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• A novel IDVD-based guidance system is presented for underwater docking operations.
• The IDVD method performance is examined for offline and online docking scenarios.
• Results indicate the efficiency and applicability of the IDVD-based guidance system.
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a b s t r a c t

This paper investigates capability and efficiency of utilizing the inverse dynamics in the virtual domain
(IDVD) method to provide the real-time updates of feasible trajectory for an autonomous underwater
vehicle (AUV) during underwater docking operations. The applicability of the IDVD method is examined
for two scenarios. For the first scenario, referred to as an offline scenario, a nominal trajectory may be
generated ahead of time based on a priori knowledge about the docking station (DS) pose (position
and orientation). The second scenario, referred to as an online scenario, assumes some uncertainty in
the DS pose; hence, the reference trajectory needs to be constantly recomputed in real time based on
the updates about the DS pose. The offline scenario solution serves as a benchmark solution to check
feasibility and optimality of generated trajectory subject to constraints on the states and controls. In
particular, the offline solution can assist in making informed trade-off decisions between optimality
of solution and computational efficiency. For the relatively simple offline scenario, the IDVD-method
solution is compared with the Legendre–Gauss–Lobatto pseudo-spectral (LGLPS) method solution. The
software-in-the-loop simulations and Monte Carlo trials are run for robustness assessment. Finally, the
potential for the IDVD method to work online, in a closed-loop guidance system, is explored using a
realistic cluttered operational simulation environment. Simulation results show that the IDVD-method
based guidance system guarantees a reliable and efficient docking process by generating computationally
efficient, feasible and ready to be tracked trajectories.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous underwater vehicles (AUVs) are increasingly
becoming more widely used as platforms for exploring the
underwater environment. They are capable of conducting a va-
riety of tasks, including mapping, surveillance, surveying, object
localization, and sampling, to name but a few. Although AUVs
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are in principle capable of operating for long periods over large
areas, they are in reality limited by the energy storage capacity
of the battery technology that they employ. Finding a means of
extending the operational duration of the vehicle especially for
long term missions, is therefore vital. The availability of suitably
located docking stations (DS), on the other hand, provides an
opportunity for the AUV to periodically recharge its battery and
transfer data while minimizing the time and energy otherwise
wasted on the AUV recovery by a mothership whenever the AUV’s
batteries are depleted. In order to drive an AUV into a DS, the
AUV must be equipped with a guidance system that is capable
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0921-8890/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.robot.2017.02.001
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2017.02.001&domain=pdf
mailto:amirmehdi.yazdani@flinders.edu.au
http://dx.doi.org/10.1016/j.robot.2017.02.001


A.M. Yazdani et al. / Robotics and Autonomous Systems 92 (2017) 12–29 13

of generating suitable trajectories while taking into consideration
both the vehicular and environmental constraints. Given that the
actual positions and relative pose of bothDS andAUV, aswell as the
current disturbance, obstacle locations and no fly-zone boundaries
are all affected by uncertainty, the proposed guidance systemmust
have the ability to recompute trajectories very fast during the
docking process.

To date, several attempts have been documented for the under-
water homing and docking of AUVs [1–5]. A control law based on
range-only measurements is developed in [6] for robust homing
of the MARES AUV. This law results in asymptotical convergence
of vehicle to a reference point and is validated theoretically us-
ing the Lyapunov theory. In [7], the Lyapunov stability theory
is utilized for designing a guidance controller that generates the
reference heading and crabbing angle to compensate for horizontal
and vertical deviation during pool testing of docking operations.
The experimental results showed that the system achieved 80%
successful docking rate. Other classic guidance laws such as, pure
pursuit guidance [8] and linear terminal guidance [9] are also
considered for guiding an AUV towards a DS. Relying on a series
of assumptions and simplifications, these laws try to minimize the
drift and miss distance during the terminal phase. Even though
these latter approaches are relatively simple to implement, they
are limited in that they usuallywork in a controlled operating envi-
ronment and operate based only on the geometric relationship and
the AUV’s kinematics. Neither of these approaches can provide a
closed-form solution assuring a collision-free unsaturated-control
motion. Satisfaction of the terminal conditions is at the mercy of
the limitations of the components of the final speed and acceler-
ation, or a fixed-time arrival. These approaches might be useful at
the very last stages of docking operations when an AUV is within
reach and aligned with the DS, however, arriving to this point
should use a different approach (which might involve using other
trajectory-shape-varying missile guidance algorithms). In [10], a
fuzzy logic guidance system is employed for the docking purpose
and shows a remarkable flexibility in terms of heading generation
with respect to the relative range and bearing of the vehicle to the
funnel-shaped DS considering the current disturbances.

It is noteworthy to mention that in all aforementioned ap-
proaches relatively little attention was paid to minimization of the
energy expenditure or time consumed by a vehicle during docking
operations. In this regard, a number of studies use the optimal
control theory framework for an efficient AUV trajectory optimiza-
tion aiming at minimizing some performance criteria such as time
or energy. For instance, in [11] the NEROV vehicle’s trajectory
planning and collision avoidance scheme, that incorporate time
and energy minimization, is developed using the optimal control
theory framework; a numerical solution is then provided using
the nonlinear programming package E04VCF. In [12], the optimal
control theory framework is applied to find a time-optimal tra-
jectory for a fully actuated AUV subject to actuation constraints.
In [13], an efficient trajectory is generated based on developing
a control strategy that minimizes the energy consumption along
the desired path. The limitations of the thrusters are taken into
account to produce an implementable trajectory for a real AUV. As
a further example, [14] presents an energyminimization trajectory
planning for a stable AUVusing an analytically derived relationship
between the energy consumption and number of thrusters.

Obtaining an analytical optimal solution for most aerospace
and underwater guidance problems is typically very difficult if not
impossible. Instead, an optimal control problem (OCP) is usually
solved numerically. The Pontryagin’s Maximum Principle serves
as a foundation for indirect methods in which the optimal solu-
tion is synthetized by maximizing the Hamiltonian function. With
the synthetized controls a two-point boundary-value-problem
(TPBVP) is usually solved using one of the shooting methods. This

approach faces several practical difficulties such as finding the ini-
tial guesses for co-states, non-converged solutions, and very-low
computational efficiency particularly when problem dimensions
are large. As a result, the indirect-method-based approachmay not
work in real-time applications where a host computing platform
on a vehicle has a limited computation performance [15]. Direct
methods, on the other hand, have attracted a great deal of attention
due to their potency and properness for solving complex OCPs
[15–18]. The essence of direct methods is to transform the orig-
inal OCP into a finite nonlinear programming (NLP) problem by
discretizing and parameterizing all the states and controls (or a
sub-set of them). This results in near-optimal or quasi-optimal so-
lutions that are suitable enough for the purpose of real-time trajec-
tory generationwhen the overall systemaccuracy is overshadowed
by uncertainties of operational environment, measurement errors,
malfunctions of sensor suites, and possible limitations due to the
vehicle’s kinematics [18].

This paper formulates the TPBVP for the underwater docking
problem and then employs the well-known direct method, inverse
dynamics in the virtual domain (IDVD)method, to develop and test
a real-time trajectory generator for realization on board of an AUV
that is currently under the development at the Flinders University.
This method has already been implemented on aerial [16,18–22],
maritime [4] and space vehicles [23,24], and is now evaluated for
the AUV dynamic model featuring seven states and three controls.
The IDVD’s effectiveness stems from several important properties

• parameterization of a candidate trajectory using a reduced
number of states with unconditional satisfaction of the
boundary conditions comprised of higher-order derivatives;

• utilization of the differential flatness property of the sys-
tem’s dynamics allowing the remaining states and con-
trols to be expressed via aforementioned parameterizations
rather than optimizing them, and decoupling of path opti-
mization;

• optimization of the speed profile along the path.

The IDVD method is not subjected to the curse of dimensional-
ity, does not need differentiability of the objective function and
therefore any model and objective function can be utilized, and
the generated controls are smooth and physically realizable. The
IDVD method utilizes only a few variable parameters, features
low sensitivity to variations of boundary conditions (BCs), and
therefore guarantees a fast convergence rate of optimization rou-
tine. To achieve all these properties, the IDVD method gives up
some optimality meaning that the value of the performance index
is typically slightly higher than the one that could be achieved
for the truly optimal solution satisfying the first-order optimality
conditions. To benchmark the IDVD solution, the TPBV problem
formulated in this paper is also solved offline, using another direct
method, LGLPS method [25].

