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ABSTRACT 

A water tunnel flow visualization investigation was performed to study the vonex 

development and bursting phenomena on a 2.3 % scale model of a X-31A-like fighter aircraft. 

The main focus of this study was two-fold: (i ) to determine the optimum canard location that 

produces favorable aerodynamic interference on the main wing and (ii) to determine the effect 

of pitch rate on the optimum-configured model during simple pitch-up and simple pitch-down 

maneuvers. It was found that a close-coupled canard configuration resulted in a more 

favorable interference between the vonex systems of the canard and the wing. The dynamic 

tests indicated that the location of the wing root vonex burst point relative to the static case 

moved downstream with increasing pitch rate . 
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I. INTRODUCTION 

As is well known, the Wright brothers and many of the earlier aircraft designers used 

canard-wing configurations [Ref.l]. During world wars I and II, however, rear-tailed-type 

fighter aircraft became the standard configuration. Only about thirty years ago, H.Behrbohm 

[Ref.2] recognized and demons trated the favorable interference effects between the vortex 

systems of the canard and the wing if the canard is mounted close to and above the main wing 

(close-coupled canard configuration) . Such a design was first incorporated in the SAAB Viggen 

and again adopted in the SAAB Gripen. The Israeli Lavi and the new European Fighter Aircraft 

EFA also use the close-coupled canard configuration. A recent review of canard-related research 

work can be found in [Ref.3]. The authors of this review also carried out comprehensive wind 

tunnel investigations on a close-coupled delta-canard-wing configuration at low speed for various 

longitudinal and vertical canard locations and different setting angles. Earlier experimental work 

is documented in [Refs.4 to 9], whereas recent progress to compute such flows can be found in 

[Refs. lO,ll ]. 

In the United States, there is increased interest in the potential of canard-wing design s for 

highly maneuverable fighter aircraft. Rockwell International Corporation and Messerschmitt

Boelkow-Blohm (MBB) designed and built the X-31A aircraft which uses movable canards. Its 

purpose is to demonstrate enhanced fighter maneuverability for the U.S. Navy (Fig.l). Test 

flights are expected to begin in 1990, first at Rockwell 's facilities and later at the Naval Air Test 

Center. 
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Aero Surlace Dimen sions 

Wing Canard Vcni c<JI 

s FT 2 226 .3 23.6 3 7.6 

AR 2 .3 3.1 8 1.23 

II • LE 56.6/45 45 50 

% Uc 5.5 5.0 5.0 

M ass - l bs 
Em pty wt 10.908 
Grosn wt 1-1 .600 
Fuol 3,300 

Figure 1. X-31 A Configuration 
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As poi nted out in [Ref.3] , th e fl ow physics of th e canard-wing configuration is still 

insufficientl y understood and documented. The hi gh angle of attack fli ght is limited by th e 

vortex breakdown phenome non and by the onse t of vortex asymmetry . The forebody and the 

strakes or canards have a strong in flue nce on th e vortex development and on the lateral and 

directional stability. O f special importance is th e understand ing of the vortex development under 

rapid m aneuverin g conditions as env isio ned for th e X-31 A aircraft. Therefore, as part of th e 

Naval Pos tgraduate School's enhanced fi ghter maneuverability research program, thi s 

investiga ti o n was un dertaken to characterize the flow field around a maneuverin g canard-

configured fighter aircraft model comparable to th e X-31A . 
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The goals of this thesis were two-fold: 

a) To carry out extensive flow visualization studies in the NPS water tunnel to arrive at 

an optimum canard location. 

b) To perform some dynamic flow visualization studies of the optimum configuration to 

determine the effects of pitch rate on the vortex development. 

3 



II. EXPERIMENTAL APPARATUS 

A. WATER TUNNEL 

The flow visualization water tunnel facility at the Naval Postgraduate School was designed 

by Eidetics International, Inc. , Torrance, California, and in stalled in late 1988. Figure 2 shows 

the layout of the water tunnel. It is described below and more detail s may be found in [Ref.12-

13]. 

KEY: 
1. PUMP 
~PERFORATED INLET 
J . OEUVERY PLENUM 
.C . Fl..OW CONOinONING EUOMENTS 
!5 . CONmACTION SECTl ON 
II . DYE UNES 
7. TEST SECTlON 
I . MODEL SUPPORT 
II . OISOIARGE PLENUM 

10. RETURN PIPING 
1 1. FlLTER SYSTE.M 

Figure 2. Water Tunnel Facility at NPS 
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The NPS water tunnel is a closed circuit facility for studying a wide range of aerodynamic 

and fluid dynamic phenomena. Its key design features are high flow quality, horizontal 

orientation and continuous operation. The test section is 15 inches wide, 20 inches high , and 

60 inches long. The test section and discharge plenum are configured to allow simultaneous 

viewing of a model from the bottom, both sides and from the rear. The model is usually 

mounted upside down in the test section. Water velocities of up to 1 ft/sec can be obtained in 

the test section. The turbulence intensity level is less than 1 % RMS. 

Six pressurized canisters containing water soluble food coloring dye were used for fl ow 

visualization. Each canister was connected to the model dye port through an individually routed 

plastic tubing. Each dye canister was pressurized by a small compressor(0-50 psi) and a 

pressure regulator was used to control the pressure level. To minimize the momentum of the 

dye itself a minimum pressure of 5 psi was used. The pitch angle of the model was controlled 

by a C-strut arrangement in the model support system and the yaw angle was controlled by a 

turntable. The model attitude was adjusted with two servo motors. Each motor had a high/low 

rate switch and could be controlled by a remote con trol. The high pitch rate and low pitch rate 

corresponded to 4.76 deg/sec and 1.86 deg/sec, respectively~ 

B. X-31A-LIKE MODEL 

A somewhat simplified 2.3% scale model of the X-31A fighter ai rcraft was used in th is 

investigation (Fig.3). · The model has a slightly different configuration than the actual X-31A 
_) 

aircraft; in particular it does not have a vertical tail and a canopy. Like the X-31A aircraft the 
____....; 

model has a double delta wing and a delta canard. The modular construction of the fuselage 
~ 

5 



,, 
12.00--------

,, 
. -- - 2 .0 -- · 

II STitlG/ TAILC ONE 5 CA t~/\ 110 

10 WltlG -1 Cf\ NA 110 BOTT OM 
- --· 

9 FUSE LAGE B OTTOM 3 CANARD TOP 

8 FUSELAGE TOP 2 TOP/BOT TOM PLATE 
----- ·-·---

7 FUSE LAGE SPACER I NOSE 

6 CANARD SP/\CER 

Figure 3 . X-31 A-Li ke Model Configuration 
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allowed for easy variations in the horizontal and vertical locations of the canard with respect to 

the main wing. Key dimensions of the model are listed below: 

1. Total length= 12.0 in. 

2. Span (wing, canard)= 8.0 in ., 2.0 in. 

3. Sweep angle (wing, canard)= 58°/ 46°, 30° 

4. Wing chord= 5.5 in.(root), 2.64 in.(mid), 0.75 in.(tip) 

5. Wing mean aerodynamic chord = 3.369 in . 

6. Wing area= 19.866 in.2 

7. Canard chord= 1.0 in.(root), 0.5 in.(tip) 

8. Canard Area= 1.563 in .2 

9. Area ratio (canard/wing)= 7. 87 % 

10. Canard setting angle = 2° 

The geometric coordinates of canard and wing are included in Table I (Appendix C~ 

There were four dye injection ports on the canard and six dye injection ports on the wing 

(Fig.4). Dyes were delivered from the pressurized dye supply system and injected through the 

dye ports of the model with dye colors arranged symmetrically on either side of the fuselage. 

