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and tends to force them apart. (Thus the differential rigidity f..L can 
be used as an alternative to M p in indiCating 'whether a beam is 
prone or resistant to delamination.) 

In Fig. 3 Pmax is always negative except in the unlikely cases 
where the upper layer is thinner than 0.091 mm; this implies a 
resistance to delamination. Note, however, that generally thermo
mechanical stress in ICs arises from a temperature reduction from 
the curing temperature of an epoxy (usually 150°C or 175°C) to 
room temperature, or to a test extreme such as - 65°C. Thus the 
case study example is in reality prone to peeling under normal 
usage. 

An investigation was also made into the effect on f..L and Pmax of 
varying Eland E2 • This again showed that the range of possible 
values for f..L was from -h 1/2 to +h2/2. However, it was also 
found that as the moduli of elasticity increased, the maximum 
peeling stress Pmax increased in proportion. 

4 Conclusions 
The sign of the interfacial free-e'dge peding moment M p indi

cates whether a bimaterial beam is prone or'resistant to delamina
tion under thermo mechanical stress .. This sign can be found with 
one simple calculation when the layer properties and the tempera~ 
ture change are known. The relationship between the peeling mo~ 
ment M p and the differential rigidity f..L. of the bimaterial beam was 
examined. It was shown that there is a close relationship, and that 
the sign of the differential rigidity is also a direct indicator of the 
resistance-{)r the tendency-to peeling. Finally it was shown that 
upper and lower limits to the value of, the differential rigidity 
exist; as the stiffness of one layer becomes dominant, the magni
tude of the differential rigidity converges to one-half the thickness 
of the opposite layer. ,', " 
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Triple Coordinate' Transfonns f()r:, .' ,. 
Prediction of FallingCylind~r Through 
the Water Column' :,-" . '-

'": ,4 ~ • 

Peter C. Chu, Chenwu Fan, Ashley D. Evans, -
and Anthony Gilles 
Naval Ocean Analysis and Predic,tion Laboratory, ; :, : 
Department of Oceanography; Naval, Postgraduate School, 
833 Dyer Road, Monterey, CA 93913;, 

Triple coordinate systems a~e i~tr~duced i~' predict translation 
and orientation of falling rigid cylinder: through the water col
umn: earth-fixed coordinate (E-coordinate). cylinder's main-axis 
following coordinate (M-coordinate). 'and hydrodynamic force fol-
lowing coordinate (F-coordinate). Use of the triple coordinate 
systems and the transforms among the.m leads to the simplification 
of the dynamical system. The body and ~uoyancy forces and their.' 

moments are easily calculated using the E-coordinate system. The 
hydrodynamic forces (such as the drag and lift forces) and their 
moments are easily computed using the F-coordinate. The cylin
der's moments of gyration are simply represented using the 
M-coordinate. Data collected from a cylinder-drop experiment at 

-the Naval Postgraduate School swimming pool in June 2001 show 
"great' potential of using the triple coordinate transforms. 
[DOl: 10.1115/1.1651093] 

1" Introduction 
Consider an axially symmetric cylinder with the centers of 

mass (X) and volume (B) on the main axis (Fig. I), Let (L,d,X) 
represent the cylinder's length, diameter, and the distance between 
the two points (X,B). The positive X-values refer to nose-down 
case, i.e., the center of mass (COM) is lower than the center of 
volume (COV). Three coordinate systems are used to model the 
hydrodynamics of falling cylinder through the water column: 
earth-fixed coordinate (E-coordinate), cylinder's main-axis fol
lowing coordinate (M-coordinate), and hydrodynamic force fol
lowing coordinate (F-coordinate), All the systems are three
dimensional, orthogonal, and ~ight-handed: 

2 Triple Coordinate Systems_' 
_,:;-i' 

2.1 ,. E-Coordinate •• The E-coordinate is. ~epresented by 
FE(O,i,j,k) with the origin<'O," and three axes: X, y-axes (hori
zontal) with the unit vectors (ij) and z-axis (vertical) with the unit 
vector k (upward positive). The position of the cylinder is repre
sented by the position of the COM, 

,. ,,,.j -;" , ' 

X":,,xi+yj+zk, (I) 

which is translation of the cylinder:' The translation velocity is 
given by . 

