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For over a decade, the Kellogg Company has used its planning
system (KPS), a large-scale, multiperiod linear program, to
guide production and distribution decisions for its cereal and
convenience foods business. An operational version of KPS, at
a weekly level of detail, helps determine where products are
produced and how finished products and in-process products
are shipped between plants and distribution centers. A tactical
version of KPS, at a monthly level of detail, helps to establish
plant budgets and make capacity-expansion and consolidation
decisions. Operational KPS reduced production, inventory,
and distribution costs by an estimated $4.5 million in 1995.
Tactical KPS recently guided a consolidation of production ca-
pacity with a projected savings of $35 to $40 million per year.

I he Kellogg Company has been using
a large-scale linear program, the Kel-

logg Planning System (KPS), for more
than a decade to guide its operational
(weekly), production, inventory, and dis-
tribution decisions for breakfast cereal and
other foods. In addition, KPS helps Kel-
logg to make tactical decisions on budget-

ing, capacity expansion, capacity reassign-
ment, and other similar issues.

KPS models Kellogg’s operations in the
United States and Canada, with global
operations under study. These operations
include the production, inventory, and
distribution of hundreds of items from
Kellogg-owned and contracted plants out
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to distribution centers (DCs) and to
customers.

Many large companies like Kellogg em-
ploy some sort of enterprise resource plan-
ning system (ERP) to coordinate raw-
material purchases, production,
distribution, orders, and forecasted de-
mand. Kellogg’s ERP is largely a custom,
in-house product, and KPS is a custom
tool to complement that system. Models
like KPS are also attractive within the
commercially available ERPs of SAP, Ora-
cle, JD Edwards, and others. Indeed, these
ERP systems offer plug-in features for
planning production, distribution, and in-
ventory, for example, SAP’s Advanced
Planner and Optimizer [SAP 2001]. How-
ever, even these features may be inade-
quate [Hsiang 2001]. For instance, they
may use rule-based heuristics to attempt
to meet demand while ignoring capacity
constraints and then iteratively refine the
solution, using heuristics, to attempt to
meet capacity constraints. These heuristics
take costs into account in their rules but
do not minimize costs or maximize profits.

In current vernacular, KPS is a point so-
lution because it is tailored to solve prob-
lems for particular functional areas of the
business. KPS uses optimization to find
the best long-term, cost-minimizing, inte-
grated production, inventory, and distri-
bution plan—within the limits of model-
ing assumptions and data accuracy. ERPs
account for the low-level influence of indi-
vidual near-term transactions; in contrast,
KPS is a high-fidelity, prescriptive model
that is ideally suited to evaluating alter-
nate systemwide scenarios.

The Kellogg Company is the largest ce-
real producer in the world and is a lead-
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ing producer of convenience foods. In
1999, worldwide sales totaled nearly $7
billion. Kellogg began with a single prod-
uct, Kellogg’s Corn Flakes, in 1906 and de-
veloped a product line of well-known,
ready-to-eat cereals over the years, includ-
ing Kellogg’s All-Bran (1916), Complete
Bran Flakes (1923), Rice Krispies (1927),
Variety Pak (1938), Raisin Bran (1942), and
Corn Pops (1949). Kellogg continues to

Managers modify plans that
don’t quite fit the realities of
the plant floor.

develop and market new cereals, but its
recent thrust has been in convenience
foods, best exemplified by Kellogg’s Pop-
Tarts and Nutri-Grain cereal bars. In addi-
tion, Kellogg has recently entered the
health-food business. Kellogg produces
hundreds of products that are sold as
thousands of stock-keeping units (skus),
and acceptable profit margins depend on
producing these products and packaging
these skus as efficiently as possible.

The Kellogg Company had long used
spreadsheets and special software for ma-
terials requirements planning (MRP) and
distribution resource planning (DRP). But
by 1987 Kellogg realized that its expand-
ing product line and geographically dis-
persed production facilities required some
means of systematic, global coordination
and optimization. KPS was the result. Af-
ter a year of development, we installed
prototypic software in 1989. Although KPS
was intended primarily for operational
planning, the process of initial testing in-
spired the first real applications, which
were tactical. For example, Kellogg was
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adding a new production facility to ex-
pand capacity and extend the product line,
and it used KPS to compare the overall
cost implications of locating that facility in
one existing plant versus another.

