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water samples were collected by a slotted-rod cloud water collector protruding above the Center for
Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter in boundary layer stratocu-
mulus clouds impacted to varying degrees by ocean-derived emissions, ship exhaust, and land
emissions. Cloud water pH ranged between 2.92 and 7.58, with an average of 4.46. Peak pH values were
observed north of San Francisco, simultaneous with the highest concentrations of Si, B, and Cs, and air

léfglmoz‘j;'ter masses originating over land. The lowest pH values were observed south of San Francisco due to ship
Shipping emissions resulting in the highest concentrations of sulfate, nitrate, V, Fe, Al, P, Cd, Ti, Sb, P, and Mn.
Marine Many of these species act as important agents in aqueous-phase reactions in cloud drops and are
Metals critical ocean micronutrients after subsequent wet deposition in an ocean system that can be nutrient-
Iron limited. E-PEACE measurements suggest that conditions in the California coastal zone region can
Ocean promote the conversion of micronutrients to more soluble forms, if they are not already, due to acidic
;‘l‘l’t‘i?egtf;xessmg cloud water conditions, the ubiquity of important organic agents such as oxalic acid, and the persis-

tence of stratocumulus clouds to allow for continuous cloud processing.

Coastal region © 2014 Elsevier Ltd. All rights reserved.

1. Introduction

. ) ) ) L L Cloud droplets are critical components of the marine atmo-
* Corresponding author. Chemical and Environmental Engineering, University of . o . .

Arizona, PO Box 210011, Tucson, AZ 85721, USA. sph(?re due to'thelr radiative effects and role in the geochemlcal

E-mail address: armin@email.arizona.edu (A. Sorooshian). cycling of nutrients. Cloud drops are produced via the nucleation of

1352-2310/$ — see front matter © 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.atmosenv.2014.01.020


mailto:armin@email.arizona.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2014.01.020&domain=pdf
www.sciencedirect.com/science/journal/13522310
www.elsevier.com/locate/atmosenv
http://dx.doi.org.libproxy.nps.edu/10.1016/j.atmosenv.2014.01.020
http://dx.doi.org.libproxy.nps.edu/10.1016/j.atmosenv.2014.01.020
http://dx.doi.org.libproxy.nps.edu/10.1016/j.atmosenv.2014.01.020

Z. Wang et al. / Atmospheric Environment 89 (2014) 570—580

cloud condensation nuclei (CCN) and serve as a reservoir for the
partitioning of soluble vapors. Cloud drops modulate CCN physi-
cochemical properties by hosting chemical processes leading to
more oxygenated species that remain in the aerosol phase upon
drop evaporation. The acidity and composition of cloud water can
provide insight into different air mass sources impacting clouds
and the effects of wet deposition since clouds spatially redistribute
nutrients and toxic pollutants.

Several aircraft studies have targeted aerosol-cloud interactions
during the summertime off the California coast, which is a tailor-
made venue owing to the persistence of low-level stratocumulus
clouds and strong aerosol perturbations stemming from ship traffic
(Chen et al., 2012). Of these experiments, some have reported data
on cloud water composition with important findings being that
clouds can produce secondary organic aerosol and that the region is
rarely pristine but rather influenced by biogenic and anthropogenic
sources (Hegg et al., 2002; Crahan et al., 2004; Straub et al., 2007).
Due to limited airborne cloud water measurements off the Cali-
fornia coast, we intend to report more recent regional data
collected between July and August 2011. This study explores the
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effect of three distinct emission sources (ocean, ships, land) on
cloud water composition.

2. Experimental methods
2.1. Field study description

The Eastern Pacific Emitted Aerosol Cloud Experiment (E-
PEACE) consisted of thirty flights with the Center for Interdisci-
plinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter.
Based out of Marina, California, the Twin Otter conducted ~4—
4.5 h flights between 34° N—40° N and 121.5° W—-125° W (Fig. 1).
The goal of E-PEACE was to study aerosol-cloud-radiation in-
teractions using a variety of observational platforms including the
Twin Otter (Russell et al., 2013; Wonaschuetz et al., 2013). The
current study focuses on characterizing the influence of various
emissions sources on marine stratocumulus cloud water, especially
exhaust from large tanker and cargo ships that frequently pass
through the study region (see Fig. 1). The description of the relevant
sub-set of Twin Otter measurements is provided below.
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Fig. 1. Spatial distribution of cloud water pH with the insert histogram displaying the frequency of different pH values measured during E-PEACE (Note: no pHs were recorded
between 5.5 and 7.0). Circular markers are color-coded by pH value consistent with the histogram color system. Solid gray lines represent the paths of 20 ships (cargo and tanker)
with lengths ranging from 176 to 335 m and breadths ranging from 28 to 50 m. A 16 wind speed class wind rose and wind speed frequency table summarize the general wind
conditions during the study period. They were developed using hourly wind data (1400 UTC- 2300 UTC from 8 July to 17 August) from National Data Buoy Center Station 46042
(36.785° N, 122.469° W) signified by the red square marker (www.ndbc.noaa.gov). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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2.2. Aircraft measurements

