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A Simplified Quaternion-Based Algorithm for
Orientation Estimation From Earth Gravity

and Magnetic Field Measurements
Xiaoping Yun, Fellow, IEEE, Eric R. Bachmann, Member, IEEE, and Robert B. McGhee, Life Fellow, IEEE

Abstract—Orientation of a static or slow-moving rigid body
can be determined from the measured gravity and local magnetic
field vectors. Some formulation of the QUaternion ESTimator
(QUEST) algorithm is commonly used to solve this problem.
Triads of accelerometers and magnetometers are used to measure
gravity and local magnetic field vectors in sensor coordinates. In
the QUEST algorithm, local magnetic field measurements affect
not only the estimation of yaw but also that of roll and pitch. Due to
the deviations in the direction of the magnetic field vector between
locations, it is not desirable to use magnetic data in calculations
that are related to the determination of roll and pitch. This paper
presents a geometrically intuitive 3-degree-of-freedom (3-DOF)
orientation estimation algorithm with physical meaning [which is
called the factored quaternion algorithm (FQA)], which restricts
the use of magnetic data to the determination of the rotation
about the vertical axis. The algorithm produces a quaternion
output to represent the orientation. Through a derivation based
on half-angle formulas and due to the use of quaternions, the com-
putational cost of evaluating trigonometric functions is avoided.
Experimental results demonstrate that the proposed algorithm
has an overall accuracy that is essentially identical to that of the
QUEST algorithm and is computationally more efficient. Addi-
tionally, magnetic variations cause only azimuth errors in FQA
attitude estimation. A singularity avoidance method is introduced,
which allows the algorithm to track through all orientations.

Index Terms—Accelerometers, inertial sensors, magnetic sen-
sors, motion measurement, orientation estimation, quaternions.

I. INTRODUCTION

A CCURATE real-time tracking of the orientation or
attitude of rigid bodies has applications in robotics,

aerospace, underwater vehicles, synthetic reality, etc. For syn-
thetic reality applications, the human body can be viewed as
an articulated rigid body consisting of approximately 15 links.
If the orientation relative to a fixed reference frame can be
determined for each of the links, then the overall posture of the
human subject can accurately be rendered and communicated
in real time. The orientation of a static or slow-moving indi-
vidual limb segment can be measured through the attachment
of an inertial/magnetic sensor module. Such sensor modules
typically contain a triad of orthogonally mounted accelerom-
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eters and a triad of orthogonally mounted magnetometers. The
accelerometers are used to measure the gravity vector that is
relative to the coordinate frame of the sensor module. The
magnetometers serve a similar function for the local magnetic
field vector. Since accelerometers actually sense the sum of
gravity and linear acceleration due to motion, low-pass filter-
ing is generally required to discriminate against the latter. In
dynamic applications such as rapid human movement, a triad
of angular rate sensors is usually added as a “complementary”
high-frequency source of orientation information. In any case,
such approaches to orientation estimation are dependent only
on passive measurement of physical quantities that are directly
related to the rate of rotation and orientation of a rigid body.
Since no generated signals are involved, there are no restrictions
on the range of operation. All latency in such a system is due
to the computational demands of the data processing algorithms
and not due to the physical characteristics of a generated source.

Extensive research has been conducted to investigate full
3-degree-of-freedom (3-DOF) orientation tracking using
inertial/magnetic sensor modules. Foxlin et al. [1], [2] describe
two commercial nine-axis sensing systems designed for head-
tracking applications. Bachman et al. proposed a quaternion-
based complementary filter for human-body-motion tracking.
The filter is able to track through all orientations without
singularities and continuously correct for drift without a
need for stationary periods using nine-axis inertial/magnetic
sensor module data [3], [4]. Gallagher et al. presents a simpler
complementary filter algorithm with lower computational
complexity in [5]. Luinge describes a Kalman filter that is
designed for human-body-tracking applications. The filter is
based on the use of accelerometers and rate sensors. The drift
about the vertical axis is reduced by limiting body segment
orientation using a kinematic human body model [6]. Rather
than estimating individual limb segment orientations relative
to a fixed reference frame, Zhu and Zhou [7] determine joint
angles in axis/angle form using the data from the two nine-axis
sensors that are mounted on the inboard and outboard sides
of the joint. Yan and Yuan [8] describe an orientation-tracking
algorithm that uses low-cost sensor modules to take two-axes
measurements of gravity and the local magnetic field. In a
manner that is similar to the method described in this paper,
elevation, roll, and azimuth angles are sequentially calculated.
The angles are used to construct rotation matrices, and the
use of trigonometric functions is required. The method is
limited to orientation tracking within a hemisphere. In [9],
Gebre-Egziabher et al. describe an attitude-determination
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algorithm for aircraft applications. The algorithm is based
on a quaternion formulation of Wahba’s problem [10], where
magnetometer and accelerometer measurements are used to
determine attitude.