<.' t:- .. ;,:' , '~ ~ ) 

dX ~". . :' .~··1· 

.Tt =Y,V=(u,u, lV): (2) 
., ~. 0) i': i. 'c. ) t - :! ::. :;'. 

2.2 M-Coordinate.' Let orientation of the 'cylinder's main
axis (pointing downward) is given by iM. The' angle' between iM 
and k is denoted by "'2 + 7T/2. Projecticin of the vector iM onto the 
(x ,y) ,plane creates angle ("'3)' between the projection and the 
x-axis,: (Fig. 2).' The M-coordinilte' is, represented by 
FM(X,iM ,jM ,kM) withthe origin "X," unit vectors (iM ,jM ,kM), 

and 'coordinates (xM,YM,zM).;In the plane consisting of vectors 
i~;and k (passing through the point M, called the IMK plane), two 
new unit vectors (jM ,kM) are'defined with jM perpendicular to the 
IMK plane, and kM perpendicular to i~ in the IMK plane. The unit 
vectors of the M-coordinate system are given by (Fig: 2) 

--
jM=kXiM ;" kAi=iA,Xj,\/. (3) 

The M-coordinate system is solely determined by .orientation of 
the cylinder's main-axis iM. Let the vector P be represeilted by Ep 

_., . - .'.'.. E 
in the E-coordinate and by Alp in the M-coordinate, and let AIR be 
the rotation matrix from the M-coordinate to the E-coordinate, 

rl2 "1- 13] [COS "'3 -sin "'3 

r22 ", r2; ~ sin "'3, ," cos "'3 
r32 r33 O· "0 ~] 

cos "'2 0 ';n~, 1 x[ 0 -.. I ., 0 

-sin "'2 0 cos "'2 ' 
(4) 

, .j Contributed by the Applied Mechanics Division of TIlE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED ME
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 14, 
2003; final revision, Sept. 19,2003. Associate Editor: D. A. Siginer. 
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Let the cylinder rotate around (iM ,jM ,kM) with angles 
(qJl ,qJ2,qJ3) (Fig. 2). The angular velocity of cylinder is calcu
lated by 

(7) 

and 

(8) 

If (WI,W2,W3) are given, time integration of (7) with the time 
-10.0 +---~"""""~--"":"""------.........J- -B.OE-OS interval I::..t leads to 

-9.0E-OS (9) 
_ -20.0 

mm The increments (1::..1f2 ,1::..0/3) are determined by the relationship 
-1.2E-04 between the two rotation matrices 7.tR( 0/2 + I::..o/z , 0/3 + 1::..0/3) and 

7.tR( 0/2,0/3) 
Fig. 3 Effect on II- and Pmax of varying upper layer thickness 

(5) 

Transformation of Mp into Ep contains rotation and translation, 

f 

--.Ix 
~ 

R 1 X '-----i--+ 
: L ! 

2 -J.-- 2-.1 

(6) 

Fig. 1 M-coordinate with the COM as the origin X and (im,im) 
as the two axes. Here, X is the distance between the COV (8) 
and COM, (L, d) are the cylinder's length and diameter. 

o -.- -.-
_._.-.-._- ..... 

T 

[ 

COS(l::..qJ2) 

X 0 

- sin(l::..qJ2) 

o 

o 

- sine I::.. qJ3) 

cos(1::.. qJ3) 

o 

sin(1::.. qJ2) 1 
o . 

cos( I::.. qJz) 

~l 
(10) 

2.3 F -Coordinate. The F-coordinate is represented by 
FF(X,iF,jF,kF) with the origin X, unit vectors (iF,jF,k

F
), and 

coordinates (XF,YF,ZF)' Let Vw be the fluid velocity. The water
to-cylinder velocity is represented by Vr= V w - V, that is decom
posed into two parts, 

Vr=VI + Vz, VI = (Vr · iF)iF , VZ=Vr-(Vr · iF)iF, 

(1 I) 

where VI is the component paralleling to the cylinder's main-axis 
(i.e., along iM), and V2 is the component perpendicular to the 
cylinder's main-axial direction. The unit vectors for the 
F-coordinate are defined by (column vectors) 