We installed KPS in 1990 and developed
it further over several years. Initially, we
used only systemwide average costs for
each plant, basing optimal solutions on
differentials in transportation costs and on
available production capacities, rather
than on differentials in manufacturing
costs at the various production sites. This
helped smooth the transition from the
then-current, decentralized production-
planning process to a more centralized
process guided by KPS. In particular, us-
ing true costs, KPS would have shifted
overall production patterns dramatically,
and actually carrying out this shift would
have been impractical. By 1994, however,
we had introduced true manufacturing
costs into the operational model, and this
produced savings of $4.5 million in 1995
[Scott 1999]. Currently, KPS is in use
weekly for operational planning and al-
most daily for dealing with tactical issues.
Kellogg’s Products and Operations

Kellogg operates five plants in the
United States and Canada: Battle Creek,
Michigan; Memphis, Tennessee; Omaha,
Nebraska; Lancaster, Pennsylvania; and
London, Ontario. It has seven core DCs in
such areas as Los Angeles and Chicago,
and roughly 15 co-packers that contract to
produce or pack some of Kellogg’s prod-
ucts. Customer demands are seen at the
DCs and at four of the Kellogg plants. In
the cereal business alone, the firm coordi-
nates the production of about 80 products,
while packaging, inventorying, and dis-
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tributing over 600 skus at about 27 loca-
tions (plants, co-packers, or DCs) with a
total of roughly 90 production lines (in-
cluding coaters, puffing towers, and cook-
ers) and 180 packaging lines. Optimizing
this many decisions is clearly a formidable
task. The production, inventory, and dis-
tribution activities behind getting a pack-
age of Kellogg’s Variety Pak to market
helps to illustrate.

Kellogg’s Variety Pak, sku 05337, con-
tains 10 small boxes of different cereals,
for example Corn Flakes, Rice Krispies,
and Froot Loops. The individual boxes (in-
dividuals) can be produced and packed at

Kellogg wants to ship fresh
products.

Kellogg plants in Battle Creek, Omaha,
Lancaster, or Memphis. But not all plants
produce all individuals. All of the individ-
uals at one plant compete for packaging
capacity because they are packed in the
same size box. Many of the basic produc-
tion decisions are independent; for exam-
ple, Mini-Wheats and Corn Pops share
neither materials nor production facilities.
On the other hand, Frosted Flakes are es-
sentially coated Corn Flakes, and produc-
tion constraints dictate that not all Corn
Flakes in a production run can be coated.
Thus, the production of these two prod-
ucts must be synchronized.

Variety Paks are assembled only in Bat-
tle Creek, so Kellogg must coordinate
prior production, packaging, and shipping
from the other three plants with the final
assembly operations in Battle Creek. Each
individual is an intermediate product or
constituent sku, which may be inventoried
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at its production location or at an assem-
bly site, or it may be used to create an as-
sembly directly upon production. To mini-
mize costs, the company must account for
differentials in production, packaging, in-
ventory, and shipping costs. After assem-
bling and packaging the Variety Paks into
cases, the plant then ships them to one of
the seven DCs.

This example does not illustrate all of
the complexities of production and distri-
bution at Kellogg. KPS must also take into
account the following:

—Some skus are produced and packed by
co-packers;

—A given product and package combina-
tion may be packed into several different
case sizes, each yielding a different sku;
—Bulk product is sometimes produced at
one location and shipped to another for
packaging; and

—Constituents of certain products, for ex-
ample, Mueslix, can be produced at one
location and shipped in bulk to another lo-
cation where they are processed together
with other constituents to create a single
product. This contrasts with an assembly
of distinct products like the Variety Pak.
Some constituents may come from Kellogg
plants and some from co-packers. (KPS
can model any number of levels of these
intermediate products.)

The Basic Operational Linear Program
The operational version of KPS makes
production, packaging, inventory, and dis-
tribution decisions at a weekly level of de-

tail. The model is based on a linear-cost
version of the production-planning model
introduced by Modigliani and Hohn
[1955] (the economic lot-sizing model of
Wagner and Whitin [1958] is related), but
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uses the now-standard production, inven-
tory, and demand recursion:

HOLD, = HOLD,_, + MAKE, — Demand,
for all time periods (weeks) ¢,

where HOLD, is the inventory for a single
product at the end of period ¢ (a decision
variable), MAKE, is the production of the
product during time period ¢ (a decision
variable) and Demand; is the exogenous
demand for the product during period ¢
(data) [Dantzig 1959; Zangwill 1969]. This
recursion is embellished in KPS with mul-
tiple stages of production, multiple prod-
ucts and skus, multiple plants and DCs,
shipping lanes between the plants and
DCs, and various capacity constraints.
Johnson and Montgomery [1974, Chapters
4.6-7] describe similar models. We assume
all data are deterministic; inventory safety
stocks (that is, deterministic lower bounds
on inventories) help prepare for uncertain
demands and unforeseen production prob-
lems. KPS does not model raw materials:
We determined early in the model’s devel-
opment that the burden of maintaining
data on raw materials would outweigh
any improvements provided by their
inclusion.

