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Department of Applied Mathematics
Naval Postgraduate School

Monterey, CA 93943-5216, USA

(Communicated by Joan-Josep Climent)

Abstract. To resist Binary Decision Diagrams (BDD) based attacks, a

Boolean function should have a high BDD size. The hidden weighted bit func-
tion (HWBF), introduced by Bryant in 1991, seems to be the simplest function

with exponential BDD size. In [28], Wang et al. investigated the cryptographic

properties of the HWBF and found that it is a very good candidate for being
used in real ciphers. In this paper, we modify the HWBF and construct two

classes of functions with very good cryptographic properties (better than the

HWBF). The new functions are balanced, with almost optimum algebraic de-
gree and satisfy the strict avalanche criterion. Their nonlinearity is higher than

that of the HWBF. We investigate their algebraic immunity, BDD size and their

resistance against fast algebraic attacks, which seem to be better than those of
the HWBF too. The new functions are simple, can be implemented efficiently,

have high BDD sizes and rather good cryptographic properties. Therefore,

they might be excellent candidates for constructions of real-life ciphers.

1. Introduction

To resist the main known attacks, Boolean functions used in real ciphers should
be balanced, with high algebraic degree, with high algebraic immunity, with high
nonlinearity and with good immunity to fast algebraic attacks. It would be better
if the function is non-normal and satisfies the strict avalanche criterion. Up to
now, many classes of Boolean functions with high algebraic immunity have been
introduced [4, 5, 6, 10, 11, 15, 16, 22, 23, 25, 26, 27, 30, 31, 32, 34]. However,
none of them can gather all the necessary criteria and be implemented efficiently.
Moreover, none of them took BDD-based attacks into consideration.

To resist BDD-based attacks, which were first introduced by Krause in 2002 [14],
a Boolean function should have a high BDD size. It is known that an n variable
symmetric Boolean function has a BDD size O(n2) [13], and therefore it is weak
against BDD-based attacks. The hidden weighted bit function (HWBF), proposed
by Bryant [1], looks like a symmetric function, but in fact, it has an exponential
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BDD size and its VLSI implementation has low area-time complexity [1]. In [13],
Knuth reproved Bryant’s theorem stating that the HWBF has a large BDD size,
regardless of how one reorders its variables. Therefore, the HWBF can resist BDD-
based attacks and could be implemented efficiently.

In [28], Wang et al. investigated the cryptographic properties of the HWBF
and found that it has overall very good cryptographic properties: balancedness,
optimum algebraic degree, strict avalanche criterion, good algebraic immunity, good
nonlinearity and good behavior against fast algebraic attacks. Since the HWBF has
a high BDD size and can be implemented very efficiently, it is a potential candidate
for the stream cipher construction.

In this paper, we modify the HWBF and construct two classes of functions with
very good cryptographic properties (better than those of the HWBF). The new
functions are balanced, with almost optimum algebraic degree and satisfying the
strict avalanche criterion. Their nonlinearity is higher than that of the HWBF.
We investigate their algebraic immunity, BDD size and their resistance against fast
algebraic attacks, which seem to be better than those of the HWBF too. The new
functions are simple, can be implemented efficiently, have high BDD sizes and rather
good cryptographic properties. Therefore, they might be excellent candidates for
stream ciphers constructions.

The paper is organized as follows. In Section 2, the necessary background is
established. We introduce a concatenation of two hidden weighted bit functions in
Section 3. In Section 4, we give the other concatenation of four functions. We end
in Section 5 with conclusions.

2. Preliminaries

Let Fn2 be the n-dimensional vector space over the finite field F2. We let Bn be
the set of all n-variable Boolean functions from Fn2 into F2.

Any Boolean function f ∈ Bn can be uniquely represented as a multivariate
polynomial in F2[x1, . . . , xn], called the algebraic normal form (ANF)

f(x1, . . . , xn) =
∑

K⊆{1,2,...,n}

aK
∏
k∈K

xk.

