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Abstract  

 

Cloud computing is emerging as the mainstream platform for a range of on-demand 

applications, services, and infrastructure. It is already playing an important role in the 

communication, and the processing, mining, and fusing of information in distributed command 

and control.  A major benefit of cloud computing is improved net-centric capability.  Before the 

full benefits of cloud computing are realized, several technology challenges must be addressed. 

Operating in intermittent and austere network conditions is one such challenge, which navy ships 

face when communicating with land-based cloud computing environments.  

We investigate the data requirements of navy ships and propose two mechanisms – data 

caching and cloudlets – to improve the cloud connectivity under intermittent and austere network 

conditions.  We study the application of these two mitigating strategies in detail and evaluate 

their performance through modeling and simulation for both individual ships as well as ships in a 

Carrier Strike Group or an Expeditionary Strike Group (CSG/ESG). Results from our 

simulations have suggested a positive impact.  Caches and cloudlets as a part of the shipboard 

architecture produce better performance in data communications. Most importantly, the 

strategies promote operations continuity for a naval force under disconnected, intermittent, and 

limited (DIL) network environments. 

 

 

Keywords — mobility, cloud computing, cloudlet, cache, DIL, command and control 
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I. Introduction 

The U.S. Navy (USN) and its coalition partners have become increasingly dependent on 

the availability of stable and robust ship-to-shore satellite communication (SATCOM) to deliver 

network and application services [8]. While SATCOM has provided unprecedented support for 

military services, the communication supported by SATCOM is less than reliable in terms of its 

quality of service and connectivity.  Command and control (C2) is one of the services that will be 

greatly affected by intermittent communication.  Tactical situations increase the likelihood of a 

disconnected, intermittent, and low-bandwidth (DIL) environment while simultaneously 

increasing the need for an updated and synchronized common operational picture (COP) [10]. 

Existing C2 systems using event-based protocols to manage tracks may conserve bandwidth, but 

they do not guarantee a common operating picture in DIL environments. Without an updated 

COP among the involved parties, confusion can arise among them, and well-informed and sound 

decisions cannot be made.  Given limited bandwidth and intermittent connectivity of satellite 

connections, new architectures are needed to support data requirements of navy ships.  

Motivations for the research efforts have derived not only from concerns about the risk that 

satellites can be jammed or even shot down during hostilities, but also concerns about the cost 

and availability of satellites world-wide and to all partners in potential coalitions even in 

peacetime.   

Cloud computing is emerging as the mainstream platform for a range of on-demand 

applications, services, and infrastructure. It is already playing an important role in the 

communication, and the processing, mining, and fusing of information in distributed command 

and control.  A major benefit of cloud computing is improved net-centric capability.  In most 

cloud-based systems, clients generate and/or consume information, and are connected to cloud-

based servers over wired or wireless network connections.  For mobile clients, this connection, 

by necessity, is a wireless connection. While cloud computing has brought about unprecedented 

sophistication in the mobile ecosystem, there are a number of challenges that need to be 

addressed in order for the overall environment to be dependable.  Operating in intermittent and 

austere network conditions (fluctuating wireless bandwidth, intermittent connectivity, and 

reliable connectedness of mobile clients) is one such challenge, which navy ships face when 

communicating with land-based cloud computing environments.  

This paper provides an extended summary of our research on strategies to improve 

interactions between mobile platforms and the cloud under intermittent and austere network 

conditions [16].  It reviews the current navy shipboard data usage and examines two mitigating 

strategies – data caching and cloudlets [11].  The rest of the paper is organized as follows. 

Sections II gives an overview of the current shipboard data usage.  Sections III and IV discuss 

the cloud response time and present strategies to overcome high latency and intermittent 

connections.  Section V presents an analysis of our proposed strategies for individual ships as 

well as ships in a Carrier Strike Group or an Expeditionary Strike Group (CSG/ESG). Section VI 

discusses the findings of the study and Section VII draws some conclusions. 

 

II. Shipboard Data Usage 

There are four main categories of shipboard data usages: Command and Control (C2) 

data, Positioning Navigation and Timing (PNT) data, Meteorological and Oceanographic 

(MTEOC) data, and Quality-of-Life (QoL) data. 



 4 

A. C2 Data 

Situational awareness is a vital function of a C2 system. The quality of a commander’s 

decision for the next course of action greatly depends on the accuracy and timeliness of the C2 

data provided by the system.  C2 data are made up of the following data types: text/tracks (e.g. 

