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Abstract. Airborne visible/infrared imaging spectrometer (AVIRIS) and spatially coincident
hyperspectral thermal emission spectrometer (HyTES) data were used to map geology and alter-
ation for a site in northern Death Valley, California and Nevada. AVIRIS with 224 bands from 0.4
to 2.5 μm were converted to reflectance. HyTES data with 256 bands covering 8 to 12 μm were
converted to emissivity. Two approaches were investigated for integration of the datasets for full
spectrum analysis. A combined (integrated) bands method utilized 332 spectral bands spanning
both datasets. Spectral endmembers were extracted, and the predominant material at each pixel
was mapped for the full spectral range using partial unmixing. This approach separated a variety
of materials, but it was difficult to directly relate mapping results to surface properties. The
second method used visible to near-infrared, shortwave infrared, and longwave infrared data
independently to determine and map key endmembers in each spectral range. AVIRIS directly
mapped a variety of specific minerals, while HyTES separated and mapped several igneous rock
phases. Individual mapping results were then combined using geologically directed logical oper-
ators. The full-range results illustrate that integrated analysis provides advantages over use of just
one spectral range, leading to improved understanding of the distribution of geologic units and
alteration. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.9
.096005]

Keywords: hyperspectral data fusion; hyperspectral imaging; spectral geology; visible near-
infrared; shortwave infrared; longwave infrared; multimodal spectral mapping; northern
Death Valley remote sensing.

Paper 15411P received Jun. 3, 2015; accepted for publication Aug. 17, 2015; published online
Sep. 23, 2015.

1 Introduction

Identification of minerals and other geologic materials using visible to near-infrared (VNIR),
shortwave infrared (SWIR), and longwave infrared (LWIR) spectroscopy is well estab-
lished.1–12 This forms the basis for remote measurements using imaging spectrometry [also
called hyperspectral imagery (HSI)], consisting of imagery in up to hundreds of contiguous
spectral bands, with a spectrum at each image pixel.13 Hyperspectral data in the VNIR-
SWIR have been available for over 30 years, and analysis of these for geologic applications
is considered mature.14 LWIR multispectral data have also been available for a long time15–17

and are often used in conjunction with VNIR-SWIR data.18–20 LWIR HSI data, however, have
been more difficult to obtain, are only slowly becoming more broadly available, and provide new
capabilities that are just coming into routine use.21,22 While typically analyzed in their separate
wavelength ranges, there are some examples of using these individual HSI data modes
together.23–25 Fully integrated analysis is, however, still being explored. The research summa-
rized here is part of ongoing full-range HSI data analysis efforts at the Naval Postgraduate
School.26–29
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1.1 Objectives

The objective of this research was to improve accurate identification and mapping of geologic
materials utilizing the complementary information available from the full spectral range (0.4 to
12 μm). Airborne visible/infrared imaging spectrometer (AVIRIS) data spanning the VNIR-
SWIR and spatially coincident hyperspectral thermal emission spectrometer (HyTES) data
covering the LWIR spectral region were first analyzed utilizing a combined (integrated)
bands full-range HSI analysis approach. These results were subsequently compared to informa-
tion from individual wavelength range (modal) analyses combined using logical operators to
determine and map key integrated endmembers. Results illustrate the complementary nature
of the different spectral regions, provide insight into the strengths and pitfalls of joint versus
modal analyses, and demonstrate improved hyperspectral mapping capabilities using the com-
bined data.

