportbit(MCR,3);

II turn it off first, it was enabled
II in the base class

II remember the original vector

II point to the new handler

II turn OUT2 on

disable(); II disable all interrupts - critical section
II enable ints on receive only
II remember how it was

setportbit(IER,rx_rdy);
origirq = inportb(IRQPORT);
clrportbit(IRQPORT,irqbit);

if (ShakeType == RTS_CTS)
setDTRon();
setRTSon();

enable();

EOI;

II enable COM ints

cerr << "exiting compassPort constructor" << endl;

!***

PROGRAM:
AUTHOR:
DATE:

-compass Port
Rick Roberts, Frank Kelbe, Eric Bachmann, Dave Gay
28 January 1997

FUNCTION: Resets the interrupts.
1) disables the 8250 (async chip)
2) disables the interrupt chip for async int

3) resets the 8259 PIC

***!

compassPortClass::-compassPortClass()
{

setvect(comint,origcomint);
outportb (IER, 0);
outportb(MCR,O);
outportb(IRQPORT,origirq);
EOI;

II set the interrupt vector back
II disable further UART interrupts
II turn everything off

180

/************************~**

PROGRAM: Get
AUTHOR:
DATE:
FUNCTION:

Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995
Calls Get based on buffer type

***/

Boolean compassPortClass::Get(BYTE& data)
(

return headings.Get(data);

!***

PROGRAM:
AUTHOR:
DATE:

showPorts
Frank Kelbe, Eric Bachmann, Dave Gay
11 July 1995

FUNCTION: Prints interrupt vector addresses. This function is for
trouble shooting and is not called from the code.

.***********!

!*
int showPorts()
{

*I

BYTE* p = (BYTE*)COM2base;
p += 5;
fprintf(stderr,"%X ",*p++);
fprintf(stderr,"%X\n",*p++);
fpr in t f (s tderr, "IRQ PORT = %X" , inportb (IRQ PORT)) ;
return 0;

/***

PROGRAM:
AUTHOR:Frank
DATE:11 July
FUNCTION:

COM2handler
Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
1995, last modified January 1997
Specific interrupt handler which maps each interrupt
the proper ISR.

to

***/

void interrupt COM2handler(...)
(

port2.processinterrupt();
EOI;

181

!************************~**

PROGRAM: processinterrupt
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts
DATE: 11 July 1995
FUNCTION: Calls the ISR based upon buffer type

***/

void c~mpassPortClass::processinterrupt()
{

if (dataReady()) II make sure there's a char there
BYTE data= inportb(RX); II read character from 8250
headings.Add(data);

if (ShakeType == RTS_CTS && headings.capacityUsed() > ALMOST_FULL)
setDTRoff();

}
II end of file compport.cpp

182

APPENDIX C. SANS TILT-TABLE TEST TUNING AND
CALIBRATION PROCEDURE

I. Isolate Accelerometer Input From Integrator

--Se! K 1 to zero.

--Only angular rate scale factor and bias effects will be reflected in error

2. Choose Initial Bias Weight (biasWght)

--Using project experience, background theory

3. Determine Angular Rate Scale Factor

--Baseline setting is 1.0.

--Adjust by determining SANS output vs. actual angle excursion.

--Apply ratio to current scale factor to obtain corrected scale factor.

--Commanded tilt table angles taken as truth

--Scale factor adjusts the output of the IMU to actual tilt results.

--pScale (roll), qScale (pitch) rScale (yaw)

4. Adjust Gain Value Above Zero

--Re-includes accelerometer input to filter

5. Determine Accelerometer Scale Factor

--Same process as angular rate scale factor

--xAccelScale (pitch), yAccelScale (roll), zAccelScale(yaw)

6. Fine Tuning

--Adjust various factors from 1-5 above

183

184

- LIST OF REFERENCES

Bachmann, E.R. and Gay, D., Design and Evaluation of an Integrated GPS/INS System for

Shallow-water AUV Navigation (SANS), Master's Thesis, Naval Postgraduate School,

Monterey, California, September, 1995.

Bachmann, E.R., McGhee, R.B., Whalen, R.H., Steven, R., Walker, R.G., Clynch, J.R.,

Healey, A.J., and Yun, X.P., "Evaluation of an Integrated GPS/INS System for Shallow

Water AUV Navigation (SANS)," Proceedings of the 1996 IEEE Symposium on

Autonomous Underwater Vehicle Technology, Monterey, California, June, 1996, pp. 268-

275.