Eighty two cloud water samples were obtained with a modified
Mohnen slotted-rod cloud water collector (Hegg and Hobbs,
1986). Samples were collected by insertion of the collector up-
wards through a port at the top of the aircraft surface when the
Twin Otter was in cloud. Liquid samples were collected in
detachable bottles and tested for pH immediately after collection,
treated with chloroform to minimize biological processing of the
samples, and then stored at a nominal 5 °C until laboratory
analysis. Measurements of pH were conducted using an Oakton
Model 110 pH meter calibrated with pH 4.01 and pH 7.00 buffer
solutions. Eighty one samples had sufficient volume for elemental
and ionic composition analysis. One fraction of the liquid volumes
was analyzed with inductively coupled plasma mass spectrometry
(ICP-MS), details of which are provided by Sorooshian et al. (2013).
The reported measurements of all elements in each sample
represent the average of three measurements. The individual
measurements are typically obtained with a relative standard
deviation of approximately 3% or less per sample. The minimum
detection limits of the elements examined are mostly in the ppt
range with a notable exception being phosphorus (P), which has a
higher detection limit owing to plasma-phase interferences.
Another 500 pl fraction of each cloud water sample was analyzed
with ion chromatography (IC; Thermo Scientific Dionex ICS-5000
anion system with an AS11-HC 2 mm column) for major inorganic
and organic acid anions.

The relative amount of Na to other constituents of sea salt
(Seinfeld and Pandis, 2006) was used to calculate concentrations of
non-sea salt sulfate (NSS SOZ~), non-sea salt Ca (NSS Ca), and non-
sea salt bromide (NSS Br~). This assumes that there was negligible
insoluble Na. To account for the sensitivity of the ICP-MS and IC
liquid-phase concentrations to cloud liquid water content (LWC),
cloud water liquid concentrations were converted to air-equivalent
concentrations by multiplication with the average LWC experi-
enced during the collection of individual cloud water samples,
which includes only in-cloud periods defined by a threshold LWC
value of 0.02 g m~3. LWC was measured by a PVM-100 probe
(Gerber et al., 1994). Sub-cloud particle concentrations were ob-
tained with a condensation particle counter (CPC 3010; TSI Inc.) and
a passive cavity aerosol spectrometer probe (PCASP; PMS Inc./DMT
Inc.), which have particle diameter size ranges of >10 nm and 0.1—
2.6 um, respectively. Sub-cloud is defined as being directly below
cloud base with LWC <0.02 g m 3.

3. Study region characteristics

Table S1 (in Supplement) summarizes cumulative E-PEACE
statistics for parameters influencing the cloud water samples,
including meteorological, cloud, and aerosol properties. Mean
(£standard deviation) cloud base and top heights were 225
(£115) m and 587 (+131) m, respectively, with an average depth of
362 m. Sample-averaged LWC ranged between 0.07 and 0.50 g m—>.
Sub-cloud CPC concentrations ranged between 184 and 7143 cm 3,
while PCASP concentrations exhibited a smaller range between 39
and 598 cm>. The difference in the two particle concentration
measurement ranges can be explained by ships emitting substan-
tial amounts of particles with diameters less than 100 nm, which is
the lower diameter cut-off size of the PCASP. Sub-cloud wind
speeds measured at altitudes below 100 m ranged between 1.2 and
121 m s L. Sub-cloud non-refractory sub-micrometer aerosol
composition during E-PEACE is summarized by Coggon et al. (2012)
using an Aerodyne compact Time-of-Flight Aerosol Mass Spec-
trometer (C-ToF-AMS) sampling behind a total aerosol inlet (Hegg
et al., 2005) and a counterflow virtual impactor in clouds

(Shingler et al., 2012). Sub-cloud aerosol composition associated
with the cloud water samples was dominated by organics
(1.80 =+ 3.30 pg m>), followed by sulfate (1.23 + 0.82 pg m—2),
ammonium (0.34 + 0.08 pg m~3), chloride (0.09 + 0.02 pg m—3),
and nitrate (0.05 + 0.02 pg m~3). The average ammonium-to-
sulfate molar ratio was 0.68 + 0.53, indicative of acidic sub-
micrometer particles being a ubiquitous feature in the study region.

Three-day back-trajectories from the NOAA HYSPLIT model
(Draxler and Rolph, 2012) are used to determine air mass origins of
the 82 cloud water samples based on the sample-averaged position
and time during collection of each sample. The predominant source
origin of air masses influencing each of samples was to the north of
the study region (Fig. S1). Trajectories are further classified into four
categories based on potential land contact and the maximum level-
leg sub-cloud particle concentrations: “Ship 1” = maximum CPC
concentration > 14,000 cm~3; “Ship 2” = 1000 cm > < maximum
CPC concentration < 7000 cm>; “Land” = back-trajectory con-
tacted land; “Marine Reference” = maximum CPC
concentration < 1000 cm™ “Ship 1” and “Ship 2” correspond to
strong and weak ship plume influence, respectively, while “Marine
Reference” corresponds to back-trajectories originating over the
ocean and samples with minimal ship influence as compared to the
two “Ship” categories. The category with the highest measurement
frequency was “Ship 1” (34.1%), followed by “Land” (30.5%), “Ship 2"
(22.0%), and “Marine Reference” (13.4%). Therefore, strong aerosol
perturbations were frequently experienced in the region during E-
PEACE, in contrast to “Marine Reference” conditions, which still
likely is characterized by anthropogenic pollution (e.g. aged ship
emissions) (Hegg et al.,, 2010; Coggon et al., 2012). Influence from
biomass burning was not evident in E-PEACE samples.