In this investigation , the focus was on the development and bursting of vortices shed 

from the root of the wing. Therefore, only canard tip and wing root dye ports were used. 

7 
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No. LOCATION COLOR 

l canard Root Pink 

2 canard Tip Green 

3 Wing Root Red 

4 Hing Hid Blue 

5 Wi ng Tip Ye l low 

Figure 4_ Dye Port Locations on X-31 A-Like Aircraft Model 

C. MODEL MOUNTING 

It was very important to insure that the model was mounted horizont all y in the water 

tunne l with zero pitch , zero yaw, and zero roll an gle. The model mountin g in the tes t section 

was achieved in th e followin g way. Fi rst, the canard was located in the des ired pos ition with 

respec t to th e wing . The model wi th an ex tensio n bar was th en attached to th e stin g holder on 
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the model support base by using a small hexagonal head screw. The model was introduced into 

the water surface by lowering the model support base to its horizontal position and the model 

horizontality was checked visually by the timing and the degree of wetting on both wing surfaces. 

To assure zero pitch angle, the centerline of the model (fuselage) was aligned with the freestream 

(tunnel centerline) by using spacers as needed between the model support base and the top of the 

test section fram e. The pitch angle was calibrated by choosing a reference line on the model 

(say fuselage centerline). To assure zero roll angle the left and right wing tips were located at 

the same height from the bottom of the test section. Finally, zero yaw angle was checked by 

setting the model nose equidistant from either side wall of the test section and observing 

symmetric dye lines from both wing surfaces at zero pitch angle. The axis of rotation for the 

pitch motion was located 8.45 inches aft of the nose. 
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III. EXPERIMENTAL PROCEDURE 

A. EXPERIMENTS 

As previou sly stated , the goal of th is in vestigation was to find th e optimum canard 

loca ti on and to study the e ffects of pi tch rate on th e development and burstin g of vo rtices shed 

from the win g root of th e opt imum configured mode l. The modul ar con struc tion of the model 

permit s 45 diffe re nt c an ard location s in all , each locati on be in g denot ed by a le tte r symbol 

follo wed by a num ber (Fig.S). 

TOP 
NOSE ~ 

~ TAIL 

Howl Al Bl Cl Dl El F1 G1 Hl I 1 

How 2 f't2 BZ cz DZ EZ FZ GZ HZ IZ FUSELAGE 

l{ow 3 A3 B3 C3 D3 E3 F3 G3 11 3 13 

How 4 A1 B4 C4 D4 E4 F4 G1 11 4 14 

How 5 AS BS cs DS ES FS GS HS IS ~ 

\~~""~; 
.__ Ml'll N WIN<:.__ 

Canard Loca ti ons 

Figure 5. Identi ficat ion of canard locations 
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The letter symbol indicates canard's horizontal distance from the wing and the number indicates 

its vertical distance from th e win g. Practical considerations precluded use of several of th ese 

loca tions during th e invest igation . The 23 locations used for studies related to optimum canard 

loca tion and their non-dimen sionalized distances are listed in Table I. 

Table J. NON-DIMENS IONALJZED CANARD LOCATIONS 

STATION Xwrc( %) Zwrc( %) STATION Xwrc (%) Zwrc( %) 

A2 10.23 02 10.23 

A3 7 . 95 03 7.95 
75.0 0 61 .3 6 

A4 5.68 04 5 . 68 

AS 4 . 41 OS 4 . 41 

B2 10.23 E2 10.23 

B3 7.95 E3 7.95 
70.45 56 . 82 

B4 5 . 68 E4 5.68 

BS 4 . 41 ES 4.41 

C2 10 . 23 F2 10.23 

C3 7.95 F3 7 . 95 
65 . 91 5 2 . 27 

C4 5.68 F4 5.68 

cs 4 . 41 

The distances are measured from the quarter point of canard root chord to the quarter point of 

win g root chord , and wing root chord used for non-dimens ionali zation (Fig .G). 

Before embarking on th e main focus of this investiga tion , it was necessary to carry out 

a se ries of preliminary experiments to select proper dye ports and an appropriate ran ge of angl e 

of att ack for flow vi suali zat ion studies. The three dye ports , name ly th e root port, the mi d port 

and the tip port , loca ted alon g the wing leading edge we re ini tia ll y 

11 



z 
cx'i =+r-+- f- -------- cwr - ----·---- llo-

~------ XC -----

Nom enclature 

xw<c = XC I C wr 
Zwrc = Zc / C wr 
C a nard in cidence an gle = 2" 

where X = c 

z = c 

lon gitudinal dist;m ce 
verti ca l d is ta n ce 
w ith respect to m ai n wing 

Figure 6. Descr iption of cana rd locat ion 

selected for dye injec ti o n w ith and without the can ard. The tip flow appeared smooth up to 6° 

angle of attack after wh ich it reversed its direction; the mid flow appeared smooth up to 10° 

angle of attack after which it reversed its direct ion. On the other hand, the root flo w appeared 

to ex ist up to about 34° angle of attack, wi th a fa irly well defined vortex shape in th e 13.5° - 29° 

angle of attack range . Based on these observat io ns, it was decided to use dy e injec tion from the 

roo t port on the win g as the prim ary visual tool to in vestigate the e ffec ts of the canard o n the 

flow fie ld over the wing . To determi ne the appropriate range of angle of attack , can ard loca tion 

F4 was selec ted arb itraril y and the dye flow from the root port visualized in the angle of attack 

range 0° - 30° at intervals of 2 .5° (Figs.8 - 23 in Append ix A). Clear vortex flow development 

was observed to start at abou t 13.5° angle of attack, vortex burst appear in g downstream of the 

12 



wing trailing edge and proceeding upstream with further increase in the angle of attack. At 

about 3ao angle of attack range the burst location moved close to the leading edge. Based on 

these observations, it was decided to study the wing flow field at ao, 15°, 2ao and 2S0 angles of 

attack for each canard location. 

To meet the goal of this investigation, the experimental program was carried out in two 

ha es. The first phase involved flow visualization studies related to optimum canard location 

on the X-31A-like model. The experiments were carried out for static conditions at ao, 1S0
, 2ao 

and 2S 0 angle of attack with zero yaw and covered 23 canard locations (identified in Table I). 

Based on the vortex burst location data gathered from these experiments, canard location F3 was 

found to be optimum . The second phase involved the dynamic wing vortex flow visualization 

of the optimum configured X-31A-like model for zero yaw and two pitch rates, with angle of 

attack varying from ao to s ao (simple pitch-up motion) and sao to ao (simple pitch-down 

motion). 