With some variations, we model each
Kellogg plant or co-packer as a set of pro-
cessing lines that produce products (for
example, Corn Flakes, Rice Krispies, and
Blueberry Pop-Tarts), which in turn feed a
set of packaging lines that pack finished
skus. An sku is defined by product, pack-
age size, and case size: For example, sku
00122 is a case of 12, 18-ounce packages of
Corn Flakes. “001” is the product code for
Corn Flakes, and “22” encodes package
and case information. Finished skus are
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placed in inventory or are used to meet
demand assigned to the plant (Kellogg
plants can act as their own DCs) or are
shipped to another plant or DC. All cus-
tomer demand is aggregated by sku and
location, that is, plant or DC.

For each week of the 30-week planning
horizon, the decision variables associated
with a plant are the following:

MAKE;, ,,—Production of products on a
processing line and other facilities that
form a production process, for instance,
the klbs (pounds X 10%) of product 015
(Frosted Flakes) produced on processing

Kellogg runs KPS each
Sunday morning to guide
production decisions in week
2 and beyond.

line LLO1 and frosted with sugar on coater
LCO1 at the p = Lancaster plant in week .
The product 015 and two production fa-
cilities LLO1 and LCO1 form the produc-
tion process h. Every product requires pro-
cessing on one processing line but may
also consume capacity on other facilities,
such as a coater.

PACK,, ,,—Packaging of skus on par-
ticular packaging lines, for example, the
klbs of sku k = 00122 packed on packag-
ing line m = LP09 at the p = Lancaster
plant in week .

HOLDy, ,—Inventories of skus, for ex-
ample, the klbs of sku k = 00525 held in
inventory at the p = Battle Creek plant at
the end of week ¢.

SHIPy,,, ,—Shipments of skus to or
from other plants and DCs, for example,
the klbs of sku k = 00525 shipped from
the p = Battle Creek plant, in week ¢, to
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the p’ = Los Angeles DC. For the most
part, we model a shipment leaving in
week t to arrive in week ¢t + 1.

A DC may be viewed simply as a Kel-
logg plant with no production or packag-
ing facilities, and thus a DC incorporates
only inventory and shipping variables.

KPS currently models Kellogg’'s own
plants and distribution centers and about
15 co-packers. Co-packers are non-Kellogg
production facilities under contract to pro-
duce and package products designed by
Kellogg and bearing the Kellogg label or
to produce constituents for Kellogg prod-
ucts that undergo final processing at Kel-
logg plants. (Kellogg performs no co-
packing for other companies.) A co-packer
has no exogenous demand assigned to it.

Within a plant, basic constraints for each
week require that the system:

(C1) Does not exceed processing line
capacities;

(C2) Does not exceed packaging line
capacities;

(CB3) Packages all products produced in
a week into skus during that week (these
are flow-balance constraints between pro-
cessing and packaging);

(C4) For each sku, balances inventory
from the previous week plus current pack-
aging plus incoming shipments with out-
going shipments, plus consumption in as-
semblies if this is a constituent sku, plus
exogenous demand assigned to the plant;

(Cb) Satisfies safety stock requirements
with inventory of each sku at each plant;

(C6) Coordinates processing lines and
packaging lines as needed during each
time period. For example, we may require
that the time spent packaging an sku does
not exceed the time spent processing the
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product from which that sku is derived.
With respect to these constraints, a DC
is just a plant without production-related
constraints and a co-packer is a just a Kel-
logg plant with no exogenous demand.
Constraints (C1), (C2), (C4), and (C5) are
implemented as elastic goals that can be
violated at a price: When an elastic goal
constraint is violated, a linear penalty per
unit of violation is assessed. The occur-
rence of such an elastic violation may indi-
cate that a little overtime is needed, or it
may signal a bottleneck that cannot be
avoided. Either way, the model recom-
mends a systemwide plan that is opti-
mally adjusted to deal with all such prob-
lems over all locations and time periods.
KPS does not model raw materials but
does model some intermediate products.
An intermediate product is viewed as a
constituent sku that can be shipped to
other plants where it is further processed
or combined and packed with other con-
stituent skus to create a finished, assem-
bled sku. The Variety Pak described ear-
lier is one instance of a constituents-to-
assembly recipe. Also, semiprocessed Rice
Krispies, called bumped rice, are produced
at one plant and shipped in bulk totes (la-
beled and modeled as an sku) to a co-
packer to be further processed and packed
into Rice Krispies Treats. KPS handles the
packaging of assembled skus by straight-
forward modifications of the flow-balance
and packaging-line constraints: The assem-
bly and packaging of an assembled sku
consumes only packaging capacity and
draws constituent skus from inventory or
concomitant packaging.
The basic, time-invariant data for KPS
are:
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—Product and sku codes, product-to-sku
relationships, including recipes for assem-
bled skus, and case weights;

—The identities of the processing and
packaging lines at each plant, the products
or skus that can be processed or packed
on those lines, nominal yields in klbs per

For its size, KPS is curiously
difficult to solve.

shift, nominal processing or packaging
cost for each product or sku in dollars per
klb;

—Inventory costs for each type of sku at
each plant in dollars per case per week;
—Shipping costs (dollars per case) by lane;
and

—Various per-unit penalties for unmet de-
mand, unmet safety stock, and line
overcapacitation.