The paper is organized as follows. Section 2 introduces the
Flinders’ AUV and the software-in-the-loop (SITL) simulation en-
vironment developed to evaluate guidance, navigation and control
algorithms prior to implementing them on board of a real vehicle.
This section also introduces the AUV’s seven-state model and for-
mulates the TPBV problem for the underwater docking operations
in a cluttered environment. Section 3 proceeds with using the
Pontryagin’s Maximum Principle to synthetize the optimal control
structure. Analysis of this optimal control results in enhancing the
original AUV model with three new states to allow satisfaction
of the constraints imposed on the second-order derivatives of the
original states for smooth departure and arrival of the AUV to the
DS. This section also formally introduces the LGLPS method and
discusses numerical solutions obtained using this method for a
simple operational environment offline for both 7- and 10-state
dynamics. Sections 4 and 5 are the core sections reintroducing the
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Fig. 1. Starboard view and rear view of Flinders AUV showing thruster locations.

IDVDmethod as applied to the AUV docking operations (Section 4)
and thoroughly evaluating it for future application on a real AUV
(Section 5). These evaluations include analysis of the IDVD solution
by itself, comparison with the LGLPS solutions, and robustness
tests involving SITL simulations, Monte Carlo trials, and realistic
operational environment. The paper ends with the conclusion sec-
tion.

2. Problem definition

This section describes the AUV that is currently under devel-
opment at the Flinders University and the AUV Simulator already
created to test guidance, navigation and control algorithms in the
software-in-the-loop simulation environment. The section then
goes on to present the formalmathematical formulation of theAUV
docking problem.

2.1. Proposed control architecture and requirements

Fig. 1 depictures a controlled scheme of the AUV that is cur-
rently under development at Flinders University. This AUV features
a typical torpedo-shape cylindrical body with ellipsoidal head and
conical tail with about 120-cm total length and 20-cm diameter.
The control scheme shown in Fig. 1 represents a portion of the
overall control scheme envisioned to allow AUV maneuvering at
low speeds to enforce precise operations. Three actuators enable
independent motion in surge (bow/stern), heave (up/down) and
yaw (side-to-side) directions. Specifically, a main propeller pro-
vides a forwardmotion, two lateral thrusters yield the yaw control
and two vertical thrusters enable the depth control. The traditional
submarine control surfaces, rudder and stern planes (not shown in
Fig. 1), that serve as the primary controls at the high speeds, are still
used in low-speed operations assuring roll and pitch stabilization.
As a result, the yaw and heavemotions for the configuration shown
in Fig. 1 are decoupled from roll and pitch motion.

By design, the AUV control configuration shown in Fig. 1 assures
fast and more accurate AUV repositioning and horizontal reorien-
tation during slow-speed operations as required for a variety of
missions including the docking operations. This particular research
deals with docking with a stationary funnel-shaped DS requiring a
unidirectional approach at a very low speed with a small possible
variation in the heading angle (Fig. 2). The specific DS parameters
used in this study were adopted from [26].

Typically, the docking operation includes two major phases.
The first phase involves bringing the AUV close to the DS (several
AUV lengths away from) and more or less aligned with the en-
trance cone centerline. The second phase comprises the straight-
in approach with small corrections to keep proper alignment
commences. The goal of this research effort is to develop an on-
board trajectory generator capable of producing spatial trajectories
combining both phases together and assuring a smooth arrival of
AUV to the DS.

The overall control architecture for the docking operations is
shown in Fig. 3 as realized within the SITL simulation environ-
ment that has been developed at the Flinders University to test
and evaluate different guidance strategies for the Flinders AUV.
This simulation environment incorporates realistically modeled

Fig. 2. Side view of stationary docking station.

components of the vehicle and emulates a real vehicle behavior
while operating in a maritime environment [27–29]. As shown
in Fig. 3, the SITL simulation environment includes three major
components. First, it includes the high-fidelity AUVmodel adopted
from [30] featuring fully-coupled six-degree-of-freedomdynamics
of the vehicle and test-verified hydrodynamics coefficients includ-
ing linear and nonlinear drag and lift, hydrodynamic added mass
and inertia, and Coriolis force. It also includes the first-order-
dynamics controller models and state estimation block. On top of
that it allows emulating additional sensors providing situational
awareness (SA) information. In the context of this research, SA
information includes the updates about the relative position of DS
and potential threats (mines, nets, kelp forest, sunken-ship debris)
that need to be avoided on the way to the DS.

Second, the SITL simulation environment provides a testbed to
test and verify different trajectory generation engines. This Trajec-
tory generator module is required to be able to generate feasible
and trackable reference trajectories, x∗(t), based on the mission
goals, known or predicted operation environment. In the case of
themission goals change or change in perception of environmental
elements and events with respect to time or space (triggered by
the SA sensors or growing discrepancies between the current and
expected AUV state) a new trajectory should be generated. Since
a trajectory generator usually produces a trajectory that has a
relatively small number of not-evenly-spaced (in time) nodes an
Interpolator might be needed to adapt to the actual rate of a
controller and produces an evenly-spaced set of M nodes, x(tj),
j = 1, . . . ,M .

The estimate of the current state at the time instant tk, x̂(tk), and
the interpolated reference trajectory are passed into the Controller
module. This module mimics the controller that is intended to
be used on board the Flinders AUV. This controller is based on
the traveling waypoint (WP) guidance that computes a synthetic
WP [31], which travels along the reference trajectory generated by
the Trajectory generator module. In this specific implementation,
the location of the traveling WP, xref (tk), is set to be one meter
ahead of x̂(tk) along x(tj), j = 1, . . . ,M . This is achieved by creating
a 1 m radius sphere around the vehicle (corresponding to approx-
imately 80% of the vehicle length) and then generating reference
states based on the intersection of the spherewith the interpolated
states. The difference δx(tk) = xref (tk)− x̂(tk) is fed into the sliding-
mode controller (SMC). The SMC converts this difference into the
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Fig. 3. The SITL simulation environment for the Flinders AUV.

commanded controls, uref (tk), necessary to achieve xref (tk). The
details of SMC can be found in [28].

The proposed control architecture for the AUV docking opera-
tions establishes the following sets of requirements. The solution
produced by the trajectory generator should

(1) Satisfy BCs on states and their derivatives
(2) Assure smooth departure from the current state and arrival

into DS
(3) Obey state and control constraints
(4) Allow three-dimensional obstacle avoidance
(5) Account for AUV dynamics
(6) Feature smooth (differentiable) time histories of states and

controls
(7) Take fraction of a second to compute on on-board computer.

On top of this, we would like the reference trajectory to optimize
someperformance index, such as timeofmaneuver, control actions
expenditure, etc. In this particular application, wewill require con-
servation of control actionswhile executing a fixed-timemaneuver
(meaning the docking time is negotiated upfront and fixed).

2.2. Mathematical formulation

Usually, the trajectory optimization problem deals with the
simplest vehicle model possible. In our case, such a model would
include translational and rotational kinematic equations

ẋ = u cos(ψ) + cx
ẏ = u sin(ψ) + cy
ż = w

(1)

ψ̇ = r (2)

where x, y, and z are the coordinates of the AUV’s center of gravity
in the local tangential frame {n}; u and w are surge and heave
velocity components relative to the water in the body frame {b};
ψ is the yaw angle; cx and cy are the x- and y-components of the
current velocity vector (|cx| < u,

⏐⏐cy⏐⏐ < u). The origin of the North-
East-Down frame {n} is set at the surface, so that z represents the
vertical distance from the surface, i.e. AUV depth.

However, pursuing a goal of producing a feasible solution
(i.e. satisfying Requirement 5 formulated in Section 2.1) we should
also include translational and rotational dynamics equations

mu̇ − (Xu + Xu|u||u|)u = Tu
mẇ − (Zw + Zw|w||w|)w = Tw

(3)

Iz ṙ − (Nr + Nr|r||r|)r = Tr (4)

where Xu, Zw and Nr are the linear drag terms; Xu|u|, Zw|w|, and Nr|r|

are the quadratic drag terms; m represents the mass of AUV and
Iz is its inertia around the z axis (the values for these parameters
were adopted from [32,33]). Finally, Tu, Tw , and Tr are the control
inputs in surge, heave and yaw directions, respectively.