Both still-picture photography and videotape recordings were used for documentation of 

the flow field of the model. {The flow velocity in the water tunnel was kept nearly constant at 

a .2S ft/sec which corresponds to a nominal Reynolds number of 1a,2aa (based on wing root 

chord of the model) . Although the flow Reynolds number in the water tunnel is very low, 

studies by other researchers [Refs. 13,14,1S] have indicated that water tunnel data of burst 

locations of vortices shed off sharp leading edges compare very favorably with the data from 

fli ght and ground tests) 

13 



B. REDUCED PITCH RATE SIMULATION 

Aircraft encounter unsteadiness under all operating conditions whether due to pilot inputs 

(i.e., pitch-up, pitch-down, etc.), or of a natural origin (i.e., wind shear, gusts, etc.). To 

understand the stability of an aircraft operating in these environments, a knowledge of its 

response to flow unsteadiness is essential. The guiding non-dimensional parameter during 

pitching motions is the reduced pitch rate, k, defined by the following formul a: 

k= 

where, 

k : reduced pitch rate , non-dimensional 

w : pitch rate, rad/sec 

c : characteristic length of the body, ft 

U _ : free stream velocity, ft/sec 

In the case of a wing pitching about its mid-chord location, the reduced pitch rate may be 

interpreted as the ratio of the vertical motion of the leading edge to its longitudinal motion . 

Using the above formula the reduced pitch rate for the full scale X-31A aircraft was 

calculated and compared with the values for the water tunnel model. For the X-31A aircraft, 

assumed G-loading was 5 g at 150 Knots. The reduced pitch rates for the full scale X-31A 

aircraft and the water tunnel model at low pitch rate motion were equal. Table II lists the 

reduced pitch rates and indicates that the water tunnel facility is capable of simulating the full 

scale values of the reduced pitch rate for the X-31A aircraft. 

14 



Tabl e II. REDUCED PITCH RATE 

PITCH RATE' w(rad/s ) Lengt h (ft) U_(ft /sec) k 

Low pitch 0.03 1 0.25 0.06 
r ate 

High pitch 0 . 08 1 0 . 25 0 .17 
r ate 

Full scale 
X- 31A 0.70 43.33 253 . 35 0 . 06 

Aircraft 

* The model pi tc h-ax is was located 8.45 inc hes aft of th e nose. 

C. DATA ACQUISITIO N 

A good deal of vis ual ana lysis of th e flow fi eld preceded the actual data coll ec tion phase. 

The data collec ti o n cons isted of photograph s taken wi th two 35mm automatic cameras providin g 

a simulta neous side and pl anfo m1 view of the vortical fl ow fi eld ori gi natin g off the win g root 

por t of th e X-31 A-li ke m ode l. A profess ional video camera was also used to record the fl ow 

phe no me na for static and dynamic co ndit ions. Secti on E describes th e lightin g and camera 

se ttin gs utili zed for this in vest igation. 

15 



D. DATA REDUCTION 

Data reduction consisted of measuring the bursting distance of the vortex shed off the 

wing root port and plotting it against the angle of attack. The vortex bursting locations for the 

static case were determined visually through the camera viewfinder and the linear scale drawn 

on the starboard side of the fuselage. For the dynamic case the vortex bursting location was first 

measured visually by naked eye, then checked during the playback of the videotape and finally 

determined from the photographs . During this investigation all measurements were made on the 

starboard side of the aircraft model using the leading edge of the wing root chord as the reference 

point. The measurements of vortex bursting location were done with the utmost care and 

consistency, and scaled for non-dimensionalization using the wing root chord. 

Some degree of imprecision may be present in the reduced data due to the difficulty in 

locating the vortex bursting location, particularly at lower angles of attack and at high pitch rates 

(see discussion in Chapter IV, also [Ref.13]). During the measurement of vortex bursting 

location for the static case, fluctuation in bursting location was found to vary up to ±0.25 inches . 

As the vortex core was found to enlarge and reduce with some frequency, a certain amount of 

time was required to measure both maximum distance and minimum distance. These distances 

were then averaged to determine the mean bursting location (Table III). The photographs 

corresponding to the static conditions were timed to correspond roughly to the mean location of 

the vortex burst. 
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Table III. MEAN VORTEX CORE LENGTH BEFORE BURSTING AND 

FLUCTUA TJON LIMITS ( INCIIES ) 

Canard 15° AOA 20 ° AOA 25 
0 

AOA 

Location Mean +/- Mean +/- Mean +/-

Off 4.788 0 . 063 3 .875 0 . 175 2 .1 0.05 

A2 4 .. 7 38 0 . 163 4 . 225 0 . 075 2 . 325 0 . 175 

A3 4 . 7 0.1 4 . 238 0 . 113 2.325 0 .17 5 

A4 4 . 675 0 .1 25 4 . 325 0 . 1 2 . 325 0.125 

AS 0 0 4 . 075 0 . 175 2 . 4 0 . 1 

B2 4 . 7 0 . 2 3 . 975 0 . 175 2 . 35 0 .1 

B3 4 . 725 0 .1 25 4 .267 0 . 1 33 3 . 35 0 . 113 

B4 4 . 675 0 .1 42 4 . 117 0 .1 17 2 .3 58 0 .14 2 

BS 4 . 55 0 . 15 3 . 9 0 . 2 2.5 0 . 2 

C2 4. 6 0 . 133 4 . 2 0 . 1 2 .418 0 . 1 4 8 

C3 4 . 65 0 . 15 4 . 15 0 . 15 2 .44 2 0 .14 2 

C4 4 . 538 0 . 188 4 0 . 2 2 . 35 0 . 125 

cs 4 . 625 0 . 125 3 . 85 0 . 15 2 . 4 5 0 . 15 

02 4 . 5 0 . 2 4 . 2 0 . 1 2 . 55 0 .1 5 

0 3 3 . 75 0 . 2 4 . 15 0 . 15 2.488 0.188 

04 4 . 575 0 . 175 3 . 95 0 . 25 2.45 0 .15 

05 4 . 4 0.2 3 . 7 0 . 2 2 . 55 0 . 15 

E2 4 . 7 0 . 1 4 . 3 0 . 1 2 . 35 0 .1 5 

E3 4. 65 0 . 15 4 . 25 0 .15 2.375 0 . 225 

E4 4.4 98 0 . 203 3 . 75 0 .1 5 2 . 4 0 . 2 

ES 4 . 475 0.1 75 3 . 85 0.15 2 . 5 0 . 2 

F2 4.65 0 . 15 4 . 258 0 . 175 2 . 6 0 . 2 1 7 

F 3 4 . 65 0 .1 4 . 275 0 . 1 2 . 6 0 .15 

F4 4.525 0 .17 5 3 . 833 0 . 15 2 . 4 63 0 . 15 
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E. METHOD OF PHOTOGRAPHY 

The equipment used for the photographic session consisted of two 35mm cameras, five 

Smith-Victor 600 watt photographic lights, and a floodlight installed below the test section. For 

the side view photographs two of the lights were placed at a distance of three feet and at a 45° 

angle from the test section. Other three photographic lights were placed below the test section; 

one at 45°, near the front of the model and two at 45°, near the rear of the model. This in 

conjunction with the fixed floodlight provided enough lighting for the planform photographs. 