1.2 Northern Death Valley Site

A site in the northern Death Valley (northern Death Valley 1 or NDV-1) (Fig. 1) was selected for
this study because of the well-known mineralogy derived from previous data collections, analy-
ses, and field validation. The site has been studied in detail using field mapping30–33 and a wide
variety of remote sensing datasets.32,34–36 Bedrock consists of Precambrian limestones, dolo-
mites, sandstones and their contact metamorphic equivalents; granitic-composition Mesozoic
plutonic rocks (quartz syenite, a quartz monzonite porphyry stock, quartz monzonite dikes,
and a granite intrusion), and complexly faulted tertiary volcanic rocks, and volcaniclastic sedi-
mentary rocks interbedded with rhyolite and basalt33 (Fig. 2). Quaternary deposits include
Holocene and Pleistocene fanglomerates, pediment gravels, and alluvium; these have been
mapped in reconnaissance,31 but no linked bedrock/surficial geology studies have been com-
pleted. This area underwent several episodes of hydrothermal alteration (Fig. 3): (1) sericite
(fine-grained muscovite or illite) and Fe oxide minerals in narrow north-trending mineralized
shear zones,32,33 and (2) slightly broader northwest-trending zones of disseminated quartz,
pyrite, sericite, chalcopyrite, and fluorite mineralization [Quart-Sericite-Pyrite (QSP) alteration]
± Fe oxides occurring in the quartz monzonite porphyry and spatially associated with fine-
grained quartz monzonite dikes.32 There are several small areas of quartz stockwork (silica flood-
ing of the rocks) exposed at the surface in the center of the area. Skarn, composed mainly of
brown andradite garnet intergrown with calcite, epidote, and tremolite occurs around the perim-
eter of the quartz monzonite stock in Precambrian rocks. This is an extremely arid area and

Fig. 1 (a) Northern Death Valley site #1 (NDV-1) location map and (b) true color orthorectified
aerial photography. All datasets used in this study were coregistered to the ortho-imagery and
USGS digital orthoquad (DOQ) photography.
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vegetation coverage is very low. Field observations indicate the presence of small amounts of
both green and dry desert shrubs and grasses (typically < ∼ 5 to 10%).

1.3 Hyperspectral Imagery Datasets

AVIRIS is an airborne hyperspectral sensor with 224 bands at 10 nm spectral resolution over the
range of 0.4 to 2.5 μm.37,38 It has been used extensively since 1989 for hyperspectral mineral
mapping and other applications.38 Multiple AVIRIS datasets were acquired for the NDV-1 site
between 1989 and 2006. The AVIRIS data used for this investigation were acquired on
November 5, 2005. A total of 80 VNIR bands from 0.4 to 1.2 μm and 51 SWIR bands
from 2.0 to 2.5 μm at 3.2 m spatial resolution were used in these analyses. The SWIR data
between 1.2 and 2 μmwere not used as the area is sparsely vegetated and few minerals of interest

Fig. 2 Geologic map and key produced utilizing traditional field mapping techniques.34

Fig. 3 Alteration map from field study, petrology, and x-ray diffraction analysis.34
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in this geologic setting have distinctive absorption features in this region. HyTES is an airborne
LWIR hyperspectral sensor with 256 bands at ∼17 nm spectral resolution covering the 7.5 to
12.0 μm range.39 HyTES data were acquired for the NDV-1 site on July 7, 2014, at 4.3 m spatial
resolution. Two hundred spectral bands between 8.0 and 11.5 μm were used for this investiga-
tion. While the nearly 10-year time difference between the two datasets could potentially neg-
atively affect analyses, this is a very arid area with good bedrock exposure, and spectral-spatial
browsing of the imagery indicates that surface changes have been minimal. Figure 4 shows color
composite images for the NDV-1 site for the three spectral ranges (VNIR, SWIR, and LWIR).

2 Approaches and Methods

The HSI data for the NDV-1 site were analyzed using a standardized approach [Fig. 5(a)].40,41

AVIRIS VNIR and SWIR HSI radiance data were converted to reflectance utilizing the
Atmospheric Correction Now (ACORN) atmospheric model.42 This is a MODTRAN-based
model requiring only knowledge about the HSI acquisition parameters (sensor, date, time, alti-
tude), site characteristics (latitude and longitude, elevation), and some basic assumptions (atmos-
pheric model, visibility). ACORN adjusts the wavelength calibration as required, calculates the
atmospheric water vapor concentration from the radiance spectra, determines reflectance utiliz-
ing the measured water vapor and the atmospheric model, masks portions of the spectrum with
low signal-to-noise ratios (SNR), and removes residual sensor artifacts—all without any