The algebraic degree of f is the number of variables in the highest order term with
nonzero coefficient and is denoted by deg(f).

A Boolean function is affine if there are no term of degree strictly greater than 1
in the ANF. The set of all affine functions is denoted by An.

Let

1f = {x ∈ Fn2 |f(x) = 1}, 0f = {x ∈ Fn2 |f(x) = 0},
be the support of a Boolean function f , and its complement function f + 1, respec-
tively. The cardinality of 1f is called the Hamming weight of f , and will be denoted
by wt(f). The Hamming distance between two functions f and g is the Hamming
weight of f + g, and will be denoted by d(f, g). We say that an n-variable Boolean
function f is balanced if wt(f) = 2n−1.

Let f ∈ Bn. The nonlinearity of f is the distance from the set of all n-variable
affine functions, that is,

nl(f) = min
g∈An

d(f, g).

The nonlinearity of an n-variable Boolean function is bounded above by 2n−1 −
2n/2−1, and a function is said to be bent if it achieves this bound. Clearly, bent
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functions exist only for even n and it is known that the algebraic degree of a bent
function is bounded above by n

2 [2, 9, 24]. The r-order nonlinearity, denoted by
nlr(f), is the distance from the set of all n-variable functions of algebraic degrees
at most r.

For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if fg
(the function defined by fg(x) = f(x)g(x)) is null, and the algebraic immunity
of f , denoted by AI(f), is the minimum value of d such that f or f + 1 admits an
annihilator of degree d [19]. It is known that the algebraic immunity of an n-variable
Boolean function is bounded above by dn2 e [8].

To resist algebraic attacks, a Boolean function f should have a high algebraic im-
munity, which implies that the nonlinearity of f is also not very low since, according
to Lobanov’s bound [17]

nl(f) ≥ 2

AI(f)−2∑
i=0

(
n− 1

i

)
.

To resist fast algebraic attacks, a high algebraic immunity is not sufficient. If we
can find g of low degree and h of algebraic degree not much larger than n/2 such
that fg = h, then f is considered to be weak against fast algebraic attacks [7, 12].
The higher order nonlinearities of a function with high (fast) algebraic immunity is
also not very low [2, 18, 21, 29].

The Walsh transform of a given function f ∈ Bn is the integer-valued function
over Fn2 defined by

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)+ω·x,

where ω ∈ Fn2 and ω · x is an inner product, for instance, ω · x = ω1x1 + ω2x3 +
· · · + ωnxn. It is easy to see that a Boolean function f is balanced if and only if
Wf (0) = 0. Moreover, the nonlinearity of f can be determined by

nl(f) = 2n−1 − 1

2
max
ω∈Fn

2

|Wf (ω)|.

The autocorrelation function of f ∈ Bn is defined by

Cf (α) =
∑
x∈Fn

2

(−1)f(x)+f(x+α).

Also, f satisfies the strict avalanche criterion if Cf (α) = 0, for wt(α) = 1 [33].
A truth table of order n is a binary string of length 2n. A bead of order n is a

truth table β of order n that does not have the form αα for any string α of length
2n−1. The beads of a Boolean function are the subtables of its truth table that
happens to be beads. The BDD size of a Boolean function f , denoted by B(f), is
the number of beads that f has. To resist BDD-based attacks, a Boolean function
should have a large BDD size, regardless of how one reorders its variables.

3. Concatenation of two functions

Let a, b be integers. Define “�” as follows:

a� b =

{
n if n|(a+ b),
a+ b (mod n) otherwise.

Lemma 3.1. If 1 ≤ d ≤ n and (n, d) = 1, then the set {1�(k∗d) | k = 1, 2, . . . , n} =
{1, 2, . . . , n}.