Figure 7 shows the lighting setup for both the side view and planform photographs . Essentially 

the same lighting arrangement with minor adjustments to suit video camera location was used 

during video taping of the vortical flow field on the model. 

A Nikon 2000 camera which has an automatic shutter speed and manual focusing with 

manual aperture control and manual ASA setting was used for taking side view pictures. A 

Minolta 7000 camera which has all automatic functions of focusing, shutter speed control , 

aperture control and even automatic ASA setting function was used for taking plan view 

pictures. The automatic focus function was used very effectively for plan view pictures, 

particularly during the dynamic case, because the focusing was automatically adjusted as the 

angle of attack was changed. The type of film used for all the photographs was 35 mm black 

and white ASA 400 film . During the exposure of the film, the side view camera settings were 

as follows : ASA 400, aperture 11 , auto shutter speed, focused on the scale drawn on the 

starboard side of the fuselage. The plan view camera settings were as follows : auto ASA 

setting (it read ASA 400 automatically), auto aperture, auto shutter speed, auto focus. 
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The side view camera was set on th e point where the center of the camera focus was 

aligned with the model's pitch ro tati on axis, and th e camera body was rota ted a littl e bit to th e 

le ft to have the m odel always at the center of the picture regardle ss of changing angle of attack. 

The angle of attack scale fixed to the rear side wall of the tunne l shows up in all side view 

photographs and he lps in read ing of the instantaneous angle of attack . To know the pitch angle 

in the pla nform view photograph s it was necessary to take both the side view and planfom1 view 

pho tographs simul taneously. This was accom plished by the two cam eras for si mult aneous 

exposure by usi ng two remote shu tter release cables. 

Figure 7. Camera and Lighting Setup for Photographs 
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IV. RESULTS AND DISCUSSION 

The results of this investigation will be presented and discussed in a series of 3 

photographic sequences and bursting location plots. Several rolls of 35 mm black and white 

film were exposed and several hours of videotape recorded during the investigation. The results 

of the 35 mm photography are presented in Figures 8 through 75 (see Appendix A). Figures 

24-75 show two views of the flow field, one in the side view and the other in the planform view 

(taken from the bottom of the tunnel). The bursting location plots derived from these 

photographs are included in Figures 76 through 91 (see Appendix B). The raw data on vortex 

bursting location derived from experiments is shown in Table II (see Appendix C). First, some 

general comments will be made on the wing flow field visualized during the series of preliminary 

experiments . Then the flow visualization photographs will be examined in detai l to highlight 

the flow field characteristics for different model orientations and different canard locations 

including canard off condition. Finally, with the aid of burst location plots, the effects of pitch 

rate on the development/bursting of wing root vortices will be discussed. 

A. DESCRIPTION OF WING FLOW FIELD OF X-31A-LIKE MODEL 

Sequence number 1, Figures 8 through 23. These figures show the wing flow field with 

canard installed at location F4. In the AOA range of oo to 1 o the flow over the wing rem ains 

particularly smooth and stable (Fig.8). At 2.5° angle of attack (Fig.9), the flow at the inner 

trailing edge of the wing has dispersed a little bit outward. 
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As the angle of attack is increased further, the flow from the inside of the wing root surface 

progressively disperses outward to the tip (Fig.lO through Fig.14). Finally at about 13.5° angle 

of attack (Fig.15) the flow fluctuates very much and begins to coil up into a vortex core shape 

with a maximum vortex core length on the wing surface. This vortex core is tightly wound and 

extends aft until undergoing vortex core breakdown. The vortex core breakdown is 

unquestionably signified by the stagnation of the core and abrupt expansion in its diameter. As 

the AOA is increased further the vortex core breakdown point moves upstream over the wing 

surface (Fig.16 through Fig.22), and finally the bursting occurs very close to the leading edge at 

about 30° angle of attack (Fig.23). In short, the vortex burst location over the wing surface 

moves from the trailing edge to the leading edge in the angle of attack range 14°-30°. 

With the canard off and with increase in the angle of attack, it was observed during the 

experiments that the wing tip stalled at 5° angle of attack and reversed its direction clearly at 6° 

angle of attack. At the mid section of the wing the flow stalled at 10° then reversed its direction 

at 15° angle of attack. With canard installed at location B5, the flow from the wing tip stalled 

at 7° and reversed its direction at 9° angle of attack, and the flow from the mid section stalled 

at 11 o and reversed at 18° angle of attack. These observations simply reconfirm the canard 

advantage, namely that a canard can be used to delay the stall phenomenon and thus enhance 

flight performance. 
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B. EFFECTS OF CANARD LOCATION ON ROOT VORTEX CORE 

BREAKDOWN 

Sequence number 2, Figures 24 through 63 . In these figures the wing flow characteristics 

for different canard locations are compared with those for the canard-off case. As previously 

mentioned in Section III, only 23 canard locations were used in this investigation. The raw data 

on vortex burst for these canard locations are shown in Table II (see Appendix C). Figures 24 

through 63 present both side view and plan view photographs of the flow field for the canard-off 

case and 9 different canard locations. 

1. Longitudinal location of canard 

The effects can be easily visualized in the photographs for any given angle of attack by 

holding the vertical distance of the canard from the wing constant. For example, figures 33 and 

57 can be compared for the case of 15° angle of attack and figures 35 and 59 for 25° angle of 

attack. A detailed observation of these photographs reveals two characteristic features of the 

flow field as the canard is moved closer to the wing, i.e. from front location to the rear location. 

At 15° angle of attack, the vortex core length appears to decrease somewhat as the canard is 

moved closer to the wing whereas at 20° and 25° angles of attack, the vortex core length tends 

to increase. These features are clearly visualized graphically in Figures 76-79. These 

observations simply reinforce the benefit of close-coupling of canard, namely that of improved 

flow field on the top wing surface resulting in enhanced lift/flight performance. 
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2. Vertical location of canard 

As before, a close observation of the photographs for any given angle of attack reveals 

the fact that, as the vertical distance of the canard from the wing is increased at the same 

· longitudinal location, the vortex core length tends to increase initially (Compare Figs. 57 and 61) . 

This tendency is also seen in Figures 80-85. 

To summarize, a close-coupled, high-location canard yields beneficial results. Location 

F3 was judged optimum in the present investigation. 

C. EFFECTS OF ANGLE OF ATTACK ON WING ROOT VORTEX CORE 

BREAKDOWN 

Portion of sequence number 2, Figures 56 through 59, and sequence number 3, Figures 

64 to 75. These effects are discussed below in some detail for the optimum canard location F3. 

Figures 56 through 59 present flow visualization photographs for the static case and Figures 64 

through 75 for the dynamic case at two pitch rates and zero yaw (8=0°). 

