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INTRODUCTION

ral histories represent the recollections
O and opinions of the person interviewed

and are not the official position of
MORS. Omissions and errors in fact are cor-
rected when possible, but every effort is made to
present the interviewee’s own words.

Dr. Peter ]. Denning is a Distinguished
Professor at the Naval Postgraduate School
(NPS) in Monterey, California, where he
chairs the Computer Science department.
He was President of the Association for
Computing Machinery (ACM), the leading
professional society for computing, from
1980 to 1982 and is a Fellow of ACM. A
listing of Dr. Denning’s publications and a
more complete background is available at
http:/ /denninginstitute.com/denning/.

Three previous oral histories have fo-
cused on aspects of Dr. Denning’s career:
“Peter ]. Denning Interviewed by David
Walden,” October-December 2012 Volume
34, Issue 4 issue of the IEEE Annals of the
History of Computing; ACM Oral History
Interview Number 20: Peter J. Denning oral
history on August 6, 7, and 8, 2007 con-
ducted by Arthur L. Norberg; and “An In-
terview with Peter Denning: Building a
Culture of Innovation,” Ubiquity, an ACM
publication, April 2004.

This interview was conducted on June
18, 2018 in Dr. Denning’s office at NPS in
Monterey, California.

FOREWORD

By Wayne Hughes, FS

MORS conducted this interview of
Professor Peter Denning at my suggestion.
Professor Denning is widely recognized in
the computer science community, but he is
not as well-known in our operations re-
search (OR) community.

Over the years I have watched how
advancements in computers and computer
applications have enhanced and enriched
OR. This goes all the way back to 1963 when
as an OR student I did a field trip to work on
the crucial “Cyclops” study chartered by
Secretary of Defense Robert McNamara and
led by a distinguished analyst, Jim Larkin,
who was attached to the Secretary of
the Navy’s Office of Program Appraisal.
FORTRAN was the language de jour and
debugging was a huge drag on swift

computer-assisted analysis. The Naval
Postgraduate School (NPS) had one bulky
CDC 1604 computer that filled a huge room
in Spanagel Hall. Faculty and students had
to queue up to run their code on it night and
day. When I came back to the OR de-
partment in 1979, there had been vast
advances—many computers and computer
labs. I had seen some of the advancements
in the fleet and OP-96 in the Pentagon, but
unlike Peter Denning I had no awareness of
what was yet to come. In our campaign
analysis course, we have taught ever-more-
complex operational and tactical problems
as the students’ tools advanced. The recent
students are challenged beyond anything I
gave them in the 1980s because the technol-
ogy of spreadsheets, PowerPoint, Google
maps, combat simulations, and artificial in-
telligence gives them tools beyond anything
imagined by Morse and Kimball when they
described OR’s successes in World War II, or
B. O. Koopman described in the original
edition of Search and Screening.

Many of these advancements and many
of the challenges that accompanied them
are described with remarkable clarity by
Peter Denning in this interview. When I was
Dean of the school in which our Computer
Science department resides, I helped to
bring Peter and his wife Dorothy to our
campus. I knew his reputation and the
worldwide respect he had earned, but after
this interview I have to confess I didn't
know the half of his talents and experience.

MORS ORAL HISTORY

Interview with Dr. Peter Denning;
Captain Wayne Hughes, FS, and Dr. Bob
Sheldon, FS, interviewers.

Bob Sheldon: First of all, please tell us
your parents’ names and where you were
born and raised.

Peter Denning: My parents were James
Denning and Catherine Denning. I was
born in Brooklyn in New York City. Our
family quickly grew to four children and we
outgrew our Queens townhome. We moved
to a large house in Darien, Connecticut. My
third sister arrived in Connecticut.

Bob Sheldon: Tell us how your parents
influenced you.

Peter Denning: I think I was pretty in-
dependent, but my father had a strong in-
fluence on me academically. He always
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celebrated when I came home from school with
good report cards. By middle school I was ig-
nored by the other students because I wasn’t
very good with athletics and was rather nerdy
with my growing interests in science and math.
Somehow I didn’t fit their model of a normal
kid. So I kept to myself or hung out with other
nerdy types. My mother was very helpful in
listening to me and telling me that these other
kids didn’t know what they were talking about.
I'had talents that they didn’t appreciate, and my
parents wanted me to ignore the negative as-
sessments and pursue my talents.

Bob Sheldon: What did your dad do for a
living?

Peter Denning: He was a corporate lawyer
working for RCA Corporation. He commuted
daily to New York City. In 1963 he got a vice
president position with Universal Studios and
moved the family to Santa Monica in Los
Angeles. I stayed behind on the East Coast be-
cause I was a junior at Manhattan College and
did not want to switch. The rest of the family
moved to California.

Bob Sheldon: Did your dad take you on tours
of Universal Studios?

Peter Denning: Yes, we went there once or
twice. It was interesting to see behind-the-
scenes scenes!

Bob Sheldon: Where did you go to grade
school, junior high, and high school?

Peter Denning: My grade schools were just
normal schools available in my town, Darien,
Connecticut. In 1956, when it was my time to go
to high school, my parents sent me to Fairfield
Prep, an all-boys Jesuit college prep school in
Fairfield, Connecticut, about 20 miles east of
Darien toward New Haven. Fairfield Prep
was much more of a homework-intensive and
learning-intensive environment than the mid-
dle and high schools in Darien.

Bob Sheldon: Was that a boarding school?

Peter Denning: No. I commuted up there
every day on the train along with a whole bunch
of other guys.

Bob Sheldon: Did you do your homework on
the train?

Peter Denning: No, we talked a lot about
meeting girls. You see, there was another, all-
girls school a little farther up the line. So we
always talked about how we might meet them.

According to my sister, who was one of them,
the girls talked about meeting some of us boys.
But we were too bashful—we never came to-
gether to talk!

Bob Sheldon: Did you have some good
teachers in high school?

Peter Denning: In high school, the teacher I
most remember was my math teacher, Ralph
Money. He was a really good teacher, very
supportive of his students. He took a liking to
me and said, “You seem to know this math.” He
was right. I loved math even before I got to high
school. I went to the library frequently to get
math books, especially math puzzle books. Mr.
Money said, “I'm going to accelerate you. Work
your way through the algebra book as fast as
you can. When you get to the end of the book,
I'll give you another book which would be for
the next algebra course, and we’ll work our way
through that.” I did pretty well on this acceler-
ation and got about a semester ahead of every-
body else with his help. But he didn’t stop there.
He said, “I want you to join the Science Club.”
He was the advisor of the Science Club. In the
Science Club, I met a lot of other students who
were interested in science and math. And he
said, “Okay guys, every one of you is going to
do a project for the science fair, including you,
Denning.” I said, “I don’t have a project.” He
said, “You seem to like computers. Why don’t
you build a computer?” I said, “Nobody seems
to know much about computers. All I know is
what I read about them in the papers. There
aren’t any books in the library about com-
puters.” He said, “All the more opportunity for
you to do something new!” Thus he got me to
work on a project to build a computer for the
science fair, and I did so. My computer was re-
ally simple, basically an adding machine. You
give it a series of numbers and it added them up
and showed the results on a panel of lights. We
took that to the 1958 science fair, and it won first
prize. I was quite surprised. It was a small piece
of electronics with little capability beyond
adding a few numbers. But the judges liked it. I
think Ralph Money was influential too, because
he walked the halls of the science fair talking up
the projects of all his students. People came to
look. When he saw the judges coming, I think he
intensified his campaigning and got crowds to
come over. When the judges arrived, there was
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already an impressive crowd at my exhibit. He
was very good about doing marketing for the
projects of his guys.