4. Results and discussion
4.1. Cloud water pH

The average cloud water sample pH was 4.46 + 0.70, with a
range of 2.92—7.58 (Fig. 1). The most common pH observed was
between 4.0—4.5 (29% of samples), followed by 4.5—5.0 (27%), and
then 3.5—4.0 (23%). The pHs observed during E-PEACE are similar to
those observed in marine stratocumulus clouds during the VOCALS
experiment off the South American coast (range = 2.9-7.2,
average = 4.3) (Benedict et al., 2012). Mean or median cloud water
pH values between 4 and 5 have been observed in previous marine
studies (Collett et al., 2002; Straub et al., 2007).

Cloud water pH is expected to be impacted by both LWC in
clouds and chemical influences from different air mass sources. pH
was moderately correlated with LWC (r = 0.26; n = 78), suggestive
of higher pH with more available water. With the exception of two
outlier points indicated in Fig. 2, cloud water pH generally exhibited
a slight increase as a function of normalized cloud height.
(Normalized cloud heights of 0 and 1 correspond to cloud base and
top, respectively.) At fixed altitude and LWC, cloud water pH
decreased as concentrations of two ship tracers, vanadium (V) and
nitrate (Viana et al., 2009; Mueller et al., 2011), increased. The
lowest pH values coincide with the “Ship 1” air type category
(4.14 £ 0.51), which included samples concentrated south of San
Francisco where there is extensive ship traffic (Table 2). The highest
pH values are associated with the “Land” air type category
(4.90 £ 0.85), coincident with the highest Si levels during E-PEACE
north of San Francisco.

4.2. Chemical concentrations

The highest overall concentrations observed during E-PEACE
were for Cl~ (4.31 £5.12 pg m~3), Na (1.93 + 2.19 pg m—3), NSS SO%~
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Fig. 2. Vertical distribution of cloud water pH (inner color) and LWC (outer shading).
The most acidic points correspond to high levels of nitrate and vanadium from ship
emissions. The highest pH points correspond to samples north of San Francisco that
contained the highest Si concentrations (denoted “Peak Si"). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

(1.04 £ 0.68 pg m > with total SO~ being 1.54 + 1.07 pg m3), and
NO3 (0.63 + 0.63 ug m~3) (Table 1). While CI~ and Na are linked
mainly to sea salt, sulfate has a wider variety of sources. The relative
mass contributions of different sources to total sulfate are quanti-
fied using multiple linear regression (details in Supplement),
where four tracers are used as independent variables:
NO3 = *“anthropogenic”; Na = “sea salt”; methanesulfonate
(MSA) = “marine biogenic”; NSS Ca = “continental crustal”. While
Ca is emitted by other sources such as ships (Popovicheva et al,,
2012), its use as a continental crustal tracer strikes a balance be-
tween achieving statistically significant results, its association with
crustal matter (Johansen et al.,, 1999), and its higher levels in the
“Land” category than the “Ship” categories in Table 2. The mass
contribution percentages were found to be “anthropogenic”
(37%) > “sea salt” (32%) > “marine biogenic” (26%) > “continental
crustal” (6%); therefore, NSS SOF~ had an estimated contribution of
54% and 38% from anthropogenic and marine biogenic sources,
respectively. These results indicate that anthropogenic pollution,
mostly from shipping, was the dominant source of sulfate during E-
PEACE.

Numerous other species follow in order of concentration: (i)
crustal-derived elements including Mg, Si, Ca, and K (individual
averages ~ 0.07—0.26 pg m—3); (ii) MSA (0.06 + 0.03 ug m~3); and
(iii) NO3 (0.03 + 0.01 pg m—>) and Br™ (0.04 + 0.02 pg m >, with NSS
Br” being 0.03 + 0.02 pg m~3), which are two important tracers for
atmospheric photochemical reactions. NO2 was found to be best
correlated with NSS Br™ (r = 0.81, n = 71), with multiphase halogen
reactions as a possible explanation (Enami et al., 2007). There are
few recorded NO; measurements in marine stratocumulus cloud
water and its presence in clouds has previously been suggested to
be due to dissolution of gaseous nitrous acid (HONO) and hetero-
geneous reactions of NO; in clouds (Lammel and Metzig, 1998).

Table 1

Cumulative summary of cloud water constituent concentrations as quantified by
ICP-MS and IC in air equivalent units of ug m—>. MSA refers to methanesulfonate and
o refers to standard deviation.

Detection Min Max Average a
frequency

Ccl- 1.00 1.77E-02 2.13E+01 4.31E+00 5.12E+00
Na 1.00 1.59E-04 1.02E+01 1.93E+00 2.19E+00
NSS-SO5~ 0.96 1.06E-01 2.88E+00 1.04E+00 6.80E-01
NO3 1.00 5.19E-02 3.06E+00 6.31E-01 6.25E-01
Mg 1.000 8.06E-04 1.38E+00 2.58E-01 2.92E-01
Si 0.58 1.65E-04  4.39E+00 1.92E-01 7.98E-01
Ca 0.96 4.06E-03 5.10E-01 1.04E-01 1.03E-01
K 0.86 5.27E-05 3.38E-01 6.70E-02 7.31E-02
MSA 1.00 1.32E-02 1.76E-01 5.83E-02 3.22E-02
Br 0.95 9.92E-03 8.84E-02 3.98E-02 2.10E-02
B 0.98 3.97E-04 1.02E+00 3.85E-02 1.58E-01
NOz 1.00 9.96E-03 6.61E-02 3.16E-02 1.50E-02
F 0.54 8.89E-03 5.66E-02 2.32E-02 1.08E-02
P 0.04 1.69E-03 3.92E-02 1.46E-02 2.14E-02
cd 1.00 5.57E-04 9.69E-02 7.50E-03 1.51E-02
Fe 0.75 2.07E-04 2.18E-02 3.52E-03 4.10E-03
I 0.98 7.16E-04 9.23E-03 3.13E-03 1.84E-03
Al 0.65 1.96E-05 1.67E-02 2.72E-03 3.47E-03
Cu 0.94 9.13E-06 6.57E-02 2.45E-03 8.81E-03
Zn 0.91 9.79E-06 1.45E-02 1.60E-03 2.49E-03
Sr 0.98 5.90E-05 7.73E-03 1.51E-03 1.65E-03
Mo 0.05 1.68E-06 1.82E-03 7.23E-04 8.84E-04
\Y 1.00 3.20E-05 3.12E-03 6.56E-04 6.69E-04
Te 0.01 3.56E-04  3.56E-04 3.56E-04 —

