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ABSTRACT 

The main problem addressed by this research is the lack of a small, low-cost integrated naviga

tion system to accurately determine the position of an Autonomous Underwater Vehicle (AUV) 

during all phases of an underwater search or mapping mission. The approach taken utilized an 

evolving prototype, called the Shallow-Water AUV Navigation System (SANS), combining Glo

bal Positioning System (GPS), Inertial Measurement Unit (IMU), water speed, and magnetic 

heading information using Kalman, low-pass, and complimentary filtering techniques. In previ

ous work, addition of a math coprocessor improved system update rate from 7 to 18Hz, but 

revealed input/output coordination weaknesses in the software. The central foyus of this thesis is 

on testing and programming improvements which resulted in reliable integrated operations and an 

increased processing speed of 40 Hz. This now allows the filter to perform in real time. A stan

dardized tilt table evaluation and calibration procedure for the navigation filter also was devel

oped. 

The system was evaluated in dynamic tilt table experiments. Test results and qualitative error 

estimates using differential GPS suggest that submerged navigation with SANS for a period of 

several minutes will result in position estimation errors typically on the order of 10 meters rms, 

even in the presence of substantial ocean currents. 
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t INTRODUCTION 

A. BACKGROUND 

Autonomous Underwater Vehicles (AUVs) are capable of a variety of overt and 

clandesti~e missions. Such vehicles have been proposed for inspection, mine 

countermeasures, survey, and observation. Recent research trends in underwater robotics 

have emphasized minimizing the need for human interaction by increasing AUV 

autonomy. (Yuh 95) 

The NPS Phoenix AUV is an experimental vehicle designed primarily for research in 

support of shallow-water mine countermeasures and coastal environmeJ:?.tal monitoring 

(Healey 93, 95, Brutzman 96). The clandestine nature of the missions for which Phoenix 

was designed necessitates minimum surfaced exposure time while in the operating area, the 

ability to submerge in order to investigate targets, and a navigation system that is accurate 

enough to allow target revisit if desired. 

Many missions of the Phoenix class of vehicles can be separated into two distinct 

phases: transit and search. After being launched from an aircraft, submarine, or surface 

vessel, the AUV would execute a transit phase in order to arrive at the search area. Once 

established in the mission area, it would enter a search phase, which might include missions 

such as mine hunting, mapping, or environmental data collection. Navigation is one of the 

most important and difficult aspects of an AUV mission. Therefore, a robust, real-time 

navigation system is critical for a multi-mission capable AUV. Typically, a search phase 

would require more precise navigation than a transit phase. This could be accomplished by 

obtaining more frequent Global Positioning System (GPS) fixes, or by using Differential 



GPS (DGPS) either in real-time if available, or after mission completion using post

processing (Walker 96). After the search is completed, the AUV would commence a 

second transit phase and return to a recovery position. Both kinds of mission phases would 

typically involve waypoint steering, and possibly obstacle avoidance. 

An approach is described in Kwak (93) for determining the position of submerged 

detected objects by executing a "pop-up" maneuver to obtain a GPS fix. This fix is then 

extrapolated backwards to the submerged object location using recorded inertial data. 

Navigation accuracy during such a surfacing maneuver is strongly enhanced by the use of 

accurate depth information available from low-cost pressure cells (Kwak 93). However, 

this form of "aided" inertial navigation is not applicable to a surfaced or near surface AUV 

(Brown 92). 

Continuously reliable GPS reception would not be possible unless the AUV were to 

be fitted with an extensible mast mounted antenna. Extending an antenna above the effects 

of wave action is not desirable for a military application and, at any rate, would probably 

be mechanically impractical for a small AUV. As a result, any system relying solely upon 

GPS would not be sufficiently robust to provide accurate navigation information during 

surfaced or near surface operations due to intermittent reception. Therefore, inertial 

navigation is needed between periods where continuous reliable reception of GPS satellite 

signals is not possible. (Bachmann 95) 

Inertial navigation hardware is sometimes based on rotating gyros, which provide 

attitude information needed to stabilize a platform that holds acceleration sensors. The 

limiting factors to this approach include: high expense due to required precision, inordinate 
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power consumption, high ·failure rates, and acoustic and structure-borne noise (Cox 94). 

These factors counter the Phoenix AUV philosophy of providing a low cost, general 

purpose platform capable of long-term independent operation, despite relatively small 

vehicle size (McGhee 95). Additionally, the rotating gyros now installed in Phoenix are 

aging and mechanically unreliable. It is therefore desirable to find a solution to the AUV 

navigation and control problem not requiring such components. 

In order to achieve robust navigation, the AUV should be capable of navigating with 

GPS and/or an Inertial Navigation System (INS). GPS is capable of highly accurate 

positioning when the AUV is surfaced, while an INS can be used for submerged navigation 

and periods between GPS satellite reception. In order to ensure accurate navigation for a 

wide variety of missions, GPS and INS components can be combined. A favorable analysis 

of this type of navigation system was conducted in Mckeon (92). The hardware and 

software architecture required for a typical mapping scenario was evaluated in Norton (94). 

Bachmann (95) made the architecture evaluated in Norton (94) a reality, and 

subsequently developed the first working prototype of the proposed Shallow-Water AUV 

Navigation System (SANS). The SANS was designed to overcome the problem of 

intermittent GPS satellite tracking. It is an experimental system that uses a low-cost, 

strapped-down inertial measurement unit (IMU), complemented with magnetic heading 

and water speed sensors, to enable inertial navigation between GPS fixes. This system is 

well suited for pop-up navigation. Finding this means of navigating near the sea surface 

provides a complete solution to the overall navigation problem associated with transiting 

an AUV to a shallow water work site, recording the position of detected submerged objects, 
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and then returning to a recovery site where stored mission data can be uploaded (McGhee 

95). 

Additionally~ the navigation filter developed by McGhee (95) solves the problems of 

cost and ·power consumption by eliminating rotating gyros and replacing them with 

acceleration and angular rate sensors. This filter is implemented in SANS by Bachmann 

(95). One application of SANS is to upgrade the Phoenix navigation system. Others, 

particularly as component miniaturization continues, include marine mammal and diver 

navigation. 

With the prototype SANS having achieved favorable results in open-water, at-sea test 

trials, Walker (96) advanced the SANS to another level of maturity, making it a truly 

integrated system ready for direct application to a real-world AUV. The physically 

redesigned system includes an on-board processor and consolidated the diverse 

components into a compact unit, while improving individual component reliability and 

performance. The research reported in this thesis continues the evolution of the SANS by 

incorporating software improvements to accommodate the dramatically improved 

processing speed, implementing a networking capability to monitor at-sea tests and prepare 

for installation into the AUV, and developing a standardized calibration procedure for the 

navigation filter. 

B. RESEARCH QUESTIONS 

This thesis will examine the following research topics: 

- Evaluate the hardware and software architecture of the SANS. 

- Develop a calibration procedure for the SANS navigation filter. 
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- Evaluate the performance of the SANS navigation filter in a laboratory environment. 

-Evaluate the SANS hardware and software architecture for installation in Phoenix. 

C. SCOPE, LIMITATIONS AND ASSUMPTIONS 

This thesis reports part of the findings of the fifth year of research in an ongoing 

research project. The scope of this thesis is to evaluate SANS attitude estimation 

capabilities for eventual installation as a replacement for the older technology gyros now 

used on board the Phoenix AUV. The requirements for an ideal SANS described by Kwak 

(93) which impact this project are: 

-Low power consumption. Operation from a small external battery pa~k for 12 hours 

is desirable. 

- Limited exposure time. The amount of time that the GPS antenna is exposed in the 

search phase should be as short as possible. Up to 30 seconds of exposure is allowed, 

but less is better, and time between exposures should be maximized. 

- Maintain clandestine operation. The GPS antenna should present a very small cross 

section when exposed and should not extend more than a few inches above the 

surface of the water. 

-Maximize accuracy. During the search phase of the mission, system accuracy of 10 

meters or better is required following postprocessing, both while submerged and 

surfaced. 

-Total volume not to exceed 120 cubic inches. Elongated, streamlined packaging is 

preferred. 

5 



D. ORGANIZATION OF THESIS 

The purpose of this thesis is to present the development of a prototype system intended 

to meet the mission requirements of the SANS. The term AUV is understood to include 

any small underwater vehicle (including human divers) which can easily carry such a 

compact device. The term "towfish" refers to the test vehicle used to evaluate the SANS 

during at-sea testing. 

This thesis provides an evaluation of the hardware and software used to provide 

accurate navigation for the NPS AUV. The major thrust of the thesis is to evaluate the 

attitude estimation capabilities of the SANS both statically and dynamically in a laboratory 

environment. 

Chapter II reviews previous work on this project as well as on GPS and INS 

navigation, AUV submerged navigation, and navigation filtering theory. Chapter Ill 

provides a summary description of both the original and current SANS prototype hardware. 

Chapter IV provides a detailed description of the software architecture, including the 

navigation filter. Particular emphasis is placed on changes, additions, and updates made to 

the C++ code in support of this portion of the project. Chapter V is a description of the 

experiment design and an analysis of the experimental results. Finally, Chapter VI presents 

the thesis conclusions and provides recommendations for future research. 
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II. ·SURVEY OF RELATED WORK 

A. INTRODUCTION 

Autonomous Underwater Vehicles (AUVs) have the potential to be used in an efficient 

and cost. effective manner in a variety of missions involving military and non-military 

applications. Accurate navigation is one of the most important capabilities supporting 

AUV mission effectiveness. Many possible AUV missions, such as mine hunting, require 

a high degree of navigation accuracy. This chapter will discuss some of the possible AUV 

navigation solutions. 

Navigation systems are generally categorized by whether they are based on external 

signal reception or internal sensors. External-signal-based navigation systems, such as 

Loran, Omega, and Global Positioning System (GPS), are limited to determining position 

only while the receiver is exposed to the signal. Loran and Omega are relatively inaccurate 

compared to GPS. While Loran covers most of the northern hemisphere, it has almost no 

coverage in the southern hemisphere (Bowditch 84). GPS provides an attractive, 

affordable system for the surfaced portion of an AUV mission because it is capable of 

world-wide coverage with a high degree of navigational accuracy. 

Internal-sensor-based navigation can be implemented as a self-contained unit which 

can be composed of various types of equipment such as inertial measuring units (IMUs), 

acoustic transponders, or geophysical map comparison. All sensors are subject to some 

amount of error, which may compound to unacceptable levels for some AUV missions if 

not accounted for. Each of these components also has unique disadvantages. Acoustic 

transponders must be pre-deployed at precisely known locations and may require costly 
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maintenance. Geophysical map interrogation requires a precise bottom contour map be 

previously stored in the AUV's computer. IMU-based navigation is prone to sensor drift, 

which if left uncorrected, can become very large. However, it has advantages relative to 

the other· navigation options due to a lack of dependence on external signals and no 

requirement to transmit any signals which might reveal its presence. 

B. GPS NAVIGATION 

The Navigation Satellite Timing and Ranging (NA VST AR) Global Positioning System 

(GPS) is a space-based radio positioning, navigation and time-transfer system sponsored 

by the U.S. Department of Defense (DoD). It was originally intended_ to provide the 

military with precise navigation and timing capabilities (Parkinson 80). The system is 

designed to provide 24-hour, all-weather navigation anywhere on earth. It is comprised of 

24 satellites in 22,200 km orbits that are inclined at 55° to the earth's spin axis, with 12 

hour periods. The satellites broadcast two L-band frequencies: Ll (1575.4 MHz) and L2 

(1227.6 MHz). Navigation and system data, predicted satellite position (ephemeris) 

information, atmospheric propagation correction data, satellite clock error information, and 

satellite health data are all superimposed on these two carrier frequencies. (Logsdon 92, 

Wooden 85) 

There are two different navigation services available from the GPS satellites depending 

on the type of receiver being used: the Standard Positioning Service (SPS), and the Precise 

Positioning Service (PPS). The SPS is based on receiving the Ll carrier signal, which is 

broadcast with an intentional inaccuracy called Selective Availability (SA). SA limits 

world-wide navigation to 100m horizontal accuracy with a 95% confidence level (Logsdon 
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92). PPS is based on the L2 signal. It is limited to U.S. and allied military, and specific 

non-military uses that are in the national interest. Access to PPS is restricted by use of 

special cryptographic equipment. PPS provides the highest stand alone accuracy: 16 m 

Spherical- Error Probable (SEP), a velocity accuracy of 0.1 m/sec, and a timing accuracy of 

better than 100 nanoseconds. (Logsdon 92, Wooden 85) 

Civilian customers have determined a way to improve the accuracy of the SPS in order 

to take full advantage of GPS precision without having access to cryptographic equipment. 

This method, called Differential GPS (DGPS), provides a way of working around the 

inaccuracies of the SPS. It may be used in real-time or during post-processing. The general 

idea is to place a receiver at a surveyed stationary site. The receiver is then able to 

determine the difference between its actual position and its computed GPS position, and 

broadcast the resulting pseudorange (distance to satellite) corrections to any DGPS capable 

receivers. Real-time differential processing can reduce the typical 100m accuracy of the 

SPS to 2-4 m regardless of the status of SA (Logsdon 92). It is also possible to record the 

raw PPS or SPS GPS information for later comparison to a known geographical site using 

post-processing. Precise procedures can be used to reconstruct extremely accurate 

positioning information, typically in the submeter range. Table 1 shows a comparison of 

expected GPS accuracies. 

The size and cost of GPS receivers have decreased drastically as GPS technology has 

matured. Miniaturization is continuously progressing while maintaining or increasing GPS 

receiver performance capability. Since as early as 1992, the GPS industry has been able to 

produce receivers that are essentially a single printed circuit board. Souen (92) repons 

9 



POSITIONING SERVICE PPS (m) SPS (m) 

Non-Differential 16 100 

Differential 2-4 2-4 

TABLE 1: Expected RMS GPS Accuracy Levels (Logsdon 92) 

that the Furuno GPS receiver module LGN-72 is an eight-channel receiver implemented on 

a single printed circuit board measuring 100 mm x 70 mm x 20 mm and requiring only 2 

W of power. 

There is currently a performance trade-off associated with the miniaturization of GPS 

receivers. For instance, Trimble offers the PC Card 110 GPS miniature receiver in the form 

of a Personal Computer Memory Card International (PCMCIA) interface. This credit card

sized device simply slides into any laptop, most palmtops, or pen-based computers 

compliant with PCMCIA (release 2.0). It is capable of tracking eight satellites using three 

channels. However, because it does not have an allocated channel for each of the satellites, 

it does not use a continuous tracking scheme. This degrades its acquisition time 

performance. In order to reduce receiver size, manufacturers often reduce the number of 

channels on the receiver. GPS receivers in this configuration are called "sequencing" 

receivers (Logsdon 92). Sequencing receivers utilize a time-sharing technique to "dwell" 

on each satellite for a brief interval before switching to the next satellite in the sequence. 

They have a typical acquisition time of about two minutes. Continuous tracking GPS 

receivers have typical acquisition times of about 30 seconds or less. However, their larger 

number of receiver channels results in a less compact size. Given this trade-off between 
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size and performance, the choice of GPS receiver must be made with the particular 

application in mind. A sequencing receiver offers an adequate compromise for applications 

such as mobile navigation that are not so dynamic. However, if the application requires a 

short time to initial acquisition, the most viable option is the continuous tracking receiver. 

GPS is an obvious choice for AUV navigation given the level of miniaturization and its 

excellent accuracy performance. 

One manner of using GPS to locate an A UV is to place buoys with GPS receivers at 

appropriate locations. These buoys would translate the GPS signal and retransmit an 

underwater acoustic signal. The AUV would then determine its position via ranging and 

position fixes to the buoys. Youngberg (91) suggests that the GPS antenna, receiver, 

processing and control subsystem, acoustic transmitter, battery power, and homing beacon 

could all be contained in a buoy measuring 123 mrn diameter x 910 mm long and weighing 

5- 15 kg. A simulation which showed the feasibility of this approach is presented in Leu 

(93). The simulation consisted of several sonobuoys spaced one kilometer apart. Due to 

uncertainties in buoy position caused by wave action and variations in altitude, the study 

proposed the use of Kalman filtering techniques to combine the outputs of an accelerometer 

and DGPS to enhance accuracy. Each GPS buoy would essentially act as a GPS satellite 

and broadcast its position via spread spectrum acoustic signals used by the AUV for 

ranging. This technique would eliminate the requirement to predeploy a surveyed 

transponder field. 

Another possible method for using GPS to determine the AUV's position is to 

physically mount the GPS antenna and receiver on-board the AUV. For areas covei"ed by 
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DGPS service, this has the advantage of making the system self-contained. One major 

concern would be that the GPS receiver would be unable to acquire satellites in a timely 

manner due to splash effects on the antenna. However, Norton (94) describes both static 

and dynamic test results which show that a submersible system is able to meet the accuracy 

and time requirements of the mission, even while being splashed by wave wash. Therefore, 

this method was adopted in the SANS configuration. 

C. INS NAVIGATION 

Inertial navigation is essentially a complex method of dead reckoning. Its purest form 

involves no outside references to fix position. All position data is calcula~ed relative to a 

known starting point. An inertial navigation system (INS) continuously measures three 

mutually orthogonal acceleration components using accelerometers. These measurements 

are taken in short time increments and multiplied by elapsed time in order to determine an 

estimate of instantaneous velocity. The three-dimensional change in position can then be 

determined by integrating respective velocities over time. (Bachmann 95) 

The primary drawback of any INS is the tendency for small sensor drift rates to 

accumulate as errors over time. Without outside references for correction, these errors 

grow relentlessly and eventually lead to large errors in the estimated position. Highly 

accurate inertial navigation systems can be constructed, but they are large, costly, and 

complex (Touhy 93). Size alone makes them unacceptable for the SANS. A compromise 

solution to meet SANS requirements is to integrate a low-cost, miniature INS with GPS. 

In such a system, GPS will provide the INS with the periodic position fixes necessary to 

correct slowly building INS errors. 
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The acceleration measurements required by an INS can be made by several types of 

IMUs. There are two fundamental categories: gimbaled and strapdown. Due to their large 

size and power requirements, gimbaled systems are not suitable for the SANS. In a 

strapdown unit, three mutually orthogonal accelerometers and three angular rate sensors 

are mounted parallel to the three body axes of the vehicle. Linear accelerations and 

rotational velocities are continuously measured. Strapdown systems are smaller and 

simpler than gimbaled systems, but necessitate much larger computational capabilities. 

(Logsdon 92) 

D. INTEGRATED GPSIINS NAVIGATION 

SPS mode GPS navigation could be used to adequately perform both the transit and 

search phases of an AUV mission. During surfaced transit phases, non-differential SPS, a 

water speed sensor, and a magnetic compass would provide the primary source of 

navigation data. In order to utilize GPS as a meaningful correction to a low-cost INS 

system, periods between GPS fixes during the transit phase must not exceed the time in 

which the INS error has accumulated to an amount comparable to the horizontal accuracy 

of SPS (100m) (Bachmann 95). The search or mapping phases of an AUV mission would 

require the vehicle to maintain a more accurate navigational picture, both submerged and 

on the surface. This would necessitate the use of periodic differentially corrected GPS 

information in order to keep the INS system accurate while submerged. This differential 

correction could be provided in real-time during overt missions along friendly shores where 

a DGPS reference signal is available, or during mission post-processing following a 

clandestine mission. 
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Integration of GPS and INS into a single system can produce continuously accurate 

navigational information even when using relatively low-cost components. This 

integration not only allows periodic reinitialization of the INS to correct accumulated 

errors, but can also (with the aid of Kalman filtering techniques) improve the performance 

of the INS between fixes. Complementary filtering of acceleration data with additional 

sensor information such as water speed and heading will further improve system accuracy. 

Overall, an integrated system will provide improved reliability, smaller navigation errors, 

and superior survivability. (Logsdon 92) 

Kalman filtering is a method of combining all available sensor data, regardless of their 

precision, to estimate the current posture of a vehicle (Cox 90). The filter is actually a data

processing algorithm which minimizes the error of this estimate statistically using currently 

available sensor data and prior knowledge of system characteristics. Each piece of data is 

weighted relative to data from other system components based upon the expected accuracy 

of the measurement it represents. In a complementary filter, low-frequency data, which is 

trusted over the long term, and high-frequency data, which is trusted only in the short term, 

are used to "complement" each other providing a much better estimate than either can 

alone. (Brown 92) 

Bachmann (95) demonstrated the use of the complementary filter technique by 

combining low-frequency orientation data from accelerometers and a magnetic compass 

with high-frequency angular rate information to estimate heading and attitude. 

Intermediate position results were obtained by integrating high-frequency water-speed 

data. GPS data was used to reinitialize the system each time a fix was obtained and to 

14 



develop an error bias, expressed-as an apparent ocean current. The current was utilized to 

correct the system between GPS fixes. The concept of using a relatively inexpensive IMU 

with limited accuracy, coupled with differentially-corrected GPS, has proven to be a viable 

solution to the challenge of shallow-water AUV navigation. (Bachmann 95) 

The above conclusion has been independently duplicated in Wolf (96). Utilizing an 

integrated GPS/INS system using the same Systron-Donner IMU used in SANS, but 

without incorporating DGPS, accuracies in attitude of better than 0.2° in roll and pitch and 

0.3° in azimuth were achieved. Specific results from those tests, along with static tests 

indicating the SANS software filter (described in Chapter IV) response to IMU inputs are 

discussed further in Chapter VI, System Testing. (Wolf 96) 

E. AUV SUBMERGED NAVIGATION 

There are many techniques available for submerged navigation, including dead 

reckoning, inertial, electromagnetic, and acoustic navigation. With acoustic navigation, 

time of arrival and direction of propagation of acoustic waves are the two principal 

measurements made. A wide variety of acoustic navigation systems have been developed 

for underwater vehicle use. They are typically divided into long, short, and ultrashort 

baseline systems. All involve the use of acoustic beacons or receivers whose positions 

must be known to an accuracy somewhat better than the desired vehicle localization 

accuracy (Tuohy 93). Unfortunately, most acoustic navigation systems require major 

expeditions for their accurate set-up and periodic maintenance. This makes them 

expensive, and in many ways reduces the level of autonomy achievable by an AUV. Also, 

acoustic methods are affected by changes in the speed of sound in the ocean and suffer from 
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refraction and multipath propagation problems in restricted shallow water coastal and ice

covered areas. (Tuohy 93) 

There are various alternative submerged navigation methods not dependent upon the 

aid of external signals. Charge Coupled Device cameras, laser scanning, or variations in 

the earth's magnetic field can aid in determining position (Bergem 93). Position can also 

be estimated by the double integration of acceleration as sensed by an IMU. 

Doppler sonar or correlation velocity log sensors can be utilized to determine speed 

through the water or over the ground. Doppler velocity logs utilize the physics of 

frequency shifts in the sound waves of sources and receivers with relative radial motion. A 

critical assumption for two-way transmission in the ocean is that the sound scatterers, 

(small particles and plankton) uniformly populate the environment, and at the average 

move at the same horizontal velocity as the water. Correlation velocity logs, on the other 

hand, use reflections from the sea bottom, even at great depths, and on-board sensor arrays 

to detect forward and lateral motion occurring between sonar pings. (Gordon 96) 

Doppler technology has been redesigned as the Acoustic Doppler Current Profiler 

(ADCP). The ADCP measures water velocity more accurately, and allows measurement 

in range cells over a depth profile. Throughout the 1980's, ADCPs were further improved 

by production of self-contained, vessel-mounted, and direct-reading models, and by the 

addition of broadband capability in 1991. Broadband ADCPs take advantage of having 

typically 100 times as much bandwidth for measuring velocity as the original, narrow

bandwidth models, reducing variance nearly 100 times. (Gordon 96) 
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Broadband Doppler processing computes the phase change of propagation time delay. 

Since longer propagation times provide greater accuracy, but incur phase changes beyond 

360°, a mathematical autocorrelation function resolves ambiguity and allows transmission 

of a series of coded pulses within a single long pulse. Multiple beams are utilized to obtain 

velocity in three dimensions, under the assumption of uniform currents across layers of 

constant depth. Non-homogenous current layers produce large velocity errors. (Gordon 

96) 

ADCP single-ping random or short-term error may range from just a few mm/s to as 

much as 0.5 rn/s, depending on internal factors such as frequency, depth cell size, number 

of pings averaged together, and beam geometry. Since this random error is uncorrelated 

from ping to ping, the standard deviation of the velocity error can be reduced by the square 

root of the number of pings through averaging. Although averaging can greatly reduce the 

relatively large, single-ping error, at a certain point it fails to improve on overall error as 

the random error becomes smaller than the bias. (Gordon 96) 

The bias is typically less than 10 mm/s and depends on factors such as temperature, 

mean current speed, signal/noise ratio, and beam geometry. It is not yet possible to 

measure ADCP bias and calibrate or remove it in post-processing. External error factors 

include turbulence, internal waves, and ADCP motion, and can dominate internal errors. 

While the technology behind the ADCP is impressive and bears serious consideration for 

future small AUV navigation development, the combination of relative affordability and 

unpredictable bias make it ales attractive option for the SANS application. (Gordon 96) 
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For covert missions, an AUV may not be able to refer to external signals while 

submerged. In this case, the system must rely on some sort of dead reckoning. Modern 

dead reckoning systems typically use magnetic or gyroscopic heading sensors, and a 

bottom or water-locked velocity sensor (Grose 92). The presence of an ocean current will 

add a velocity component to the vehicle which is not detected by a water speed sensor. In 

the vicinity of the shore, ocean currents can exceed two knots (Tuohy 93). Using dead 

reckoning with currents which are relatively large in relation to the typical 4-6 knot speed 

of an AUV can produce extremely inaccurate results (Tuohy 93). This inaccuracy 

represents the central challenge of AUV submerged dead reckoning navigation. 

There are many techniques for measuring acceleration and angular rates. These include 

using ring laser and fiber optic gyros, rotating mass gyros, vibratory rate sensors, and high 

performance IMU s. Inertial grade IMU s typically contain three angular rate sensors, three 

precision linear accelerometers and a three-axis magnetometer. The acceleration 

measurements required by an INS can be made by several types of IMU s. All of these 

sensors are subject to drift errors which relentlessly increase with time. High quality 

sensors are subject to less drift, but can cost up to $100,000 (Tuohy 93), making them 

unattractive for small AUVs. 

McKeon (92) proposes a combination of GPS and INS to allow an AUV to determine 

position information. While submerged, the AUV uses a low-cost inertial navigation 

system. However, when on the surface, the vehicle has access to GPS information. GPS/ 

INS information could be combined with Kalman filter techniques to reduce errors during 

the next dive sequence as simulated in Nagengast (92) and demonstrated in McGhee (95). 
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The system described in McGhee (95) senses linear accelerations and angular rates with 

respective sensors and processes the data in a twelve state Kalman filter, resulting in an 

estimated position. A mechanical water speed sensor and a magnetic compass are added 

to complement acceleration and angular rate data and further enhance navigation accuracy. 

The twelve states can be divided into seven continuous-time states (three Euler angles, two 

horizontal velocities, two horizontal positions), two discrete-time states derived from the 

DGPS fixes (estimated east and north current), and three angular rate sensor bias estimates, 

(subtracted from the output of these sensors). The DGPS fixes occur aperiodically 

whenever the vehicle surfaces and is able to acquire a sufficient number of satellites. 