Bob Sheldon: Did you save that computer for
a museum piece?

Peter Denning: No, I didn’t save anything.
Money was not interested in the past. The mo-
ment we finished our post-science-fair celebra-
tions he said, “What are you going to do for next
year’s science fair?” “Another science fair?” I
asked. He said, “Yes, of course. We never stop
around here.” I said, “Okay, I'll build a more
advanced computer.” I decided to build a
computer that solved linear equations of the
form AX=B. You entered the coefficients A and
the right-hand side B on dials and pushed the
start button. The machine, which was made of
relays from an old pinball machine, clicked,
sputtered, clanked, and sparked. After a minute
or so, it stopped with the answer (the correct
value of X) projected on a small tissue-paper
window. To do this, I stored X on the pinball
machine’s scoring relay, a stepping relay that
showed a light through a stenciled number on
the scoring wheel. It was easy to project the re-
sult onto a small screen.

Bob Sheldon: Were you using some Boolean
logic?

Peter Denning: At that time Boolean logic
was pretty much unknown outside of the circle
of logic circuit designers. I wasn’t part of that
circle. I was just a kid in school, and the only
electronic parts I had access to—or I thought I
had access to—were cheap pinball machine
parts. My family had a neighbor who lived
down the street who had a pinball machine in
his basement that he wasn’t using. I went on a
campaign to convince him that he should do-
nate it to me for my science project. I eventually
convinced him and got the machine. The ma-
chine had a mass of relays, including stepping
relays, and a score-relay. The stepping relays
were ratcheted wheels that rotated one click
with each electrical impulse, thereby recording
a number as a wheel position. For example, if I
sent the stepping relay three impulses, it clicked
three times and recorded the number three.
There was a reset input that sent the wheel back
to zero. The score-relay was a stepping relay
whose wheel contained a stenciled number
punched at each position; a light shined through
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the selected position to display the player’s
score. I used that relay to display the result
computed by my machine. I figured out how to
build my machine from those parts. Remember
my equation AX=B? When you dialed in the
numbers A and B on the control panel of the
machine, one stepping relay would record A
and another B. I set up a wheel, driven by a clock
motor, that in one rotation would subtract the A
value from B. When B got to zero, the solution X
would be the number of rotations of that wheel.
That number was stored on the score-relay
so that you could see the value of X. Pretty
cool, huh?

Bob Sheldon: We could call you a “pinball
wizard,” so to speak.

Peter Denning: 1 doubt that. My machine
solved a linear equation. It did not play a pinball
game! That machine got the grand prize of the
Southern Connecticut science fair in 1959. As a
reward, they sent me to the New England Sci-
ence Fair with that machine. I'm pretty sure that
the pinball-parts essence of my machine helped
with the prize. As the machine was solving an
equation, its relays made all the clicking, rat-
tling, clanking, and thumping of a pinball ma-
chine. On top of that, the rotating wheel to find
Xsparked every time it moved to a new position
because those pinball stepping relays used a lot
of power. The sparking filled the air with an
ozone smell. The machine’s noises and smells
attracted crowds. I'm sure that influenced the
judges. I also had fun with the crowd because
occasionally those sparking contacts would
melt shut. I had to stop the machine and open
the contacts with sandpaper to get it going
again. The crowds loved that.

Bob Sheldon: Did you make any more com-
puters after that?

Peter Denning: One of the judges who
awarded the grand prize said, “This is really
cool. What are you going to do for next year?”
That would be my senior year; this was my ju-
nior year. I asked if they had any suggestions.
The judge said, “Go to the next level with a
computer that solves quadratic equations?” So I
said, “What the heck. If they say quadratic, I'm
going to go one better on them. I'm going to
solve cubic equations.” So for my senior project
I set out to build a computer that would solve
cubic equations. I couldn’t do it with relays any
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more. It would have been too complicated and
would require an enormous amount of power. I
had to do it with all-electronic circuits. Think of
a cubic equation. It has terms for a constant, X, X
squared, and X cubed. Each term has a co-
efficient. The sum of the four terms multiplied
by their coefficients is zero when X is a solution
of the equation. My idea was to represent each
term with a sine-wave signal whose amplitude
depended on the coefficient. I represented neg-
ative numbers by phase-shifting the sine-wave
signal half a wavelength so that a positive
would cancel a negative when mixed. I mixed
all these signals and blended them into a single
voltage that registered on a voltmeter. To solve
an equation, you would enter the four co-
efficients as dials on a panel. Then you would
“tune” a knob marked X until the voltmeter
read zero. The setting of X producing the zero
would be a solution to the equation. Any solu-
tion to the cubic equation would, by defini-
tion, evaluate to zero. To accomplish all this, I
had to design electronic circuits using triode
vacuum tubes to generate the signals, phase-
shift them, and mix them. Although it felt like
a Rube Goldberg contraption, the machine
worked pretty well. To help the judges at the
science fair, I prepared a list of sample cubic
equations that the machine solved well. I took
the machine to the 1960 science fair. The
judges looked at it, stone-faced without much
comment. The next morning, I returned and
discovered that my machine received only a
second prize. I was flabbergasted, surprised,
and disappointed.

Bob Sheldon: Who got first?

Peter Denning: A guy who built a binary
counter. I said, “My machine does so much
more than a binary counter.” I collared one of
the judges and told him what my machine did.
His eyes opened, and he said, “Oh, I didn’t
understand what you had done. I wish we had
known.” Then he said, “I hope you now have
learned something about marketing.” He was
referring to my lack of posters, signs, pre-
sentations, and other means to communicate
what the machine did and draw crowds to see it
in action. I should also note that Ralph Money
had left Fairfield for another school and was not
at the science fair walking the halls promoting
his students’ projects. I did not realize until then

how important his marketing was to my ma-
chines getting prizes. That became my take-
away from that science fair. You could have
the world’s most advanced computer, and if
nobody knows it and nobody appreciates what
it might do, it’s useless.

Bob Sheldon: With that background, how did
you look for a college?

Peter Denning: When it came time to look for
a college, I wanted to continue in the Jesuit
tradition that I loved while I was in high school.
But there weren’t any Jesuit engineering col-
leges. The Christian Brothers ran a good engi-
neering school at Manhattan College in New
York City, so that's where I went. My father
wished that I had applied to Massachusetts In-
stitute of Technology (MIT), but I said, “No.” I
wanted to continue my Jesuit type education. I
liked it. Manhattan College had a very good
engineering curriculum oriented around pro-
fessional engineering practice. I took electrical
engineering because that was the closest to
electronics and computers. They had no com-
puter courses. The closest I got was in senior
year, when I got to use a newly-donated LGP-30
computer in a project for a teacher. The closest I
got in electronics was a transistor course.
Computers were being made of transistors at
the time. However, our transistor course did not
touch on anything computational. It was really
how do you design circuits such as amplifiers
and radios with transistors instead of vacuum
tubes. It wasn’t until graduate school that I got
into a computer course.

Bob Sheldon: What was your undergraduate
degree?

