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Second-order nearly orthogonal Latin hypercubes for
exploring stochastic simulations
AD MacCalman1*, H Vieira2 and T Lucas3

1United States Military Academy, West Point, NY, USA; 2Technological Institute of Aeronautics, São José dos Campos,
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This paper presents new Latin hypercube designs with minimal correlations between all main, quadratic, and two-way interaction
effects for a full second-order model. These new designs facilitate exploratory analysis of stochastic simulation models in which
there is considerable a priori uncertainty about the forms of the responses. We focus on understanding the underlying complexities
of simulated systems by exploring the input variables’ effects on the behavior of simulation responses. These new designs allow us
to determine the driving factors, detect interactions between input variables, identify points of diminishing or increasing rates of
return, and find thresholds or change points in localized areas. Our proposed designs enable analysts to fit many diverse metamodels
to multiple outputs with a single set of runs. Creating these designs is computationally intensive; therefore, several have been
cataloged and made available online to experimenters.
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1. Introduction

The field of statistical design of experiments (DOE) has applica-
tions in all areas of research. Scientists use DOE to help them
understand how the world works through observation in the areas
of behavioral, social, and natural sciences, engineering, medicine,
finance; manufacturing transportation, and many others. DOE
allows us to efficiently learn about and characterize the complex
nature of our world. As computers become progressively more
powerful and affordable, they have become an increasingly
valuable instrument for experimentation (Lucas et al, 2015).

Computer simulations provide important insights in the areas
mentioned above when physical experimentation is not possible
or cost effective. Simulations are simplified representations of
reality, programmed on a computer, which are regularly used to
find optimal settings, make predictions, develop an understanding
of a particular simulation model or system, and discover robust
decisions or policies (see Sacks et al (1989) and Kleijnen et al
(2005)). Simulation is a common technique for studying prospec-
tive systems or scenarios. There are countless discrete-event
simulations that are highly stochastic and likely involve dozens
(or even many more) input factors (Law, 2007). One of the
largest users of simulation is the United States Department of
Defense (DoD), which has invested many billions of dollars in
modeling and simulation. DoD uses simulations to help test war
plans, decide what equipment to acquire, train personnel, study
doctrine, and potential operational concepts, and much more

(see www.msco.mil and National Research Council (2006)).
Indeed, the United States Navy lists over 900 models and
simulations in its online modeling repository (nmso.navy.mil/
NavyMSRR.aspx), many of which are stochastic. Simulation’s
utility is not limited to defense—stochastic simulation is widely
used to model prospective systems in industry, academia,
scientific research, and elsewhere. Simulation assists decision
makers in understanding and reasoning about extremely complex
systems and processes (Bankes, 1993).

A common objective when analyzing these simulations is to
identify the factors (ie, input variables) that significantly affect the
response (ie, output variable) and, for those that do, determine the
nature of the relationship. Several statistical methods can fit a
functional model of the simulation response, such as parametric
polynomial response surface approximation, neural networks,
frequency domain methods, and Gaussian Processes (GP). Such a
model is commonly referred to as a metamodel (model of a
model) or a surrogate model. Barton (1998) said that the most
common way to quantify the relationship between a stochastic
simulation’s input factors and a response is to fit a parametric
polynomial function using the linear regression modeling
method. These polynomial functions have readily interpretable
parameter coefficients that indicate the rate of change of a given
factor while all other factors are held constant. The magnitude
and sign of the main-effect coefficients, along with their higher-
order-term coefficients, express the nature of the input factor’s
effect on the response. These coefficients provide insight into
which factors matter, whether they increase or decrease the
response, whether there are synergistic effects between two or
more factors, or if a factor yields diminishing or increasing rates
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of return. Other simulation objectives may include finding
optimal settings and making predictions. For an in-depth review
of the classic and modern designs used for simulation experi-
ments, see Kleijnen (2005) and Kleijnen (2008a).

Another metamodeling technique is the GP model. GPs are
often used for predicting the response of deterministic simula-
tions. The GP constructs predictions that are a weighted combi-
nation of the observed values depending on an underlying
correlation structure. GP models have primarily been used to
predict deterministic simulations, but more recently have been
applied to stochastic simulations. Beers and Kleijnen (2003)
demonstrate how GP performs better than the polynomial
model at predicting random simulation output for a given test
case. They also point out that the polynomial model is an
attractive statistical method when looking for explanations,
screening factors, or validating simulation models. Applying
GP to stochastic simulations is an ongoing area of research
(Kleijnen, 2008b; Ankenman et al, 2010). The type of design and
functional model we use is determined by the goal of the
simulation study. Since our goal is to understand behavior,
we often use polynomial models to approximate the functional
form of the input/output relationship over a range of inputs
because they can describe the nature of the simulation complex-
ities with parametric coefficients that are easier to interpret; in this
paper, we propose new designs that meet this goal, while
simultaneously exploring the entire design region to find interest-
ing behavior.

A good metamodel is one that makes parsimonious use of the
input factors and is simple to understand (Sanchez, 2008). The
most common polynomial model used to describe response
surfaces is the second-order model, which includes main effect,
quadratic, and two-way interaction terms. These second-order
models provide a rich variety of functional forms that can
represent surfaces with global or local maximums and mini-
mums, rising or stationary ridges, and saddles (Myers et al,
2009). The terms within the second-order model provide valuable
insights on important interactions (eg, synergies) and trends such
as diminishing or increasing rates of change. Having the ability to
quantify interactions and non-linear trends can provide valuable
insights to the systems analyst. Siggelkow (2002) studied the
implications of misperceiving interactions between system activ-
ities and concludes that uncertainty about activities that comple-
ment each other are more costly than uncertainties about activities
that substitute each other.