C2 messages, tasking orders, status updates, ISR reports), images (e.g. ISR images, sensor feeds, 

map overlays), and videos (e.g., ISR videos, UAV feeds).  To accomplish a sufficiently effective 

situational awareness, the C2 system must fuse and display these data, which can be obtained 

from sensors, human intelligence, signal intelligence, communications intelligence, image 

intelligence, or even open-source intelligence, in a clear and intuitive manner.   

B. PNT Data 

Positioning Navigation and Timing (PNT) distribution systems are required to provide a 

common geospatial platform and temporal reference to military platforms. This data is pervasive 

and critical for military platforms, because it supports many targeting, situational awareness, 

communication, and weapon systems. Overall mission effectiveness is also highly dependent on 

PNT data [9]. The Navigation Sensor System Interface (NAVSSI), being the primary source of 

PNT data, gathers inputs from multiple shipboard sensors and then distributes the resultant 

navigation, time, and frequency data to both internal and external systems for consumption.  

Time criticality is the other important factor in distributing PNT data to naval systems.  

C. METOC Data 

Weather conditions in both the atmosphere and ocean can affect how the U.S. Navy 

carries out their operation. It is difficult to make an accurate prediction of the weather, and this 

impedes the naval forces from planning and executing their mission efficiently and effectively. 

Force structure composition, force movement prediction, personnel safety, estimation of 

capability performance, and war-fighting tactics are examples of what the adverse weather can 

impact.  Hence, the need for meteorological and oceanographic (METOC) information is critical.  

D. QoL Data 

Conducting official and personal business via the Internet is a basic necessity in modern-

day life.  Besides conducting Navy business, sailors afloat need Internet support for their 

continuing education, banking, daily news update, entertainment, social networking, and family 

contacts.   Although Internet support for personal QoL data may not be mission-critical, its 

quality of service has direct impact to the overall morale of the personnel afloat. 

 

III. Cloud Response Time 

For real-time and highly interactive applications, fast response time is a key requirement 

for satisfactory performance.   In [6], Cloud Mobile Gaming (CMG) and Cloud Mobile Desktop 

(CMD) applications are used to investigate the viability of using a public cloud server provider, 

Amazon Web Services (AWS).   Table 1 shows the response time requirements based on a user 

survey.  Figure 1 shows the average response times for both 3G and WiFi for the streaming of 

video using the commercial video conferencing software, Skype.  Figure 2 shows the average 

response time for viewing slide shows and typing using the remote desktop application, Citrix.   

We can see that the average response time for both 3G and WiFi are higher than the acceptable 

range in all cases, which means that it would not be a satisfactory user experience.  
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Table 1.   Response Time Requirement for CMG and CMD (after [6]). 

 
CMG 

CMD 

 Slide Show Typing 

Acceptable 440 ms 835 ms 390 ms 

Excellent 280 ms 445 ms 125 ms 

 

 
Figure 1.  Response time using Skype to stream CMG video (from [6]). 

 

 
Figure 2.  Response time using Citrix as CMD application (from [6]). 

In [1], a series of experiments was conducted on Amazon Elastic Compute Cloud (EC2) 

to study the response time of five types of Amazon EC2 instances, with different types of virtual 

machines in terms of CPU capacity, RAM size, and disk size.  As expected, the result showed 

that we can get faster and more stable response time with better CPU capacity, more RAM, and 

larger disks. 

In [5], Chen investigated the upload/download speed between different AWS regions to 

see the differences in speed when transmitting data between EC2 and Simple Storage Service 

(S3) buckets in different regions. The result shows that the best upload time occurred when both 

the EC2 instance and S3 bucket were located in the same region. 

The above results help reinforce our belief that ample local storage and physical location 

to the data sources is very important to improve the communications.  Amazon provides the 

option, called Amazon CloudFront [2], for businesses and developers who want to distribute 
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content to end users with low latency and high data transfer speeds. Amazon CloudFront is a 

content distribution network (CDN) which is tightly integrated with Amazon S3. It is designed 

specifically to improve static content delivery. S3 is designed to easily store and retrieve data. 

When S3 is used together with CloudFront, S3 becomes the offsite backup of CloudFront.   

CloudFront moves the S3 content to the network “edge,” geographically closer to the end user, 

which helps reduce latency as shown in Figure 3. It is a pull model where content is pulled from 

S3 to the edge upon first request and it expires in 24 hours by default. 

 

Figure 3.  Illustration of an edge cache nearer to end users (adapted from [3]). 