Fig. 4 (a) Airborne visible/infrared imaging spectrometer (AVIRIS) visible to near-infrared (VNIR)
reflectance true color image, bands 31, 20, 10 (0.66, 0.55, 0.45 μm) as RGB; (b) AVIRIS short-
wave infrared (SWIR) reflectance color composite image, bands 183, 193, 207 (2.1, 2.2, 2.34 μm)
as RGB; and (c) hyperspectral thermal emission spectrometer (HyTES) longwave infrared (LWIR)
emissivity color composite image, bands 141, 84, 28 (10.0, 9.0, 8.0 μm) as RGB.
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supporting ground or atmospheric measurements. The HyTES data were atmospherically cor-
rected using an LWIR atmospheric compensation model, Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes-Infrared (FLAASH-IR), also requiring no ground informa-
tion.43,44 FLAASH-IR calculates a set of trial atmospheric spectra by specifying a three-dimen-
sional grid of atmospheric parameters (surface air temperature, water vapor column density or
relative humidity, and an ozone column density scale factor). These parameters are used to deter-
mine and modify a MODTRAN model atmosphere temperature at each pixel based on fit to a
Plank function. The best-fit atmosphere model is retrieved from selected pixel spectra by min-
imizing the total variance with respect to both surface temperature and the atmospheric variables.
While FLAASH-IR also offers temperature-emissivity (TES) capabilities, for this study, the
atmospherically corrected HyTES were converted to emissivity and temperature using a normal-
ized emissivity TES method.45 Both the AVIRIS reflectance and HyTES emissivity had similar
ranges from 0.0 to 1.0, which were scaled from 0 to 10,000 for analysis.

Image-based endmembers and spectral unmixing were then used for both an integrated full-
range analysis (332 combined bands) and for independent (modal) analysis of the individual
spectral ranges [Fig. 5(a)].40,41 The selected spectral regions were linearly transformed using
the minimum noise fraction (MNF) transform,46 which conditions n-dimensional data in prepa-
ration for determination of endmembers and spectral unmixing.41 A subset of the MNF data was
used to determine the spectrally extreme pixels in each dataset using repeated projections of
n-dimensional scatterplots (where n is the number of bands) onto a lower-dimensional subspace
and marking the extreme pixels calculated—the pixel purity index (PPI).41,47 The PPI results
were then analyzed using interactive n-dimensional scatterplots to determine vertices, which
typically correspond to unique materials—the endmembers. The endmember spectra were vis-
ually compared to spectral libraries7,10,12 to determine key spectral features and identify minerals
(AVIRIS) and rock types (HyTES). These were then used in a partial unmixing algorithm, mix-
ture tuned matched filtering (MTMF) [Fig. 5(b)], to map the spatial occurrence and abundance of
each endmember for each dataset.41,48

MNF is used to segregate noise in the data, determine inherent data dimensionality, and
reduce computational requirements for subsequent processing.41,46 It is equivalent to principal
components (PCs) when the noise variance (SNR) is the same in all bands. MNF orders data
according to decreasing SNR rather than ordering by variance as for PCs. It divides the data
space into two parts, one with large eigenvalues and coherent eigenimages, and the second

Fig. 5 (a) Standardized hyperspectral imagery (HSI) analysis approach: the HSI data are atmos-
pherically corrected and reduced both spatially and spectrally to just a few key spectra. These are
identified, and their spatial distributions and abundances mapped using a variety of methods. Our
preferred method is mixture tuned matched filtering (MTMF). (b) MTMF concept showing identi-
fication and quantification of a known target spectrum in the presence of a diverse background.
Higher matched filter (MF) scores (from 0.0 to 1.0 ¼ 0 to 100% abundance) indicate that there is
more of the target spectrum material in the pixel of interest. Lower infeasibility scores [forming 1σ
and 2σ (etc.) cones extending from the background to the target] constrain the spectral signature in
the context of mixing of the background and target signature. The best spectral matches can be
mapped based on meeting the combined criteria of high MF score and low infeasibility score.41
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with near-unity eigenvalues and noise-dominated images. Only the first part of the MNF-trans-
formed data was used for subsequent analyses, thus segregating signal from noise and reducing
the spectral dimensionality of the datasets.