Hence, from the standpoint of trajectory optimization the state
vector is represented by x = [x, y, z, ψ, u, w, r]T and the control
vector by u = [Tu, Tw, Tr ]T . In this case, meeting Requirement 1
means satisfying the following BCs (at t = 0 and t = tf ):⎡⎢⎣ x

y
z
ψ

⎤⎥⎦
t=0

=

⎡⎢⎣ x0
y0
z0
ψ0

⎤⎥⎦ , [u
w

r

]
t=0

=

[u0
w0
r0

]
(5)

⎡⎢⎣ x
y
z
ψ

⎤⎥⎦
t=tf

=

⎡⎢⎣ xf
yf
zf
ψf

⎤⎥⎦ , [u
w

r

]
t=tf

=

[uf
0
0

]
. (6)

The first order-derivatives of the states at the starting and terminal
points then become⎡⎢⎣ ẋ

ẏ
ż
ψ̇

⎤⎥⎦
t=0

=

⎡⎢⎣u0 cos(ψ0) + cx
u0 sin(ψ0) + cy

w0
r0

⎤⎥⎦ ,
[ u̇
ẇ

ṙ

]
t=0

=

⎡⎣ m−1(Xu + Xu|u||u0|)u0 + m−1Tu;0
m−1(Zw + Zw|w||w0|)w0 + m−1Tw;0

I−1
z (Nr + Nr|r||r0|)r0 + I−1

z Tr;0

⎤⎦
(7)
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ẏ
ż
ψ̇

⎤⎥⎦
t=tf

=

⎡⎢⎣uf cos(ψf ) + cx
uf sin(ψf ) + cy

0
0

⎤⎥⎦ ,
[ u̇
ẇ

ṙ

]
t=tf

=

⎡⎣m−1(Xu + Xu|u||uf |)uf + m−1Tu;f
m−1Tw;f

I−1
z Tr;f

⎤⎦ =

[0
0
0

]
.

(8)

Meeting Requirement 2 means ensuring⎡⎢⎢⎣
ẍ
ÿ
z̈
ψ̈

⎤⎥⎥⎦
t=0

=

⎡⎢⎣u̇0 cos(ψ0) − u0r0 sin(ψ0)
u̇0 sin(ψ0) + u0r0 cos(ψ0)

ẇ0
ṙ0

⎤⎥⎦

=

⎡⎢⎢⎣
(m−1(Xu + Xu|u||u0|)u0 + m−1Tu;0) cos(ψ0) − u0r0 sin(ψ0)
(m−1(Xu + Xu|u||u0|)u0 + m−1Tu;0) sin(ψ0) + u0r0 cos(ψ0)

m−1(Zw + Zw|w||w0|)w0 + m−1Tw;0

I−1
z (Nr + Nr|r||r0|)r0 + I−1

z Tr;0

⎤⎥⎥⎦ (9)

⎡⎢⎢⎣
ẍ
ÿ
z̈
ψ̈

⎤⎥⎥⎦
t=tf

=

⎡⎢⎢⎣
(m−1(Xu + Xu|u||uf |)uf + m−1Tu;f ) cos(ψf )
(m−1(Xu + Xu|u||uf |)uf + m−1Tu;f ) sin(ψf )

m−1Tw;f

I−1
z Tr;f

⎤⎥⎥⎦

=

⎡⎢⎣0
0
0
0.

⎤⎥⎦ (10)

Resolving Eqs. (9) and (10) with respect to the controls yields[Tu
Tw
Tr

]
t=0

=

⎡⎣m(ẍ0 cos(ψ0) + ÿ0 sin(ψ0)) − (Xu + Xu|u| |u0|)u0
mz̈0 − (Zw + Zw|w| |w0|)w0
Izψ̈0 − (Nr + Nr|r| |r0|)r0

⎤⎦ (11)

[Tu
Tw
Tr

]
t=tf

=

⎡⎣−(Xu + Xu|u|
⏐⏐uf

⏐⏐)uf
0
0

⎤⎦ . (12)

Eq. (12) defines the control values at t = tf required for the
smooth arrival (enforcing the last equations in (8) and (10)) and
Eq. (11) defines the control values at t = 0 required for the
smooth departure from the initial conditions (which is especially
important when the reference trajectory needs to be recomputed
while executing the previously generated solution).

Obeying state and control constraints (Requirement 3) implies

|r| ≤ rmax, 0 < z ≤ zmax (13)

|Tu| ≤ Tmax
u , |Tw| ≤ Tmax

w , |Tr | ≤ Tmax
r (14)

and avoiding the three-dimensional no-fly areas (obstacles) (Re-
quirement 4), in the case when they can be represented as spheres
with radii Rl (l = 1, . . . , L) located at [xl, yl, zl]T , means ensuring

(x − xl)2 + (y − yl)2 + (z − zl)2 ≥ R2
l . (15)

From the optimal control point of view, the trajectory optimization
problem for driving an AUV into a DS can be formulated in the form
of TPBVP as follows. Starting from x0 = [x0, y0, z0, ψ0, u0, w0, r0]T

with u0 =
[
Tu;0, Tw;0, Tr;0

]T at t = 0 we need to bring the
AUV to the DS with xf =

[
xf , yf , zf , ψf , uf , wf , rf

]T and uf =[
Tu;f , Tw;f , Tr;f

]T at t = tf while obeying constraints (1)–(4) and
(11)–(12) and minimizing the sum of the squared control inputs
over the fixed time interval T = tf , so that the normalized

performance index becomes

J =
1

T (Tmax
u )2

∫ T

0
(T 2

u + T 2
w + T 2

r )dt. (16)

With this performance index the quantity 100(1 −
√
J)% provides

an estimate of the saved control input expenditure compared to the
case when the maneuver is performed at control bounds (Tu(t) =

Tmax
u ).

3. Obtaining benchmark optimal solution

This section uses the Pontryagin’s Maximum Principle to syn-
thetize the optimal controls. The LGLPS method is then used to
obtain a benchmark numerical solution. Since this solution hap-
pens to be not feasible, the original 7-state system (1)–(4) is then
expanded to the 10-state system. This allows enforcing boundary
constraints on the second-order derivatives of AUV coordinates.
Even though the LGLPS-method-based solutions are obtained of-
fline (the LGLPS method requires a lot of computational resources
and does not necessarily guarantee convergence), it can still serve
as a benchmark solution to assess the optimality of other solutions.

3.1. Synthesis of the optimal control

Following the optimal control theory the Hamiltonian for the
system (1)–(4) with the performance index (16) can be written
as [34]

H = − T−1(Tmax
u )−2(T 2

u + T 2
w + T 2

r ) + λx(u cos(ψ) + cx)
+ λy(u sin(ψ) + cy) + λzw + λψ r
+ λu(Xuu + Xu|u| |u| u + Tu)m−1

+ λw(Zww + Zw|w| |w|w + Tw)m−1

+ λr (Nr r + Nr|r| |r| r + Tr )I−1
z = const

(17)

with λx, λy, λz , λu, λw , λψ , and λr being co-state variables.
The differential equations for co-state variables can be written

as follows
λ̇x = 0
λ̇y = 0
λ̇z = 0

(18)

λ̇ψ = λxu sin(ψ) − λyu cos(ψ) (19)
λ̇u = −λx cos(ψ) − λy sin(ψ) − λu(Xu + Xu|u| |u|)m−1

λ̇w = −λz − λw(Zw + Zw|w| |w|)m−1

λ̇r = −λψ − λr (Nr + 2Nr|r| |r|)I−1
z .

(20)

According to the Pontryagin’s Maximum Principle the optimal
control structure is obtained by differentiating (17) with respect
to the control inputs and equating the derivatives to zero, which
results in[Tu
Tw
Tr

]
opt

=
T (Tmax

u )2

2

⎡⎣λum−1

λwm−1

λr I−1
z

⎤⎦ . (21)

These are the optimal control values as long as they fall within the
limits (14).

Unfortunately, the augmented system (1)–(4), (18)–(20) has no
analytical solution and trying to solve it numerically by varying
the initial values of co-states is very problematic as well, not to
mention that accounting for constraints (13) and (15) dictates
replacing Eq. (17) with the augmented Hamiltonian

H = H + µTg(x,u) = const (22)

which makes a problem even more difficult to solve (in Eq. (22)
g(x,u) represents the vector of constrains (13) and (15) with µ
being the vector of Lagrangian multipliers). On top of the control
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structure equation (21) allows a singular control arc when λr ≡ 0
(singular control arc complicates a numerical solution even fur-
ther). This implies λ̇r ≡ 0 and from the last equation in (20)
λψ = 0. The latter leads to λ̇ψ ≡ 0 in Eq. (19) and therefore

λx sin(ψ) ≡ λy cos(ψ). (23)

Knowing that λx and λy are constants (see Eq. (18)), equality (23)
results in ψ ≡ const and therefore ψ̇ ≡ 0, r ≡ 0 (from Eq. (2)),
ṙ ≡ 0, and Tr;opt ≡ 0 (fromEq. (4)). Hence, a singular arc represents
a straight motion.