Mn 0.83 1.87E-06 2.23E-03 3.18E-04 4.39E-04
Ni 0.12 1.28E-05 5.92E-04 2.38E-04 2.07E-04
Ba 0.67 2.85E-06 2.26E-03 2.34E-04 4.71E-04
Se 0.57 9.21E-06 5.80E-04 1.35E-04 1.25E-04
Sb 0.84 3.59E-07 8.01E-03 1.33E-04 9.70E-04
Ag 0.02 3.21E-06 2.42E-04 1.23E-04 1.69E-04
Li 0.93 8.58E-06 6.45E-04 1.18E-04 1.08E-04
Ti 0.53 1.07E-06 5.78E-04 8.49E-05 1.31E-04
Cr 0.53 8.06E-07 3.77E-04 7.00E-05 7.46E-05
Pb 0.62 7.61E-07 3.22E-04 5.20E-05 5.97E-05
Co 0.22 9.51E-07 2.35E-04 4.21E-05 6.66E-05
Ga 0.78 2.10E-07 3.84E-04 3.29E-05 7.23E-05
Rb 1.00 8.62E-07 1.06E-04 2.65E-05 2.37E-05
As 0.20 1.15E-06 3.42E-05 9.46E-06 9.12E-06
Zr 0.73 2.17E-07 3.77E-05 5.14E-06 5.37E-06
Y 0.46 9.27E-09  3.85E-05 3.29E-06 6.48E-06
Pt 0.06 1.80E-06  4.96E-06 3.08E-06 1.20E-06
Cs 0.36 2.44E-08 1.67E-05 2.10E-06 4.15E-06

A number of other notable trace metals and metalloids were
ubiquitous in the regional cloud water at lower concentrations,
including Cd, V, Rb, Sr, Cu, Li, Zn, Sb, Mn, Ga, Fe, Ba, Al, Pb, Se, Ti, and
Cr. These species have a variety of sources including anthropogenic
emissions (e.g. combustion, smelting), biogenic emissions, soil dust,
biomass burning, and sea spray (Nriagu, 1989; Al-Momani, 2003;
Viana et al.,, 2009). Vanadium’s detection in every sample pro-
vides evidence for the ubiquitous influence of ship emissions in the
regional cloud water. Another common component in heavy fuel
oil, nickel (Ni) (Murphy et al., 2009; Viana et al., 2009), was
detected in fewer samples (n = 10) than V, but exhibited compa-
rable concentrations (~0.01 ng m~3). The mean V/Al mass ratio
during E-PEACE was 0.67 (£0.75), which is consistent with previ-
ous values reported for oil fly ash (0.67—8.25) and two orders of
magnitude larger than those of mineral and crustal dust (Sholkovitz
et al., 2009).

Trace metals such as Fe, Cu, and Mn play a significant role as
catalysts in cloud drop reactions, especially the conversion of SO, to
sulfate (Alexander et al., 2009). Their frequent detection in samples
(>75%) indicates that they have a high potential to participate in
such aqueous-phase processes in the regional clouds. Phosphorus is
a critical ocean micronutrient that was detected in only three
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Table 2

Average values of numerous parameters as a function of air mass type. To the bottom are ICP-MS and IC cloud water concentrations reported in units of pg m—>. Bold and
italicized cloud water concentrations coincide with the air type category for which a particular sub-set of constituents exhibit their peak concentrations. The classification

method of the four air mass types is provided in Section 3.