PPI utilizes the concepts of convex geometry to find the spectrally pure or extreme pixels in
n-dimensional HSI data, where n is the number of bands.41,47 The digital number of each pixel in
the PPI image corresponds to the number of times that pixel was recorded as extreme (higher PPI
= purer). The PPI image is then thresholded to limit the pixels selected for further analysis to only
the most extreme (pure) pixels, thus reducing the spatial dimensionality of the data. The remain-
ing pixels, corresponding to endmembers, were interactively visualized using n-dimensional
scatterplotting to extract the vertices of the scatterplots,41 and these were identified using visual
inspection and matching to library spectra.7,10,12

MTMF is a hybrid partial unmixing algorithm41,48 utilizing the classical matched filter (MF)
statistical detection technique49,50 used for radio/radar signals in conjunction with a linear mix-
ture model51 to determine the occurrence and abundance of targets in the presence of a mixed
background. The MF vector is calculated by determining the background covariance and then
finding an orthogonal vector that maximizes the known target separation from the composite
background. MF scores are calculated by projecting data onto the MF vector, giving apparent
pixel fractional fill (abundance). MF was designed for radar data, however, where signals are
additive. False positives may occur when MF is used for analysis of optical remote sensing data
because mixing is a replacement process. MTMF is designed to remedy this MF shortcoming.
The mixture tuned part of the MTMF algorithm determines the probability that a given spectrum
is a feasible linear mixture of the background and the target. It is measured in concentric equal-
probability cones as standard deviations from the MF vector [Fig. 5(b)]. MTMF combines the
best attributes of the MF with the feasibility constraints of spectral mixing. It allows both deter-
mination of specific materials and estimation of their pixel abundances by calculating two mea-
sures: the MF score and an infeasibility score. These two attributes are typically used together in
two-dimensional (2-D) scatterplots to determine occurrence and abundance of a particular
material at each pixel of a spectral image dataset. The MF score determines the spectral abun-
dance of the material, while the infeasibility score determines whether the measurement is a
feasible mixture of background and the target signature. A combination of high MF and low
infeasibility score determines the best target match, highlighting feasible mixtures; however,
this is somewhat subjective. For the purposes of this research, an MTMF feasibility ratio
(MF score/infeasibility score) was used for standardization between the datasets. All data ana-
lyzed utilizing MTMF were thresholded to show only the best match (one material per pixel) for
MTMF feasibility ratios >0.025.

3 Results

The 2005 AVIRIS SWIR data for the NDV-1 site were previously analyzed utilizing the stand-
ardized approach described previously, but with manual MTMF mapping using 2-D scatterplot-
ting thresholds.40 The current research presents updated SWIR analysis using the same data and
the MTMF feasibility ratio approach for more objective mapping and further standardization. It
also adds both independent and integrated analysis of the AVIRIS VNIR and SWIR data, and the
HyTES LWIR data.

