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Recent convergence results with pseudospectral methods are exploited to design a robust, multigrid, spectral

algorithm for computing optimal controls. The design of the algorithm is based on using the pseudospectral

differentiation matrix to locate switches, kinks, corners, and other discontinuities that are typical when solving

practical optimal control problems. The concept of pseudospectral knots and Gaussian quadrature rules are used to

generate a natural spectral mesh that is dense near the points of interest. Several stopping criteria are developed

based on new error-estimation formulas and Jackson’s theorem. The sequence is terminated when all of the

convergence criteria are satisfied. Numerical examples demonstrate the key concepts proposed in the design of the

spectral algorithm. Although a vast number of theoretical and algorithmic issues still remain open, this paper

advances pseudospectral methods along several new directions and outlines the current theoretical pitfalls in

computation and control.

I. Introduction

O VER the last decade, pseudospectral (PS) methods for optimal
control have moved rapidly from theory [1–3] to practice [4–

12] to flight application [13,14]. The flight application onboard the
International Space Station marks one of the many milestones in the
recent developments [15–18] in PS methods for optimal control
theory. Such advancements have brought to the forefront many
major questions regarding the practice of optimal control theory that
were once only in the realmof theory [19,20]. For example, questions
of existence, uniqueness, and convergence of a solution, which were
once largely a purview of theoreticians, are now major issues in
computational optimal control because they address many practical
problems such as those described in the following:

1) If a numerical solution to an optimal control problem is not
obtained, is it because the problem does not have a solution?Or is the
algorithm failing? Or is the computer code incorrect? These
questions lie at the intersection of the existence, convergence of
the discretization, convergence of the algorithm, and verification
and validation (V&V) techniques in computational engineering
[15,21–26].

2) If a (computer) solution is obtained, is the solution (in the
discretized space) feasible in the realm of optimal control (i.e., in
function space)? This is an issue related to discretization error or the
convergence of the discretization (which is not the same as the
convergence of the algorithm [15,16,18,22,27,28]).

3) If a feasible solution is obtained, is it an optimal solution? This
issue is related to the convergence question as well as to V&V
techniques in optimal control in terms of the necessary and suffi-
ciency conditions for optimality [15,25,29,30]. These conditions are
not the same as the optimality conditions for the discretized problem

because, for example, the concept of conjugate points is nonexistent
in a discretized problem [25].

The preceding open questions articulate the forefront of research
in modern optimal control theory and practice. The rapidly
narrowing gap between theory and practice allows us to exploit
recent existence and convergence results for PS methods [15,16] to
lay down the foundations for a mesh-refinement algorithm. The goal
of a mesh-refinement algorithm is to design the number of nodes and
the distribution of nodes needed for practical convergence. A
conceptual algorithmunder this framework is to design a sequence of
discrete-time problems such that a solution to the final problem is
sufficiently close (in some metric) to a solution of the continuous-
time optimal control problem. Such algorithmic implementations
have been pioneered by Betts et al. [21,26,31] for a large number of
Runge–Kutta discretization methods, leading to the professional
software SOCS [32]. As noted earlier and further elaborated in
Sec. III, because the theory of PS methods is sharply different from
Runge–Kutta methods, a new approach to mesh refinement is
needed. This paper addresses this major problem.

In a basic PS discretization, Gaussian rules dictate the layout of the
mesh. Once the number of nodes is fixed, the distribution of nodes is
also fixed. The current practice of PS mesh refinement, as
implemented inDIDO [33] andOTIS [34], is performed bymanually
inspecting the solution and increasing the grid size until the solution
is deemed satisfactory. This simple technique leaves the selection of
the Gauss–Lobatto grid size completely to the user. Without any
guidelines, a good decision on the grid size can be a challenging job.
The naïve approach of providing an a priori large number of points as
a safety measure is not merely wasteful, it also does not always result
in an expected increase in accuracy of the computed solution. The
reason is as mentioned in question 1: convergence of the algorithm
and convergence of the discretization are not the same thing. In fact,
the interplay between the convergence of algorithm and the
convergence of the discretization can lead to a false negative that the
problem posedmay not have a solution if we assume the algorithm is
not failing. Alternatively, this issuemay cast suspicion on theoretical
results on convergence if it can be proved that the problem does
indeed have a solution. The key to selecting the number of nodes is an
error-estimation formula. That is, the size of the grid has to be tied to
the accuracy of the solution. To achieve that, we need methods to
quantitatively measure the accuracy of the computed solution.
Barring known analytic solutions, it is impossible to compute the
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exact value of the error; consequently, we must rely on estimates on
the level of accuracy of the computed solution. In this paper, we
exploit the latest theoretical results for PS methods [15,16,18,35,36]
and consistent approximation theory [37] to design such error-
estimation techniques. By transferring the discrete solution to the
spectral domain, we provide several error-estimation methods that
can quantitatively measure the level of the accuracy. These
techniques greatly facilitate the selection of appropriate grid sizes.
Based on these error estimates, we design an algorithm that
automatically terminates when the desired estimate of accuracy is
achieved.

It is well known that even when the problem data are smooth, the
optimal control can be discontinuous in time, as in bang–bang
control [29]. For such problems, the PS knotting method [36] has
proved to be an effective tool [6,8,9]. By adding knots, one can divide
the time interval into smaller segments and therefore change the
distribution of PS nodes. Furthermore, Gaussian rules guarantee a
dense distribution of the nodes around the knots; hence, the knots
should be placed where the solution is subject to sudden changes, as
in points of discontinuity. Because the optimal solution is usually not
known up front, it is challenging to find these points of interest
a priori. Currently, the number and the location of the knots are found
by visually inspecting the obtained solution, which is neither
efficient nor precise. In this paper, we further the ideas proposed by
Ross and Fahroo [36] and Gong and Ross [35] to automatically
determine the number and location of the knots needed for
segmentation. This technique, together with error-estimation
methods, lays down the foundations for a pseudospectral mesh-
refinement algorithm that automatically determines the size and the
layout of the grid to achieve a desired estimate of accuracy.

II. Problem Formulation

Wedefine a basic optimal control problem tofind the state-control
function pair t7!�x; u� 2 RNx � RNu and clock times t0, and tf such
that

�B�

8>>>>>>>><
>>>>>>>>:

minimize J�x���; u���; t0; tf� � E�x0; xf; t0; tf�

�
R tf
t0 F�x�t�; u�t�� dt

subject to _x�t� � f�x�t�; u�t��
e�x0; xf; t0; tf� � 0

h�x�t�; u�t�� 	 0

where x0 � x�t0�, xf � x�tf�, and all the relevant relationships are
assumed to be true for almost all t. It is assumed that all the nonlinear
functions (F, E, f, e, and h) are continuously differentiable with
respect to their arguments and that their gradients are Lipschitz-
continuous over the domain.