1. Static Conditions 

Figure 56 shows that at zero degree angle of attack, the flow is smooth and stable. 

Figures 57 through 59 show the development of vortical flow fi eld over the wing surface at 

higher angles of attack. The vortex bursting poin t moves upstream with angle of attack, thus 

reducing the extent of vortical flow field. Bursting points in Figs.57 through 59 are located at 

84.5 %, 77.7 % and 47.3% of wing root chord, respectively. 
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2. Dynamic Conditions 

Figures 63 through 74 present photographs taken at so AOA interval during simple pitch-

up and pitch-down motions at two reduced pitch rates with the model at zero yaw. Precise 

measurements of vortex bursting point in the dynamic case were very difficult, if not impossible, 

to obtain from these photographs. Therefore, video recordings were used for thi s purpose. The 

results of the vortex bursting point measurements are shown in Table IV. 

Table IV . VORTEX CORE LENGTH FOR DYNAMIC CASE (INCHES ) 

Pitch Rate I Angle of Attack ( 0 ) 

Direction 10 ° 15 ° 20 ° 25 ° 30° 35° 40 ° 45 ° 50 ° 

Static Case - 4.65 4.275 2.6 - - - - -

Low /Up - - 3.75 3.5 2.5 1.5 0.6 - -

Low/Down - 3.7 2.5 1.7 0.3 - - - -

Hi /Up - - - - 3.0 2.5 2.0 1.0 -

Hi/Down 4.0 3.3 2.75 - - - - - -

Figures 64 throu gh 69 show the wing flow field during simple pitch-up and pitch -down 

motions at low pitch rate (0° to sao AOA). It was observed during the pitch-up experiment, that 

at a= ISO (Figure 64) the flow was flickering and the vortex was not established yet. From the 

video recordin gs it was ascertained that the flow started to coil up at 13° angle of attack and a 

symmetric pair of wing root vortices were developed at 1 r angle of attack. As the angle of 

attack was increased the vortex bursting point moved upstream and finally moved to the leading 

edge at 41 o AOA (also see Figs. 6S and 66) . During th e pitch-down motion, as the angle of 
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attack was decreased from 50° to 0°, the full vortex core was observed on the wing surface at 31 o 

AOA, the flow finally becoming smooth at 12° AOA. With decreasing AOA the vortex core 

appeared to be growing and moving outboard (Figs.67 through 69). 

Figures 70-75 show the wing flow field during simple pitch-up and pitch-down motions 

at high pitch rate (0° to 50° AOA). At a=15° (Figure 70) no vortical flow was observed. 

Video recordings showed that the flow started to coil up at 22° AOA and vortices developed at 

25° AOA. With further increase in angle of attack the wing root vortex burst point moved 

upstream and finally moved to the leading edge at 50° AOA. During a simple pitch-down motion 

at high pitch rate the full vortex core was observed on the wing surface at 21 o AOA, the flow 

finally becoming smooth at 12° AOA (Figs.73-75) . 

D. BURSTING LOCATION PLOTS 

Quantitative documentation of vortex burst response di scussed in earlier sections I S 

presented graphically in Figures 76-92. The plots in Figures 76-91 are obtained from the data 

of Table II ( Appendix C) and those in Fig.92 from Table IV. These plots help to visualize 

graphically the effects of various parameters on the wing root vortex core breakdown. 

Figures 76-79 present plots showing the effects of canard horizontal location on wing root 

vortex core breakdown at three angles of attack (15°, 20°, 25°). The canard vertical distance held 

constant in these figures is identified by a row number (Fig.5). In each case the comparison is 

made with canard-off configuration. The numbers 0, 1, 2, 3, 4, 5, and 6 on the horizontal axis 

denote canard-off case, canard locations A, B, C, D, E and F, respectively (see Fig.5 and Table 

I). It is clear from these figures that at 20° AOA and above the vortex core length generally 
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increases as the canard moves closer to the wing (i.e., from location A to location F). A slight 

reduction in the vortex core length is seen at 15° AOA. 

Figures 80-85 present plots showing the effects of canard vertical location on wing root 

vortex core breakdown at three angles of attack (15°, 20°, 25°). The canard horizontal distance 

held constant in these figures is identified by a canard location. In each case the comparison 

is made with canard-off configuration. The numbers 0, 1, 2, 3, 4 on the horizontal axis denote 

canard-off case, canard rows 2, 3, 4 and 5, respectively. A general trend is seen in the three 

graphs suggesting an initial increase in the vortex core length as the canard approaches the wing 

upper surface from its high location. 

Figures 86-91 present plots showing the effects of angle of attack on the wing root vortex 

core breakdown for different canard horizontal distance held constant in these Figures is 

identified by a canard location. These plots clearly show that the vortex burst location moves 

upstream as the angle of attack increases . 

Figure 92 shows burst location plots as a function of angle of attack for the optimum

canard location F3 during dynamic motion of the model at two pitch rates with zero yaw. Also 

shown for comparison is the corresponding bursting location plot for the static case. The 

dynamic effec ts of pitch rate are clearly seen in these plots . During the pitch-down motion in 

the AOA range considered, the bursting location always occurred earlier relative to the static 

case, whereas during the pitch-up motion the bursting location occurred later relative to the static 

case. Thus the burst location curve consistently undershoots the corresponding static curve 

during pitch-down motion and overshoots during pitch-up motion, this undershoot/overshoot 

increasing with the pitch rate. The vortex bursting response observed here for pitch-up and 
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pitch-down motions is similar to the one observed by Cavazos [Ref.13] m his experimental 

( 

investigation of LEX vortices shed off a F/ A-1 8 fighter aircraft model. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A low speed flow visualization investigation was initiated to study the vortex 

development and bursting phenomena on a 2.3 % scale model of a X-31A-like fighter 

aircraft using dye injection in the NPS water tunnel. Two sets of experiments were 

carried out. In the first set the focus was on the optimum canard location that produces 

favorable aerodynamic interference on the main wing; in the second set the focus was on 

the effects of pitch rate on the optimum-configured model during simple pitch-up and 

simple pitch-down maneuvers. The water tunnel visualization data reported here is 

believed to be the first of its kind for a canard-configured X-31A-like aircraft model. 

The following conclusions are drawn from the results of the experimental investigation 

1. A close-coupled canard configuration results in a more favorable aerodynamic 

interference between the vortex systems of the canard and the wing. 

2. A high-canard location (unlike a low-canard I coplanar-canard location relative 

to the wing) influences wing flow field favorably. 

3. The dynamic tests indicate that vortex burst lag increases with pitch rate. That 

is, the location of the wing root vortex bursting point relative to the static case moves 

rearward with increasing pitch-up motion and forward with increasing pitch-down motion. 

The following recommendations are made based on this investigation : 
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1. Automatic focus camera is necessary to take instantaneous pictures during 

dynamic motion . 