3.1 Full-Range Integrated Analysis

Corrected reflectance and emissivity spectral bands from VNIR, SWIR, and LWIR spectral
ranges were combined to form a full-range hyperspectral dataset with 332 bands to assess
the value of processing and analyzing these as an integrated dataset. Both the AVIRIS and
HyTES data were geocorrected using onboard navigation information at their native spatial res-
olutions (3.2 and 4.3 m, respectively) and then further georeferenced to 1 m spatial resolution
orthophotography utilizing ground control points (GCPs), Delaunay triangulation, and nearest-
neighbor resampling. Residual errors utilizing 350 GCPs for AVIRIS were on the order of 3 m (1
AVIRIS pixel) and with 54 GCPs for HyTES, 4 m (1 HyTES pixel). The VNIR, SWIR, and
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LWIR data were stacked to form a datacube at the uniform 1 m grid size. The combined dataset
was then analyzed using the endmember extraction approach across all bands (Fig. 6) and partial
unmixing utilizing the MTMF and MTMF feasibility ratio approach (Fig. 7). The constant ratio
threshold of 0.025 was used to map the spatial distribution of the predominant endmember at
each pixel. Using assemblages of materials (based on full-range analysis) to designate classes is
probably more similar to the way a geologist maps than typical single wavelength range HSI
mineral mapping. The integrated mapping does appear to bring out some associations that are not
easily observable in individual ranges (Figs. 6 and 7, Table 1). For example, a mixed carbonate/
silica fan classified as ndClass#17 and marked as A in Fig. 7 is clearly discriminated from other
fans with mostly carbonates (calcite classified as ndClass#2) and marked as B. Unfortunately,
however, other areas of unrelated alteration (marked as C in Fig. 7) are also mapped as part of
ndClass#17. These areas generally correspond with field mapped areas of QSP alteration
�goethite (Fig. 2). The integrated data also illustrate what can happen when spectral features
are obscured in one spectral range because of calibration issues or problems with shadows or
temperature differences. For example, dolomite mapped as ndClass#5, marked as D in Fig. 7, has
a strong 11.2 μm emissivity minimum in the LWIR (HyTES) data [Fig. 6(c)], but the expected
corresponding dolomite feature near 2.32 μm is very weak or does not appear in the SWIR
(AVIRIS) portion of the endmember spectrum [Fig. 6(a)], apparently because location D occurs
in a shadowed area. Fully illuminated carbonates are correctly mapped by the integrated
full-range data as calcite at locations E and F as ndClass#2 and ndClass#11, and dolomite
at location G as ndClass#1, respectively, in Fig. 7 based on joint occurrence of the SWIR absorp-
tion feature near 2.34 or 2.32 μm and the LWIR emissivity minimum near 11.3 or 11.2 μm,
respectively [Figs. 6(b) and 6(c)]. A similar situation occurs for ndClass#9, where there is a
dolomite absorption feature in the SWIR at 2.32 μm, but no corresponding LWIR dolomite fea-
ture near 11.2 μm (not shown).

Fig. 6 Selected combined AVIRIS/HyTES endmembers extracted from the data using the stand-
ardized approach: (a) AVIRIS VNIR, (b) AVIRIS SWIR, and (c) HyTES LWIR. Note that while
spectral plots shown are broken into the three wavelength regions for scaling, they are in fact
continuous VNIR-SWIR-LWIR endmembers. The colors and names track across the three
plots (Table 1 and Fig. 7).
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The major problem with the integrated analysis approach is that often the causes of class
differences are hard to determine and the results are difficult to interpret. It may not always
be possible to assign multirange absorption and/or emissivity features to the physical and/or
chemical phenomenology or specific rock units (Table 1, Fig. 7). Figure 7 shows that this
approach also appears to suppress individual lithologies expressed in the LWIR data [Fig. 4(c)].
Note, for example, that the quartz syenite rock unit, clearly seen as the light blue unit in the
HyTES data [Figs. 2 and 4(c)], is not mapped as a distinct unit utilizing the integrated dataset.
The advantages of the integrated full-range analysis approach are that it requires less spectro-
scopic knowledge to get started, offers streamlined analysis, and captures the inherent data com-
plexity. Problems include mapping errors associated with materials that have slightly different
reflectance or emissivity characteristics because of shadows and/or uncorrected temperature
differences, respectively, along with possible residual sensor or atmospheric correction errors.

3.2 Independent Modal Hyperspectral Imagery Data Analysis

The VNIR and SWIR reflectance data and LWIR emissivity data were also used independently
to determine key endmembers in each spectral range using the endmember extraction and
MTMF mapping approach. Materials were identified based on comparison of specific spectral
absorption features to spectral libraries.7,10,12 Partial unmixing utilizing MTMF was used indi-
vidually for each range to map the distribution and abundance of selected endmembers. Results
presented here show only the predominant material at each pixel, extracted using the MTMF