(12) 

Fig. 2 Three coordinate systems 
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Table 1 Physical parameters of the model cylinders 
"j -.,.,' 

Table 2' Trajectory patterns 

Volume Pm J 1 X J2(J3) ;, Trajectory Description 
Cylinder Mass (g) L (cm) (cm3

) (g m-3) (gm2) (cm) (g m2
) .' Pattern 

322.5 15.20 191.01 1.69 330.5 0.00 6087.9 Straight 
0.74 5783.0 
1.48 6233.8 '\ Slant 

2 254.2 12.10 152.05 1.67 271.3 0.06 3424.6 ' 

Cylinder exhibited little angular change about z-axis. The 
attitude remained nearly parallel with z-axis (± 15 deg). 
Cylinder exhibited little angular change about z-axis. The 
attitude was 45 deg off z-axis (± 15 deg). 

0.53 3206.5 
1.00 3312.6 

3 215.3 9.12 114.61 1.88 235.0 0.00 1695.2 
0.29 1577.5 
0.58 1556.8 

The F-coordinate system is solely determined by orientation of the 
cylinder's main-axis (iM) and the water-to-cylinder velocity. Note' 
that the M and F-coordinate systems have one common unit vec
tor iM (orientation of the cylinder). 

Let ~R be the rotation matrix from the F-coordinate to the 
E-coordinate, 

(13) 

which leads to 

(14) 

Here, ¢MF is the angle between the two unit vectors (jM ,jF)' Let 
the vector P be represented by Fp in the F-coordinate. Transfor
mation of Fp into Ep contains rotation and translation, 

(15) 

Use of the F-coordinate system simplifies the calculations for the 
lift and drag forces and torques acting on the cylinder. Since the 
M and F-coordinates share a common axis iM = iF, the rotation 
matrix from the F to M-coordinate systems is given by 

~R=~R fR= fIR-I( t/J2, t/J3)~R( t/J2 ,t/J3 ,¢MF) 

o 
(16) 

is two-dimensional with the rotation matrix given by 

(17) 

Let the cylinder rotate around (iF ,jF ,kF) with the angular ve
locity components represented by (w; ,w~ ,w~) (Fig. 2). They are 
connected to the angular velocity components in the M-coordinate 
system by 

3 Prediction of Hydrodynamic Characteristics 
of Falling Cylinder 

(18) 

3.1 Translation Velocity. The translation velocity of the 
cylinder (V) is governed by the momentum equation in the 
E-coordinate system, 
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Spiral 

Flip 
Flat 

Seesaw 

Combin
ation 

Cylinder experienced rotation about z-axis throughout the 
water column 
Initial water entry point rotated at least 180 deg 
Cylinder's angle with vertical near 90 deg for most of the 
trajectory 
Similar to the flat pattern except that cylinder's angle with 
vertical would oscillate between greater (less) than 90 deg 
and less 
(greater) than 90 deg like a seesaw 
Complex trajectory where cylinder exhibited several 
of theabove patterns 

(19) 

where g is the gravitational acceleration; ji is the average cylinder 
density; Pw is the water 'density; n is the cylinder volume; arid 
jin :=om, is the cylinder mass; (Fx ,Fy ,F,) are the hydrodynamic 
force (including drag and lift forces) components. The drag and 
lift forces are calculated using the drag and lift laws with the 
given water-to-cylinder velocity (V,) that is calculated using the 
F-coordinate. 

3.2 Cylinder's Orientation. It is convenient to write the 
moment of momentum equation 

dw 
J·-=Mb+Mh dt ' 

(20) 

in the M-coordinate system with the cylinder's angular velocity 
components (WI ,w2 ,W3) defined by (7). Here, Mb and Mh are the 
body and surface force torques. The moment of gyration tensor for 
the axially symmetric 'cylinder is a diagonal matrix , . 