(Bachmann 96) 

F. NAVIGATION FILTER THEORY 

The inherent sensor measurement errors plaguing inertial measurement systems may 

be partially compensated for, but never eliminated. Drift is the tendency of bias errors in 

the angular rate sensors of the inertial platform to cause relentlessly increasing orientation 

measurement errors. The single integration of a bias-ridden angular rate signal will cause 

a steady build-up of error over time. This leads to an incorrect estimation of the body 

orientation relative to the earth-fixed coordinate system and a corresponding body position 

estimate error. Angular rate sensor biases typically change unpredictably over time, 

making a simple, complete compensation impossible. (Frey 96) 

Standard inertial navigation procedures utilize fix updates if an alternative method of 

determining instantaneous orientation exists. Drift is compensated for by periodic 

adjustments of the inertial system to the external reference, returning the bias error 
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accumulation to zero. Short fix intervals then result in relatively insignificant bias errors. 

Higher quality angular rate sensors typically have lower bias errors and correspondingly 

longer fix intervals. (Frey 96) 

Linear acceleration sensor drift errors are compounded by the double integration of the 

linear acceleration measurements to obtain position data. This results in a position estimate 

in error proportional to time-squared, rather than simply time. This error may be similarly 

compensated. However, given the same sensor quality, the fix interval needed to maintain 

comparable accuracy will be much shorter than that required for the angular rate sensor bias 

compensation alone. (Frey 96) 

Discrete low pass filter theory provides a method for obtaining a rate bias estimate. 

Such filters may be represented by a signal-flow graph (SFG), which is a simplified version 

of a block diagram. The SFG was introduced by S. J. Mason for the cause-and-effect 

representation of linear systems that are modeled by algebraic equations (Kuo 95). A SFG 

may be defined as a graphical means of portraying the input-output relationships between 

the variables of a set of linear algebraic equations, or simply 

Eq (2.1) 

output = I_,gain x input 

Corresponding block and signal flow graph diagrams for a single input discrete low pass 

filter are shown in Figures 1 and 2 below. 
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Figure 2: Discrete Low Pass Filter Signal Flow Graph 

In this diagram, p -l stands for the time domain integration operator, and tau is the 

relaxation time constant. Directly from Figure 2, 

Eq (2.2) 

or 

Eq (2.3) 

input- old output 
new output = old output + !:lt 

't 

This is the classic relationship describing a low pass filter (McGhee 96). Rewritten, 

Equation 2.3 becomes Eq (2.4) 

Which can also be written 
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Eq (2.5) 

and, finally 

Eq (2.6) 

or, in more common terminology, and the terms used in the SANS code 

Eq (2.7) 

new output = output Weight x old output+ input x sample Weight 

The above general result can be applied to the SANS system for rate sensor bias 

estimation. In this case, the signal used for attitude estimation is the raw rate sensor reading 

with the estimated bias subtracted. An alternative formulation is to add the negative of the 

bias to the sensor reading. This formulation is derived similarly, and is implemented in the 

SANS code as, 

Eq (2.8) 

new negative bias = bias Weight x old negative bias- input x sample Weight 

In this form, the bias estimation integrator is initialized to a negative average value and the 

bias is then added to the sensor input. 

G. SUMMARY 

Many approaches to the problem of AUV navigation have been devised. New ones 

are still emerging and technological improvements are improving current approaches. 

Choices range from simple dead reckoning, to systems which use acoustic information 

from floating or stationary transponders, to complex systems which use sophisticated IMU s 

and GPS receivers combined with Kalman filtering techniques. Most of the described 
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approaches can only be used in very specialized applications. Most are also limited by 

dependence on previously deployed external means and by some requirement to actively 

exchange data with those means. The preferred method of many developers is the acoustic 

approach. However, most of these systems have a higher degree of complexity and 

dependence on external means than the system implemented in McGhee (95). 

It can be seen that high accuracy and other design goals for an inertial navigation 

system are achievable. But clearly, the cost increases rapidly with the degree of 

sophistication and the desired precision. From this point of view the NPS Phoenix AUV, 

described in Healey (94), together with the SANS navigation system developed by 

Bachmann (95), McGhee (95), Steven (96), and Walker (96), promises to provide a very 

effective means for achievement of clandestine missions in shallow water by a small AUV. 

The remainder of this thesis continues an ongoing experimental study pertaining to the 

development of the SANS system and associated problems. The current system under 

evaluation is of small physical size and relatively low cost. The IMU selected is 

representative and has limited accuracy, so additional water-speed and magnetic heading 

information is required. Accelerometers are used mainly to derive low frequency attitude 

information, and are not utilized for velocity or position estimation for periods of more than 

a few seconds. 

Previous research on the prototype SANS has produced test results and qualitative 

error estimates which indicate that submerged navigation accuracy comparable to GPS 

surface navigation is attainable (Bachmann 95). The research goal of this thesis is to refine 

the hardware and softwar~ configuration to allow more accurate submerged navigation, and 
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to develop the SANS into a self contained system capable of being internally or externally 

attached to any AUV, delivering regular, accurate, real-time position updates. 
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III. SYSTEM HARDWARE CONFIGURATION 

A. INTRODUCTION 

Bachmann (95) describes the initial prototype in the ongoing development of the 

SANS. ·walker (96) redesigned the original prototype to consolidate components in one 

integrated system. In addition, he presented an evaluation summary of the original 

prototype hardware, with particular emphasis on the noise characteristics of the Systron

Donner MotionPak IMU, which is retained in the SANS. 

Figure 3 presents a block diagram for the hardware making up the redesigned SANS. 

Figure 4 presents a photograph of the SANS components fully assembled ~to their testing 

configuration. The project box in which the components are currently mounted is an 

interim solution. A more permanent, water-tight, streamlined housing is currently in 

development 

This configuration is significantly different from the previous prototype presented in 

Bachmann (95). The SANS components are no longer separated; all components are 

physically located in one self-contained package. When joined with its accompanying 

power source (a 12 VDC battery), the complete system can now be strapped-down to a tilt 

table or inserted into a towfish for at-sea testing. In its current configuration, the SANS has 

its processor and GPS/DGPS components "on-board," thus no longer requiring the transfer 

of sensor data via modem to an external processor or GPS/DGPS receiver. (Bachmann 95, 

Walker 96) 

The SANS processor is linked with an external processor via a DOS TCP/IP network 

connection to allow for human monitoring and interaction during the course of an 
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Figure 3: Redesigned SANS Hardware Configuration (Walker 96) 

experiment. This external processor's only function is to maintain a remote control 

session with the SANS processor and receive its attitude and position updates. Unlike the 

original SANS proof of concept design presented in Bachmann (95), the SANS now 

maintains the capability to on-board process its own data and interface with any other 

higher-level processor via a network. This capability will directly enable smooth 

incorporation of SANS into the Phoenix architecture. This chapter will summarize the 

hardware component capabilities realized in Walker (96). 
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B. HARDWARE DESCRIPTION 

1. Computer 

The on-board processor is an Extremely Small Package (E.S.P.) Cyrix 486SLC DX2 

50 MHz computer, pictured in Figure 5. It is specifically designed to offer off-the-shelf 

PC-compatible solutions in space and/or power constrained environments. This particular 

E.S.P computer possesses a total of eight modules which perform various system tasks. 

Together, the processor and its accompanying modules provide a small, low-power system 

with system performance comparable to a standard, desk-top type system. (MAXUS 95, 

Walker 96) 

Figure 5: E.S.P. 486SLC DX2 50 MHz Computer (Walker 96) 

The CPU M.::,.dulc provides the processing capability, the interface for a standard 

keyboard, the Flash PROM containing the system BIOS, and memory and bus controller 

logic. The DC-DC Power Module provides for all the system power requirements up to a 

maximum 35W total output. It accepts an unregulated 12 V DC and provides the required 

+5, + 12, -12, and -28 V DC to power various system components and optional peripherals 
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(i.e., an external floppy and hard drive, as is used in the tilt-table test configuration). 

(Maxus 95, Walker 96) 

The VGA Adapter Module provides the interface to operate an external VGA monitor. 

A PC 1/0 Module provides for two Serial ports and one parallel I/O port. It also provides 

two type-III PCMCIA sockets which conform to PCMCIA Release 2.01 standard. These 

two ports can be used for a variety of compatible devices (i.e., Ethernet Adapter, Modem, 

GPS Receiver, etc.). This module was included in the current design to provide additional 

secondary storage in the form of PCMCIA SRAM cards, as well as to enable possible 

future expansion. An Ethernet Module provides the SANS with an external ethernet 

interface. (Maxus 95, Walker 96) 

The Analog to Digital (A/D) Module provides 8 differential or 16 single-ended input 

channels at 12-bit resolution. In its current configuration, the AID module samples only 8 

of the available 16 single-ended channels. It features a single-channel maximum sampling 

rate of 333 KHz, and an input range from +/- 1.25m V to +/-lOV (MAXUS 95). The AID 

module provides a 34-pin external connector (J3) to which developers can connect their 

input signals. (Walker 96) 

The DRAM Module provides for high-speed (70ns) memory storage available in 2, 4, 

6, 8,or 16MB capacities (MAXUS 95). This module is to the E.S.P. as a hard disk is to a 

standard desk-top PC. (Walker 96) 

2. Inertial Measuring Unit 

The inertial navigation component of the SANS is provided by a Systron-Donner 

Model MP-GCCCQAAB-1 00 "MotionPak" inertial sensing unit, pictured in Figure 6. This 
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self-contained unit provides analog measurements in three orthogonal axes of both linear 

acceleration and angular velocity. It consists of a cluster of three accelerometers and three 

"Gyrochip" angular rate sensors. (Walker 96) 

Figure 6: Systron-Donner Inertial Measuring Unit (Bachmann 95) 

3. GPS/DGPS Receiver Pair 

The GPS/DGPS receiver used is the ON CORE 8-channel receiver which incorporates 

an imbedded DGPS capability (Oncore 95). The receiver is capable of tracking up to eight 

satellites simultaneously. It can provide position accuracy of better than 25 meters 

Spherical Error Probable (SEP) without Selective Availability (SA), and 100 meters (SEP) 

with SA. Typical Time-To-First-Fix is 18 seconds with a typical reacquisition time of 2.5 

seconds (Oncore 95). This receiver meets or exceeds the capabilities of the receiver 
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described in Norton (94}, which, under normal operating conditions, met the accuracy and 

time requirements of the SANS project. Norton (94) also demonstrated that a receiver with 

these qualities will perform well when using an antenna that is located on or near the sea 

surface; as is necessary during a clandestine mission. Figure 7 shows the ONCORE GPS/ 

DGPS receiver used in the SANS project. (Walker 96) 

Figure 7: ONCORE GPS/DGPS Receiver (Walker 96) 

4. Compass 

The compass used in the SANS project is a Precision Navigation model TCM2 

Electronic Compass Module. This compass does not employ the mechanical gimbal 

technology utilized in the compass described in Bachmann (95), but rather employs a three

axis magnetometer and a high-performance two-axis tilt sensor in a small form-factor 

(TCM2 95). The TCM2 compass is capable of providing readings of pitch, roll, and 

surrounding magnetic field strength in addition to heading. The TCM2 provides greater 

accuracy by calibrating (performed by the user) for distortion fields in all tilt orientations, 

providing an alarm when local magnetic anomalies are present, and giving out-of-range 

warnings when the unit is being tilted too far (TCM2 95). (Walker 96) 
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5. Other Components 

The water speed sensor and the depth sensor are those described in Bachmann (95) and 

therefore are not depicted in Figure 5. The GPS antenna shown in Figure 5 is an active 

antenna, :which was selected for its performance and low profile. Because the E.S.P. 

Ethernet module's output media type is AUI, a standard AUI-to-BNC media converter is 

employed to allow the use of durable RG-58 coax cable to span the roughly lOOm distance 

required while pulling the towfish behind a towing vessel. The GPS/DGPS Interface box 

is nothing more than an adapter to interface the GPS receiver signal with the serial port of 

the E.S.P. computer. (Walker 96) 

Based on the analysis given in Walker (96), the 2-pole anti-aliasing Bessel filters used 

in Bachmann (95) were replaced with new low-harmonic distortion filters. These come 

factory tuned to a user-specified comer frequency of 10 Hz, require no external components 

or adjustments, and operate with a dynamic input voltage range from non-critical+/- 5V to 

+/-18V power supplies (Frequency Devices 96). To implement these filters into the SANS, 

a double-sided printed circuit board was designed and machined to receive all six filter 

DIPs, as well as three quad op-amp LM324 DIPs configured as voltage-followers to 

provide input and output circuit protection. (Walker 96) 

To provide for the requisite +/-15 VDC, a DATEL model BWR-15/330-D12 DC-DC 

Converter is used to convert the unregulated 12 VDC battery input into regulated +/-15 

VDC needed to power the low-pass filter circuits and the IMU. This converter features 

over-current and short-circuit protection, a compact form-factor, and high reliability at a 
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minimum efficiency of 8-2%. It employs switching regulator technology, which minimizes 

heat generation and current usage. (DATEL 95, Walker 96) 

Physically connecting the IMU, Low-pass Filters/DC-DC Converter PCB, the Analog

Digital Converter, input power, water speed sensor, and depth sensor, is a 25-strand flat 

ribbon cable. This type of cable was chosen to allow all system components to be easily 

interconnected. (Walker 96) 

C. SUMMARY 

The SANS design described in this chapter is significantly different from that 

described in Bachmann (95). The processing capability, along with the GPS/DGPS 

receiver, is now on-board the SANS, making it completely self-contained. The only 

external link is a DOS ethernet environment to a remote PC utilized for test monitoring 

purposes. The IMU sensor data, after low-pass filtering, along with water speed and depth 

data, are converted from analog to digital form, with 12-bit resolution, and then passed to 

the processor. GPS data is passed separately to the processor, which computes updated 

attitude and position information to be exported over an ethemet socket. The hardware for 

this version of the SANS was chosen to comply as far as possible with the requirements set 

forth in Kwak (93). Though there are many possible choices of hardware for each of the 

components in Figure 4, trade-offs between accuracy, size, power requirements, and cost 

have been considered. As further advances in miniaturization are made, accuracy will 

continue to increase while price and size decrease, thus making it easier to meet the 

challenges of the SANS baseline requirements. The next chapter of this thesis will describe 

the software which supports this hardware configuration. 
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IV. SOFTWARE DEVELOPMENT 

A. INTRODUCTION 

The purpose of the SANS software is to control some of the individual hardware 

components, to control input/output interface communications between the components, to 

assimilate all of the incoming data, and to implement a twelve state navigation filter. This 

chapter will review the software structure inherited from Bachmann (95) and Walker (96), 

and will concentrate particularly on the changes made to accommodate the greatly 

improved processing speed that Walker (96) made possible. 

The code is written in C++ and is designed for use on an IBM-compatible personal 

computer using the Borland version 3.1 compiler under DOS 5.0. This project code choice 

has proven to complicate the integration ofthe hardware interfaces. Additionally, the dated 

software compiler formats and DOS system calls make the code specific to this application 

only and increases the difficulty of troubleshooting or implementing changes. Although 

most of the code is transportable to other C++ compiler environments, the interrupt 

processing and input/output communications control uses obsolete type declarations and 

function calls to the rapidly aging operating system. 

This limitation could easily be resolved in future project work in either of two ways. 

Utilizing a Borland version 5.0 compiler with updated communications code would allow 

continued use of a traditional IBM-compatible environment. Converting those sections of 

code to be compatible with Unix environment compilers could also be implemented on the 

PC under the Linux operating environment. 
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The software design instantiates objects corresponding either to the individual 

hardware components or to the purpose accomplished, in a straightforward manner. The 

class and object relationships are shown in Figure 8. All of the concrete classes depicted 

are speCifically instantiated by the class instance above them, in descending chronological 

order as the program is initiated. All are instantiated as a single object, named as shown. 

There is no need in this application for extensive polymorphism. The serialPortClass and 

bufferClass classes are abstract parent classes containing the common definitions and 

functions from which the specific compassPort, compassBuffer, gpsPort, and gpsBuffer 

classes inherit. The stampedSample object, defined in the main program's header file, 

contains the latest update of all pertinent navigation information. Therefore, it is the object 

which is passed between the class objects. Other objects which support the calculations are 

structures to hold such things as position in the various formats. For simplicity, they are 

not shown in Figure 8. 

This architecture represents a substantial change from the original design, while 

retaining most of the functionality. As the project evolved, it was determined that much of 

the flexibility originally envisioned did not prove to be necessary. This includes features 

such as the capability to instantiate an array of serial ports, or a need for a wide variety of 

buffers for the data received through the serial ports. 

The above features were included in the original object oriented design approach, but 

have been streamlined to a more specific, less complicated structure. Specifically, the 

portbank and bytebuffer classes have been removed. Only two serial ports are required, for 

the compass and gps interfaces, respectively. The serial port code was modified, and the 
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buffered serial port class-has been specialized to a compassPort class and a gpsPort class, 

while retaining the same basic function. This resulted in the compassPort and gpsPort 

classes representing a kind of serial port, similar to the way the compBuffer and gpsBuffer 

classes already were a kind of bytebuffer and continue to be a kind of buffer. This 

simplified the class membership hierarchy and variable passing across class lines. The 

specific nature of the application made efficiency a higher priority than general 

applicability. 

Other improvements included the addition of configuration files containing such data 

as gain settings to allow repeated testing without the necessisity of recompiling after every 

change. The increased processing speed overwhelmed the DOS operating system's ability 

to print information to the user's screen in real time, so an interval was added that reduced 

screen output to a more usable human rate that also reduced input/output conflicts. All 

screen output and data writing to files were consolidated to single points to further simplify 

exchanges. And finally, some error checking was added to ensure such things as proper A/ 

D converter channel initialization. 

B. SOFTWARE FILTER 

The purpose of the software filter is to utilize IMU, heading, and water-speed 

information to implement an INS, and then to integrate this with GPS information. This 

results in a single system which can produce continuously accurate navigational 

information in real time. The filter mitigates the effects of sensor inaccuracies (inherent, 

electronic noise, and transitory), ocean current (the largest single factor affecting AUV 

navigation), dynamic model uncertainty, measurement errors, and calculation errors. 
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Kalman filtering techniques are-used to implement the INS using DGPS fixes as "error-free 

data". This allows periodic reinitialization of the INS to correct accumulated drift and 

development of error biases. All sensor data is logged in raw form for post-mission 

processing. (Bachmann 96) 

Figure 9 is a data flow diagram for the SANS software filter. On this diagram, R 

represents a rotation matrix and Tis a body rate to Euler rate transformation matrix. Table 

2 gives the state variables for the navigation filter. The twelve state variables include the 

outputs of the three integrator blocks, the estimated current in north and east direction 

components, and the bias estimates for the angular rate readings. (Bachmann 96) 

Euler Angles <P .e ·"' 
North & East Velocity ie •Ye 

North & East Position Xe .Ye 

Apparent Current ic .Yc 

Angular Rate Bias Estimates Pb ,qb ,rb 

TABLE 2: State Variables of the Kalman Filter (Bachmann 96) 

Ten of the state components are "continuous time": the three Euler angles (ell, e. 'I' ), 

two horizontal velocities (ie, Ye), two horizontal positions ( xe , Ye ), and three angular rate 

bias estimates. Continuous time integration is approximated by numerical integration, 

making these "continuous time" components discrete time values in the reality of the digital 

filter. This is necessary due to the minimum integration sampling time limitation of the 

computer and AID hardware. The apparent ocean current values (ic, yJ are updated 

aperiodically as a result of both diving and wave action, which produce inherently discrete 
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gps fix information. This-discrete event dynamic system is well suited to application of 

Kalman filter theory to obtain optimal time-varying values for the gain matrices Ki in 

Figure 9. However, at the time of writing this thesis, there are inadequate statistics on 

DGPS no_ise and AUV maneuvering as needed by this approach. Therefore, bandwidth 

and steady-state error considerations were used to compute initial constant gains 

(Bachmann 95, McGhee 95), which were subsequently adjusted based on the results of 

experimental studies. (Bachmann 96) 

One area for future project work involves obtaining the necessary statistical data 

needed for refinement of the aperiodic, gps update portion of the filter. The optimum reset 

weight for application to the final integrator block could then be determined. Additionally, 

application of the gps fix interval (1/.l\t) just prior to K4 is under consideration for removal. 

The principal difference between the current filter and that described in Bachmann 

(95) regards the point in the filter process at which the apparent current error correction is 

made. The previous filter added the apparent current to the water speed. The difference 

between this value and the estimated north and east velocities was input to the north and 

east accelerations with a gain K 3 • Poor initial sea test results in Bachmann (95) indicated 

this approach was possibly underdamped or even unstable. The present approach is to 

apply the apparent current as feedback to the output of the thjrd integrator block, prior to 

input to the final, position integrator. (Bachmann 96) 

The continuous state portion of Figure 9 shows that the Euler angle and linear velocity 

outputs are fed back to the corresponding integrator inputs. Thus, with diagonal gain 

matrices K 1 , K 2 , and K 3 , each of these integrators is in fact a low pass filter for its 

respective inputs (Bachmann 96). Figure 10 isolates one feedback loop to help illustrate 
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this relationship. The integrator block is shown using s-domain (Laplace transform) 

notation. This approach prevents unlimited state estimate growth caused by unmodeled 

bias errors in state derivative inputs to the integrators (Bachmann 96). Complementary, 

low frequency information from an independent source (accelerometers) is also furnished 

to each integrator to correct for long-term decay of the state estimates resulting from this 

feedback (McGhee 95). The low frequency information sources include attitude estimates 

from accelerations sensed by the accelerometers (ia , ·ya , za), the magnetic compass 

readings ('Pc ), and water speed (uw). (Bachmann 96) 

angle estimation 
from 
accelerometer 

angular 
rate sensor 

estimated 
Euler 
angle 

Figure 10: Complementary Filter Feedback Loop for Euler Angle Estimation 

The IMU acceleration readings require correction in addition to filtering. The 

accelerometer data is utilized as an inclinometer, to determine how much of the specific 

force felt along each axis is due to gravity. Computed gravity is then subtracted from 

specific force readings of the accelerometers (i, y, z ), to transform them into 

accelerations, prior to rotation into earth-fixed coordinate values (ie , Ye , ze). (Bachmann 

96) 
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The rate sensor input in Figure 10 is added to accelerometer attitude estimates after the 

gain matrix is applied. This signal already has the estimated bias removed utilizing the low 

pass filter methodology derived in Chapter II and resulting in Equation 2.7. New biases are 

calculated on each filter cycle by the calculateBiasCorrections function of the insClass, 

and are applied to new navigational state information in the applyBiasCorrections function. 

Filter response to example and real world inputs will be discussed in detail in Chapter VI, 

System Testing. 

C. IMPLEMENTATION DESCRIPTION 

Figure 11 shows the revised data flow between software objects. The ~sks performed 

by the SANS software can be divided into two basic categories. The primary tasks are 

related to calculating the current position and other navigational state information. This 

includes processing incoming GPS data, IMU data, water-speed, and heading information, 

and integrating all of this information through the navigational filter to obtain a fix. These 

tasks are performed by the gpsClass, insClass, and Navigator software objects respectively. 

The secondary tasks involve hardware interfacing, communications, data filtering and unit 

conversion. These basic but crucial tasks are handled by the Sampler, Buffer, compBuffer, 

gpsBuffer, A2D, Serial Port, compassPort, and gpsPort software objects. The main 

program serves to drive the other objects by continually querying the navigator for position 

updates and performs output to the user screen and data files from a single location. Real 

time navigation source code is provided in Appendix A. Supporting serial communication 

and other administrative function code is provided in Appendix B. The following summary 
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of the source code is presented bottom-up to illustrate construction of the navigation state 

from the individual data elements. (Bachmann 95) 

1. Compass Data 

The compassClass contains the code and member objects which implement reception 

of compass messages in a design similar to, with the exception of specific hardware details, 

the gpsClass. Private member compassPort instantiates a kind of serialPortClass object to 

allow data communication on COM2. CompassPort in tum has private member 

compBufferClass which provides a kind of bufferClass structure for temporary storage of 

incoming compass messages. Figure 12 illustrates the compBufferClass and 

gpsBufferClass data structures. The compassClass therefore contains code to 

communicate with the serial port, as well as to check the "checksum" and header of each 

compass message received. The samplerClass object instantiates compassClass object 

"comp1" and periodically interrogates comp1 to empty the buffer of information. 

(Bachmann 95, Walker 96) 

2. GPS Data 

The gpsClass, as previously mentioned, is similar in design to the compassClass, with 

differences driven by the different message formats, and it utilizes COMl. It obtains GPS 

position messages in the Motorola proprietary format (@@Ea). Before the code 

recognizes a GPS message as being valid, the message must pass three conditions; 1) it 

must have a valid checksum, 2) the fix must be based on at least 4 satellites, and 3) the 

differential bit in the message must be set (i.e., the fix must have the differential correction 
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applied to it). The navigatorClass instantiates gpsClass object "gpsl" and interrogates gpsl 

to empty its buffer directly. (Bachmann 95, Walker 96) 

compBuffer "compData" I gpsBuffer "GPSdata" 

'raw Message' 

oyte 120 I 152 

___ J twice as 1on~s_message in ~ach case ) ___________ _ 

compBuffer "headings" gpsBuffer "messages" 

last current 

1 compData I GPSdata 

putplace 
block 

8 

Figure 12: Buffer Data Structures 

3. Inertial Sensor Data 

Inertial sensor data passes through the new filter circuit board. From there, it is input 

directly to the AID converter module in the processor. 

a. AID 

The AID module came with demonstration C source code provided by the unit 

manufacturer. Walker (96) modified the demo code and converted it to C++ for the SANS 

application. The a2dClass provides all of the requisite software operation for the AID 

module in the E.S.P. computer, which is completely controlled through softwar~. Control 

is maintained through the manipulation of the A.'D Control Register and the AID Status 
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Register. These registers are manipulated by writing to and reading from specific memory 

addresses. The a2dClass is designed with some degree of user flexibility. For instance, the 

user can choose between one of two base addresses. (Walker 96) 

·The SANS software only uses a few of the member functions in accomplishing 

its mission. Those member functions not directly utilized in this particular application are 

useful for troubleshooting, or allow a variety of options for specific applications. The 

following general discussion explains how the AID module works in the SANS application. 

(Walker 96) 

The AID provides 12 bits of resolution, or 2
12 = 4096 discrete quantization 

levels. The AID module may be employed in differential mode or single-ended mode. The 

SANS application employs the A2D in the single-ended mode of operation. The A2D 

samples the dual-ended swing of the IMU sensor signals, and represents these voltages as 

a digital value in the range 0 - 4095. A general AID conversion table is provided as Table 

3 to further illustrate how the sensor voltages are mapped over to their digital equivalents. 

(Walker 96) 

Sensor DC Voltage Converted Equivalent 

+10 Volts 4095 

+5 Volts 3071 

0 Volts 2047 

-5 Volts 1023 

-10 Volts 0 

TABLE 3: A2D DC-to-Digital Conversion Mapping (Walker 96) 
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When an a2dClass object is instantiated, the class constructor sets several default 

data member values, and then reads the AID configuration file A2D.cfg. This 

configuration file provides simple user update of AID module operation without 

recompiling the source code. The constructor initializes the system addresses, then 

initializes the AID hardware using those variables that were loaded upon reading the 

configuration file. The a2dClass object is instantiated by the samplerClass object as 

"a2dl ". It is a private data member of the samplerClass. (Walker 96) 

The AID module is set into operation by a call to the samplerClass function 

initSampler(). It utilizes a2dClass member functions to program the sequencer and tell it 

which channels to sample and in what order, resets the AID First-In-First-Out (FIFO) to 

enable it to receive data, and then toggles the trigger bit in the AID Control Register from 

a low to a high, which starts the AID into operation. (Walker 96) 

4. Sampler 

The samplerClass object prepares raw IMU, heading, and water speed data for use by 

the INS. This preparation includes simple filtering, unit conversion, and time stamping. 