Peter Denning: It was electrical engineering.
When I finished up at Manhattan, I applied to
MIT. My father welcomed this saying, “Finally
you applied to a school that will really challenge
you.” Most of the faculty at Manhattan tried to
discourage me, saying, “No. You shouldn’t go to
MIT. Previous Manhattan graduates who went
to MIT never made it through the PhD quali-
fying exam which you have stated your interest
in.” Fortunately for me, the dean said, “I think
you can do it.” That was what I wanted to hear.
took his advice over the skeptical faculty and
went to MIT.

Bob Sheldon: Was it a PhD program when
you started out?
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Peter Denning: No. The way MIT worked
was to put me through the one-year master’s
program. At the end of the first year I took the
PhD qualifying exam. Then I got into the PhD
program.

Bob Sheldon: What kinds of courses did you
take in that master’s program?

Peter Denning: 1 focused on courses to pre-
pare me for the PhD qualifier exams. The qual-
ifier was based on seven core courses that were
in the undergraduate program: besides the
electrical engineering topics I had covered at
Manhattan, these courses covered material I
had not encountered including thermodynam-
ics, antennas, communication theory, and dis-
crete math. I took all those core courses so I
could be prepared to take that qualifying exam.
Fortunately, the core courses also counted to-
ward a master’s degree if you didn’t have them
already as an undergraduate. The big benefit for
me was to learn electrical engineering a second
time from an MIT perspective, which contrasted
with the pragmatic perspective at Manhattan
College. Whereas Manhattan College focused
on the design of circuits, MIT focused a lot on
key principles: symmetry principles, mathe-
matical principles, electrical signal principles,
frequency analyses, Fourier transforms, and
conservation laws. Manhattan’s was a practice-
oriented curriculum and MIT principles-
oriented. I had the benefit of both. I felt like I
knew electrical engineering a lot better by the
end of that first year at MIT.

Bob Sheldon: Did you actually build some
circuits and test them out see if the theory
matched the measured results?

Peter Denning: We did a little bit of that at
MIT. Jack Dennis, a gifted computer systems
architect and designer, who was also my advi-
sor, had a lab where he built experimental cir-
cuits for dataflow computers. I got to fiddle
around a little bit there, but not anything sig-
nificant. The labs at Manhattan College were
more extensive. I was grateful that I had the
opportunity to take electrical engineering all
over again from a totally different perspective
and learn it a lot deeper than I would’ve if I just
had one or the other.

Bob Sheldon: How did you like the Boston
area as compared to New York City for a place
to be a college student?
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Peter Denning: On balance I liked the New
York City area better than Boston. Each city has
its own personality and idiosyncrasies. In my
senior year at Manhattan College, I lived in the
dorms because, as you recall, my parents had
moved to California. I took a part-time job
during my senior year driving school buses for
the Riverdale school, which adjoined Manhat-
tan College in the Riverdale section of the
Bronx. Every morning at 6:30, I'd drive down-
town and pick up seven or eight kids in a station
wagon and bring them up to school. Then at
3:30 in afternoon, I picked them up again and
took them back downtown. Then I came home
and did my studying. I picked up a little money
from that. As a result of that, I got to know a lot
about New York City, especially about how to
drive around in it. I came to understand the
characteristic driving habits of New Yorkers
and adjusted my own driving habits to be a safe
New York driver. When I got to Boston, I had to
learn their mindset and driving practices. Some
were sharply different from New York. For ex-
ample, New York cabbies positioned them-
selves opposite empty spaces in the neighboring
lanes so that they could suddenly change lanes
without hitting each other. Boston cabbies drove
tight patterns. New Yorkers had more respect
for pedestrians in crosswalks than Bostonians. I
saw more accidents in Boston than in New York.
I liked Boston less. When I finished my MIT
degree, I was more than happy to get out of
Boston. I joined the electrical engineering fac-
ulty at Princeton, which was well away from the
city and had a much more appealing ambiance.

Bob Sheldon: After the qualifying exam at
MIT, then what?

Peter Denning: I came to MIT in 1964, got my
master’s degree and passed the PhD qualifiers
in 1965, and got my PhD in 1968. I was in the
PhD program for three years.

Bob Sheldon: How did you choose your dis-
sertation topic?

Peter Denning: 1 was working with Jack
Dennis. He was leading a project in his lab to
build a time-sharing system and was part of the
architecture team for Multics. He had some
fascinating questions about how to design sys-
tems and manage their resources to get best
possible performance. From my little computer
project at Manhattan, I knew that programming
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for a rotating-drum computer was hard and
tricky because if you weren’t clever, rotational
latency delays would accumulate and kill per-
formance. For my master’s thesis topic, I simu-
lated a rotating-drum memory storage system
to learn how to organize files in the memory for
fastest retrieval and what policies for schedul-
ing a queue of drum system requests would
yield fastest response time. For my PhD subject,
I continued in the same direction with a much-
expanded horizon: the general resource alloca-
tion problem in a multiprogrammed computer
system. Jack Dennis and his colleagues were in
the middle of designing the Multics project and
had numerous performance questions. Multics
was an early production-level time-sharing
operating system. They didn’t know how to
do a lot of things. Memory was one of their
biggest mysteries. The system allowed multiple
programs in memory, executing in parallel, all
with different memory demands. How do you
organize the allocation of memory and the data
transfers with the disks so that you don’t create
disk bottlenecks? Disk bottlenecks will kill
performance on those systems. This question
was a natural follow-on after my master’s thesis
about scheduling data transfers for disks and
drums. Now we were looking at the whole
problem. How do you schedule everything so
that we can make the system run efficiently? So I
picked that topic.

Bob Sheldon: Some people say that students
nowadays are spoiled because computers run
so fast and they have so much memory storage
that the students don’t have to deal with some
of these problems like you dealt with. So they’re
missing out on learning the mindset of what it
takes to allocate scarce computer resources. Can
you comment on that from your studies?

Peter Denning: We're getting ahead of our-
selves. I'll discuss later the topic of mindsets
and thinking. But I basically believe that today
we have managed to cultivate among computer
scientists an orientation of detached involve-
ment that makes them oblivious to the factors of
good design.

Wayne Hughes: 1 was a student here at
NPS from 1962 to 1964 in OR. We had a lot of
connections with computer science. We had
CDC-1604 number one. Although the faculty
dominated its use during the daytime, if a

student wanted to get up and learn something
on how to program, he’d get on between 2:00
and 4:00 in the morning. I would bring my
punch cards and put them in. The first two
times I was there, I would have made a bad
punch card. So I learned very soon how un-
disciplined my mind was and how the com-
puters work if you tell them what they need to
know, and they won't if you don't.

Peter Denning: The ever-present problem of
the bug.

Wayne Hughes: Yes, indeed.

Peter Denning: There’s a marvelous quote in
Maurice Wilkes” memoir. Maurice was the
builder of the first public English computer, the
Electronic Delay Storage Automatic Calculator
(EDSAC), at the University of Cambridge. He
wrote in his memoir that he remembered the
day when he was going into his office and he
realized as he was walking up the stairs that he
was going to be spending most of the rest of his
life looking for mistakes in his programs. He
came to the conclusion that programming is
really hard because it's so easy to make mis-
takes, and that the engineers will be spending
most of their time finding and fixing mistakes.
That was the job. A lot of students today have
the same problem. They can’t get their pro-
grams to work. We’ve got way more advanced
tools today than anything Wilkes had. Our
students still get frustrated out of their heads
when their programs don’t work. They blame it
on the professors, the compilers, the operating
systems, or the network and don’t realize that
the bugs come from their own lack of un-
derstanding or from inattention to detail.
Learning to deal with this is part of the job.
Programmers make mistakes all the time.