The metamodels we can fit—and hence the insights that we
can glean—depend critically on the design. For example, we
cannot identify a quadratic response for a quantitative input
variable from a two-level design. In such a case, inferences based
on the implicit assumption of linearity may be erroneous. The
error that occurs when our assumed model is wrong (typically
due to underfitting) is known as ‘model bias’. We desire designs
less susceptible to model bias and with the ability to detect it
when it occurs. Thus, we prefer designs that allow us to fit a
breadth of metamodels. Another difficulty that experimenters
face while fitting polynomial metamodels is correlations among

the inputs. When two inputs are highly correlated, it is difficult
(or impossible) to distinguish their effects on the response.
Orthogonal designs overcome this problem, and are thus desired.
An additional challenge occurs when there might be localized
effects, such as a threshold or changepoint. To increase the odds
of detecting localized effects, we favor designs that sample
throughout the experimental region. Such designs are called
space-filling. This paper presents a genetic algorithm (GA) for
generating designs that allow experimenters to fit a full second-
order polynomial with nearly uncorrelated coefficient estimates
between all terms, while adequately exploring the interior of the
design region and allowing higher-order terms (ie, above quad-
ratic) on a modest number of factors.

There are numerous applications of GAs that construct
computer-generated designs. Some of these applications focus
on optimizing the alphabetical criterion that find good coefficient
estimates or predicted response estimates for a specified model.
Techniques to construct D-optimal designs using GAs have been
shown to outperform other traditional optimal procedures that
require the search space to fit a particular structure (Heredia-
Langner et al, 2003). GAs were used to find optimal designs that
are robust across a specified number of different models
(Heredia-Langner et al, 2004). GAs have constructed designs
involving mixture and process factors that include control and
noise factors (Goldfarb et al, 2005). Other GAs have focused on
optimizing space-filling metrics. Morris and Mitchell (1995) used
simulating annealing to find designs with a distance metric for the
fitness function. Jin et al (2005) developed an enhanced stochas-
tic evolutionary algorithm with efficient methods for evaluating
optimality criteria. Joseph and Hung (2008) proposed a modifica-
tion of the simulating annealing algorithm by using a ‘smart
swap’ method, rather than randomly swapping design points.
In addition, they used a weighted average of a distance metric
and the average column correlation among the main effect terms
as their fitness function. Moon et al (2011) developed algorithms
for generating maximin Latin hypercube and orthogonal designs
that show improvements to the existing algorithms under a
variety of criteria. These aforementioned algorithms construct
designs that optimize a number of different criteria. Our algo-
rithm has a different purpose; it constructs space-filling designs
that minimize the correlations between all terms in a full
quadratic model.

The article is organized into six sections. Section 2 provides
general background and explains the benefits of flexible designs
for uncertain response surfaces. Section 3 explains the GAwe use
to construct our proposed designs. Section 4 compares the
performance of our designs against eight other commonly used
designs for complex responses. Section 5 catalogs the designs,
while the final section summarizes the results.

2. Background

This section describes the experimental setting, discusses how
parametric polynomial metamodels and non-parametric partition
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trees are used to characterize complex simulation behavior,
reviews some of the common designs used to estimate second-
order models, defines Latin hypercubes, and explains the metrics
we use to assess our designs.

2.1. The experimental setting

We consider experimental settings involving a stochastic,
computer-based simulation in which users specify the input
values and analyze the outputs. The design matrix is the complete
specification of input settings for each factor over a set of runs.
We assume the design is specified before the experiments being
conducted and that we will not perform sequential designs. The
simulation being investigated contains k continuous variables that
we wish to vary in n computational experiments over a k
dimensional hyperrectangle. We denote the n× k design matrix
as X, where row i of X corresponds to the ith experimental run,
and column j represents the jth input variable. Thus, Xi

j is the
value the experimenter sets for factor j in run i. We further denote
the jth column ofX as Xj and the ith row as Xi. Finally, let Yi be an
outcome generated by the ith experiment and Y be the vector
formed by all Yi.

2.2. Characterizing complex behavior with polynomial
metamodels and partition trees

If we assume the response surface is a linear combination of the
input factors, then the metamodel has the following form:

Y ¼ β0 +
Xk
j¼1

βjX
j + ϵ; (1)

where β0 is the intercept term, and βj is the coefficient of the X
j

term and represents a factor’s rate of change or effect on the
output response Y when all other factors are held constant.
We will refer to (1) as a main-effects metamodel. During an
exploration study of a simulation, these βj coefficients provide

the insights that help describe the response behavior. The error
term ϵ represents other sources of variation not accounted for by
the factors. This could be because of a lack of fit or the noise
induced by pseudorandom variables in the simulation.

Complicated simulations are rarely well represented by a main-
effects response surface. A quadratic second-order model is often
used to model real-world problems and it has the following form:

Y ¼ β0 +
Xk
j¼1

βjX
j +

Xk
j¼1

βjjðXjÞ2 +
Xk - 1
i¼1

Xk
j>i

βijX
iXj + ϵ; (2)

where (Xj)2 is the quadratic term for the jth input factor, βjj is its

coefficient, XiXj is the two-way interaction between the ith and jth
input factors, and βij is the coefficient of X

iXj. We will refer to (2)

as a second-order or full quadratic metamodel. The quadratic
term’s coefficient describes a non-linear relationship that may
indicate a factor’s diminishing or increasing rate of change on the
response. The coefficient of an interaction term reveals a factor
effect’s dependence on the setting or level of another factor.

In order to estimate higher-order models, we must expand the
design matrix to include additional columns that represent the
higher-order terms. Moreover, the design must be such that all of
the parameters are estimable.