Marine Reference Ship I Ship II Land
Avg 4 n Avg 4 n Avg o n Avg 4 n
pH 417 0.47 11 414 0.51 27 445 0.44 17 4.90 0.85 27
LWC (g m~3) 0.18 0.06 11 0.21 0.11 27 0.20 0.07 17 0.27 0.10 27
Wind (m s™!) 9.01 3.37 11 3.96 293 27 8.81 2.03 17 7.41 2.88 27
PCASP (cm’3) 292 153 11 288 153 27 275 94 17 283 123 25
CPC (cm™3) 575 223 11 1585 1520 27 885 618 17 1246 1340 27
- 8.87E+00 7.16E+00 11 1.58E+00 3.10E+00 26 3.95E+00 3.86E+00 17 5.32E+00 5.01E+00 27
Na 4.02E+00 3.12E+00 11 6.07E-01 6.76E-01 26 1.80E+00 1.53E+00 17 2.43E+00 2.28E+00 27
Mg 5.33E-01 4.14E-01 11 8.40E-02 9.04E-02 26 2.42E-01 2.07E-01 17 3.22E-01 3.08E-01 27
Ca 1.93E-01 1.45E-01 11 4.77E-02 4.15E-02 25 9.74E-02 7.37E-02 16 1.24E-01 1.11E-01 26
K 1.42E-01 9.25E-02 10 2.19E-02 2.49E-02 19 5.40E-02 5.02E-02 16 7.93E-02 7.67E-02 25
MSA 7.37E-02 3.83E-02 11 4.71E-02 3.15E-02 26 4.59E-02 1.76E-02 17 7.06E-02 3.16E-02 27
Br~ 4.99E-02 2.70E-02 11 2.96E-02 1.81E-02 23 3.75E-02 2.12E-02 17 4.61E-02 1.68E-02 26
I 3.54E-03 1.53E-03 11 3.22E-03 2.29E-03 26 2.49E-03 1.08E-03 16 3.27E-03 1.83E-03 26
Sr 3.06E-03 2.38E-03 11 5.68E-04 5.00E-04 24 1.36E-03 1.17E-03 17 1.81E-03 1.74E-03 27
Se 1.89E-04 1.27E-04 10 6.76E-05 5.44E-05 11 1.47E-04 1.03E-04 9 1.42E-04 1.56E-04 16
Li 1.58E-04 8.67E-05 10 7.35E-05 6.37E-05 21 9.97E-05 5.11E-05 17 1.48E-04 1.49E-04 27
Rb 4.69E-05 2.95E-05 11 1.15E-05 9.19E-06 26 2.45E-05 1.65E-05 17 3.38E-05 2.62E-05 27
Si 2.01E-02 4.65E-02 8 2.92E-02 4.71E-02 17 1.55E-02 3.37E-02 10 6.83E-01 1.52E+00 12
B 2.88E-02 6.84E-02 11 3.63E-03 1.80E-03 24 1.64E-02 4.97E-02 17 8.74E-02 2.60E-01 27
NO> 2.48E-02 7.73E-03 11 3.07E-02 1.80E-02 26 2.87E-02 1.11E-02 17 3.70E-02 1.50E-02 27
F 2.09E-02 3.46E-03 8 2.10E-02 1.10E-02 13 2.02E-02 7.87E-03 12 3.09E-02 1.40E-02 11
Zn 1.01E-03 1.32E-03 11 1.14E-03 1.55E-03 24 1.85E-03 2.13E-03 15 2.17E-03 3.60E-03 24
Ni — — — 1.95E-04 1.99E-04 7 5.92E-04 - 1 2.11E-04 7.98E-05 2
Cr 5.15E-05 3.52E-05 8 3.84E-05 3.36E-05 14 6.28E-05 1.19E-04 9 1.25E-04 6.38E-05 12
Pb 3.13E-05 1.86E-05 10 4.77E-05 4.20E-05 17 5.92E-05 8.99E-05 11 6.87E-05 6.99E-05 12
Co — — — 2.21E-05 2.00E-05 6 4.33E-05 7.82E-05 5 5.83E-05 8.63E-05 7
As 1.28E-05 7.19E-06 6 4.08E-06 9.18E-07 2 3.20E-06 7.73E-07 4 1.34E-05 1.46E-05 4
Cs 1.21E-06 2.48E-06 8 5.11E-07 5.16E-07 5 8.89E-07 1.70E-06 10 6.64E-06 7.12E-06 6
NSS-S03~ 1.31E+00 8.30E-01 11 1.34E+00 1.07E+00 25 8.66E-01 4.52E-01 16 8.95E-01 5.49E-01 27
NO3 7.49E-01 5.51E-01 11 9.76E-01 8.17E-01 26 3.53E-01 2.68E-01 17 4.26E-01 4.24E-01 27
Fe 2.82E-03 1.26E-03 10 5.34E-03 5.38E-03 20 1.75E-03 1.37E-03 12 3.08E-03 4.17E-03 19
Al 1.50E-03 1.60E-03 10 3.46E-03 4.74E-03 20 1.52E-03 1.26E-03 8 3.18E-03 3.00E-03 15
\ 4.26E-04 2.41E-04 11 1.15E-03 8.59E-04 26 3.99E-04 2.30E-04 17 4.32E-04 4.95E-04 27
Mn 2.24E-04 7.31E-05 10 4.31E-04 5.49E-04 21 1.68E-04 1.60E-04 13 3.40E-04 5.07E-04 23
Ba 1.04E-04 8.56E-05 10 3.60E-04 5.82E-04 20 6.53E-05 6.48E-05 8 2.42E-04 5.47E-04 16
Cd 6.09E-03 4.64E-03 11 5.06E-03 3.42E-03 26 1.01E-02 2.33E-02 17 8.81E-03 1.83E-02 27
Cu 9.56E-04 2.50E-03 11 7.55E-04 1.30E-03 25 5.67E-03 1.75E-02 14 2.97E-03 7.74E-03 26
Sb 1.16E-05 1.16E-05 10 2.20E-05 2.69E-05 20 5.80E-04 2.14E-03 14 1.54E-05 2.34E-05 24
Ti 2.99E-05 1.37E-05 6 7.24E-05 1.35E-04 16 1.27E-04 1.42E-04 7 1.02E-04 1.50E-04 14

samples, which may have been due partly to a high detection limit
in the ICP-MS for this particular element. Mercury (Hg) was only
detected in one sample indicating that it is not ubiquitous in the
regional cloud water.