Now, even if the augmented system (1)–(4), (18)–(20) could
somehow be solved it would still not meet Requirement 2 ex-
pressed mathematically in Eqs. (11) and (12). In order to satisfy
BCs on controls, we need to convert them into the new states and
use the new controls. As a result, the original system (1)–(4) should
be augmented with

Ṫu = υu
Ṫw = υw
Ṫr = υr .

(24)

That also implies concluding constraints (14) into the augmented
Hamiltonian (22). The bounds on the new controls would be estab-
lished as

|υu| ≤ υmax
u , |υw| ≤ υmax

w , |υr | ≤ υmax
r . (25)

The Hamilton (17) will now have three additional terms

H∗
= H + λTuυu + λTwυw + λTrυr = const (26)

with three more differential equations for the new co-states

λ̇Tu = 2T−1(Tmax
u )−2Tu − λum−1

λ̇Tw = 2T−1(Tmax
u )−2Tw − λwm−1

λ̇Tr = 2T−1(Tmax
u )−2Tr − λr I−1

z .

(27)

Differentiating Eq. (26) with respect to the three new controls
yields the bang–bang optimal control structure[Tu
Tw
Tr

]
opt

=

⎡⎣υmax
u sign(λTu)
υmax
w sign(λTw)
υmax
r sign(λTr )

⎤⎦ (28)

with a possibility of a singular control arc when λTu ≡ 0, λTw ≡ 0,
and λTr ≡ 0.

3.2. Basics of the LGLPS method

It is well known that obtaining numerical solutions for the
TPBVP like the one presented in the previous section is quite
challenging. In the past decade, however, several pseudo-spectral
(PS) methods were successfully deployed to solve complex OCPs
offline [35–37]. The general idea behind PS methods, being the
direct method, is to transcribe an OCP into a NLP relying on a
certain non-uniform computational node distribution to compute
a quadrature defined by a performance index. Specifically, the
LGLPS method transcribes the TPBVP of Section 2.2 into the NLP
problem by parameterizing state and control time histories, x(t̄)
and u(t̄) , over the N Gauss–Lobatto collocation nodes using the
orthogonal Lagrange interpolating polynomials ϕi (t̄) [37,38]

x(t̄) =

N∑
i=0

x (t̄i)ϕi (t̄), u(t̄) =

N∑
i=0

u(t̄i)ϕi (t̄) (29)

where t̄ = (2t − tf − t0)(tf − t0)−1
∈ [−1; 1] is the scaled time and

ϕi(t̄) =
1

N(N + 1)LN (t̄)
(t̄2 − 1)L̇N ( t̄)

t̄ − t̄i
. (30)

In Eq. (30) L̇N (t̄) represents differentiation of LN (t̄) with respect to
time, where LN (t̄) denotes the Legendre polynomial of order N

LN (t̄) =
1

2NN!

dN

dt̄
(t̄2 − 1)N . (31)

The LGLPS method utilizes the same LGL nodes for discretization
and collocation computed as

t̄i =

⎧⎨⎩−1 for i = 0
ith root of L̇N ( t̄) for i = 1, 2 , . . . ,N − 1
1 for i = N.

(32)

System dynamics (1)–(4) are enforced by imposing the corre-
sponding constraints at the LGL nodes. Specifically, differential
equations describing system’s behavior are transcribed into the
algebraic equations using collocation procedure

ẋ(t̄k) =

N∑
i=0

L̇i(t̄i)x(t̄i) =

N∑
i=0

Dkix(t̄i),

N∑
i=0

Dkix(t̄i) −
tf − t0

2
f(x(t̄i), u(t̄i) ) = 0, k = 0, . . . ,N

(33)

where f(x(t̄i), u(t̄i)) represents the right-hand-side of the corre-
sponding state equation, and Dki is the (N+1)-by-(N+1) differen-
tiation matrix

Dki =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

LN (t̄k)
LN (t̄i)

1
(t̄k − t̄i)

if k ̸= i

−
N(N + 1)

4
if k = i = 0

N(N + 1)
4

if k = i = N

0 otherwise.

(34)

The BCs are imposed as equality constraints on the first and last
collocation nodes, t̄0 = −1 and t̄N = 1, respectively. The perfor-
mance index (16) is estimated using the Gaussian quadrature rule∫ 1

−1
P(t̄) dt̄ =

N∑
k=0

P(t̄k)wk, k = 0, . . . ,N (35)

where the quadrature weights wk are given by

wk =
2

N(N + 1)
1

(LN (t̄k))2
, k = 0, . . . ,N. (36)

The details on how the LGLPS method handles the first-order
(Karush–Kuhn–Tucker) necessary conditions for a solution in non-
linear programming to be optimal can be found in [39].

The LGLPS method solution convergence depends on the initial
guess, number of collocation nodes, sparsity pattern, optimization
solver, and numerical precision of approximated solution.

3.3. Comparison of the 7- and 10-state solutions

Figs. 4–10 show an example of applying the LGLPS method to
solve TPBVP (1)–(6), (13)–(14), (16) without and with satisfying
Eqs. (11)–(12) or in other words using 7 states as in Eqs. (1)–
(4) or 10 states as in Eqs. (11)–(12) plus Eq. (24). All computer
simulations discussed in this paper were performed on a desktop
computer with an Intel i7 3.40 GHz quad-core processor using
MATLAB R⃝ R2015a development environment. The MATLAB fmin-
con function was used throughout this research as a solver (this
function realizes a gradient-basedmethod that is designed towork
on problemswhere the objective and constraint functions are both
continuous and have continuous first derivatives; other solvers
that are usually used with PS methods are the sparse nonlinear
optimizer (SNOPT), and interior point optimizer (IPOPT).
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Fig. 4. Example of the 7-state solution.

The specific scenario was set as follows. The AUV is required to
performdockingwith a stationary DS, the pose ofwhich is known a
priori. There are no no-fly zones or obstacles (15). The operational
environment features a known two-dimensional (2D) currentwith
components cx = 0.25m/s and cy = 0.25m/s (Eq. (1)). The BCs are
defined as
x0 = [50 m, 50 m, 5 m, 10◦, 0.3 m/s, 0 m/s, 0◦/s]T and
xf = [150 m, 75 m, 10 m, 45◦, 0.4 m/s, 0 m/s, 0◦/s]T .

(37)

The AUV is characterized by m = 30.5 kg, Iz = 3.45 kg · m2,
Xu = −13.5 kg/s, Xu|u| = −1.62 kg/m, Zw = −66.6 kg/s, Zw|w| =

−131 kg/m, Nr = −6.87 kg ·m2/s, Nr|r| = −94 kg ·m2 (3)–(4). The
constraints defined by the physical limitations of AUV’s actuators
(14) and its yaw rate (13) are Tmax

u = Tmax
w = 20N, Tmax

r = 20N·m,
and rmax

= 15◦/s.
Fig. 4 demonstrates the numerical solution that was achieved

using the LGLPS method based on the 7-state formulation and
50-node discretization. Specifically, Fig. 4(a) shows the three-
dimensional (3D) view of the obtained solution with multiple
arrows denoting the constant (and known) current, while
Figs. 4(b)–(d) present time histories of velocity vector components
(Fig. 4(b)), yaw angle and yaw rate (Fig. 4(c)) and three controls
(Fig. 4(d)). As clearly seen from Fig. 4, the 7-state formulation
does not allow accounting for comptroller dynamics (11)–(12)
resulting in the instantaneous jumps in the state magnitudes and
consequently –non-realizable control actions (Fig. 4(d)).

The optimality of the obtained solution can be assessed by
observing time-histories of co-states (Fig. 5) and the Hamiltonian
(Fig. 6). Fig. 5(a) indicates that differential equations (18) hold
(in the numerical sense), and Fig. 5(c) indicates that most of the
time the solution features a singular arc control (23). Oscillations

(instability) in λx, λy, and λz , especially towards the ends of the
trajectory, are due to the fact that the differential and integral
forms of the LGLPS method are not equivalent resulting in the
LGLPS discrete co-statematrix being rank-deficient; this causes co-
states oscillation about the true solution and leading to potential
non-converged co-states [40,41].

The Hamiltonian (17) is explicitly independent of time and
therefore should be constant. Fig. 6 shows that it is the case along
the singular arc. However, the optimization routine has difficulty
in numerically solving the problem beyond that.