A set of necessary conditions for problem B can be obtained from
an application of the minimum principle [30]. These conditions can
be articulated in terms of a boundary-value problem which is, more
formally, a problem of solving a generalized equation [23]. We refer
to this process as dualization, and it can be summarized [1] as
problem B�:

�B��

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

find �x���; u���; t0; tf;����;����; ��
such that _x�t� � f�x�t�; u�t��

e�x0; xf; t0; tf� � 0
h�x�t�; u�t�� 	 0
_��t� � 
 @ �H�t�

@x
@ �H
@u
� 0

f��t0�;��tf�g �
�

 @ �E
@x0
; @

�E
@xf

�

fH�t0�; H�tf�g �
�
@ �E
@t0
;
 @ �E

@tf

�

0 	 ��t� ? 
h�x�t�; u�t�� � 0

where �H is the Lagrangian of the Hamiltonian

�H��;�; x; u� :� H��; x; u� ��Th�x; u� (1)

H is the control Hamiltonian

H��; x; u� :� F�x; u� � �Tf�x; u� (2)

�E is the endpoint Lagrangian

�E��; x0; xf; t0; tf� :� E�x0; xf; t0; tf� � �Te�x0; xf; t0; tf� (3)

and the shorthand notation �H�tf � is used to imply

�H�tf� � H���tf�;��tf�; x�tf�; u�tf��

III. Pseudospectral Methods

Much of the details of PS methods are extensively described
elsewhere [1–3,17,36]; here, we briefly summarize the main points
for the purposes of relevance and completeness. In addition, we
summarize the relationship between PS and spectral methods [38–
40] and the differences between the standard convergence theorems
and those required to solve optimal control problems.

A. Overview

The goal of a PS method is to solve problemB by discretizing it to
problem BN in a manner that permits the discretization to commute
with dualization [25]. This commutation requirement is enunciated
as the covector mapping principle [1,15,22,25,41] and is illustrated
in Fig. 1. This means that a putative optimal solution of the
discretized problem BN must automatically satisfy the discretized
necessary conditions B�N . Solving optimal control problems by this
approach is far simpler than developing and solving for the necessary
conditions, because solving for the necessary conditions requires
solving a mixed complementarity problem (see problem B�). A
covector mapping theorem [1,15] provides the proper connection to
commute dualization with discretization.

B. Pseudospectral Discretization

In a standard PS discretization [39,40], we first select N � 1
cardinal functions �l (l� 0; 1; . . . ; N) over the time interval �t0; tf �,
such that they satisfy the Kronecker delta condition:

�l�tk� � �lk k� 0; 1; . . . ; N

where the grid points �N � ft0; t1; . . . ; tNg are called nodes. The
nodes are chosen in a manner consistent with approximation theory
(e.g., shifted Gaussian points). When a PS method is applied to
optimal control, an application of the covector mapping principle
requires that the continuous-time state trajectory be approximated by
Nth-order weighted polynomials [17,42]. A choice of Gauss–
Lobatto points allows us to choose unit weight functions so that we
can write

Problem B

Problem B λ Problem B λN

Problem B N
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Fig. 1 Illustration of the covector mapping principle (adapted from

Ross and Fahroo [1,22]).
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x �t� ’ xN�t� :�
XN
l�0
xl�l�t� (4)

where xl are the values of xN�tl�. The approximation indicated in
Eq. (4) is different when the function x�t� is known, inwhich casewe
write

x �t� ’ INx�t� :�
XN
l�0
x�tl��l�t� (5)

where IN is the interpolating operator. Thus, when x�t� is unknown,
as is the case in solving optimal control problems, xl is not
necessarily equal to x�tl�; in fact, kx�tl� 
 xlkmay be quite large (no
convergence). Standard convergence theorems in spectral methods
[38–40] provide the error estimates between x�t� and INx�t�: that is,
the error between a known function and its interpolant. Because this
error is zero at the node points, these theorems provide the
convergence rate for errors in between the node points. The gap in
convergence theorems for solving optimal control problems inwhich
the function x�t� is unknown is an estimate of the error at the node
points, kx�tl� 
 xlk. Hence, it is the approximation indicated by
Eq. (4), rather than Eq. (5), that is crucial for designing a spectral
algorithm. The precise nature of the approximation indicated in
Eq. (4) was developed recently by Gong et al. [15,18] andKang et al.
[16]. These theoretical results are exploited in this paper to design a
practical multigrid algorithm.

Onemain difference between PSmethods and othermethods (e.g.,
Runge–Kutta) is that in PS methods, we seek to approximate the
solution rather than the governing equations. Approximation theory
then dictates that the cardinal functions be chosen so that they form a
basis in some appropriate function space. Thus, operations in the
governing equations are applied directly to xN�t� to generate new,
potentially simpler, equations that can be readily solved. In optimal
control, operations in the problem setting include differentiation and
integration. We approximate the derivative of x�t� by the derivative
of its polynomial approximation xN�t�:

_x�t� ’ _xN�t� �
XN
l�0
xl _�l�t� (6)

Thus, the equations of approximation are obtained by projecting the
problem equations over the node points; for example,

_x�tk� ’ _xN�tk� �
XN
l�0
xl _�l�tk� � f�xk; uk�

where uk is the approximation of u�tk�. Note that as part of the recent
developments in PS methods, u�t� is not necessarily obtained by a
Lagrange interpolant [15,18]. The differentiation matrix

DN
kl � _�l�tk� l; k� 0; 1; . . . ; N

provides a rapid procedure for evaluating the derivatives at the node
points [38,40].

The integration of the cost function is approximated as

Z
tf

t0

F�x�t�; u�t�� dt ’
XN
l�0

F�xl; ul�
Z
tf

t0

�l�t� dt�
XN
l�0

F�xl; ul�wl

(7)

where

wl :�
Z
tf

t0

�l�t� dt

formsweights for a discrete 1-form (inner product) that facilitates the
commutative operation suggested in Fig. 1.

Pseudospectral methods are far simpler than the traditional
Galerkin (spectral) method in which xN�t� is expanded in terms of
noninterpolating orthogonal basis functions  l�t� (l� 0; 1; . . . ; N):

x �t� ’ xN�t� �
XN
l�0

�l l�t� (8)

where the basis functions are required to automatically satisfy the
boundary conditions as well. The spectral coefficients �l of this
generalized Fourier expansion satisfy the condition

�l �
Z
tf

t0

xN�t� l�t� dt
�Z

tf

t0

 2
l �t� dt

and the spectral method reduces to finding �l so that certain residuals
are minimal (orthogonal to a certain subspace). Although this
method is far more complicated, there is a close relationship between
�l and xl that can be easily exploited to transform the coefficients
from the physical space to the spectral space and vice versa.