The Amazon CloudFront is similar to the cloudlet concept, which was introduced by 

Satyanarayanan and his colleagues in [11] to overcome the high latency in cloud networks. 

Being a resource-rich element that has good connectivity to the Internet and mobile devices, 

cloudlets allow low end-to-end latency to be achieved. This is analogous to Wi-Fi access points 

which are in close proximity to a user’s mobile device, allowing the mobile device to enjoy a 

higher signal strength and higher speed access to the Internet.  The physical proximity of 

cloudlets proves advantageous to serving hostile environments that are attributed with short-term 

large-magnitude uncertainty [12].  Instead of relying on a cloud that is far away and being 

susceptible to poor connectivity, cloudlets can provide a closer and resource-rich alternative. 

Other subtle benefits of having cloudlets include safe deployment in insecure areas such that 

tampering, loss, or destruction of cloudlets do not prove to be a major security issue. This is due 

to the content of cloudlets being in soft states only. 

 

IV. Strategies To Overcome High Latency and Intermittent Connections 

We want to leverage the benefits of caching to support real-time and near real-time data 

usage.  With caches, data that has been previously requested can be stored locally and the next 

time this data is requested again, it will be more readily available. Therefore, one of our 

proposed strategies is the implementation of caches.   

Caches are deployed on each node to facilitate the requests made by each node to the 

remote cloud server. When a node requests certain data, it will first look at its own cache. If the 

data is not available on the local cache, it will make a request for the required data from the 

cloud server. Once this data is retrieved, it will be stored in the local cache of the requesting 

node. The next time the same data is requested, it will be available in the local cache and this 

shortens the overall response time, thus improving the performance of the data transaction. 

In many cases, it is not feasible to create a cloud infrastructure that is within the range of 

every node. Therefore, we will want to deploy cloudlets to be within close proximity of every 
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node, to close the gap by extending each node’s maximum connectivity range. This way we can 

leverage the cloudlets’ connectivity to the remote cloud server.  Each cloudlet is assumed to be 

deployed on the large platform (referred to as the cloudlet node) of a CSG/ESG, although any 

node can also take on the role of a cloudlet node. A cloudlet node is responsible for the 

communication back to the remote cloud server ashore for data access. The other naval platforms 

(commonly referred to as nodes) can connect to the cloudlet node to access information that they 

require. In addition, cloudlets are incorporated with caches to supplement the nodes connecting 

to cloudlets to access information, and thereby support real-time and near-real-time cases.  If 

data is not available in the cache of the cloudlet node, the cloudlet node can request the 

information from the remote cloud server on behalf of the nodes via the satellite.   

 

V. Simulation Study of the Mitigation Strategies 

The objective of our analysis is to test whether the implementation of caches will provide 

benefit in a DIL environment. Intuitively, the volume of data, the bandwidth of the 

communication link, and the response time of our data traffic (from source to destination and 

back) are directly related to one another. For example, with a fixed amount of bandwidth, the 

higher the data volume, the longer it will take for the source node to receive a reply from its 

destination. Similarly, the lower the data volume, the faster will be the response time.  That is, as 

the offered load, or traffic intensity, increases so too does the response delay, generally due to 

increases in queuing delays throughout the system. 

Cache performance [7] is generally measured using average memory access time 

(AMAT) as follows: 

        AMAT hit time miss rate miss penalty     (1) 

In order to fit our requirement, we need to relate this formula with the consideration of 

the volume of data, the bandwidth of the communication link, and the response time of our data. 

The following paragraphs step through the process of deriving a formula that measures the 

response time for our model. 

In web caching, there are generally three kinds of data, static, semi-static, and dynamic. 

They are categorized based on lifetime of the data, or Time-To-Live (TTL).    

 Static: the data does not change in its lifetime (TTL = infinity). For example, a static web 

page with no dynamic content. The data does not change for every request, thus, caching 

is most useful for this kind of data.  

 Semi-static: the data does change but not that often (0 < TTL < infinity). For example, 

weather forecast webpages that are updated every two hours. The data does change for 

some requests; thus, caching is still useful but not as much as for static data.  

 Dynamic: the data changes for every request (TTL = 0). For example, a real-time stock 

price webpage that presents different information every second or less. Caching dynamic 

data is the least useful. 

We want to model our operating environment as close to the current naval environment 

as possible, but due to the security classification of the existing data set, we were only able to 

take reference from public sources. Our data usage profile will be based on actual Internet traffic, 
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with reference from Sandvine [13], a broadband equipment company. This will give us an 

approximate representation of the existing data usage profile of the U.S. Navy QoL traffic. 