2. Remote indicators of angle of attack and angle of yaw installed outside the test 

section frame will be useful during studies of dynamic motion. The readouts should 

appear in pictures. 
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APPENDIX A. EXPERIMENTAL RESULTS (PHOTOGRAPHS) 
FIGURES 8 THROUGH 75 
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Figure 10. 5° AOA 

Figure 11 . 7.5° AOA 
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Figure 12. 10° AOA 

Figure 13. 12.2° AOA 
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Figure 14. 12.5° AOA 

Figure 15. 13.5° AO A 
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Figure 16. 14.0° AOA 

Figure 17. 15° AOA 
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Figure 18. 17.5° AO A 

Figure 19. 20° AOA 
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Figure 20. 22.5° AOA 
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Figure 22. 27.5" AOA 

Figure 23. 30.0° AOA 
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Figure 24. Canard Off, Wing Root Flow, Static, a=0°, ~=0° 
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Figure 25. Canard Off, Wing Root Vortex, Static, a=l5°, ~=0° 
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Figure 26. Canard Off, Wing Root Vortex, Static, a=20°, ~=0° 
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Figure 27. Canard Off, W in g Root Vort ex, Stat ic, a =25°, ~=0° 
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Figure 28. Canard at #A2, Wing Root Flow, Static, cx=0°, ~=0° 
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Figure 29. Canard at #A2, Wing Root Vortex, Static, a =l5°, ~= 0° 
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Figure 30. Canard at #A2, Wing Root Vortex, Static, a =20°, ~=0° 
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Figure 31. Canard ; · #A2, Wing Root Vortex, Static, et.=25°, ~= 0° 
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Figure 32. Canard at #B3, Win g Root Flo·w, Static, 0..=0°, ~=0° 
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Figure 33. Canard at #B3, Wing Root Vortex, Static, a=l5°, ~=0° 

50 



Figure 34. Canard at #B3, Wing Root Vortex, Static, a =20°, ~=0° 
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Figure 35. Canard at #B3, Wing Root Vortex, Static, a=25°, ~=0° 



Figure 36. Canard at #C2, Wing Root Flow, Static, a=0°, ~=0° 
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Figure 37. Canard at #C2, Wing Root Vortex, Static, a=l5°, ~=0° 
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Figure 38. Canard at #C2, Wing Root Vortex, Static, a=20°, ~=0° 
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Figure 39. Canard at #C2, Wing Root Vortex, Static, a =25°, ~=0° 

56 



Figure 40. Canard at #C4, Wing Root Flow, Static, 0:.=0°, ~=0° 
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Figure 41. Canard at #C4, Wing Root Vortex, Static, cx.=l5°, ~=0° 
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Figure 42. Canard at #C4, Wing Root Vor tex, Static, a.=20°, ~=0° 
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Figure 43. Canard at #C4, W ing Root Vortex, Static, CX=25°, ~=0° 
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Figure 44. Canard at #02, W ing Root Flow, Static, o:=0°, ~=0° 
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Figure 45. Canard at #02, Wing Root Vortex, Static, a=l5°, ~=0° 
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Figure 46. Canard at #Dl, Wing Root Vortex, Static, 0:=20°, ~=0° 
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Figure 47. Canard at #D2, W ing Root Vortex, Static, 0:=25°, ~=0° 



F igure 48. Canard at #D3, Wing Root Flow, Static, a=0°, ~=0° 
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Figure 49. Cana rd at #0 3, W ing Root Vortex, Static, a=l5°, ~= 0° 
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Figure 50. Canard at #03, Wing Root Vortex, Static, a=20°, ~=0° 
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Figure 51. Canard at #D3, Wing Root Vortex, Static, a=25°, P=0° 
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Figure 52. Canard at #E4, Wing Root Flow, Static, a=0°, ~=0° 
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Figure 53. Canard at #E4, Wing Root Vortex, Static, cx=l5°, ~=0° 
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Figure 5-t. Canard at #£4, Wing Root Vortex, Static, a=20°, ~=0° 
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Figure 55. Canard at #E4, W ing Root Vortex, Static, 0:=25°, ~=0° 
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Figure 57. Canard at #F3, Wing Root Vortex, Static, CX=l5°, ~=0° 
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Figure 58. Canard at #F3, Wing Root Vortex, Static, cx=20°, ~=0° 
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Figure 59. Can ard at #F3, Wing Root Vortex, Static, 0:=25°, P=0° 
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Figure 60. Canard at #F4, Wing Root Flow, Static, cx=0°, ~=0° 
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Figure 61. Canard at #F4, Wing Root Vor tex, Static, cx=l5°, 0=0° 
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Figure 62. Canard at #F4, Wing Root Vortex, Static, a=20°, ~=0° 
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Figure 63. Canard at #F4, Wi ng Root Vortex, Static, 0:.=25°, ~=0° 
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Figure 64. Win g Root Vortex, Low pitch rate UP, 0:=15°, ~=0° 
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Figure 65. Win g Root Vortex, Low pitch rate UP, cx=20°, ~=0° 
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Figure 66. \ \' in g Root Vortex, Low pitch rate UP, cx=25°, ~=0° 
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Figure 67 . Win g Root Vortex, Low pitch rate DOWN, cx=l5°, ~=0° 
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F igure 68. W in g Root Vortex , Low pi tch rate DOWN, 0:=20°, ~=0° 
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Figure 69. Wing Root Vor·tex, Low pitch rate DOWN, a=25°, ~=0 ° 
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Figure 70. Wing Root Vortex, High pitch rate UP, a=l5°, ~=0° 
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Figure 71. Wing Root Vortex, High pitch rate UP, a=20°, ~=0° 
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Figure 72. Wing Root Vortex, High pitch rate UP, a=25°, ~=0° 
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Figure 73. Wing Root Vortex, High pitch rate DOWN, 0:=15°, ~=0° 
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Figure 74. W in g Root Vortex, High pitch rat e DOWN, 0:.=20°, ~=0° 
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Figure 75. Wing Root Vortex, High pitch rate DOWN, 0:=25°, ~=0° 
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APPENDIX 13. EXPERIMENTAL RESULTS (GRAPHS) 
DGURES76THROUGH92 
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Table I. GEOMETRIC COORDINATES OF THE CANARD 

L 
~---X ~--

ROOT .S(CTION 

X y 

0.000 ! o.ooo 
O. OIZ ! 0.01 5 

0.100 ~ 0. 030 

o.zoo ! 0. 045 

0.300 :!. 0. 056 
' 

0.400 ! 0. 0 61 

0.500 i 0 063 

0 600 1 0. Obi 

0 700 t 0. 056 

0.800 !: 0.048 

0.900 :: 0.030 

09Ba :t 0.015 

1."000 :! 0000. 

TI P S( CTI ON 

X y 

0 000 :! 0. 0 00 

0.003 ! 0.004 

0025 !: 0.008 

0.050 :!_ 0.01 2 
--

0 075 ± 0.014 

0 . 100 i 0.015 

0. 125 ! 0.016 

0.150 ± 0.01 5 

0.175 i 0.0 14 

0. ZIXJ ±.0.012 

0.225 ! 0. 008 

0 247 :!: 0.004 

0. 2.50 ± 0.000 

1 05 

NOT[ : 

L[ ADING EDGE RADIUS AND 

TRAILI NG E.DG t: RADIUS AR[ 
0 0156 " Cl-IORD . 