Least squares estimation is the most common method to
estimate the β coefficients. The stability of these estimates
depends on the correlations among input factors within the design
matrix (Ryan, 2007). Therefore, we desire designs that have
minimal correlation among all terms in our metamodel. The
number of terms needed for a full second-order model increases
according to the following expression:

p ¼ 1 + 2k + k
k - 1
2

� �
; (3)

where p is the number of terms and k is the number of factors.
However, in practice, most fits require far fewer terms. Using an
algorithm to search for a design that minimizes the maximum
absolute pairwise correlation for a full quadratic model is
significantly more difficult than for a main effects only model or
a main effects with the quadratic terms added to it; the algorithm
must evaluate each pairwise comparison For example, there are

as many
p
2

� �
pairwise correlation comparisons for a 15-factor

full quadratic model as there are for a 135-factor main effects
only model (9045 comparisons).

A second-order metamodel approximates a smooth, non-linear
response surface, but cannot account for a three-way interaction,
a cubic term, a discontinuous step function that may exist in the
output, or many other relationships. A three-way interaction can
describe the synergistic effect of three factors, while a cubic term
can indicate the presence of an inflection point. Step functions, or
thresholds, are common when dealing with complicated response
surfaces. Identifying the presence of a step function can lead to
important insights when analyzing a system. For example, during
the test and evaluation of the maximum allowable weight of a
cargo parachute, the rate of decent may increase linearly or non-
linearly as the weight increases up until a weight threshold. Once
we exceed this threshold, the parachute will collapse and increase
or step up the rate of decent by a significant amount. Identifying
the weight threshold for a cargo parachute is therefore critical for
those involved with its use. For an example of threshold detection
using a Latin hypercube design in software testing, see Cioppa
and Lucas (2007). In order to account for an existing threshold,
we can include a step function in the metamodel with the
following form:

Y ¼β0 +
Xk
j¼1

βjX
j +

Xk
j¼1

βjjðXjÞ2 +
Xk - 1
i¼1

Xk
j>i

βijX
iXj

+ βsI Xs>thresholdð Þ + ϵ; ð4Þ
where I(a) is an indicator function that has a value of 1 if a is true,
and 0 otherwise. For example, if the value of Xs exceeds the
threshold, the response will step up in the amount of βs. Space-
filling designs are particularly useful for identifying the presence
of step functions.
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Partition trees are an excellent way to identify thresholds. For
continuous variables, a partition tree finds the optimal split in a
data set where the distance between the two group means is the
greatest (Sall, 2007). Each split occurs at a factor level that
separates the data into two groups, one below and one above the
split level. Figure 1 shows a second-order polynomial with a step
function and a partition tree that finds where the discontinuous
step function occurs.

Partition trees, when used in conjunction with regression
analysis, can be powerful tools for finding metamodels involving
step functions. If we find a split that explains the data’s variability
with a partition tree, then we can create a new factor (an indicator
variable) that has value 0 if x is less than the threshold identified
by the partition tree, and 1 otherwise. The indicator variable
becomes a term in the metamodel that may be significant and
help explain some of the variance. In order to take full advantage
of partition trees, we must use space-filling designs to efficiently
explore the interior of the design region in order to find
interesting thresholds.

2.3. Common designs used to estimate second-order models

The most frequently used design for the full second-order model
is the Central Composite Design (CCD) (Myers et al, 2009). The
CCD has numerous applications in response surface methodol-
ogy (Box and Draper, 1987). The full factorial CDD has 2k

corner points, 2k axial points that normally extend beyond the
corner points, and a selected number of center points. For the
calculations in this paper, we assume only one center point is
used. The Faced CCD (FCCD) has the axial points positioned at
the face of the design region so that the corner points are not
collapsed inside the established factor ranges. The FCCD is used
when the experimental region cannot extend beyond the corner
points. Another popular classic second-order design is the

Box-Behnken Design (BBH) (Box and Behnken, 1960).
Recently Jones and Nachtsheim (2011) developed an algorithm
to generate large three-level designs (upto 30 factors are available
online) that ‘provides estimates of main effects that are unbiased
by any second order effect’. Moreover, they quantify the correla-
tions between quadratic and interaction effects.

Computer-generated optimal designs are often used when
traditional designs are not applicable. For example, when there
is a non-rectangular experimental region that has factor con-
straints, qualitative factors, or if we want to fit a non-standard
model that excludes a subset of quadratics or interactions
(Myers et al, 2009). The computer typically generates a design
by using a point exchange algorithm that maximizes a specified
criterion for a given model, usually first, second, or higher
order. Furthermore, a specified form of the covariance matrix is
often assumed. The types of criterion used are known as the
alphabetic optimality criteria, which typically minimize some
function of the covariance matrix of the coefficient estimates. For
example, a D-optimal design minimizes the determinant
of the covariance matrix, while the I-Optimal design minimizes
the average prediction variance, both for a prespecified
model (usually a main-effects model with constant variance).
For a detailed discussion of optimal design criteria, see Atkinson
et al (2007). It is worth noting that despite the ‘optimal’ that
appears in these design names, many are derived heuristically and
may not, in fact, be best at achieving their stated optimality
criteria.

Computer-generated optimal designs can work very well
when we know the model form and error structure; perhaps
because we are experimenting over a small experimental region
where simple models suffice. Because we are focused on
understanding stochastic simulations over broad experimental
regions where the response mean and variance can be much more
complex, we cannot assume the model form and therefore

Figure 1 The chart on the left shows a quadratic polynomial with a step function, I(a), that represents an indicator function with a value of
1 if a is true and 0 otherwise. The chart on the right shows the split in the data where the difference in the response mean for each group is
the greatest.
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do not prefer to use so-called optimal designs for exploratory
analysis.