The TRIAD algorithm [11] is a single frame deterministic
method for solving Wahba’s problem. It requires normalized
measurements of two nonparallel reference vectors as input.
It produces a suboptimal orientation estimate in the form of
a 3 × 3 rotation matrix. The algorithm constructs two triads
of orthonomal unit vectors. The two triads are the components
of an inertial frame expressed in both the body and Earth-
fixed reference frames. Let ba and bm be the normalized ac-
celerometer and magnetometer measurements that are relative
to the body frame of the gravity and magnetic field reference
vectors (Eg and Em). The reference vectors are expressed
relative to an Earth-fixed frame, and like the measurement
vectors, they are normalized to unit length. The first triad is
given by

ŝ1 = Eg (1)

ŝ2 =
(Eg ×E m)
|Eg ×E m| (2)

ŝ3 = ŝ1 × ŝ2. (3)

The second triad is given by

r̂1 = ba (4)

r̂2 =
(ba ×b m)
|ba ×b m| (5)

r̂3 = r̂1 × r̂2. (6)

These triads are then used to create measurement and reference
matrices

Mmea = [r̂1 r̂2 r̂3], Mref = [ŝ1 ŝ2 ŝ3]. (7)

The orientation matrix A representing the attitude of a rigid
body is then simply

A = Mmea MT
ref . (8)

If the measurements of the gravity and the magnetic field are
ordered as described earlier, the cross-products that are used to
calculate ŝ2 and r̂2 eliminate any contribution of the magnetic
measurements relative to the vertical axis. Thus, pitch and
roll components of orientation are determined using only the
accelerometer measurements.

The QUaternion ESTimator (QUEST) algorithm is a popular
algorithm for single-frame estimation of a quaternion that rep-
resents the attitude of a rigid body relative to a fixed coordinate
system. The algorithm was created to solve Wahba’s problem
[10] in the context of spacecraft attitude determination. Given a
set of 3-D known reference unit vectors V1, V2, . . . , Vn and a set
of the corresponding observation or measurement unit vectors
W1,W2, . . . ,Wn (which could be the direction of the sun or a
star observed from a spacecraft measured in the spacecraft’s
body frame), Wahba’s problem is to find the least squares

estimate of spacecraft attitude by minimizing the following loss
function:

L(A) =
1
2

n∑
i=1

ai(Wi − AVi)T (Wi − AVi) (9)

with respect to the 3 × 3 orthogonal orientation matrix A, where
a1, a2, . . . , an are nonnegative weighting coefficients. The min-
imum number of measurement and reference vector pairs is
two. Early solutions to Wahba’s problem directly computed the
orientation matrix A [12]. Davenport [13] introduced a method
of parameterizing the orientation matrix by a unit quaternion q
and proved that the loss function (9) can be transformed into a
quadratic gain function of the unit quaternion in the form of

G (A(q)) =
n∑

i=1

ai − L (A(q)) = qT Kq (10)

where K is a 4 × 4 matrix constructed from the reference
vectors Vi, measurement vectors Wi, and weighting coefficients
ai, i = 1, 2, . . . , n. Based on Davenport’s work, Shuster and
Oh derived the QUEST algorithm [14] and showed that the
optimal quaternion q that maximizes the gain function (10)
while satisfying the unit quaternion (unit norm) constraint is
the eigenvector of the K matrix corresponding to the largest
eigenvalue of K. Thus, the problem is reduced to finding the
eigenvalues and eigenvectors of a 4 × 4 matrix.

In body-tracking applications based on the use of small
inertial/magnetic sensors [4], the gravity and local magnetic
field vectors are often measured and compared to reference
vectors in order to determine orientation. In the case of the
gravity vector, the assumption that it is fixed leads to no
difficulties since this vector points straight down in any inertial
frame located on or near the surface of the Earth. Making the
same assumption regarding the local magnetic field vector can
lead to problems. In a typical room setting, the direction of
the local magnetic field vector can be expected to vary due
to the presence of ferrous objects or electrical appliances. In
inertial/magnetic-tracking algorithms, the local magnetic field
vector is commonly treated as a fixed reference. It is assumed
that this reference will remain constant. If it does not, algo-
rithms such as QUEST will be prone to errors not only in
azimuth but also in pitch and roll.