, '[11 .0 
J= 0 12 

o 0 

(21) 

where 1 I ' '12, and 13 are. the moments of inertia., The' gravity 
force, passing the COM, doesn't induce the moment. The buoy
ancy force induces the moment in the jM direction if the COM 
doesn't coincide with the COY (i.e., X;ioO), 

(22) 

The 'moment of the hydrodynamic force in iF direction is not 
caused by the drag and lift forces; but by the viscous fluid. The 
moment of the viscous force is calculated by (White [I]) 

" 

(23) 

When the cylinder rotatesa~ound jF with the angular velocity w~ , 
the drag force exerts the torque on the cylinder in the jF direction 
(Md2 ) and in the kF direction (Md3 ). The lift force exerts the 
torque on the cylinder in the jF direction (M12). The moment of 
hydrodynamic force Mh 

(24) 
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Fig. 3 Cylinders' track patterns observed during CYDEX 

is represented in M-coordinate. Note that the M and F-coordinate 
. systems have the same x-axis, iM= iF' The equations for 
(WI ,w2,wJ) are given by 

, . 

\ where 

dWI 
d(=-alwl' 

Journal of Applied Mechanics 

(25) 

(26) 

em] 

a] == ~=87TJl,L/m, 

(27) 
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Table 3 Trajectory patterns for nose-down dropping (x>O) 

Cylinder Lenfh (em) 15.20 
X (em 1.48 

Drop angle 15 deg Straight (I) 
Siant-straight* (3) 

Drop angle 30 deg Straight (1) 
Slant-straight* (4) 

Drop angle 45 deg Slant* (2), Straight (1) 
Slant-straight (I) 
Straight-spiral (1) 

Drop angle 60 deg Straight** (5) 

Drop angle 75 deg Straight** (5) 

0] I1Xgpw 1 ~ ·(M 1e2- M3e3)+ ~cos 1/12[0]' 

13 

Here, MI=1I2dPwl(1+Ir)LVh, M3=1/2Cd2dpwl(1 
+ Ir) V~LX' and Ir is the added mass factor for the moment of 
drag and lift forces. Equation (25) has the analytical solution 

(28) 

which represents damping rotation of the cylinder around the 
main axis (iM)' The Euler-typed forward difference is used to 
solve the five Eqs. (19), (26), and (28). 

Experiment 

o 

-0.5 

-1 

I 
N 

-1.5 

X(m) 

12.10 9.12 
LOO 0.58 

Straight (1), Spiral (1) Spiral* (2) 
Slant-straight* (2) Straight-slant (1) 

Slant-straight (1) 
Slant (I), Spiral (1) Spiral* (5) 
Straight (I) 
Slant-strai1ht* (2) 
Straight (1 Spiral* (4) 
Spiral* (2) Slant-spiral (1) 
Straight-spiral (I) 
Slant-straif:ht (1) 
Straight* 3) Spiral* (4) 
Straight-spiral (1) Straight-spiral (1) 
Straight-slant (1) 
Straight (2) Spiral (2), Slant (I) 
Straight-spiral (3) Straight-spiral (2) 

4 Model Evaluation 
.' 

The Cylinder Drop Experiment (CYDEX) was conducted at the 
Naval Postgraduate School (NPS) in July 2001 (Chu et al. [2]) to 
evaluate the three-dimensional theoretical model. It consisted of 
dropping cylinders whose physical conditions are illustrated in 
Table 1 into the water and recording the position as a function of 
time using two digital cameras at (30 Hz) as the cylinders fell 2.4 
meters to the pool bottom. After analyzing the CODEX experi
mental data, seven general trajectory patterns (Table 2) are iden-" 
tified: straight, slant, spiral, flip, flat, see-saw, and combination 
(Fig. 3). Dependence of the trajectory patterns on the cylinders' 
physical parameters and release conditions are illustrated in Table 
3. The theoretical model predicts the motion of cylinder inside 

Model 

-1 

-'.5 

-2 

0.2 

0.4 -0.6 
VIm) 

X(m) 