As an example of the preceding ideas, in the Legendre PSmethod,
the grid points are the shifted Legendre–Gauss–Lobatto (LGL)
points at which the shift is achieved bymapping the physical domain
�t0; tf � 3 t to a computational domain �
1; 1� 3 � by the affine
transformation:

��t� �
2t
 �tf � t0�
�tf 
 t0�

where we have abused notation in using � to imply both the
transformation as well as the transformed variable. The LGLweights
and the differentiation matrix are

wk :�
tf 
 t0

N�N � 1�
1

�LN��k��2
k� 0; 1; . . . ; N

DN
kl
:� 2

tf 
 t0

8>>><
>>>:

LN ��k�
LN ��l� �

1
�k
�l k ≠ l


 N�N�1�
4

k� l� 0
N�N�1�

4
k� l� N

0 otherwise

(9)

where �k, k� 0; 1; . . . ; N denote the LGL nodes [38,39] and LN�t�
denotes the Legendre polynomial of order N.

C. Pseudospectral Relaxation

As noted in Sec. I and elsewhere [18], it is critical to guarantee the
existence of a solution to the discretized problem if a solution to the
original problem (problem B) exists. For this purpose, we introduce
the following relaxed discretized problem:

B N�"�

8>>>>>>>><
>>>>>>>>:

minimize JN��xk�; �uk�; t0; tf� � E�x0; xN; t0; tf�
�
P

N
l�0 F�xl; ul�wl

subject to

����f�xk; uk� 
PN
l�0Dklxl

����
1
	 "

ke�x0; xf; t0; tf�k1 	 "
h�xk; uk� 	 "
k� 0; 1; . . . ; N

where " > 0 is the relaxation parameter and �� �"; . . . ; "�T . For a
vector �, k�k1 denotes the maximum element of �.

Until recently, the theory of PS methods for optimal control was
based on setting "� 0. Because it is impossible to set "� 0 on a
digital computer, the prevailingwisdomwas to set it equal to as small
a number as possible. The counterexample byGong et al. [18] shows
that setting " too small may actually result in an infeasible set for the
discretized problem. Similar counterexamples have been developed
byMordukhovich [20] for Euler (and hence, Runge–Kutta)methods.
Setting " too large to fix the problem will render the discrete solution
infeasiblewith respect to the original continuous-time problem. Such
results have shown that the theory for PS optimal control cannot be
directly “lifted” from its corresponding theory employed to solve
fluid mechanics problems [38]. In other words, it was necessary to
develop a new theory for PS methods to handle the various nuances
of optimal control theory. Recent results with PS optimal control
[15,16,18] demonstrate a strong relation between the number of
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nodes and the relaxation parameter ". The result, posited in the form
of the following Lemma, not only closes the gap between theory and
practice, it also clarifies a number of apparent anomalies in the
practice of PS discretizations.

Lemma1 (existence )[15]:Given any feasible solution t7!�x; u� of
problem B, suppose x��� 2 Wm;1 with m � 2. Then, for any given
" > 0, there exists a positive integerN" such that for anyN > N", the
feasible set of relaxed discretized problem [problem BN�"�] is
nonempty.

The definition of Sobolev space Wm;1 can be found in [38]. It is
possible to relax this regularity condition [16], but for notional
simplicity, we avoid such generalities to focus the attention of
this paper to the core algorithmic issues. Lemma 1 theoretically
guarantees the well-posedness of PS optimal control methods. It is
also a key result that will be used later to construct the spectral
algorithm.

Although Lemma 1 is revealing, it does not complete the practical
foundation for solving an optimal control problem, because we need
a connection between a discretized solution xl; ul and the typically
unknown optimal solution x�tl�; u�tl�. This connection, developed
by Gong et al. [15,18] and Kang et al. [16], ensures the convergence
of xl to x

�tl� in addition to the convergence of the controls and the
dual variables under the following assumption (for the purposes of
brevity, we state the conditions for only the state and control
variables):

Assumption 1: Let f�xNl ; uNl �; 0 	 l 	 Ng1N�Ni be a sequence of

optimal solutions to problem BN and t7!f�xN�t�; uN�t��g1N�Ni be
their interpolating function sequence. There exist continuous
functions t7!q�t� 2 RNx and t7!u1�t� 2 RNu and a constant x10 ,
such that

lim
N!1
� _xN�t�; uN�t�� � �q�t�; u1�t�� (10)

uniformly on t 2 �
1; 1�, and limN!1x
N
0 � x10 .

The continuity requirement on t7!�q�t�; u1�t�� can be further
relaxed (see [16] for details).

Theorem 1 (convergence ) [15]: Under Assumption 1, there exists
an optimal solution x���; u��� to problem B such that the following
limits converge for all 0 	 k 	 N:

lim
N!1
�xNk 
 x�tk�� � 0; lim

N!1
�uNk 
 u�tk�� � 0

From this Theorem, it is apparent that if the relaxation parameter " is
chosen to be some fixed constant independent of N, then
convergence to the optimal solution is not guaranteed. In other
words, if " is too large, we do not have convergence, and if " is too
small for a givenN, we may have an infeasible discretized space (by
Lemma 1). Thus, for a successful multigrid algorithm, we must
choose the relaxation parameter " to vary inversely as some power of
N. The choice of this variation will be discussed shortly, but it is
apparent that our proposed scheme is a spectral analog of the notion
of consistent approximations discussed in [19,20,37] and recently
exploited by Betts et al. [26,31] to illustrate the success and
robustness of using multigrid collocation methods.

D. Pseudospectral Knotting Methods

In standard PS methods, Gaussian rules dictate the layout of the
mesh. If the solution is piecewise smooth with nonsmooth junction
points, it is intuitive that a judicious subdivision of the time interval
can be used to exploit the exponential convergence property of the
Gaussian layout over carefully chosen subintervals. This is the
concept of the PS knots introduced by Ross and Fahroo [36]. The
basic idea of the knotting methods is to divide the time interval
�
1; 1� into smaller subintervals, renormalize each subinterval to
�
1; 1�, and then apply PS discretization on each subinterval.
Information is exchanged between the subintervals through the
double Lobatto points at 
1 and 1. The double Lobatto points are
called PS knots. The knots can be fixed or free. If the knot is free, it
can be treated as an extra decision variable.