It should be noted that obtaining numerical solutions like the
one shown in Figs. 4–6 is not an easy task. As mentioned in
Section 3.2 the LGPLS approach requires a reasonable initial guess
on time histories for all states and controls, and generally speaking
starts producing a feasible solution for discretization involving
more than 50 nodes [40].With these 50 nodes for each of the seven
co-states and three controls, the number of varied parameters
is 500 and therefore solving the problem numerically requires
substantial computational resources. Obviously, the LGPLS-based
approach cannot be realized on board of the AUV for real-time
operations, but can be used (when appropriate) to provide a point
of reference against which other approaches may be assessed in
terms of closeness to the ‘‘optimal’’ solution [40].

As mentioned in Section 3.2, the infeasibility of the optimal
control solution for system (1)–(4) can potentially be fixed by
expanding the original system to include three more equations
converting the original controls to the three new states (24). The
results of numerical solution for the same TPBVP with the 10-state
problem formulation are shown in Figs. 7–10. In this realization,
the bound on the new controls (25) were established as υmax

u =

υmax
w = 0.5 N/s andυmax

r = 0.5 N · m/s.
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Fig. 5. Co-state time histories for the 7-state solution of Fig. 4.

Fig. 6. The Hamiltonian for the 7-state solution of Figs. 4 and 5.

Fig. 7. Comparison of the 10-state and 7-state solutions.

Specifically, Fig. 7 shows a bird’s view of the 10-state trajectory
as compared to the 7-state solution. Themajor difference is in less-
control-demanding departure from the initial point and arrival to
the final point. Fig. 7 also shows the initial guess that was used
to assure and speed up the convergence of both 7- and 10-state
solutions (this solution was obtained using the real-time feasible
trajectory generationmethod that is promulgated in this paper and
discussed in the next section).

Fig. 8(a), (b) demonstrate a big difference in the beginning and
at the end of the trajectory as compared to Fig. 4(b), (c). The BCs
(11) and (12) can now be satisfied (Fig. 8(c)) assuring a smooth
departure from the initial point and smooth arrival to DS.

The time histories of the new controls, υu, υw , and υr , are shown
in Fig. 8(d). Indeed, according to Eqs. (27)–(28) they feature a bang-
singular-bang optimal control.

Time histories for the co-states and Hamiltonian are shown
in Figs. 9, 10. As was the case in the 7-state formulation (Fig. 6),
the Hamiltonian for the 10-state solution (Fig. 10) is not constant,
meaning that the optimality conditions in the approximate numer-
ical solution are not necessarily satisfied.

4. Real-time trajectory optimization procedure

As shown in the previous section, it takes many efforts to try
to solve the TPBVP, formulated in Section 2.2, using the LGLPS
method. Strictly speaking, the solutions are not necessarily truly
optimal and directly utilizable by relatively low power on-board
computers. This section, introduces another approach, which uses
the IDVD method to transcribe the TPBVP into a low-dimensional
NLP problem thus sacrificing some optimality in order to achieve
feasible trajectories in real time.

4.1. Concept of IDVD method

The first major principle of the IDVD method [16] is to use the
differential flatness of system dynamics, to significantly reduce the
dimension of the optimization problem and thus enable fast proto-
typing of feasible trajectories [18]. This is achieved by expressing
all states and controls as the functions of a so-called output vector.
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Fig. 8. State (a–c) and control (d) time histories of the 10-state solution.

For the specific system (1)–(4) we can invert Eq. (1) to get

u = ((ẋ − cx)2 + (ẏ − cy)2)0.5

ψ = tan−1
(
ẏ − cy
ẋ − cx

)
w = ż.

(38)

Then, inverting Eq. (2) yields

r = ψ̇ (39)

finally, Eqs. (3) and (4) can be rewritten as

Tu = mu̇ − (Xu + Xu|u| |u|)u
Tw = mẇ − (Zw + Zw|w| |w|)w
Tr = Iz ṙ − (Nr + Nr|r| |r|)r.

(40)

Hence, if we define the output vector as y = [x, y, z], the original
7-state vector x can be expressed as

x = f(y, ẏ, ÿ) (41)

while the control vector u becomes

u = h(ẏ, ÿ). (42)

As a result, for the specific formulation (1)–(4) we can reduce the
required number of parameterizations from ten (seven states and
three controls as was in the case of LGLPSmethod) to just three (cf.
to Eq. (29)).

The second key principle of the IDVD method is to additionally
decouple path and speed profile optimization, i.e. ‘‘break’’ kine-
matic equations (38). This is done by conducting all computations

in the virtual domain characterized by the virtual arc τ rather
than by time t . The mapping between the physical domain and the
virtual domain of argument is performed using the so-called speed
factor λ(τ )

λ(τ ) =
dτ
dt
. (43)

Differentiation of any time-variant parameter ξ with respect to
time can be expressed as

ξ̇ = λξ ′, ξ̈ = λ(λ′

τ ξ
′

τ + λξ ′′

ττ ), etc. (44)

(subscript τ means differentiation with respect to the virtual arc).
When needed, relations (44) can be inverted to

ξ ′

τ = λ−1ξ̇ , ξ ′′

ττ = λ−2ξ̈ − (λ′

τλ
−1ξ ′). (45)

Using Eq. (44), Eq. (38) becomes

u = ((λx′

τ − cx)2 + (λy′

τ − cy)2)0.5

ψ = tan−1
(
λx′
τ − cx

λy′
τ − cy

)
w = λz ′

τ

(46)

and Eqs. (39), (40) result in

r = λψ ′

τ (47)

Tu = mλu′

τ − (Xu + Xu|u| |u|)u
Tw = mλw′

τ − (Zw + Zw|w| |w|)w
Tr = Izλr ′

τ − (Nr + Nr|r| |r|)r.
(48)
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Fig. 9. Co-state time histories for the 10-state solution of Fig. 8.

Fig. 10. The Hamiltonian for the 10-state solution of Figs. 8, 9.

Introducing λ(τ ) allows moving along the path defined by the
output vector y with any speed profile, hence enabling more op-
timization flexibility and controllability.

The third and final principle is to use a high-order parameteri-
zation for the components of the output vector and define all pa-
rameterization parameters by satisfying the BCs. A good analogue
would be defining the coefficients of the third-order polynomial
by using two control points (Bézier curves) rather than varying
the coefficients of approximation themselves. This feature allows
satisfying BCs (5)–(10) by default. More details on this subject are
provided in the next section.

4.2. Parameterization of the output vector

In general, parameterization of the output vector can be based
on a set of any reference (basis) functions of some abstract scaled
argument τ̄ = τ/τf ∈ [0; 1] including any combination of
monomial or trigonometric terms [16], as long as it can represent

the expected general shape. On practice, even a 3rd-order-
polynomial (spline) for each element of the output vector would
suffice. However, with the 3rd-order polynomial, represented by
four varied coefficients, we would be able to satisfy only four BCs
(up to the first order derivative at the initial and terminal points).
In general, the minimum order of parameterization (the number
of terms in the case of using monomials) is determined via the
number of BCs that should be satisfied [16]

np = d0 + df + 1 (49)

where d and df are the highest order of time derivatives at the
initial and terminal points. In our case, we need to satisfy up to the
second-order derivative (9)–(10), hence, parameterization should
include at least two more terms. Instead of using the 5th order
polynomial, we could also add two trigonometric terms, so that
they become zeros at the boundaries of interval τ̄ ∈ [0; 1]. This is a
convenient way to vary the curvature of the reference trajectory at
the initial and terminal pointswithout causing oscillatory behavior
as we might have with the higher order polynomials.

Hence, to address the TPBVP the three spatial coordinates x, y,
z constituting the output vector may be simply parameterized as
follows:
x(τ̄ ) = Px(τ̄ )

= a0x + a1xτ̄ + a2xτ̄ 2 + a3xτ̄ 3 + b1x sin(πτ̄ ) + b2x sin(2πτ̄ )
y(τ̄ ) = Py(τ̄ )

= a0y + a1yτ̄ + a2yτ̄ 2 + a3yτ̄ 3 + b1y sin(πτ̄ ) + b2y sin(2πτ̄ )
z(τ̄ ) = Pz(τ̄ )

= a0z + a1z τ̄ + a2z τ̄ 2 + a3z τ̄ 3 + b1z sin(πτ̄ ) + b2z sin(2πτ̄ )

(50)

where the coefficients aiη and biη (η = {x, y, z}) in these parame-
terizations can be defined by BCs (5)–(10).
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With the order of parameterization being exactly np as defined
in Eq. (49), the only varied parameter in Eq. (50) is the virtual arc
length τf . In order to have more flexibility to vary the shape of the
candidate trajectory, more terms should be added. Again, we could
add more trigonometric terms or more monomials. For example,
we can add two more monomial terms

x(τ̄ ) = Px(τ̄ ) = a0x + a1xτ̄ + a2xτ̄ 2 + a3xτ̄ 3 + a4xτ̄ 4

+ a5xτ̄ 5 + b1x sin(πτ̄ ) + b2x sin(2πτ̄ )

y(τ̄ ) = Py(τ̄ ) = a0y + a1yτ̄ + a2yτ̄ 2 + a3yτ̄ 3 + a4yτ̄ 4

+ a5yτ̄ 5 + b1y sin(πτ̄ ) + b2y sin(2πτ̄ )

z(τ̄ ) = Pz(τ̄ ) = a0z + a1z τ̄ + a2z τ̄ 2 + a3z τ̄ 3 + a4z τ̄ 4

+ a5z τ̄ 5 + b1z sin(πτ̄ ) + b2z sin(2πτ̄ ).