Fig.4 Movement of Cylinder #1 (L=15.20 em, p=1.69 g cm-3 ) with X=O.74 em 
and drop angle 45 deg obtained from (a) experiment, and (b) recursive model 
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Experiment 

o 

-0.5 

-1 

I 
N 

-1.5 

-0.2 
-0.4 

0.4 

X(m) 
V(m) 

o 

-0.5 

-1 

-1.5 

-2 

o -0.4 
-0.2 

o 
0.2 

X(m) 

T'??7SSSnrrnrrYns'Ser T 

Model 

o 
-0.2 

-0.4 

0.4 
-0.6 

VIm) 

Fig.5 Movement of Cylinder #2 (L=12.10 em, ,.1=1.67 g em-3 ) with X=-1.00 
em and drop angle 30 deg obtained from (a) experiment, and (b) recursive 
model 

the water column reasonably well. Two examples are listed for 
illustration. 

Positive X (Nose-Down). Cylinder #1 (L= 15.20cm, p 
= 1.69 g cm- 3

) with X=0.74 m is injected to the water with the 
drop angle 45 deg. The physical parameters of this cylinder are 
given by' 

/11=322.5 g, 11 =330.5 g cm2
, 1 2 =13 =5783.0 g cm2 • 

, (29a) 

Undersea cameras measure the initial conditions 

1;0=0, Yo=O, zo=O, uo=O, vo=-1.55 m S-I, 

I' 

1/110=0, 1/120=60deg, 1/J30=-95deg, WIO=O, 

w20=0.49 S-I, w30=0.29 S-I. 

(29b) 

Substitution of the model parameters (29a) and the initial condi
tions (29b) into the theoretical model «(19), (26), (28» leads to the 
prediction of the cylinder's translation and orientation that are 
compared with the data collected during CYDEX at time steps 
(Fig. 4). Both model simulated and observed tracks show a slant
straight pattern. _ 

Negative X (Nose-Up): Cylinder #2 (L= 12.lOcm, p 
= 1.67 g cm - 3) with x= -1.00 cm is injected to the ~ater. with 
the drop angle 30 deg. The physical parameters of thIS cylmder 
are given by 

111=254.2 g, 1 2=13=3312.6 g crn2
• 

(30a) 

Undersea cameras measure the initial conditions 

Journal of Applied Mechanics 

xo=O, Yo=O, zo=O, uo=O, vo=-0.75 m S-I, 

(30b) 

w20=-5.08 S-I, w30=0.15 S-I. 

The predicted cylinder's translation and orientation are compared 
with the data collected during CYDEX at time steps (Fig. 5). The 
simulated and observed tracks show flip-spiral pattern. The flip 
occurs at 0.11 s (0.13 s) after cylinder entering the water in the 
experiment (model). After the flip, the cylinder spirals down to the 
bottom. 

5 Conclusions 

(1) Triple coordinate systems are suggested to predict the 
translation and orientation of faIling rigid cylinder through water 
column: earth-fixed coordinate (E-coordimite), cylinder's main
axis following coordinate (M-coordinate), and hydrodynamic 
force following coordinate (F-coordinate). It simplifies the com
putation with the body and buoyancy forces and their moments in 
the E-coordinate system, the hydrodynamic forces (such as the 
drag and lift forces) and their moments in the F-coordinate, and 
the cylinder's moments of gyration in the M-coordinate. 

(2) Usually, the momentum (moment of momentum) equation 
for predicting the cylinder's translation velocity (orientation) is 
represented in the E-coordinate (M-coordinate) system. Transfor
mations among the three coordinate systems are used to convert 
the forcing terms into E-coordinate (M-coordinate) for the mo-

MARCH 2004, Vol. 71 I 297 
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mentum (moment of momentum) equation. A numerical model is 
developed on the base of the triple coordinate transform to predict 
the cylinder's translation and orientation. 