Because they provide an efficient way to handle nonsmooth
controls or other similar phenomena involving high-frequency
components, we use the concept of PS knots as part of our mesh-
refinement algorithm. To appreciate a key feature of PS knots,
consider the following example:

8>>>>>>>>><
>>>>>>>>>:

minimize J�x���; u���� �
R
3
0 x�t� dt

subject to _x� u
x�0� � 1

x�3� � 1

juj 	 1

x � 0

(11)

The analytic optimal control u is

u �

8<
:

1; t 2 �0; 1�
0; t 2 �1; 2�
1; t 2 �2; 3�

The discrete optimal control with 40 nodes is shown in Fig. 2. It is
clear that the accuracy of the computed solution is diminished at the
jump points. Now, choosing knots at t0 � 1 and t0 � 2, we resolve
problem (11) with 30 nodes (10 on each subinterval). The result is
shown in Fig. 3. It is obvious that the 30-node knotted solution is
more accurate than the 40-node unknotted solution illustrated in
Fig. 2.

One particular advantage of the knotting methods is to control the
distribution of the nodes. Note that the distribution of the quadrature
nodes is not uniform (see the previous figures). The nodes are much
more dense at the two end points. Indeed, the distance between two
adjacent nodes around the endpoints converges quadratically to zero.
Therefore, placing the knots near those locations at which the control
or state trajectories have large variations has the natural effect of a
dense distribution of nodes at precisely the locations of interest. This
key feature will be used in our mesh-refinement algorithm.

IV. Core Spectral Algorithm

The spectral algorithm proposed in this paper includes two layers.
The “inner loop” is to solve the optimization problem BN�"N� for a
fixed number of nodes N and mesh (nodes distribution). The “outer
loop” is to generate a sequence of problems BNi�"Ni� (i� 0; 1; . . . n)
and correspondingmesh sequence, such that problemBNn�"Nn� solves
problemB to one or more of some specified tolerance criteria. Before
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Discrete optimal control

Fig. 2 Unknotted optimal control for problem (11) with 40 nodes.
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Fig. 3 Knotted optimal control for problem (11) with 30 nodes and

knots at t� 1 and 2.
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describing this spectral algorithm, we first note that a PS solution can
be quickly transformed from the physical space to spectral space. For
example, for the Legendre PS method, we can write

x N�t� �
XN
l�0
xl�l�t� �

XN
j�0

ajLj�t� (12)

u N�t� �
XN
l�0
ul�l�t� �

XN
j�0

bjLj�t� (13)

� N�t� �
XN
l�0
�l�l�t� �

XN
j�0

cjLj�t� (14)

� N�t� �
XN
l�0
�l�l�t� �

XN
j�0

djLj�t� (15)

Using the orthogonal property of the Legendre polynomials, it is easy
to show that the spectral coefficients satisfy

a j � �j� 0:5�
XN
k�0

Lj�tk�wkxk j� 1; . . . ; N 
 1;

aN ’ �N � 0:5�
XN
k�0

LN�tk�wkxk

The formula for aN holds only approximately, due to the property of
the Gauss–Lobatto quadrature integration rule. The same formulas
apply for bj, cj, and dj. In the proposed spectral algorithm, the
coefficients in the spectral space are used to estimate the error and thus
serve as one of the indicators of convergence.

Several variants of a spectral algorithm can be designed based on
the collection of theoretical results presented in Sec. III. These
variants are too numerous to be listed; hence, we begin by presenting
only the core algorithm here and we will fill out some key details in
the next section.

A. Initialization

From Lemma 1, we first note that the existence of a solution to
problemB does not automatically imply the existence of a solution to
problem BN�"� for an arbitrary choice of " andN. Hence, we need to
find consistent pairs (" and N). By Lemma 1, we know that for any
given ", we can always find an N such that the feasible set of
problemBN�"� is nonempty. Hence, our initialization step reduces to
selecting a pair (" and N) for which the feasible set is nonempty. To
start our algorithm from some arbitrary point (e.g., a poor guess), we
adopt an “elastic procedure,” defined next.

In the first step, we arbitrarily select a finite grid size sequence:

N0
I � 20<N1

I � 30< � � �<NLI � 20� 10L

where the numbers indicate default values implemented in an �
version of DIDO [33], and the subscript I denotes that the sequences
are only used in the initialization step. Other possible choices of
sequences are

N0
I � 15< N1

I � 20< � � � <NLI � 15� 5L

and

N0
I � 8<N1

I � 16< � � �<NLI � 8 � 2L

These choices are offered as part of the algorithm parameters similar
to those found in any optimal control software package such as
SOCS. In the same spirit, we choose a sequence of increasing
numbers:

"0I � 10
5 < "1I � 10
4 < � � �

The initialization procedure is to find a pair (N and "), such that
problem BN�"� is feasible. It is achieved by an elastic procedure as

follows: we start the initialization loop by solving problem BN
0
I �"0I �.

If a feasible or an optimal solution is obtained, the initialization is
declared a success; otherwise, a search for a feasible solution is
performed by fixing N0

I and increasing the tolerance from

"0I � 10
5 > "0I � 10
4 > � � � > "MI � 10
1

We hasten to note that these default numbers are not absolute
numbers but are based on normalizations similar to those used in
nonlinear programming solvers [43]. If no feasible solution can be
found even for the loosest tolerance, the optimal control problem is
declared infeasible and the algorithm terminates. A generalized
version of the initialization procedure is summarized in the following
conceptual algorithm.

Algorithm 1:
1) Set the iteration counters j� k� 0.

2) Solving problem BN
j
I �"kI �.

3) If a feasible or an optimal solution is obtained, stop
initialization; else proceed to the next step.

4) If k <M, set k� k� 1, and go to step 2; else proceed to the
next step.

5) If j < L, set j� j� 1, k� 0, and go to step 2; else the optimal
control problem is declared infeasible and the initialization
terminates.

Remark 1: The preceding initialization procedure only
demonstrates the basic idea. There are many ways to implement it.
Additional implementation details may be found in [44].

B. Optimal Placement and Location of Knots

The elementary observation that the knots must be placed around
the points at which the control undergoes a sudden change can be
formalized in terms of the time derivative of the control; that is, the
knots are placed where the derivative of the control is sufficiently
large. This observation can be very easily encoded by way of the PS
differentiation matrix D [see Eq. (9)], because we have:

_uN�t0�
..
.

_uN�tN�

0
B@

1
CA�D �

u0
..
.

uN

0
B@

1
CA (16)

where ti are theLGLnodes. This concept is illustrated in Fig. 4 for the
unknotted 40-node solution (see Fig. 2). Because the maximum
derivatives appear around t� 1 and 2, it suggests that we place two
knots around t� 1 and 2. Thus, the points at which the derivatives
are large are the locations of the knots. Obviously, the number of
knots is automatically determined by this procedure. Based on these
ideas, we propose the following simple algorithm for the placement
of the knots:

Algorithm 2:
1)Choose a parameterDU, which is the threshold of themaximum

derivative.
2) Given the current mesh ft0; t1; . . . ; tNg, compute the derivative

of the interpolating polynomial uN�t� at the nodes t0; . . . ; tN by
formula (16).