Data that vary by week are:
—Production and processing line avail-
abilities at each plant measured in shifts;
—Variations in nominal yields or costs to
account for time-of-year effects (for exam-
ple, it may take longer to dry certain prod-
ucts during humid summer months) or ef-
fects associated with new lines, products,
or skus where yields typically improve for
the first few weeks after commencing
production;

—Estimated demands, in cases, for skus
at Kellogg plants and DCs based on fore-
casts made by the marketing department;
and

—Desired minimum inventory levels
(safety stocks) at demand locations.

The basic objective of KPS is to mini-
mize the total cost of meeting estimated
demands. The full objective function in-
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cludes penalty terms for violating process-
ing and packaging capacities, for not
meeting demand, and for not meeting
safety stocks.

A fundamental assumption behind a lin-
ear program is that each decision variable
may take on any value in a continuous
range, but production and packaging deci-
sions at Kellogg (and other manufacturers)
are not that flexible. For instance, KPS
might suggest that about one third of a
shift of a low-demand sku be produced at
some plant in each week of the planning
horizon, but the plant manager requires a
one-shift minimum for that sku because of
setup overhead (production time lost be-
cause of required equipment adjustments).
Theoretically, it is possible to add binary
variables to KPS to handle such situations,
but we have not yet done this because the
model has been hard enough to solve as a
simple linear program. (Technology is im-
proving, however, and a mixed-integer
version of KPS to handle production and
packaging setups is on the drawing
board.) Therefore, managers review KPS-
suggested production plans to modify
plans that don’t quite fit the realities of the
plant floor.

Meeting Uncertain Demand—Forecasts
and Safety Stocks

Much uncertainty is associated with the
data for a long-term production-inventory
model, and for KPS, the greatest uncer-
tainty is in actual demands for skus. In the
first few weeks of a time horizon, demand
numbers may be fairly accurate because
they are largely based on firm orders from
customers. But even at week three or four
of the horizon, actual demands may de-
part substantially from the marketing de-
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partment’s original forecast. Nonetheless,
the overarching goal of Kellogg, and thus
KPS, is to meet these customer demands.

Perhaps KPS should be a multistage
stochastic-programming model that di-
rectly handles uncertainty in demand, and
possibly uncertainty in manufacturing
yields and line availabilities. But such a
model would require an unwieldy amount
of data and would be too difficult to solve:
As a deterministic model, KPS is large
and can take several hours to run. A
stochastic-programming version would re-
quire orders of magnitude longer to solve.
So KPS simply uses planned safety stocks,
that is, minimum inventory levels, as a
buffer for uncertain demand. A huge body
of literature addresses safety stocks in
production-inventory models (for instance,
Silver, Pyke, and Peterson [1998, Chapter
7] and the 103 references they list), but
these models typically require strong
probabilistic assumptions and do not ex-
tend to multistage, capacitated, produc-
tion, inventory, and distribution models
like KPS. KPS uses simple rules for setting
safety stocks that have been tuned manu-
ally over time: Experience is a good
teacher in this case.

In KPS, safety stocks for an sku are set
only at locations that see demand for that
sku. Nominally, the safety stock for sku s
at location p in week ¢ is the sum of de-
mands there in weeks t and t + 1, or
some other function of future demands.
However, if an sku is to be promoted in a
special advertising campaign starting in
week ¢, the safety stock in week ¢ is set as
the sum of estimated demands in weeks ¢
through t + 4, or some other horizon that
is longer than that for an sku not being
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promoted. This extra buffer is kept be-
cause the actual demand for a promoted
sku is higher and more variable than for
one that is not.

Safety stocks also attenuate undesirable
end effects in KPS. In particular, a cost-
minimizing, finite-horizon, production-
inventory model will always try to drive
inventories to zero at the end of the plan-
ning horizon. Even in a model with safety
stocks, we do not trust a finite-horizon
model’s prognostications in the last few
time periods; without safety stocks, the
number of periods of untrustworthy re-
sults would be even greater.