(3) Model-experiment comparison shows that the model well 
predicts the cylinder's translation and orientation. However, the 
performance of the numerical model for X=O is not as good as for 
X*O. 
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Determination of Loads in an 
Inextensible Network According to 
Geometry of Its Wrinkles 
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Biomedical Engineering and Institute for 
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This note derives an analytical relationship for an inextensible 
network when it buckles. According to the relationship, the ap
plied compressive force can be detennined according to the maxi
mum absolute values of deflection and angle of deflection in the 
network's wrinkles. [DOl: 10.1115/1.1651094] 

1 Introduction 

If we pull both ends of a thin plastic sheet used for food pack
aging, a set of wrinkles, parallel to the loading direction, appears. 
Cerda and Mahadevan [I] and Cerda et al. [2] showed that the 
wavelength of the wrinkles is proportional to the square root of 
the sample size, and the tension can be determined according to 
the wavelength of the wrinkles. Fabric, such as cloth, is usually 
composed of two families of inextensible elastic fibers. The Pois
son effect in the fabric may be different from that in the plastic 
sheet. For example, if the two families of fibers are loosely con
nected, then the Poisson effect may be neglected, while this can
not be true for the plastic sheet. Therefore, the modeling of an 
inextensible network may be different from that of a plastic sheet. 
In this note, we demonstrate that the applied compressive force on 
the fabric can be determined according to the maximum absolute 
values of deflection and angle of deflection in its wrinkles. 

The effects of bending stiffness of a fiber network or an elastic 
surface have been well studied in the literature. Simmonds [3] 
considered elastic surfaces with resistance to strain and flexure, 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF ApPLIED ME
CHANICS. Manuscript received by the ASME Applied Mechanics Division. June 2, 
2003, final revision, September 19, 2003. Associate Editor: O. O'Reilly. 
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Fig. 1 Top view of the flat sheet before wrinkling 

and Wang and Pipkin [4,5] studied inextensible nets with bending 
stiffness. Hilgers and Pipkin developed a theory of elastic sheets 
in a series of papers, [6-9], by introducing the second derivatives 
of the deformation as well as the first derivatives into the strain
energy density. Hilgers [10] also examined dynamic effects. Luo 
and Steigmann [11] established a model, a generalized plate/shell 
theory, to take into account the effects of bending and twisting in 
the inextensible networks for finite deformations in 3-space, and 
verified the soundness of a special form of· finite-deformation 
plate theory developed by Wang and Pipkin in [4]. Wang and 
Pipkin [4] used their theory to consider the Euler buckling prob
lem of a flat inextensible network, and indicated that the govern
ing equation of the flat sheet during the buckling is identical to 
that for finite-amplitude oscillation of a simple pendulum. In this 
work, we further explore the buckling problem to determine the 
applied load on the inextensible network according to geometry of 
its wrinkles. 

2 An Analytical Relationship 
Consider a flat sheet that initially occupies the region O<x 

<L, O<y<H in the x-y plane. The sheet is composed of two 
families of inextensible fibers, which initially lie parallel to the x 
and y-axes; thus every line x=constant or y=constant in the re
gion is regarded as a fiber. The two families of fibers an: orthogo
nal in the reference configuration. They are assumed to be con
tinuously distributed and fastened together at their points of 
intersection to prevent slipping of one fiber family relative to the 
other. The sheet is treated as a continuum. Each fiber meets the 
Bernoulli-Euler hypotheses: cross sections of each fiber remain 
plane, suffer no strain, and are normal to the fiber in every con
figuration. A uniform force T per unit length is applied to the edge 
x = L as a dead load along the negative direction' of x-axis (see 
Fig. 1), and edges y = 0 and y = H are free from applied tractions 
and couples and displacement restrictions. The possible boundary 
conditions of physical meaning on the sides x~O and x= L can be 
classified into four categories: (i) both sides x ~ 0 and x = L are 
simply supported; (ii) the side x = 0 is clamped and the side x 
= L is free; (iii) both sides x = 0 and x = L are clamped; and (iv) 
the side x = 0 is clamped and the side x = L is simply supported. 
For any set of those boundary conditions, a solution is that the 
family of fibers with x=constant remain straight lines, the family 
of fibers with y=constant have identical deflections in the x-z 
plane and have no deflections in the other planes, and the two 
families of fibers are still orthogonal in the deformed configura
tion (see Fig. 2). Let O(x) denote the angle between the tangent to 
the deflection curve and the x-y plane. Then it satisfies the equa
tion, [4], 

z 

Fig. 2 Side view of a possible deformed configuration of the 
sheet 
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