4.3. Spatial distribution and common sources of cloud water species

To categorize species into sub-groups based on common sour-
ces, a correlation matrix was produced (Table S2) and revealed the
existence of three general sub-sets of species. The sub-groups are
related to three major sources (land, ship, ocean) and are consistent
with the species in Table 2 that peak in concentration for these air
type categories previously defined in Section 3. The impacts of
these emissions on cloud water are discussed below.

4.3.1. Ocean-derived emissions

Species in the “Marine Reference” category exhibiting statisti-
cally significant correlations with each other’s concentrations
include Cl~, Na, Mg, Ca, K, Br", Rb, Sr, Li, and MSA. With the exception
of MSA, these species are positively correlated with low-level wind
speed (<100 m; Table S2), coinciding with the highest sub-cloud
PCASP concentrations (Table S1) and consequently the greatest
sea spray influence. These species exhibited their highest concen-
trations south of San Francisco during E-PEACE (Figs. 3 and S2).

An example of a research flight (RF) with a clear signature of
ocean-derived emission influence in cloud water was RF23 on 9
August 2011 (flight tracks shown in Fig. 4a). The computed back-
trajectories and wind directions measured by the Twin Otter in
flight show that the air mass probed during this flight was trans-
ported south along the California coast (Fig. 4c). This flight fits in
the “Marine Reference” air type category as it had minimal influ-
ence from fresh ship emissions based on sub-cloud particle con-
centrations (CPC < 1000 cm~3) and relatively low concentrations of
V (0.20 + 0.04 ng m—3) as compared to the average value for the
“Ship 1” category (1.15 + 0.86 ng m—>). Typical “Land” tracers like Si,
B and Cs were either below detection limits or greatly reduced as
compared to the “Land” category (Table 2). The low-level wind
speed throughout this flight was 9.51 + 1.85 m s~!, which was
enhanced relative to the E-PEACE (Table S1) and “Marine Refer-
ence” average (Table 2). Therefore, the potential for ocean-derived
emissions was high during this flight, while land and ship emission
influences were relatively low. Concentrations of the species that
are most enhanced in the “Marine Reference” category of Table 2
(i.e. Na, Mg, CI-, K, NSS SOZ ™, Sr, Br, Rb) exhibit near their highest
campaign-wide levels during this flight (Table 3). Se, I, and MSA
were similarly enhanced during this flight with average concen-
trations of 012 + 012 ng m>, 434 + 041 ng m >, and
0.09 + 0.02 pg m~3, respectively. The back-trajectories passing
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Fig. 3. Spatial distribution of cloud water constituents linked to ocean-derived emissions (MSA and Rb are shown in Fig. S2).

south through the dense area of ship traffic between San Francisco
and Marina suggest that these samples were influenced to some
extent by aged ship emissions. This may have contributed to the
high NSS SO3~ levels in addition to ocean-derived dimethylsulfide
(DMS) emissions.

4.3.2. Ship emissions

Species in the two “Ship” air type categories exhibiting statis-
tically significant correlations with each other’s concentrations
include V, Al, Cd, Fe, Ti, Sb, Ba, Mn, NO3, and NSS SOj~. The

influence of ship traffic on cloud water composition is most evident
in the area south of San Francisco, as shown by peak concentrations
of ship tracer species (e.g. V, NSS SO37) in Fig. 5. The “Ship 1”
category includes the highest concentrations for Fe, V, Al, Mn, NSS
SO3~, and NO3, while the “Ship 2” category includes maximum
levels for Ti, Cu, Cd, and Sb (Table 2). Previous work has detected
the majority of these species in ship exhaust particles (Xie et al.,
2007; Popovicheva et al.,, 2009, 2012; Viana et al., 2009). It is un-
certain as to what the dominant source was for the four elements
with maximum concentrations in the “Ship 2” category, but one
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Fig. 4. (a) Flight path on 9 August 2011 (RF23) with arrows showing the spatial extent across where each of the three cloud water samples were obtained. (b) Time trace of PCASP
particle concentrations (D, ~ 0.1-2.6 pm), cloud LWC, wind direction, and Twin Otter altitude. Shaded regions correspond to when the three samples were collected. PCASP
concentrations are not shown in cloud due to potential drop shatter issues. (¢) 24-hr HYSPLIT back-trajectories ending at the vicinity where the three samples were collected
(green = 1500 m; blue = 500 m; red = 100 m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

possibility is coincident emissions from other sources such as the
ocean or land.

RF16 on 29 July 2011 provides an example of strong influence by
cargo ship emissions in an area southwest of Marina where ma-
jority of cloud water samples during E-PEACE were collected,
including those during RF23 (Fig. 6). Sub-cloud PCASP concentra-
tions were enhanced on this day relative to RF23 due to the strong
influence of ship emissions, which is reflected in the lower cloud
water pHs (3.70—3.95; Table 3). Sub-cloud wind speeds were low
(294 + 1.07 m s~ 1), suggestive of suppressed marine-derived
emissions relative to RF23. While the four RF16 samples were
collected in nearly the same area as those in RF23, the concentra-
tions of the following marine-derived tracer constituents were
significantly reduced: Na, Mg, Ca, K, CI~, Sr, Br, Rb. Cloud water NSS
503~ levels during RF16 (2.69 + 0.19 pg m~>3) were higher than
those in RF23 (1.53 + 0.26 pg m>) due to the added influence of
fresh ship exhaust superimposed on ocean-derived sources. Cloud
water constituents that were enhanced in concentration by at least
a factor of 1.6 during RF16 versus RF23 included Si, P, Mn, Fe, Ti, V,
NSS 50421’, and still others not shown in Table 3 (NO3, Al, Ba, Cd, Sb,
Pb, I). These data further support that ship emissions are a major
source of the aforementioned species in cloud water.