3) Choose the knots at the positions at which _uN�ti� � DU, and
denote the knots as t01 < � � �< t0m. If there are two or more adjacent

0 0.5 1 1.5 2 2.5 3
−2

0

2

4

6

8

t

D*u

Fig. 4 Derivative of the control for problem (11) for N � 40.
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nodes such that _uN�ti� � DU, choose the midpoint of these nodes as
the tentative location of the knots.

4) If _uN�ti�<DU for all i, then no knots are needed.
Remark 2: In algorithm 2, for simplicity, we only check the

derivative of the control. In practice, one can also check the
derivative information of the state variables by the same idea and
place the knots where either the state or the control has large
variations. Because the state is normally one order smoother than the
control, checking the derivative of the control is usually sufficient.

Remark 3: The proposed algorithm provides a simple method to
determine the fixed knots. It can be easily modified for free knots
[36]. For instance, instead of choosing the knots at the points atwhich
_uN�ti� � DU, we can free the knots but set up a reasonable bound
according to the derivative information.

Remark 4: If knots have already been placed in the current mesh
ft0; t1; . . . ; tNg, formula (16) needs to be updated to be applied on
each segment. For instance, suppose there one knot at tk. Then the
node sequences ft0; t1; . . . ; tkg and ftk; tk�1; . . . ; tNg are all shifted
LGL quadrature nodes. We then apply formula (16) on both
segments �t0; tk� and �tk; tN � with different differentiation matrices
that depend on the number of nodes and the length of the segments
[see Eq. (9)].

C. Mesh Generation

Once the knots are determined, the distribution of the nodes in
each segment is chosen according to Gaussian rules. Thus, in PS
methods, the mesh is completely determined by only three
parameters: the number of knots, the location of knots, and the
number of nodes in between the knots. Thus, the only remaining
problem in constructing amesh is the number of nodes in between the
knots. We distribute the number of nodes according to the length of
each segment; that is, the number of nodes on segment �t0i; t0i�1� is
chosen according to

N0i � round

�
t0i�1 
 t0i

2
N

�
i� 0; . . . ; k 
 1 (17)

where round(s) means the closest integer of s. Many simple routines
can be used to modify Eq. (17), so that

Xk
1
i�0

N0i � N

is the total number of nodes.
Remark 5: It is necessary to have aminimumnumber of nodes over

each segment. For the purposes of clarity, we omit such details and
implementation procedures; instead, we defer some of the discussion
to example problems to demonstrate the concept.

D. Main Algorithm

Before stating the main algorithm, let us introduce a projection
operator. It is used tomap a solution fromone grid to another. Let�Nr

denote a PS grid over I so that to each grid, we can define
problem BNr �"r�, which is based on an approximation to problem B.
Suppose we are given two grids, �Nr and �Nn . Let
�XNr ;UNr ;�Nr ;MNr � represent the values of functions xNr ���,
uNr ���, �Nr ���, and �Nr ��� over the grid �Nr . Let the operation de-
fined by

X Nn :� NnPNrXNr

generate values of the functionINrx
Nr �t� over the grid�Nn . NnPNr is a

prolongation operator if Nn > Nr and a restriction operator if
Nn < Nr. If Nn � Nr, NnPNr is an identity operator. The same
operation, NnPNr , applies to �UNr ;�Nr ;MNr � as well.

To start the main algorithm, first we assume that the initialization
procedure has been successful and denote the corresponding number
of nodes and tolerance as fN0; "0g. Let fNjgj�0 be a sequence of
increasing integers (i.e., Nj�1 >Nj, which is selected in a manner
similar to the initialization step) Likewise, let f"kgk�0 be a sequence

of decreasing positive real numbers [i.e., "k�1 < "k (see the
initialization step for default values)]. The main algorithm can be
described as follows:

Algorithm 3:
1) Set the iteration counter j� k� 0.
2) From the covector mapping theorem [1,15], obtain the relaxed

values of the dual variables �Nj , �Nj , and �Nj associated with
problem B�Nj�"k�.

3) On every interval between two adjacent knots, find the spectral
coefficients al, bl, cl, and dl.

4) Estimate the error based on the spectral coefficients. If the error
is within the tolerance, stop and exit; else proceed to the next step.

5) Use the algorithm in Sec. IV.B to determine the number and the
location of the knots.

6) ForN � Nj�1, apply the algorithm in Sec. IV.C to find the new
mesh.

7) Use a prolongation operator Nj�1PNj to create primal and dual
variables over the new grid:

XNj�1 � Nj�1PNjXNj ; UNj�1 � Nj�1PNjUNj

�Nj�1 � Nj�1PNj�Nj ; MNj�1 � Nj�1PNjMNj

8) Set j� j� 1, k� k� 1.
9) Warm-start the solution procedure to solve problem BNj �"k�

using the dual variables.
10) If problemBNj �"k� is infeasible, set k� k 
 1 and go to step 9;

else go to step 2.
Remark 6: From steps 2 and 9, it is clear that the covector mapping

theorem is a critical and integral part of the spectral algorithm. This
step also facilitates a rapid solution to the optimal control problem
when integrated with sequential quadratic programming methods
that employ the notion of active sets [43].

Remark 7: In step 4 of the main algorithm, we have not yet
specified the error-estimation methods and the stopping criteria.
Given the importance of this step and the various choices of possible
error-estimation criteria, this procedure is described in detail in the
next section.

Remark 8: Several variations to the algorithm are possible; for
example, if the initial guess for the solution is deemed to be good,
then the initialization procedure can be eliminated. Similarly, a
warm-start procedure can be activated at thefirst iteration byway of a
flag. For the purpose of brevity, these options are not discussed any
further.

V. Error Estimation and Stopping Criteria

Error estimation is the central issue in mesh-refinement
algorithms. Any successful mesh-refinement algorithm needs to be
terminated when the estimated error is below a specified number. In
this section, we derive some error-estimation formulas and their
corresponding stopping criteria. The stopping criteria can be used
separately or combinedwith each other to develop several variants of
the spectral algorithm.

Theorem 1 shows that if the interpolating polynomials of the
discrete optimal solution converge, the limit point must indeed be the
optimal solution of the continuous optimal control problem. This
result suggests that the accuracy of the computed solution can be
captured by the convergence property of the discrete solution
sequence. Transferring the discrete solution to its spectral domain
provides an accurate and easily implementable process to test the
convergence property. Using this notion, we formulate several
convergence tests based on the spectral coefficients of the discrete
optimal solution. For the sake of simplicity, the following tests are
presented for the case when no knots are used. If knots are employed,
these tests need to be performed on every segment between two
adjacent knots.