Fig. 7 AVIRIS-HyTES combined full-range MTMF mapping results using the integrated endmem-
bers shown in Fig. 6. Comparison to Fig. 3 shows good discrimination of alteration; however, com-
parison to Fig. 2 indicates that this approach does not perform well for lithology (geology).
Locations and endmembers: A and C, ndClass#16; B, ndClass#2; D, ndClass#5; E, ndClass#2;
F, ndClass#11; G, ndClass#1 (see Fig. 6).
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feasibility ratio with a constant value of 0.025. The VNIR results principally show the distri-
bution of iron oxides (hematite and goethite), identified based on key absorption features near
0.86 and 0.93 μm, respectively, along with some areas that need further validation (unknown
minerals based only on VNIR spectral signatures; Fig. 8). Minor green vegetation (∼1.3% over-
all) was also mapped. The SWIR analysis (Fig. 9) mapped calcite (limestone) and dolomite,
identified based on key absorption features near 2.34 and 2.32 μm, respectively; mica (musco-
vite/sericite) based on a combination of key features near 2.2 and 2.36 μm; silica identified using
a broad absorption feature near 2.2 μm; zeolites based on overall SWIR spectral shape (volcanic

Table 1 Interpreted mineralogy from each spectral range for selected classes extracted from
integrated dataset.

Combined class Image color (Fig. 7) VNIR spectral ID SWIR spectral ID LWIR spectral ID

ndClass#1 Dark yellow Weak Fe Dolomite Dolomite

ndClass#2 Red Goethite Calcite Calcite

ndClass#3 Blue None None Calc-silicate

ndClass#4 Yellow Weak Fe Weak clay Silicate

ndClass#5 Cyan None Very weak dolomite Dolomite

ndClass#6 Magenta Weak Fe Silica Silicate

ndClass#8 Sea green Goethite Clay Silicate

ndClass#10 Orange None Very weak clay Silicate

ndClass#11 Aquamarine None Calcite Calcite

ndClass#12 Orchid Unknown Weak clay Silicate

ndClass#14 Dark sienna Hematite Weak clay Silicate

ndClass#17 Green Weak Fe Muscovite Silicate/quartz

VNIR, visible to near-infrared; SWIR, shortwave infrared; LWIR, longwave infrared.

Fig. 8 (a) AVIRIS VNIR endmembers extracted from the data using the standardized approach
and (b) AVIRIS VNIR mineral mapping results overlain on USGS DOQ.
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rocks); and dry vegetation (∼1.5% overall, not shown). The HyTES data discriminated various
rock types including quartz syenite, quartz monzonite, and siliceous volcanic rocks identified
based on unique, slightly shifted emissivity minima features near 9.0 μm (Fig. 10). Limestone
and dolomite were identified based on features near 11.2 and 11.3 μm, respectively [Fig. 10(a)].
Calc-silicate alteration (andradite garnet skarn) was identified based on a broad emissivity mini-
mum spanning the 10.4 to 11.1 μm range [Fig. 10(a)]. Silica stockworks and other silicification
were determined by the presence of the quartz restrahlen features near 8.5 and 9.0 μm

Fig. 9 (a) AVIRIS SWIR endmembers extracted from the data using the standardized approach
and (b) AVIRIS SWIR mineral mapping results overlain on USGS DOQ.

Fig. 10 (a) HyTES LWIR endmembers extracted from the data using the standardized approach
and (b) HyTES LWIR MTMF mapping results overlain on USGS DOQ.
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[Fig. 10(a)]. Rock type names were assigned based on their spectral signatures and comparison
to known lithologies (Fig. 2). Compare the HyTES MTMF map (Fig. 10) to the geologic map
(Fig. 2) and note the close correspondence of the various rock types.

These results demonstrate the different identification and mapping capabilities of each wave-
length range. Independently analyzing each HSI mode provides the advantage of clear ties
between the mapping and physical and chemical properties. VNIR and SWIR do not usually
map rock type (lithology) in the classical sense (with the exception of limestone and dolomite in
the SWIR). Instead, in this case, they principally map crosscutting mineralogy associated with
hydrothermal alteration (Fig. 3). The LWIR map, which principally shows differences between
primary rock-forming silicates, more closely resembles the geologic map (Fig. 2). Comparison
of the material maps from the different modes reveals complex overlap, indicating that multiple
materials/processes exist in many areas. Thus, combination or integration of the results is nec-
essary to produce the best surface materials maps.