The Rolling Horizon and Solution
Persistence

Kellogg uses KPS in setting a rolling ho-

rizon [Schrage 1999, pp. 187-188]:

Multi-period models are usually used in a roll-
ing or sliding format. In this format, the model
is solved at the beginning of each period. The
recommendations of the solution for the first
period are implemented. As one period elapses
and better data and forecasts become available,
the model is slid forward one period. The pe-
riod that had been number 2 becomes number
1, etc., and the whole process is repeated.

KPS has one difference, however: Pro-
duction and packaging decisions in the
first week are fixed, and it is largely the
second week’s decisions that are set in
motion at the beginning of week 1. The
main reason for this is that it takes time to
get raw materials and packaging materials
in place for production, but KPS does not
model such materials. Thus, at the begin-
ning of week 1, the production and pack-
aging plan is locked in place, having been
made the week before or earlier along
with orders for any materials that may not
have been on hand.

Fixing model variables is one method of
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enforcing solution persistence [Brown,
Dell, and Wood 1997]. That is, we require
that the solution of KPS covering, say,
weeks t through t + 29, persist to some
degree with respect to last week’s solution
covering weeks t — 1 through t + 28. If
the time lag in ordering certain materials
is longer than a week, variables may also
be fixed in weeks beyond the first week of
the horizon.

Fixing variables to given values is a
strong form of persistence; KPS also uses
less coercive techniques, such as requiring
a variable to lie within a specific range or
penalizing deviations of the variable from
a target value. For instance, it is common
for a plant manager, with guidance from
KPS, to decide that his plant will pack a
certain sku in week 3, say, of the planning
horizon. However, he will let the model
decide (for now) exactly how much of this
sku to produce above a specified mini-
mum level. We may also view safety-stock
levels and penalties for not achieving
them as a form of solution persistence. In
general, KPS exploits persistence to (1)
handle lead times of raw materials, (2) re-
duce volatility in suggested production
and distribution plans as the model hori-
zon rolls ahead, and (3) incorporate mana-
gerial knowledge into the production plan
that is too complicated to model more
explicitly.

The Tactical Linear Program

Even though we originally envisaged
KPS as only an operational model, we
have also developed a tactical version of
KPS for long-range planning, on the order
of 12 to 24 months. Kellogg uses long-
range planning to develop plant budgets,
investigate capacity-expansion issues, test
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new DC locations for cost savings, and so
on. The tactical model is identical to the
operational one except that (1) time pe-
riods consist of four-week blocks called
months, (2) transportation is typically
treated as instantaneous, and (3) a special
time-cascade solution technique helps deal
with the limited product shelf lives.
Aggregating data and changing trans-
portation delays is straightforward, but
handling shelf lives is not. Kellogg wants
to ship fresh products and, as a rule, prod-
ucts should reach customers (retailers)
within four or five months of production

Estimated savings of $4.5
million per year accrued from
following the model’s
recommendations.

so that they have plenty of shelf life re-
maining. Shelf life can essentially be ig-
nored in a 30-week operational model, but
it cannot be ignored in a 16-month tactical
model: If solved as a monolith, a 16-month
version of KPS could, conceivably, call for
producing an sku in month 1 to meet a de-
mand in month 16, and this would not be
realistic.

Conceptually, it is not hard to model a
production, inventory, and distribution
system that tracks the age (or the use-
before date) of inventory: If the useful life
of a product is t periods, create T copies of
the inventory balance constraints, inven-
tory variables, and shipping variables, and
index them by the vintage of the product
they represent. Unfortunately, this would
increase the size of tactical KPS nearly
five-fold. Instead, we solve the standard
model using a heuristic called a sliding
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time window.

To implement the sliding window, we
generate the standard model, solve
months 1 through 5, fix the first month’s
variables, solve months 2 through 6, fix
the second month’s variables, solve
months 3 through 7, and so on. In this
way, the model solution cannot see de-
mand beyond five months in the future
and therefore will not try to produce any
products meant for sale more than five
months in the future. This is a heuristic,
but users are convinced that it works well.
An added benefit is that the tactical KPS is
easier to solve than the operational ver-
sion, and this is important when running a
large number of what-if scenarios. (Brown,
Dell, and Wood [1997] give more details.)
Operational KPS in Action

Planning personnel meet for a half day
about six weeks prior to the start of a
quarter to schedule production and pack-
aging for that upcoming quarter. They will
change the schedule produced many times
as the start of the quarter gets closer and
data estimates are revised. But having a
long-range, visible target is important in
managing the purchase of raw materials
with long lead times, and for making ad-
justments to plant capacities to satisfy
demand.