A Spectral Coefficient Test

Similar to a Fourier expansion, the Legendre spectral coefficients
represent the amplitudes of the signal at different frequencies. If a
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continuous signal is smooth enough, Jackson’s theorem shows that
the amplitudes of the high-order frequencies will converge to zero.

Theorem 2 (Jackson’s theorem) [45]: Let h�t� be of bounded
variation in �
1; 1�. DenoteU�h�t�� as the upper bound of jh�t�j and
V�h�t�� as the total variation of h�t�. Define

H�t� �H�
1� �
Z
t


1
h�s� ds

then fcng1n�0, the sequence of Legendre spectral coefficients ofH�t�,
satisfies the inequality

jcnj<
6����
�
p �U�h�t�� � V�h�t��� 1

n3=2

for all n � 1.
The result suggests that the last coefficients of the interpolating

polynomials of the discrete solution can be good indicators of error.
If the last coefficients are small enough, it means that the continuous
signals have been well-represented by their interpolating poly-
nomials. Adding more nodes will only capture negligibly-higher-
frequency components and will not result in any significant
improvement in accuracy. This notion has been validated by Riehl
et al. [46] on several problems in aerospace trajectory optimization.
Furthermore, as described by Ross et al. [47], it is possible to capture
even the high-frequency terms by anti-aliasing the solution through
an application of Bellman’s principle. Consequently, the following
simple stopping criterion can be used in the main algorithm.

Jackson stopping criterion: If aNj , bNj , cNj , and dNj , defined in

Eqs. (12–15), satisfy

kaNjk 	 �x; kbNjk 	 �u; kcNjk 	 ��; kdNjk 	 ��

then stop. Here �x, �u, ��, and �� represent the desired accuracy for
the states, controls, adjoint covector (costates), and path covector,
respectively.

It is extremely important to note that �x, �u, ��, and �� are not the
actual errors between the computed solution and the optimal
solution; rather, they are only estimates or indicators of error. Finding
true errors for general problems is an impossible task. From an error-
analysis perspective, the error estimates are typically overestimates.
From an algorithm-design perspective, we merely need good default
values. From the underlying assumption in Jackson’s theorem, it is
apparent that it is not advisable to apply this stopping criterion to a
discontinuous control. In such a situation, Jackson’s criterion is used
on states only, because they are typically continuous even when the
control has jumps. Because of these nuances, we first illustrate how
to apply the stopping criteria.

Example 1:
Consider the following nonlinear control problem:8>><
>>:
minimize J�x���; u���; x�1�� � 3x�1� � 1

2

R
1

1 u

2�t� dt
subject to _x� exp�x�u

x�
1� � 0

(18)

It is quite straightforward to show that this problem has a closed-form
solution:

x�t� � 
 ln �t� 2�; u�t� � 
1; ��t� � t� 2

Because the default values of DIDO (see Sec. IV) are set for
industrial-strength problems, problem (18) convergedwithin a single
spectral iteration. This feature illustrates that for certain academic-
strength problems, the spectral algorithm may converge within one
iteration. Nonetheless, to amplify a few features of our algorithm, we
set �x � 10
6 and arbitrarily choose

N1 � 5; "N1 � 10
6

for our initialization step. A computation of the spectral coefficients
based on the first iteration of the spectral algorithm yielded
ja5j � 1:917 � 10
3 > �x. This initiated the mesh-refinement
segment of our algorithm, resulting in

N2 � N1 � 5� 10; "N2 � "N1=10� 10
7

The second iterate yielded ja10j � 1:835 � 10
6 > �x. This initiated
a third iteration resulting in

N3 � N2 � 5� 15; "N3 � 10
8

It yielded ja15j � 1:65031 � 10
9 < �x and hence successfully
terminated the algorithm.

We now demonstrate the validity of our algorithm by comparing
the true errors using the closed-form solution. Table 1 summarizes
the results, where

kexk1 � kx�tk� 
 xkkL1

keuk1 � ku�tk� 
 ukkL1

and

ke�k1 � k��tk� 
 �kkL1

It is evident from these error norms that the spectral coefficients serve
as good error indicators.

B. L
2 Error Test

As stated in Theorem 1, the convergence of the discrete optimal
solution can be guaranteed under Assumption 1. It turns out that
Assumption 1 can be numerically verified by examining the
convergence of the sequence of spectral coefficients [18]. In the
following, we provide a formula to test the Cauchy convergence
property of the polynomial sequence in L2 norm.

Lemma 2: Consider any two polynomial yN1�t� and yN2�t� of the
orderN1 andN2, respectively (N1 < N2). Leta1k (k� 1; . . . ; N1) and
a2k (k� 1; . . . ; N2) be their Legendre spectral coefficients; that is,

yN1�t� �
XN1

k�0
a1kLk�t�; yN2�t� �

XN2

k�0
a2kLk�t�

Then

Z
1


1
kyN1�t� 
 yN2�t�k2 dt�

XN1

k�0

�a1k 
 a2k�2
k� 0:5

�
XN2

k�N1�1

a22k
k� 0:5

(19)

Proof: By orthogonal property of the Legendre polynomial, we have

Z
1


1
Li�t�Lj�t� dt� 0; if i ≠ j and

Z
1


1
L2
i �t� dt�

1

i� 0:5

Therefore,

Table 1 Errors norms for Example 1

N kexk1 keuk1 ke�k1
5 2.502e-004 8.423e-003 8.440e-003
10 1.239e-007 1.595e-005 1.617e-005
15 1.597e-009 4.796e-008 5.071e-008
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Z
1


1
kyN1 �t� 
 yN2�t�k2 dt

�
Z

1


1

�XN1

k�0
�a1k 
 a2k�Lk�t� 


XN2

k�N1�1
a2kLk�t�

	
2

dt

�
XN1

k�0
�a1k 
 a2k�2

Z
1


1
L2
k�t� dt�

XN2

k�N1�1
a22k

Z
1


1
L2
k�t� dt

�
XN1

k�0

�a1k 
 a2k�2
k� 0:5

�
XN2

k�N1�1

a22k
k� 0:5

□

Now consider a polynomial sequence fyN�t�g. Suppose the
sequence converges to a function y�t�. By the triangular inequality,

kyN1�t� 
 yN2�t�kL2 	 kyN1�t� 
 y�t�kL2
� kyN2�t� 
 y�t�kL2

(20)

The left-hand side of Eq. (20) can be evaluated by formula (19); the
right-hand side of Eq. (20) is the summation of the L2 errors. Hence,
kyN1�t� 
 yN2 �t�kL2 can be used as aL2 error indicator. Based on this
concept, we can test the convergence of the interpolating polynomial
sequences

fxN�t�; uN�t�;�N�t�;�N�t�g

and use theL2 error normof the sequences as the stopping criterion as
follows:
L2 stopping criterion: Substitute spectral coefficients at step j

(fak;bk; ck;dkg
k�Nj
k�1 ) and the spectral coefficients from the previous

step (i.e., fak;bk; ck;dkg
k�Nj
1
k�1 ) into formula (19). If the L2 error

norms satisfy

kxNj�t� 
 xNj
1�t�kL2
	 �x; kuNj�t� 
 uNj
1 �t�kL2

	 �u
k�Nj �t� 
 �Nj
1�t�kL2 	 ��; k�Nj �t� 
 �Nj
1 �t�kL2

	 ��

then stop. Note that �x, �u, ��, and �� are not necessarily the same as
those used in the Jackson stopping criterion. This error-estimation
method uses all the spectral coefficients from the current and
previous runs. Therefore, it is expected to be more accurate than the
Jackson stopping criterion, which uses the last spectral coefficient
only.