Bennamoun, M., Boashash, B., Farugi, F., and Dunbar, M., "The Development of an

Integrated GPS/INS/Sonar Navigation System for Autonomous Underwater Vehicle

Navigation," Proceedings of the 1996 IEEE Symposium on Autonomous Underwater

Vehicle Technology, June 2-6, 1996, Monterey, California, pp. 256-261.

Bergem, 0., "A Multi beam Sonar Based Positioning System for an AUV," Proceedings of

the 8th International Symposium on Unmanned Untethered Submersible Technology,

Durham, New Hampshire, September 27-29, 1993, pp. 291-299.

Bowditch, N., American Practical Navigator, Vol. 1 and 2, Defense Mapping Agency

Hydrographic!fopographic Center, 1984.

Brown, R.G and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman

Filters, 2nd Edition, John Wiley and Sons, New York, 1992.

Brotzman, D.P., A Virtual World for an Autonomous Underwater Vehicle, Ph.D.

Dissertation, Naval Postgraduate School, Monterey, California, December, 1994.

Available at http: I lwww _s h.nps .navy .mil!ubrutzmanl dissertation.

Brotzman, D.P., Burns, M., Campbell, M., Davis, D.T., Healey, A.J., Holden, M.,

Leonhardt, B., Marco, D., McClarin, D., McGhee, R.B. and Whalen, R.,"NPS Pheonix

AUV Software Integration and In-Water Testing," Proceedings of the 1996 IEEE

Symposium on Autonomous Underwater Vehicle Technology, Monterey, California, June,

1996.

Cox, I.J. and Wilfong, G.T., Autonomous Robot Vehicles, Springer-Verlag, New York,

1990.

Cox, R., Wei, S., "Advances in the State of the Art for AUV Inertial Sensors and Navigation

Systems," IEEE Journal of Oceanic Engineering, October 1995, Number 4, pp. 361-366.

185

Craig, J.J., Introduction to Robotics Mechanics and Control, 2nd Edition, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1989.

DATELBWR Series Data Sheet, DATEL, Inc., September, 1993.

Davidson, S.L., An Experimental Comparison of CLOS and C++ Implementations of an
Object-Oriented Graphical Simulation of Walking Robot Kinematics, Master's Thesis,
Naval Postgraduate School, Monterey, California, March, 1993.

Frequency Devices DP74 Series Data Sheet, Frequency Devices, January, 1996.

Frey, W., ill, Application of Inertial Sensors and Flux-Gate Magnetometer to Real-Time
Human Body Motion Capture, Master's Thesis, Naval Postgraduate School, Monterey,
California, September, 1996.

Fu, K.S., Gonzalez, R.C. and Lee, C.S.G., Robotics: Control, Sensing, Vision, and

Intelligence, McGraw-Hill, Inc., New York, 1987.

Gordon, R.L., Acoustic Doppler Current Profiler, Principles of Operation, A Practical
Primer, 2nd Edition, RD Instruments, San Diego, Californiz, January 8, 1996.

Healey, A.J. "Evaluation of the NPS PHOENIX Autonomous Underwater Vehicle Hybrid
Control System," Proceedings of ACC'95 Conference, Seattle, Washington, June, 1995.

Healey, A.J. and Lienard, D., "Multivariable Sliding Mode Control for Autonomous Diving
and Steering of Unmanned Underwater Vehicles," IEEE Journal of Oceanic Engineering,
vol. 18 no. 3, July, 1993.

Kuo, B.C., Automatic Control Systems, 7th Edition, Prentice Hall, Englewood Cliffs, New
Jersey, 1995.

Kwak, S.H., Stevens, C.D., Clynch, J.R., McGhee, R.B., and Whalen, R.H., "An
Experimental Investigation of GPS!INS Integration for Small AUV Navigation,"
Proceedings of the 8th International Symposium on Unmanned Untethered Submersible
Technology (UUST), September 27-29, 1993, Durham, New Hampshire, pp. 239-251.

Leu, C.T., Chao, J.J., and Lee, T.S., "GPS Based Underwater Positioning - A System
Design," Proceedings of The Institute of Navigation GPS-93, Salt Lake City, Utah,
September 22-24, 1993, pp. 745-754.

Logsdon, T., The Navstar Global Positioning System, Van Nostrand Reinhold, New York,
1992.

186

Matthews, M.B., A Description of the Hardware and Software Inteiface to the Systron

Donner MotionPak Inertial Sensor Unit for ROV Tiberon, Monterey Bay Aquarium
Research Institute Internal Correspondence, Monterey Bay Aquarium Research Institute,
March 6, 1995.