Table !(continued). PLANFORM DRAWING OF THE WING 
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Table !(continued) . GEOMETRIC COORDINATES OF THE WING 

AIRFOIL COORDINATES 
STATION 0.50 STATION 2..25 STATION 4.00 

X_..... T ' xl ........ '( X V~I"n. '("" y:- ·· 
'( L0W~11, 'J. ' '( VO""n>. x;._.,. ylOV"fU~ . .,... ...,... .... V -("1\ Lo ..... n .. ...,. 

o.o ~ · 0 o. o o .o o .o o .o o .o o .o o . o o .o o. o o . a 

o.e.t s- o. •!B o. O!tJ - Q .O(.Z. o. aZ.I a.Of3 o ,o/ 4 -0·01/ 0 · <>0.3 o.o04 0.004 - o.oo.s 

D. os:P o.o* o.o-4 - o. o 2T D. OI"i! o.o tb o.ov - 0.01.3 o . oo~ o.aos- o. oo {. - o. 00'\ 

O.cd o.o4A Q .071 -0. 03Z o.o31 o.o'U o.oS 4 -, .ct' o . oo~ 0·006 o .o10 - o.oo4 

0. 135" o .or. t Q, /4<; - o. 040 o.~ 0 .o ZC) o.o<:T - 0 ,otq 0. 0 18 o.ooe o .o t 9 - o. od> 

0· 2 72 o .ct}; 0. 2?8 - o . oS2 o. JSJ Q.O<ll o . t3':l -o . o~ o.o:n o. o t z. o .o.38 -o. oot 

o.-fo9 o.to7 o . .U6 -o.a;;o o. 19':: o.os-t o.to8 -o .o:Z.9 o.oS(, O• oJs:' o.ost -o.oo~ · 
r--·---

o. s-!-7 O.I'Z :l o.~so - o . o\'.5 0· Z.l..l o.o60 Q .Z61- -o~ 0·07l 0.01/ 
I 

o. ols- -0 . 00~ 

o.g-2./ 0 . !~4 o. 'lz Z - o . •19 0-392 o .o73 o . .s9~ -o. o38 6· 117.. o. oz.t 0· II ~ -O .O I( 
-c-- ---

(, 0 97 o.t76 / .10 5 - 0 · v.ti8 o. S:Z4. Q , oe.f o.SZh - o .04Z O.I>D #" ,O e-4 Q, I<;;O - O · oi 'L 

( . .372 Q. /93 /. 378 -o. o 9 S'"" o . l, 5 S' o. 092 o . f.>T -o.04S" o.t87 o.oti. i o . tt8 -0 . Of~ 

/.lA-5 o. 20~ f , ~~2 I - a- oqc, o. 71J7 0. Cf'!9 o .788 -0.04 8 o. 1.-zs- o. o'UI o. -z:zS - 0.01 4 

;.~ Z3 o.vr, (.C)27 ! -o. Jo~ oA19 Q ./ 0~ o.9 '2 o - 0 .1>40 o. z~ o.o:zcq I o.U3 - o.o td 

'2. lc,c) o. '2:22 2.. ZOI 
I 

t .os-1 - o. oS1J o. 300 o.o~ j o. !00 - 1),014 1 -o.toS I ·OSO Q· / 0 6 
·· - - - -·- - - . 

I I z.4'74 o. Z'ZS 2 .4 76 _J - o.1ru (.! 8 1 o . 107 ,.18 '2 i -o.osn o.33? o . 0-!31 o . .;38 j- o. o,d. 

z.7<;o o. z<S'" 7., 7{0 - o .to4 /,S / 3 o. t o7 f. 313 - o.o4-9 o. 37> Q.0.5 / o. '37s- J -o.o'4 ·- --1--- - -
.J. o2S"' o. 2'2 1 .5. 0~ - C),/0/ /, -1-+1 d. /06 J. -1-44 - o.o48 o .4 13 o.c5o a .41'2 - o .ot4 

··- - --- - - . - · - -- · - - ~ - -- ------"-· 1-0.0 1 ~ .; . .30 I D. 2. 14 .3. ZCA -o.o<:.:: J.S"l> o. J0 2.. I·~ - o-04<. <' . 450 o .o z.9 o.m 

,6 .5/b o.zco .3 . ~4- - o.D87 /.? •? o.o06. 1. / 0 ( -o. o<~z. 0 · ~8 o. o27 o . ..ffi? 1- o.otz.. 
r----

' 
3.8~2 o . /8 1 ..5.M8 -o.o74 (.8~ o .ott; (.{3 ~ 7 - o .~ o. S2S c .o1S o .~s- - o.OIO 

4 .1:2.7 0 .1!';7 4 · 12 3 -o . ~a / .970 o.o7"';' t .cx.B - o .oZB o .Sb3 o. o 2. 1 o. ~u - 0 .oo8 

1 ·4 02 ().129 4. 3 98 - o .o4-l Z. t ol o.c<.l z ,o<il<;l - o.OW o. bCO o. OI B {) . i,OO I -o-~ - ----- - --- ---- -· · -
4 .,77 o. o<;8 .. u,n -o .o2:4 2.2.!'2 0.04? z. .220 -o .oll o.63B I 0 - Ol~ 0·~7 -o .oo3 

4 .0S7 0. 06~ -4 .9-1-9 - o. oo8 z.. 3"~ o .o:! / Z. 3C.Z - 0 .004 o.(..7~ I ~ . 00~ O . &70' ! - O .OOI 
··- -- - ------ -
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Table II. RAW DATA FROM EXPERIMENTS (LOCATION A THROUGH C) 

Investigation of vortex bursting location ( Cwr = 5. 5 in.) 