Remark 9: Several other variations of the L2 stopping criterion
may be used. For instance, the L2 error can be normalized by the L2

norm of the signal, and the relative error may be used as a stopping
criterion. The L2 norm of a given polynomial signal can be easily
calculated by applyingLemma2with yN1�t� set to zero. Furthermore,
it is not necessary to check all the variables. As a rule of thumb, if the
control is continuous, it is usually sufficient to check the convergence
of the control variables. If the control is discontinuous, a more robust
approach is to apply the test on the states.

Example 2:
Consider the maximum-energy orbit transfer problem initially

proposed and solved byHermann and Conway [48] and later used by
Fahroo and Ross [3] to demonstrate the covector mapping theorem.
This problem is posed as follows:

x T � �r; 	; vr; vt� u� �
�

8>>>>>>>>>>><
>>>>>>>>>>>:

minimize J�x���;u���; tf� �
 1
2
�vr�tf�2� vt�tf�2� � 1

r�tf�

subject to _r� vr
_	� vt

r

_vr� v2t
r

 1
r2
�A sin�
�

_vt�
 vrvt
r
�A cos�
�

�r�0�; 	�0�; vr�0�; vt�0�� � �1:1;0;0; 1�����
1:1
p �

(21)

where r is the radial distance, 	 is the true anomaly, vr is the radial
velocity, vt is the transverse velocity, and 
 is the thrust steering
angle. The final time is tf � 50 and A� 0:01 (see Fig. 5).

The initialization step was successfully completed. The results of
the spectral algorithm are listed in Table 2, inwhich e
�t� denotes the
difference between two consecutive iterations. After four iterations,
the preset tolerance (�u � 0:001) is satisfied. The final optimal
control and trajectory are shown in Fig. 6.

C. Other Stopping Criteria

It is possible to develop and implement many other stopping
criteria. For example, from Theorem 1, the optimality of the discrete
solution can be verified by checking the convergence property of the
Nth-order interpolating polynomial sequence, which in turn can be
numerically verified by the convergence property of the spectral
coefficients. Another stopping criterion may be developed by
monitoring the changes in the cost function: when the improvements
in the cost values are sufficiently small, the iteration may be
terminated.

Although it is possible to develop a large number of stopping
criteria, the natural question is ofwhich one to choose. To answer this
question, it is important to recognize that each of the proposed error-
estimation methods and their corresponding stopping criteria have
different features. For instance, the cost function typically converges
much faster than the state or control variables. Thus, if the algorithm
is terminated based on the error of the cost function alone, it is
possible that the states or controls may not have yet converged. That
is, accuracy of the cost function does not guarantee accuracy in the
state and control variables, but the converse is usually true.
Furthermore, the state variables in optimal control typically converge
one order faster than the control variable. These discussions appear to
suggest that it is safest to use a stopping criterion based only on the
convergence of the controls. Although this is theoretically sound, it is
not entirely practical, because we usually desire controls to converge
in theL1 norm, and error estimates in this norm are not only difficult
to develop, but the number of nodes needed forL1 convergencemay
be excessively large [49]. Thus, a more practical approach to
convergence is not to use a single stopping criterion for all problems,
but to combine all possible choices to form a criteria bank. When all
of the convergence criteria are met, the algorithm terminates.
Selecting proper default values for a wide range of problems for the
criteria bank is an open problem. Although this research is ongoing,
the results so far indicate that the spectral algorithm is a viable
approach for PS methods for optimal control.
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v

(0, 0)

β

θ

reference

Fig. 5 Schematic of the parameters for the orbit transfer problem.

Table 2 Estimated errors for problem (21) with increasing

number of nodes

Iteration Nodes Estimated ke
�t�kL2 Estimated
ke
�t�kL2
k
�t�kL2

2 40 2:300 � 10
2 1:577 � 10
1

3 50 3:345 � 10
3 2:294 � 10
2

4 60 2:976 � 10
4 2:042 � 10
3

5 70 2:490 � 10
5 1:707 � 10
4
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VI. Optimal Attitude Control of NPSAT1 Spacecraft

NPSAT1 is a multipurpose small satellite being built at the Naval
Postgraduate School, and it is scheduled to be launched in 2008. It is
currently in its assembly stage. One of the purposes of NPSAT1 is to
serve as a testbed for advanced control algorithms. The spacecraft
uses magnetic torque rods for attitude control (see Fig. 7). Because
this is a highly nonlinear problem with no analytic solution for
optimal control, it provides us with a practical means to test many of
the ideas proposed in the previous section. Choosing the standard
quaternion and body rates as the state variables, the dynamic
equations of motion for NPSAT1 are given by [50]

_q1�t��1
2
�!x�t�q4�t� 
 !y�t�q3�t� � !z�t�q2�t� � !0q3�t��

_q2�t� � 1
2
�!x�t�q3�t� � !y�t�q4�t� 
 !z�t�q1�t� � !0q4�t��

_q3�t� � 1
2
�
!x�t�q2�t� � !y�t�q1�t� � !z�t�q4�t� 
 !0q1�t��

_q4�t� � 1
2
�
!x�t�q1�t� 
 !y�t�q2�t� 
 !z�t�q3�t� 
 !0q2�t��

_!x�t� �
I2 
 I3
I1

�
!y�t�!z�t� 
 3

�

r30
C23�q�t��C33�q�t��

	

� 1

I1
�Bz�q�t�; t�u2�t� 
 By�q�t�; t�u3�t��

_!y�t� �
I3 
 I1
I2

�
!x�t�!z�t� 
 3

�

r30
C13�q�t��C33�q�t��

	

� 1

I2
�Bx�q�t�; t�u3�t� 
 Bz�q�t�; t�u1�t��

_!z�t� �
I1 
 I2
I3

�
!x�t�!y�t� 
 3

�

r30
C13�q�t��C23�q�t��

	