Advances in Mathematics of Communications Volume 8, No. 2 (2014), 153–165
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Proof. Let G = {1, 2, ..., n}. Clearly, (G,�) is a cyclic group of order n with 1 as a
generator. Since (n, d) = 1, d ∗ 1 = 1 � 1 � · · ·� 1 = d is also a generator, and the
result follows.

Let h ∈ Bn be the hidden weighted bit function. That is,

h(x) =

{
0 if x = 0,
xwt(x) otherwise.

It is known that h is balanced, with the optimum algebraic degree and satisfying
the strict avalanche criterion [28].

Let ĥ(x1, . . . , xn) = h(Sbn2 c(x)) = h(xbn2 c+1, . . . , xbn2 c), where

Sbn2 c(x) = (x1�bn2 c, . . . , xn�b
n
2 c).

Let || denote the concatenation. We consider the function h1 ∈ Bn+1 as a concate-
nation of two functions:

(1) h1(x1, . . . , xn+1) = h(x1, . . . , xn)||ĥ(x1, . . . , xn).

In fact, we can construct a family of functions in the form of h(x)||h(Si(x)), where
1 ≤ i ≤ n−1. These functions possess the similar cryptographic properties, and the
function has the best nonlinearity when i = bn2 c. For that reason, we only consider
h(x)||h(Sbn2 c(x)) here. Moreover, if we take h(x) to be any balanced function with
optimum algebraic degree and some other good cryptographic properties, then some
of the following theorems (e.g. Theorem 3.2) still hold. In particular, we can take
h(x) to be the Carlet-Feng function. One can certainly ask about the cryptographic
properties of h(x)||h(Si(x)), for other functions h, and we leave this as an open
problem.

Theorem 3.2. The function h1 ∈ Bn+1 (n ≥ 3) defined by (1) is balanced and

deg(h1) =

{
n if n ≡ 1, 2, 3 (mod 4),
≥ n− 1 if n ≡ 0 (mod 4).

Proof. Since h is balanced, then the concatenation of two balanced functions is also
a balanced function. Hence the first claim is proven.

Clearly, h1(x1, . . . , xn+1) = xn+1(h(x1, . . . , xn) + ĥ(x1, . . . , xn)) + h(x1, . . . , xn).
Therefore, deg(h1) ≥ n − 1. We now prove that deg(h1) = n, for n ≡ 1, 2, 3

(mod 4). That is, g = h(x1, . . . , xn) + ĥ(x1, . . . , xn) is of degree n − 1. Let 1h =
{(bi1 + 1, bi2 + 1, . . . , bin + 1), 1 ≤ i ≤ 2n−1}. Then the coefficient of the monomial
x1x2 · · ·xk−1xk+1 · · ·xn in the ANF of h equals (see e.g. [2, 9])

2n−1∑
i=1

bik =

n∑
j=1

|{x| wt(x) = j, xj = 1 and xk = 0}|

=

n−1∑
j=1

j 6=k

(
n− 2

j − 1

)
≡ 2n−2 −

(
n− 2

k − 1

)
(mod 2).

Case 1: n ≡ 2 (mod 4), n ≥ 3.

Since
∑2n−1

i=1 bi1 = 2n−2 − 1 ≡ 1 (mod 2) (if n ≥ 3) and
∑2n−1

i=1 bi,n2 +1 = 2n−2 −(
n−2

n
2

)
≡ 0 (mod 2), the coefficient of the monomial x1 · · ·xn

2
xn

2 +2 · · ·xn in the ANF

of g equals 1, and the result follows.
Case 2: n ≡ 1, 3 (mod 4).
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Since deg(h) = n− 1 and h contains the monomial x2x3 · · ·xn, if deg(g) < n− 1,

then ĥ(x1, . . . , xn) = h(Sbn2 c(x)) also contains x2x3 · · ·xn, and thus h(x1, ..., xn)

contains the monomial x1 · · ·xbn2 c+1xbn2 c+3 · · ·xn. Since (n, bn2 c + 1) = 1, then by
Lemma 3.1, the ANF of h contains all the monomials of degree n − 1. That is,∑2n−1

i=1 bij ≡ 1 (mod 2), for 1 ≤ j ≤ n. However,
∑2n−1

i=1 bin = 2n−2 ≡ 0 (mod 2),
which is a contradiction and the result follows.