However, by plugging in accurate navy requirements for other data types, we can get navy-

specific results for C2. Sandvine’s bi-annual report measures the average Internet traffic demand 

of a general Internet user for the first half of 2014, and it also provides a categorical breakdown 

of the traffic demand as shown in Figure 4. 

 

Figure 4.  Monthly Consumption Figures (per individual user) – North America, Fixed 

Access (from [13]). 

We reckon that upstream consumption is probably the data demand for uploading. An 

example of such would be situation reports or intelligence collection data. Another potential 

source would be video-teleconference streams. However, it is expected the bulk of the upstream 

traffic will be requests for data and as such it is also expected that the downstream traffic will 

dominate the sessions.  Since upstream consumption is small as compared to downstream, it is 

reasonable to use aggregated data consumption as our total data volume. From Figure 4, we have 

the average monthly consumption of data at 51.4GB. Hence, the total data demand rate for our 

test set is calculated to be approximately 21,300 bytes per second per user (this number is a 

simple conversion of the data demand from month to seconds). 

 

Figure 5.  Peak Period Aggregate Traffic Consumption – North America, Fixed 

Access (from [13]). 
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In Figure 5, we see that real-time traffic, covering applications which require “on-

demand” data, takes up about 59 percent of the total demand. Communications traffic, consisting 

of real-time chat, voice, and video communications, takes up 13 percent of the total traffic 

demand. These two categories of data fall under the data type of dynamic data, as their content 

are continuously updated, making them non-cacheable. The rest of the categories will be broadly 

categorized into cacheable type of data, taking up 28 percent of the total data demand.  In 

another study, Wessels [17] reports that between 35 and 70 percent of all requested objects are 

cacheable for general Internet traffic. To understand how the ratio of cacheable objects affects 

the response time in our experiment, we intend to run our model over the range of 30 to 70 

percent of cacheable data. This will give us a good coverage of data with the characteristics of 

being cacheable and non-cacheable.  

Web caching [4] can provide significant benefits to both the end user and the service 

provider. The end user can enjoy a faster surfing of the web if the requested objects are in the 

cache. For the service provider, there will be savings in the bandwidth. The mentioned benefits 

can be achieved only when the requested objects from the web are available in the cache. This is 

the probability of the requested objects being found in the cache, which is called probability of a 

hit or hit ratio, P(hit). The hit ratio is dependent on several factors, such cache size, number of 

objects available in the Internet, average size of object, and percentage of cacheable objects, etc. 

Another key factor is the degree to which the requested data relates to other data, what might be 

referred to as data cohesion. One of the tenets of cache regards special locality of reference, that 

is, a reference to data at one location is likely to coincide with a reference to data that is located 

nearby. When considering the data use requirements of vessels within a strike group it is 

reasonable to expect that if one ship requires a given data set others are likely to also require it, 

thus subjectively substantiating the utility of a cloudlet on the flagship to service the rest of the 

group. 

Ideally, P(hit) should take into consideration the stochastic behavior of each TTL value, 

which is renewed every time a new copy of data is downloaded from the remote server. To 

achieve this, we would need to run stochastic simulations for caching, taking into consideration 

inputs, such as cacheable data volume, probability of data being cached, probability of data being 

accessed, and different TTL values to test for static and semi-static data. However, this is not the 

approach we are taking. 

Our assumption is that the TTL is much greater than the inter-access time. This means 

that only the most-recently accessed items will be in the cache and the only reason to retrieve a 

data from the remote cloud is because the needed object is not in the cache. Therefore, we would 

divide the data type into two categories, cacheable and non-cacheable. The P(hit) values from the 

Zipf distribution, shown in Figure 6, would be used in our simulation calculations.  The Zipf 

distribution is a popularity model, where the probability of an object being requested is 

proportional to the rank of that object [4]. Figure 6 uses this Zipf popularity model, where hit 

ratios are plotted as a function of cache size for five kilobyte objects with four Alpha values (a 

higher Alpha value means that associated objects are much more popular). This graph does not 

take into account the expiration times of objects. It provides us reasonable hit ratios that we 

require to run our simulation. 
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Figure 6.  Hit ratio against cache size (from [4]). 

The corresponding data volume of each category is determined simply by the following 

formulas:  

 % _ _Cacheable Total data volume     (2) 

 (1 ) _ _Cacheable Total data volume      (3) 

where η is the Cacheable data volume and μ is the non-Cacheable data volume. 