2.4. Latin Hypercubes and other space-filling designs

The traditional second-order designs mentioned thus far typically
experiment only at the corners, faces, and center of the design
space. While not constrained to, the optimal designs often
generate such designs. Indeed, for the examples later in this
paper, all of the JMP generated optimal designs for a full second-
order model only sample at the corners, faces, and center of the
design space. Space-filling designs are better suited for identify-
ing unknown response surfaces where multiple complex forms
and localized effects are possible (Myers et al, 2009). Some of the
popular space-filling designs include the sphere-packing, uni-
form, maximum entropy, and maximin distance Latin hypercube
designs. Sphere-packing designs maximize the minimum dis-
tance between pairs of design points (Johnson et al, 1990).
Uniform designs scatter the design points as uniformly as
possible (Fang, 1980). The maximum entropy designs maximize
the information contained in the distribution of a data set (Shewry
and Wynn, 1987). The maximum distance Latin hypercube
designs attempt to maximize the minimum distance between
design points while requiring even spacing for each factor level
(Morris and Mitchell, 1995). All of these designs are available in
the SAS Institute’s JMP software (see www.jmp.com). While the
LHS notation is generally used more broadly in Latin hypercube
sampling, in this paper we are referring to the maximin distance
Latin hypercubes JMP creates.

As our designs are based on the Latin hypercube family, we
detail how they are created. McKay et al (1979) first proposed
the Latin hypercube design and described it as follows:
For each input variable Xj, ‘all portions of its distribution [are]
represented by input values [by dividing its range into] n
strata of equal marginal probability with 1/n, and [sampling]
once from each stratum’ (McKay et al, 1979, p. 56). Following
Koehler and Owen’s (1996) notation, the ith element in the jth
column, Xi

j, is determined by Xi
j=Fj

−1((πj(i)−Uij)/n), for i=1,…,n
and j=1,…,k, where πj(1),…,πj(n) is one of the n! possible random
permutations of 1,…,n in which all n! permutations
are equally likely. Fj, for j=1,…k, are continuous and invertible
distribution functions. Uij, for i=1,…,n and j=1,…,k are inde-
pendent and identically distributed uniform [0,1] random variables.

Many analysts choose Fj to be a uniform distribution and take
a fixed value in each stratum (eg, the median). In this situation,
the design points all fall on a lattice in k-space. In such a case,
creating a Latin hypercube corresponds to independently gener-
ating k random permutations of the first n natural numbers and
appropriately scaling the columns to cover the factors’ ranges.
This uniform spacing guarantees that for each factor j, assuming

its scaled range is [a,b], 8x 2 ½a; b�; max
i¼1;¼ ;n

x -Xj
i

�� ��⩽ðb - aÞ=
ð2ðn - 1ÞÞ: Therefore, if a response to a factor has a sharp
threshold, these designs will closely bracket it. Moreover, with

an LH, at the extreme, an analyst could fit an n− 1 degree
polynomial to a single input variable.

There are several reasons why we choose to base our designs
on the Latin hypercube family. LHs have been extensively used
within the computer experiments literature (Santner et al, 2003).
Santner et al (2003) believe that LHs are popular because they are
easily obtainable, for example, they are available in many
simulation software packages, and they have no projection
redundancy when their design points are projected onto any
single dimension. Furthermore, they have few restrictions on
n and k. Beers and Kleijnen (2004) indicate that the Latin
hypercube design is the simplest and most popular design used
for the GP model. Challenor (2013) uses Latin hypercubes to
validate GP models. In addition, the resultant output data allow
analysts to fit many different diverse models to multiple uni-
variate response outputs from a single experimental set (Sanchez
et al, 2012).

Unfortunately, a given Latin hypercube need not have good
correlation or space-filling properties. To address this, a number
of researchers have developed algorithms to reduce or eliminate
correlations among columns of a Latin hypercube and improve
on their space-filling properties (Florian, 1992; Owen, 1994; Ye,
1998; Steinberg and Lin, 2006; Cioppa and Lucas, 2007; Joseph
and Hung, 2008; Pang et al, 2009; Sun et al, 2009; Moon et al,
2011; Vieira, et al, 2011; Hernandez et al, 2012; Vieira, et al,
2013; Yang et al, 2013). A Latin hypercube with no correlation
between any of its input variables is an orthogonal Latin
hypercube (OLH). A nearly orthogonal Latin hypercube (NOLH)
is defined as a Latin hypercube with a maximum absolute
pairwise correlation no greater than 0.05 between any two input
variables (Hernandez et al, 2012). Although this criterion is
somewhat arbitrary, designs meeting it suffer minimal adverse
multicollinearity effects.

Sun et al (2009) indicate that when second-order effects are
present, a Latin hypercube must satisfy the following two
properties: (a) each main effect term in a design must be
orthogonal to each other; and (b) each main effect term in a
design must be orthogonal to each of the quadratics and two-way
interaction terms. Yang et al (2013) develop sliced Latin
hypercubes with these properties in situations in which the
number of factors is a power of 2. However, there is a third
property that the above do not consider: (c) each quadratic term is
orthogonal to other quadratic term, each two-way interaction term
is orthogonal to each other, and each quadratic term is orthogonal
to each two-way interaction term. In order to properly analyze a
full second-order model, a design must have all three properties.
Creating space-filling designs with properties (a), (b), and (c) is
much more harder than if we limited the properties to just
(a) and (b); this is due to the quadratic growth of the number
two-way interaction terms as k increases. The many research
efforts mentioned above create Latin hypercubes that satisfy
properties (a) and also sometimes (b)—with some relaxing the
orthogonal requirement to be nearly orthogonal. Currently,
there are no orthogonal or nearly NOLH designs in the literature
that satisfy properties (a), (b), and (c) simultaneously; the
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designs proposed in this paper are nearly NOLH designs with all
three properties.