This paper presents an alternative algorithm for estimating
orientation based on a set of measurements from triads of
orthogonally mounted magnetometers and accelerometers. It
is called the factored quaternion algorithm (FQA). It is an
intuitive alternative to the TRIAD and QUEST algorithms that
yields certain advantages. In the FQA, local magnetic field data
are used only in azimuth angle calculations. This decoupling of
accelerometer and magnetometer data eliminates the influence
of magnetic variations on calculations that determine pitch
and roll. Through a derivation based on half-angle formulas,
the computational cost of computing trigonometric functions
is avoided. The algorithm produces a quaternion output. It
is able to track through all orientations without singularities.
The FQA and the TRIAD algorithm produce an equivalent
solution to the same problem, with the exception that the former
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produces a quaternion, and the latter produces a rotation matrix.
Experimental results in which the FQA is compared with the
QUEST algorithm indicate that it has nearly identical accuracy
at a comparable or lower computational expense. The QUEST
algorithm was chosen as a benchmark for comparison because
it is an optimal algorithm and produces orientation estimates in
quaternion form, as does the FQA.

The primary contributions of this paper are the following:
1) derivation of a new geometrically intuitive algorithm for

determining orientation that is relative to an Earth-fixed
reference frame based on a set of accelerometer and
magnetometer measurements;

2) a singularity avoidance method that allows the algorithm
to track through all orientations;

3) experimental results which validate the performance of
the algorithm.

The rest of this paper is organized as follows. Section II
presents the derivation of the FQA. Section III describes the
experiments in which the factored algorithm is compared to
the QUEST algorithm for efficiency and accuracy. The abil-
ity of the algorithm to track through all orientations without
singularities is demonstrated as is its decoupling property. The
final section discusses the experimental results and provides a
summary.

II. FACTORED QUATERNION ALGORITHM (FQA)

The FQA presented in this section is for estimating the
orientation of a static or slow-moving rigid body based on Earth
gravity and magnetic field measurements [15]. This algorithm
is not applicable to situations in which relatively large linear
accelerations due to dynamic motion are present, unless it is
used in a complementary or optimal filter together with angular
rate information. Sensor modules such as MARG III, which is
described in [16], contain a triad of accelerometers, a triad of
magnetometers, and a triad of angular rate sensors, and it can
be used to provide measurement data for the FQA.

In a typical application, a sensor module is employed as a
strap down inertial measurement unit (IMU) that is attached
to a rigid body whose orientation is to be determined. To
facilitate the analysis, it is convenient to define three coordinate
systems. An Earth-fixed coordinate system xeyeze is defined to
follow the North–East–down (NED) convention, i.e., xe points
North, ye points East, and ze points down. A body coordinate
system xbybzb is attached to the rigid body whose orientation
is to be measured. The sensor module has its own coordinate
system xsyszs corresponding to the axes of three orthogonally
mounted accelerometers/magnetometers. Since the sensor mod-
ule is rigidly attached to the rigid body, the body coordinate
system xbybzb differs from the sensor coordinate system xsyszs

by a constant offset. For the convenience of discussions, in what
follows, the body coordinate system is assumed to coincide
with the sensor coordinate system.

A. Quaternion Rotation Operator

According to Euler’s theorem on finite rotations, an ar-
bitrary sequence of rotations in space can always be de-

scribed by a rotation about a certain axis through a specified
angle. Let

u =


 u1

u2

u3


 (11)

be the unit vector in 3-D space that represents the rotation
axis, and let β be the rotation angle. The Euler parameters are
defined by

q0 = cos
(

β

2

)
(12)


 q1

q2

q3


 = u sin

(
β

2

)
=


 u1

u2

u3


 sin

(
β

2

)
. (13)

Because an arbitrary rotation may be described by three inde-
pendent parameters, the four Euler parameters are constrained
to satisfy the relation [17]

q2
0 + q2

1 + q2
2 + q2

3 = 1. (14)

These four parameters are also referred to as a unit quaternion,
which is commonly written in the form

q = (q0 q1 q2 q3) (15)

where q0 is the scalar (or real) part, and [q1 q2 q3]T is the
vector part. Unit quaternions can be used to perform rotation
operations in 3-D space [18]. Specifically, for any vector v =
[v1 v2 v3]T in 3-D space, the following operation produces a
vector v′ by rotating the vector v about the axis that is defined
by u through an angle β:

v′ = qvq−1 (16)

In this expression, all multiplications are quaternion multiplica-
tions, v and v′ are treated as pure vector quaternions whose real
part is zero, and q−1 is the inverse quaternion of q [18].

B. Elevation Quaternion

A rigid body is said to be in its reference orientation when
its xbybzb-axes are aligned with those of the Earth coordinate
system. It is known that a rigid body can be placed in an
arbitrary orientation by first rotating it about its z-axis by an
angle ψ (azimuth or yaw rotation), then about its y-axis by
angle θ (elevation or pitch rotation), and finally about its x-axis
by angle φ (bank or roll rotation).