To prepare for the quarterly meeting,
we solve a weekly model with a 30-week
horizon using a starting point projected
from the end of the current quarter’s
schedule. Planners then develop detailed,
implementable schedules for each process-
ing and packaging line using KPS’s pro-
duction and packaging quantities as tar-
gets. This is a manual effort aided by
spreadsheets. For example,
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—If KPS shows a processing line being
heavily utilized for a particular product,
planners will enforce a regular schedule
with production every week on that line
using a whole number of shifts;

—If KPS shows consistent, low levels of
production on a line, they will aggregate
production into a sequence of larger pro-
duction runs, in a whole number of shifts,
once every few weeks; and

—If KPS shows unmet demand for a par-
ticular sku, planners may schedule week-
end overtime for production and packag-
ing of that sku.

The scheduled production at each plant,
by product and totaled over the quarter,
usually conforms closely to that suggested
by KPS. However, KPS might source a
particular product at Battle Creek rather

When Kellogg completes this
project, it estimates the
savings will be between $35
and $40 million annually.

than Omaha because of a very small cost
difference, a difference that planners real-
ize is negligible. In this case, planners
might schedule Omaha for that product to
create a more flexible or balanced schedule
for the plants or to make the schedule
more closely follow budgetary guidelines
established months before using tactical
KPS.

As time passes, planners compare the
schedule against a weekly run of KPS in
order to adjust process quantities and tim-
ing and to identify any approaching risks
of unmet demand; planners may look sev-
eral months ahead. In the shorter horizon
of four to six weeks, when they have little
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flexibility to change the schedule, they re-
view only large deviations from the KPS-
suggested packaging plan for potential
modification.

Kellogg runs KPS each Sunday morning
(the end of week 0) to guide production
decisions in week 2 and beyond. Most
model variables for week 1 are fixed: By
Sunday, it is too late to make changes to
production plans for week 1 because raw
materials and packaging materials for
week 1 are already at the plant or on the
way.

Data for the weekly run of KPS come
from a variety of sources. Demand data
comprise a combination of forecasts from
the marketing department and firm or-
ders. Structural data on line capacities,
yields, and the like are averages compiled
over time, with data on new lines taken
from engineering estimates. New or over-
hauled lines will have start-up curves as-
sociated with them. That is, yields will im-
prove for several weeks as operators gain
experience with the lines and product
changeovers become smoother. Additional
data come from conferences with plant
managers: For example, a packaging line,
BP25, at Battle Creek unexpectedly may be
scheduled for maintenance in weeks 3
through 5, or a run of at least 200 klbs of
product 123 must be made in week 4 be-
cause raw materials are reaching age lim-
its and must be processed, or the yield on
processing line OL01 at Omaha must be
reduced in weeks 2 through 4 because of
projected humid weather.

A typical model has roughly 100,000
constraints, 700,000 variables, and 4 mil-
lion nonzero coefficients. It is solved with
the X-System [Brown and Olson 1994] in
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two to four hours on a DEC Alpha com-
puter with 512 megabytes of RAM or in
less than 20 minutes on a 500 MHz Pen-
tium III laptop. For its size, KPS is curi-
ously difficult to solve, and we have done
research to find out why. Kellogg’s system
has scant slack capacity; small changes in
plans affect many facilities and time pe-
riods; and about 70 percent of the model’s
constraints are taut at optimality. These
are tough linear programs.

One key to solving KPS efficiently is the
X-System’s generalized-network factoriza-
tion [Brown and Olson 1994; McBride
1985]. In particular, a selection of up to 95
percent of constraints C1, C3, and C4 will
have at most two nonzero elements per
column and thereby form a large
generalized-network submodel. Such a
submodel is easily identified, and substan-
tial computation savings accrue because
an explicit basis inverse (or other explicit
basis factorization) need not be main-
tained for that submodel.

Once KPS is solved, results are loaded
into a database and checked for consis-
tency. If data problems are revealed, they
can be corrected and the model rerun be-
fore central planners receive the results on
Monday or Tuesday.

It is difficult to quantify the savings Kel-
logg obtains by using KPS rather than ear-
lier manual methods. However, when we
first introduced KPS for weekly planning,
management decided that production
costs should be equalized across plants.
That is, average production costs would
be used at all plants so that no plant
would be likely to have a severe increase
or decrease in suggested production be-
cause of not-yet-verified production-cost
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differentials. After planners became com-
fortable with KPS and verified data, they
introduced actual costs into the model. At
that time, 1994, it was estimated that sav-
ings of $4.5 million per year accrued from
following the model’s production, inven-
tory, and distribution recommendations
[Scott 1999].

Tactical KPS in Action

KPS is just as important for tactical
planning as it is for operational planning.
Some representative examples demon-
strate its value in the tactical arena.