2.5. Design assessment metrics

Our algorithm focuses on creating LH designs that minimize the
pairwise correlations for the coefficient estimates a full second-
order model (ie, Equation (2)). Thus, we need to control the
correlations among all pairs of columns in the second-order
regression matrix, which we will denote as Z. The first k columns
in Z are the design matrix X, for the main effects terms. The
quadratic terms in Z require an additional k columns that are the
squares of the columns in the design matrix. Finally, the last
k(k− 1)/2 columns consist of the element-by-element product of
the columns of X, thereby enabling the estimation of the two-way
interactions. Therefore, Z is the n× (2k+ k(k− 1)/2) regression
matrix needed to estimate the βs in Equation (2)—with the
intercept estimated by augmenting Z with a column of ones. The
correlation coefficient between any two vector columns, Zi and
Zj, in regression matrix Z is:

ρij ¼
Pn

b¼1 Zi
b - z

i
� �

Zj
b - z

j
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
b¼1 Zi

b - z
i

� �2Pn
b¼1 Zj

b - z
j

� �2q ; (5)

where zi and zj are the mean of the ith and jth columns in Z.
Ideally, we would like a design in which ρij= 0 for i= 1,…,2k+ k
(k− 1)/2 and j= 1,…,2k+ k(k− 1)/2, with j≠i. We quantify the
degree of non-orthogonality by calculating the maximum abso-
lute pairwise (map) correlation between the columns of regres-
sion matrix Z:

ρmap Zð Þ ¼ max ρij
�� ��; 8ði≠ jÞ
 �

: (6)

A design with a ρmap(Z) near zero will minimize confounding
factors and result in nearly independent and more precise
coefficient estimates in the second-order regression metamodel,
as well as enhance the performance of partition tree analysis (Kim
and Loh, 2003). Other authors (eg, Owen (1994) and Joseph and
Hung (2008)) minimize the sum (or average) of the squares of the
pairwise correlations (for a first-order model). We prefer to
minimize ρmap(Z) because it bounds the worst-case correlation.
A design can have low average correlation, but a few unaccep-
table values—especially when there are a large number of
pairwise correlations, as is the case when fitting second-order
models to a model with numerous factors.

Low correlation, even orthogonality, does not guarantee good
space-filling. The modified L2 discrepancy (ML2) is a space-
filling measure often used to assess how well a design covers the
entire design region; the smaller the value, the better a design’s
space-filling property (Hickernell, 1998). The ML2 is a modified
version of the L∞ discrepancy. Fang et al (2000, p. 238) state that
discrepancy is a measure of uniformity and the L∞ ‘is probably
the most commonly used measurement for discrepancy … and
has been universally accepted in quasi-Monte-Carlo methods and
number theoretic methods’. The L∞ is equivalent to the
Kolmogorov-Smirnov statistic in goodness of fit testing between

the empirical distribution function defined by the n design points
and the uniform distribution function over the experimental
region. Because the L∞ discrepancy is too computationally
expensive for high dimensions, this article uses the ML2 (with
the designs normalized to [0,1] in each dimension) to assess a
design’s space-filling property. The ML2 metric is calculated
using the following expression:

ML2 ¼ 4
3

� �k

-
21 - k

n

Xn
d¼1

Yk
i¼1

3 - x2di
� �

+
1
n2

Xn
d¼1

Xn
j¼1

Yk
i¼1

2 -max xdi; xji
� �� �

: ð7Þ

A design with a smaller ML2 is preferred. By its construction,
if a design has a lowML2, then it tends to have good space-filling
properties. In Section 4, we use ρmap(Z) and ML2 to compare our
second-order NOLH designs with the eight traditional, optimal,
and space-filling designs mentioned in Sections 2.3 and 2.4.

3. Genetic algorithm (GA)

Our goal is to minimize Equation (6) while using a Latin
hypercube design. The algorithm creates designs that minimize
the maximum absolute pairwise correlation of the columns in Z
while sampling once within each of n equally spaced strata for
each of the k factors. Solving this is challenging since the
objective function is non-linear and not differentiable
everywhere.

To construct the second-order NOLH algorithm, we utilize the
principles of GAs (Holland, 1975). GAs are different from
traditional optimization methods. They are meta-heuristics that
do not guarantee an optimal solution, but they often find attractive
solutions in complicated environments where linear and non-
linear mathematical programming cannot (Michalewicz and
Fogel, 2010). In our domain, an optimal solution is a Latin
hypercube design that has an orthogonal regression matrix, Z,
which includes the quadratics and two-way interactions. Unfortu-
nately, these designs have not yet been found or proven to exist
for an arbitrary number of design points, n. Because our goal is to
find good (nearly orthogonal) designs and not necessarily optimal
ones, we choose to use GAs to find attractive design solutions
with a minimal ρmap(Z) and good space-filling properties.

A GA uses random selection as a guide to finding better-
performing solutions from a population of candidate solutions.
The algorithm iteratively generates new populations using attrac-
tive solution characteristics from the previous generation; the
intent is to evolve solutions that perform better with each new
generation. The user measures performance using a predefined
fitness value that has a functional form with no limitations. Our
algorithm starts with one randomly generated, centered design
column and a population of randomly generated, centered
candidate columns. We center a column (around zero) by
subtracting its mean from each of the entries. If we did not center
the columns then they would be highly correlated with their
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quadratic term. Our GA solution is that column which, when
added to the existing design, results in the lowest ρmap(Z).
The solution for the other GAs mentioned in Section 2 is a
complete design for a given n and k, where the number of possible
solutions is (n!)k. Because our GA solution is only one column that
is added to the design incrementally, we reduce the search space
significantly by limiting the number of solutions to (n!).