3.3 Directed Modal Combined Results

The approach used to integrate the individual VNIR-SWIR-LWIR results was to utilize class
merging, masking, and logical operators to combine classes produced during the independent
modal analyses of the multiple ranges. Use of multispectral advanced spaceborne thermal emis-
sion and reflection radiometer remote sensing data and logical operators has been demonstrated
by the U.S. Geological Survey (USGS) for mapping specific spectral absorption features asso-
ciated with hydrothermal alteration.52,53 The approach described here is similar; however,
MTMF mapping results for individual spectral regions were combined utilizing selected logical

Table 2 Combined carbonate classification scheme using logical operators applied to modal
spectral identifications.

Mode Modal spectral identifications (carbonates)

AVIRIS VNIR — — — Goethite

AND

AVIRIS SWIR Calcite Dolomite Calcite OR Dolomite Calcite OR Dolomite

Operator OR OR OR OR

HyTES LWIR Calcite Dolomite Calcite OR Dolomite Calcite OR Dolomite

Combined
classification

1. Combined calcite 2. Combined dolomite 3. Combined carbonate 4. Altered carbonate

AVIRIS, airborne visible/infrared imaging spectrometer; HyTES, hyperspectral thermal emission spectrometer.

Table 3 Combined classification using logical operators applied to modal spectral identifications.

Mode Modal spectral identifications (non-carbonates)

AVIRIS VNIR — Goethite Hematite Not Fe-
oxides

— — —

AND AND AND

AVIRIS SWIR — Muscovite Muscovite Muscovite — — —

Operator AND AND

HyTES LWIR Qtz monzonite Qtz monzonite Qtz monzonite — Quartz/
silica

Calc-
silicates

Quartz
syenite

Combined
classification

5. Quartz
monzonite

6. Altered Qtz
Monz#1

7. Altered Qtz
Monz#2

8.
Muscovite

9. Qtz/
silica

10. Calc-
silicates

11. Quartz
syenite
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operators based on known geologic and spectroscopic constraints for the NDV-1 site. These fuse
modal analyses to reduce variability, reveal additional detail, and clarify mineral assemblages
and rock associations (Tables 2 and 3, Figs. 11 and 12).

Close examination of the SWIR mineral mapping of the carbonate units [calcite and dolomite
spectra, Fig. 11(a)] reveals that AVIRIS had some difficulties identifying these materials in shad-
owed areas [Fig. 11(b)]. Additionally, HyTES mapping appeared to be less sensitive in low
abundance carbonate areas [Figs. 11(c) and 11(d)]. Thus, in some locations, materials had
the SWIR carbonate features, but no LWIR carbonate features and vice versa. Combining

Fig. 11 (a) AVIRIS carbonate image endmembers dolomite and calcite based on their SWIR
absorption features near 2.32 and 2.34 μm, respectively, (b) MTMF SWIR mineral map subset
showing AVIRIS carbonate mapping, (c) HyTES carbonate image endmembers dolomite and cal-
cite based on their LWIR emissivity minima near 11.2 and 11.3 μm, respectively, (d) MTMF LWIR
mineral map subset showing HyTES carbonate mapping. Image (e) shows combined results.
AVIRIS calcite and dolomite mapped as red and yellow, respectively, and HyTES carbonates
[where not mapped by AVIRIS, compare (b) and (d)], in shades of purple. Image (f) shows
final combined map of all mapped calcite and dolomite. HyTES-only mapped carbonates
shown in purple in (e) were added to AVIRIS-only results in (b) to achieve (f). Note removal of
mapping discontinuity at ridgeline in shadowed areas. All mineral maps overlain on USGS DOQ.
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the two MTMF classifications using a logical OR (mapping locations where either AVIRIS or
HyTES found carbonates) produced a more coherent map of the carbonate units that did not have
discontinuities at terrain boundaries [Table 2, Figs. 11(e) and 11(f)].

A similar approach was taken toward mapping individual lithologies and selected mineral
assemblages. Geologic context was used to combine similar materials and to generate mineral
assemblages related to hydrothermal alteration (Tables 2 and 3, Fig. 12). Variability in spectral
units for areas recognized by their HyTES LWIR emissivity signatures and named as quartz
syenite, quartz monzonite, or silicic volcanic rock based on comparison to known geology
were combined into individual discrete rock units. Areas of similar endmember spectra were
merged using the logical OR operator to create individual classification masks. Note the unam-
biguous mapping of the quartz syenite intrusive phase derived from the HyTES data based on its
reduced silica content relative to the quartz monzonite unit (compare Figs. 10 and 12 to the
geologic map, Fig. 2). This is particularly important for mapping hydrothermal alteration, as
significant amounts of alteration at this site occur along the boundaries of or within the quartz
syenite intrusive phase.