Lemma 3.3. If f1, f2 ∈ Bn satisfy the strict avalanche criterion and f1+f2 is a bal-
anced function, then the concatenation f = f1||f2 also satisfies the strict avalanche
criterion.

Proof. We need to prove that f(x) + f(x+ α) is balanced, for α = (α1, . . . , αn+1),
wt(α) = 1 and αk = 1, where 1 ≤ k ≤ n+ 1.

Case 1: αk = 1, for 1 ≤ k ≤ n. That is, αn+1 = 0.
Since f1 and f2 satisfy the strict avalanche criterion, we have∑

x∈Fn+1
2

(−1)f(x)+f(x+α)

=
∑
x∈Fn2

xn+1=0

(−1)f1(x)+f1(x+α̂) +
∑
x∈Fn2

xn+1=1

(−1)f2(x)+f2(x+α̂) = 0,

where α̂ = (α1, . . . , αn). Hence, f(x) + f(x+ α) is balanced.
Case 2: αn+1 = 1.
Since f1 + f2 is balanced, we have∑

x∈Fn+1
2

(−1)f(x)+f(x+α)

=
∑
x∈Fn2

xn+1=0

(−1)f1(x)+f2(x) +
∑
x∈Fn2

xn+1=1

(−1)f2(x)+f1(x) = 0,

and the result follows.

Theorem 3.4. The function h1 ∈ Bn+1 defined by (1) satisfies the strict avalanche
criterion.

Proof. Since h(x) and ĥ(x) satisfy the strict avalanche criterion, by Lemma 3.3, we

need to prove that h(x) + ĥ(x) is balanced. Clearly,

|0h ∩ 0ĥ| =

n∑
i=0

|{x| wt(x) = i and xi = xi�bn2 c = 0}|,

=

n−2∑
i=0

(
n− 2

i

)
= 2n−2.

Similarly,

|1h ∩ 1ĥ| =

n∑
i=0

|{x| wt(x) = i and xi = xi�bn2 c = 1}|,

=

n∑
i=2

(
n− 2

i− 2

)
= 2n−2.

Hence, |0h+ĥ| = |0h ∩ 0ĥ|+ |1h ∩ 1ĥ| = 2n−1, and the result follows.

Advances in Mathematics of Communications Volume 8, No. 2 (2014), 153–165
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Remark 3.5. From the proof of Theorem 3.4, it is easy to see that h(x)+h(Si(x))
is balanced, for 1 ≤ i < n. Then by Lemma 3.3, h(x)||h(Si(x)) also satisfies the
strict avalanche criterion.

Lemma 3.6 (Lemma 1 of [28]). Let ω = (ω1, . . . , ωn), wt(ω) = 1 and ωk = 1.
Then

Wh(ω) = 4

(
n− 2

k − 1

)
.

We now show a similar result for our constructed function h1.

Lemma 3.7. Let ω = (ω1, . . . , ωn+1) and wt(ω) = 1. Then

Wh1
(ω) ≤

4
(n−2

n−2
2

)
for n even,

4
((n−2

n−1
2

)
+ 1
)

for n odd

which is a tight bound.

Proof. Let 1 ≤ k ≤ n+ 1 and ωk = 1. Let ω̂ = (ω1, . . . , ωn).
Case 1: k = n+ 1.
Since h(x) and ĥ(x) are both balanced, we have

Wh1
(ω) =

∑
x∈Fn+1

2

(−1)h1(x)+xn+1

=
∑
x∈Fn

2

(−1)h(x) +
∑
x∈Fn

2

(−1)ĥ(x)+1 = 0.