Within a GA, an operator is a set of instructions that performs
actions on solutions to evolve them into better performers
(Goldberg, 1989). Our algorithm uses two types of operators to
modify the structure of a given column. The swap operator swaps
or exchanges a pair of values within the jth column at random
positions. The jiggle operator adds a small value to the element in
a randomly selected row of the column, while subtracting the
same amount from a different randomly selected row. We define
the term jiggle as a slight perturbation to two of the values within
a column. The jiggle operator does not perturb the lowest and
highest values in Xj, so that the desired experimental ranges do
not change. The perturbation amount is selected from a uniform
distribution. The upper and lower bounds of the uniform
distribution ensure that the values remain in their original
interval. For example, if the upper and lower bounds are set to
+ /− 0.5, then the jiggle operator can never perturb a value set to 2
to be greater than 2.5 or less than 1.5. This preserves the idea
that a Latin hypercube samples once in each interval
of the range. These bounds on the jiggle operation also preserve
the design’s space-filling properties. In addition, subtracting the
same amount from one value that we add to another preserves
the column’s mean.

In order to create a new population of column solutions, the
algorithm selects attractive columns from the old population and
creates new columns by modifying the selected column’s
structure using the swap or jiggle operators. Each column in the
old population has a probability for selection that is proportional
to its performance. In this way, the algorithm allows any
candidate to be selected, but places a higher selection probability
on candidates that perform well. A column’s performance is
measured by its fitness value. The fitness value is defined as the
complement of the maximum absolute pairwise correlation
(1− ρmap(Z)), so that the higher the fitness value, the higher the
selection probability. In order to increase the chance of selecting
the columns with a higher fitness, we redefine the fitness value by
using a linear ranking defined as:

fitness tð Þ ¼ Min + ½Max -Min�½kstar - t =� �n - 1�; (8)

where fitness(t) is the redefined fitness value of the tth column;
Max and Min are the maximum and minimum of the original
fitness values from the old population (1− ρmap(Z)), respectively;
kstar is the number of columns in the old population; and t is the
rank-ordered index of the original fitness values (Vieira, 2008).

The search for a candidate column solution with the lowest
ρmapðZÞ; is highly dependent on the randomly generated, initial

population. As the number of generations increase, the best-
performing column converges to a local solution. In order to
increase the chance of finding a low ρmapðZÞ;the algorithm

performs a limited number of exploration trials, each with its
own initial population and a predefined number of generations.
The algorithm then exploits the population with the best-
performing column solution by continuing for a set number of
additional generations. Each of the exploration and exploitation
generations utilizes the swap operator only. After all the swap
generations are complete, the best-performing column is
appended onto X and the algorithm searches for the next column.
Once X contains the designed number of k columns, the
algorithm then performs a set number of generations using the
jiggle operator on each column in X.

The choice of n and k depends on the experimental conditions.
The experimenter chooses k based on the objectives of a study.
A large k implies the need for a larger n. Because of experimental
constraints imposed by time and resources, a design may need to
be as small as possible for a given k. To find the smallest n for a
given k, we performed several iterations of the algorithm by
bracketing n within a chosen range until we found the lowest
ρmap(Z). For ease of use, we cataloged designs with the smallest n
that obeys our definition of nearly orthogonality (ρmap(Z)< 0.05)
for k from 3 to 12. Now that we defined the solutions, operators,
selection probabilities, and fitness values of our GA, we present
the algorithm steps used to find the second-order NOLH designs
for a given n and k:

Step 1: Start with an n×1 design matrix, X with n design points
and one randomly generated Latin hypercube column
(ie, a random permutation of the first n natural numbers).
Center the column at zero; thus, the extreme values in
the column are ± (n− 1)/2.

Step 2: Perform a set number of exploration trials, defined as
numTrials. Each trial has its own initial population of
candidate columns with a size defined as popSize and a
set number of generations defined as numExploreGen.
For each generation, calculate the candidate column’s
fitness within the population. Copy a portion of the
best-performing columns into the next population.
Select a column randomly, using a cumulative distribu-
tion function based on each column’s relative fitness.
Create a pool of new columns by performing the swap
operator on the selected column a random number of
times. Add the best-performing column from the pool
into the next population. The number of swap operations
performed is random and depends on the number of
design points, n; this number is drawn from a uniform
[1,s] distribution, where s= ⌊swapPortion× n⌋ and
swapPortion is set to a value between 0 and 1. The size
of each pool is defined as poolSize. Continue to create
new columns in this same manner; the generation is
complete when the next population is full of newly
created columns.

Step 3: Select the population among the exploration trials that
contains the best-performing column. Exploit the
selected population by performing additional swap
generations (as described in Step 2). The number
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of exploitation swap generations is defined as
numExploitGen.

Step 4: At the completion of the exploitation swap generations,
add the best-performing column to the design matrix, X.
Repeat Steps 2–4 until the designated number of
columns, k, is in X.

Step 5: Select a column, Xj, in X. Create an initial population of
new columns by performing the jiggle operator on the Xj.
The jiggle operator creates new columns by adding a
small amount, ω, where ω=U− 0.5, to a randomly

selected Xj
i1 ; while subtracting the same amount to

another randomly selected Xj
i2 ; U is a uniform [0,1]

random variable and the rows with values ± (n− 1)/2
are excluded from consideration. In order to preserve
the design’s space-filling property, the algorithm
bounds the values to be within + /− a distance from
the original value before any jiggle operation. We

define θ j
i to be the original value from Xj

i before Step
5. The bounded distance is defined as halfWidth and is
the maximum distance a value may be perturbed away

from θ j
i . Setting halfWidth⩽ 0.5 will ensure the values

remain within each of the n equally spaced strata in Xj
i .