Alteration assemblages were principally identified based on the joint occurrence of VNIR-
determined minerals (Fe oxides) and mica (muscovite/sericite) in the LWIR-defined quartz
monzonite rock unit using a logical AND operator (Table 3). SWIR-mapped muscovite/sericite
alteration without additional alteration minerals was mapped as one alteration type (muscovite;
Table 3, Fig. 12). Other occurrences of muscovite associated with Fe oxides were divided into
two types based on the joint occurrence of either hematite or goethite in VNIR mapping asso-
ciation (Table 3, Fig. 12). VNIR-mapped goethite areas are also present in SWIR-LWIR mapped
carbonates, crosscutting calcite/dolomite boundaries, possibly indicating additional alteration
(Table 2, Fig. 12). Areas of calc-silicates and silicification were determined solely from

Fig. 12 Integrated image map from directed combined analysis of individual VNIR-SWIR-LWIR
material maps showing key alteration assemblages for the NDV-1 site overlain on USGS DOQ.
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their LWIR signatures (Table 3). Their location in geologic context at the carbonate/intrusive
contact based on combined wavelength mapping (Fig. 12) indicates that they are carbonates
altered to skarn. These areas were field validated as principally andradite garnet. The occurrence
of silicification mapped using the LWIR (Table 3, Fig. 12) indicates likelihood of intense alter-
ation, also field verified as quartz stockworks. Together, the VNIR-SWIR-LWIR combined
modal mapping results lead to improved application-specific characterization and mapping
that could not be accomplished using a single spectral range (Figs. 8–12). The advantage of
this approach is that the analyses can be tailored to specific materials of interest. This however
requires subject-matter expertise that must be applied to the individual datasets in order to com-
bine them in appropriate ways that make sense in terms of geologic (or other) context.

4 Summary and Conclusions

Full-range (0.4 to 12 μm) HSI data of a site in northern Death Valley, California and Nevada,
were used to improve geologic mapping and characterization and mapping of hydrothermal
alteration. Integrated simultaneous analysis of HSI data for the NDV-1 site using the full
VNIR-SWIR-LWIR spectral range made it possible to map materials with spectral features
in multiple wavelength regions. The integrated mapping highlights subtle associations that
are not easily observable by mapping the spectrally predominant material in individual ranges.
The main advantage of this approach is efficient processing (reduced computation and data vol-
umes) through streamlining of the processing flow. Results, however, were difficult to under-
stand and relate to surface properties and geologic processes. In this case, the fully integrated
analysis did not fully capture valuable geologic information for basic lithologic and alteration
mapping, providing more of a broad picture view.

Independent analysis of the VNIR and SWIR AVIRIS and HyTES LWIR hyperspectral data
for each spectral range produced information-rich spatial patterns. Complex overlap occurs
between results from the different spectral regions. This was resolved by combining results
from the multiple modalities utilizing specific spectral features and class merging, masking,
and logical operators in geologic context. Spectral endmembers and spatial material distributions
could then be directly related to physiochemical properties and geologic processes. This accom-
plished improved characterization and mapping that could not be performed using a single spec-
tral range. The approach, however, required application-specific geologic expertise and manual
intervention.

The full-range results illustrate that integrated analysis provides advantages over use of just
one spectral range, leading to improved understanding of the distribution of geologic units and
alteration. We continue to explore both the integrated spectral bands (full-range) approach and
the multimodal classifications. There are several outstanding issues, including clarification of
spatial constraints imposed by different pixel resolutions and slight misalignment of different
wavelength regions/modes. Temporal decorrelation is also a concern, as most multimodal data
are not collected simultaneously. This can be addressed by acquiring and analyzing temporally
consistent datasets acquired at the same time on the same platform with similar spatial resolution.
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