4.3.3. Land emissions

The species with concentrations exhibiting the highest corre-
lations in the “Land” air type category include Si, B, and Cs. They
similarly peak in concentration adjacent to coastline north of San
Francisco (Fig. 5). Their documented sources include crustal matter

Table 3

and fly ash (Gioda et al., 2008; Furutani et al., 2011). Toxic elements
including Pb, As, Cr, Zn, and Ni also peak in concentration in the
“Land” category indicative of land sources; these species have been
shown to be enriched in continental crustal matter as a result of
anthropogenic activity (Sorooshian et al., 2012).

RF28 demonstrates the impact of land emissions on regional
cloud water. Four samples were collected with the first and last in
the same areas, and the middle two in similar areas (Fig. 7a). The
samples collected later in the day (Samples 3 and 4) exhibit major
chemical differences as compared to the first two samples (Table 3):
cloud water pH increased from 4.68—5.38 in the first two samples
to 7.38—7.58 for the last two samples, while LWC was relatively
constant. Air mass back-trajectories show that the marine bound-
ary layer was likely impacted by land emissions during this flight,
especially the third sample at cloud-relevant altitudes (Fig. 7b/c).
PCASP concentrations were highest during RF28 in clear air when
the Twin Otter ascended over the land area at the northernmost
part of the flight track, which impacted the air mass arriving at the
cloud region where Samples 3—4 were collected (Fig. 7c).

Cloud water during this flight was not impacted heavily by fresh
ship emissions owing to higher pH (4.68—7.58) and lower V
(<0.18 ng m~3), NSS SO~ (<0.85 pg m~>), and sub-cloud CPC
particle concentrations (max CPC ~ 707—1039 cm>) as compared
to the two “Ship” categories in Table 2. Ocean-derived emissions
were unlikely to have been as large an influence on these samples
as compared to other flights and especially the “Marine Reference”
samples owing to reduced levels of Na, Mg, CI-, K, SO, Sr, Br, and
Rb. The most significant difference in this flight relative to the other

Chemical and pH measurements for cloud water during three case flights (29 July 2011, RF16; 9 August 2011, RF23; 16 August 2011, RF28). The “Air Mass Type” corresponds to
the categories from Table 2. “Norm” refers to normalized cloud height. Blank cells indicate concentrations below detection limits.

3

3

Air Mass Types Norm. cloud pgm~ ng m-

height PH Si Na Mg B Ca K CI- NSSSO3 Sr P Mn Fe Br Rb Ti V Al

RF16 Ship I 041 377 011 036 007 001 011 001 057 288 086 282 223 1816 416 003 005 235 998
0.56 370 009 032 006 001 010 001 049 280 0.69 1.66 1433 417 001 055 2.13 925
0.73 395 017 056 006 001 015 004 052 2.64 069 3922 187 2176 457 004 012 196 1543
0.96 393 006 031 005 001 010 001 051 246 0.64 160 1369 401 002 005 219 1671

RF23 Marine Reference 0.93 402 650 085 0.01 030 020 1350 135 496 012 190 27.79 007 023 069
0.94 3.95 736 097 001 035 023 1882 1.83 5.68 005 090 3463 0.08 0.15 0.0
0.78 420 0004 455 061 001 021 014 985 140 3.46 028 320 17.07 0.05 023 128

RF28 Land 0.11 538 011 035 003 021 002 001 060 045 0.13 0.09 16.78 0.01 0.18 0.0
0.47 468 013 133 016 023 007 004 248 063 0.89 025 118 1630 0.3 012 595
031 758 439 293 029 092 013 009 582 082 156 169 131 187 1126 005 019 015 0.85
033 738 341 169 011 1.02 006 004 240 0.85 0.50 034 130 571 004 021 0.13 061
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Fig. 5. Spatial distribution of selected cloud water constituents linked to ship emissions that are higher in concentration south of San Francisco. Note that both Si and B are also
linked to land-derived emissions and thus are enhanced in concentration north of San Francisco (Cs is shown in Fig. S2).

E-PEACE flights are the high Si concentrations in the final two
samples (3.41—4.39 pg m—3), which the data indicate were more
influenced by land emissions. Either one or both of the final two
samples exhibited at least twice as high a concentration for the
following constituents as compared to the first two samples: Si, Na,
B, K, CI~, P, Mn, Ti, Li, Cr, Cs, Cu, Mo, and Co. Chemical ratios in RF28
samples differ widely from those reported for soil (Seinfeld and