In order to derive a quaternion describing only elevation, it is
useful to note that, when a rigid body is moving at a constant
velocity and is in a fixed orientation, an accelerometer measures
only gravity. Furthermore, the x-axis accelerometer senses only
the component of gravity along the x-axis, and this component,
in turn, depends only on the elevation angle. This can be seen
from the following argument. Starting with the rigid body in its
reference orientation, the x-axis accelerometer is perpendicular



YUN et al.: SIMPLIFIED QUATERNION-BASED ALGORITHM FOR ORIENTATION ESTIMATION 641

to gravity and thus registers zero acceleration. The y-axis
accelerometer also reads zero, while the z-axis accelerometer
reads −g. If the body is then rotated in azimuth about its
z-axis, the x-axis accelerometer still reads zero, regardless of
the azimuth angle. If the rigid body is next pitched up through
an angle θ, the x-axis accelerometer will read

ax = g sin θ (17)

and the z-axis accelerometer will read

az = −g cos θ (18)

where g = 9.81 m/s2 is the gravitational acceleration, and

a =


 ax

ay

az


 (19)

is the measured acceleration vector in the body coordinate
system. For convenience, the accelerometer and magnetometer
outputs from a sensor module are normalized to unit vec-
tors. Let ā denote the normalized vector of the acceleration
measurements

ā =
a

|a| =


 āx

āy

āz


 (20)

where |a| is the norm of the acceleration vector a. It follows
from (17) that the value for sin θ can be expressed as

sin θ = āx. (21)

The value for cos θ can be computed from

cos θ =
√

1 − sin2 θ. (22)

It should be noted that a positive value for cos θ is assumed in
the preceding equation. This is because the elevation angle θ is,
by convention, restricted to the range of −π/2 ≤ θ ≤ π/2, and
cos θ is positive over this entire range. In addition, if the rigid
body is rolled about its x-axis, (18) will change, but (17) will
remain the same. This means that (17) holds for any orientation
of the rigid body.

In order to obtain an elevation quaternion using (12) and (13),
a value is needed for sin(θ/2) and cos(θ/2). From trigonomet-
ric half-angle formulas, half-angle values are given by

sin
θ

2
= sign(sin θ)

√
(1 − cos θ)/2 (23)

cos
θ

2
=

√
(1 + cos θ)/2 (24)

where sign() is the sign function that returns +1 for positive
arguments and −1 for negative arguments. The sign function is
not needed in (24) since cos(θ/2) is always positive within the
elevation angle range.

Elevation is a rotation about the y-axis. The unit quaternion
representing elevation can now be computed using (12) and
(13), and values for the half-angle trigonometric functions are
as follows:

qe = cos
θ

2
(1 0 0 0) + sin

θ

2
(0 0 1 0). (25)

C. Roll Quaternion

The acceleration measured by the z-axis accelerometer with
roll angle φ = 0 is given by (18). Changing the azimuth angle
does not alter this measurement, but changing roll does. A more
general formula for y-axis accelerometer reading is

ay = −g cos θ sinφ. (26)

Likewise, the z-axis accelerometer will read

az = −g cos θ cos φ. (27)

In terms of the normalized acceleration measurement, the ear-
lier two equations can be written as

āy = − cos θ sin φ (28)

āz = − cos θ cos φ (29)

where the value for cos θ is determined by (22). If cos θ is
not equal to zero, the values of sin φ and cos φ can easily be
determined by

sin φ = − āy/ cos θ (30)

cos φ = − āz/ cos θ. (31)

If cos θ is equal to zero, it means that x-axis of the body
coordinates is vertically oriented. In such cases, the roll angle
is undefined, and it can be assumed to have a value that is
equal to zero. The range of the roll angle φ is by convention
restricted to −π < φ ≤ π. Thus, the half-angle values for φ
can be computed in a manner that is similar to (23) and (24),
with one exception. When cos φ = −1 and sin φ = 0, the use
of (23) and (24) will result in a value of zero for both sin(φ/2)
and cos(φ/2). This case can be treated in implementation by
assigning a value of one to the sign function when its argu-
ment is zero. Having obtained the half-angle sine and cosine
values for the roll angle φ, the roll quaternion is computed as
follows:

qr = cos
φ

2
(1 0 0 0) + sin

φ

2
(0 1 0 0). (32)

D. Azimuth Quaternion

Since azimuth rotation has no effect on the estimation of
roll or elevation quaternions from the accelerometer data, the
strategy employed in this paper for azimuth quaternion esti-
mation is to first solve for the elevation and roll quaternions.
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These can then be used to rotate the normalized magnetic field
measurement vector in the body coordinate system

bm =




bmx
bmy
bmz


 (33)

into an intermediate Earth coordinate system by the quaternion
rotation operation

em = qe qr
bm q−1

r q−1
e . (34)

In this expression, bm stands for the pure vector quaternion of
the 3-D vector itself, i.e., bm = (0 bmx

bmy
bmz). The same

convention is used for em. In the absence of measurement error,
em should agree with the known local normalized magnetic
field vector n = [nx ny nz]T , except for the effects of azimuth
rotation on the sensor magnetometer readings. In such a case,
nz = emz , and