Figure 13 provides a summary of the principal class members and functions, with 

psuedocode descriptions of the principal methods. The samplerClass interface consists of 

a single method (getSample) which controls the data formatting and returns a formatted 

sample if valid raw data is available, and a negative response otherwise. (Bachmann 95) 

Figure 14 provides an illustration of the process of obtaining samples from the A/D. 

During SANS operation, the samplerClass member function readSamples() is called 

repeatedly to retrieve inertial data from the AID FIFO. It first checks to ensure that the 
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FIFO is not FULL. If the FIFO ever gets filled without being immediately emptied, data 

will continue to push into the FIFO. There is no room for this additional data and all 

information from that point on will be lost. Preventing the FIFO from overflowing is 

critical for proper SANS operation. If this check is ever true, the SANS software has been 

rewritten to reinitialize the a2d and continue to navigate. One full FIFO plus the data 

received in the time since the overflow will be discarded. This will result in a very short 

period of lost data with a minimal impact on navigation accuracy. 

To prevent FIFO overflow, one need only be mindful of the rate at which the AID is 

sampling its inputs and be sure the AID FIFO is emptied at the same rate or faster. If the 

FIFO does have data in it, this data is emptied from the FIFO and stored in a doubly-

subscripted array with 8 rows and 1000 columns to coincide with storing up to 1000, 8 

channel samples of sensor data. This type of data structure is used to temporarily store the 

data to enable access to a history of samples. Figure 15 presents a model of this array. 

(Walker 96) 

x-acc x-acc . . . 
y-acc y-acc . . . 
z-acc z-acc . . . 
x-ang x-ang . . . 
y-ang y-ang . . . 
z-ang z-ang . . . 
waterspeed !Waters peed . . . 

·depth depth . . 
0 1 999 

Sample Number/ Array Index 
Figure 15: Model of the A2D Sample Array (Walker 96) 
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1 

The first action taken by the Sampler when a packet is received is to time stamp it. 

Since the time difference between the eight samples contained in a single message packet 

is relatively small, the Sampler object then respectively averages the eight corresponding 

data variables contained in a packet. As the samples are emptied from the FIFO, the 

variable "timeCounter" is incremented once for every 8 samples. This variable is then 

multiplied by the sample period to calculate the "deltaT", or the time between adjacent 

samples. The samplerClass code then averages over all the samples received since the last 

sample was taken from this array. The averaged measurements which result represent a 

simple low-pass filtering of the samples. This has the effect of filtering out small 

fluctuations in the data. (Bachmann 95, Walker 96) 

The integers contained in a sample are digital measurements of analog voltages output 

by the SANS sensors. Once these eight filtered measurements are obtained they are 

converted from voltages to units which are usable by the INS object (i.e., feet and radians). 

Finally, each of the measurements is checked to ensure that it is within the limits of the 

sensor from which it came. If any values fall outside the capabilities of the sensor from 

which it came, the entire packet is considered invalid and discarded. (Bachmann 95) 

5. INS 

The INS class implements the SANS inertial navigation. It is the most complex class 

in the software. It has been changed very little as the project has evolved. Figure 16 

provides a summary of the principal member objects and functions which constitute the 

INS methods. The interface consists of three public methods. Each is directly involved in 

the implementation of the twelve-state Kahnan filter. The primary method (insPosition) 
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combines all sensor information and uses the Kalman filter to produce a dead reckoning 

position estimate. The other methods support the primary method by performing one-time 

or periodic operations. Initialization of the INS is performed by the insSetUp method, 

which sets the INS posture at the grid coordinate origin, sets an initial heading and speed, 

and marks the beginning of the first integration intervals. The last public method of the 

class (correctPosition) inputs GPS information to reinitialize the INS position while 

determining a current and error correction bias. The INS class instantiates a samplerClass 

object "saml", from which it obtains all sensor data except for GPS position fixes. 

(Bachmann 95) 

6. Navigator 

The navigatorClass acts as coordinator of all navigational information. As such it 

determines which source is currently providing the best information, converts various 

position formats from one format to another, and instantiates the GPS and INS objects 

"gpsl" and "insl ".Like the insClass, this portion of the code has been changed very little 

as the project has evolved. Figure 17 provides a sumrilary of the class members and 

functions that provide the principal navigation methods. The interface to the object is made 

up of two public methods. (Bachmann 95) 

The main program instantiates navigatorClass object "navl". The first method of the 

navigatorClass (initializeNavigator), initializes navl, preparing it to begin providing the 

current position upon request. This method obtains an initial GPS fix for use as the origin 

of the grid used by the INS object to specify positions, and calls the initialization method 

of the INS. (Bachmann 95) 
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Figure 17: Navigation Class and Initialization Summary 
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The second navigator method (navPosit) drives both the GPS and INS objects, and 

provides the navigator's best estimate of current position in hours, minutes, seconds and 

milliseconds of latitude and longitude. Each time the method is invoked, it interfaces with 

the GPS and INS objects to determine if none, one, or both have an updated estimate of the 

current position. If no update is available, the navigator returns a negative reply indicating 

that it can not provide a position update. If only INS information is available, it is returned 

as the current estimated position. Whenever GPS information is available, it overrides the 

INS estimate of position. GPS information is also passed to the INS object as a reference 

for reinitialization and error estimation purposes. (Bachmann 95) 

The navigator deals with three different position formats. GPS positions from the 

Motorola receiver are initially obtained entirely as latitude/longitude in milliseconds. INS 

positions are expressed in x-y grid coordinates based upon a navigator-stored origin. GPS 

positions must be converted to grid coordinates prior to utilization by the INS. The 

positions produced by the navigator are expressed in hours, minutes and seconds of latitude 

and longitude. A total of four methods are used to convert from one format to another. 

Figure 18 illustrates uses and conversions of the different position formats. (Bachmann 95) 

7. Communication Objects 

The bufferClass and serialPortClass objects are abstract parent classes from which 

specific instances are instantiated for the compassClass and gpsClass, respectively. As 

such, they contain the common class members and functions to support the routine but 

essential tasks of serial port communication and buffering received data. 
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Figure 18: Navigation Position Format Utilization (Bachmann 95) 

D. SUMMARY 

The SANS software is designed to produce continuously accurate navigational 

information in real time. While submerged, IMU, heading and water-speed information are 

processed by the SANS Inertial Navigation System (INS) to produce a dead reckoning 

position estimation. This is integrated with DGPS information obtained during aperiodic 

surfacings using Kalman filtering techniques. The DGPS information is used to reset the 

position of the INS. It is also used to generate ar. apparent current vector to correct future 

INS position estimates. (Bachmann 95) 
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The software was implemented using object oriented paradigms. It was written in 

Borland version 3.1, c++ for use on an IBM-compatible processor. The primary tasks of the 

software are estimation of current position and communication. The former is handled by 

the Navigator, Sampler, a2d, Compass, INS, and GPS classes. The later is accomplished by 

the bufferClass, compBufferClass, gpsBufferClass, serialPortClass, compassPortClass, 

and gpsPortClass objects. (Bachmann 95) 

The next chapter of this thesis will present the testing methodology and results for the 

tilt-table tests of the operational code. 
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V~ SYSTEM TESTING 

A. INTRODUCTION 

This chapter presents both the testing methodology and the experimental results of the 

tilt-table testing used to determine the functionality and accuracy of the SANS attitude 

estimation. These tests focus on the operational C++ code, on determination of optimal 

gain settings for the attitude portion of the navigation filter, and on evaluation of the 

hardware accuracy and noise characteristics in a controlled environment. Factors which 

control attitude response include the K 1 gain value, the bias weight (bias W ght), sample 

weight (sampleWght), and the x andy axis accelerometer scale factors. 

As a reminder from Chapter II, the rate sensor input in Figure 11 has the estimated bias 

removed utilizing the low pass filter methodology resulting in Equation 2.7. Further 

background on low pass filter bias response is provided below in order to show the 

reasoning behind the testing methodology and to help explain the results. 

B. LOW PASS FILTER BIAS RESPONSE 

Applying Mason's formula to the signal-flow graph of Figure 2 from Chapter 2, in the 

s (Laplace transform) domain gives the transfer function of a low pass filter as 

1 
'tS 

G(s) = 1 + 'ts = 
1 

= 
1 + 'tS 

U(s)actual = L{output} = 
U(s) commanded L{ input} 

(Eq 5.1) 

Y(s) 
U(s) 

A typical tilt-table test of the attitude and angular rate sensors involves a step input of 

a constant roll rate to a commanded roll angle, for example, 10 degrees per second to an 
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f ····-------------------------------------

angle of 45 degrees, resulting in a 4.5 second input. The fllter bias estimation response can 

be determined from x(t) = u(t), leading, in the s domain, to X(s) = U(s) = 1 Is, and 

1 
.f(s) = G(s)X(s) = s = 

1 + 'tS 

Thus 

and 

y(t) = ! 
't 

1 
s(l + 'ts) 

t 
't 

l-e 

1 
(Eq 5.2) 

(Eq 5.3) 

(Eq 5.4) 

which represents the bias filter output slope. Thus, the simplified response of the bias 

estimation to the initial roll input is an exponential rise beginning at the instant the input is 

initiated. After one time constant ( 't), 63 percent of the input value has been reached. The 

output value gradually approaches the limit of the input as time continues. This is 

graphically represe~ted in Figure 19. 

10.0 
output 

6.3 (since 1/e ~ . 37) 

time 

Figure 19: Bias Filter Response to a Roll Rate Step Input of 10° /sec 

20 20 + 't 
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The developed testing· procedure for the SANS allows approximately 20 seconds of 

initial stabilization time for the components and filter to "steady out". This was followed 

by an initial roll input, a similar stabilization period after the platform had reached the 

commanded angle, and then return to the zero position at the same rate. Typically, two of 

these cycies were performed under each testing condition. 

To shift a unit step to start at 20 seconds 

0 

y(t) = 
l-e 

for 
(t- 20) 

't 

t< 20 

for 

The example input pulse of 4.5 seconds can be written 

t~20 

x(t) = lO(u(t- 20)- u(t- 24.5)) 

giving 

0 for t< 20 

10(1-e_
1

-'

20

) for 20::;; t::;; 24.5 

y(t) = 

10 ~( _t -'t20) ( t- ~4.5l 
~1-e - 1-e 

for 

Since 

2 
X X 

e = 1 +x+ 
21 

+ ... 

then, for small x 

[ ( t -20]~ (t -20) y(t) z 10 1 - 1 - -- z 10 --
1000 1000 

for 
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(Eq 5.5) 

(Eq 5.6) 

(Eq 5.7) 

24.5::;; t 

(Eq 5.8) 

(Eq 5.9) 

20::;; t::;; 24.5 



for a time constant of 1000 seconds. This produces the first part of the response illustrated 

in Figure 20 . 

. 05 - - - - - - - - - - - - - - - - - - -

20 24.5 time 

Figure 20: Estimated Short Term Bias Response to a 45 Roll Completed in 4.5 
Seconds 

For times equal to or greater than 24.5, 

(t- 24.5) 

( ) :::::: 10(t- 20 _ t- 24.5} 10oo :::::: 0 045 
y t 1000 1000 · e 

(t- 24.5) 
1000 

(Eq 5.10) 

This result is shown in Figure 21 on a longer scale to illustrate the gradual correction 

over time. 

0.1 

.05 

20 24.5 
time 

't = 1000 

Figure 21: Estimated Long Term Bias Response to a 45° Roll Completed in 4.5 
Seconds 

Taken together, Figures 20 and 21 illustrate that the bias response of a low pass filter 

to a time-shifted step roll input is a rapid rise to the calculated value, followed over the 
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length of the relaxation time constant by a gradual correction to zero. Combining this 

response with the complementary filter design, incorporated as depicted in Figure 11, 

results in the time domain filter response including a time lag effect which barely sees 

minor transients. The initial response to a step change in attitude comes almost entirely 

from the angular rate sensors. Over time, input from the accelerometers takes over and 

compensates exactly for the decay of the rate sensors. The nature of this response 

influenced development of the testing methodology and is directly reflected in the 

following testing results. 

C. FILTER TESTING METHODOLOGY 

The tilt-table testing methodology has evolved through Bachmann (95) and Walker 

(96). Although basically unchanged from the method used in Walker (96), it is presented 

here in a standardized, sequential order with extensive background for the first time. It is 

also presented at Appendix Din a checklist format. The testing methodology is designed 

to separate the complementary effects of the filter and treat them individually before 

evaluating the entire filter process. 

The SANS is mounted to the tilt-table described in (Bachmann 96) for a series of pitch 

and roll tests. If the unit is carefully leveled prior to testing, the actual commanded attitudes 

are extremely accurate in reference to real-world pitch and roll angles. Relative angle 

excursions are always extremely accurate on the tilt-table. The amount of the actual angle 

excursion is the important value for the testing. In other words, a valid 45 degree pitch from 

a beginning baseline of 2 degrees to 47 degrees, for example, is a successful test for the 

IMU. Once calibrated and installed in Phoenix, the SANS becomes the reference for 
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attitude determination. That is; if roll and pitch SANS outputs are zero, then this defines 

level orientation for Phoenix. 

The general procedure is to allow a 15 to 20 second period for the sensors to initialize 

and stabilize after the filter code begins execution. This is followed by a pitch or roll 

excursion to 45 degrees at various commanded rates (consistent during each individual 

run). The unit is then tilted back to the zero position, followed by a roll excursion in the 

opposite direction, and then finally back again to zero. Each movement is followed by the 

stabilization period to allow observation of filter effects. Those cases where the excursions 

were both in the same direction reflected physical limitations as to how the SANS box 

could be mounted on the tilt-table. Maximum tilt rate was 90 degrees per second, but tests 

were normally conducted at either 10 or 45 degrees per second. These conditions are much 

more severe than those encountered by the SANS in the real world, with the possible 

exception of surfaced operations in a very heavy sea state, and therefore represent worst 

case performance for the filter. 

In order to determine the rate sensor bias value, K 1 is set to zero to prevent 

accelerometer inputs from effecting the results. Therefore, only the high frequency angular 

rate and bias get to the first integrator. Any errors in attitude can then be attributed to the 

bias and scale factor. The appropriate initial angular rate scale factor (qScale for pitch, etc.) 

is then determined by taking the commanded tilt-table angles as truth. The scale factor 

adjusts the output of the IMU to the actual tilt results. Starting with a baseline of 1.0, it is 

possible to continuously apply the ratio of indicated and actual angles to the current setting 

in order to scale it to a proper value. For example, if the SANS says the unit pitched to 41° 
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when the actual pitch was 45°, the new scale factor is increased to 45/41 multiplied by the 

old scale factor. 

The initial. bias weight (biasWght) is chosen through a combination of project 

experience and filter theory considerations. Extensive simulation and tilt-table 

experiments can then refine the proper values prior to at-sea testing. 

After setting the gain weight to some value other than zero, multiple test runs can 

refine the proper settings. The accelerometer scale factors are then adjusted in the same 

manner as the angular rate scale factors if indications show that the combined inputs result 

in inaccurate angle excursions. A complete tuning of one axis may take an extensive set of 

alternating adjustments to the various factors, as illustrated in the testing results provided. 

D. IMU TEST RESULTS 

The testing results included here utilized the current hardware configuration, along 

with the original code from Bachmann (95) only slightly modified to improve input/output 

rates. This resulted in update rates of approximately 18Hz. The complete code revision 

described in this thesis resulted in an increased update rate of 40Hz, making the filter real

time capable for the first time. That update rate unfortunately overwhelms the internal data 

storage of the SANS in the current configuration, so further testing will have to either be 

done at reduced rates or be conducted after new, larger storage cards (now available) have 

been obtained. 

Figure 22 shows the initial pitch test run. Both K 1 values are set to 0.0, isolating the 

angle-rate input from the accelerometer input. Pitch was at a rate of 10 degrees per second. 
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The qScale value had already been adjusted to 4.02 to reflect 45° of pitch. When compared 

to previous project results (see Walker (96) and Bachmann (95)), the faster update rate 

significantly reduced initial overshoot of the final pitch angles. The stabilization periods 

following each pitch show that the effects of the filter cancel in that the initial slight 

overshoots gradually return to the proper value, regardless of pitch direction, as expected 

from the earlier explanation. In fact, for the pitch which is initiated at approximately 20 

seconds, if no other pitch excursions occurred, the angle value would become essentially 

45° by 1020 seconds (20 + 't). The stabilization period is only a small fraction of the time 

constant, and the bias is subtracted from each new sample. Thus, the accumulated bias 

from the excursion is only partially corrected for, with a slope in the direction of the 

"correct" value. 

Figure 23 shows a second pitch test with all values unchanged with the exception of 't, 

which increased from 1000 to 5000. Ideally, the filter should be initialized for a period of 

one time constant, however, the shorter stabilization periods here are sufficient to 

demonstrate filter behavior. The stabilization periods of Figure 23 show a flatter slope than 

those of Figure 22. This reduced slope shows that increasing 't minimizes the accumulated 

rate bias. 

Turning to the roll axis, Figure 24 shows the initial roll test. The time constant 't has 

been reset to 1000 seconds. The roll rate is still 10 degrees per second and the initial scale 

factor (pScale) was set to be 4.01. The nearly identical scale factors show the IMU to be 

very consistent between axis. Otherwise, the roll results are similar to the pitch results. 
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Figure 22: Initial Pitch Test, K 1 = 0.0, 't = 1000, qScale = 4.02, 10° /sec 
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Figure 23: Pitch Test, K 1 = 0.0, t = 5000, qScale = 4.02, 10° /sec 
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0 w ~ ~ ~ ~ ~ ~ w ~ 

Figure 24: Initial Roll Test, K 1 = 0.0, 't = 1000, pScale = 4.01, 10° /sec 

The roll rate was increased to 40 degrees per second for the second roll test. This 

becomes obvious with the more widely separated fix dots on the graph in Figure 25. Since 

the update may occur at any point during it's cycle (worst case immediately before the 

commanded angle is reached), more overshoot is possible, and in fact occurs. This leads 

to a more pronounced return effect during the stabilization periods. 

The third roll test, shown at Figure 26, has identical settings to the previous test with 

the exception of K 1 , which has been set to 0.01 to allow an accelerometer effect to return. 

This is what causes the wander in roll angle seen in the initial stabilization period. This 

effect is also present in the stabilization following the initial roll, but is less pronounced 

after the return to the zero position as the time grows closer to the initial time constant. 
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Figure 25: Roll Test: K 1 = 0.0, 't = 1000, pScale = 4.01, 40 ° /sec 
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Figure 26: Roll Test: K 1 = 0.01, 't = 1000, pScale = 4.01, 40 ° I sec 
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Increasing K 1 to 0.05 and reducing 't to 200 produces the results of Figure 27. These 

stabilization periods are characterized by more aggressive corrections to the "proper" 

angle. Both Figure 26 and 27 show the importance of increasing the filter update rate from 

the 18 Hz rate shown to the 40 Hz rate achieved in this thesis to prevent undershoot and 

overshoot due to sampling effects. The results of Figure 27 are essentially duplicated, 

although at a reduced roll rate of 10 degrees per second, in Figure 28. 

5r--------.--------.--------.--------.--------.--------. 
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Figure 27: Roll Test: K 1 = 0.05, 't = 200, pScale = 4.01, 40 °/sec 

The following roll test, Figure 29, shows the effect of varying the accelerometer scale 

factor (yAccelScale) from 1.34 to 1.405. The stabilization periods are flatter with respect 
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Figure 28: Roll Test: K 1 = 0.05, t = 200, pScale = 4.01, 10° /sec 
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Figure 29: Same as Previous, with y AcceiScale = 1.405 
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to the "correct" angle and the accelerometer effects less pronounced when compared to 

Figure 28. 

Figure 30 returns the time constant to 1000 seconds while also doubling K I. It was 

determined at this point that they AccelScale value had been adjusted too high. Prior to the 

next roll test (Figure 31), it was adjusted by (45/48) * 1.405 since the unit computed an 

initial roll of 48° vice 45. Figure 31 shows a flatter response, but there is still some 

overshoot. The pScale was adjusted again for the test shown in Figure 32 by the amount 

(45/46) * 4.01. Finally, the yAccelScale was adjusted once again by (45/44) * 1.317 to 

produce the output in Figure 33. This sequence clearly illustrates the altern~ting, gradually 

"tiltl.dat" <· 

0 ~ ~ ~ 00 ~ ~ 

Figure 30: Roll Test: K 1 = 0.1, 't = 1000, 10° /sec, y AcceiScale = 1.405 
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Figure 31: Roll Test: K 1 = 0.1, 't = 1000, 10° /sec, y AcceiScale = 1.317 

5 

"tilt3.dat' . 

_: l 1 
.... ,.., .. 

t t t 
~ 

<· i $ 
~ 

* i t t 

! l l< .. : • .,. 
t. t . • $ ~ • . .. t t i .. • . . 

! £ ·• -15 . 
~ • 1 t 

* 
~ .. J ~ ~ .. 

-20 t .. .. 
t + i ., 

1 i £ i . 
-25 

. . ~ .,. • ~ ~ ! ~ 
~ ~ t .. ... 

~ t t t -30 • • 
• : ~ l 
~ i t 
l f 

. 
-35 ~ t 

$ ; i • . 
t * 

~ 
• i -40 ~ • * f t t • i * ~ -45 • ~ 

-50 
0 20 40 60 BO ~ 120 

Figure 32: Roll Test: K 1 = 0.1, 't = 1000, pScale = 3.923, 10°/sec 
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finer tuning approach which must be taken in order to tune a filter of this complexity. 

Figure 33 clearly has the least overshoot/undershoot and the flattest stabilization periods 

while exhibiting a proper correction tendency before the next input is encountered. 

Figures 34 and 35 are provided to illustrate filter response at the more radical rates of 

45° /sec and 90° /sec. Although there is slightly more overshoot, as expected, even at these 

extremes, the filter behaves predictably and well within acceptable accuracy for the 

Phoenix or other small scale portable navigation applications. 
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Figure 33: Roll Test: K 1 = 0.1, t = 1000, yAcceiScale = 1.347, 10°/sec 
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E. SUMMARY 

This chapter has provided a methodology for dynamic tilt-table testing with rationale 

and illustrative experimental results. Taken together, the results graphically show that the 

SANS design, code architecture, and filter implementation are performing as expected. 

Additionally, while room for some improvement remains, the sensor/filter combination is 

easily accurate enough to meet both the Phoenix AUV and other potential small scale 

portable navigation applications. It is important in reviewing the results presented to 

remember that these testing conditions are much more severe than are likely to be 

encountered in actual SANS operation except when surfaced in significant sea states. 

Other independent testing of the SANS approach (Henault 96) suggests that attitude 

estimation to an accuracy of a few tenths of degrees should be realized in normal operating 

conditions. 

Addition of a math coprocessor to the E.S.P CPU module has increased performance 

dramatically and decreased the undersampling seen, as expected by Walker (96). 

Accompanying code revisions have resulted in a legitimate real-time navigation filter 

which is expected to improve accuracy even further. The final chapter of this thesis will 

review conclusions reached and recommendations for future project work. 
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

A. CONCLUSIONS 

The research topics addressed by this thesis were: 1) evaluate the hardware and 

software architecture of the SANS, 2) develop a calibration procedure for the SANS 

navigation filter, 3) evaluate the specific performance of the SANS navigation filter, and 4) 

evaluate the SANS hardware and software architecture for installation in the Phoenix AUV. 

Each incremental step in the SANS project work has provided evolutionary improvement 

in capability and performance. Walker (96) built on the Bachmann (95) hardware 

prototype and provided the current hardware capability. This thesis has improved on the 

code architecture of Bachmann (95) to accommodate the greatly increased processing 

speeds resulting from the Walker (96) hardware configuration and addition of a math 

coprocessor. 

A basic tilt-table testing methodology was utilized for an overall evaluation of the 

SANS attitude estimation pursuant to addressing the research issues. Combining the 

procedures used in Walker (96) and Bachmann (95) to produce a specific filter calibration 

procedure simultaneously addressed all of the topics in a general manner. The results 

showed that the filter is working correctly and as expected from the supporting theory. 

Furthermore, the real-time capability now makes SANS a bonafide option as a new 

navigation solution for Phoenix or alternative small scale portable navigation applications. 

The SANS project is now poised for meaningful at-sea trials to further validate the recent 
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improvements to allow further development of the linear velocity and position estimation 

portions· of the filter. 

B. RECOMMENDATIONS FOR FUTURE WORK 

There remain many areas for further research on the SANS project. The next major 

step will be at-sea testing utilizing a tow fish as in Bachmann (95). Successful completion 

of these tests will make the SANS ready for adaptation and installation in Phoenix if it is 

chosen as the navigation solution. Incorporation into Phoenix is expected to be very 

straightforward. The ethernet connection can be utilized to pass the Phoenix "Officer of 

the Deck" software module the required navigation state elements. These elements are 

currently stored at each update and written to a data flle. Compatibility issues should be 

limited to data communication between SANS and the Phoenix navigator software. In the 

meantime, purchase of a larger PCMCIA SRAM card will immediately alleviate the data 

storage problem encountered during laboratory testing resulting from the faster processing 

speeds. 

Consideration should be given to updating the software utilized in SANS. Two 

approaches exist. The first is to update the DOS/BORLAND PC environment by 

upgrading to the latest versions. This option will entail rewriting some of the basic input/ 

output system function calls. The second option would be a complete rewrite to make the 

software compatible with the final Linux or Lon Works implementation option that is 

incorporated into Phoenix. Although more involved, this option is attractive because it 

prevents a proliferation of different operating systems within the same architecture. 
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Postprocessing of the navigation data file remains an unfinished area from Bachmann 

(95) and·Walker (96). Test runs could be repeated multiple times to more easily optimize 

the Kalman filter gains. In a related matter, the incorporation of the aperiodic GPS updates 

into the o-yerall Kalman filter scheme also still remains to be refined. The author hopes that 

the results presented in this thesis will prove to be valuable in this ongoing effort. 
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APPENDIX A: Real Time Navigation Source Code (C++) 

A. TOWTYPES.H 

#ifndef __ TOETYPES_H 
#define __ TOETYPES_H 

#include "globals.h" II Types used by serial communications software 

#define GPSBLOCKSIZE 76 II Size of Motorola @@Ea position message 
#define PACKETSIZE 133 II Size of packet received via X-modem protocol 
#define COMPSIZE 60 

#define ONE_G 32.2185 
#define GRAVITY 32.2185 

II One g in feet per second 
II In feet per second 

#define TicksToSecs(x) ((double) ( ( 10 * X) I 182)) 

typedef char ONEBYTE; 
typedef short TWOBYTE; 
typedef long FOURBYTE; 

typedef unsigned char UNSIGNED_ONEBYTE; 
typedef unsigned short UNSIGNED_TWOBYTE; 
typedef unsigned long UNSIGNED_FOURBYTE; 

struct latLongMilSec 
long latitude; 
long longitude; 

II Holds latllong expressed in miliseconds 

} ; 

II Holds a latitude or longitude expressed in hours minutes and degrees 
struct T_GEODETIC { 

} ; 

TWOBYTE degrees; 
UNSIGNED_TWOBYTE minutes; 
double seconds; 

II Holds a latitude and longitude expressAd as T_GEODETICs 
struct latLongPosition { 

T_GEODETIC latitude; 
T_GEODETIC longitude; 

} ; 

struct grid { II Holds a grid position 
double x,y,z; 

} ; 

struct matrix { II 3 X 3 matrix 
float element[3] [3]; 

) ; 
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struct vector { 
flo~t element[3]; 

) ; 

II 3 X 1 matrix or vector 

II Oversize area to hold a GPS message 
typedef BYTE GPSdata[2 * GPSBLOCKSIZE]; 

II Defines a type for holding compass messages 
typedef.BYTE compData[2 * COMPSIZE]; 

II Structure for passing around various types of INS information. 