Wayne Hughes: The more power you have,
the more complicated they are and there are more
opportunities for different kinds of mistakes.

Peter Denning: With the bigger programs
you can now write with these more advanced
languages, you can make bigger mistakes. And
amidst the complexity, the mistakes are subtle,
so you can’t see them.

Bob Sheldon: When you finished at MIT,
were you recruited by Princeton or did you go
down there for a visit?

Peter Denning: I interviewed at several uni-
versities. I chose Princeton because it was the
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most desirable for my family, who didn’t want
to get too far away from New York City.
Princeton is nice. It's out in the country and it’s
not too far from New York City.

Bob Sheldon: What kind of position were you
recruited to at Princeton?

Peter Denning: Assistant professor of elec-
trical engineering.

Bob Sheldon: What kinds of courses did you
teach there?

Peter Denning: 1 started with two courses.
One was an operating systems course. I formed
an early partnership with Ed Coffman who was
also at Princeton. We started teaching the op-
erating systems course, emphasizing principles.
At the time there were many principles still in
the process of being discovered; as we explored
them for the class, we discovered some pretty
deep problems involved in building operating
systems. Ed and I wrote a book on that called
Operating Systems Theory, published in 1973.
That book supported much of my teaching. The
other course I helped with was Jeff Ullman’s
course on automata theory. I had taught a sim-
ilar course at MIT and had a draft book manu-
script prepared with Jack Dennis; the book,
Machines, Languages, and Computation, was
published in 1978. The book remained in print
for about 15 years and was used in a number of
universities. However, we left out the important
topic of complexity theory. Had we included
that, the book might have lasted longer.

Bob Sheldon: Complexity was a fairly new
concept back then. How many students were
taking your course?

Peter Denning: Each time I taught that
course, there were 15 to 20 students.

Bob Sheldon: Did you get along well with
your students?

Peter Denning: Yes. We had smart students
at Princeton. They had the usual assortment of
student hang-ups and issues. Having recently
been a student myself, I could relate to all their
issues. Their issues were typically finding time
to do all the work or struggling to choose a
thesis topic. Because they were full-time stu-
dents, they weren’t grappling with other issues,
such as how to deal with a part-time job or full-
time job in other hours of their day.

Bob Sheldon: How long did you spend at
Princeton?
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Peter Denning: I was there four years.

Bob Sheldon: What motivated your transi-
tion from Princeton?

Peter Denning: Ambition. In 1972, at the end
of four years during which I'd been quite pro-
ductive, several senior faculty said to me, “You
should go up for early promotion.” But the de-
partment chair and the dean and the provost
said, “Forget about it.” Princeton had a
university-wide cap on the total number of
tenured faculty and they were pressing up
against the cap at that point. Schools and de-
partments had to apply to the provost for per-
mission to bring promotion cases forward. They
told my department “You're going to get one
new tenured position slot every five years under
the current conditions.” In my department, over
half the faculty were in the electrical engineer-
ing side and my computer science side was in
the minority. Thus the next quota for promotion
was going to the electrical engineering side.
Those did not look like good odds for my am-
bition of tenure, much less early tenure. I fig-
ured I'd put myself on the market because, even
if  waited to the six-year limit for getting tenure,
it was unlikely that the computer science side of
my department would have a quota. Not long
after that, I was at a conference and got to
talking this over on an elevator with Sam Conte
from Purdue. And he said, “Why don’t you
come to Purdue?” He made me an offer right
there in the elevator! It was a 50 percent increase
in salary plus tenure at associate professor level
in their Computer Science department. I thought
it over and finally took his offer.

Bob Sheldon: What was it like to move to
Purdue from Princeton? Was that a big transition?

Peter Denning: 1 liked it because it was a
dedicated computer science department. In the
Princeton Electrical Engineering department,
there was an ongoing internal tension over
whether the electrical engineering side or the
computer science side should get a particular
scarce resource. The question of which side
would get the next tenure quota was particu-
larly contentious.

Wayne Hughes: If possible, say a word about
the trend in establishing computer science de-
partments as a discipline of its own as op-
posed to a subdiscipline. About when did that
happen?
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Peter Denning: 1 wasn’t paying a lot of at-
tention to that at the time. The issue of whether
computer science should be established as a
department was contentious in universities
from the late 1950s. I started participating in the
debates around 1970. The first department
bearing the name “computer science” was
established in 1962 at Purdue. Later that year,
according to Sam Conte, Stanford established its
own computer science department, led by
George Forsythe. Both Sam and George were
numerical analysts. Numerical analysis was the
branch of computer science most respected in
mathematics and the sciences. Their computer
science departments started with strong con-
tingents of numerical analysts. Compared to
other universities, they had a relatively easy
time selling their proposals to start computer
science departments. Politics were always im-
portant in establishing departments.

Sam Conte was involved with the ACM in
the late 1960s as part of a committee looking into
the issue of a standardized computer science
curriculum. That committee issued “Curricu-
lum 1968” with their answer. With ACM en-
dorsement of a standardized curriculum, those
seeking to found computer science departments
had a blueprint to work with. Sam drew me into
these curriculum discussions.

By the time Sam hired me in 1972, Purdue’s
Computer Science department was very in-
terested in software and computer systems.
That was my area of expertise and I had a good
reputation. Sam wanted me to help the Purdue
Computer Science department get into operat-
ing systems, software engineering, and net-
working. Those specialties were brand new at
the time but looked important in the future of
computing.

Slowed but not stopped by their internal
political wrangling, other universities estab-
lished computer science departments. There
was slow but steady progress. By 1980, I believe
there were about 120 PhD-granting computer
science departments.

Wayne Hughes: That's the answer I was
hoping for.

Peter Denning: Most every computer science
department was birthed after a political battle in
the university because there is always great re-
luctance to start a new department. At least one

other department is likely to say, “We already
do that.” For example, the electrical engineering
department would say, “Computers are part of
electrical engineering. We already do that.
There’s nothing new there.” And the math de-
partment would say, “Numerical analysis is
part of math. There’s nothing new there.”
Others would say, “It’s just a technology de-
partment, not an authentic science department;
we don’t do technology departments.” Some-
how or other, the people who were advocating
the computer science department had to figure
out how to make the case in spite of the oppo-
sition. It was a tough slog, but they did it.

You might wonder why some of these new
departments wound up in the school of science,
others in the school of engineering, and still
others in the school of business. The ultimate
home depended on how they solved their po-
litical problems and found the school most
friendly to the new department.

Bob Sheldon: Or which one had the money?

Peter Denning: I think it was more who was
going to be the most friendly. The new de-
partments could get the money. Funding
agencies had research money and industries
wanted to help.

Wayne Hughes: This resonates even with
NPS. We have a computer science program go-
ing and then an information sciences de-
partment going. It was in the same school as the
Operations Research Department and Special
Operations Department, all under the graduate
school of Operational and Information Sciences.
That was a good fit and I think we’ve been
highly successful in collaborating and com-
plementing each other, in a great part because
Peter understands this applications perspective.