Prior to the start of each fiscal year,
planners populate the KPS database with
estimated plant-cost and throughput data
and forecasted demands for the fiscal year
plus six months. We run the model to de-
termine the optimal sourcing of produc-
tion to satisfy the forecasted demand for
the fiscal year; the extra six months of data
mediate undesirable end effects in the so-
lution. The firm uses the information on

KPS has saved the Kellogg
Company millions of dollars
since the mid-1990s.

production volumes to then establish fi-
nancial budgets within the plants, inven-
tory space requirements within the DC
network, and equipment projections for
each transportation lane.

KPS plays an integral role in evaluating
production capacity. By investigating the
utilization of various processing lines,
planners can identify opportunities for im-
provement. If they see that the utilization
of the lines that make certain products is
low, they may consolidate to reduce costs.
Conversely, if a set of such lines is fully

11
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utilized, they may seek additional capac-
ity. Also, if a product is produced on mul-
tiple lines at different locations with some
lines operating at less than capacity, but
with the low-cost location operating at ca-
pacity, a capacity increase at that location
may be justified. Managers must evaluate
the potential savings in variable costs us-
ing KPS and compare them with the cost
of the capital improvements.

A recent consolidation project exempli-
fies the use of KPS for capacity planning.
A combination of declining sales and in-
creasing yields of certain products on cer-
tain lines was leading to underutilization
of other processing lines, and managers
conjectured that they could make savings
by closing down some of the under-
utilized lines.

Multiple plants produced the relevant
products, and no single line was com-
pletely idle. Initial runs of KPS also re-
vealed that simply removing one of the
lines with low utilization would be un-
wise, because the remaining lines would
have too little capacity to fully support the
business. So, we used KPS to explore sets
of alternatives for shutting down a subset
of the lines and increasing capacity on oth-
ers. We undertook the study in two stages,
first determining which lines to shut down
and then deciding where to increase ca-
pacity. Ideally, we would look at both sets
of decisions simultaneously, but the large
number of combined options necessitated
this ad hoc decomposition. We identified
reasonable alternatives for shutting down
lines by running KPS with data covering
18 months, with different combinations of
lines removed and additional capacity
spread across the open lines. We sent
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these alternatives off for more detailed fi-
nancial and engineering analyses. Those
analyses, combined with an accounting of
fixed and variable cost implications for the
scenarios, led to a decision about which
lines to close. Then managers had to de-
cide how to increase capacity.

By using KPS, we determined the re-
quired overall capacity increase and gave
that figure to Engineering. Engineering
generated a list of implementable options
that could deliver this increase and their
costs. We then incorporated capacity infor-
mation so that we could measure variable-
cost impacts of the various scenarios.
Combining this with the capital required
for each option enabled managers to make
a financial comparison and select the best
option.

Having selected the consolidation plan
to follow, we created a transition plan for
implementing it. KPS helped us answer
these questions:

—When could Kellogg take the lines tar-
geted for capacity increases out of service
and install new equipment? (Engineering
provided information regarding the time
required and start-up curve estimates
upon completion.)

—Wohen should production cease on the
lines being eliminated?

—How much inventory should Kellogg
build to support the business during the
transition?

When Kellogg completes this project, it
estimates the savings will be between $35
and $40 million annually.

Kellogg also uses KPS to determine
where to produce new products, to assist
regular capacity reviews, and to justify or
avoid the manufacturing and distribution
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cost impacts of various projects. For its
North American cereal business, we run
KPS about 30 times a month to answer
these types of what-if questions.
Conclusions

After more than 10 years, KPS is still in
development: Business never stops chang-
ing. Global operations will require some
refinements and more flexible inputs. We
will introduce binary variables to more ac-
curately model the realities of line sched-
uling. We will more accurately model pro-
duction and packaging operations that are
tightly coupled; this should result in im-
proved solution quality and possibly
speed. We may also model some critical
raw materials with long lead times.

In both its tactical and operational roles,
KPS has saved the Kellogg Company mil-
lions of dollars since the mid-1990s. Kel-
logg is introducing KPS into Latin Amer-
ica to improve operations there, and it is
studying a global model. The advent of
the European Union has simplified cross-
border operations in Europe, and the east
coast of the United States and the coasts of
Europe are getting closer all the time.
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APPENDIX

The following linear program is a didac-
tic specimen of the Kellogg Planning Sys-
tem. The constraints and variables corre-
spond to a generic location. Kellogg plants
exhibit all features described, distribution
centers have no entities associated with

November—December 2001

production and packaging, and co-packers
have no exogenous demands.
Indices

f—food (product).

k—stock-keeping unit (sku).

p—plant (or distribution center).

t—time period.

I—processing line (for foods).

m—~packing line (for skus).

h—production process.

f(h)—the food produced by process .

H(l, p)—processes h that use line / at
plant p.

K(m, p)—skus k that are packed on line
m at plant p.

H(f, p)—processes h that produce food f
at plant p.