II The positions in the sample field of a stampedSample structure 

II sample[O]: x acceleration gnuplot: 2 

II sample[l]: y acceleration 3 

II sample[2]: z acceleration 4 

II sample[3]: phi (roll) 5 

II sample[4]: theta (pitch) 6 

II sample[5]: psi (yaw) 7 

II sample[6]: water speed 
II sample[?]: heading 

struct stampedSample 
Boolean.gpsFlag; II True -- GPS fix obtained 

II True -- INS fix obtained 
II posit in hours, mins, sees 

) ; 

Boolean insFlag; 
latLongPosition navLatLong; 
grid est; 
GPSdata satPosition; 
float rawSample[8]; 
double sample[ll]; 
double deltaT; 
float bias(3]; 
float current(3]; 

#endif 

II position as estimated by the INS 
II the latest GPS position 

II Original readings for post processing 
II sampler converted sample 
II delta of the sample 
II bias corrections 
II error correction current 
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B. TOEFISH.CPP 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <io.stream.h> 
#include <conio.h> 
#include <dos.h> 
#inclu~e <time.h> 

#include "toetypes.h" 
#include "nav.h" 

extern compassPortClass port2; 
extern gpsPortClass port1; 

int breakHandler(void); 

void screenSetUp(void); 

II so breakhandler can call destructors 
II to insure cleanup on program exit 

void printPosition (const latLongPosition&); 

void positOut(stampedSample& posit); 

II Write an INS packet and its timeStamp to the outPut file 

void writeData(const stampedSample& drPosition, ofstream&); 

II Write a GPS message to the outPut file. 
void writeGpsData(const GPSdata& satPosition); 

!*********************************************************************** 

PROGRAM: Main 
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts 
DATE: 11 July 1995, last modified January 1997 
FUNCTION: Drives the navigator and its associated software. Counts 

the positions & displays each to the screen. Exited only 

when control break (Ctrl c) is entered at the keyboard. 

RETURNS: 0 
CALLED BY: none 
CALLS: initializeNavigator (nav.h) 

navPosit (nav.h) 
printPosition 
breakHandler 

**********************************************************************~/ 

int 
main {) 
{ 

ctrlbrk(breakHandler); 
setcbrk(1); 
char dataFile[] = "att.dat"; 

II trap all breaks to release com ports 
II turn break checking on at all times 
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cout << "\nWriting attitude data to " << dataFile << endl; 

II Instantiate the navigator (also private members gpsl & insl) 

navigatorClass navl; 

ofstream attitudeData(dataFile); 

stampedSample curLoc; II LatiLong of most recent fix 

Boolean 
int 
float 

fixReceived(FALSE); 
fixCount(O); 
timeCount(O.O); 

II True if a new fix was received 
II Count of navigation fixes received 
II Counter for screen output 

cerr << "\ninitializing . " << endl; 

navl.initializeNavigator(curLoc); 

II Check a2d initialization, channels off if y-accel != -32.2 
while (curLoc.sample[2] <= -33.0 I I curLoc.sample[2) >= ~31.5) 

cerr << "reinitializing for a2d channelization" << endl; 
navl.initializeNavigator(curLoc); 
navl.navPosit(curLoc); 

clrscr(); 
gotoxy(1,6); 
cerr <<"Initialization Complete!"<< endl; 
cout << "Initial Position:" << endl; 

II Print the initial position 
cout << "latitude: " << curLoc.navLatLong.latitude.degrees << 

<< curLoc.navLatLong.latitude.minutes << 1
:

1 

<< curLoc.navLatLong.latitude.seconds << endl; 

I • I 

cout <<"longitude: "<< curLoc.navLatLong.longitude.degrees << 1
:

1 

<< curLoc.navLatLong.longitude.minutes << 
<< curLoc.navLatLong.longitude.seconds; 

screenSetUp(); 

I • I 

while (TRUE) II Attempt to get a fix from the navigator 
fixReceived = navl.navPosit(curLoc); 

if (fixReceived) ( II New fix received 
II Save fix info to the data file 
writeData(curLoc, attitudeData); 
II Print info to screen at designated print interval 
fixCount++; 
timeCount += curLoc.deltaT; 
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if (timeCount >=·1.0) 
gotoxy(9,11); 
cout << fixCount << endl; 
positOut(curLoc); 
timeCount = 0.0; 

I********************************************************************** 

PROGRAM: printPosition 
AUTHOR: 
DATE: 

Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: 
RETURNS: 

Displays position to the screen 
void 

CALLED BY: main 
CALLS: none 

***********************************************************************! 

void printPosition (const latLongPosition& posit) 
{ 

gotoxy(l1,14); 
cout << posit.latitude.degrees << 1 

:
1 << 

posit.latitude.minutes << 1
:

1 << posit.latitude.seconds << endl; 

gotoxy(12,15); 
cout << posit.longitude.degrees << 1 

:
1 << 

posit.longitude.minutes << 1
:

1 << posit.longitude.seconds 

<< endl; 

I*********************************************************************** 

PROGRAM: breakHandler 
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts 
DATE: 11 July 1995 
FUNCTION: Cleans up com ports upon program exit. 
RETURNS: 0 
CALLED BY: main 
CALLS: compass port and gps port destructors 

***********************************************************************I 

int breakHandler(void) 
{ 

port2.-compassPortClass(); 
port1.-gpsPortClass(); 
raturn 0; II keep the compiler happy 
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!*******************~*************************************************** 

PROGRAM: screenSetup 
AUTHOR: 
DATE: 

Eric Bachmann, Randy Walker 
12 May 1996 

FUNCTION: 
RETURNS: 

Sets up the output screen 
0 

CALLED BY: 
cAL-LS: 

main 
none 

***********************************************************************/ 

void screenSetUp(void) 
{ 

gotoxy(4, 11); 
cout << "Fix "; 

gotoxy(1, 14); 
cout << "Latitude: "<< "\nLongitude: "; 

gotoxy(1,17); 
cout << "Roll: " << "\nPitch: 

gotoxy ( 1, 25) ; 
cout << "deltaT: "; 

int col(45),row(1); 

gotoxy(col,row++); 
cout << "x accel: 
gotoxy(col,row++); 
cout << "y accel: 
gotoxy(col,row++); 
cout << "z accel: 
gotoxy(col,row++); 
cout << "phi dot: 
gotoxy(col,row++); 

II i 

" . 
I 

II i 

" . I 

cout << "theta dot: "; 
gotoxy(col,row++); 
cout << "psi dot: "; 
gotoxy(col,row++); 
cout << "water speed: "; 
gotoxy(col,row++); 
cout << "heading: "; 

col 45; 
row 12; 

gotoxy(col,row++); 
cout << "x: "; 
gotoxy(col,row++); 
cout << "y: II • 

I 

II • 
I 
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gotoxy(collrow++); 
cout << "z: "; 
gotoxy(collrow++); 
cout << "phi: "; 
gotoxy(collrow++); 
cout << "theta: "; 
gotoxy(col 1 row++); 
cout << "psi: "; 

gotoxy(45 1 20); 
cout << "Bias Values"; 

gotoxy(60 1 20); 
cout <<"Current Values"; 

!*********************************************************************** 

PROGRAM: positOut 
AUTHOR: Eric Bachmann 
DATE: 21 October 1996 
FUNCTION: Updates the Screen 
RETURNS: 0 
CALLED BY: main 
CALLS: none 

***********************************************************************/ 

void positOut(staropedSample& posit) 
{ 

printPosition(posit.navLatLong); 

if (posit.gpsFlag) 
gotoxy (20 I 11); 
cout << "GPS"; 

else 
gotoxy (20 I 11); 
cout << " "; 

II Output the bias values 
for(int j = 3; j < 6; j++) 

gotoxy(45 1 j+18); 
cout << posit.bias[j]; 

II Set output precision and fixed format 
llcout.precision(6); 
llcout.setf(ios::fixed); 
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II _Display linear accelrations and angular rates 
for ( j = 0; j < 8; j ++) 

gotoxy(59,j+1); 
cout << posit.rawSample[j); 

II Display time delta to the screen. 
gotoxy ( 9, 2 5) ; 
cout << posit.deltaT; 

II Display roll and pitch 
gotoxy ( 8, 17) ; 
cout << (posit.sample[3] ~ radToDeg); 
gotoxy(8,18); 
cout << (posit.sample[4] * radToDeg); 

II Display current location and posture 
for ( j = 0; j < 6; j ++) { 

gotoxy (52, j+12); 
cout << posit.sample[j]; 

II Display error current values 
for ( j = 0; j < 3; j ++) { 

gotoxy ( 60, j+21); 
cout << posit.current[j]; 

II Output the biases 
for ( j = 3; j < 6; j ++) 

gotoxy(45,j+18); 
cout << P?sit.bias[j]; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

writeData 
Eric Bachmann, Dave Gay 
11 July 1995 
Writes the packet and the time stamp contained in a stamped 
sample to the out put file for post processing. 
void 
navPosit (nav.cppl 
None 

*********************************************************************T*j 
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void writeData(const·stampedSample& drPosition, ofstream& attitudeData) 

{ 

static float elapsedTime(O.O)i 

elapsedTime += drPosition.deltaTi 

II Output attitude data to a file 
atti:tudeData 

<< elapsedTime << 1 

<< drPosition.sample[O] << 1 

<< -1.0 * drPosition.sample[l] << 1 

<< drPosition.sample[2] << 1 

<< (radToDeg * drPosition.sample[3]) << 
<< (radToDeg * drPosition.sample[4]) << 
<< (radToDeg * drPosition.sample[S]) << 
<< drPosition.sample[6) << 1 

<< (radToDeg * drPosition.sample[7]) << 
<< drPosition.current[O] << 1 

<< drPosition.current[l] <<endli 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

writeGpsData 
Eric Bachmann, Dave Gay 
11 July 1995 
Writes a raw GPS message to a binary output file for 

post processing. 
void 
navPosit (nav.cpp) 
None 

***********************************************************************/ 

I* 
void 
navigator::writeGpsData(const GPSdata& satPosition) 
{ 

*I 

for( int j = Oi j < GPSBLOCKSIZEi j++) 
putc(satPosition[j], rawData)i 

II end of file toefish.cpp 
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C. NAV.H 

#ifndef _NAVIGATOR_H 
#define _NAVIGATOR_;H 
#include <stdio.h> 
#include <fstrearn.h> 
#include <iostrearn.h> 
#includ·e <math.h> 
#includ_e <dos.h> 
#include "toetypes.h" 
#include "globals.h" 
#include "gps.h" 
#include "ins.h" 

I*********************************************************************** 

CLASS: navigatorClass 
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts 
DATE: 11 July 1995, Modified January 1997 
FUNCTION: Combines GPS and INS information to return the current 

estimated position. 

**********************·************************************************~/ 

class navigatorClass 

public: 

II Constructor, initializes object slots 
navigatorClass() : gpsSpeedSum(O.O}, insSpeedSum(O.O) 

{ cerr << "\nconstructing nav1" << endl; }; 

-navigatorClass() {} II Destructor 

II provides the navigator's best estimate of current position 
Boolean navPosit (starnpedSample&); 

II Initialize the navigator 
Boolean initializeNavigator(stampedSample&); 

void userinitNav(stampedSample&); II Allows user to initialize nav 

private: 

double gpsSpeed, insSpeed, gpsSpeedSum, insSpeedSum; 

insClass ins1; II ins object instance 

gpsClass gps1; II gps object instance 

II Obtains system time to utilize for origin 
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double getSysteroTiroe(); 

latLongMilSec origin; II lat-long of navigational origin 

II Returns the position in Miliseconds 
latLongMilSec getMilSec(const GPSdata&); 

11 Returns the position in degrees, minutes, seconds and milisecs 
l~tLongMilSec latLongToMilSec(const latLongPosition&); 

II Convert position in roilSec to degress, minutes, seconds and roilsec 
latLongPosition milSecToLatLong(const latLongMilSec&); 

} i 

#endif 

II Convert xy (grid) position to lat long 
latLongMilSec gridToMilSec(const grid&); 

II Converts latllong to xy position 
grid milSecToGrid(const latLongMilSec&); 

II Parses and returns the time of a GPS message. 
double getGpsTiroe(const GPSdata& rawMessage); 

II Parses and returns the velocity in fps of a GPS message. 
double getGpsVelocity(const GPSdata& rawMessage); 
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D. NAV.CPP 

#include <signal.h> 
#include <dos .. h> 
#include <time.h> 
#include "nav.h" 

#define SIGFPE 8 II Floating point exception 

I*********************************************************************** 

PROGRAM: navPosit 

AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Provides the navigator's best estimate of current position. 

Attempts to obtain GPS and INS position fixes from the gps 

and ins objects and copies the most accurate fix available 

into the input argument 'navPosition'. Sets a return 

flag to indicate whether a valid fix was obtained. 

RETURNS: TRUE, a valid position fix is in the variable 'navPosition' . 

FALSE, otherwise. 
CALLED BY: towfish.cpp (main) 
CALLS: gpsPosition (gps.h) gridToMilSec (nav.h) 

correctPosition (ins.h) milSecToGrid (nav.h) 
insPosition (ins.h) milSecToLatLong (nav.h) 

getMilSec (nav.h) writeScriptPosit (nav.h) 

***********************************************************************! 

void fpeNavPosit(int sig) 
{if (sig == SIGFPE) cerr << "floating point error in navPosit\n";} 

Boolean navigatorClass::navPosit (stampedSample& posit) 

{ 

signal (SIGFPE, fpeNavPosit); 

latLongMilSec gpsMilSec; II the latest GPS position in milseconds 

latLongMilSec insMilSec; II the latest INS position in milseconds 

II Attempt to get the INS and GPS positions 
posit.insFlag ins1.insPosition(posit); 
posit.gpsFlag = gpsl.gpsPosition(posit.satPosition); 

II INS and GPS positions obtained? 
if (posit.insFlag && posit.gpsFlag) 

II Parse position from GPS messsage 
gpsMilSec getMilSec(posit.satPosition); 

posit.est milSecToGrid(gpsMilSec); 
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II Pass GPS position to INS object for navigation corrections. 

insl.correctPosition(posit, getGpsTime(posit.satPosition)); 

II Convert position in milisec to latitude and longitude. 

posit.navLatLong = milSecToLatLong(gpsMilSec); 

return TRUE; 

els.e { 
if (posit.insFlag) II Only INS position obtained? 

insMilSec = gridToMilSec(posit.est); 
posit.navLatLong = milSecToLatLong(insMilSec); 
insSpeed = posit.sample[6]; 
return TRUE; 

else { 
if (posit.gpsFlag) II Only GPS position obtained? 

II Parse position from GPS messsage 
gpsMilSec getMilSec(posit.satPosition); 
posit.est = milSecToGrid(gpsMilSec); 

II Pass GPS position to INS object for navigation corrections. 
insl.correctPosition(posit, getGpsTime(posit.satPosition)); 

II Convert position in milisec to latllong. 
posit.navLatLong = 

milSecToLatLong(getMilSec(posit.satPosition)); 

return TRUE; 

else { 
return FALSE; II No new position available 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

,FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

initializeNavigator 
Eric Bachmann, Dave Gay, Rick Roberts 
11 July 1995 

Obtains an initial GPS fix for use as a navigational origin 
for grid positions used by the INS object. Saves the origin 

and passes it to the INS object in latLong form. 
TRUE 

towfish (main) 
gpsPosition (gps.cpp) 
correctPosition (ins.cpp) 
writeinsData(nav.cpp) 

writeGpsData(nav.cpp) 
getMilSec (nav.cpp) 
roilSecToGrid (nav.cpp) 

***********************************************************************/ 
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Boolean navigatorClass::initializeNavigator(stampedSample& posit) 

( 

Boolean gpsFlag(FALSE); 

cerr << "Initializing Navigator." << endl; 
cerr << Initializing GPS." << endl; 

II Loop until an initial GPS fix is obtained. 

for _(inti= 1 ; ((i < 100) && (gpsFlag ==FALSE)) 
if (gps1.gpsPosition(posit.satPosition)) { 

gpsFlag = TRUE; 

else ( 
delay(500); 

if (gpsFlag == FALSE) 

i++) 

cerr << "\nWARNING: UNABLE TO OBTAIN INITIAL GPS FIX!"<< endl; 

userinitNav(posit); 

else ( 
cerr << GPS initialization complete." << endl; 

II Save navigational origin for later grid position conversions. 

origin= getMilSec(posit.satPosition); 

II Pass time of first GPS fix to INS object initialization routine. 

ins1.insSetUp(getGpsTime(posit.satPosition), posit); 

cerr << "Navigator initialization complete." << endl; 

return TRUE; 

I**********************************************************************~ 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

userinitNav 
Rick Roberts 
03 November 1996 
Allows user to input current position and initialize 

nav if no gps fix is available. (ie for testing) 

void 
initializeNavigator 
getMilSec '(nav.cpp), getSystemTime (nav.cpp) 

***********************************************************************/ 
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void navigatorClass:~userinitNav(stampedSample& posit) 

( 

int· choice; 

cerr << "\nEnter a 0 to enter posit and continue without GPS" 
continue without GPS or initial posit, or" 

exit: " << endl; 
<< "\nEnter a 1 to 
<< "\nEnter a 2 to 

cin '>> choice; 

if (choice -- 0) 
cerr << "\nEnter current position in the following format: " << endl; 

cerr <<"Latitude: (36, Enter, 35 Enter, 41.5 Enter)"<< endl; 

cin 
cin 
cin 
cerr 
cin 
cin 
cin 

>> 
>> 
>> 

<< 
>> 
>> 
>> 

posit.navLatLong.latitude.degrees; 
posit.navLatLong.latitude.minutes; 
posit.navLatLong.latitude.seconds; 
"Longitude: (-121, Enter, 52, Enter, 30.2, Enter)"<< endl; 

posit.navLatLong.longitude.degrees; 
posit.navLatLong.longitude.minutes; 
posit.navLatLong.longitude.seconds; 

else if (choice-- 2) ( exit(1);} 

II Save nav origin for later grid position conversions 
origin= latLongToMilSec(posit.navLatLong); 

II Pass system time of initialization to ins object 
insl.insSetUp(getSystemTime(), posit); 

/*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

latLongToMilSec 
Rick Roberts 
22 January 1997 
Converts a position expressed in latitude and longitude 

degrees, minutes and seconds to mili seconds & returns it. 

latLongMilSec 
userinitNav 
none 

***********************************************************************/ 

latLongMilSec navigatorClass::latLongToMilSec(const latLongPosition& 

latLong) 
( 

latLongMilSec milSec; 
double degrees, minutes, seconds; 

milSec.latitude 

milSec.longitude 

( latLong .latitude .degrees * DEGREES_TO __ MSECS) + 

(latLong.latitude.minutes ~· MINS_TO_MSECS) + 

(latLong.latitude.seconds * 1000.0); 

(latLong.longitude.degrees * DEGREES_TO_MSECS) + 
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(latLong.longitude.minutes * MINS_TO_MSECS) + 

(latLong.longitude.seconds * 1000.0); 

return milSec; 

I*********************************************************************** 

PROGRAM: 
AUT~OR: 

DATE: 
FUNCTION: 
RETURNS: 
CALLED BY: 
CALLS: 

getSystemTime 
Rick Roberts 
03 November 1996 
Obtains system time to utilize for origin. 

double (origin time in seconds) 
userinitNav 
dos time function 

***********************************************************************! 

double navigatorClass::getSystemTime() 

{ 

dostime_t* sysTime; 

_dos_gettime(sysTime); 

II pointer to dos time structure 

return double((sysTime->hour * 3600.0) + (sysTime->minute * 60.0) 

+ (sysTime->second)); 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

getMilSec 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Extracts a position in mi1iseconds from a Motorola (@@Ba) 

position contained in the input argument 'rawMessage'. 

RETURNS: The latitude and longitude in miliseconds. 

CALLED BY: navPosit (nav.cpp) 
initializeNavigator (nav.cpp) 

CALLS: none. 
***********************************************************************! 

latLongMilSec navigatorC1ass::getMilSec(const GPSdata& rawMessage) 

{ 

FOURBYTE temps4byte; 
latLongMi1Sec position; 

temps4byte 
temps4byte 
temps4byte 
temps4byte 

rawMessage[15]; 
(temps4byte<<8) + rawMessage[16]; 

(temps4byte<<8) + rawMessage[17]; 

(temps4byte<<8) + rawMessage[18]; 

position.1atitude = temps4byte; 
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temps4byte 
te~ps4byte 

temps4byte 
temps4byte 

position.longitude 

return position; 

rawMessage [ 19]; 
(temps4byte<<8) + rawMessage[20]; 
(temps4byte<<8) + rawMessage[21]; 
( temps4byte<<8) + ra'.vMessage [ 22] ; 

temps4byte; 

!*********************************************************************** 

PROGRAM: milSecToLatLong 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Converts a position expressed totally in miliseconds to 

degrees, minutes, seconds and miliseconds. 
RETURNS: The position in degrees, minutes, seconds and miliseconds. 

CALLED BY: navPosit (nav.cpp) 
CALLS: none 

***********************************************************************! 

latLongPosition navigatorClass::milSecToLatLong(const latLongMilSec& 

milSec) 
{ 

latLongPosition position; 

double degrees, minutes; 

degrees = (double)milSec.latitude * MSECS_TO_DEGREES; 
position.latitude.degrees = (TWOBYTE)degrees; 

if(degrees < 0) 
degrees fabs(degrees); 

minutes = (degrees - (TWOBYTE)degrees) * 60.0; 
position.latitude.minutes (TWOBYTE)minutes; 
position.latitude.seconds = (minutes - (TWOBYTE)minutes) * 60.0; 

degrees = (double)milSec.longitude * MSECS_TO_DEGREES; 
position.longitude.degrees = (TWOBYTE)degrees; 

if(degrees < 0) 
degrees fabs(degrees); 

minutes = (degrees - (TWOBYTE)degrees) * 60.0; 
position.longitude.minutes (TWOBYTE)minutes; 
pcsition.longitude.seconds (minutes - (TWOBTE)minutes) * 60.0; 

return position; 
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/***********************~*********************************************** 

PROGRAM: gridToMilSec 
AUTHOR: 
DATE: 

Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Convert a grid position to a latitude and longitude in mili-
seconds and returns the result. 

RETURNS: The latitude and longitude in miliseconds. 
CALLED BY: navPosit (nav.cpp) 
CALLS: none 

***********************************************************************/ 

void fpeGridToMilSec(int sig) 
{if (sig == SIGFPE) cerr << "floating point error in gridToMilSec\n";} 

latLongMilSec navigatorClass::gridToMilSec(const grid& posit) 
{ 

signal(SIGFPE, fpeGridToMilSec); 
latLongMilSec latLong; 

II converts grid in ft to latitude 
latLong.latitude = origin.latitude + (posit.x I LatToFt)f 
II converts grid in ft to longitude 
latLong.longitude = origin.longitude + 

HemisphereConversion * (posit.y I LongToFt); 
return latLong; 

!*********************************************************************** 

PROGRAM: milSecToGrid 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Convert a latitude and longitude expressed in milseconds to 

a grid position in xy coordinates in feet from the origin. 
RETURNS: The grid position 
CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp) 
CALLS: none 
COMMENTS: altitude is always assumed to be zero. 

***********************************************************************/ 

grid navigatorClass::milSecToGrid(const latLongMilSec& posit) 
{ 

grid position; 

position.x = (posit.latitude - origin.latitudel * LatToFt; 
position.y = HemisphereConversion * 

(posit.longitude - origin.longitude) * LongToFt; 
position.z = 0; 

return position; 
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I**************************~******************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

getGpsTime 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Parse the time of a gps message. 
RETURNS: The time of the gps message in seconds 
CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp) 

CALLS: none 
***********************************************************************! 

double navigatorClass::getGpsTime(const GPSdata& rawMessage) 
{ 

UNSIGNED_ONEBYTE 
UNSIGNED_FOURBYTE 
double seconds; 

tempchar, hours, minutes; 
tempu4byte; 

hours 
minutes 

rawMessage[8]; 
rawMessage[9]; 

tempchar rawMessage[10]; 
tempu4byte rawMessage[11]; 
tempu4byte = (tempu4byte<<8) + rawMessage[12]; 
tempu4byte (tempu4byte<<8) + rawMessage[13]; 
tempu4byte (tempu4byte<<8) + rawMessage[14]; 
seconds= (double)tempchar + (((double)tempu4byte)I1.0E+9); 

return hours * 3600.0 + minutes * 60.0 + seconds; 

!*********************************************************************** 

PROGRAM: getGpsVelocity 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Parse the velocity out of a gps message. 
RETURNS: The velocitiy of the gps message in feet per second 
CALLED BY: navPosit (nav.cpp), initializeNavigator (nav.cpp) 

CALLS: none 
***********************************************************************I 

double navigatorClass::getGpsVelocity(const GPSdata& rawMessage) 
( 

UNSIGNED_ONEBYTE tempchar=rawMessage[31]; 

return (double) (3.2804 * ((tempchar << 8) + rawMessage[32]) I 100.00); 
} 

II end of file nav.cpp 
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E. GPS.H 

#ifndef _GPS_H 
#define _GPS_H 

#include <iostream.h> 
#include <fstream.h> 
#include <conio.h> 

#include "toetypes.h" 
#include "globals.h" 
#include "gpsPort.h" 

I*********************************************************************** 

CLASS: gpsClass 
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts 
DATE: 11 July 1995, last modified January 1997 
FUNCTION: Reads GPS messages from the GPS buffer. Checks for valid 

checksum and minimun number of satellites in view. 

***********************************************************************/ 

class gpsClass 

} i 

public: 

II Class constructor and destructor 
gpsClass() { cerr << "\nconstructing gps1" << endl; }; 

-gpsClass() {} 

II returns the latest gps position and a flag 
Boolean gpsPosition(GPSdata&); 

private: 

II calculates the check sum of the message 
Boolean checkSumCheck(const GPSdata); 

#endif 
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F. GPS.CPP 

#include <math.h> 
#include "gps.h" 

II instantiates serial port communications on comml, global to allow 

II interrupt processing, cleanup to function properly 

gpsPort~lass portl; 

I*********************************************************************** 

NAME: 
AUTHOR: 
DATE: 
FUNCTION: 

gpsPosition 
Eric Bachmann, Dave Gay 
11 July 1995 
Determines if an updated gps position message is available 

and copies it into the input argument 'rawMessage'. If the 
message has a valid checksum and was obtained with at least 

three satelites in view, a 'TRUE' is returned to the caller, 
indicating that the message is valid. 

RETURNS: TRUE, if a valid position message is contained in the 
input argument. 