Case 2: 1 ≤ k ≤ n.
By Lemma 3.6, we have

Wh1
(ω) =

∑
x∈Fn+1

2

(−1)h1(x)+ω·x

=
∑
x∈Fn

2

(−1)h(x)+ω̂·x +
∑
x∈Fn

2

(−1)ĥ(x)+ω̂·x

= 4

(
n− 2

k − 1

)
+ 4

(
n− 2

k � (n− bn2 c)− 1

)
,

If n is even, then

Wh1
(ω) ≤ 4

(
n− 2
n−2
2

)
,

and the equality can be achieved when k = n or n
2 . If n is odd, then

Wh1
(ω) ≤ 4

((
n− 2
n−1
2

)
+ 1

)
,

and the equality can be achieved when k = n+1
2 , and the result follows.

Lemma 3.8. Let 2 ≤ k ≤ n and wt(ω) = k. Then

Wh1
(ω) ≤

4
(n−2

n−2
2

)
for n even,

4
((n−2

n−1
2

)
+ 1
)

for n odd.
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Proof. Let ω = (ω1, ω2, . . . , ωn+1) and ωi = 1 if i ∈ {s1, s2, . . . , sk}. Let ω̂ =
(ω1, . . . , ωn). We have

Wh1
(ω) =

∑
x∈Fn+1

2

(−1)h1(x)+ω·x

=
∑
x∈Fn

2

(−1)h(x)+ω̂·x +
∑
x∈Fn

2

(−1)ĥ(x)+ω̂·x+ωn+1 .

If ωn+1 = 0, then Wh1(ω) = Wh(ω̂) +Wĥ(ω̂). By [28], we have

Wh(ω̂) = 2

n∑
i=1

i∈{s1,s2,...,sk}

di+1

2∑
j=1

(C2 − C1),

and

Wĥ(ω̂) = 2

n∑
i=1

i∈{s1�bn2 c,...,sk�b
n
2 c}

di+1

2∑
j=1

(C2 − C1),

where di = 2b i−12 c+ 1 and

C1 =

(
k − 1

2j − 1

)(
n− k + 1

i− 2j + 1

)
, C2 =

(
k + 1

2j − 1

)(
n− k − 1

i− 2j + 1

)
.

Let

I1 =
{
i | i� bn

2
c ∈ {s1, s2, . . . , sk}

}
I2 = {s1, s2, . . . , sk} − I1
I3 =

{
i� bn

2
c | i ∈ I1

}
I4 =

{
i� bn

2
c | i ∈ I2

}
.

Then

Wh1
(ω) = 2

∑
i∈I2∪I4

di+1

2∑
j=1

(C2 − C1) + 2
∑

i∈I1∪I3

di+1

2∑
j=1

(C2 − C1).

For 1 ≤ k ≤ n− 1, let

Sk = max |{
∑
i∈Tk

di+1

2∑
j=1

(C1 − C2)}|,

where Tk runs over all k-element subsets of {1, 2, ..., n}. We have Sk = Sn−k and Sk
decreases at first and then increases. Therefore, |Wh1

(ω)| achieves the maximum
value when k = n−1

2 for n odd and k = n−2
2 for n even. Then we have

|Wh1
(ω)| ≤

4
(n−2

n−2
2

)
for n even,

4
((n−2

n−1
2

)
+ 1
)

for n odd.

The proof for the case ωn+1 = 1 is similar, and the result follows.

Lemma 3.9 (Lemma 3 of [28]). Let wt(ω) = n. Then Wh(ω) = 0.