We define the total data requirement, TR, to be the data demand that will go through the 

SATCOM link, such that 

 (1 (hit))TR P       (4) 

where η and μ are as defined above. 

With values of Cacheability, P(hit) and TR established, we can get the average response 

time, ζ, using the following formula. 

 (hit) ( ) (miss)P P          (5) 

where δ is the average local access time, ψ is the average remote access time, and P(miss) is the 

miss ratio defined as (1-P(hit)). The average remote access time is defined as the time taken for 

the requesting node to receive a reply from the data origin after the request is made. 

The value of ψ can be expressed as a function of TR and Bandwidth (BW): 

 ( , )f TR BW    (6)   

and can be obtained via QualNet [14] by entering the total data demand rate, TR, as input to the 

SATCOM model. With that, average response time, ζ, becomes: 
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 (hit) (( (TR,BW)) (1 (hit))P f P          (7) 

The typical response time for accessing local cache, δ, is between 30 to 35 milliseconds 

according to an article from ScaleOut [15]. Our experiment uses a fixed value of 30 milliseconds 

as . 

We adopted an incremental approach and prepared three test cases. The base case forms 

the baseline of the simulation; Case 1 includes the implementation of cache, while Case 2 

includes the implementation of cloudlet.  

A. Base Case without Cache 

The base case models the scenario where caches are not implemented. The results from 

this base case form the baseline for our analysis. Since caches are not implemented, there is no 

cacheable data per se and the values for %cacheable and %non-cacheable are 0 percent and 100 

percent, respectively. For the same reason, the hit ratio, P(hit) is zero. Therefore, the TR for the 

base case will be the total data volume that is going to the remote cloud server via the SATCOM. 

With that, the generic formulas for TR and average response time, ζ, presented in the previous 

section are reduced to: 

 _ _TR Total data volume   (8) 

 (TR,BW)f     (9) 

We use our QualNet model shown in Figure 7 to measure the time taken for the remote 

server to reply after the source node initiates the request.   

 

Figure 7.  QualNet Model for base case without cache.  

In our simulation, we vary the total data requirement, starting from 10 users to 60 users 

and increasing in steps of 10 users. We aim to find how the average response time will change 

with the increasing data requirement. Another parameter that we are varying is the available 

bandwidth of the SATCOM. By determining how the bandwidth affects the average response 

time will give us a good estimation of the minimum bandwidth requirement that we need for the 

given amount of data volume. This also gives us some idea of how the implementation of cache 

can overcome the effect on performance when operating under a limited bandwidth. 

B. Case 1: Modeling with Local Cache 

In this model, we assume that the naval platform has a local cache which would store 

some of the data objects. If the platform is requesting objects which are available in the local 

cache, the response time would be faster than requesting from a remote server or cloud. But since 
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we are not expecting everything in the Internet to be available in the local cache, the average 

response time of the requests would potentially be slower.  

The QualNet model (from Figure 7) is modified to include a local cache at the node. The 

configuration of the node and the calculation of the response time are achieved using Excel. 

Using the result from the base case, we decide to keep bandwidth, BW, fixed at an optimal value 

of 2 Mbps, as the behavior with varying bandwidth is intuitive. Without considering the 

bandwidth, Equation (7) is potentially reduced to: 

 (hit) ( (TR) (1 (hit))P f P          (10) 

The average response time is very much dependent on the TR and P(hit). Similarly, TR is 

directly proportional to the number of users using the network simultaneously, and we vary the 

TR from 10 to 60 users, in steps of 10 users, the same way as in the base case. In addition to that, 

we vary %cacheable and P(hit). For %cacheable, we vary from 30 percent to 70 percent in steps 

of 10 percent. As for P(hit), we vary from 10 percent to 80 percent in steps of 10 percent so that 

we can substantially cover the whole range of P(hit) for different Alpha values shown in Figure 

6.   Through the simulation runs, we aim to get some findings on how local cache affects the 

overall performance of the communications with respect to P(hit), cache size, popularity 

distribution, and number of users.  

C. Case 2: Modeling with Local Cache and Cloudlet 

This mitigation takes into consideration two factors, the number of connections to the 

cloudlet node and the data requests by the nodes to the cloudlet node, then to the remote cloud. 

Building on Case 1, we evaluate whether implementing cloudlets will further improve the 

performance.  All the test parameters remain the same, with the exception of the calculation of 

the average response time. A new formula is worked out with the following considerations. 