CALLED BY: navPosit (navigator.h) 
CALLS: Get (buffer.h) 

checkSumCheck (gps.h) 

***********************************************************************/ 

Boolean gpsClass::gpsPosition(GPSdata& rawMessage) 
{ 

unsigned long Mask(4); 
if (portl.Get(rawMessage)) 

II Check for a valid check sum and more the 3 satelites and DGPS 

return Boolean((checkSumCheck(rawMessage)) && (rawMessage[39] > 3) 
&& ((rawMessage[GPSBLOCKSIZE- 4] & Mask)== Mask)); 

else 
return FALSE; II No updated position is available. 
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!*********************************************************************** 

PROGRAM: checkSumCheck 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Takes an exclusive or of bytes 2 through 78 in a Motorola 

format (@@EA) position message and compares it to the 
checksum of the message. 

RETURNS: TRUE, if the message contains a valid checksum 
CALLED BY: gpsPosition (gps) 
CALLS: none 

***********************************************************************/ 

Boolean gpsClass::checkSumCheck(const GPSdata newMessage) 

} 

BYTE chkSum ( 0 ) ; 

for (int i = 2; i < GPSBLOCKSIZE - 3; i++) 
chkSuro A newMessage[i]; 

return Boolean(chkSuro newMessage[GPSBLOCKSIZE- 3]); 

II end of file gps.cpp 

G. INS.CFG 

0.1 //Konel 
0.1 //Kone2 
0.6 //Ktwo 
0.5 //Kthreel 
0.5 //Kthree2 
0.5 //Kfourl 
0.5 //Kfour2 
1000 //tau 
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H. INS.H 

#ifndef INS_H 
#define INS_H 

#include <time.h> 
#include <math.h> 
#includB <dos.h> 
#incluqe <stdio.h> 
#include <conio.h> 
#include <fstream.h> 
#include <iostream.h> 

#include "toetypes.h" 
#include "globals.h" 

#include "sampler.h" 

I*********************************************************************** 

CLASS: 
AUTHOR: 
DATE: 

insClass 
Eric Bachmann, Dave Gay 

11 July 1995 
FUNCTION: Takes in linear accelerations, angular rates, speed and 

heading information and uses Kalman filtering techniques to 

return a dead reconing position. 

***********************************************************************! 

class insClass 

public: 

insClass(); 
-insClass() {} 

II Constructor, initializes gains 

II destructor 

Boolean insPosition(stampedSample&); II returns ins est. position 

II Updates the x, y and z of the vehicle posture 

void correctPosition(stampedSample&, double); 

II Sets posture to the origin and develops initial biases 

void insSetUp(double, stampedSample&); 

private: 

float posture[6]; II ins estimated posture (x y z phi theta psi) 

double velocities[6]; II ins estimated linear and angular velocities 

II x-dot y-dot z-dot phi-dot theta-dot psi-dot 

float current[3]; II ins estimated error current 

II (x-dot y-dot z-dot) 
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} i 

float lastGPStime; II time of last gps position fix 

int tau; II filter time constant 

samplerClass saml; II sampler instance 

matrix rotationMatrix; II body to euler transformation matrix 

pouble biasCorrection[3]; II Software corrections,IMU rate sensors 

II Kalman filter gains. 
float Konel, Kone2, Ktwo, Kthreel, Kthree2, Kfourl, Kfour2; 

II Transforms body coords to earth coords, removes gravity component 

void transformAccels (double[]); 

II Transforms water speed reading to x andy components 

void transformWaterSpeed (double, double[]); 

II Tranforms body euler rates to earth euler rates. 

void transformBodyRates (double[]); 

II Euler integrates the accelerations and updates the velocities 

void updateVelocities (stampedSample&); 

II Euler integrates the velocities and updates the posture 

void updatePosture (stampedSample&); 

II Builds the body to euler rate matrix 
matrix buildBodyRateMatrix(); 

II Builds the body to earth rotation matrix 

void buildRotationMatrix(); 

II Calculates the imu bias correction during set up 

void calculateBiasCorrections(stampedSample&); 

II Applies bias corrections to a sample 
void applyBiasCorrections(stampedSample&); 

II Reads filter constants from 'ins.cfg' 
void readinsConfigFile(); 

II Post multiply a matrix times a vector and return result. 

vector operator* (matrix&, double[]); 

#endif 
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I. INS.CPP 

#include <iostream.h> 
#include <signal.h> 
#include "ins.h" 
#define SIGFPE 8 II Floating point exception 

!******~**************************************************************** 

PROG..RAM: insClass (constructor) 
AUTHOR: 
DATE: 

Eric Bachmann, Dave Gay, Rick Roberts 
11 July 1995 

FUNCTION: Constructor initializes kalman filter gains and linear and 
angular velocities. 

RETURNS: nothing 
CALLED BY: navigator class 
CALLS: none 

***********************************************************************/ 

insClass::insClass() Kone1(0.5), Kone2(0.5), Ktwo(0.6), Kthree1(0.5), 
Kthree2 ( 0. 5), Kfour1 ( 0. 5), Kfour2 ( 0 .5"), tau ( 1000) 

cerr << "\nconstructing insl" << endl; 

readinsConfigFile(); 

velocities[O] 0.0; 
velocities[1] 0.0; 
velocities[2] 0.0; 
velocities[3] 0.0; 
velocities[4] 0.0; 
velocities[5] 0.0; 

posture[O] = 0.0; 
posture[l] 0.0; 
posture[2] 0.0; 
posture[3] 0.0; 
posture[4] 0.0; 
posture[5] 0.0; 

current[O] 0. 0; 
current[1] 0.0; 
current[2] 0.0; 

II Read the config file 

II x dot 
II y dot 
II z dot 
II phi dot 
II theta dot 
II psi dot 

II Set posture to straight and level at the origin. 

II Initialize error current to zero 
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!************************·*********************************************** 

PROGRAM: insPosit 
AU~HOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Make dead reckoning position estimation using kalman 

filtering. Inputs are linear accelerations, angular rates, 

speed and heading. Primary input data is obtained from a 

RETURNS: 
CALLED BY: 
CALLS: 

sampler object via the getSample method. This data is stored 

in the sample filed of a stampedSample structure called 

newSample. The sample field is then used as a working 

variable as the linear accelerations and angular rates it 

contains are converted to earth coordinates and integrated 

to determine current velocities and posture. The data is 

complimentary filtered against itself, speed and magnetic 

heading. 
position in grid coordinates as estimated by the INS 

navPosit (nav.cpp) 
getSample (sampler.cpp) 
findDeltaT (ins.cpp) 
transforroBodyRates (ins.cpp) 
buildRotationMatrix (ins.cpp) 
transforroAccels (ins) 
transformWaterSpeed (ins) 

***********************************************************************! 

void fpeinsPosit(int sig) 
{if (sig == SIGFPE) cerr << "floating point error in insPosit\n";} 

Boolean insClass::insPosition(stampedSample& newSample) 

{ 

signal (SIGFPE, fpeinsPosit); 

double thetaA, phiA, xincline, yincline; //Working variables 

double waterSpeedCorrection[3]; II Filter correction for drift 
II and water speed 

if (sam1.getSample(newSample)) 

applyBiasCorrections(newSample); 

newSample.rawSample[O] 
newSample.rawSample[1] 
newSample.rawSample[2] 
newSample.rawSample[3) 
newSample.rawSample[4] 
newSample.rawSample[S] 
newSample.rawSample[6] 
newSample.rawSample[7] 

newSample.sample[O]; 
newSample.sample[1]; 
newSample.sample[2]; 
newSample.sample[3]; 
newSample.sample[4]; 
newSample.sample[S]; 
newSample.sample[6]; 
newSample.sample[7]; 

xincline = newSample.sample[O] I GRAVITY; 
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yincline (newsample.sample[l] -
(newSample.sample[S] * newSample.sample[6])) 

I (GRAVITY* cos(posture[4])); 

if (fabs(yincline) > 1.0) { 
static int inclineCount(O); 
gotoxy(l,24); 
cerr << "Inclination errors: " << ++inclineCount << endl; 

return FALSE; 

thetaA = asin(xincline); II Calculate low freq pitch and roll 

phiA = -asin(yincline); 

II Transform body rates to euler rates. 

transformBodyRates(newSample.sample); 

II Calculate estimated roll rate (phi-dot). 

velocities[3] = newSample.sample[3] + Konel * (phiA- posture[3]); 

II Calculate estimated pitch rate (theta-dot). 

velocities[4] = newSample.sample[4] + Kone2 * (thetaA- posture[4]); 

II Calculate estimated heading rate (psi-dot). 

velocities[S] = 
newSample.sample[S] + Ktwo ~ (newSample.sample[7] - posture[S]); 

li integrate estimated angular rates to obtain angles 

posture[3] += newSample.deltaT * velocities[3] ;II pitch rate to angle 

posture[4] += newSample.deltaT * velocities[4]; II roll rate to angle 

posture[S] += newSample.deltaT * velocities(S]; II yaw rate to angle 

buildRotationMatrix(); 

il Transform accels to earth coordinates 

transformAccels(newSample.sample); 

II Transform water speed to earth coordinates 

transformWaterSpeed(newSample.sample[6], waterSpeedCorrection); 

il Subtract out previous velocity and apply statistical gain 

waterSpeedCorrection[O] = 
Kthreel * (waterSpeedCorrection[O] - velocities[O]); 

waterSpeedCorrection[l] = 
Kthree2 * (waterSpeedCorrection[l] - velocities[l]); 

il Determine filtered accelerations 
newSample.sample[O] += waterSpeedCorrection[O]; 

newSample.sample[l] += waterSpeedCorrection[l]; 

II Integrate accelerations to obtain velocities 

velocities[O] += newSmnple.sample[O] * newSample.deltaT; 

velocities[l] += newSample.sample[l] * newSample.deltaT; 
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velocities[2] += newSample.sample[2] * newSample.deltaT; 

II Integrate velocities to obtain posture 
posture[O] += (velocities[O] + current[O]) * newSample.deltaT; 
posture[1] += (velocities[1] + current[1]) * newSample.deltaT; 
posture[2] += velocities[2] * newSample.deltaT; 

rrewSample.sample[O] 
newSample.sample[1] 
newSample.sample[2] 
newSample.sample[3] 
newSample.sample[4] 
newSample.sample[5] 

posture[O]; 
posture[1]; 
posture[2]; 
posture[3]; 
posture[4]; 
posture[5]; 

newSample.est.x 
newSample.est.y = 
newSample.est.z 

posture[O]; 
posture[1]; 
posture[2]; 

return TRUE; 

else { 
return FALSE; II New IMU information was unavailable. 

!*********************************************************************** 
PROGRAM: correctPosition 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Reinitializes the INS based on a known position and computes 

apparent current based on past accumulated errors of the INS. 
It is called by the navigator each time a new GPS (true) fix 
is obtained. 

RETURNS: void 
CALLED BY: navPosit (nav) 
CALLS: none 

***********************************************************************/ 

void 
insClass::correctPosition(stampedSample& posit, double positTime) 
{ 

double deltaT; 

if (positTime < lastGPStime) 
positTime += 86400; 

del taT positTime - lastGPStime; 

II Correct for new day if necessary 

II Find time since last gps fix. 
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II Determine INS error since last gps fix 

double deltaX posit.est.x- posture[O]; 

double deltaY posit.est.y- posture[l]; 

II Reinitialize posture to known position (gps fix) 

posture[O] = posit.est.x; 
posture[l] = posit.est.y; 
posture[2] 0.0; II Unit is assumed to be on the surface 

II Add gain filtered error to previous errors 

posit.current[O] current[O] += Kfourl * (deltaX I deltaT); 

posit.current[l] = current[l] += Kfour2 * (deltaY I deltaT); 

I I s'ave the time of the gps fix for next calculation 

lastGPStime = positTime; 

/*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

insSetUp 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Initializes the INS system. Sets the posture to the origin. 

Initializes the heading using magnetic compass information. 

Initializes the last GPS fix and last IMU information times. 

RETURNS: void 
CALLED BY: initializeNavigator (nav) 
CALLS: calculateBiasCorrections (ins) 

getSarople (sampler) 
buildRotationMatrix (ins) 
transforroWaterSpeed (ins) 

***********************************************************************! 

void fpeinsSetUp(int sig) 
{if (sig == SIGFPE) cerr << "floating point error in inSetUp\n";) 

void insClass::insSetUp(double originTime, staropedSample& posit) 

{ 

cerr << " Initializing INS." << endl; 
signal (SIGFPE, fpeinsSetUp); 

sarol.initSampler(); II Initialize the sampler 

calculateBiasCorrections(posit); II set imu biases 

posture[S] = posit.sample[7]; //set initial true heading 

buildRotationMatrix(); //set initial speed 

transformWaterSpeed(posit.sarople[6], velocities); 
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posit.current[O] - 0.0; 
pos~t.current[l] 0.0; 
posit.current[2] 0.0; 

lastGPStime originTime; II initialize times 

cerr << " INS initialization complete." << endl; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

transforrnAccels 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Transforms linear accelerations from body coordinates to 
earth coordinates and removes the gravity component in the 

z direction. 
RETURNS: void 
CALLED BY: navPosit 
CALLS: none 

***********************************************************************/ 

void insClass::transforrnAccels (double newSarnple[]) 

vector earthAccels; 

newSarnple[O] 
newSarnple[1] 
newSarnple[2] 

+= 
+= 

GRAVITY* sin(posture[4]); 
GRAVITY* sin(posture[3]) 
GRAVITY* cos(posture[3]) 

earthAccels = rotationMatrix * newSample; 

newSarnple[O] 
newSarnple[1] 
newSarnple[2] 

earthAccels.element[O]; 
earthAccels.element[1]; 
earthAccels.element[2]; 

* cos(posture[4]); 
* cos(posture[4]); 

/*********************************************************************** 

PROGRAM: transformWaterSpeed 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 

FUNCTION: Transforms water speed into a vector in earth coordinates and 
returns them in the speedCorrection variable. 

RETURNS: void 
CALLED BY: navPosit 
CALLS : .none 

***********************************************************************/ 
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void insClass::transformWaterSpeed (double waterSpeed, double 

speed~orrection[]) 

{ 
double water[3] = {waterSpeed, 0.0, 0.0}; 
vector waterVelocities = rotationMatrix * water; 

speedCorrection [0] 
spee·dcorrection [ 1] 
spe~dCorrection [2) 

waterVelocities.element[O]; 
waterVelocities.element[1]; 
waterVelocities.element[2]; 

/*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 
RETURNS: 
CALLED BY: 
CALLS: 

transformBodyRates 
Eric Bachmann, Dave Gay 
11 July 1995 
Tranforms body euler rates to earth euler rates 
none 
insPosit 
buildBodyRateMatrix 

***********************************************************************! 

void insClass::transformBodyRates (double newSample[]) 
{ 

vector earthRates = buildBodyRateMatrix() * &(newSample[3]); 

newSample[3) 
newSample(4] 
newSample[5] 

earthRates.element[O]; 
earthRates.element[1]; 
earthRates.element[2]; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

buildBodyRateMatrix 
Eric Bachmann, Dave Gay 
11 July 1995 
Builds body to Euler rate translation matrix. 

RETURNS: rate translation matrix 
CALLED BY: insPosit 
CALLS: none 

***********************************************************************! 

matrix insClass::buildBodyRateMatrix() 
{ 

matrix rateTrans; 

float tth = tan(posture[4]), 
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sphi 
cphi 
cth 

sin(posture[3]), 
cos(posture[3]), 
cos(posture[4j); 

1. 0; rateTrans.element[O] [0] 
rateTrans.element[O] [1] 
rateTrans.element[O] [2] 
rate~rans.element[1J [OJ 
rateTrans.element[1] [1] 
rateTrans.element[1J [2] 
rateTrans.element[2J [OJ 
rateTrans.element[2J [1] 
rateTrans.element[2] [2] 

tth * sphi; 
tth * cphi; 
0. 0; 
cphi; 
-sphi; 
0.0; 
sphi I cth; 
cphi I cth; 

return rateTrans; 

I*********************************************************************** 

PROGRAM: buildRotationMatrix 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Sets the body to earth coordinate rotation matrix. 
RETURNS: void 
CALLED BY: 
CALLS: 

insPosit, insSetUp 
none 

***********************************************************************! 

void insClass::buildRotationMatrix() 
{ 

float spsi 
cpsi 
sth 

sphi 
cphi 
cth 

= sin(posture[S]), 
cos(posture[S]), 
sin(posture[4]), 
sin{posture[3]), 
cos(posture[3]), 
cos{posture[4]); 

rotationMatrix.element[O] [0] 
rotationMatrix.element[OJ [1] 
rotationMatrix.element[O] [2] 
rotationMatrix.element[1] [0] 
rotationMatrix.element[1] [1] 
rotationMatrix.element[1] [2] 
rotationMatrix.element[2J [0] 
rotationMatrix.element[2] [1] 
rotationMatrix.element[2J [2] 

cpsi * ~th; 

(cpsi * sth * sphi) - (spsi * cphi); 
(cpsi * sth * cphi) + (spsi * sphi); 
spsi * cth; 
(cpsi * cphi) + (spsi * sth * sphi); 
(spsi * sth * cphi) - (cpsi * sphi); 
-sth; 
cth * sphi; 
cth * cphi; 
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!*******************~*************************************************** 

PROGRAM: 
AUTHOR: 

postmultiplication operator * 
Eric Bachmann, Dave Gay 

DATE: 11 July 1995 
FUNCTION: Post multiply a 3 X 3 matrix times a 3 X 1 vector and 

return the result. 
RETURNS: 3 X 1 vector 
CALLED BY: 
CALLS: None 

***********************************************************************! 

vector operator* (matrix& transform, double state[]) 
{ 

vector result; 

for (int i = 0; i < 3; i++) 

resu1t.e1ement[i] 0. 0; 

for (int j 0; j < 3; j++) 

result.e1ement[i] += transform.element[i] [j] * state[j]; 
} 

return result; 

/*********************************************************************** 

PROGRAM: calculateBiasCorrections 
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts 
DATE: 11 July 1995 
FUNCTION: Calculates the initial imu bias by averaging a number of 

imu readings. 
RETURNS: none 
CALLED BY: insSetup 
CALLS: none 

***********************************************************************/ 

void fpeCalculateBiasCorrections(int sig) 
{if (sig == SIGFPE) cerr << "floating point error in 
CalculateBiasCorrections\n";} 

void insClass::calculateBiasCorrections(stampedSample& biasSample) 
{ 

signal (SIGFPE, fpeCalculateBiasCorrections); 
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b# 

b# 

int biasNumber(tau/10); 

biasCorrection[O] 
biasCorrection[1] 
biasCorrection[2] 

0. 0; 
0. 0; 
0. 0; 

for (int i = 0; i < biasNumber; i++) { 

II p roll rate 
II q pitch rate 
II r yaw rate 

!I Find the average of the biasNumber packets 

while{!sam1.getSample(biasSample)) {/* */); 

biasCorrection[O] += biasSample.sample[3]/biasNumber; //roll-rate/ 

biasCorrection[1] += biasSamp1e.sample[4]/biasNumber; //pitch-rate/ 

biasCorrection[2] += biasSample.sample[5]/biasNumber; // yaw-rate/b# 

II set biasSample correction fields to new bias correction values 

II negative biasCorrection value is taken so biases are added to sensor 

values 
biasSample.bias[3] 
biasSample.bias[4] 
biasSample.bias[5] 

biasCorrection[O] 
biasCorrection[1] 
biasCorrection[2] 

-(biasCorrection[O]); 
-(biasCorrection[1]); 
-(biasCorrection[2]); 

!*********************************************************************** 

PROGRAM: applyBiasCorrections 
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts 

DATE: 11 July 1995 
FUNCTION: Applies updated bias corrections to a sample. 

RETURNS: void 
CALLED BY: insPosit 
CALLS: none 

***********************************************************************! 

void insClass::applyBiasCorrections(stampedSample& posit) 

{ 

canst float sampleWght(posit.deltaT/tau); 

canst float biasWght(1- sampleWght); 

//Calculate updated bias values 
biasCorrection[O] (biasWght * biasCorrection[O]) 

- (sampleWght * posit.sample[3]); 

biasCorrection[1] (biasWght * biasCorrection[1]) 
- (sampleWght * posit.sample[4]); 

biasCorrection[2] (biasWght * biasCorrection[2]) 
- (sampleWght * posit.sample[5]); 
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posit.sample[3] +=-biasCorrection[O]; 
posit.sample[4] += biasCorrection[l]; 
posit.sample[S] += biasCorrection[2]; 

posit.bias[3] biasCorrection[O]; 
posit.bias[4] biasCorrection[l]; 
posit.bias[S] = biasCorrection[2]; 

//Apply the bias to the sample 

//Save the bias to the sample 

/*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 
RETURNS: 
CALLED BY: 
CALLS: 

readinsConfigFile 
Rick Roberts, Eric Bachmann 
02 Nov 96 
Reads filter constants from 'ins.cfg' 
void 
ins class constructor 
none 

***********************************************************************! 

void insClass::readinsConfigFile() 
{ 

cerr << "Reading ins configuration file."<< endl; 

if stream insCfgFile ("ins. cfg", ios: :in) ; 

if (! insCfgFile) 
cerr << "could not open ins configuration file!" << endl; 

else 

char comment[128]; 

insCfgFile 
>> Konel >> comment 
>> Kone2 >> comment 
>> Ktwo >> comment 
>> Kthreel >> comment 
>> Kthree2 >> comment 
>> Kfourl >> comment 
>> Kfour2 >> comment 
>> tau >> comment; 

insCfgFile.close(); 
} 

II end of file ins.cpp 
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J. SAM.CFG 

1.0 
1.0 
1.0 
1.34 
1.34 
1.34 
1.827 

;pScale (roll) 
;qScale(pitch) 
;rScale(yaw) 
;xAccelScale(pitch) 
;yAccelScale(roll) 
;zAccelScale(yaw) 
;waterSpeedScale 

K. SAMPLER.H 

#ifndef _SAMPLER_H 
#define _SAMPLER_H 

#include <time.h> 
#include <math.h> 
#include <dos.h> 
#include <conio.h> 
#include <stdio.h> 
#include <fstrearn.h> 
#include <iostrearn.h> 

#include "toetypes.h" 
#include "globals.h" 
#include "a2d.h" 
#include "compass.h" 

#define MAX_SAMPLE_NUM 1000 
#define xyAccelLimit ONE_G 
#define zAccelLimit 2 * ONE_G 
#define rateLimit 0.872665 
#define speedLimit 25.3 
#define headingLimit 2 * M_PI 

const int INBUFFSIZE 512; 

II Max accell in x andy direction 
II Max accel in z direction 

II Max rotational rate in radians 
II Max water speed 

!*********************************************************************** 

CLASS: 
AUTHOR: 
DATE: 
FUNCTION: 

COMMENTS: 

samplerClass 
Eric Bachmann, Dave Gay, Rick Roberts 
11 July 1995, last modified January 1997 
Formats, timestamps, low pass filters and limit checks IMU, 
water-speed and heading information. 
This class is extremely dependent upon the specific 
hardware configuration. It is designed to isolate the 
INS from these particulars. 

***********************************************************************/ 
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class samplerClass -{ 

public: 

samplerClass(); 
-samplerClass() {} 

-Boolean initSampler(); 

II Class constructor, destructor 

II Initializes Sampler 

II checks for the arrival of a new sample and formats it 
Boolean getSample(stampedSample&); 

private: 

float pScale; II roll 
float qScale; II pitch 

float rscale; II yaw 

float xAccelScale; II pitch 
float yAccelScale; II roll 
float zAccelScale; II yaw 

float waterSpeedScale; 

compassClass compl; II instantiate member compass object 

a2dClass a2dl; II instantiate member a2d object 

II stores incoming FIFO samples by channel 
float sample[MAX_SAMPLE_NUM] [8]; 

int subSampleindex; II counts channels 

int sampleindex; II indexes samples' array 

int sampleCount; II counts samples 

float samplePeriod; 

Boolean readSamples(stampedSample& newSample); 

void filterSample(stampedSample& newSample); 

void formatSample(stampedSample& newSample); 

void increment(int& index) 
if (++index== MAX_SAMPLE_NUM) index 0;} 

void decrement(int& index) 
if (--index < 0) index MAX_SAMPLE_NUM - 1 ; } 
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} i 

#end if 

II Reads filter constants from 'sam.cfg' 
void readSamplerConfigFile(); 

double pUnits(double angular) 
( return 

(pScale * (((angular-2047.0) I 2047.0) * 50.0) * (M_PI/180.0));} 

double qUnits(double angular) 
.( return 

(qScale * (((angular-2047.0) I 2047.0) * 50.0) * (M_PI/180.0));} 

double rUnits(double angular) 
{ return 

(rScale * (((angular-2047.0) I 2047.0) * 50.0) * (M_PI/180.0));} 

double xAccelUnits(double linear) 
{return (xAccelScale * ((linear-2047.0) I 2047.0 ) *GRAVITY);} 

double yAccelUnits(double linear) 
(return (yAccelScale * ((linear-2047.0) I 2047.0 ) *GRAVITY);} 

double zAccelUnits(double linear) 
( return 

(zAccelScale * ((linear-2047.0) I 2047.0) * (2.0 *GRAVITY));} 

double depthUnits(double depth) 
(return (((depth- 819.0) I (4095.0-819.0)) * 180.0);} 

double waterSpeedUnits(double speed) //feet per second 
{return (waterSpeedScale * ((speed- 2047.0) I 2048.0) * 25.3);} 
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L. SAMPLER.CPP 

#include "sampler.h" 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE_: 

sarnplerClass Constructor 
Eric Bachmann, Randy Walker, Rick Roberts 
12 May 1995, last modified December 1996 

FUNCTION: Constructs sam1, initializes default config values, calls 
readSarnplerConfigFile to read any updated values. 

RETURNS : sarn1 
CALLED BY: insSetUp (ins.cpp) 
CALLS: readSarnplerConfigFile 

***********************************************************************! 

samplerClass::samplerClass() 
sarnpleindex(O), subSarnpleindex(O), 
samplePeriod(a2d1.chcnt * a2d1.delta_t * 0.000001), 
pScale(O.O), qScale(O.O), rScale(O.O), 
xAccelScale(O.O), yAccelScale(O.O), zAccelScale(O.O), 
waterSpeedScale(O.O) 

cerr << "\nconstructing sampler w/ a2d1, comp1" << endl; 
readSarnplerConfigFile(); 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

initSarnpler 
Eric Bachmann, Randy Walker, Rick Roberts 
12 May 1995 

FUNCTION: Instantiates the compass A2D objects. 
RETURNS: TRUE 
CALLED BY: insSetUp (ins.cpp) 
CALLS: initCompass(), A2D member functions 

***********************************************************************! 

Boolean sarnplerClass::initSarnpler() 

cerr << " Initializing Sampler" << endl; 

comp1.initCompass(); 

cerr << " Initializing A2D." << endl; 

a2d1.initA2d(); 
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cerr << -A2D initialization complete." << endl; 

cerr << " Sampler initialization complete." << endl; 

return TRUE; 

!*****~***************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

get Sample 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Prepares raw sample data for use by the INS object 
RETURNS: TRUE, if a valid sample was obtained 
CALLED BY: insPosit (ins) 

insSetup (ins) 
CALLS: readSamples (sampler) 

filterSample (sampler) 
formatSample (sampler) 

***********************************************************************! 

Boolean samplerClass::getSample(stampedSample& newSample) 
{ 

if (readSamples(newSample)) { II checks for the arrival of a new sample 

filterSample(newSample); 

formatSample(newSample); 

return TRUE; 

return FALSE; II Sample packet not available 

/*********************************************************************** 

PROGRAM: readSamples 
AUTHOR: Eric Bachmann, Randy Walker 
DATE: 12 May 1996 
FUNCTION: Retrieves all samples of the IMU, water speed, and depth 

that are present in the A2D FIFO until the FIFO is EMPTY. 
Calculates delta_t. 