[
nx

ny

]
=

[
cos ψ − sin ψ
sinψ cos ψ

] [
emx
emy

]
(35)

where ψ is the azimuth angle. Before proceeding further, it
should be noted that (35) implies that the two 2-D vectors differ
only in orientation. In fact, the experimental data show that, in
the presence of magnetic interference and measurement noise,
they may also differ in length. To compensate for this effect, the
vectors on both sides of (35) can be normalized. Specifically,
let the normalized local magnetic field reference vector in the
horizontal plane be

N =
[

Nx

Ny

]
=

1√
n2

x + n2
y

[
nx

ny

]
(36)

and the corresponding quantity measured by the magne-
tometer be

M =
[

Mx

My

]
=

1√
em2

x +e m2
y

[
emx
emy

]
. (37)

With these definitions, (35) becomes

[
Nx

Ny

]
=

[
cos ψ − sin ψ
sin ψ cos ψ

] [
Mx

My

]
(38)

from which the value of cos ψ and sinψ can be solved as

[
cos ψ
sin ψ

]
=

[
Mx My

−My Mx

] [
Nx

Ny

]
. (39)

The azimuth angle ψ is restricted to the range −π < ψ ≤ π.
The half-angle formulas given by (23) and (24) can again be
used to compute the half-angle sine and cosine values for ψ.
The azimuth quaternion is then given by

qa = cos
ψ

2
(1 0 0 0) + sin

ψ

2
(0 0 0 1). (40)

Having obtained all three rotation quaternions, the quater-
nion estimate representing the orientation of the rigid body is
finally given by

q̂ = qa qe qr. (41)

E. Singularity Avoidance in Implementation

The FQA presented earlier takes the normalized acceleration
measurement vector and the normalized local magnetic field
measurement vector as its inputs, and it produces a quaternion,
which is its output. It is a single-frame algorithm, i.e., it takes
measurements at a single instant of time and produces an
output. It does not require a history of measurements at multiple
instants of time.

From the two measurement vectors, the half-angle values of
sine and cosine for each rotation angle are first computed. Then,
the corresponding quaternion for each rotation is computed.
Finally, the overall orientation quaternion is computed by (41).
It should be emphasized that the algorithm does not evaluate
trigonometic functions at any step.

Although quaternions, when used to represent the 3-D ori-
entation, do not have singularities, the FQA described earlier
uses three angles to derive the quaternion estimate. It is known
that any three-parameter representation of 3-D orientation is
inevitably singular at some point [19]. Without exception, the
FQA has a singularity, as does the QUEST algorithm. The
QUEST algorithm uses the Gibbs vector

ρ =
1
q0


 q1

q2

q3


 (42)

in its derivation and is at a singular point if q0 = 0. A method
that is similar to the method of sequential rotations discussed in
[20] is described below to avoid singularities in the numerical
implementation. A singularity occurs in the FQA if the eleva-
tion angle is ±90◦. This happens when cos θ = 0 in (30) and
(31). In implementation, the first step of the algorithm is to
check the value of cos θ. If the value of cos θ is smaller than a
predefined constant ε (e.g., ε = 0.1), the procedures described
below are implemented to circumvent the numeric difficulty of
having a small number in the denominator.

If cos θ ≤ ε, the elevation angle is close to ±90◦. To deal with
this situation, the normalized acceleration measurement vector
ā and normalized magnetic field measurement vector bm in the
body frame are rotated about the body coordinate yb-axis by an
angle α to obtain the following offset (rotated) measurement
vectors:

āoffset = qα ā q−1
α (43)

bmoffset = qα
bm q−1

α (44)

where qα is the offset (rotation) quaternion given by

qα = cos
α

2
(1 0 0 0) + sin

α

2
(0 0 1 0). (45)

Under the condition of cos θ ≤ ε, the offset measurement vec-
tors will be used in place of the original measurement vectors
to carry out the FQA. The resultant orientation quaternion
estimate from (41), in this case, is called q̂alt.
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Fig. 1. Roll, pitch, and yaw angles; singularity condition; and switch flag during a 180◦ rotation about the pitch axis with ideal simulated data.