Setting halfWidth too high will degrade the design’s
space-filling property, but improve the search for lower

correlations. Ensure that the pair of new values, Xj
i +ω

or Xj
i -ω, is within the range ½Xj

i -ω<θ
j
i<Xj

i +ω�.
Perform the jiggle operation a random number of
times; the number of times is drawn from a uniform
[1,g] distribution, where g= ⌊ jigglePortion × n⌋ and
jigglePortion is set to a value between 0 and 1.
Continue to create new columns in this same manner
until the size of the population is equal to popSize.

Step 6: Perform a set number of jiggle generations, defined as
numJigGen, on the selected column, Xj. For each
generation, calculate each candidate column’s fitness
within the population; copy a portion of the best-
performing columns into the next population. Select a
column randomly using a cumulative distribution func-
tion based on each column’s relative fitness. Create a
pool of new columns by performing the jiggle operator
on the selected column a random number of times (as
described in Step 5). Add the best-performing column
from the pool into the next population. A jiggle genera-
tion is complete when the next population contains
popSize new columns. After numJigGen amount of
generations, if the best-performing column improves
the design’s ρmap, add it to the X. If not, add the
originally removed Xj back to X. Repeat Steps 5 and 6
for each column in X.

Step 7: Repeat Steps 5 and 6 a designated number of times,
defined as jigglePasses.

GAs can take a while to solve. The algorithm’s time depends
highly on n and k as well as the algorithm parameters (denoted in

italics in the above steps). To find the appropriate algorithm
parameter settings, we performed many thousands of experiments
on the algorithm using designs created by our GA. After
extensive experiments and parameter tuning we developed a
unique GA that efficiently constructs our designs. Then, given the
most efficient algorithm parameters we found, by systematic,
brute force, trial and error, the minimum n that produced a
second-order NOLH for k from 3 to 12 (MacCalman, 2013).
These cataloged designs are available for download at harvest.
nps.edu.

Liefvendahl and Stocki (2006) studied algorithms for con-
structing optimal Latin hypercubes by comparing the efficiency
of the column-pairwise (CP) algorithm and the GA for optimized
Latin hypercubes. The CP algorithm iteratively interchanges two
elements in a column, while the GAs they evaluated use the
traditional crossover and mutation operators; an operator is a set
of instructions that performs actions on solutions to evolve them
into better performers (Goldberg, 1989). Both of the evaluated
algorithms operate directly on all columns of a Latin hypercube
design. Goldberg (1989) states that every GA developed for a
particular purpose should have a unique scheme, operators, and
fitness function that will improve the search for better-performing
solutions. Our proposed GA uses elements of both the CP and the
traditional GAs mentioned in Liefvendahl and Stocki (2006)
while having a different scheme, operator, and fitness function.
Our GA scheme operates incrementally on one column at a time
instead of the entire design. By constructing the design columns
sequentially, we reduce the search space from (n!)k to (n!) in
order to improve the search for better-performing solutions.

For a more detailed description of the algorithm and an
in-depth review of its performance (eg, relationships between n,
k, and ρmap(Z)), variability, and timing, see MacCalman (2013).
All told, many thousands of hours were spent finding these
designs within the DoD High-Performance Computing Moder-
nization Program at the Navy DoD Supercomputing Resource
Center (DSRC), Stennis Space Center and the US Air Force
Research Laboratory DSRC, Wright-Patterson Air Force Base.
We implemented the algorithm using JavaTM 2 and made it
available for download at harvest.nps.edu under the Software
downloads link. Thus, users can develop their own custom
designs based on their own needs. For example, one may not
need a ρmap(Z)< 0.05, and thus require a smaller n.

4. Design comparisons

This section compares our new second-order NOLH with the
FCCD, BBH, D-Optimal, I-Optimal, and the following four
space-filling designs: maximin distance Latin hypercube (referred
in this paper as the LHS), Sphere-Packing (Sphere Pack),
Maximum Entropy (Max Entropy), and Uniform. We used
JMPTM 9.0 software to create each of the alternative designs for
our comparison. Because the software uses a stochastic algorithm
to create all the designs except for the FCCD and BBH, we
instantiated the algorithm 100 times for the Sphere Pack,
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Uniform, and LHS designs, and 30 times for the D-Optimal,
I-Optimal, and Max Entropy designs, and selected the one with
the lowest ρmap(Z) to use in the comparisons below.

Figures 2, 3, and 4 compare the designs with the second-order
NOLH using color correlation plots, scatter plot matrices, and a
chart showing ML2 versus ρmap(Z). In order to make a valid

comparison, each design has 4 factors and 25 design points, and
each factor’s range is scaled from − 1 to 1.

Figure 2 indicates that the second-order NOLH has the lowest
ρmap(Z) over all the terms. The other designs may fit accurate
polynomial metamodels, but that may be due to chance if the
terms in the true model coincide with regression matrix columns

Figure 2 Color Correlation Plots. Darker-shaded colors indicate higher correlations (black represents a correlation of 1.0 and white
represents a correlation of 0.0). Each plot shows designs with 4 factors and 25 design points for all second-order terms.

145



4 Journal of Simulation Vol.

that have low correlation. The second-order NOLH has a ρmap(Z)
of 0.032 and, therefore, guarantees that no term in the second-
order model is confounded more than minimally with
another term.

Figure 3 provides a visual perspective of each design’s space-
filling characteristic. By their construction, the FCCD and BBH
designs only sample at the corners, faces, and center of the design
space. While not constrained to this, the I-Optimal and

D-Optimal designs JMP generates also have this feature. As a
result, these four designs cannot fit metamodels containing
polynomials of order greater than two because their third, fourth,
or higher-order regression matrices have columns that are linearly
dependent. Space-filling designs provide information about all
portions of the design space by sampling throughout the region,
which makes them well-suited to fit a variety of models (Santner
et al, 2003).