When a source node makes a request, it will search its local cache for the data. If the node 

cannot find the data it seeks in its local cache, it will look for the data in the cloudlet node 

(Figure 8). When this occurs, it will be considered a miss on the source node, and the source’s 

local access time and miss ratio as well as the inter-ship access time are taken into consideration. 

Similarly, the cloudlet node will search for the requested data in its local cache, and if it does not 

find the data, it will have to make a request to the destination cloud server. Now, the cloudlet’s 

local access time and miss ratio are taken into consideration, and added to the source’s initial 

response time. In both situations, the average local access time is the same as both nodes are 

treated independently. As the cloudlet node makes a request to the destination cloud server, the 

remote access time and the miss ratio needs to be taken into consideration in the formula. As a 

result, the formula becomes: 

 (hit) { [ (hit) ( ) (miss)]} (miss)P P P P                  (11) 

where β is the inter-ship access time. 
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Figure 8.  QualNet Model for base case with local cache and cloudlet. 

Inter-ship access time is affected by a few parameters, namely the volume of data, the 

data rate, the LOS distance, and etc. Due to the classification of ship-to-ship communications, we 

were unable to ascertain these parameters. Instead, we made an estimation using propagation 

delay. Typically, the maximum LOS distance between the source node and the cloudlet node is 

20km. Therefore, a two-way propagation delay is calculated to be approximately 130µsec. 

8

2 20000
Propagation_delay 130 sec

3 10



 


 

As compared to the local access time, this inter-ship access time is quite insignificant. So 

for Case 2, it is reasonable to assume that the inter-ship access time is negligible. We also 

assume that inter-ship communication is always available. As a result, the formula is reduced to: 

 (hit) { [ (hit) ( ) (miss)]} (miss)P P P P                (12) 

The average remote access time is still dependent on TR. In this case, TR is obtained 

from the number of nodes connected to the cloudlet node. Let n be the number of connecting 

nodes. Effectively, by increasing the number of nodes, it is equivalent to increasing the number 

of users. For example, we assume that each node can support 10 users. When one node is 

connected to the cloudlet node (n = 1) and P(hit) = 0, the TR is based on a maximum of 20 users, 

where 10 users belong to the cloudlet node and 10 users belong to the connecting node. When n 

= 2 and P(hit) = 0,  the TR is based on a maximum of 30 users, and so on and so forth. In 

general, the number of equivalent maximum number of users at the cloudlet node equals: 

 10  (n1)  (1P(hit)) (13) 

Through this experiment, apart from accessing the performance provided by the cloudlet 

implementation, we are also able to find the optimal/maximum number of nodes that can be 

connected to one cloudlet so that the available bandwidth can be optimized. The results are to be 

discussed in the next section. 

 

VI. Discussion of Results 

Figure 9 shows the results of the base case, where the average response times in seconds, 

plotted against a range of SATCOM bandwidth from 1 to 2.5 Megabits per second (Mbps) for 

the base case without cache.  Six curves, representing 10 to 60 users, are plotted in the same 



 14 

graph as shown in the figure.  The average response times are calculated using the average 

remote times collected from the QualNet.  It is observed that there is a higher rate of 

improvement in the average response time when the bandwidth is increased from 1 Mbps to 1.5 

Mbps. When there are more users (more load to the communication channel), the improvement 

seems to be more obvious. Based on the trend of the curve (left-hand side), we can infer that it is 

more significant to improve the bandwidth of the communications when network connectivity is 

limited.  Intuitively, this matches with the expected behavior. When the bandwidth increases to 2 

Mbps or higher, it is observed that the rate of improvement in the average response time 

becomes more gradual. For subsequent simulations, the bandwidth is fixed at 2 Mbps. This is 

reasonable because we can infer how bandwidth will affect the behavior of the performance by 

varying other parameters which are more interesting.  

 

Figure 9.  Average response time plots for base case (with no cache).  