Peter Denning: Back when all these argu-
ments were going on about whether or not
computer science should get a department in
our university, the classical sciences typically
argued that computer science wasn’t even
a science—it’s the wrong name for the field.
It should be called computer technology or
computer engineering. Engineers countered,
“Technology is better. It’s not really full-fledged
engineering.” The founders of the field spent a
lot of time arguing against this premise—that
computer science is not a science. The famous
pioneers Alan Perlis, Allen Newell, and Herb
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Simon all argued that objection was just wrong.
Herb Simon, a Nobel laureate in economics, fi-
nally got so annoyed by this whole argument,
he wrote a now-classic book called The Sciences
of the Artificial, where he showed that there are
sciences not built around natural phenomena.
He said the other sciences were not thinking
clearly—all science is built around phenomena,
but not necessarily natural phenomena. In the
case of computers, scientists were lining up to
study all sorts of new phenomena made possi-
ble by computers. Economics, Simon’s own
field, was regarded as a science and yet all its
phenomena are manmade.

Wayne Hughes: I've noticed this conflict.
Departments tend to want to go deeper and
deeper and narrower and narrower. And yet,
it’s pretty apparent that all of the great break-
throughs in modern science, technology, and
engineering are interdisciplinary. I think we
do a good job here at NPS in fostering inter-
disciplinary education, because military dis-
ciplines, antisubmarine warfare, and anti-air
warfare, strike warfare, global positioning sys-
tems, all of these have many different aspects to
them. And if you are so focused on traditional
electrical engineering or whatever, then you
missed that trend that I think is going on
right now.

Bob Sheldon: 1 have a question from my
background. In my studies, I learned about both
analog and digital computers. In computer sci-
ence, how has the view of analog and digital
computing evolved?

Peter Denning: When I got into the field,
many people in computer science believed that
analog computing was going obsolete. Electrical
engineers were deep into analog computing.
They could represent any differential equation
with an appropriate set of circuits and use an
oscilloscope to view how any particular vari-
able changed. Computer scientists took the
view that they could represent any differential
equation with finite differences over a grid, and
use a computer to evaluate the grid. Because
they could deal with much larger differential
equations, and faster, they saw no need for
analog-circuit simulators. But analog com-
puters did not go obsolete as we had thought.
They were used where a digital machine would
not work or would be inefficient. For example, a

Military Operations Research, V24 N2 2019

J. DENNING

camera depends on light-sensitive photocells
and an accelerometer on pressure-sensitive
crystals. Today, all the sensors built into our
computers (and cars) are analog computational
devices that output digital representations of
what they have sensed. We like to call them
“cyber-physical systems.”

Wayne Hughes: When I was a student at the
Naval Academy, and that’s not too long before
where we're talking, everything was analog: the
computers aimed the guns; and if they were
assisting in navigation, all of them were analog.

Peter Denning: A computer often mentioned
by historians is the differential analyzer, built by
Vannevar Bush at MIT around 1930. It used
gears, levers, shafts, and wheels to solve dif-
ferential equations by integration. It was very
clever—for example, I remember learning from
the analog computing guys that it could in-
tegrate a function with a ball and a disk. This
machine was used by the military to compute
ballistic tables for guns, prior to the ENIAC
electronic computer. There was a Bush differ-
ential analyzer here at NPS. Students worked
with it. We have a piece of it in the next room
over there as a display.

Bob Sheldon: Let’s get back to Purdue. The
computer science program was fairly new at
Purdue when you got there. Did it grow?

Peter Denning: I arrived there in 1972 when
the department was 10 years old. Its founder
and head, Sam Conte, was trying to build it out,
bringing in new faculty to cover programming
languages, operating systems, software engi-
neering, all newly emerging areas of computer
science. He wanted to get out ahead of them.

Bob Sheldon: So he did it by recruiting pro-
fessors like you to bring in various skills.

Peter Denning: Yes.

Bob Sheldon: Was the department growing
rapidly while you were there?

Peter Denning: It was growing. I wouldn’t
say it was rapid. I think we had about 20 people
at the time I got there. That grew to around 30 in
the next decade.

Bob Sheldon: Did you work on anything
outside of computer science while you were at
Purdue?

Peter Denning: No, I stuck with computer
science and deepened my involvement with
ACM. I was first involved with ACM in 1967 as
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editor for a group called SICTIME (special in-
terest committee on time-sharing). In 1969, 1
converted that group to SIGOPS (special in-
terest group on operating systems) and became
its chair. In 1970, I was elected first chair of the
newly formed SIG (special interest group)
board. In 1978, I became the Vice President of
ACM and in 1980 the President. ACM occupied
more and more of my time as time went on. I
still maintained my academic duties of teach-
ing, running research projects, and advising
PhD students at a level of productivity above
most other faculty members. Nonetheless, col-
leagues often advised, “Don’t do that ACM
stuff, man. You'll never get promoted if you do
that because it will suck away all your time.” I
appreciated the advice but managed my time
and made it work. I still have a few colleagues
today who think I could’ve done a lot more
technically if I'd never done ACM. But I was
good at ACM as well as my academics. For ex-
ample, my ACM editorships turned me into a
good writer and editor. I was able to directly
influence the way computer science curricula
evolved. I led the team that built the ACM
digital library, a singular accomplishment
among professional societies. I like the way my
life worked out.

Bob Sheldon: When did you start getting in-
volved in queueing network studies?

Peter Denning: At MIT. Both my master’s
thesis on disk optimization and my PhD the-
sis on working set memory management and
the general resource allocation problem used
queueing models extensively. I used insights
from queueing theory such as Little’s Law to
develop my working set and locality theories,
which became central in operating systems. I
found queueing networks especially intriguing
because they were oriented toward the general
resource allocation problem I studied in my
thesis. In the early 1970s, there were some in-
triguing studies showing that queueing net-
works accurately modeled computer systems.
Ed Coffman and I wrote about them in our 1973
book Operating Systems Theory. While doing my
master’s and PhD theses, I was fascinated
watching my colleague Allan Scherr discover
remarkable agreement between a machine
repairman model and the MIT compatible
time-sharing system (CTSS). His finding was

astonishing because the machine repairman
model left out 99.99 percent of the details of
CTSS, and yet it predicted throughput and re-
sponse time almost spot on. I remember around
1970 Forest Baskett at the University of Texas
did a whole thesis with a slightly more com-
plicated network that modeled a small com-
puter system with about three or four servers.
He lamented that he could not do larger, more
realistic models because they were computa-
tionally too expensive. I wanted to couple my
working set memory management theory with
queueing networks. Could a queueing network
model confirm that working set management
avoided thrashing and gave near optimal sys-
tem throughput?

Wayne Hughes: These models got to the
heart of the basics, the most important part of
queueing models.

Peter Denning: Now we know that the per-
formance is largely governed by the bottlenecks
of the system. Scherr and Baskett modeled the
bottlenecks, which, in time-sharing systems,
were the discs of the memory system. They also
modeled the CPU, which rendered service to get
the jobs done. And finally, they modeled
the users, who submitted jobs to the system. The
models were closed systems because all the
work came from a fixed community of users.
For a performance prediction model, this was
all we needed.