RETURNS: TRUE - There were new samples pulled from the FIFO 
FALSE - There were no new samples 

CALLED BY: getSample 
CALLS: getFifoStatus(), getFifoData() 

***********************************************************************! 
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Boolean samplerClass·::readSarnples(stampedSample& newSample) 
{ 

static int overflowCount(O); 
if (a2dl.getFifoStatus() ==FULL) II Did the FIFO overflow? 

gotoxy(l,l9); 
cout << "FIFO Overflowed, #: " << ++overflowCount 

<< " reiniting a2d" << endl; 
a2dl.reinitA2d(); 
:return FALSE; 

if (a2dl.getFifoStatus () ! = EMPTY) { I I Does the FIFO have new samples? 

sampleCount = 0; II Counts the number of samples taken 

while (a2dl.getFifoStatus() !=EMPTY) { II Empty the FIFO 

sample[sampleindex] [subSampleindex++] = a2dl.getFifoData(); 

II Has it pulled one sample of each channel from 

if (subSampleindex == 8) ( 

subSampleindex= 0; 
increment(sampleindex); II set to record 

++sampleCount; 

if (sampleCount > 0) { 
II calculate time delta 
newSample.deltaT = sampleCount * samplePeriod; 
return TRUE; 

else { II No full samples 

return FALSE; 

else II No new samples 
return FALSE; 
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/*********************************************************************** 

PROGRAM: filterSample 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Low pass filters eight closely spaced sets of sensor 

readings by summing the readings of each sensor and computing 

the average. 
RETURNS: void 
CALLED BY: getSample 
CALLS: none 

***********************************************************************/ 

void samplerClass::filterSample(stampedSample& newSample) 

{ 

for (int i = 0; i < 8; i++) 
newSample.sample[i] = 0; 

int j(sampleindex); 

for (i = 0; i < sampleCount; i++) 

decrement(j); 
newSample.sample[O] += sample [ j] [ 0] 
newSample.sample[1] += sample[j] [1] 
newSample.sample[2] += sample[j] [2] 
newSample.sample[3] += sample [j] [3] 
newSample.sample[4] += sample [j] [4] 
newSample.sample(5] += sample [j] [5] 
newSample.sample(6] += sample[j] [6] 
newSample. sampl.e [7] += sample[j] [7] 

I sampleCount; 
I sampleCount; 
I sampleCount; 
I sampleCount; 
I sampleCount; 
I sampleCount; 
I sampleCount; 
I sampleCount; 

I*********************************************************************** 

PROGRAM: formatSample 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Converts integers representing voltage readings into 

real world units which are useable by the INS. 
RETURNS: void 
CALLED BY:getSample 
CALLS: none 

******************************************************~****************! 
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void samplerClass::formatSample (stampedSample& newSample) 
{ 

newSample.sample[O] = 
newSample.sample[l] 
newSample.sample[2] 

xAccelUnits(newSample.sample[O]); 
yAccelUnits(newSample.sample[l]); 
zAccelUnits(newSample.sample[2]); 

newSample.sample[3] 
newSample.sample[4] 
new~ample.sample[S] 

pUnits(newSample.sample[3]); 
= qUnits(newSample.sample[4]); 
= rUnits(newSample.sample[S]); 

newSample.sample[6] 
newSample.sample[7] 

= waterSpeedUnits(newSample.sample[6]); 
compl.getHeading(); 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 
RETURNS: 
CALLED BY: 
CALLS: 
COMMENTS: 

readSamplerConfigFile 
Rick Roberts, Eric Bachmann 
02 Nov 96 
Reads filter constants from 'ins.cfg' 
void 
ins class constructor 
none 
* Do not allow blanks in 'cororoent' section of sam.cfg * 

***********************************************************************/ 

void samplerClass::readSamplerConfigFile() 
{ 

FILE *samCfgFile; 

if ((samCfgFile = fopen("sam.cfg", "r")) ==NULL){ 
cerr << "could not open sampler configuration file!" << endl; 

else { 

cerr << "\nReading Sampler configuration file." << endl; 

char line [ 128] ; 

fscanf(samCfgFile,"%f%s",&pScale,line); 
cerr << "pScale: " << pScale << endl; 

fscanf(samCfgFile,"%f%s",&qScale,line); 
cerr << "qScale: " << qScale << endl; 

fscanf(samCfgFile,"%f%s",&rScale,line); 
cerr << "rScale: " << rScale << endl; 

fscanf(samCfgFile,"%f%s",&xAccelScale,line); 
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} 

cerr << "xAccelScale: " << xAccelScale << endl; 

fscanf(samCfgFile,"%f%s",&yAccelScale,line); 

cerr << "yAccelScale: " << yAccelScale << endl; 

fscanf(samCfgFile,"%f%s",&zAccelScale,line); 

cerr << "zAccelScale: " << zAccelScale << endl; 

(scanf(samCfgFile,"%f%s",&waterSpeedScale,line); 

cerr << "waterSpeedScale: " << waterSpeedScale << endl; 

fclose(samCfgFile); 

II end of file sampler.cpp 

M. COMPASS.H 

#ifndef _COMPASS_H 
#define _COMPASS_H 

#include <iostream.h> 
#include <fstream.h> 
#include <conio.h> 

#include "toetypes.h" 
#include "globals.h" 
#include "compport.h" 

BYTE asciiToHex(BYTE); II conversion function prototype 

!*********************************************************************** 

CLASS: compassClass 
AUTHOR: Eric Bachmann, Dave Gay, Rick Roberts 

DATE: 11 July 1995, last modified January 1997 

FUNCTION: Reads compass messages from the compass buffer. Checks for 

valid checksum. Corrects heading for magnetic variation. 

Heading is continuous. There is no branch cut at 360 degrees. 

***********************************************************************I 

class compassClass 

public: 

II class constructor and destructor 

compassClass() : currentHeading(O.O) 
{ cerr << "Compass constructed."<< endl; } 
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-compassClass() () 

float initCompass(); II initialize currentHeading 

float getHeading(); II returns the latest heading 

private: 

II Maintains the most recently obtained heading. 

float currentHeading; 

II calculates the check sum of the message 

Boolean checkSumCheck(const compData); 

II Parses a selected field out of a compass message. 

float parseCompData(const compData, canst BYTE); 

II Converts magnetic direction based on magnetic variation. 

float trueHeading(const float); 

II Returns the heading without branch cuts 

float continousHeading(const float); 

) i 

#end if 

N. COMPASS.CPP 

#include <math.h> 
#include <stdlib.h> 
#include "compass.h" 

II instantiates serial port communications on comm2, global to allow 

II interrupt processing, cleanup to function correctly 

compassPortClass port2; 

!*********************************************************************** 

NAME: 
AUTHOR: 
DATE: 
FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

initCoropass 
Eric Bachmann, Dave Gay, Rick Roberts 

11 July 1995 
Determines if a valid compass message is held in the 

compass buffer and initializes currentHeading to that value. 

Will attempt 10 times with a built in delay and then exit 

with a warning if a valid heading is not obtained. 

currentHeading 
INSsetUp (ins.cpp) 
Get (buffer.h) 

checkSumCheck (gps.h) 
trueHeading (compass.cpp) 

parseCompData (coropass.cpp) 
continuousHeading (compass.cpp) 

**********************************************************************! 
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float compassClass::initCompass() 
{ 

cerr << Initializing Compass" << endl; 

Boolean compFlag(FALSE); 
float tempHeading; 
compData rawMessage; 

II ~ry 10 times to get a valid message 
for (inti= 1; ((i < 10) && (compFlag ==FALSE)); i++ 

if ((port2.headings.Get(rawMessage)) && (checkSumCheck(rawMessage))){ 
tempHeading = parseCompData(rawMessage, 'C') * degToRad; 
currentHeading = continousHeading(trueHeading(tempHeading)); 

compFlag = TRUE; 

else { 
delay(lOOO); 

if (compFlag == FALSE) 

II invalid message -delay 

cerr << "\nWARNING: UNABLE TO OBTAIN INITIAL COMPASS HEADING!" 
<< endl; 

delay (2000); 

else { 
cerr << " Compass initialization complete." << endl; 

return currentHeading; 

!*********************************************************************** 

NAME: 
AUTHOR: 
DATE: 
FUNCTION: 

getHeading 
Eric Bachmann, Dave Gay, Rick Roberts 
11 July 1995 
Determines if an updated compass message is available and 
copies it into the input argument 'rawMessage'. If the 
message has a valid checksum, currentHeading is returned 
to the caller, currentHeading is also the default return. 

RETURNS: currentHeading 
CALLED BY: navPosit (navigator.h) 
CALLS: Get (buffer.h) 

checkSumCheck (compass.cpp) 

***********************************************************************/ 

float compassClass::getHeading() 
{ 
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float tempHeading; 
Bo~lean checkSumFlag; 
compData rawMessage; 

if ((port2.headings.Get(rawMessage)) && (checkSumCheck(rawMessage))) 

tempHeading = parseCompData(rawMessage, 'C') * degToRad; 
currentHeading = continousHeading(trueHeading(tempHeading)); 

return currentHeading; 

else { 
return currentHeading; II No updated position is available. 

I*********************************************************************** 

NAME: 
AUTHOR: 
DATE: 

asciiToHex 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Administrative conversion function 
RETURNS: Hex version of an ascii character 
CALLED BY: checkSumCheck 
CALLS: None 

***********************************************************************! 

BYTE asciiToHex(BYTE letter) 
{ 

if (letter>= 'A') 
return (letter- 'A' + 10); 

else { 
return (letter- 48); 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

checkSumCheck 
Eric Bachmann, Dave Gay 
11 July 1995 
Calculates the checksum of the compass message and 
compares it to the indicated checksum of the message. 
TRUE, if the message contains a valid checksum 
initCompass, getHeading 
none 

***********************************************************************! 
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Boolean compassClass·::checkSumCheck(const compData newMessage) 

BYTE calChkSum(O); 
BYTE mesChkSurn(O); 

for ( int i = 1; newMessage [ i] ! = 1 * 1 
; i++ l 

calChkSurn A= newMessage[i]; 

mesChkSurn asciiToHex(newMessage[i+1]) * 16 
+ asciiToHex(newMessage[i+2]); 

return Boolean(calChkSurn == mesChkSurn); 

!*********************************************************************** 

PROGRAM: trueHeading 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Converts magnetic direction to true based on local 

magnetic variation. 
RETURNS: true heading 
CALLED BY: insPosit 

ins SetUp 
CALLS: none 

***********************************************************************/ 

float compassClass::trueHeading(const float magHeading) 
{ 

static double twoPi(2.0 * M_PI); 
double trueHeading = magHeading + RADIANMAGVAR; 

if (trueHeading > twoPi) 

trueHeading twoPi; 

return trueHeading; 
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!************************~********************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

continousHeading 
Eric Bachmann 
11 July 1995 

FUNCTION: Maintains track of branch cuts & returns a continous heading. 
RETURNS: 
CALL·ED BY: 
CALI.;S: 

continous true heading 
insPosit, insSetUp 
none 

***********************************************************************! 

float compassClass::continousHeading(const float trueHeading) 
{ 

const float twoPi(2.0 * M_PI); 
static int branchCutCount(O); 
static float previousHeading(trueHeading); 

if ((4.71 < previousHeading) && (trueHeading < 1.57)){ 
++branchCutCount; //Went through North in a right hand turn 

else { 
if ((1.57 > previousHeading) && (trueHeading > 4.71)) 

--branchCutCount; //Went through North in a left hand turn 

previousHeading = trueHeading; 

return trueHeading + (branchCutCount * twoPi); 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 
RETURNS: 
CALLED BY: 
CALLS: 

parseCompData 
Eric Bachmann 
11 July 1995 
Parses the heading out of a compass message. 
the message heading as a float 
insPosit, insSetUp 
none 

***********************************************************************! 

float compassClass::parseCompData(const compData rawMessage, 
const BYTE key) 

float dataSum(O); 

for(int j = 0; rawMessage[j] != key; j++) {} 
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} 

j++; 

for { int i = 0; rawMessage [ i + j] ! = 1 
• 

1 
; i++) {} 

switch {i) 

case 3: 

dataSum 

break; 

case 2: 

dataSum 

break; 

case 1: 

dataSum 

break; 

return dataSum; 

{rawMessage[j] - 48) * 100.0 + 
{rawMessage[j+1] - 48) * 10.0 + 

{rawMessage[j+2] - 48) + {rawMessage[j+4] - 48) * 0.1; 

(rawMessage[j] - 48) * 10.0 + 
(rawMessage[j+1] - 48) + (rawMessage[j+3] - 48) * 0.1; 

{rawMessage[j] - 48) + {rawMessage[j+2] - 48) * 0.1; 

II end of file coropass.cpp 

0. A2D.CFG 

8 
0 
1 
8 
3125 
7 
0 
0 

1 
2 
3 

4 
5 
6 
7 
8 
9 

;seqcnt:nurober_of_seq_addresses_to_load 
;mode_sel: __ DIFF=1 __ SE=0 
;roode_acdc:_Signal_coupling_select __ DC=1 __ AC=0 
;chcnt: _____ Number_of_channels_to_sequence_{hex,_1-F) 
;delta_t: __ Sarople_rate_in_roicrosecs_3-8192 
;saroprate: __ Sarople_rate_in_recurrent_roode __ O{fast)-7{slow) 
;saropindex:_Which_channel_to_sample_in_recurrent_roode 
0 0 0 
1 0 0 
2 
3 
4 
5 
6 
7 
8 
A 

0 
0 
0 
0 
0 
0 
0 

2 

0 
0 
0 
0 
0 
0 
0 
0 
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A 5 2 0 
B A 2 0 
c 5 2 0 
D A 2 0 
E 5 2 0 
F A 2 0 

P. A2D.H 

#ifndef _A2D_H 
#define _A2D_H 

#include <dos.h> 
#include <math.h> 
#include <conio.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <stdarg.h> 
#include <iostream.h> 
#include <fstream.h> 

//ESP A2D General Global Definitions 
#define DEFBASE 
#define FIFOSIZE 
#define MAX CHAN 

//ESP A2D Status 
//BASE+02h: OllD 
#define INT_STAT 
#define TRG_STAT 

#define FULL 
#define HALF 
#define EMPTY 

Ox100 
1000 
Ox10 

Register 
DDDD 
Ox10 
Ox08 

Ox01 
Ox05 
Ox06 

II Base address SEL=1->0x300 & SEL=0->0x100 
II FIFO size (MAX=1000 decimal) 
II Max channels 

Definitions 

II 0001 0000 INTERRUPT STATUS 
II 0000 1000 TRIGGER STATUS 

II 0000 0001 FIFO FULL 
II 0000 0101 FIFO HALF FULL 
II 0000 0110 FIFO EMPTY 

( 1=IRQ Pending) 
(1=Triggered) 

(001=Full) 
(101=Half Full) 
(110=Empty) 

//ESP A2D Control Register Definitions 
//BASE+08h: DDDD DDDD 
//BASE+09h: DDDD DDRR 
#define GATE10UT Ox0008 II 0000 0000 0000 1000 GATE10UT (Always Driven) 

#define TRG_POS Ox0010 II 0000 0000 0001 0000 TRIG POS (Trig on +I-) 
#define SET_TRG Ox0020 II 0000 0000 0010 0000 TRIG SET (Active LOW) 

#define RST_TRG Ox0040 II 0000 0000 0100 0000 TRIG CLR (Active LOW) 

#define INT_EN Ox0080 II 0000 0000 1000 0000 IRQ ENAB (Active HIGH) 

#define DIFF Ox0400 II 0000 0100 0000 0000 DIFF/SE (1=DIFF O=SE) 

#define RMS Ox0800 II 0000 1000 0000 0000 RMS Mode (1=0N O=OFF) 

#define CAL Ox1000 II 0001 0000 0000 0000 CAL Mode (1=0N O=OFF) 
#define PRG_SEQ Ox1000 II 0001 0000 0000 0000 SEQ Mode ( 1=PRG O=RUN) 
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I 

#define ACDC 
#define SAM_SEQ 
#defin·e RST_FIFO 

Ox2000. II 0010 0000 0000 0000 ACDC Mode (1=DC O=AC) 
Ox4000 I I 0100 0000 0000 0000 SAMP/SEQ (l=SEQ O=SAMP) 
Ox8000 II 1000 0000 0000 0000 FIFO Reset(1=EN O=R~~) 

//ESP A2D Useful Definitions 
#define CLRRATE OxFFF8 II CLEAR RATE TO HIGHEST RATE 

//Class· Definition for the A2D Class 
class a2dClass { 

public: 

a2dClass(); 
-a2dClass () 

II reads a2d.cfg file, initializes hardware 

lockTrigger(); 

void readConfigFile(); //reads a2d.cfg file 

void initA2d(); //initializes the a2d 
void reinitA2d(); // reinitializes the a2d after FIFO overflow 

void initSysAddr(void); //sets address mapping 

void initHardware(void); //initializes the a2d control register 

II Print out the variable ctrlw, for debug purposes 
void printCtrlw(void); 

II Sets the A2D Control Register for Single-Ended mode 
void setSe(void); 

II Sets the A2D Control Register for Differential mode 
void setDiff(void); 

II Loads sequencer memory with channel data 
void setChannel(unsigned seq,unsigned ch,unsigned g10,unsigned g2); 

II Sets sequencer to program mode 
void setProgSeq(void); 

II Sets sequencer to run mode 
void setRunSeq(void); 

II Loads sequencer address counter with number of channels to scan. 

void setCount(unsigned nch); 

void setAcDc(unsigned acdc); II sets AC or DC coupling 

void lockTrigger(void); II prevents triggering 

void unlockTrigger(void); II allows the trigger to function 
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II Toggle the trigger. (software triggering) 
void setTrigger(void); 

void resetTrigger(void); II clears the trigger 

II Switches in the RMS measurement chip 
void setRmsOn(void); 

II Switches out RMS measurement chip 
void setRmsOff(void); 

II Sets the A2D module to sequencer mode 
void setSequencer(void); 

II Sets the A2D module to sampler mode 
void setSamplerRate(unsigned); 

II Set GATElOUT bit of control word high 
void gateloutOn(void); 

II Set GATElOUT bit of control word low 
void gateloutOff(void); 

II Sets timer channel 1 to square-wave input 
void squareWaveTimerl(unsigned); 

II Initialize the A2D timing using timer 2 
void initTiming(unsigned dt); 

void resetFifo(void); II rewind FIFO to beginning of memory 

void setFifo(void); II enable FIFO to acquire data 

unsigned getFifoStatus(void); II returns the state of the FIFO 

II Returns next data word stored in FIFO 
signed getFifoData(void); 

II Program timer channel 0 to set the desired interrupt rate 
void setintRate(unsigned intrate); 

void intOff(void); II locks out the interrupt request line 

void intOn(void); II enables system interrupt request 

II Sets the trigger level; trigger level (0=-lOV, 128=0V, 255=+10V) 
void setTriggerLevel(unsigned tl); 

II Sets falling or rising edge trigger 
void setTriggerPosition(unsign~d tp); 
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void zeroOffset(void);. II calibrates zero offset error 

II Grounds the two differential inputs for zero adjust 

void grndinput(void); 

void freeinput(void); II ungrounds the two differential inputs 

void·zeroAdjust(void); II adjust the trimmer on the PGA 

int chcnt; 
unsigned delta_t; 

II Number of channels to sequence 
II period between channels 

private: 

unsigned ctrlw; //Holds A2D Control Register update values 

unsigned seqcnt; // Sequence Counter 

unsigned rnode_sel; // Single-ended or Differential 

unsigned rnode_acdc; // AC/DC Coupling 

unsigned sarnprate; //Sample Rate in Recurrent Mode 

unsigned sarnpindex; I I Which Channel to Sample in Recurrent Mode 

unsigned seqaddr[MAXCHAN]; //Sequencer Address 

unsigned chan[MAXCHAN]; //Channel 

unsigned g10[MAXCHAN]; // x10 Gain 
unsigned g2[MAXCHAN]; // x2 Gain 

} i 

#end if 

Q. A2D.CPP 

#include "a2d.h" 

//ESP A2D Addresses 
unsigned BASE 
unsigned FIFO 
unsigned MEM 
unsigned STAT 
unsigned COUNT 
unsigned TIMERO 
unsigned TIMER1 
unsigned TIMER2 
unsigned TIMERC 
unsigned CNTL 
unsigned DAC 

DEFBASE; 
OxOO; 
OxOO; 
Ox02; 
Ox02; 
Ox04; 
Ox05; 
Ox06; 
Ox07; 
Ox08; 
OxOC; 

II BASE I/0 ADDR 
II FIFO READ ADDR 

II SEQUENCER ADDR 
II STATUS REGISTER 
II SEQUENCER ADDR PTR 

II TIMER 0 
II TIMER 1 
II TIMER 2 
II TIMER CONTROL WORD 
II A2D CONTROL REGISTER 

II DAC DATA 
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[BASE] ( ) 

[00-01] (R) 
[00-01] (W) 

[02] (R) 
[02] (W) 
[04] (R/W) 
[05] (R/W) 
[ 0 6] (R/W} 
[07] (R/W) 
[08-09] (W) 
[OC] (W) 



/!********************************************************************** 

II FUNCTION NAME: a2dClass() 
II AUTHOR: Randy Walker 
II DATE: 27 March 1996 
II DESCRIPTION: Reads a2d.cfg file, initializes address map and hardware 
I I RETURNS: void 
II CALLS: readConfigFile(), initSysAddr(), initHardware() 
II CALLED BY: Object declaration 

II 
************************************************************************ 

a2dClass::a2dClass(void) 
{ 

cerr << "constructing a2d1" << endl; 

II 

ctrlw=O; 
seqcnt=1; 
mode_sel=O; 
mode_acdc=1; 
delta_t=3; 
chcnt=1; 
samprate=O; 
sampindex=O; 
readConfigFile(); 
initSysAddr(); 
initHardware(); 

************************************************************************ 
II FUNCTION NAME: readConfigFile() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Reads the a2d.cfg file and sets variables 
I I RETURNS: void 
II CALLS: none 
II CALLED BY: a2d class constructor 
II 
************************************************************************ 

void a2dClass::readConfigFile() 
{ 

FILE *configFile; 
char junk [ 128] ; 

if ((configFile = fopen("a2d.cfg", "r")) ==NULL){ 
fprintf(stderr, "Cannot open file A2D.CFG ... \n"); 
exit (1); 
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fscanf ( configFi1e 1·" %x%s" 1 &seqcnt I junk); 
if (:>eqcnt==O II seqcnt>OxOF) { I I seqcnt must be 1-F (15 max in seq mode) 

cout << "\nseqcnt out of range in A2D.CFG ... \n"; 
exit (1); 

fscanf(configFi1e 1 "%d%s" 1&mode_se1 1junk); 
if (mode_se1 !=0 && mode_se1 != 1){ 

cput << "\nmode_se1 out of range in A2D.CFG ... \n"; 
exit(1); 

fscanf (configFi1e, "%d%s" 1 &mode_acdcl junk); 
if (mode_acdc !=0 && mode_acdc != 1){ 

cout << "\nmode_acdc out of range in A2D.CFG ... \n"; 

exit(1); 

fscanf(configFi1e 1 "%x%s" 1&chcnt 1jUnk); 
if (chcnt == 0 II chcnt > OxOF) { //chcnt must be 1-F (15 max in seq mode) 

cout << "\nchcnt out of range in A2D.CFG ... \n"; 
exit (1); 

fscanf (configFi1e 1 "%d%s"1 &de1ta_t, junk); 
if (de1ta_t < 3 I I de1ta_t > 8192) { 

cout << "\nde1ta_t out of range in A2D.CFG ... \n"; 
exit(l); 

if (de1ta_t < 6 && chcnt > 1) ( 
. cout << "\nde1ta_t must be > 6 for chcnt > 1. .. \n"; 
exit ( 1); 

fscanf (configFi1e 1 "%d%s" 1 &sampratel junk); 
if (samprate > 7){ 

cout << "\nsamprate out of range in A2D.CFG ... \n"; 
exit (1); 

fscanf(configFi1e 1 "%x%s" 1&sampindex,junk); 
if (sampindex > OxOF){ 

cout << "\nsampindex out of range in A2D.CFG ... \n"; 
exit ( 1); 

for (int i = 0; i < seqcnt; i++) ( 
fscanf(configFi1e 1"%x%x%x%x",&seqaddr[i],&chan[i]l&g10[i]l&g2[i]); 

fc1ose(configFi1e); 
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/!********************************************************************* 

II FUN9TION NAME: initSysAddr() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets system address mappings 
II RETURNS: void 
II CALLS: none 
II CALLED BY: a2d class constructor 
/!*****~*************************************************************** 

void a2dClass::initSysAddr(void) 
{ 

//clear BASE 
FIFO &= OxOF; 
MEM &= OxOF; 
STAT &= OxOF; 
COUNT &= OxOF; 
TIMERO &= OxOF; 
TIMER1 &= OxOF; 
TIMER2 &= OxOF; 
TIMERC &= OxOF; 
CNTL &= OxOF; 
DAC &= OxOF; 

//set 
FIFO 
MEM 
STAT 
COUNT 
TIMERO 
TIMER1 
TIMER2 
TIMERC 
CNTL 
DAC 

BASE 
I= BASE; 
I= BASE; 
I= BASE; 
I= BASE; 
I= BASE; 
I= BASE; 
I= BASE; 
I= BASE; 
I= BASE; 
I= BASE; 

II FIFO READ ADDRESS 
II SEQENCER MEM ADDRESS 
II STATUS REGISTER 
II SEQENCER ADDRESS PTR 
II TIMER 0 
II TIMER 1 
I I TIMER 2 
II TIMER CONTROL WORD 
II CONTROL REGISTER 
I I DAC DATA 

II FIFO READ ADDRESS 
II SEQENCER MEM ADDRESS 
II STATUS REGISTER 
II SEQENCER ADDRESS PTR 
I I TIMER 0 
II TIMER 1 
II TIMER 2 
II TIMER CONTROL WORD 
II CONTROL REGISTER 
II DAC DATA 

[00,01] 
[00,01] 
[02] 
[02] 
[04] 
[05] 
[06] 
[07] 
[08] 
[OC] 

[00,01] 
[00,01] 
[02] 
[02] 
[04] 
[05] 
[ 0 6] 
[07] 
[08] 
[OC] 

(R) 

(W) 

(R) 

(W) 

(R/W) 
(R/W) 
(R/W) 
(R/W) 
(R/W) 
(W) 

(R) 

(W) 

(R) 

(W) 

(R/W) 
(R/W) 
(R/W) 
(R/W) 
(R/W) 
(W) 

!!********************************************************************* 

II FUNCTION NAME: initA2d() 
II 
II 
II 
II 
II 
II 
II 
II 
II 

AUTHOR: Rick Roberts 
DATE: 13 November 1996 
DESCRIPTION: Performs necessary steps for initialization of the a2d 

or to reinitialize if acceleration parameters are in 
error due to a poor initial data transfer. 