Lemma 3.10. Let wt(ω) = n+ 1. Then Wh1
(ω) = 0.
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Table 1. Algebraic immunity and nonlinearity of h and h1

n AI(h) AI(h1) nl(h) nl(h1)
6 3 3 20 24
7 3 4 44 52
8 4 4 88 106
9 4 4 186 216
10 4 5 372 440
11 5 5 772 884
12 5 6 1544 1794
13 5 6 3172 3592
14 5 6 6344 7266
15 6 6 12952 14536

Proof. Let ω̂ = (ω1, . . . , ωn) = (1, . . . , 1). By Lemma 3.9, we have

Wh1
(ω) =

∑
x∈Fn

2

(−1)h(x)+ω̂·x +
∑
x∈Fn

2

(−1)ĥ(x)+ω̂·x+1 = 0 + 0 = 0,

and the result follows.

Theorem 3.11. For the function h1 ∈ Bn+1 defined by (1), we have

nl(h1) =

2n − 2
(n−2

n−2
2

)
for n even,

2n − 2
((n−2

n−1
2

)
+ 1
)

for n odd.

Proof. By Lemmas 3.7, 3.8 and 3.10, we have

max
ω∈Fn+1

2

|Wh1
(ω)| =

4
(n−2

n−2
2

)
for n even,

4
((n−2

n−1
2

)
+ 1
)

for n odd,

and the result follows.

Theorem 3.12. We have

AI(h1) ≥
⌊n

3

⌋
+ 1.

Proof. Since h and ĥ are affine equivalent, they have the same algebraic immunity,
which is ≥ bn3 c + 1 by Theorem 4 of [28]. Then by Proposition 1 of [4], AI(h1) ≥
bn3 c+ 1.

It seems that AI(h1) ≥ AI(h) and in some cases AI(h1) > AI(h), which can
be found in Table 1, where h, h1 ∈ Bn.

Let deg(g1) = d < AI(h1) and h1 · g1 = g2. We expect that deg(g2) is as high
as possible for any g1 of low degree. The optimum case for a Boolean function to
resist fast algebraic attacks is that deg(g1) + deg(g2) = n + 1 for any g1 of degree
deg(g1) ≤ AI(h1). Let deg(g2) = e. For 6 ≤ n + 1 ≤ 13, in Table 2, we give
the lowest possible values of (d, e). Compared with the HWBF, in most cases, the
function h1 has a better behavior against fast algebraic attacks.

To resist BDD-based attacks, a Boolean function should have a high BDD size.
In Table 3, one can find BDD size of the majority function maj, the hidden weighted

Advances in Mathematics of Communications Volume 8, No. 2 (2014), 153–165
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Table 2. Behavior of the function h1 against Fast Algebraic Attacks

n 6 7 8 9 10 11 12 13
(d, e) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) (1,10) (1,10)

(2,3) (2,4) (2,5) (2,5) (2,7) (2,8) (2,9) (2,9)
(3,4) (3,4) (3,4) (3,6) (3,6) (3,8) (3,8)

(4,5) (4,5) (4,6) (4,7)
(5,6) (5,6)

Table 3. BDD size of maj, h and h1

n B(maj) B(h) B(h1)
6 14 25 27
7 18 40 42
8 22 57 67
9 27 85 95
10 32 121 136
11 38 172 198
12 44 240 290
13 51 335 388
14 58 459 517
15 66 630 737
16 74 856 959

bit function h and the modified function h1, with the standard ordering of variables.
Clearly, as a symmetric Boolean function, the majority function has a very small
BDD size. Although the BDD size of h is big, the BDD size of the modified function
h1 is even bigger than that of h.

4. Concatenation of four functions

Let h ∈ Bn be the hidden weighted bit function. Let h2 ∈ Bn+2 and h2(x1, . . . ,
xn+2) = h(x)||h(Sbn2 c(x))||h(Sbn4 c(x))||h(Sbn4 c+b

n
2 c(x)). Clearly, h2 is a balanced

function.

Lemma 4.1. The sum of the two halves of h2, that is, h̃ = (h(x)||h(Sbn2 c(x))) +

(h(Sbn4 c(x))||h(Sbn4 c+b
n
2 c(x))) is balanced.