(51)

Differentiating Eq. (51) three times with respect to the τ̄ yields

τf η
′

τ = a1η + 2a2η τ̄ + 3a3η τ̄ 2 + 4a4η τ̄ 3 + 5a5η τ̄ 4

+πb1η cos(πτ̄ ) + 2πb2η cos(2πτ̄ ) (52)

τ 2f η
′′

τ = 2a2η + 6a3η τ̄ + 12a4η τ̄ 2 + 20a5η τ̄ 3 − π2b1η sin(πτ̄ )

− (2π )2b2η sin(2πτ̄ ) (53)

τ 3f η
′′′

τ = 6a3η + 24a4η τ̄ + 60a5η τ̄ 2 − π3b1η cos(πτ̄ )

− (2π )3b2η cos(2πτ̄ ). (54)

Equating these derivatives to the corresponding BCs, (5)–(10)
yields a system of linear algebraic equations to solve for coeffi-
cients aiη and biη (η = {x, y, z}). For instance, for the x-coordinate,
the set of linear algebraic equations becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0
0 1 0 0 0 0 π 2π
0 1 2 3 4 5 −π 2π
0 0 2 0 0 0 0 0
0 0 2 6 12 20 0 0
0 0 0 6 0 0 −π3

−8π2

0 0 0 6 24 60 π3
−8π2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0x
a1x
a2x
a3x
a4x
a5x
b1x
b2x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
xf
x′

0τf

x′

f τf

x′′

0τ
2
f

x′′

f τ
2
f

x′′′

0 τ
3
f

x′′′

f τ
3
f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (55)

As seen, now that the order of parameterization has been in-
creased, the third-order derivatives (jerks) at the initial and final
points can be satisfied. In our case, since the jerks x′′′

0 and x′′′

f are
not fixed, we can use them as two additional varied parameters
alongside with τf .

Consequently, by resolving the system (55) the coefficients of
the basis function can be obtained as follows (the coefficients for y
and z coordinates have a similar form)

a0x = x0,

a1x =

(
1, τf , τ 2f , τ

3
f

)
⎛⎜⎜⎜⎜⎝

−120(12x0 − xf ) + π2(x0 − xf )

−12π2(9x′

0 − x′

f ) + 8π4x′

0

−72(7x′′

0 + 3x′′

f ) + 12π2(3x′′

0 + x′′

f )

−24(3x′′′

0 − 2x′′′

f ) + π2(5x′′′

0 + 3x′′′

f )

⎞⎟⎟⎟⎟⎠
8(15 − π2)(12 − π2)

a2x =
x′′

0τ
2
f

2
,

a3x =

(
1, τf , τ 2f , τ

3
f

)
⎛⎜⎜⎜⎜⎝

40(12π2(x0 − xf ) − π4(x0 − xf ))

4(15π2(5x′

0 + 3x′

f ) − 2π4(3x′

0 + 2x′

f ))

3π2(26x′′

0 − 5x′′

f ) − 2π4(3x′′

0 − x′′

f )

120x′′′

0 − π2(9x′′′

0 + x′′′

f )

⎞⎟⎟⎟⎟⎠
4(15 − π2)(12 − π2)

a4x

=

(
1, τf , τ 2f , τ

3
f

)
⎛⎜⎜⎜⎜⎝

−120π2(12 − π2)(x0 − xf )

−60π2(13x′

0 + 10x′

f ) − 8π4(8x′

0 + 7x′

f )

360(x′′

0 − x′′

f ) + 60π2(2x′′

0 − x′′

f ) − 4π4(3x′′

0 − 2x′′

f )

120(2x′′′

0 + x′′′

f ) − π2(19x′′′

0 + 11x′′′

f )

⎞⎟⎟⎟⎟⎠
8(15 − π2)(12 − π2)

a5x =

(
1, τf , τ 2f , τ

3
f

)
⎛⎜⎜⎜⎜⎝

24π2(x0 − xf )

12π2(x′

0 + x′

f )

2(3 + π2)(x′′

0 − x′′

f )

3(x′′′

0 + x′′′

f )

⎞⎟⎟⎟⎟⎠
4(15 − π2)

b1x =

(
τf , τ

2
f , τ

3
f

)⎛⎜⎝12(x′

0 − x′

f )

6(x′′

0 + x′′

f )

x′′′

0 − x′′′

f

⎞⎟⎠
2π (12 − π2)

,

b2x =

(
1, τf , τ 2f , τ

3
f

)
⎛⎜⎜⎜⎝
120(x0 − xf )

60(x′

0 + x′

f )

12(x′′

0 − x′′

f )

x′′′

0 − x′′′

f

⎞⎟⎟⎟⎠
16π (15 − π2)

.

(56)

Now, the total number of varied parameters increases to seven.
It should be noted that the derivatives in Eqs. (55) and (56) are

defined in the virtual domain, while in fact they are given in the
physical domain (see Eqs. (7)–(10)). The mapping is conducted in
accordance with Eq. (45). By design, the speed factor λ(τ ) simply
scales the entire problem (the higher speed factor λ(τ ), the larger
τf ) [16], so it may be assumed that

λ0;f = 1, λ′

0;f = 0, ... (57)

which results in

η′

τ ;0;f = η̇0;f , η′′

ττ ;0;f = η̈0;f , .... (58)

4.3. Optimization routine

Now let us describe the numerical procedure for finding the
optimal solution among all candidate trajectories given by Eq. (51).
To assure Eq. (57) the initial guess on the length of the virtual arc
τf is set to be proportional to the physical distance between the
starting and terminal points

τf = 1.5
√
(xf − x0)2 + (yf − y0)2 + (zf − z0)2. (59)

With this guess and also guessing on the values of other varied
parameters, x′′′

0 , x
′′′

f , y
′′′

0 , y
′′′

f , z
′′′

0 , and z ′′′

f , the coefficients of candidate
trajectory are computed using Eq. (56).

Having an analytical representation of candidate trajectory the
values of xj, yj, zj, and xj′, yj′, zj′, j = 1, . . . ,N are computed over
the set of N nodes, evenly spaced along the virtual arc [0; τf ]

τj = τj−1 +∆τ (τ̄j = τ̄j−1 +∆τ̄ ) , j = 2, . . . ,N ,
(τ1 = τ̄1 = 0) (60)



A.M. Yazdani et al. / Robotics and Autonomous Systems 92 (2017) 12–29 23

where

∆τ = τf (N − 1)−1, (∆τ̄ = (N − 1)−1). (61)

The time step is calculated based on the distance between the two
computational nodes along the arc and speed

∆tj−1

=

√
(xj − xj−1)2 + (yj − yj−1)2 + (zj − zj−1)2√

u2
j−1 + w2

j−1 + c2x + c2y + 2cx(uj−1 cos(ψj−1)) + 2cy(uj−1 sin(ψj−1))

(62)

which consequently produces

λj = ∆τ∆t−1
j−1. (63)

The rest of states and controls are computed in accordance with
Eqs. (46)–(48). The derivatives u′

τ ;j, w
′

τ ;j and r ′

τ ;j can be computed
using finite differences or analytical expressions. For example, the
forward and vertical velocity vector components can be computed
as follows
u′

τ ;j

=

(
(λ′

jx
′

τ ;j + λjx′′

τ ;j)(λjx
′

τ ;j − cx) + (λ′

jy
′

τ ;j + λj y′′

τ ;j)(λjy
′

τ ;j − cy)
)

uj
w′

τ ;j = λ′

jz
′

τ ;j + λjz ′′

τ ;j.