The value of α can arbitrarily be chosen as long as it is
sufficiently far away from zero. It is chosen to be 20◦ in this
discussion. Rotating measurement vectors about yb-axis by 20◦

is equivalent to rotating the (original) body coordinate system
xbybzb to a temporarily offset body coordinate system x′

by
′
bz

′
b

about the yb-axis by −20◦. The symbol q̂alt represents the ori-
entation of x′

by
′
bz

′
b in the Earth coordinate system. The quater-

nion estimate q̂ representing the orientation of the original body
coordinate system xbybzb is given by the following compound
quaternion (i.e., rotating x′

by
′
bz

′
b back to xbybzb about the

y′
b-axis by 20◦):

q̂ = q̂alt qα. (46)

To demonstrate how the singularity avoidance method works,
ideal measurements as well as noisy measurements for a 180◦

rotation about the pitch axis were synthetically generated.
Fig. 1 shows the results with ideal measurements. The top
three plots are trajectories of roll, pitch, and yaw angles. The
bottom two plots depict the value of cos θ and the switch flag.
The value of cos θ is an indication of the singularity condition,
and the switch flag indicates when the singularity avoidance
method is invoked. As expected, the pitch angle increases from
0◦ to 90◦, while the roll and yaw angles remain at zero during
the first half period. As the pitch angle approaches 90◦, the
value of cos θ drops nearly to zero. When cos θ is less than ε
(whose value is chosen as 0.1 in this testing), the singularity
avoidance method is activated during the period of sample
numbers from about 820 to 980, as shown in Fig. 1. During
this period, the value of cos θ is lifted upwards to be away from
zero. The value of the offset angle α is chosen to be 20◦.

Owing to the conventional choice, the pitch angle is limited
from −90◦ to 90◦. As a result, the orientation of 95◦ pitch,

0◦ roll, and 0◦ yaw is depicted as 85◦ pitch, 180◦ roll, and
180◦ yaw in Fig. 1. This is the reason why the pitch angle
increases from 0◦ to 90◦ and then decreases from 90◦ to 0◦,
while in the actual rotation, it increases from 0◦ to 180◦.

Fig. 2 shows the results with noisy measurements for the
same rotational motion as in Fig. 1. Noise signals were intro-
duced using a random number generator. It is noted that the
switch flag flipped many times, and the value of cos θ was
kept above ε = 0.1 at all times. The trajectory of the pitch
angle follows the same rise and fall pattern as in Fig. 1, except
with added noise. The roll and yaw angles flipped from 0◦ to
180◦ numerous times, signifying that the pitch angle jumped
above and below 90◦. Figs. 1 and 2 show the trajectory of the
roll, pitch, and yaw angles for visualization purposes. Although
there are jumps in roll and yaw, there are no jumps in the trajec-
tory of the estimated quaternion, as shown in the corresponding
plot of the estimated quaternion components in Fig. 3.

F. Alternative Method for Singularity Avoidance

The aforementioned procedure amounts to a second (virtual)
sensor package that is offset from the basic (physical) sen-
sor package by a rotation of −20◦ about the body right-side
coordinate axis (yb-axis). In this method, when the physical
sensor approaches an Euler angle singularity (as indicated by
the switch flag), the virtual sensor data are substituted for
the physical sensor data, thereby avoiding division by a small
number and attendant sensitivity to noise in calculating the
desired orientation quaternion. An alternative to this approach
is to use a second set of Euler angles such that the second set
has its singularities located in a different spatial orientation than
the φ, θ, and ψ aerospace sets [18] that are used so far in
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Fig. 2. Roll, pitch, and yaw angles; singularity condition; and switch flag during a 180◦ rotation in pitch axis with noisy simulated data. The parameters used
are ε = 0.1 and the offset angle α = 20◦.

Fig. 3. Components of the estimated quaternion during a 180◦ rotation about the pitch axis with noisy simulated data.

this paper and to switch between these sets as needed to
avoid singularities. This possibility is explored in the following
discussion.

Per earlier discussion, one interpretation of the aerospace
Euler angles [18] is that, starting with body axes (nose, right
side, and belly) aligned with Earth axes (North, East, and

down), ψ is the yaw angle associated with rotation of an object
about its belly axis. This is followed by a pitch rotation θ about
the (rotated) right-side axis and, finally, a roll rotation φ about
the (rotated) nose axis. It should be noted that the aforemen-
tioned reserved names for these angles are alternatively referred
to, respectively, as azimuth, elevation, and bank angles [18].
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Fig. 4. Orientation estimate produced by the QUEST algorithm and FQA with a periodic 90◦ rotation about the roll axis using accelerometer and magne-
tometer data.

The former names are frequently used when thinking about
rotations viewed from the object (for example, as by a pilot),
while the latter names are more commonly used by observers
situated in an Earth-fixed coordinate system (for example, as in
field artillery).

An instance of an alternate set of Euler angles is provided by
the angles resulting from exchanging the temporal order of the
first two rotations described earlier. If this is done, due to the
well-known noncommutativity of finite rotations, the resulting
angles will have different values as compared to the aerospace
set. Furthermore, the singularities of the alternate set will occur
in a different orientation. To see that this is so, consider an
object initially aligned in the reference orientation described
earlier. If this object is subjected first to a 90◦ rotation about
its right-side axis (yb-axis), its belly axis (zb-axis) will then
point North. A subsequent rotation of 90◦ about this (rotated)
belly axis will cause the nose axis of the object to point East,
corresponding to the axis of the first rotation. Further reflection
on this analysis shows that, for any initial right-side (East) axis
rotation, if this is followed by a ±90◦ belly axis rotation, the
object nose axis will point either East or West; in either case,
it will be parallel to the initial rotation axis. These are, by
definition, singular conditions, which are sometimes called the
gimbal lock. On the other hand, from (30) and (31), for the
standard aerospace Euler angles, singularities exist if and only
if the object nose axis points straight up or down. This means
that singularities in the formulas used for determination of the
orientation quaternion can be avoided by switching between
these two Euler angle sets as needed.