Proof. Clearly, h̃ = (h(x) + h(Sbn4 c(x)))||(h(Sbn2 c(x)) + h(Sbn4 c+b
n
2 c(x))). By Re-

mark 1, h(x)+h(Sbn4 c(x)) and h(Sbn2 c(x))+h(Sbn4 c+b
n
2 c(x)) are balanced functions,

and the result follows.

By Lemmas 3.3 and 4.1, it is easy to see that h2 satisfies the strict avalanche
criterion.

Advances in Mathematics of Communications Volume 8, No. 2 (2014), 153–165
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Lemma 4.2. Let ω = (ω1, . . . , ωn+2) and wt(ω) = 1. Then

Wh2(ω) ≤ 4 max
1≤k≤n

{(
n− 2

k − 1

)
+

(
n− 2

k � (n− bn2 c)− 1

)
+

(
n− 2

k � (n− bn4 c)− 1

)
+

(
n− 2

k � (n− bn4 c − b
n
2 c)− 1

)}
,

which is a tight bound.

Proof. Let ω̂ = (ω1, . . . , ωn). Consider ωk = 1 for 1 ≤ k ≤ n+ 2.
Case 1: k = n+ 1 or n+ 2.
Since h, h(Sbn2 c), h(Sbn4 c) and h(Sbn4 c+b

n
2 c) are all balanced, we have

Wh2
(ω) =

∑
x∈Fn+2

2

(−1)h2(x)+xk

=
∑
x∈Fn2

xn+1=xn+2=0

(−1)h(x)+xk +
∑
x∈Fn2

xn+1+1=xn+2=0

(−1)
h(Sbn

2
c(x))+xk

+
∑
x∈Fn2

xn+1=xn+2+1=0

(−1)
h(Sbn

4
c(x))+xk

+
∑
x∈Fn2

xn+1=xn+2=1

(−1)
h(Sbn

4
c+bn

2
c(x))+xk

= 0.

Case 2: 1 ≤ k ≤ n.
By Lemma 3.6, we have

Wh2(ω) =
∑
x∈FN

2

(−1)h2(x)+ω·x

=
∑
x∈Fn

2

(−1)h(x)+ω̂·x +
∑
x∈Fn

2

(−1)
h(Sbn

2
c(x))+ω̂·x

+
∑
x∈Fn

2

(−1)
h(Sbn

4
c(x))+ω̂·x +

∑
x∈Fn

2

(−1)
h(Sbn

4
c+bn

2
c(x))+ω̂·x

= 4

(
n− 2

k − 1

)
+ 4

(
n− 2

k � (n− bn2 c)− 1

)
+ 4

(
n− 2

k � (n− bn4 c)− 1

)
+4

(
n− 2

k � (n− bn4 c − b
n
2 c)− 1

)
,

and the result follows.

Similarly, as for h1, one can find some other cryptographic properties for h2, and
we gather these in the following theorem, whose proof we omit.

Theorem 4.3. The Boolean function h2 ∈ Bn+2 is a balanced function, it satisfies
the strict avalanche criterion, has degree deg(h2) ≥ n− 1, AI(h2) ≥ bn3 c+ 1 and

nl(h2) = 2n+1 − 2 max
1≤k≤n

{(
n− 2

k − 1

)
+

(
n− 2

k � (n− bn2 c)− 1

)
+

(
n− 2

k � (n− bn4 c)− 1

)
+

(
n− 2

k � (n− bn4 c − b
n
2 c)− 1

)}
.
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Table 4. Algebraic immunity, nonlinearity and BDD size of h2

n+ 2 AI(h2) nl(h2) B(h2)
10 5 448 137
11 5 896 196
12 6 1820 280
13 6 3658 383
14 6 7508 571
15 7 15018 782

Table 5. Behavior of the function h2 against Fast Algebraic Attacks

n+ 2 (d, e)
10 (1,7) (2,6) (3,5) (4,5)
11 (1,9) (2,8) (3,7) (4,6)
12 (1,10) (2,9) (3,8) (4,7) (5,6)
13 (1,11) (2,10) (3,9) (4,8) (5,6)

In Table 4, one can find the algebraic immunity, nonlinearity and BDD size of
h2 ∈ Bn+2 for 10 ≤ n+ 2 ≤ 15. Clearly, the BDD size of h2 is better than that of
h, AI(h2) ≥ AI(h1) and the nonlinearity of h2 is much higher than that of h and
h1. In Table 5, one can find the behavior of the function h2 against fast algebraic
attacks, which is better than that of h, as well.