(64)

When all parameters (states and controls) are computed in each of
the N points, the performance index is computed as follows:

J = kT

⎛⎝N−1∑
j=1

∆tj − T

⎞⎠2

+ ku
N−1∑
j=1

(T 2
u;j + T 2

w;j + T 2
r;j)∆tj. (65)

The penalty function that accounts for violation of constraints on
the states and controls is constructed as

∆ = kψ
(
ψN − ψf

)2
+ krmaxj

(
0;

⏐⏐rj⏐⏐ − rmax
)2

+ kTumaxj
(
0;

⏐⏐Tu;j⏐⏐ − Tmax
u

)2
+ kTwmaxj

(
0;

⏐⏐Tw;j
⏐⏐ − Tmax

w

)2
+ kTrmaxj

(
0;

⏐⏐Tr;j⏐⏐ − Tmax
r

)2
.

(66)

In Eqs. (65) and (66) ki are the weighting coefficients allowing all
individual terms to be balanced. As mentioned in Section 3.3 for
consistency, the MATLAB fmincon function was used with IDVD as
well. The results of simulations are presented in the next section.

5. IDVD simulations results

In this section, performance of the proposed IDVD-guidance
method is demonstrated in the controlled and then realistic envi-
ronment. The controlled environment simulationswere conducted
to demonstrate a superb performance of the IDVD method and its
explicit readiness to be implemented on board of a real AUV. They
also included assessment of algorithm robustness with respect to
varying BCs. Realistic environment simulations included cluttered
operational environment and uncertainties in the DS position.

5.1. Solution feasibility and computational performance

First, the developed IDVD-method-based approach was tested
in the same no-fly-zone ‘‘static’’ scenario as used in simulations
presented in Section 3.3. Figs. 11–13 demonstrate the results of
computer simulation in this case. For comparison, the 7- and 10-
state LGLPS solutions are also added. As seen from Fig. 11while the
LGLPS singular arc solution results in essentially straight dive from
the starting point to the final DS position, the IDVD trajectory is
more curved as dictated by the chosen parametrizations. Figs. 12
and 13 shows the time histories of the vehicle’s forward and

Fig. 11. The 3D path for traveling from the initial to DS position.

vertical velocities along with its yaw angle and yaw rate indicating
satisfaction of all BCs, and particularly a good alignment of the
vehicle with the DS at the terminal point. The IDVD (and LGLPS)
generated controls are depicted in Fig. 13.

Compared to the LGLPSmethod, parameterizations (51) used by
the IDVD-method formulation in this particular case do not allow a
singular arc control. As the first-order optimality conditions are not
enforced in the IDVD structure, the trajectory cannot be called opti-
mal in the classical OCP sense. The IDVDmethod does, however, try
to find the best trajectory among all candidate trajectories within
the chosen parameterizations, and it certainly produces a feasible
trajectory featuring smooth transitions at the departure and arrival
points (Fig. 14). By design the IDVD-computed controls are the
smoothest ones accounting for the actual dynamics and therefore
readily realizable on board. As seen from Fig. 13, while the specific
bounds established for the 10-state LGLPS solution, υmax

u , υmax
w and

υmax
r , domake the departure and arrival conditions smoother, they

do not necessarily cause a complete match with the IDVD solution
(except the initial part in the surge speed control). It should be
noted that introducing more strict bounds in the heave speed and
yaw rate control would cause a better match, but that was not an
objective of this study.

Fig. 15 shows arc histories of speed factor and its derivatives
resulting in a non-linearmapping between the virtual and physical
domains.

Even though the performance index for the IDVD solution is
about 24% higher than for the ‘‘optimal’’ 10-state solution ob-
tained using the LGLPSmethod (Fig. 16), the IDVD-based approach
provides a huge computational advantage (Fig. 17). The required
central processing unit (CPU) time is also shown in Table 1. For
example, comparing the 50-node solutions, the IDVD solution con-
verges 47.1 times faster than that of 10-state LGLPS (as shown
by the figures in parentheses in Table 1). Also, increasing the
number of nodes in the LGLPS method means increasing the num-
ber of varied parameters and as a result — drastically increases
the required CPU time. Increasing the number of computational
nodes in the IDVD method does not affect the number of varied
parameters. In addition, while the IDVD approach converges to
some feasible trajectory every time, the convergence of LGLPS
approach is not guaranteed. As seen from Fig. 16 an attempt to
make LGLPS solution more feasible by increasing the number of
states inevitably leads to increase of the performance index value.
As mentioned above, tightening υmax

u , υmax
w and υmax

r , would make
the performance index values of LGLPS and IDVD methods even
closer.

5.2. Robustness of the IDVD solution in SITL simulations

Fig. 18 shows the locations of the LGL and IDVD nodes for
different number of nodes involved in Figs. 16—17. By design, they
are not spaced evenly along the time axis and that is why on-board
implementation includes the Interpolator (Fig. 3). As shown in
Fig. 3, a piecewise cubic Hermite interpolating polynomial is used
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Fig. 12. Time history of surge and heave velocities (a), along with vehicle’s yaw angle and yaw rate (b).

Fig. 13. Control time histories.

Fig. 14. Second-order derivatives of AUV’s coordinates.

to interpolate the reference trajectory states at M > N evenly-
spaced nodes.

To examine the quality of interpolated solution, the following
test was conducted. The reference trajectory controls were also
interpolated at the same M evenly-spaced nodes and then used
to integrate ordinary differential equations (1)–(4) from t = 0 to
t = T starting from the initial conditions (5). The objective was
to see whether integrated trajectory happened to be close to the
interpolated one. Two metrics referred to as the final position and
final heading errors,∆ρ and∆ψ , respectively, were defined by the
DS geometry (see Fig. 2) as follows:

Fig. 15. Arc histories of IDVD’s speed factor and mapping between the virtual and
physical domains.

Fig. 16. Performance index for IDVDand LGLPS solutions using the different number
of the computational nodes.

∆ρ =

√
(x(tf ) − xf )2 + (y(tf ) − yf )2 + (z(tf ) − zf )2 ≤ 0.6 m

∆ψ =
⏐⏐ψ(tf ) − ψf

⏐⏐ ≤ 9◦.

(67)

In Eq. (67), x(tf ), y(tf ), z(tf ), and ψ(tf ) denote the final values of
the integrated solution. The position error tolerance is based on
the distance of the vehicle’s center of gravity from the DS position
(the center of the outer end of the DS cone). Specifically, for the DS
described in [26], the position error in Eq. (67) is defined as a radius
of a sphere that has the same cross-section as the outer end of the
DS cone [27]. For heading error tolerance is defined by the DS cone
entrance angle [27].
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Table 1
The CPU time for the IDVD and LGLPS methods (numbers in parenthesis show time relative to IDVD time).

Method 15-node solution 25-node solution 50-node solution 75-node solution

IDVD 3 4 7 7
7-state LGLPS 4 (1.3) 16 (4.0) 94 (13.4) 281 (40.1)
10-state LGLPS 7 (2.3) 39 (9.8) 330 (47.1) 1016 (145.1)

Fig. 17. Computational effectiveness of the IDVD and LGLPS solutions.

Fig. 18. Distribution of the LGL and IDVD nodes along the time interval.

Specifically, the standard 4th-order Runge–Kutta method with
a fixed time step of 0.01 s was used as a propagator (in this case
M = 12 000), and the achieved results, dependent on the number
of nodes, are presented in Table 2.

As seen from this table, compared to the IDVD solution itself,
which assures ∆ρ = 0 and ∆ψ = 0 by construction, the prop-
agated solution (based on integrating the controls) indeed leads
to some errors. These errors are of the order of the tolerances in
Eq. (67) anddecreasewith increasing the number of nodes thatwas
used for obtaining the controls time histories for the IDVD solution.
These errors happen to be small enough to be corrected by the AUV
controller, thus enabling the usage of the interpolated solutions
for the state vector by the Controller block (Fig. 3). Moreover, if
the control architecture would include the feedforward loop, the
interpolated controls could then be used as well.

The ultimate robustness test involved the complete SITL sim-
ulation environment including the actual controller as shown in
Fig. 3. In this test the interpolated desired states were passed on to
SMC, which computed the location of the 1-meter-ahead traveling
WP and formed an input vector for the SMC block to produce the
actual controls.

The SITL simulation results for the TPBV problem solution dis-
cussed in the previous section are shown in Figs. 19, 20. As seen, de-
spite the intentionally introduced discrepancies in controls at the
beginning of trajectory and discrepancies in the model used in op-
timization (Eqs. (1)–(4)) and a full-degree of freedommodel of the
AUV used within the SITL simulation environment, the controller

Table 2
Arrival accuracy performance of the solution obtained by integrating the IDVD-
provided controls.