MAX US E.S.P 386sx/486slc Scamp II User's Manual, Max us Electronics Corp., July, 1995.

McGhee, R.B., Clynch, J.R., Healey, S.H., Kwak, S.H., Brotzman, D.P., Yun, X.P., Norton,
N.A., Whalen, R.H., Bachmann, E.R., Gay, D.L. and Schubert, W.R., "An Experimental
Study of an Integrated GPS/INS System for Shallow-Water AUV Navigation (SANS),"
Proceedings of the Ninth International Symposium on Unmanned Untethered Submersible
Technology (UUST), September 25-27, 1995, Durham, New Hampshire.

McGhee, R.B., CS4910 Lecture Notes: Derivation of SANS Filter Equations, Naval
Postgraduate School, Monterey, California, February, 1996.

McKeon, J.B., Integration of GPS into a Small Underwater Navigation System, Master's
Thesis, Naval Postgraduate School, Monterey, California, March, 1992.

Nagengast, S., Correction of Inertial Measurements Using GPS Update for Underwater
Navigation, Master's Thesis, Naval Postgraduate School, Monterey, California, March
1992.

Norton, N.A., Evaluation of Hardware and Software for a Small Autonomous Underwater
Vehicle Navigation System (SANS), Master's Thesis, Naval Postgraduate School, Monterey,
California, September, 1994.

Oncore User's Guide, Motorola Inc., August 1995.

Parkinson, B.W., "Overview," Global Positioning System, Vol. 1, The Institute of
Navigation, Washington, D.C., 1980, pp. 1-2.

Souen, K., and Nishida, T., "The World's Smallest 8-Channel GPS Receiver," Proceedings
ofThe Institute of Navigation GPS-92, Albuquerque, New Mexico, September 16-18 1992,

pp. 707-713.

Steven, R., Simulation-Based Validation of Navigation Filter Software for a Shallow Water
AUV Navigation System (SANS), Master's Thesis, Naval Postgraduate School, Monterey,
California, March, 1996.

Systron-Donner Model MP-GCCCQAAB MotionPaK IMU, Systron-Donner, Inc.,
Concord, California.

187

I~

TCM2 Electronic Compass Module User's Manual, Precision Navigation, Inc., June, 1995.

Tuohy, S.T., Patrikalakis, N.M., Leonard, J.J., Bellingham, J.G., and Chryssostomidis, C.,

"AUV Navigation Using Geophysical Maps with Uncertainty," Proceedings of the sth

International Symposium on Unmanned Untethered Submersible Technology (UUST),

Durham, New Hampshire, September 27-29 1993, pp. 265-276.

Walker, R.G., Design and Evaluation of an Integrated, Self-Contained GPS!INS Shallow

Water AUV Navigation System (SANS), Master's Thesis, Naval Postgraduate School,

Monterey, California, June, 1996.

White, D.O. and Psota, F., "A Precision Navigation System for Autonomous Undersea

Vehicles," Proceedings of the 1996 IEEE Symposium on Autonomous Underwater Vehicle

Technology, June 2-6, 1996, Monterey, California, pp. 262-267.

Wolf, R., Rein, G.W., Eissfeller, B., and Loehnert, E., "An Integrated Low Cost GPSIINS

Attitude Determination and Position Location System," Institute of Geodesy and

Navigation (ItEN), University FAF Munich, D-85577, Neubiberg, 1996. ·

Wooden, W. H., "NAVSTAR Global Positioning System: 1985," Proceedings of the First

International Symposium on Precise Positioning with the Global Positioning System, April

1985, pp. 23-32.

Youngberg, J.W., "A Novel Method for Extending GPS to Underwater Applications,"

NAVIGATION, Journal ofThe Institute of Navigation, vol. 38, no. 3, Fall1991.

Yuh, J., Underwater Robotic Vehicles: Design and Control, TSI Press, Albuquerque, New

Mexico, 1995.

188

INITIAL DISTRffiUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library·, Code 013
Naval Postgraduate School
Monterey, CA 93943-5101

3. Director, Training and Education
MCCDC, Code C46
1019 Elliot Rd.
Quantico, VA 22134-5027

4. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Robert B. McGhee, Code CS/Mz
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Eric Bachmann, Code CS/Bc
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

7. LCDR Ricky Roberts
1081 Calma Dr.
Chula Vista, CA 91910

8. Russ Whalen, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

189

2

2

1

2

2

1

2

1

9. Dr. Anthony J. Healey, Code ME/Hy
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

10. ECJ6-NP
HQU$EUCOM
Unit 30400 Box 1000
APOA£09128

1

1

190