K(f, p)—skus k that are packed from
food f at plant p.

K'(k, p)—skus k' that are assembled
from (constituent) sku k at plant p.

M(k, p)—packing lines m that pack sku
k at plant p.
Data and [Units]

ay,—fractional shifts used on process-
ing line / to produce one klb of food f(h) at
plant p during time period ¢ [shifts/kIb].

Bimpr—fractional shifts used on packing
line m to pack one klb of sku k at plant p
during time period ¢ [shifts/klb].

Yipy—fractional klbs of sku k used to
make one kb of sku k' [klbs/kIb].

di,—demand for sku k at plant p dur-
ing time period t [klbs].

hold,,,,—safety stock for sku k at plant p
during time period ¢ [klbs].

uy,,—capacity of processing line /, plant
p, time period t [shifts].

Uy, ——capacity of packing line m, plant
p, time period t [shifts].

hold,,,,—initial inventory of sku k, plant
p [klbs].
Decision Variables

MAKE;,,,—Klbs of product f(h) pro-
duced using process h at plant p during
time period t.

PACKiy,r—Klbs of sku k packed on line
m at plant p during time period t.
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HOLD,,,—klbs of sku k in inventory at
plant p at the end of time period t.

SHIPy,,,—Kklbs of sku k shipped from
plant p to plant p’ at the beginning of time
period t (nominally arriving in period t +
1).

Constraints

C1) X ayuMAKE,, Zu,, Vipt.
heH(,p)

(C2) X Bt PACK s = 11}y
keK(m,p)
Vm, p, t.

(C3) X MAKE, - > X
heH(f,p) keK(f,p) meM(k,p)

PACKpy = 0 Y, p, t.

(C4) X PACKyy
meM(k,p)

- > X

k'eK'(k,p) meM(k',p)

+ HOLDy, ;1 — HOLDy,,

+ X SHIP,,,,—1 — 2, SHIP,,,,
P'#p P'#p

= dy Vk p, t.

(C5) HOLDy, = holdy,,  Vk, p, t.

(C6) (...additional constraints omitted.)

(C7) HOLDyyy = holdy,y Yk, p, t.

(C8) All variables nonnegative.
Objective

Minimize production costs + packing
costs + inventory costs + shipping costs
+ penalties for processing line capacity
violations, packaging line capacity viola-
tions, unmet demand, and unmet safety-
stock requirements.

Constraints (C1) and (C2), respectively,
constrain shifts of activity on each process-
ing line and on each packaging line in
each plant during each period. The rela-

Ykk’pPACKk’mpt

tional operators “=” and “=" signify that
each of these constraints is elastic: If an
elastic constraint is violated, a linear pen-
alty per shift of violation is assessed. Con-
straints (C3) balance production activities
with packaging activities. Constraints (C4)
accumulate net finished production to sat-
isfy demand by sku, plant, and time pe-
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riod. These constraints balance packaging,
shipments received from other plants, and
inventory from the previous period with
consumption to create assembled skus,
shipments to other plants, inventory going
into the next period, and exogenous de-
mand. Constraints (C5) specify elastic
lower bounds as safety-stock levels for
each sku at each plant during each period.
Constraints (C7) initialize inventory,
and all variables are nonnegative (C8).
The objective is to minimize the total of
all costs over the planning horizon, includ-
ing any elastic penalties arising from vio-
lation of elastic goal constraints. Elastic
penalties are incurred primarily for unmet
demand but also sometimes when the user
fixes certain packaging variables. In this
latter case, line capacity may be violated.
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Don J. Scott, Vice President, North
America Logistics, Kellogg Company, One
Kellogg Square, Battle Creek, Michigan
49016-3599, writes, “The development of
the Kellogg Planning System (KPS) 12
years ago which is described in the paper
entitled ‘The Kellogg Company Optimizes
Production, Inventory, and Distribution’
was a major improvement to Kellogg’s
supply-chain planning capabilities. KPS
replaced our existing MRP and DRP Sys-
tems as well as enhanced our long-range
capacity planning capabilities for Kellogg's
USA business. KPS’s ability to guarantee
optimized detail production and deploy-
ment plans by simultaneously considering
cost and capacity for manufacturing, ware-
housing and deployment was a significant
improvement over the traditional planning
systems that it replaced. Early in the life of
KPS, we were able to document multi-
million dollar operating savings that were
driven from improved week-by-week opti-
mized manufacturing sourcing decisions.

“Over the years Kellogg and Insight

November—December 2001

have continued to enhance KPS's capabil-
ity and expand its use across all business
channels. KPS’s planning capabilities have
played a vital role in Kellogg’s ability to
continually reduce costs and inventory
levels while improving service and capac-
ity utilization throughout our total supply
chain.”
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