Wayne Hughes: I have a computer queueing
theory example. When I went on my experience
tour in 1963, they sent me to Washington to
work on what was supposed to be, probably
was, the most important study going in the
Navy. And they had a very short time to do it,
like six weeks. I got there in the second or third
week. They had just hired a guy who was in the
Secretary of the Navy’s office who was very
applications oriented. He came in just as I ar-
rived and said, “Where do we stand?” There
was a queueing theory model that was sup-
posed to simulate the Battle of the Atlantic be-
tween Soviet submarines that would attack one
target, and then another target, and then an-
other target, in queueing fashion. A fellow
named Frank Houck at the Center for Naval
Analyses (CNA) had designed it for an earlier
study and he brought that in. We were doing the
computations with a mechanical computing
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machine. The director said, “Can’t we get this
onto a program?” So CNA sent an expert on
FORTRAN over to program it, and she said,
“Yes, I will have this up in three or four days. I'll
be giving you results in a week.” This was good
news for me because I'd been doing all the hand
calculations until midnight or one in the morn-
ing. I thought, “Finally I can learn something
more than just turning the crank.” The director
said, “Wayne, keep chugging until she gets this
thing debugged.” When I left three or four
weeks later, she still hadn’t got it debugged, and
I was still the key man doing the computations.

Peter Denning: Going back to the queueing
network, Scherr’s insight that the machine re-
pairman would work for the MIT CTSS time-
sharing system was based on his desire to
model with the simplest possible network you
could think of. A quick look at the system con-
figuration would suggest that he would need a
model consisting of the users, the CPU, and the
disk. That would be two servers plus users, and
would have been much more complex compu-
tationally. But the CTSS was designed in a way
that reduced the CPU-disk combination to a
single server. The memory was single-user.
When a job got scheduled for CPU, the system
swapped it into memory and ran it to comple-
tion while loaded. CTSS also set the time slice
length long enough that the probability of a
queue at the disk was near zero. This is why
Scherr got such good results with the machine
repairman model.

Scherr graduated from MIT in 1965 and
Baskett graduated from the University of Texas
in 1970. The tempo of queueing network con-
tributions by computer scientists picked up
rapidly after that. In 1975 Baskett, Chandy,
Muntz, and Palacios (BCMP) published a now-
classic paper in the jJournal of ACM about
queueing networks that set off a new round of
algorithm development.

Bob Sheldon: Was BCMP an open Jackson
queueing network model?

Peter Denning: No. It was a closed Gordon-
Newell network queueing model. The Jackson
model was easier to deal with, because it was
just a series of open systems strung together in
tandem making use of the fact that the output of
an exponential server is Poisson. The Gordon-
Newell model was closed. The state space was
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much more complicated. But the theoretical re-
sult was magical: the steady-state probability of
any system state is a product of terms, one for
each server, each using only parameters of that
server, and each raised to the power of the
number of jobs queued at the server. That was
quite an important result.

Unfortunately, computing the state proba-
bilities appeared to be computationally in-
feasible because of the astronomical number of
states in a system. In 1976, Jeff Buzen reported in
his PhD thesis that he had found an algorithm
that would compute those probabilities very
rapidly. He had found a deep structure in the
state space that allowed him to calculate
throughput, response time, and mean queue
length of any server in time proportional to M
and N, where M is the number of servers and N
the number of users. Everybody had thought it
was exponential up to that point. The product-
form came with an elegant computational
algorithm.

Wayne Hughes: So M times N was actually
good news.

Peter Denning: Yes. That’s quadratic. With
Buzen’s algorithm, you could compute perfor-
mance metrics for realistic size computer sys-
tems (for example, 10 servers and 100 users) on
a laptop. In fact, I think the first uses of it were
done on HP-35 calculators. His friends in the
industrial engineering schools modeled facto-
ries as queueing networks and could use his
algorithm on their portable programmable cal-
culators. This was immensely valuable to con-
sultants. All they needed were the values of
parameters and they could then quickly com-
pute throughput and response time curves as a
function of the number of users.

Buzen’s algorithm came to be called “con-
volution algorithm” because of its mathematical
form. Unfortunately, numerical analysts began
to find cases where the algorithm could become
computationally unstable due to roundoff error
in the machine and give invalid answers. In
1980 Martin Reiser and Steve Lavenberg dis-
covered an alternative algorithm, mean value
analysis, that had the same running time as the
convolution, but was numerically stable.

Quite a series of breakthroughs, eh? They
were all done by computer scientists who were
basically looking for algorithms and then trying
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to figure out how to compare the model against
the real system.

Bob Sheldon: How did you get teamed up
with Buzen?

Peter Denning: We met at a meeting at Har-
vard around 1977, when he was presenting his
algorithm at a conference. I thought his algo-
rithm was one of the most amazingly cool things
I had ever seen. I wanted to know, “How did
you find that? Now that you say it, it’s obvious.
But it wasn’t obvious before. How did you find
it?” He said he just kept playing around with it,
and one day he noticed a pattern, which was the
one he needed. He’s a smart cookie.

Wayne Hughes: The genius is to recognize
the discovery when you make it.

Peter Denning: Right. Buzen gave us a major
breakthrough for computational use of queue-
ing network models. All of a sudden, the math
became accessible to the practicing engineer.
You didn’t need a supercomputer to do it. You
could do it on an HP calculator.

Bob Sheldon: Some people call that the net-
work counterpart to Little’s Law applied to a
simple queueing network system.

Peter Denning: That is a conversation Buzen
and I got into. He got into it before I did. He had
been discovering similar things to things I had
noted. I liked working examples with simple
networks because I wanted to teach my stu-
dents to use the product-form solution. We
would parameterize and solve the equation. In
these examples, I had noticed that Little’s Law,
which says that the mean queue length is the
product of mean response time and throughput,
always seemed to hold, all the time. And utili-
zation law, which says the utilization of a server
is the product of the mean service time and
throughput, seemed always true. Up to that
point I thought of Little’s formula and the uti-
lization formula as limit theorems for systems in
steady state. Buzen had been wondering if these
formulas are laws when used in real net-
works—invariant relations within the data.
Little’s paper about the law was pretty mathe-
matical and seemed overkill for practical cases. I
had a very pragmatic wine cellar example. I
said, “I'm a wine collector and I like aging my
wine. The optimal aging time for best flavor is
10 years. I drink a bottle of wine a day and I
want to age my wine for 10 years. How many

bottles capacity do I need in my wine cellar?”
Everybody says it’s obvious: 10 years times
365 days equals 3,650 bottles in my basement.
That’s Little’s Law. I advised students that if
they were having trouble figuring out what
Little is saying, just go back to this example and
it becomes obvious why this law holds.

Wayne Hughes: Many of your examples have
been, apart from the wine example, engineering
and business. Bob asked you earlier if there was
an OR connection and there is. As you well
know, the OR major includes lots and lots of
computer science systems now. One of the great
breakthroughs in doing campaign analysis and
other forms of analysis is the ability to use Excel
and other kinds of spreadsheets. When 1 first
started teaching, the students had to do every-
thing; you couldn’t do a differential equation.
As soon as you got a spreadsheet capability, you
could do difference equations and approximate
a differential equation. And the power to do
more complicated simulations just grew by
leaps and bounds. And what I'm hearing is
you're echoing this progress that enabled all
kinds of professions to advance as computing
systems evolved.