Number of nodes ∆ρ, m ∆ψ , ◦

15 1.60 3.80
25 0.90 0.88
50 0.86 0.16
75 0.38 0.41

Table 3
Arrival accuracy performance of the 50-node solutions in SITL simulations.

Method ∆ρ, m ∆ψ , ◦

IDVD 0.1 1.1
7-state LGLPS 0.2 8.2
10-state LGLPS 0.7 0.5

Fig. 19. Optimized and propagated IDVD trajectories.

does a good job of tracking the interpolated reference trajectory.
A peculiarity of the SMC implementation with the Traveling WP
block causes about 2-second lead time (1mdistance divided by the
average speed of about 0.5 m/s) as compared to the interpolated
reference trajectory. Hence, to accommodate the traveling WP
beyond the final point, the final approach leg is extended along
the DS centerline. That allows terminating simulation at exactly
120 s.

Since in this particular scenario the reference trajectory can
be generated ahead of time (there is no limit on tCPU ), Table 3
compares the results of using the SITL simulation environment
of Fig. 3 with the reference trajectories presented and discussed
in Sections 3.3 and 4.1. As expected, due to the relatively large
accelerations required at the end of the trajectorywhen using LGPS
solutions compared to the IDVD solution, the final position and
final heading errors in tracking the LGPS solutions are greater than
those for the IDVD solution.

Finally, to assess the performance of the IDVD-based guidance
method while varying BCs the Monte Carlo trials were executed.
In these trials The BCs were sampled using the uniform distribu-
tion U(ℓb, ub), with ℓb and ub being the lower and upper bounds,
respectively. In the first 200 trials initial conditions for x, y, z, and
ψ were randomly chosen from the hypercube defined by x0 ±5m,
y0 ± 5 m, z0 ± 2 m, and ψ0 ± 20◦ , where the nominal values were
defined in Eq. (37). For the second set of 200 trials final conditions
were varied within xf ± 5 m, yf ± 5 m, zf ± 2 m, and ψf ± 20◦.
In addition to that, in both sets of trials there was a 10% variation
(uncertainty) applied to hydrodynamic coefficients used within
the SITL simulation platform.

TheMonte Carlo trials were realized inMATLAB using a parallel
implementation on a high performance cluster machine that has



26 A.M. Yazdani et al. / Robotics and Autonomous Systems 92 (2017) 12–29

Fig. 20. Control time histories of the optimized and propagated IDVD solutions.

Fig. 21. Distributions of the final position (a) and final heading errors (b), and computational effectiveness (c) while executing Monte Carlo simulations with varying the
terminal conditions.

1160 CPU cores and 4.25 TB RAM. All 400 runs satisfied Eq. (67)
proving acceptable robustness of the developed algorithm. As an
example, Figs. 21(a), (b) shows the box plots of the final position
and final heading errors while varying the terminal conditions.
Fig. 21(c) proves the computational effectiveness of developed
algorithm.

5.3. Performance with a realistic docking scenario

So far, all examples addressed a simplified TPBV problem with
no obstacles (15) and no uncertainties. In practice, these real-
world features should obviously be included in simulation, and
performance of the guidance method be tested. To this end, this
section shows the results of a simulation in the case when there
is an uncertainty in the actual location of DS. In this scenario, it is
assumed that the AUV executing a docking mission gets an update
about DS pose every tsample using an ultra-short-baseline (USBL)

sensor. The DS pose information is corrupted by both sensor and
environmental noises. As the AUV approaches the DS, the impact
of uncertainty reduces, and theDS pose information becomesmore
accurate. TheUSBL acoustic positioning systemused in simulations
(denoted as SA Sensors in Fig. 3) is adapted from [42]. Moreover, to
make the scenario more challenging and assess the IDVD-method
based guidance performance in a cluttered environment six no-fly
zones modeled in Eq. (15) were added to the operating field.

In this scenario, the initial conditions together with the con-
straints over the AUV’s states and controls, are set as per the
previous scenario described in Section 3. As opposed to the fixed
values in Eq. (37), the first three elements of the final state vector
are dependent on the range from the true DS position, D, and
modeled as

xf (D) = 180(1 + δ(D)) m
yf (D) = 70(1 + δ(D)) m
zf (D) = 11(1 + δ(D)) m

(68)
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Fig. 22. Trajectory re-optimization routine.

where δ(D) = N(0, σ (D)2) represents a normally distributed un-
certainty in knowing the DS position with the standard deviation
σ (D) = 4.1 · 10−6D2. As a result, at each DS position update, every
tsample, the AUV reference trajectory needs to be recomputed to
account for an updated xf (D(t)). When doing so, the current AUV
state is used as a new initial state

x0 = x(t) (69)

(that is where a capability to reinforce Eq. (11) becomes essential).
Fig. 22 shows the flowchart of the utilized online (on-the-go)
trajectory re-optimization procedure.

Figs. 23–25 demonstrate an example where a reference trajec-
tory was updated twice based on two sequential USBL updates
on the DS position. Fig. 23, illustrates the generated path in 3D,
revealing no-fly zones and the same current field as in the offline
computation scenario of Section 3.3. Three solid circles in Fig. 23
(including the starting point) indicate the DS position update
points and three triangles show the corresponding perception of
the DS position. Specifically, the Trajectory generator block (see
Fig. 3) generates the first reference trajectory based on the DS
position information available at the first solid circle, denoted
as Start. At this point, the DS position is thought to be at the
location denoted as 1st destination. With this reference trajectory,
the AUV continues itsmotion to this destination. At the first update
corresponding to the AUV position depicted by the second solid
circle (1st update), the vehicle receives a new ping from the USBL
and based on the new information, the Trajectory generator block
refines the reference trajectory and generates a new one leading

to the 2nt destination point. The AUV keeps tracking the second
reference trajectory until the next ping from the DS is received,
and the 2nd update occurs. Another reference trajectory is then
generated with respect to the updated estimate of the DS position
denoted as the Actual DS in Fig. 23 (at this point, being about 40 m
away from the DS, its horizontal and vertical position is known
to within 1 m and 0.1 m, respectively). As seen in Fig. 23, each
of the three reference trajectories forces the AUV to maneuver
around no-fly zones and that is where IDVD-approach capability
to generate spatial non-singular arc solutions really pays off.

Fig. 24(a)-(b) feature timehistories of surge andheave velocities
and yaw angle and yaw rate, corresponding to all three reference
trajectories shown in Fig. 23, respectively. Fig. 24(b) clearly shows
a correct final zero-yaw-rate aligning the AUV with the DS center-
line.

Data shown in Fig. 25 proves that all controls are within
their limits (within preset tolerances). In the particular realization
shown in Fig. 23, where the new DS position updates happen to be
farther and farther away than originally expected, obtaining the
new reference trajectories becomes more and more challenging.
In this particular simulation, the only way to be able to arrive at
the DS in exactly 120 s with zero acceleration was to allow the
final surge velocity to vary. As seen from Fig. 25, the surge velocity
control reached its limit at the second update and was within 1%
above its limit for the third update. The performance index values
obtained for the three updates are also indicative of this. While
Jupdate 1 = 0.26, it steadily increases for the following updates,
Jupdate 2 = 0.68 and Jupdate 3 = 0.85, respectively.

6. Conclusion

The goal of this paper was to present a real-time trajectory
generator algorithm for underwater docking operations and verify
its performance using the SITL simulation environment created
for an AUV, which is currently in the development phase. The
high-fidelity AUV model adopted in this study was chosen in an
attempt to accommodate the AUV’s dynamics at the stage of the
reference trajectory generation and thus make it more feasible
and readily available to be passed on to the AUV’s controller for
tracking without saturating the AUV’s thrusters. Since the actual
trajectory needs to be very close to that generated by the Tra-
jectory generator, it is very important to assure high accuracy in
satisfying the boundary conditions and to avoid the no-fly zones
in the cluttered operational environment. The solutions obtained
using the IDVD-method-based algorithm were analyzed from the
standpoint of their feasibility, optimality and computational effec-
tiveness. The developed algorithm was thoroughly tested within
the SITL simulation environment and proved its robustness with
respect to unmodeled dynamics, BC variations, and uncertainties
associated with the perceived position of the DS. Its computation
effectiveness allows the reference trajectory to be updated in real

Fig. 23. The 3D collision-free trajectory re-optimized based on a better knowledge of the DS location.
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Fig. 24. Refinement of surge and heave velocities (a), along with the yaw angle and yaw rate updates (b).

Fig. 25. Timehistories of the control inputs for online docking trajectory generation.

time as needed, and therefore makes it a good candidate for future
testing on a real AUV.
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