Figure 10 shows the effect of varying the percentage of cacheable data (hereafter, we 

refer to it as cache ratio) and number of users on the cloud response time for Case 1, where the 

naval ship has the ability to store data objects from the Internet so that the some of the data 

objects are available locally and there is no need to request it from the remote cloud.  We varied 

the cache ratio and keep the other parameters, P(hit) and number of users, constant. This way, we 

can observe the behavior specific to cache ratio.  In Figure 10 (a), we see multiple curves plotted 

on the same graph for 10 users, each representing one P(hit) value. Hence, we have eight curves 

for P(hit), ranging from 0.1 to 0.8. Figure 10 (b) shows a similar graph, but with the number of 

users fixed at 60 users.   From the two graphs, we can observe that the cache ratio does not have 

a significant effect on average response time. For the case of 60 users, the cache ratio affects the 

response time slightly more but rather insignificantly. Hence, for the subsequent simulations, we 

would just look at 0.3 and 0.7 cache ratio (i.e., 30% and 70% cacheable data) so as to observe the 

results at the two extremes.  
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Figure 10.  Average response time plots with (a) 10 users, (b) 60 users. 

 

Figure 11.  Varying the number of users with (a) 30%, (b) 70% cacheable data.  

 

Figure 12.  Varying P(hit) with (a) 30%, (b) 70% cacheable data. 

Figure 11 and 12 present two views of the experimental results with varying number of 

users and P(hit).  Both figures show that varying the cache ratio between 0.3 and 0.7 does not 

have a significant impact on the average response time.  Based on the above graphs, we can 

make the following observations: 

 Increasing the number of user essentially increases the data load. By comparing the 

curves (taking note of P(hit)=0.1 and P(hit)=0.8), it is observed that the performance of 

the communications is greatly affected by the number of users when P(hit) is 0.1 but not 

as much when P(hit) is 0.8. From this we can conclude that compared with low P(hit), a 

high P(hit) leads to less severe performance degradation as the volume of data (or the 

number of users) increases.  Referring to Figure 6, we know that P(hit) can be improved 

by increasing cache size or increasing the alpha value.  
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 Although the percentage of cacheable data (in the range of 30% to 70%) does not play a 

big part, we do observe that a higher cacheable ratio increases the rate of performance 

improvement with higher P(hit); it is especially obvious in the case of 60 users. That is, 

the performance approached the asymptotic optimum more quickly when the hit ratio is 

higher, the result being due either to increased percentage of cacheable data or increased 

cache size.  

 Based on the observation that higher P(hit) results in greater performance improvement 

for higher data load (60 users versus 10 users), it is not recommended to improve the 

P(hit) for relatively low data load conditions if the cost of doing that is high. 

 While the simulations were done using bandwidth fixed at 2 Mbps, it is reasonable to 

infer that with higher bandwidth, the curves would just shift downwards, but the trend 

would remain the same. That is, as the offered load increases with respect to the capacity 

of the communications channel, the value of the cache, in terms of impact on average 

access time, increases exponentially. 

Figures 13 and 14 show the effect of cloudlets on the performance of the data 

transmission. The number of users is fixed at 10 for the connecting node and cloudlet node in the 

simulations.   Here, the variable n is the number of nodes that are connecting to the cloudlet node 

at the same time.  Increasing the value of n is equivalent to increasing the data demand or the 

data load, since the equivalent number of users in a cloudlet of n node equals 10(n+1).  Similar 

to previous cases, the simulation is carried out with varying data loads and hit ratios.  However, 

in this case, we assume that ship-to-ship communication is always available and the inter-ship 

access time is negligible. This is because we are only interested in the time required to fetch the 

data and not the ship’s communication time. If inter-ship access time is to be taken into 

consideration, we foresee that this small time constant will cause the graphs of our results to 

exhibit a slight upward shift without changing the nature of the curves. 

As before, further analysis is conducted on 0.3 and 0.7 cache ratios, which forms the 

lower and upper bound on the cache ratio, respectively. We compare the results for cases before 

and after cloudlets are implemented. The overall trend for the average response time is 

decreasing. This is desirable because the lower the response time, the better is the performance.  

 

 

Figure 13.  Average response time (with 0.3 Cache Ratio)  

(a) without cloudlet (max. number of users = 10(n+1)),  

(b) with cloudlet (number of nodes = n). 
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Figure 14.  Average response time (with 0.7 Cache Ratio)  

(a) without cloudlet (max. number of users = 10(n+1),  

(b) with cloudlet (number of nodes = n). 

Having more nodes connecting to the cloudlet node will cause the data load to increase 

proportionally on the cloudlet node. Based on these graphs, we have the following observations: 

 The slopes are steeper for the case with cloudlet as compared to the case without cloudlet.  

 The improvement is more significant in the case of higher data requirements. The higher 

the number of nodes (n=5) that are connected to the cloudlet node, the better the benefits.  