Pandis, 2006): (ratio of Sample 3—4 average in RF28 versus value
from Seinfeld and Pandis, 2006): Si:Al = 5355 vs 4.63, Fe:Al = 2.12
vs 0.53, Fe:Ca = 0.02 vs 2.77, Mg:Na = 0.08 vs 1.00. The exact source
of the emissions that impacted these samples is unknown, but a
possibility is the influence of fly ash, which is known to be enriched
with silica oxide, which can partly help explain the high level of Si
relative to other common crustal elements such as Al and Fe.
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Fig. 6. (a) Flight path on 29 July 2011 (RF16) with line indicators showing the spatial extent across where each of the four cloud water samples were obtained. Samples were
collected across the same general area, but with each successive one being at a higher altitude in cloud. (b) Time trace of PCASP particle concentrations (D, ~ 0.1-2.6 pm), cloud
LWC, wind direction, and Twin Otter altitude. Shaded regions correspond to when the four samples were collected. (c) 24-hr and (d) 120-hr HYSPLIT back-trajectories ending at the
point of each of the four samples for UTC 18:00 (green = 1500 m; blue = 500 m; red = 100 m). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

4.4. Nutrients in cloud water

Depending on time and location, parts of the California coastal
region can be characterized by HNLC-like (high-nutrient, low-
chlorophyll) conditions with iron limiting primary production
(Johnson et al., 1997; Kirchman et al., 2000). A number of cloud
water constituents studied, including Fe, P, Mn, Si, and Al, are of
significance with regard to their role in increasing ocean biota
productivity (Moore et al., 1984; Singh et al, 2008) and thus
impacting the global C, N and P cycles (Zhuang et al., 1990; Jickells
et al., 2005; Krishnamurthy et al., 2009). Sources of nutrient fluxes
to coastal ocean regions such as the study region include ocean
upwelling, continental water inputs, and atmospheric wet and dry
deposition (Galloway et al., 2004; Capone and Hutchins, 2013). E-
PEACE measurements reveal the impact of different emissions
sources on the atmospheric deposition pathway of relevant
micronutrients, especially iron, which can assist with promoting

ocean productivity. When comparing the average concentration of
these nutrients in three previously-defined air type source cate-
gories (“Ship 17, “Land”, and “Marine Reference”) to the sum of the
average concentration of the three categories (P excluded due to
limited data), Fe, Mn, and Al are similar in that shipping is their
main source (55%, 47%, 53%, respectively) followed by continental
air (30%, 41%, 36%), and background marine conditions (15%, 12%,
11%). On the other hand, Si has its main contribution from conti-
nental air (93%), followed by shipping (6%), and background marine
conditions (1%). Therefore, a key finding from E-PEACE is that
shipping and continental pollution inject nutrients into cloud water
that can deposit to the ocean via precipitation and promote
productivity.

The impact of micronutrients in cloud water on ocean biota,
especially via uptake by phytoplankton, depends on their solu-
bility. Dust-derived forms of these nutrients are typically insol-
uble, but their acid mobilization in polluted conditions can
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Fig. 7. (a) Flight path on 16 August 2011 (RF28) with arrows showing the spatial extent across which each of the four cloud water samples were obtained. (b) Time trace of PCASP
particle concentrations (D, ~ 0.1-2.6 um), cloud LWC, wind direction, and Twin Otter altitude. Shaded regions correspond to when the four samples were obtained. (c) 24-hr
HYSPLIT back-trajectories ending at the point of each of the four samples (green = 1500 m; blue = 500 m; red = 100 m). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

promote their availability in a soluble form (Zhuang et al., 1992).
Meskhidze et al. (2005) suggested that advection of Asian dust
plumes over the Pacific Ocean and exposure to SO, promotes acid
mobilization and production of soluble Fe. Photochemical and
cloud processing also can modify solubility of these nutrients (Luo
et al., 2005; Shi et al., 2009); for example, reactions of ferric Fe
with organics such as oxalic acid, which is abundant in the study
region (Sorooshian et al., 2010, 2013), can produce soluble Fe (Zuo
and Hoigne, 1992). Our observations suggest that conditions in the
California coastal zone region are ideal for the conversion of nu-
trients emitted from land sources and ships to a more soluble
form, if they are not already, due to acidic cloud water conditions
promoted by ship emissions, abundance of organics such as oxalic
acid, and the persistence of stratocumulus clouds to allow for
continuous cloud processing. Further work is warranted to
examine the nature of these micronutrients in the study region,
including their solubility.

5. Conclusions

This work reports on the acidity and composition of 82 cloud
water samples collected on-board the CIRPAS Twin Otter during the

2011 E-PEACE campaign. The main findings of this work include the
following:

(1) Cloud water pH in the region ranged widely between 2.92
and 7.58 and was strongly influenced by ship emissions (low
pH) and land-derived air masses (high pH).

(2) Marine-derived emissions lead to strong enhancements in
the following constituents: Na, Mg, CI~, K, Sr, Br—, Rb, Se, I,
MSA. Ship emissions are estimated to have been a larger
contributor to NSS SO3~ (~54%) as compared to marine
biogenic emissions (~38%).

(3) Ship emissions resulted in cloud water with enhanced levels
of V, Fe, Mn, P, Ti, Cd, Al, Ba, Sb, Pb, [, Se, NO3, and NSS SO3".
Ships are shown to be an even stronger source for such ocean
micronutrients (P, Fe, Mn, Al) in the region as compared to
land emissions. Highly acidic cloud water due to ship emis-
sions coupled to extensive cloud cover in the study region is
beneficial for converting micronutrients to soluble forms.

(4) Measurements of tracer elements with crustal and anthro-
pogenic origins (Si, B, Cs) point to influence from continental
particle types (e.g., fly ash, crustal matter) impacting stra-
tocumulus clouds off the California coast.
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