Peter Denning: That’s right. Thinking com-
putationally about queueing networks applied
to real data led not only to fast algorithms but
also to some amazing simplifications. Buzen
was asking why this was so. Why are Little’s
formula and the utilization formula obvious in a
network? Others were asking the same ques-
tion, especially our colleague Dick Muntz at the
University of California, Los Angeles. Buzen
noticed some other anomalies. All the math of
queueing networks invoked the theory of Mar-
kov Chain systems to do the solutions—and yet
the real computer systems that we applied the
fast algorithms to weren’t Markovian—they
weren't in steady state, weren’t ergodic, and the
service distributions weren’t exponential. Real
systems deviated significantly from these basic
modeling assumptions. Except possibly for ar-
rivals from the user community, you were un-
likely to measure an exponential service time
distribution anywhere in the system. Typical
servers were distinctly not exponential. Steady
state was laughable because demands for com-
puting resources varied significantly by time of
day. There is no steady state. Ergodicity was
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another one that they all challenged. You could
easily exhibit time series analyses that differed
from ensemble analyses. Buzen was astounded
with all this: “Look at this. Queueing math is so
elegant. But the assumptions that make the
math work don’t apply to real computer sys-
tems, and often the discrepancies between as-
sumptions and reality are large. But yet models
give excellent results, usually getting through-
put to within 5 percent of the real system and
response time to within 25 percent. How can
this be?” Buzen and I entered into a partnership
to investigate this question. In 1976 he wrote a
paper about “operational laws,” in which he
showed that all the queueing theory steady-
state limit formulas were algebraically true
with real data. He said that the way we collect
the data guarantees that those laws are true.

Let me give you an example. To take a
measurement of the CPU, we define an obser-
vation period of length T. We can then use a
stopwatch to record the total CPU busy time B
during T. With counters, we can count the
number of arrivals A and completions C. In
terms of these measurements, we define the
CPU utilization as U = B/T, the throughput as
X =C/T, and the mean service time asS = B/C.
Then the utilization law, U = SX, is an algebraic
identity. Buzen and I did this for other laws in-
cluding Little’s law, a system response time law,
a memory space-time law, and a forced-flow
law. These relations are true for all networks.
You don’t need to invoke Markov Chains. You
don’t need to invoke steady state. Buzen called
these laws operational because every quantity is
measurable—you just work with numbers you
measure operationally in the system.

That was the first foray into questioning the
assumptions of the Markov theory when ap-
plied to computer systems, because computer
systems seem to violate basic assumptions of
the theory. Buzen said, “Maybe there is a whole
new set of assumptions. If we knew what they
were, we'd find that models using them more
closely agree with the real systems, and that
would allow us therefore to be comfortable with
the validity of the model.” He and I began to
look carefully at which modeling assumptions
were “operational "—that is, directly observable
by an appropriate experiment. We wanted to
find modeling assumptions that did not rely on
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unobservable conditions such as steady state
or assumptions that could not be tested such
as ergodicity. In the end, we found opera-
tional assumptions for computer systems that
gave the same mathematical equations as
Markov Chain theory. In the case of the
queueing network, we demonstrated that the
three operational assumptions of flow balance,
one-step behavior, and homogeneity give us
an operational theory for queueing networks.
The operational model gave the same product-
form solution and the same computational
algorithms.

Bob Sheldon: Say more about those three
operational assumptions.

Peter Denning: The flow balance assumption
says that the number of entries to every system
state is the same as the number of exits. That will
be true if the observation period begins and
ends with the same system state, which by the
way is a principle used in regenerative simula-
tions. Regenerative simulations remove the
need for correcting for end effects. Flow balance
is a pretty weak assumption because it is ap-
proximately true for most observation pe-
riods. It is the operational counterpart of the
Markovian steady-state assumption.

The second assumption, one-step behavior,
means that the only state changes you observe
are caused by singleton job moves from one
server to another in the network. This is also
a pretty weak assumption and is used in
Markovian theory as well.

The third assumption is homogeneity. It
says that if you take a device offline and subject
itin isolation to a constant load, the flow you see
through the device is the same as you would see
under the same average load online. This is in-
tuitively appealing but often does not work. The
flow through a device online can depend on
how other devices are sending it load. It is quite
possible that the online and offline behaviors
are not the same and maybe not even close. As
you might suspect, this assumption generated a
lot of controversy. Critics said it was a hidden
exponential assumption, which transformed
our operational model back into a Markov-
ian model, contrary to our purpose. We in-
vestigated that and found many examples of
networks that were provably not exponential,
but which satisfied the three operational
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assumptions and therefore had the same
mathematical, product-form solution. Opera-
tional analysis was indeed a new kind of model.
Buzen and I were confident that this explained
why product-form models worked with real
systems—it’s because the operational assump-
tions hold approximately with real systems. We
concluded that the homogeneity assumption is
not a bad assumption for most systems. And
because it is operational, we can measure the
error that arises from using the assumption.

Wayne Hughes: Talking about the homoge-
neity assumption, we apply for modern combat
a simple mathematical formula, sort of a de-
scendent of the Lanchester form, and one of the
assumptions is the ships on each side are all
identical. We’'ve gone so far as to look at dif-
ferent combinations of ships on each side in
more detail, like aircraft carriers, destroyers,
smaller destroyers, flagships, to look at target-
ing and probabilities of hit. It was not easy to
write, but a student wrote the equations in a
matrix form. But the problem was you couldn’t
get the input data. I'm wondering, in other
fields this notion of homogeneity, is it partly
because input data is hard to get, so you assume
homogeneous circumstances?

Peter Denning: Well, homogeneity is clearly
an easy modeling assumption.

Wayne Hughes: And it often gives you vital
information.

Peter Denning: A lot of times, at least in
computer systems, you could do the offline
analysis without even simulating anything.
Consider, for example, a rotating disk. When a
job arrives, it enters the queue. The service time
is calculable from the disk parameters—the ro-
tational positioning time to get to the start of the
requested data block, then the transmission
time of the block. You can work out the disk
service rate for any number in the queue in an
offline configuration. You then put that service
rate function into the model. It works well be-
cause the hardware physics of the disk dominate.

Wayne Hughes: The analog of that in combat
is if you solve the equations for homogeneity,
you gain all kinds of information. And then you
don’t try and overload the model, you just do
some side analysis.

Peter Denning: That's what we did. Homo-
geneity is the key assumption set that makes the

operationally defined product-form agree with
real systems.

Bob Sheldon: When I was a grad student at
Cornell and first read the queueing paper by
you and Buzen, I didn’t know that both you and
Buzen were computer scientists. I thought you
were industrial engineers or operations re-
search people because this was serious queue-
ing theory, and queueing theory is typically
taught in OR departments. Is it common for
computer scientists to study queueing theory?

Peter Denning: For my part of computer
science, all the time. We build computer sys-
tems. One of the big questions of any computer
system is, “Does it perform well?” That ques-
tion applies to supercomputers, laptops, and
everything in between. Our theorists approach
performance as an algorithmic complexity
problem. They will say that the running time of
an algorithm is N-squared, N-cubed, exponen-
tial, etc. There is nothing in complexity theory to
deal with the issue of competition between the
different users of a system that queue up for a
server. You need queueing theory to answer the
performance question for multi-user systems.
Queueing theory gives a theory that we know is
pragmatic, computational, and useful, and ac-
tually works for predicting the performance of
the computer system and the network. That’s
why we got into it. Let’s say we are going to
build a new operating system. Everybody
wants to make sure the new operating system is
going to perform well. They will give concrete
statements of what good performance means,
for example, the response time is 20 seconds or
less to anybody making a command. We need to
figure out how to design the system to achieve
this. What servers are needed? How much ca-
pacity in each? Where are the bottlenecks? What
will the response time be when 100 users are
logged in?