AOll ==>> 
Canard 

Psn 

l 'l/0 Cnd 

A2 

live 
ll3 

live 
ll4 

Ave 
A 5 

Av e 

B2 
BJ 

Min 
15 
Ave 

4.7 4.75 
4.75 4.82 5 

4.725 4.7875 

4 . 65 4.775 
4.5 4 . 7 

4 .5 75 4.7375 
4.6 4 . 7 

4. 6 4 . 7 
4 . 6 4.7 
4.5 4.6 5 

4.55 4.675 

4. 5 4. 7 
4.5 4.625 
4 . 5 4. 65 

4.8 
Ave 4 . 6 

4 .9 
4.725 

4.65 
4. 65 

4 .7 25 

84 4. 5 

Bursting Locati on 
20 25 

live Max 

4 . 8 
4. 9 

4.85 

4. 9 
4. 9 
4. 9 
4.8 

4. 8 
4.8 
4. 8 
4. 8 

4. 9 
4 . 75 

4. 8 

5 

Min 

3.7 
3 . 7 
3.7 

Ave 

3.9 
3 . 85 

3.875 

4 . 15 4.225 
4.15 4.225 
4.1 5 
4 . 15 

4 . 1 

4. 22 5 
4 . 25 

4 . 225 

4.125 4.2375 
4. 2 4 . 3 

4 . 25 4.35 
4 . 225 4.325 

3. 9 4. 1 
3.9 4 . 05 
3.9 4.075 

3.8 3 . 975 
4 4.15 

4. 2 4. 3 

4.2 4. 3 5 
4 . 85 4 . 1333 4.2666 
4.8 4.1 4.175 
4. 8 3 . 9 4.05 

4.85 

Max 

4.1 
4 

4.05 

4 . 3 
4. 3 

Hin 

2.2 
1.9 

2.05 

2 
2.3 

4.3 2.15 
4.35 2.35 
4. 35 2.1 

2 
4.35 2.15 

4 .4 2 .1 
4.45 ~ 2 . 3 

4.425 ,J2.2 
4. 3 2. 3 
4.2 

4.25 2.3 

2.35 
1. 85 

2.1 

2.2 5 
2.4 

2.325 
2 . 475 

2 . 3 
2 . 2 

2.325 
2 . 25 

2 . 4 
2.325 

2 . 4 

2. 4 

4.15 
4.3 
4.4 

2 . 25 2 .3 5 
2.25 2.37 5 

2 . 5 2.625 
2.5 2.6 

4.5 
4. 4 

4 . 25 
4. 2 

2.35 
2.4 
2 . 2 
2.2 

2 . 4 5 
3.3 5 
2 . 35 
2 . 35 

11ax 

2.5 
1.8 

2.15 

2 .5 
2 . 5 
2.5 
2 . 6 
2. 5 

2. 4;, 
2.5 
2.4 
2.5 

2. 45 
2 .5 

2 .5 

2.45 
2.5 

2 .7 5 
2.7 

2 . 55 

4.5 
4. 6 

!we 4 . 5333 4.67 5 4.816 6 
4 4.125 4.2 5 2.25 2.375 
4 4 . 11 66 4.23 33 2.21 66 2 . 35 83 

2.625 
2.5 
2 . 5 
2.5 
2.5 
2.7 85 4. 4 

C2 

Av e 
C3 

Ave 
C4 

Ave 
C5 

4. 3 
4.6 
4.5 

4.46 66 
4.5 
4.5 

4. 5 
4.3 
4.4 

4.35 
4 . 5 

4. 55 4 . 7 

4.5 
4.65 
4.6 5 

4.6 
4.6 5 
4.65 

4.65 
4.5 

4.57 5 
4.5375 

4 . 625 

4.7 
4. 7 
4. 8 

4.7333 
4. 8 
4. 8 

4. 8 
4. 7 

4.75 
4.725 

4 . 75 

3.7 3.9 4 . 1 2.3 2.5 

4.1 
4.1 
4.1 
4.1 

4 
4 

4 
3. 8 
3.8 
3. 8 
3 . 7 

4.2 
4. 2 
4. 2 
4 . 2 

4.15 
4.15 

4. 15 
4 
4 
4 

3.85 

4.3 
4. 3 
4. 3 
4. 3 
4. 3 
4. 3 

4. 3 
4.2 
4.2 
4.2 

4 

2 .2 5 2.375 2.5 
2.26 2.3 8 2 . 5 
2.3 2 . 5 2.7 

2.27 2.418 3 2 . 5666 
2.2 2 . 35 2 . 5 
2.5 2.625 
2.2 2.35 

2.75 
2.5 

2.3 2.4416 2.5833 
2.2 

2.2 5 
2.225 

2.3 

2 . 35 2.5 
2.35 2.45 
2 . 35 2.475 
2.45 2.6 

====================================================================== 

108 



.. 

•J 

Table IJ (cont. ). RAW DJ\ TA FROM EXPERIMENTS (LOCATION D THROUGH F) 

Investigation of vortex bursting location (Cwr = 5. 5 in.) 

AOA ==>> 
Canard 

Psn 

02 
D3 

Ave 
D1 
05 

E2 
E3 
E4 

Ave 
E5 

F2 

Ave 
F3 

Ave 
F4 

Ave 
F 5 

Min 
15 
Ave 

4. 3 4 . 5 
2.6 2.8 
4 .5 4.7 

3.55 3.7 5 
4 .4 4 . 575 
4. 2 4. 4 

4 . 6 4.7 
4 . 5 4.65 

4.35 4 . 525 
4.24 4 . 47 

4.295 4.4975 
4.3 4 . 475 

4.2 
4.65 
4.55 

4 . 4 
4.75 

4. 7 
4.6 4. 75 
4 . 5 4.65 
4. 6 4 . 7 
4.5 4.6 

4.55 4.65 
4 . 3 4.5 
4.4 4.55 

4.35 4.525 

4.35 4.525 

Max 

4 . 7 
3 

4.9 
3 . 95 
4.75 

4. 6 

4.8 
4. 8 
4 . 7 
4.7 
4.7 

4 . 65 

4.6 
4 . 85 
4.85 

Bursting Location 
20 25 

Ave Min 

4.1 
3.9 
4.1 

4 
3 . 7 
3. 5 

4. 2 
4.1 
3. 6 
3.6 
3 . 6 
3.7 

Ave 

4. 2 
4 . 1 
4. 2 

4.15 
3 . 95 
3.7 

4. 3 
4 . 25 
3.75 
3 . 75 
3 . 75 
3 . 85 

3.8 4.025 

4.25 4.35 

Max 

4 . 3 
4 . 3 
4 . 3 
4 . 3 
4.2 
3. 9 

4. 4 

Min 

2 . 4 2.55 
2.3 2.525 
2.3 2.45 
2.3 2.4875 
2 . 3 2 . 45 
2 . 4 2 . 5 5 

2 . 2 2 .. 35 
4 . 4 2.15 2 . 375 
3 . 9 2 . 2 2.35 
3 . 9 2 . 2 2.45 
3 . 9 2 . 2 2.4 

4 ,. 2.3 2 . 5 

4.25 2 . 3 2.5 

4 . 45 2 . 3 2.52 5 

Max 

2.7 
2 .75 

2 . 6 
2.675 

2.6 
2.7 

2 . 5 
2 . 6 
2. 5 ;1 
2.7 
2.6 
2.7 

2.7 

2.75 
4.9 4.2 4.4 4.6 2.55 
4.8 4.0833 4.2583 4.4333 2.3833 
4.8 4 . 2 4.275 4 . 35 2 . 4 5 
4 .7 4 . 15 4 .2 75 4.4 2.4 5 

2.77 5 3 
2.6 2.8166 

4.75 4.175 4.275 4.375 2.4 5 

2.6 
2. 6 
2. 6 

2 . 75 
2.75 
2.75 
2.75 4 . 7 3 . 6 3.8 4 2.4 2 . 57 5 

2.4 4 . 7 
4.7 

3 . 7 
3.7 5 

3.825 
3.875 

3 . 95 
4 

2 . 3 2 . 5 
2.3 2 . 5 2.7 

2.2 5 2.37 5 2.5 
4.7 3.6833 3 . 8333 3 . 9833 2 .3125 2 . 4625 2 . 6125 
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