Evidently, the use of alternative Euler angles requires the
derivation of new formulas for the computation of the cor-
responding orientation quaternions as well as expressions for

Fig. 5. Block diagram of the QUEST algorithm/FQA with a low-pass filter.

switching from one Euler set to the other when a singular
condition is approached. While this is straightforward and
certainly practical, it is believed that the use of an offset
virtual sensor, as in the implementation in this paper, is both
conceptually and mathematically simpler and leads to simpler
computer software. Therefore, all of the following experimental
results were obtained using the virtual offset sensor switching
approach.

III. EXPERIMENTAL RESULTS

Sensor data for the experiments were collected using a
MARG III inertial/magnetic sensor module, which was de-
signed by the authors and fabricated by McKinney Technol-
ogy [16]. Primary sensing components for this unit include a
pair of two-axes Analog Devices ADXL202E micromachined
accelerometers, and Honeywell HMC1051Z and HMC1052
one- and two-axes magnetometers. Overall, dimensions of the
MARG III unit are approximately 0.7 in × 1.2 in × 1.0 in.
Although the MARG III units contain angular rate sensors, no
rate data were used in the experiments described in this paper.

A. Testing of Static and Dynamic Accuracy

Controlled rotations of the sensor modules were performed
by placing an inertial/magnetic sensor module on a HAAS
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Fig. 6. Orientation estimate produced by the QUEST algorithm and FQA with a 90◦ rotation in roll axis using low-pass filtered accelerometer data.

precision tilt table. The table has two degrees of freedom and
is capable of positioning with an accuracy of 0.001◦ at rates
ranging from 0.001 to 80◦/s. In order to mitigate any possible
magnetic effects generated by the steel construction of the tilt
table, the sensor unit was mounted on a nonferrous extension
above the table. In each of these experiments, the sensor
module was initially placed with its xsyszs-axes, respectively,
aligned with the NED directions. Following an initial still
period, the sensor module was then subjected to a series of
rotations.

Fig. 4 shows the performance of each of the two algorithms
using raw accelerometer and magnetometer data. The sensor
was rotated −90◦ about the x-axis at a rate of 60◦/s and then
rotated 90◦ at the same rate (in the reverse direction) for two
cycles. The plots to the left show the orientation estimated
by the QUEST algorithm, and the graphs to the right show
the orientation estimated by the FQA. The small pitch and
yaw motions seen in the pitch and yaw subplots are due to
misalignment of the sensor module with the motion axes of
the tilt table. It can be seen that both algorithms were able
to correctly estimate the roll angle before the first (negative)
rotation, between the first and second (positive) rotations, and
after the second rotation. Neither was able to correctly estimate
orientation during rotational motion. Similar results were ob-
served in experiments involving different angles of rotation at
different rates.

During motion, the accelerometers measure the sum of
gravity and motion-induced acceleration. In the case of the
experiments described here, the motion-induced acceleration is
due to the motion of the tilt table and flexing of the nonferrous
extension on which the sensor module was mounted. Since both
the QUEST algorithm and FQA are single-frame algorithms,

neither is able to filter out transient nongravitational accelera-
tions that occur during motion.

Fig. 5 shows a revised approach in which a low-pass filter for
accelerometer data is combined with the FQA or QUEST algo-
rithm. To examine the performance of the QUEST algorithm
and FQA in conjunction with a low-pass filter, the rotation ex-
periments were repeated. Fig. 6 shows the performance during
90◦ rolls at a rate of 60◦/s. A comparison of Fig. 6 with Fig. 4,
in which the sensor module was subjected to the same rotations,
shows that either algorithm can be used to track the orientation
of a rigid body in a dynamic environment when acceleration
data are low-pass filtered. Again, similar results were observed
in experiments involving different angles of rotation at different
rates.