We have the following well-known results.

Proposition 4.4. Let p1(x1, . . . , xl) ∈ Bl be balanced, p2(xl+1, . . . , xl+m) ∈ Bm
and p = p1 + p2 be the direct sum of p1 and p2. Then we have

1) deg(p) = max{deg(p1),deg(p2)}.
2) AI(p) ≥ max{AI(p1),AI(p2)}.
3) nl(p) = 2mnl(p1) + 2lnl(p2)− 2nl(p1)nl(p2).

Recall that the fast correlation attack has an on-line complexity proportional

to
(
1
ε

)2
, where ε = 1

2 −
nl(f)
2n is the so-called bias [20]. In consideration of the

implementation efficiency, we compare the 16-variable Carlet–Feng function with
the 256-variable HWBF. Let fc be the 16-variable Carlet–Feng function discussed

by [26], h̃ = h256 +x257x258 +x259x260 +x261x262 +x263x264 +x265x266 +x267x268 +

x269x270+x271x272, h̃1 = h1256+x257x258+x259x260+x261x262+x263x264+x265x266+

x267x268 + x269x270 + x271x272 and h̃2 = h2256 + x257x258 + x259x260 + x261x262 +
x263x264 + x265x266 + x267x268 + x269x270 + x271x272. Then, the bias of fc is ε =

0.0036, while by Proposition 1, the bias of h̃ is ε = 0.0001, the bias of h̃1 is ε =

0.00005 and the bias of h̃2 is ε = 0.000025. Clearly, the behavior of h̃ and h̃1 against

fast correlation attacks is better than that of fc, and h̃2 has the best behavior among
all of them. We have AI(fc) = 8, while the other three functions have algebraic
immunities at least 86. The Carlet–Feng function also has an exponential BDD
size. However, B(fc) < 215, and it is much smaller than the BDD sizes of the other
three functions.

Advances in Mathematics of Communications Volume 8, No. 2 (2014), 153–165



164 Qichun Wang, Chik How Tan and Pantelimon Stănică

Example 4.5. Let h, h1, h2 ∈ B12. Then they are all balanced and satisfy the strict
avalanche criterion. deg(h) = deg(h1) = deg(h2) = 11; AI(h) = 5 and AI(h1) =
AI(h2) = 6; nl(h) = 1544, nl(h1) = 1794 and nl(h2) = 1820; B(h) = 240, B(h1) =
290 and B(h2) = 280. Comparing it with h, h1 has a better behavior and h2 has
the best behavior against fast algebraic attacks (it is noticed that h2 ∈ B12 has
the optimum algebraic immunity and the optimum behavior against fast algebraic
attacks). Clearly, all these cryptographic properties of h1 and h2 are better than
those of h.

5. Conclusion

This paper modifies the HWBF and constructs two infinite classes of functions
with very good cryptographic properties (better than those of the HWBF). To
summarize, the new functions are balanced, have almost optimum algebraic degree
and satisfy the strict avalanche criterion. Their nonlinearity is higher than that of
the HWBF. We investigate their algebraic immunity, BDD size and their resistance
against fast algebraic attacks, which seem to be better than those of the HWBF,
too. Since the new functions can be implemented very efficiently, they can be used
with a large number of variables, which allows reaching very good cryptographic
properties. The new functions could be excellent candidates for stream ciphers
constructions.
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