Figure 3 Design Scatter Plots. The chart shows the designs’ two-dimensional projections of the 4-factor, 25-point design space. The
FCCD, BBH, D-Optimal, and I-Optimal designs have points overlaid on top of each other because they only sample at the corners, faces, and
center.
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Figure 4 shows a plot of the ML2 metric versus the ρmap(Z) for
each of the nine designs. The second-order NOLH’s ρmap(Z)
dominates all other designs for the second-order regression
matrix. In terms of space-filling, the second-order NOLH has an
ML2 very close to the LHS and Uniform design.

The recently developed Latin hypercube designs from Yang
et al (2013) that guarantee orthogonality between ‘all main
effects and any main effect and any quadratic or two-factor
interaction effect’. Thus, a comparison with them is warranted.
These designs use powers of two, and the closest available
variant is the k= 4 and n= 32 OLH. With respect to correlation
for a full second-order model, ρmap(Z)= 0.877, as there are
substantial correlations among quadratic term effects. The space-
filling is quite good, with an ML2 of 0.009. While this is better
than all the designs in Figure 4, it has the advantage of using 32
points rather than 25.

In addition to theML2, we also compared all designs using the
distance metric developed by Morris and Mitchell (1995), and
also used in Joseph and Hung (2008) and Hernandez et al (2012).
Since the results were similar to what the ML2 measure revealed,
an additional figure provides no insight.

5. Cataloged designs

Figure 5 compares a sample of the computer-generated optimal
and space-filling designs created in JMPTM 9.0 with the second-
order NOLH for upto 12 factors with the same number of design
points. We calculated each design’s ρmapðZÞusing a matrix that

includes all second-order terms. JMPTM 9.0 uses different
random seeds for each of the optimal and space-filling design
creation and, therefore, has a different ρmap(Z) or ML2 results for
each generation. Thus, the designs shown are only a single
instantiation that may not have the best ρmapðZÞ orML2. However,

the variability in these measures is low, so the general qualitative

pattern holds across different realizations. For example, the
average ρmapðZÞ of 100 LHS designs with 4 factors and 25 design

points generated using JMPTM 9.0 is 0.35 with a standard
deviation of 0.053; the average ML2 result for the same design is
0.011 with a standard deviation of 0.0006.

We can see from Figure 5 that the second-order NOLH designs
have the lowest ρmap(Z), with excellent space-filling properties
based on its ML2 performance. This makes the second-order
NOLH design very competitive against the other five
design types; the second-order NOLH designs are available
online at harvest.nps.edu under the Software downloads link to
the left. Table 1 summarizes the performance metrics for the
10 designs.

As we noted in the introduction, there are many applications of
stochastic simulations within DoD. There are well over 100
theses from the Naval Postgraduate School that have used
simulations to examine complex military problems (see, harvest.
nps.edu). These problems include systems design decisions,
operational and tactical insights from force-on-force scenarios,
resource allocation, system life-cycle management, and verifica-
tion and validation of simulation models. Nearly all of these
theses utilize a DOE using a NOLH design for exploratory
analysis. After fitting metamodels with a polynomial form,
examining the output landscape using partition trees and other
data mining methods, the results of the exploratory analysis
reveal that input factors impact one or more responses. The key
insights are often interesting interactions between factors, thresh-
olds that occur in local areas of the design region, and factors that
yield diminishing or increasing rates of return. In the future, these
critical insights will no longer be confounded due to high
correlations. Our proposed second-order NOLH designs
addresses this confounding problem by guaranteeing minimal
correlations among all terms in a full second-order model while
simultaneously allowing us to fit higher order models if desired
and explore the interior of the design space. See MacCalman
(2013) for an applied problem that uses the second-order NOLH
design in a system design application.

6. Conclusion

In order to understand the complex nature of our world, we must
be able to detect the driving factors during experiments and
understand how they impact the results. Computer simulations
and DOE enable us to model our world by simultaneously
exploring numerous factors that may affect the complex nature
of the simulation response. Because we are concerned with
understanding complex stochastic simulation responses, we focus
on fitting polynomials with constant coefficients that can reveal
the significant factors and describe their synergistic and non-
linear effects on the response. The simulation analyst needs
flexible space-filling experimental designs that can fit a wide
variety of high-order polynomial models with a single experi-
ment. In addition, because we never know the true form of the
response surface, analysts need designs that minimize a priori

Figure 4 The ML2 versus ρmap(Z) for each of the nine designs.
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model assumptions in order to analyze multiple responses that
potentially have many different forms.

In this paper, we presented a new GA that constructs second-
order NOLH designs with minimal correlations between all main,
quadratic, and two-way interaction terms. The designs proposed
in this paper can fit a wide variety of polynomial models that will
facilitate a better understanding of the simulation response.
In addition, because our designs are from the LH family, they
are excellent candidates for the GP model for prediction purposes
due to their space-filling characteristics—however, that is beyond
the scope of this paper. The key advantage of our designs is
threefold. First, they can fit the most commonly used polynomial
metamodel with guaranteed minimal correlations; second, with
suitable caution, they can fit higher-order models to a handful of
factors; and third, they are space-filling allowing us to take full
advantage of partition trees to find interesting behavior in local
areas of the experimental region.

The designs presented in this paper only considered contin-
uous factors. Our ongoing research involves constructing designs
that minimize the correlation between all second-order terms for a
mix of continuous, discrete, and categorical factors. The infinite
combinations of discrete and categorical levels require a need for
a custom design creator capable of generating second-order
NOLH designs for a mix of factor types often encountered during
simulation studies. Moreover, we note the opportunity to research
the performance of our designs for prediction purposes using the
GP model.
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