B. Avoidance of Singularity Conditions

Within the FQA, three half-angles are used to derive an
orientation quaternion. Measurement vectors are rotated by
an angle α when the pitch angle approaches ±90◦ and cos θ
approaches zero. Figs. 7 and 8, respectively, show the operation
of the FQA and its output during 110◦ pitch rotations. During
this experiment, α was set to 45◦, and ε was 0.2. The bottom
two subplots of Fig. 7 trace the value of cos θ and the value of
the switch flag that triggers the singularity avoidance method
and show the direct correspondence between the two in time. It
can be observed that, each time cos θ was about to become less
than ε, the switch flag was set to one. The top three subplots in
Fig. 7 show the angles calculated from the quaternion estimate
produced by the algorithm. The apparent rise of the pitch angle
to 90◦ and then drop to 70◦ is a visualization artifact due to
the use of the three angles for plotting purposes. A 110◦ pitch
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Fig. 7. Angles, singularity condition, and switch flag of the FQA during 110◦ rotation in pitch axis.

Fig. 8. Components of the estimated quaternion produced by the FQA during 110◦ rotation in pitch axis.

is represented as 70◦ pitch, together with a 180◦ roll and a
±180◦ yaw. At times, the yaw angle flips between two alternate
representations of the same rotation, namely, −180◦ and 180◦.
The roll angle is stable at either 0◦ or 180◦.

The quaternion elements that are shown in Fig. 8 are
smooth and exhibit no flipping of orientation representations

or singularity artifacts. The real part of the quaternion q0

begins at 1.0 and changes to cos(110◦/2) = 0.5736 during the
110◦ rotations. The element of the unit quaternion associated
with rotations about the pitch axis q2 begins at zero and
changes to sin(110◦/2) = 0.8192 during the 110◦ rotations.
The small changes in q1 and q3 are due to misalignment
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Fig. 9. Components of the normalized local magnetic field measurement vector under the influence of a moving magnetic field distortion.

Fig. 10. Orientation estimate produced by the QUEST algorithm and FQA with a static sensor module under the influence of a moving magnetic field distortion.

between the sensor module and the motion axes of the tilt
table.

C. Testing of Static Accuracy When Subjected to Magnetic
Field Variations

To test the decoupling property of the FQA, an inertial/
magnetic sensor module was mounted on a level nonferrous

stationary platform. The sensor module xsyszs-axes were,
respectively, aligned with the NED directions. Following an
initialization period, the sensor module was exposed to a
ferrous object. Movement of the ferrous object caused the
direction of the measured magnetic field to rotate by as much
as 360◦. Changes in the measured magnetic field were ob-
served in all measurement axes, as shown in Fig. 9. Fig. 10
shows orientations calculated using the QUEST algorithm and
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FQA. It can be observed that the orientations calculated using
the QUEST algorithm (depicted by three subplots to the left)
exhibited errors on all axes. On the other hand, the FQA
(depicted by three subplots to the right) showed no errors in
either the pitch or roll axes.

D. Algorithm Efficiency

To make a rough comparison of the efficiency of the QUEST
algorithm and FQA, the time required for each to complete
the computation of 5000 orientation quaternions was deter-
mined using MATLAB on a PC with an 866-MHz Pentium III
processor and 256-MB RAM. This number represents 50 s
of data at a sampling rate of 100 Hz. Both algorithms were
able to complete the 5000 quaternion calculations in less
than 10 s. The calculations were completed in 9.8 s by the
QUEST algorithm and 7.8 s by the FQA. In this experiment,
the FQA was approximately 25% faster than the QUEST
algorithm.

IV. CONCLUSION

This paper presents a physically intuitive algorithm for
calculating orientation using accelerometer and magnetome-
ter data for static or slow-moving objects. The algorithm
produces estimates in quaternion form through a series of
sequential rotations. These rotations can individually be ex-
amined in a manner similar to pitch, roll, and yaw angles
in a Euler angle sequence. However, unlike Euler angles,
the algorithm incorporates a singularity avoidance method. In
the algorithm, magnetometer data are not used to calculate
orientation that is relative to the vertical axis; thus, mag-
netic variations result in errors only in the horizontal plane.
This property of the algorithm is experimentally demonstrated.
Singularities in the numerical implementation are avoided
through the use of a method that assigns an offset body
coordinate system when a singularity occurs. The algorithm
is efficient and does not require the evaluation of trigo-
nometric functions. Experimental results indicate that, when
combined with a low-pass filter for accelerometer data, the
algorithm is able to track orientation. The algorithm has been
successfully used in real-time human-body-motion-tracking
applications.

As a final remark, it should be noted that dynamic estimation
of an orientation quaternion through integration of values for q̇
that are obtained from angular rate sensors is equally likely to
produce a quaternion with a negative real part as a positive real
part. On the other hand, the FQA always produces a quater-
nion with a positive real part. Since both q and −q produce
identical rotations, it is important to use both of these values in
computing ∆q, which is the difference between the predicted
and measured value for q that is used in drift correction, and
to then choose the value for ∆q which is smaller in absolute
value. This comparison is not necessary in some previous (less
efficient and less accurate) approaches to drift correction [21]
since these methods usually directly incorporate old estimates
of q into estimation of ∆q, while this is not the case for the
FQA estimate.
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