RETURNS: void 
CALLS: setRmsOff(), setSequencer(), lockTrigger(), resetFifo(), 
unlockTrigger(), and setTrigger(), all in a2d.cpp 
CALLED BY: sampler class constructor 

//********************************************************************* 
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void a2dClass::initA2d(void) 

setRrnsOff(); 
setSequencer(); 
lockTrigger(); 
resetFifo(); 
setFifo(); 
unlockTrigger(); 
setT;rigger(); 

II********************************************************************* 

II FUNCTION NAME: reinitA2d() 
II AUTHOR: Rick Roberts 
II DATE: 13 November 1996 
II DESCRIPTION: Performs necessary steps for reinitialization of the a2d 

II or to reinitialize if acceleration parameters are in 

II error due to a poor initial data transfer. 

II RETURNS: void 
II CALLS: readConfigFile(), initSysAddr(), initHardware(),2 

II setRrnsOff(), setSequencer(), lockTrigger(), resetFifo(), 

II unlockTrigger(), and setTrigger(), all in a2d.cpp 

II CALLED BY: sampler class readSamples if a2d FIFO has overflowed 

//********************************************************************* 

void a2dClass::reinitA2d(void) 
{ 

readConfigFile(); 
initSysAddr(); 
initHardware(); 
setRrnsOff(); 
setSequencer(); 
lockTrigger(); 
resetFifo(); 
setFifo (); 
unlockTrigger(); 
setTrigger(); 

!!********************************************************************* 

II FUNCTION NAME: initHardware() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 

II DATE: 27 March 1996 
II DESCRIPTION: Sets the A2D Control Register to 0020 and sets the data 

II member, ctrlw=0060; initializes the module setup for 

II software triggering of the A2D. Programs each channel. 

I I RETURNS: void 
II CALLS: outpw() 
II CALLED BY: a2d class constructor 
/!********************************************************************* 
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void a2dClass::initHardware(void) 

outpw(CNTL,SET_TRG); 
ctrlw = SE~_TRGIRST_TRG; 

if (mode sel == 0) 
setSe () ; 

else 
setDiff (); 

for(int i = O;i < chcnt;i++){ 
setChannel(seqaddr[i],chan[i],g10[i],g2[i]); 

setAcDc(mode_acdc); 
initTiming(delta_t); 
setCount(chcnt); 

//********************************************************************* 

II FUNCTION NAME: printCtrlw() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II 
II 
II 
II 
II 
II 
II 

DESCRIPTION: Print A2D control register var, ctrlw. 
The variable is used to set a byte in the 
ESP A2D control register at BASE + 08hl09h 
Used during application code debug 

RETURNS: void 
CALLS: none 
CALLED BY: none 

!!********************************************************************* 

void a2dClass::printCtrlw(void) 
{ 

printf("ctrlw: %04x\t", ctrlw); 
for (int i=OxOO; i < Ox10; i++){ 

printf("%i",((ctrlw>>0x0F-i) & 1)); 
if ((i+1)%4==0) 

printf(" "); 
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/!***********************~********************************************* 

II FUNCTION NAME: setSe() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets ctrlw for single ended mode and writes ctrlw to 
II A2D Control Register 
II RETURNS: void 
II CALuS: outpw() 
II CAL~ED BY: initHardware() 
II********************************************************************* 

void a2dClass::setSe(void) 
{ 

ctrlw &= -DIFF; 
outpw(CNTL,ctrlw); 

II********************************************************************* 

II FUNCTION NAME: setDiff() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets ctrlw for differential mode and writes ctrlw to 
II A2D Control Register 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: initHardware() 
/!********************************************************************* 

void a2dClass::setDiff(void) 
{ 

ctrlw I= DIFF; 
outpw(CNTL,ctrlw); 

!!*******************************************~************************* 

II FUNCTION NAME: setChannel() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Loads sequencer memory with channel data 
II CALLS: progSeq(), outpw(), runSeq() 
II CALLED BY: initHardware() 
II VARIABLES: seq- sequencer number 
II ch -channel number 
II g10 - x10 gain value 
II g2 - x2 gain value 
!!********************************************************************* 
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void a2dClass::setChannel(unsigned seq,unsigned ch,unsigned g10, 
unsigned g2) 

unsigned d = 0; 

setProgSeq(); 
outpw(COUNT,seq); 

"//load sequencer memory 
d I= ch<<8; 
d I= ( g2<<12) ; 
d I= (g10<<14); 
outpw (MEM, d) ; 

setRunSeq(); 

II set sequencer program mode 
II set sequencer address 

II channel 
II gain X2 
II gain X10 
II load sequencer 

II set sequencer run mode 

/!********************************************************************* 
II FUNCTION NAME: setProgSeg() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
//.DATE: 27 March 1996 
II DESCRIPTION: Sets sequencer to program mode 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: setChannel() 
//********************************************************************* 

void a2dClass::setProgSeq(void) 
{ 

ctrlw I= PRG_SEQ; 
outpw(CNTL,ctrlw); 

!!********************************************************************* 
II FUNCTION NAME: setRunSeq() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets sequencer to run mode 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
/!********************************************************************* 

void a2dClass::setRunSeq(void) 
{ 

ctrlw &= -PRG_SEQ; 
outpw(CNTL,ctrlw); 
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!!*******************~****·********************************************* 

II FUNCTION NAME: setCount() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Loads sequencer address counter with number of channels 
II to scan. 
I I RETURNS: vo~ . : 
II CALLS: outpw(), setProgSeq(), setRunSeq() 
II CALLED BY: initHardware() 
II VARIABLES: nch -number of channels to sequence 
!!********************************************************************* 

void a2dClass::setCount(unsigned nch) 
{ 

nch=nch<<4; 
outpw(COUNT,nch); 
setProgSeq(); 
setRunSeq(); 

II put in upper nibble 
II out to register 
II reset sequencer 
II put it in run mode 

//********************************************************************* 

I I FUNCTION NAME.: setAcDc () 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets AC or DC Coupling 
II RETURNS: void 
II CALLS: outpw(} 
II CALLED BY: initHardware() 
II VARIABLES: acdc -holds coupling value 
II********************************************************************* 

void a2dClass::setAcDc(unsigned acdc) 
{ 

if (acdc) 
ctrlw I= ACDC; II acdc=1 -> 

else 
ctrlw &= -ACDC; II acdc=O -> 

outpw(CNTL,ctrlw); 

DC 

AC 

/!********************************************************************* 
II FUNCTION NAME: lockTrigger() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Prevents triggering 
I I RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
//********************************************************************* 
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void a2dClass:: lockTrigger (void) 

ctrlw &= -RST_TRG; 
outpw(CNTL,ctrlw); 

//****~**************************************************************** 

II FUNCTION NAME: unlockTrigger() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Allow the triger to function 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
II********************************************************************* 

void a2dClass::unlockTrigger(void) 
{ 

ctrlw I= RST_TRGISET_TRG; 
outpw(CNTL,ctrlw); 

/!********************************************************************* 

II FUNCTION NAME: setTrigger() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Toggle the trigger (software triggering) 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
//********************************************************************* 

void a2dClass::setTrigger(void) 
{ 

outpw(CNTL,ctrlw&-SET_TRGIRST_TRG); 
outpw(CNTL,ctrlwl SET_TRGIRST_TRG); 

/!********************************************************************* 
II FUNCTION NAME: resetTrigger() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Clears the trigger 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
/!********************************************************************* 
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void a2dClass::resetTrigger(void) 

outpw(CNTL,ctrlwiSET_TRG&-RST_TRG); 
outpw(CNTL,ctrlwiSET_TRGI RST_TRG); 

II*****~*************************************************************** 

II FUNCTION NAME: setRmsOn() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Switches in the RMS measurement chip 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
II********************************************************************* 

void a2dClass::setRmsOn(void) 
{ 

ctrlw I= RMS; 
outpw(CNTL,ctrlw); 

//********************************************************************* 

II FUNCTION NAME: setRmsOff() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Switches out RMS measurement chip 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
//********************************************************************* 

void a2dClass::setRmsOff(void) 
{ 

ctrlw &= -RMS; 
outpw(CNTL,ctrlw); 

!/********************************************************************* 
II FUNCTION NAME: setSequencer() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets the A2D module to sequencer mode 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
/!********************************************************************* 
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void a2dClass::setSequencer(void) 
{ 

ctrlw I= SAM_SEQi 
outpw(CNTL,ctrlw)i 

!!****~**************************************************************** 

II FUNCTION NAME: setSamplerRate() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets the A2D module to sampler mode 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
II VARIABLES: rate -sampler rate 
/!********************************************************************~ 

void a2dClass::setSamplerRate(unsigned rate) 
{ 

ctrlw &= -SAM_SEQi //Set to sampler mode 
ctrlw &= CLRRATEi //Clear previous rate 
ctrlw I= ratei //Set new rate 
outpw(CNTL,ctrlw)i //Set Control Word 

to 000 

//********************************************************************* 
II FUNCTION NAME: gate1out0n() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Set GATE10UT bit of control word high 
II RETURNS: void 
I I CALLS: outpw () 
II CALLED BY: main 
/!********************************************************************* 

void a2dClass::gate1outOn(void) 
{ 

ctrlw I= GATE10UTi 
outpw(CNTL,ctrlw)i 
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/!***********************~********************************************* 

II F~CTION NAME: gate1outOff() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
I I DESCRIPTION: Set GATE10UT bit of control •.vord low 
II RETURNS: void 
I I CALLS: outpw () 
II CALliED BY: main 
!!****~**************************************************************** 

void a2dClass::gate1outOff(void) 
{ 

ctrlw &= -GATE10UT; 
outpw(CNTL,ctrlw); 

II********************************************************************* 

II FUNCTION NAME: squareWaveTimer1() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets timer channel 1 to square-wave input 
II RETURNS: void 
I I CALLS : out p ( ) 
II CALLED BY: main 
II VARIABLES: dt-micro seconds per period (1 to 8192) 
II assuming 8 MHz clock input 
II ch-timer channel 1 
II ph-local variable 
/I pl-local variable 
!!********************************************************************* 

void a2dClass::squareWaveTimer1(unsigned dt) 
{ 

char 

pl 
ph 

ph,pl; 

(dt*8)&0xFF; 
(dt*8)>>8; 

outp(TIMERC,Ox76); 
outp(TIMER1,pl); 
outp(TIMER1,ph); 

II 8 CLOCKS PER uS 

II initialize timer 
II dt uS delay 
II with 8 MHz clock 
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!!***********************~********************************************* 

II FUN~TION NAME: initTiming() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Initialize the A2D timing using timer 2 
II RETURNS: void 
II CALLS: outp() 
II CALLED BY: initHardware() 
II VAR~ABLES: dt -number of micro seconds (3 to 2730) 
/!********************************************************************* 

void a2dClass::initTiming(unsigned dt) 
{ 

char 

pl 
ph 

ph,pl; 

(dt*8)&0xFF; 
(dt*8)>>8; 

outp(TIMERC,OxB6); 
outp(TIMER2,pl); 
outp(TIMER2,ph); 

II 8 CLOCKS PER uS 

II initialize timer2 
II dt uS delay 
II with 8 MHz clock 

!!********************************************************************* 
II FUNCTION NAME: resetFifo() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Rewind FIFO to beginning of memory 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
!!********************************************************************* 

void a2dClass::resetFifo(void) 
{ 

ctrlw &= -RST_FIFO; 
outpw(CNTL,ctrlw); 

!!********************************************************************* 
II FUNCTION NAME: setFifo() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Enable FIFO to acquire data 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
!!********************************************************************* 
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void a2dClass::setFifo(void) 
{ 

ctrlw I= RST_FIFO; 
outpw(CNTL,ctrlw); 

/!********************************************************************* 

II FUNC~ION NAME: getFifoStatus() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Returns FIFO status 
II RETURNS: RETURNS: 6 - empty 
II 5 -half full 
II 1 - full 
II CALLS: inpw() 
II CALLED BY: main 
//********************************************************************* 

unsigned a2dClass::getFifoStatus(void) 
{ 

return (inpw(STAT)&7); 

/!********************************************************************* 

II FUNCTION NAME: getFifoData() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Returns next data word stored in FIFO 
II RETURNS: 16bits of data. Lower 12 are A2D data 
II CALLS: inpw() 
II CALLED BY: a2d class constructor 
II********************************************************************* 

signed a2dClass::getFifoData(void) 
{ 

return (inpw(FIFO)&OxOFFF); //Get data and mask upper nibble 

!!********************************************************************* 

II FUNCTION NAME: setintRate() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Program timer channel 0 to set the desired interrupt rate 
II RETURNS: void 
II CALLS: outp() 
II CALLED BY: main 
II VARIABLES: intrate-micro sees per period (1 to 8192) 
II assuming 8 MHz clock inp~t 
/!********************************************************************* 
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void a2dClass::setintRate(unsigned intrate) 

{ 
outp(TIMERC,Ox36); 
outp(TIMERO, (intrate*8)&0xFF}; 
outp(TIMERO, (intrate*8)>>8); 

II Set timer 0 to mode 3 
II Load Least Significant Byte 
II Load Most Significant Byte 

//*****~*************************************************************** 

II FUNCTION NAME: intOff() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 

II DATE: 27 March 1996 
II DESCRIPTION: Locksout the interupt request line 

II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
!!********************************************************************* 

void a2dClass::intOff(void) 
{ 

ctrlw &= -INT_EN; 
outpw(CNTL,ctrlw); 

II INT_EN is active high 

/!********************************************************************* 

II FUNCTION NAME: intOn() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 

II DATE: 27 March 1996 
II DESCRIPTION: Enables system interuppt request 

II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
/!****************************************************~**************** 

void a2dClass::intOn(void) 

{ 
ctrlw I= INT_EN; 
outpw(CNTL,ctrlw); 

II INT_EN is active high 

/!********************************************************************* 

II FUNCTION NAME: setTriggerLevel() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 

II DATE: 27 March 1996 
II DESCRIPTION: Sets the trigger level 

II RETURNS: void 
II CALLS: outp() 
II CALLED BY: main 
II VARIABLES: tl-t~igger level (0=-10V, 128=0V, 255=+10V) 

!!********************************************************************* 
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void a2dClass::setTrigger.Level(unsigned tl) 
{ 

outp(DAC,tl); 

!!********************************************************************* 

II FUNGTION NAME: setTriggerPosition() 
II AUT~OR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Sets falling or rising edge trigger 

II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
II VARIABLES: tp: O=falling, 1=rising 
/!********************************************************************* 

void a2dClass::setTriggerPosition(unsigned tp) 
{ 

ctrlw &= -TRG_POS; //Clear previous TRG_POS 
ctrlw I= (tp)?TRG_POS:O; //Evaluate tp and set ctrlw 

outp(CNTL,ctrlw); 

!/********************************************************************* 

II FUNCTION NAME: zeroOffset() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 
II DATE: 27 March 1996 
II DESCRIPTION: Calibrates zero offset error 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: a2d class constructor 
/!********************************************************************* 

void a2dClass::zeroOffset(void) 
{ 

unsigned d=O,i,g2,g10; 
float sum; 
float 
float 

offsetErr[4] [4]; 
bits [4] [4]; 

unsigned gains10[4] 
unsigned gains2[4] 

{1,10,100,100}; 
{1, 2, 4, 8}; 

clrscr (); 
printf("\n\tG10\tG2\t OFFSET\t\t BITS"); 

for(g10 = 0; g10 < 4; g10++) 
for(g2 = 0; g2 < 4; g2++) 

printf ( "\n\t%d\t%d\t+X.XXXXXX\t+XX.X", glO, g2); 
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setRrnsOff(); 
setAcDc(O); 
setSequencer(); 
initTiroing(3); 
setChanne~(O,O,g10,g2); 

grndinput(); 
delay(5); //Let new gain values stabilize 

whi~e (!kbhit()){ 
for (g10 = 0; g10 < 4; g10++){ 

for (g2 = 0; g2 < 4; g2++){ 
setChannel(O,O,g10,g2); 
grndinput(); 
lockTrigger(); 
resetFifo(); 
setFifo (); 
unlockTrigger(); 
setTrigger(); 
delay(l); 
while (getFifoStatus() !=FULL); 

lockTrigger(); 

for (i = 0, sum= 0.0; i < FIFOSIZE; i++){ 
d=getFifoData(); 
sum+=(float)d*l0/2048; 

offsetErr[glO] [g2]=((float) (suro/FIFOSIZE)-10)/ 
(float) (gains10[g10]*gains2[g2]); 

bits[g10) [g2] = 
(float) (offsetErr[glO] [g2)*4096/20*gains10[g10]*gains2[g2]); 

clrscr(); 
printf("\n\tG10\tG2\t OFFSET\t\t BITS"); 
for (g10 = 0; g10 < 4; g10++){ 

for (g2 = 0; g2 < 4; g2++){ 
printf("\n\t%d\t%d\t%+1.6f\t%+04.1f",g10,g2, 

offsetErr[glO] [g2],bits[g10] [g2]); 

freeinput(); 
getch(); 
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/!***********************~********************************************* 

II FUNCTION NAME: grndinput() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 

II DATE: 27 March 1996 
II DESCRIPTION: Grounds the two diff input for zero adjust 

II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
II********************************************************************* 

void a2dClass::grndinput(void) 
{ 

ctrlw I= CAL; 
outpw(CNTL,ctrlw); 

II********************************************************************* 

II FUNCTION NAME: freeinput() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 

II DATE: 27 March 1996 
II DESCRIPTION: Ungrounds the two diff inputs 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
!!********************************************************************* 

void a2dClass::freeinput(void) 
{ 

ctrlw &= -CAL; 
outpw(CNTL,ctrlw); 

!!********************************************************************* 

II FUNCTION NAME: zeroAdjust() 
II AUTHOR: Randy Walker, based on [MAXUS 95] code 

II DATE: 27 March 1996 
II DESCRIPTION: Adjust the trimmer on the PGA 
II RETURNS: void 
II CALLS: outpw() 
II CALLED BY: main 
!!********************************************************************* 

void a2dClass::zeroAdjust(void) 
{ 

int i; 
unsigned d; 
float sum,offsetErr; 

clrscr(); 
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} 

printf("\n\nADJUST THE TRIM POT FOR 0.0 OFFSET\n\n"); 

setRmsOff(); 
setAcDc(O); 
setSequencer(); 
initTirning(3); 

whil-e (! kbhit ()) { 
~etChannel(0,0,3,3); 

grndinput(); 
lockTrigger(); 
resetFifo(); 
setFifo (); 
unlockTrigger(); 
setTrigger(); 
while(getFifoStatus() !=FULL); 
lockTrigger(); 

for (i = 0, sum= 0.0; i < FIFOSIZE; i++) { 
d = getFifoData(); 
sum += (float)d*1012048; 

offsetErr=((float) (surniFIFOSIZE)-10)18000.0; 

printf("\tTHE MEASURED DC OFFSET IS: %+8.6f\r",offsetErr); 

freeinput{); 
getch(); 

II end of file a2d.cpp 
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APPENDIX B: Serial Port Communications Source Code (C++) 

A. GLOBALS.H 

#ifndef _GLOBALS_H 
#define _GLOBALS_H 

#include <dos.h> 

II types 
typedef unsigned charBYTE; 
typedef unsigned short WORD; 
typedef unsigned long DWORD; 

#define MEM(seg,ofs) 
#define MEMw(seg,ofs) 

(*((BYTE far*)MK_FP(seg,ofs))) 
(*((WORD far*)MK_FP(seg,ofs))) 

enum Boolean {FALSE, TRUE}; 

II basic bit twiddles 
#define set(bit) 
#define setb(data,bit) 
#define clrb(data,bit) 
#define setbit(data,bit) 
#define clrbit(data,bit) 

II specific to ports 
#define setportbit(reg,bit) 
#define clrportbit(reg,bit) 

(1<<bit) 
(data I set(bit)) 
(data & !set(bit)) 
(data setb(data,bit)) 
(data clrb(data,bit)) 

(outportb(reg,setb(inportb(reg),bit))) 
(outportb(reg,clrb(inportb(reg),bit))) 

II navigation conversion factors and useful global variables 
#define MSECS_TO_DEGREES (1.01(1000.0 * 3600.0)) II time conversion 
factors 
#define DEGREES_TO_MSECS 3600000.0 
#define MINS_TO_MSECS 60000.0 

II Conversion constants for location of 36:35:42.2N and 121:52:28.7W 
#define LatToFt 0.10134 II converts degrees Latitude to ft 
#define ~0ngToFt 0.08156 
#define HemisphereConversion -1 

II converts degrees Longitude toft 
II -1 if west of of Greenwich 

#define RADIANMAGVAR 0.261799 II Local Magnetic variation in radians 

#define radToDeg 
#define degToRad 

#end if 

( 18 0 . 0 IM_PI ) 
(M_PII180.0) 
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B. BUFFER.H 

#ifndef _BUFFER_H 
#define _BUFFER_H 

#include "toetypes.h" 
#include "globals.h" 

#define ONE (unsigned short)1 

!*********************************************************************** 

CLASS: bufferClass 
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 

11 July 1995 DATE: 
FUNCTION: Base class for use as a polymorphic reference in the 

serial port code which defines a buffer to be used in 

serial port communications. 

************************************************************************ 

class bufferClass 

public: 

II Constructor 
bufferClass(WORD sz); 
-bufferClass() (} 

II Checks for the arrival of new characters in the buffer 
Boolean hasData() (return Boolean(putPtr != getPtr); 

II How much of the Buffer is used (rounded percentage 0 - 100) 
int capacityUsed(); 

Boolean Get(BYTE&); 
void Add (BYTE); 

II read from the buffer 
II write to the buffer 

protected: 

} i 

#endif 

II Increment the pointer to next position 
void inc(WORD& index) ( if (++index size) index = 0; } 

WORD before(WORD index) II decrement the pointer 

(return ((index== 0) ? size- ONE: index- ONE);} 
WORD getPtr; II Location of unread data 
WORD putPtr; II Location to read data to 
WORD size; II Size of the buffer in bytes 
BYTE* buf; 
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C. BUFFER.CPP 

#include <iostrearn.h> 
#include <stdio.h> 

#include "globals.h" 
#include "buffer.h" 

II****~***************************************************************** 

II FUNCTION NAME: 
I I AUTHOR: 
I I DATE: 
II DESCRIPTION: 
II RETURNS: 
I I CALLS: 
II CALLED BY: 
II 

bufferClass constructor 
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 
11 July 1995 
Instantiates a buffer 
void 
none 

cornpBuffer, GPSbuffer, bufferedSerialPort constructors 

************************************************************************ 

bufferClass::bufferClass(WORD sz) : getPtr(O), putPtr(O), size(sz) 
{ 

buf =new BYTE[size]; 

II*****~**************************************************************** 

II FUNCTION NAME: 
I I AUTHOR: 
I I DATE: 
II DESCRIPTION: 
I I RETURNS: 
II CALLS: 
II CALLED BY: 
II 

capacityUsed () 
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 
11 July 1995 
Returns the rounded percentage of the buffer used. 
void 
none 
bufferedSerialPort::processinterrupt 

************************************************************************ 

int bufferClass::capacityUsed() 
{ 

int cap = (putPtr + size) % size - getPtr; 
return 100 * cap I size; 
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/!******************~*************************************************** 

II FUNCTION NAME: 

II AUTHOR: 
II DATE: 
II DESCRIPTION: 

II RETURNS: 

II CALLS: 
II CALLED BY: 
II 

Get 
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 

11 July 1995 
Reads a character from the buffer 
Boolean 
hasData() 
GPSbufferClass, coropBufferClass 

************************************************************************ 

Boolean bufferClass::Get(BYTE& data) 
{ 

if (hasData ()) 
data= buf[getPtr]; 
inc(getPtr); 
return TRUE; 

return FALSE; 

II********************************************************************** 

II FUNCTION NAME: Add 

II AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 

II DATE: 11 July 1995 

II DESCRIPTION: Writes a character to the buffer and checks for buffer 

II overflow 

II RETURNS: void 

II CALLS: has Data 

II CALLED BY: GPSbufferClass, coropBufferClass 

II 
************************************************************************ 

void bufferClass::Add(BYTE ch) 
{ 

buf[putPtr] = ch; 
inc(putPtr); 
if {!hasData()) II if no data after adding data, it overflowed 

cerr << "\nError: byteBuffer overflow\n"; 

} 

II end of file buffer.cpp 
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D. GPSBUFF.H 

#ifndef _GPSBUFF_H 
#define _GPSBUFF_H 

#include "globals.h" 
#include "toetypes.h" 
#include "buffer.h" 

#define GPSBLOCKS 4 

#define LINE_FEED 10 
#define CARR_ RETURN 13 

I*********************************************************************** 

Class buffers GPS position messages via serial port communications. 

Uses a multiple buffer system in which each buffer is capable of 

holding a single position message. Buffers are filled and processed 

sequentially in a round robin fashion. Messages are checked for 

validity only upon attempted reads from the buffer. 

***********************************************************************! 

class gpsBufferClass : public bufferClass 

use 

} ; 

public: 

gpsBufferClass(BYTE GPSblocks = GPSBLOCKS); 

-gpsBufferClass() { delete [] block; } 

Boolean hasData(); 
Boolean Get(BYTE&) 
Boolean Get(GPSdata); 

void Add(BYTE ch); 

protected: 

II a complete structure is ready 

return FALSE; } 
II fill in a complete structure 

II build the structure byte by byte 

Boolean validHeader(GPSdata); 
GPSdata *block; 

II check a block for valid header 
II hold the buffered GPS data 

WORD current, last; II current and last G?S block in 

BYTE *putPlace; II for the next character received 

#end if 
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E. GPSBUFF.CPP 

#include <iostream.h> 
#include <stdio.h> 

#include "gpsbuff.h" 

I 
************************************************************************ 

PROGRAM: 
AUTHOR: 
DATE: 

gpsBuffer (Constructor) 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Allocates message buffers, indicate that no data has been 

received by equalizing current and last and set position 

into which initial character will be read. 

RETURNS: nothing. 
CALLED BY: navigator class (nav.h) 

CALLS: none. 

***********************************************************************/ 

gpsBufferClass::gpsBufferClass(BYTE GPSblocks) : current(O), last(O), 

bufferClass(GPSblocks) II Call to base class constructor 

cerr << "constructing gpsBuffer" << endl; 
block= new GPSdata[GPSblocks]; II Create an array of GPSdata elements 

putPlace = &(block[current] [0]); II Set the place for first character 

/*********************************************************************** 

PROGRAM: Add 
AUTHOR: 
DATE: 

Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Interrupt driven routine which writes incoming characters 

into the gps buffers 
RETURNS: nothing. 
CALLED BY: interupt driven by bufferedSerialPort 

CALLS: none. 

***********************************************************************! 

void gpsBufferClass::Add(BYTE data) 
{ 

static BYTE lastChar(data); 
static Boolean lfFlag = FALSE; 

II Holds last for <Cr> <lf> detection 

II True when message end is detected 

if (lfFlag && (data 
last = current; 
inc(current); 

'@')) { II Is a new message starting? 
II Set last to buffer with newest message. 

II Set current to the next buffer 
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II Set putPlace to the beginning of the next buffer. 
putPlace = &(block[current] [0]); 
lfFlag =FALSE; //reset for end of next message. 

*putPlace++ = data; II Write character into the buffer. 