 The response time tends to converge at the hit ratio of 0.8. Looking at the right end of the 

graphs (at P(hit)=0.8), the gaps between the response times for the different number of 

connecting nodes (n=1 to 5) appear to be greater than when cloudlets are not 

implemented. Although this is not indicative that a 0.8 hit ratio is the optimal setting, the 

results further show that by implementing cloudlets we can improve the performance.  

These observations highlight that the performance improvement is more significant when 

more nodes (indirectly more users and data loads) are leveraging the cloudlet. One possible 

explanation is that when the data objects are available in the cloudlet, more nodes (n=5) 

connecting to the cloudlet would benefit from the time saved by accessing the cloudlet instead of 

the remote cloud.  This suggests that the cloudlet solution will scale well for larger strike groups. 

While this paper did not address the specific data exchange requirements within a strike 

group, it is reasonable to assume that a significant amount of data generated within the group is 

of interest to all members of the group. Thus, leveraging a cloudlet to cache that data or redirect 

it to appropriate members of the group underscores the point that the nodes are still able to have 

continuity in their operation even when each does not have direct satellite connectivity. 

However, the bottleneck caused by the cloudlet node is not studied in our research, so we cannot 

comment on the maximum number of nodes that can be connected to the cloudlet. 

Looking from another perspective, the result is showing that the response time for a 

higher n can be as good as the response time of a lower n with higher P(hit). This is encouraging 

for the designer of the cloudlet to achieve higher P(hit) especially for the case of high data load. 

In the base case simulations, we can see that bandwidth is an important factor in the 

SATCOM. It is easy to increase the bandwidth in a simulation setup so as to improve the 

performance, but this is not always possible in a real-world situation. Bandwidth is usually fixed 
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or capped at a certain range and most of the time causes bottlenecks in the communications 

infrastructure. That is the main reason for keeping the bandwidth constant in our simulations so 

that we can focus our study on the cache and cloudlet. That said, any caching of data locally or at 

a cloudlet with in the strike group reduces the demands on the satellite link, thereby improving 

the performance of the entire system.   

 

VII. Conclusions 

Wildly fluctuating wireless bandwidth availability, intermittent connectivity, and 

unreliable connectedness (DIL connections) of SATCOM cause challenges for afloat platforms 

required to maintain connection with land-based clouds. Being able to exchange information 

with the cloud servers is very important to the support of U.S. Navy operations.  To overcome 

some of these challenges, this paper proposed to supplement the cloud architecture with two 

strategies, local caches and strike group hosted cloudlets.  Our study showed that the 

implementation of caching can indeed improve the response time of requests made by the users. 

We were able to show that the use of a cloudlet is able to further improve performance. The 

cloudlet can act as an alternative to the remote cloud when the direct connection to the satellite is 

down or the capacity of the link is limited with respect to the traffic load. This increases the 

availability of the communication network so that the operations can still move forward, 

although it might be in a degraded mode as compared to the direct connection via SATCOM.  

While the results obtained were positive, additional work is needed to further verify the 

effectiveness of the strategies in real environments. Practical evaluations in the U.S Navy context 

are necessary, before these strategies can be put to actual use. This includes the usage of actual 

C2 data, as well as the integration of the inter-ship access time, particularly the expected 

transmission delays given actual traffic loads and system capacities. This information was 

unavailable to us due to its sensitivity.  

Although we have made a reasonable assumption about the inter-ship delay being 

negligible, it is more complete to capture the delay in the formula for future work that follows. 

The inter-ship delay can be modeled dynamically with a moving naval ship. The data rate can 

also be modeled with the consideration of whether there is a collision medium or not. 

While our work examined the case where there is only one cloudlet node, the scope can 

be extended to study whether all nodes can take on the role of the cloudlet node. This would be 

analogous to establishing an ad-hoc meshed topology. Such an ad-hoc mesh may allow for 

parallelism in cache searches. Searching in the local caches of all the cloudlet nodes first may 

further reduce the need to send requests to the remote cloud server, limiting dependence on a 

connection back to the remote cloud server via SATCOM and enhancing continuity when 

operating in a DIL environment. In addition, optimization can be conducted to find out a few 

things, for example, the maximum number of users per node, the optimal number of nodes per 

cloudlet node, and also the maximum number of cloudlet nodes that can be supported by a given 

amount of bandwidth. This will facilitate decision making in U.S. Navy operations, taking into 

account the tradeoffs between performance and load. We foresee that this could be achieved by 

tweaking the inputs and reworking the formulas used in the model that we have developed. 
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