� 1

I3
�By�q�t�; t�u1�t� 
 Bx�q�t�; t�u2�t��

where !0 � 0:00108 rad=s is the angular velocity of the orbit with
respect to the inertial frame; �I1; I2; I3� � �5; 5:1; 2� kg �m2 are the
principal moments of inertia of NPSAT1; �� 3:98601�
1014 m3=s2 is Earth’s gravitational constant; r0 � 6938 km is the
distance from the mass center of NPSAT1 to the center of the Earth;
andCij�q� denotes the quaternion-parameterized ijth element of the
matrix

C�q�

�
q21 
 q22 
 q23�q24; 2�q1q2� q3q4�; 2�q1q3 
 q2q4�
2�q1q2 
 q3q4�; q22 
 q21 
 q23� q24; 2�q2q3� q1q4�
2�q1q3� q2q4�; 2�q2q3 
 q1q4�; q23 
 q21 
 q22� q24

2
4

3
5

2 SO�3�

�Bx�q; t�; By�q; t�; Bz�q; t�� are the components of the Earth’s
magnetic field in the body frame

�Bx�q; t�; By�q; t�; Bz�q; t��T � C�q��B1�t�; B2�t�; B3�t��T

�B1�t�; B2�t�; B3�t�� are the time-varying components of the Earth’s
magnetic field in the orbit frame:

B1 �
Me

r30
�cos�!0t��cos��� sin�i� 
 sin��� cos�i� cos�!et��


 sin�!0t� sin��� sin�!et��

B2 �

Me

r30
�cos��� cos�i� � sin��� sin�i� cos�!et��

B3 �
2Me

r30
�sin�!0t��cos��� sin�i� 
 sin��� cos�i� cos�!et��

� 2 cos�!0t� sin��� sin�!et��

whereMe � 7:943 � 1015 Wb �m is the magnetic dipole moment of
the Earth, �� 11:7 deg is the magnetic dipole tilt, i is the orbit
inclination of NPSAT1, and !e � 7:29 � 10
5 rad=s is the spin rate
of the Earth (see [50] for further details). The controls �u1; u2; u3� 2
R3 are the dipole moments on NPSAT1 that are bounded by juij 	
30 A �m2 (i� 1, 2, 3). Clearly, the dynamics of NPSAT1 are quite
complex, with substantial nonlinearities. Note also that the system is
not autonomous. Furthermore, the fact that the quaternions must lie
on S3 is given by the state variable constraint:

q21�t� � q22�t� � q23�t� � q24�t� � 1

Thus, the NPSAT1 control system contains both state and control
constraints.

A benchmark set of endpoint conditions for NPSAT1 is given
by [50]
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Fig. 6 Solution to problem (21) after the spectral mesh-refinement algorithm.

Fig. 7 NPSAT1 undergoing inertia tests at the Naval Postgraduate

School.
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�q�t0�; !�t0�� � �0; 0; 0; 1; 0;
0:0011; 0�
�q�tf�; !�tf�� � �sin��=2�; 0; 0; cos��=2�; 0; 7:725 � 10
4;

7:725 � 10
4�

where �� 135 deg is the principal rotation angle. These endpoint
conditions represent a horizon-to-horizon scan. The objective is to
find the control that minimizes the slew transfer time.

A. Performance Specifications for the Spectral Algorithm

Because of the nature of minimum time control, it is reasonable to
assume that the controls are discontinuous. Therefore, knots are
expected to be added. Denote the state variable as

x � �x1; . . . ; x7� � �q1; . . . ; q4; !x; !y; !z�

Denote the number of segments as s and the number of nodes on each
segment as N0i (i� 1; . . . ; s).

Denote the spectral coefficients of the state variable xr�t� on
segment i as fari;jgj�1;...;N0i . Then, on segment i, the normalized last

coefficients for the state variables (averaged over the dimension of x)
are

ei ≜
1

7

X7
r�1

� jari;N0i j
maxfjari;jj; j� 1; . . . ; N0ig

�
i� 1; . . . ; s

Using

E�maxfei; i� 1; . . . ; sg

as the first error indicator, we set up the desired accuracy as 10
5.

Define the normalized optimal cost improvement as

�J≜




J
Nj 
 JNj
1
JNj






If the improvement of the optimal cost at each iteration is less than
1%, the algorithm stops.

B. Discussion of the Results

The initialization was successful with the following parameters:

N � 50; J� 272:3948 s; E� 4:4254 � 10
4

Following the initiation of the algorithm inSec. IV.B, the locations of
the knots were found as

t0 � �14; 42; 59; 66; 145; 157; 166; 200; 250�

The results from this algorithm are illustrated in Fig. 8. The spectral
mesh-generation algorithm (Sec. IV.C) results in a node distribution
given by

N0 � �10; 20; 12; 5; 56; 9; 6; 24; 36; 16�

and initiates a the second iteration that generates error indicators

E� 3:64 � 10
5; �J� 0:505%

Although the performance specification for J is met, it is clear that E
is still larger than the desired value. This initiates a third iteration that
results in the node distribution given by
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Fig. 8 Illustrating the determination of the location and number of

knots.
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N0 � �15; 30; 18; 8; 84; 14; 9; 36; 54; 24�

At the completion of the third iteration, we get E� 5:29 � 10
7

and the algorithm terminates. The final cost is J� 270:9590 s and
the optimal control and state trajectories are shown in Figs. 9–11.
These results have the same structure as those obtained by
Fleming [50], who also verified the extremality of the results by
way of the standard Pontryagin tests. For the sake of brevity, we
omit a discussion of these tests because they are extensively
discussed by Fleming.

VII. Conclusions

The rapid success of pseudospectral (PS) methods has lead to
higher demands on their performance. A long-standing issue in PS
methods for optimal control has been the absence of a viable
algorithm for escaping Gaussian rules, which provided a
predetermined node distribution while maintaining spectral
accuracy. Although the pseudospectral knotting method provided
an early first step along this direction, algorithmic constructionswere
far from complete. Theoretical advances in PS methods were
necessary to advance the concept of knots. This paper has shownhow
recent developments in PS methods can be exploited to design a
spectral algorithm for PS methods.

Given that mesh-refinement algorithms are some of the most
challenging problems in computational optimal control, there is no
doubt that they will continue to be so for a very long time. Although
the spectral algorithm proposed in this paper solves a few long-
standing problems in PS methods, it has also exposed a number of
open issues in theory, computation, and algorithmdesign. There is no
doubt that these issues will occupy researchers for a very long time.
Nonetheless, it is easy to conclude that this paper has shown, for the
first time, how to integrate theoretical advances in PS methods
toward the construction of a heretofore-absent algorithm for spectral
mesh refinement.
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