//Has the end of a message been received? 
if (_(lastChar == CARR_RETURN) && (data == LINE_FEED)) 

lfFlag = TRUE; 

lastChar = data; 
detection 

//Save last character for <cr> <lf> 

/*********************************************************************** 

PROGRAM: Get 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Checks to see if a new message has arrived, copies it into 

the input argument data and returns a flag to indicate 
whether a new message was received. 

RETURNS: TRUE, if a new valid position has been received. 
FALSE, otherwise 

CALLED BY: navPosit (nav.cpp) 
initializeNavigator (nav.cpp) 

CALLS: gpsBufferClass::hasData 

***********************************************************************/ 

Boolean gpsBufferClass::Get(GPSdata data) 
{ 

if (hasData()) II Has a new valid message been 
received. 

II Copy the message out of the buffer. 
memcpy (data, block+ last, GPSBLOCKSIZE); 
last = current; 
return TRUE; 

else { 
return FALSE; 

II Indicate that this message has been read. 
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!************************~********************************************** 

PROGRAM: hasData 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Determines whether a new message has been received and 

checks to see if it has a valid header. 
RETURNS: TRUE, if a new valid message has been received. 
CAL4ED BY: gpsBufferClass::Get (buffer.cpp) 
CALLS: validHeader (buffer.cpp) 

***********************************************************************/ 

Boolean gpsBufferClass::hasData() 
{ 

II Has a new message with a valid header been received 
if (last != current) { 

if (validHeader(block[last])) 
return TRUE; 

else { 
return FALSE; 

return FALSE; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

validHeader 
Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Checks to see if a message has the proper header for a 
Motorola position message. (@@Ea) 

RETURNS: TRUE, if the header is valid. FALSE, otherwise. 
CALLED BY: gpsBufferClass::hasData (buffer.cpp) 
CALLS: none. 

***********************************************************************/ 

Boolean gpsBufferClass::validHeader(GPSdata dataPtr) 
{ 

if ( (dataPtr[O] 
(dataPtr[2] 

return TRUE; 

else { 
return FALSE; 

1@1 ) && (dataPtr[1] 
1 E 1

) && (dataPtr[3] 

II end of file gpsbuff.cpp 
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F. COMPBUFF.H 

#ifndef _COMPBUFF_H 
#define _COMPBUFF_H 

#include "toetypes.h" 
#include "globals.h" 
#include "buffer.h" 

#define COMPBLOCKS 8 
#define LINE_FEED 10 
#define CARR_RETURN 13 
#define g 103 
#define 0 111 

I*********************************************************************** 

Class buffers COMPASS messages received via serial port communications. 

Uses a multiple buffer system in which each buffer is capable of 

holding a single message. Buffers are filled and processed 

sequentially in a round robin fashion. Messages are checked for 

validity only upon attempted reads from the buffer. 

***********************************************************************/ 

class compBufferClass : public bufferClass 

public: 

compBufferClass(BYTE compBlocks = COMPBLOCKS); 

-compBufferClass() {delete [] block;} 

Boolean hasData(); II a complete structure is ready 

Boolean Get(BYTE&) {return FALSE;} II satisfy inheritence 

Boolean Get(compData); II get a complete structure filled in 

void Add(BYTE ch); II build the structure byte by byte 

protected: II for inheritance 

} ; 

Boolean validHeader(compData); 
compData *block; 
WORD current, last; 

BYTE *putPlace; 

#endif 

II check a block for valid header 
II points to array of compass msgs 

II current and last comp block in use 

II for the next character received 
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G. COMPBUFF.CPP · 

#include <iostream.h> 
#include <stdio.h> 

#include "compbuff.h" 

/******·***************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

compBuffer (Constructor) 
Eric Bachmann, Randy Walker 
28 April 1996 

FUNCTION: Allocates message buffers, indicates that no data has been 

received by equalizing current and last and sets the position 

into which initial character will be read. 

RETURNS: nothing. 

CALLED BY: compassClass (compass.h) 

CALLS: none. 

***********************************************************************/ 

compBufferClass::compBufferClass(BYTE compBlocks): current(O), last(O), 

bufferClass(compBlocks) II Call to base class constructor 

cerr << "compBuffer constructor called" << endl; 

block= new compData[compBlocks]; II Create array of message buffers 

putPlace = &(block[current] [O]); II Set position for first character 

cerr << "compBuffer constructed." << endl; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

compBuffer: :Add 
Eric Bachmann, Randy Walker 
28 April 1996 

FUNCTION: Interrupt driven routine which writes incoming characters 

into the compass message buffers 

RETURNS: nothing. 
CALLED BY: interrupt driven by compassPort 

CALLS: none. 
***********************~***********************************************/ 
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void compBufferClass::Add(BYTE data) ( 

static Boolean lfFlag =FALSE; //True, if message end detected 
static int messageCount(O); //Counts characters in current message 

if (lfFlag && (data 

last = current; 
~nc(current); 

I$ I ) ) II Is a new message starting? 

II Set last to buffer with newest message. 
II Set current to the next buffer 

II Set putPlace to the beginning of the next buffer. 
putPlace = &(block[current] [0]); 
lfFlag =FALSE; // reset for end of next message. 

*putPlace++ = data; 
messageCount++; 

II Write character into the buffer. 

//Has the end of a message been received (<cr><lf>)? 
if (data == LINE_FEED) 

lfFlag = TRUE; 

!*********************************************************************** 

PROGRAM: compBuffer::Get 
AUTHOR: Eric Bachmann, Randy Walker 
DATE: 28 April 1996 
FUNCTION: Checks to see if a new message has arrived, copies it 

into the input argument data and returns a flag to indicate 
whether a new message was received. 

RETURNS: TRUE, if a new valid position has been received. 
FALSE, otherwise 

CALLED BY: compass.cpp 
CALLS: compBuffer::hasData 

***********************************************************************/ 

Boolean compBufferClass::Get(compData data) 
{ 

if (hasData()) //Has a new valid message been received. 
II Copy the message out of the buffer. 
memcpy (data, block+ last, COMPSIZE); 
last = current; 
return TRUE; 

else { 
return FALSE; 

II Indicate that this message has been read. 
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!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

compBuffer::hasData 
Eric Bachmann, Randy Walker 
28 April 1996 
Determines whether a new message has been received and 
checks to see if it has a valid header. 

RETURNS: TRUE, if a new valid message has been received. 
CALLED BY: compBuffer::Get 
CALLS: validHeader (compBuffer.cpp) 

***********************************************************************! 

Boolean compBufferClass::hasData() 
{ 

if ((last !=current) && (validHeader(block[last]))) 

return TRUE; 

else { 
return FALSE; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

RETURNS: 
CALLED BY: 
CALLS: 

validHeader 
Eric Bachmann, Dave Gay 
11 July 1995 
Checks to see if a message has the proper header for a 
compass message. ($C) 
TRUE, if the header is valid. FALSE, otherwise. 
compBuffer::hasData 
none. 

***********************************************************************/ 

Boolean compBufferClass::validHeader(compData dataPtr) 
{ 

if ((dataPtr[O] == '$') && (dataPtr[l] == 'C')) 
return TRUE; 

else { 
return FALSE; 

//end of file compbuff.cpp 
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H. SERIAL.H 

#ifndef _SERIAL_H 
#define _SERIAL_H 

#include <dos.h> 
#include <stdio.h> 
#includ~ "globals.h" 

#define ALMOST_FULL 80 II %full to turn off DTR (user defines) 

II leave the following alone -hardware specific 

enum COMport {COM1=1, COM2, COM3, COM4}; 

enum BaudRate {b300, b1200, b2400 1 b4800, b9600}; 

enum ParityType {ERROR=-1, NOPARITY, ODD, EVEN}; 

enum handShake {NONE, RTS_CTS, XON_XOFF}; 

enum Shake {off, on}; 
enum interrupt Type {rx_rdy, tx_rdy, line_stat, modem_stat}; 

#define BIOSMEMSEG Ox40 
#define DLAB Ox80 
#define IRQ PORT Ox21 
#define EOI outportb(Ox20,0x20) 

#define COM1base MEMW(BIOSMEMSEG,O) 

#define COM2base MEMW(BIOSMEMSEG,2) 

#define TX (portBase) 
#define RX (portBase) 
#define IER (portBase+1) 
#define IIR (portBase+2) 
#define LCR (portBase+3) 
#define MCR (portBase+4) 

#define LSR ( portBas e+ 5 ) 
#define MSR (portBase+6) 
#define LO_LATCH (portBase) 
#define HI_LATCH (portBase+1) 

!*********************************************************************** 

CLASS: 
AUTHOR: 
DATE: 
FUNCTION: 

serialPortClass 
Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 
11 July 1995, last modified January 1997 
Parent class, defines a simple serial port. 

***********************************************************************/ 

class serialPortClass 

public: 
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serialPortClass(COMport port, BaudRate baud, ParityType parity, 
BYTE wordlen, BYTE stopbits, handShake hs); 

-serialPortClass() {) 

Boolean 
Boolean 

Send(BYTE data); 
Get(BYTE& data); 

inline Boolean dataReady(); 
~oolean statusChanged() 

{ return Boolean ( ( ifportbit (MSR, 0) I I ifportbit (MSR, 1))) ; 

II the rest are only if handshake is specified as RTS_CTS 
Boolean isCTSon() return ifportbit(MSR,4); 
Boolean isDSRon() return ifportbit(MSR,5); 

void 
void 
void 

void 
void 
void 

setDTRon() 
setDTRoff () 
toggleDTR(); 

setRTSon() 
setRTSoff () 
toggleRTS(); 

setportbit(MCR,O); 
clrportbit(MCR,O); 

setportbit(MCR,l); 
clrportbit(MCR,l) ;-

protected: 

) ; 

#end if 

WORD 
handShake 
Shake 

inline Boolean 
inline void 

portBase; 
ShakeType; 
DTRstate, RTSstate; 

ifportbit(WORD, BYTE); 
toggle(Shake&); 
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I. SERIAL.CPP 

#include <iostream.h> 
#include <stdio.h> 
#include "serial.h" 

II Usage Note: Because of the interrupt handlers used, you MUST call 

II your compassPort & gpsPort objects port2 & port1 so the 

II r~ght handler gets called and can properly service the interrupt. 

!*********************************************************************** 

PROGRAM: serialPortClass (Constructor) 
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 

DATE: 11 July 1995, last modified January 1997 

FUNCTION: Initializes one of the Serial Ports. 

1) Determines the base IIO port address for the given COM port 

2) Sets the 8259 IRQ mask value 
3) Initializes the port parameters - baud, parity, etc. 

4) Calls the routine to initialize interrupt handling 

5) Enables DTR and RTS, indicating ready to go 

********************~**************************************************/ 

serialPortClass::serialPortClass(COMport port, BaudRate speed, 

ParityType parity, BYTE wordlen, 
BYTE stopbits, handShake hs) 
DTRstate(off), RTSstate(off), ShakeType(hs) 

cerr << "serialPort constructor called" << endl; 

delay ( 500); 

switch (port) 
case COM1: portBase 

case COM2: portBase 

II switch 

COM1base; 
break; 

COM2base; 
break; 

II initialize appropriate port base 

const WORD bauddiv[] {Ox180, Ox60, Ox30, Ox18, OxC}; 

II Change 1 
outportb(IER,O); II disable UART interrupts 

(void)inportb(LSR); 
(void)inportb(MSR); 
(void)inportb(IIR); 
(void)inportb(RX); 

outportb(LCR,DLAB); II set DLAB so can set baud rate (read only port) 

outportb(LO_LATCH,bauddiv[speed] & OxFF); 

outportb(HI_LATCH, (bauddiv[speed] & OxFFOO) >> 8); 

setportbit(MCR,3); II turn OUT2 on 
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BYTE opt = 0; 
{ if .(parity ! = NOPARITY) 

setbit(opt,3); II enable parity 
if (parity == EVEN) 

setbit(opt,4); 

II set even parity bit. if odd, leave bit 0 

} 
II now set the word length. len of 5 sets both bits 0 and 1 to 
II 0

1 
6 sets to 01, 7 to 10 and 8 to 11 

opt I= wordlen-5; 
opt I= --stopbits << 2; 
outportb(LCR,opt); 

if (ShakeType == RTS_CTS) 
setDTRon(); 
setRTSon(); 

cerr << "serialPort constructed" << endl; 

!*********************************************************************** 

PROGRAM: Get 
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Gets a byte from the port. Returns true if there's one 

there, and fills in the byte parameter. If there's no 
character, the parameter is left alone, and false is 
returned. 

***********************************************************************I 

Boolean serialPortClass::Get(BYTE& aata) 
{ 

if (dataReady()) 
data= inportb(RX); 
return TRUE; 

else 
return FALSE; 

II make sure there's a char there 
II read character from 8250 
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!*******************~***~**~******************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

Send 
Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 
Outputs a single character to the port. Returns Boolean 
status indicating whether successful 

***********************************************************************I 

Boolean serialPortClass::Send(BYTE data) 
{ 

II 

while (! (ifportbit(LSR,5))) {}; II wait until THR ready 

switch (ShakeType) 

case NONE: 

case RTS_CTS: 

case XON_XOFF: 
default: 

return FALSE; 

outportb(TX,data); 
return TRUE; 

if (isCTSon() && isDSRon()) 
outportb(TX,data); 
return TRUE; 

else { 
return FALSE; 

II add this later if needed 

break; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

dataReady 
Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Checks port to see if a character has arrived. 

***********************************************************************I 
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inline Boolean seriaiPortClass::dataReady() 

/* Un-commenting this code increases transmission errors, but this 
code is useful for troubleshooting, so is retained if needed 

if (ifportbit(LSR,1)) 
cerr <<"\nOverrun Error\n"; 

if fifportbit(LSR,2)) 
c~rr <<"\nParity Error\n"; 

if (ifportbit(LSR,3)) 
cerr <<"\nFraming Error\n"; 

*I 
return ifportbit(LSR,O); 

!*********************************************************************** 

PROGRAM: ifportbit 
AUTHOR: 
DATE: 

Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Checks for byte on inportb register 

***********************************************************************! 

inline Boolean serialPortClass::ifportbit(WORD reg, BYTE bit) 
{ 

BYTE on= inportb(reg); 
on&= set(bit); 

return Boolean(on == set(bit)); 

!*********************************************************************** 

PROGRAM: toggleDTR 
AUTHOR: 
DATE: 

Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: toggles Data Transmit Ready if RTS_CTS is off 
*******~***************************************************************/ 

void serialPortClass::toggleDTR() 
{ 

if (ShakeType != RTS_CTS) 
return; 

if (DTRstate == off) 
setDTRon(); 

else 
setDTRoff(); 

tcggle(DTRstate); 
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!************************~********************************************** 

PROGRAM: toggleRTS 
AUTHOR: 
DATE: 

Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: toggle Ready to Send (RTS) if RTS_CTS is on. 

******~****************************************************************/ 

void serialPortClass::toggleRTS() 
{ 

if (ShakeType != RTS_CTS) 
return; 

if (RTSstate == off) 
setRTSon(); 

else 
setRTSoff(); 

toggle(RTSstate); 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

toggle 
Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: toggles value of the input variable 

***********************************************************************! 

inline void serialPortClass::toggle(Shake& h) 

if (h 

h 
else 

off) 
on; 

h = off; 

II end of file serial.cpp 
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I"~· ------------------------------------------------------

J. GPSPORT.H 

#ifndef _GPSPORT_H 
#define _GPSPORT_H 

#include <dos.h> 
#include <stdio.h> 
#include "toetypes.h" 
#include "globals.h" 
#include "serial.h" 
#include "gpsbuff.h" 

II this is the type for a standard interrupt handler 

typedef void interrupt (IntHandlerType) ( ... ); 

II com handler to interface with processinterrupt 

void interrupt COMlhandler( ... ); 

I*********************************************************************** 

CLASS:gpsPortClass 
AUTHOR:Rick Roberts 
DATE:28 January 1997 
FUNCTION: Defines a buffered serial port which is interrupt driven 

on receive, and buffers all incoming characters in the 

gps buffer 

***********************************************************************! 

class gpsPortClass : public serialPortClass 

public: 

gpsPortClas·s (COMport portnum = COM1, BYTE irq = 4, 
BaudRate speed = b9600, 
ParityType parity = NOPARITY, BYTE wordlen 8, 

BYTE stopbits = 1, 
handShake hs = XON_XOFF); 

-gpsPortClass(); 

Boolean Get(GPSdata& data); 
void processinterrupt(); 

protected: 

gpsBufferClass messages; 

II buffered version 
II buffers the incoming character 

BYTE irqbit; 
BYTE origirq; 
BYTE comint; 

II Value to allow enable PIC interrupts for COM port 

II keep the original 8259 mask register value 
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IntHandlerType *origcomint; II keep original vector for restoring 
II later 

II this allows the actual handler to access processinterrupt() 
friend IntHandlerType COM2handler; 

extern gpsPortClass port1; 

#end if 

K. GPSPORT.CPP 

#include <iostream.h> 
#include <stdio.h> 
#include "gpsPort.h" 

I*********************************************************************** 

PROGRAM: gpsPortClass (Constructor) 
Rick Roberts AUTHOR: 

DATE: 28 January 1997 
FUNCTION: Initializes the interrupts for the gps Serial Port. 

1) takes over the original COM interrupt 
2) sets the port bits, parity, and stop bit 
3) enables interrupts on the 8250 (async chip) 
4) enables the async interrupt on the 8259 PIC 

***********************************************************************! 

gpsPortClass::gpsPortClass(COMport portnum, BYTE irq, BaudRate baud, 
ParityType parity, BYTE wordlen, 
BYTE stopbits, handShake hs) 

serialPortClass(portnum, baud, parity, wordlen, 
stopbits, hs), 

irqbit(irq), comint(irqbit+8) 

cerr << "gpsPort constructor called" << endl; 

if (ShakeType == RTS_CTS) 
setDTRoff(); 
setRTSoff(); 

origcomint getvect(comint); 

II turn it off first, it was enabled 
II in the base class 

II remember the original vector 
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setvect(comint,COMlhandler); II point to the new handler 

setportbit(MCR,3); II turn OUT2 on 

disable(); II disable all interrupts - critical section 
1/ enable ints on receive only 
II remember how it was 

setportbit(IER,rx_rdy); 
origirq = inportb(IRQPORT); 
clrportbit(IRQPORT,irqbit); 

if (ShakeType == RTS_CTS) 
setDTRon(); 
setRTSon(); 

enable(); 

EOI; 

1/ enable COM ints 

cerr << "exiting gpsPort constructor" << endl; 

/*********************************************************************** 

PROGRAM: -gpsPortClass 
AUTHOR: 
DATE: 

Rick Roberts, Frank Kelbe, Eric Bachmann, Dave Gay 

28 January 1997 
FUNCTION: Resets the interrupts. 

1) disables the 8250 (async chip) 
2) disables the interrupt chip for async int 

3) resets the 8259 PIC 

***********************************************************************! 

gpsPortClass::-gpsPortClass() 
{ 

setvect(comint,origcomint); 
outportb ( IER, 0) ; 
outportb(MCR,O); 
outportb(IRQPORT,origirq); 
EOI; 

II set the interrupt vector back 
1/ disable further UART interrupts 
II turn everything off 

!*********************************************************************** 

PROGRAM: Get 
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay 

DATE: 11 July 1995 
FUNCTION: Calls Get based on buffer type 

***********************************************************************! 
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Boolean gpsPortClass::Get(GPSdata& data) 

{ 

return messages.Get(data); 

I*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 
FUNCTION: 

showPorts 
Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 
Prints interrupt vector addresses. This function is for 

trouble shooting, it is not called in the code. 

***********************************************************************I 

I* 
int showPorts () 
{ 

*I 

BYTE* p = (BYTE*)COM2base; 
p += 5; 
fprintf(stderr,"%X ",*p++); 
fprintf(stderr,"%X\n",*p++); 
fprint f ( stderr, "IRQ PORT = %X" , inportb (IRQ PORT) ) ; 

return 0; 

I*********************************************************************** 

PROGRAM: COM1handler 
AUTHOR: 
DATE: 

Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 

11 July 1995, last modified January 1997 

FUNCTION: Specific interrupt handler which maps each interrupt to 

the proper ISR. 

***********************************************************************I 

void interrupt COM1handler( ... ) 
{ 

port1.processinterrupt(); 
EOI; 

!*********************************************************************** 

PROGRAM: processinterrupt 
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 

DATE: 11 July 1995 
FUNCTION: Calls the ISR based upon buffer type 

***********************************************************************! 
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void gpsPortClass::processinterrupt() 
( 

if (dataReady()) 
BYTE data= inportb(RX); 
messages.Add(data); 

II make sure there's a char there 
II read character from 8250 

if (ShakeType == RTS_CTS && messages.capacityUsed() > ALMOST_FULL) 
setDTRoff(); 

} 
II end of file gpsport.cpp 

L. COMPPORT.H 

#ifndef _COMPORT_H 
#define _COMPORT_H 

#include <dos.h> 
#include <stdio.h> 
#include "toetypes.h" 
#include "globals.h" 
#include "serial.h" 
#include •compbuff.h" 

II this is the type for a standard interrupt handler 
typedef void interrupt (IntHandlerType) ( ... ); 

II com handler to interface with processinterrupt 
void interrupt COM2handler( ... ); 

!*********************************************************************** 

CLASS: 
AUTHOR: 
DATE: 
FUNCTION: 

compassPortClass 
Rick Roberts 
28 January 1997 
Defines a buffered serial port which is interrupt driven 
on receive, and buffers all incoming characters in the 
compass buffer 

******************************************~****************************/ 

class compassPortClass : public serialPortClass 

friend compassClass; 

public: 

compassPortClass(COMport portnum = COM2, BYTE irq = 3, 
BaudRate speed = b9600, 

ParityType parity = NOPARITY, BYTE wordlen 8, 
BYTE stopbits = 1, handShake hs =NONE); 
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} i 

-compassPortClass(); 

Boolean Get(BYTE& data); II buffered version 

void processinterrupt(); I/ buffers the incoming character 

private: 

compBufferClass headings; 

BYTE irqbit; 
BYTE origirq; 
BYTE comint; 

II Value to allow enable PIC interrupts for COM port 

II keep the original 8259 mask register value 

IntHandlerType *origcomint; II keep original vector for restoring 

II later 

II this allows the actual handler to access processinterrupt() 

friend IntHandlerType COM2handler; 

extern compassPortClass port2; 

#endif 

M. COMPPORT.CPP 

#include <iostrearn.h> 
#include "compport.h" 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

compassPortClass (Constructor) 

Rick Roberts 
28 January 1997 

FUNCTION: Initializes the interrupts for the compass Serial Port. 

1) takes over the original COM interrupt 

2) sets the port bits, parity, and stop bit 

3) enables interrupts on the 8250 (async chip) 

4) enables the async interrupt on the 8259 PIC 

***********************************************************************/ 

compassPortClass::compassPortClass(COMport portnum, BYTE irq, 
BaudRate baud, ParityType 

parity, BYTE wordlen, BYTE 
stopbits, handShake hs) 

serialPortClass(portnurn, baud, parity, wordlen, 
stopbits, hs) 
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cerr << "compassPort constructor called" << endl; 

irqbit 
comint 

irq; 
irqbit + 8; 

if (ShakeType == RTS_CTS) 
s·etDTRoff () ; 
s.etRTSoff(); 

origcomint = getvect(comint); 

setvect(comint,COM2handler); 

setportbit(MCR,3); 

II turn it off first, it was enabled 
II in the base class 

II remember the original vector 

II point to the new handler 

II turn OUT2 on 

disable(); II disable all interrupts - critical section 
II enable ints on receive only 
II remember how it was 

setportbit(IER,rx_rdy); 
origirq = inportb(IRQPORT); 
clrportbit(IRQPORT,irqbit); 

if (ShakeType == RTS_CTS) 
setDTRon(); 
setRTSon(); 

enable(); 

EOI; 

II enable COM ints 

cerr << "exiting compassPort constructor" << endl; 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

-compass Port 
Rick Roberts, Frank Kelbe, Eric Bachmann, Dave Gay 
28 January 1997 

FUNCTION: Resets the interrupts. 
1) disables the 8250 (async chip) 
2) disables the interrupt chip for async int 

3) resets the 8259 PIC 

***********************************************************************! 

compassPortClass::-compassPortClass() 
{ 

setvect(comint,origcomint); 
outportb ( IER, 0); 
outportb(MCR,O); 
outportb(IRQPORT,origirq); 
EOI; 

II set the interrupt vector back 
II disable further UART interrupts 
II turn everything off 
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/************************~********************************************** 

PROGRAM: Get 
AUTHOR: 
DATE: 
FUNCTION: 

Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 
Calls Get based on buffer type 

***********************************************************************/ 

Boolean compassPortClass::Get(BYTE& data) 
( 

return headings.Get(data); 

!*********************************************************************** 

PROGRAM: 
AUTHOR: 
DATE: 

showPorts 
Frank Kelbe, Eric Bachmann, Dave Gay 
11 July 1995 

FUNCTION: Prints interrupt vector addresses. This function is for 
trouble shooting and is not called from the code. 

**********************************************************.*************! 

!* 
int showPorts() 
{ 

*I 

BYTE* p = (BYTE*)COM2base; 
p += 5; 
fprintf(stderr,"%X ",*p++); 
fprintf(stderr,"%X\n",*p++); 
fpr in t f ( s tderr, "IRQ PORT = %X" , inportb (IRQ PORT) ) ; 
return 0; 

/*********************************************************************** 

PROGRAM: 
AUTHOR:Frank 
DATE:11 July 
FUNCTION: 

COM2handler 
Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 
1995, last modified January 1997 
Specific interrupt handler which maps each interrupt 
the proper ISR. 

to 

***********************************************************************/ 

void interrupt COM2handler( ... ) 
( 

port2.processinterrupt(); 
EOI; 
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!************************~********************************************** 

PROGRAM: processinterrupt 
AUTHOR: Frank Kelbe, Eric Bachmann, Dave Gay, Rick Roberts 
DATE: 11 July 1995 
FUNCTION: Calls the ISR based upon buffer type 

***********************************************************************/ 

void c~mpassPortClass::processinterrupt() 
{ 

if (dataReady()) II make sure there's a char there 
BYTE data= inportb(RX); II read character from 8250 
headings.Add(data); 

if (ShakeType == RTS_CTS && headings.capacityUsed() > ALMOST_FULL) 
setDTRoff(); 

} 
II end of file compport.cpp 
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APPENDIX C. SANS TILT-TABLE TEST TUNING AND 
CALIBRATION PROCEDURE 

I. Isolate Accelerometer Input From Integrator 

--Se! K 1 to zero. 

--Only angular rate scale factor and bias effects will be reflected in error 

2. Choose Initial Bias Weight (biasWght) 

--Using project experience, background theory 

3. Determine Angular Rate Scale Factor 

--Baseline setting is 1.0. 

--Adjust by determining SANS output vs. actual angle excursion. 

--Apply ratio to current scale factor to obtain corrected scale factor. 

--Commanded tilt table angles taken as truth 

--Scale factor adjusts the output of the IMU to actual tilt results. 

--pScale (roll), qScale (pitch) rScale (yaw) 

4. Adjust Gain Value Above Zero 

--Re-includes accelerometer input to filter 

5. Determine Accelerometer Scale Factor 

--Same process as angular rate scale factor 

--xAccelScale (pitch), yAccelScale (roll), zAccelScale(yaw) 

6. Fine Tuning 

--Adjust various factors from 1-5 above 
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