Wayne Hughes: You said something that I've
never forgotten. It was you and John Arquilla
together. The issue was artificial intelligence
and to what extent our thinking machines were
going to take off. For example, thinking ma-
chines beating human beings and thinking
machines playing Go. You had a remarkable
comment. You and John together. The comment
I remember is, “Yes, machines sometimes
can beat human beings, but a machine in
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combination with a human being will beat ei-
ther the machine or the human being.” I think
that’s very important for the future.

Bob Sheldon: After reading your paper at
Cornell in 1985, I didn’t see your name again
until a few years ago when I was working on
this problem for the Marines that involved
queueing theory. I looked up your name and I
found your paper online and saw your vitae
here at NPS. Among your teaching interests,
you list performance monitoring and evalua-
tion. Is this what you're referring to there?

Peter Denning: Yes. I'm a pragmatist with
computing, and computing has to be useful
before people will use it. If I come up with a
fantastic algorithm or a fantastic supercom-
puter, or both, and it takes too long to get the
answer, nobody’s going to use it. Even if it’s
free.

Wayne Hughes: I think this is the time to re-
mind you of something you said when the Un-
dersecretary of the Navy was here, and you had
just celebrated your 50th anniversary in com-
puting. She said, “Can you summarize in a few
words your career as a computer scientist?” It
may be an oversimplification, but I've never
forgotten it. You said, “For the first 40 years, we
were developing the systems and the computer
capabilities. And for the last 10 years, it’s been
all applications. And the applications have
come to dominate our thinking.”

Peter Denning: Yes, in the early days, we
were spending most of our effort trying to get
the darn things to work.

Wayne Hughes: And now you've got great
power and much more reliability, and you
spend less time on the development stages and
more on applications. Of course, there was no
sharp one moment when this happened, but I
thought that was a very important comment.

Bob Sheldon: Let’s get back on track at Pur-
due. How long did you stay at Purdue?

Peter Denning: I went to Purdue in 1972 and
left in 1983, when I went to NASA Ames Re-
search Center. NASA Ames was establishing a
new group called RIACS, acronym for Research
Institute for Advanced Computer Science. They
were looking for a director; I applied. My wife
Dorothy and I had both become tired of Lafay-
ette, Indiana, and enamored of the West Coast. I
got an offer from them to be the director.

Military Operations Research, V24 N2 2019

J. DENNING

Dorothy had friends at SRI; she applied there
and got a job. We were very happy to have so
quickly landed two jobs in the Bay Area, and we
moved out here.

Bob Sheldon: Were you now more of a man-
ager than a researcher yourself?

Peter Denning: 1did both. I spent a lot of time
as manager but maintained a research program
and maintained my hand as a writer. I was in-
vited to write a “computing science” column for
American Scientist magazine, which I did from
1984 to 1993. The purpose of the column was to
examine computing issues that arise frequently
in the context of science.

It’s interesting that one of the reasons that I
became interested in leaving Purdue was the
management responsibilities  acquired when in
1979 1 became head of the department. The
difference between a head and a chair is the
head can make hiring offers over his own sig-
nature as long as the salary was available in the
budget. A chair can only make a hiring recom-
mendation to the dean, who has to make a rec-
ommendation to the provost, who makes the
offer. Chairs have a lot of responsibility, but no
authority. Wayne can testify to that. The deans
have a little bit of authority, but not a lot.

Wayne Hughes: And a lot of it goes right up
to the upper administration and even to the
Pentagon in Washington.

Peter Denning: When I became department
head, I found myself thrown into a completely
different world of conversations than anything I
had experienced before. This became obvious
when the provost had occasional cocktail
parties for all the department heads, to help us
get to know each other. At these gatherings,
other department heads would ask, “What do
you guys in computer science work on?” I an-
swered, “We do operating systems, pro-
gramming languages, databases, networks, and
a little computer security.” No one was in-
terested in any of these topics except perhaps
computer security because they worried about
loss of data on their computers. I just could not
engage them in a conversation about anything
that we did in computer science. They all
wound up gathered around the physics de-
partment head. He had all sorts of wonderful
stories from physics such as black holes and
galaxy collisions. As I listened to the physics
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chair, my impression was that I didn’t know
how to talk about computer science in a way
that’s accessible to non-computer scientists. So I
taught myself how to write for Scientific Ameri-
can and got a couple articles published there. I
took these stories to the department head
gatherings ... and I still couldn’t get anybody
involved in a conversation. Finally one day I
said to myself, “Maybe the reason I can’t get
the other chairs engaged is that I'm not working
on anything that interests them.” I began to
wonder if I might do better in a different envi-
ronment. NASA Ames appeared as a new pos-
sibility. It is like a Disneyland of wind tunnels,
robots, advanced science experiments, and
space exploration. I thought that by getting into
the NASA “soup,” I'd learn how to associate
myself with problems that people are actually
interested in. That became a big driver for me, to
transfer myself into a different environment, to
be stirred into a different “soup,” where new
conversations would instill me with new con-
cerns, new stories about what’s important, tak-
ing me out of my academic cocoon.

Bob Sheldon: Did you change the direction of
NASA Ames and their focus?

Peter Denning: As we discussed earlier, I
went to NASA Ames in 1983 to be the founding
director of RIACS. The mission of RIACS was to
bring computer scientists to be members of
NASA teams working on computing issues of
strategic importance to NASA. We became in-
volved early in computational sciences, a term
that refers to the computational branch of a
science, for example, bioinformatics, computa-
tional chemistry, or computational fluid dy-
namics. RIACS was one of the first centers in
computational science. We helped shape the
NASA Ames approach in those areas. We also
helped on a lesser issue. When we came, my
team set up a Unix network with nodes around
the NASA Ames site. NASA people learned a
lot about networking from the experts on my
team. They developed a world-class network-
ing group of their own to support high-
performance computing. That was a bit of
infrastructure shaping, I suppose.

I really resonated with the idea of compu-
tational science, which is that computing was a
new way of doing science alongside the tradi-
tions of theory and experiment. The use of

computation throughout science to make sci-
entific discoveries was a big idea.

In pursuit of this idea, we organized our
RIACS researchers into three groups: network-
ing, autonomous systems, and computational
fluid dynamics. The networking group was in-
volved in projects that supported the NASA
idea of “telescience”—being able to perform
experiments remotely with robots and other
remote sensing systems. Sending autonomous
vehicles to explore Mars is an example. What
kind of networking do you need to talk to the
robot? How do you conduct scientific experi-
ments at a distance through robots? What if it
takes a long time to send messages through
deep space, such as 20 minutes one-way to
Mars?

Our second group was autonomous sys-
tems. It focused on technologies for artificial
intelligence including Bayesian learning, sparse
distributed memory (a model of human mem-
ory), and neural networks for performing hu-
man actions such as landing an airplane.

Our third group was the computation
group. Its main focus was numerical aero-
dynamic simulation, the use of a supercom-
puter to compute airflows around aircraft using
the mathematics of computational fluid dy-
namics. This was very successful for NASA and
it paved the way for the Boeing company to
design the 777 aircraft without wind tunnel
testing. The group also worked with computa-
tional chemists designing heat shield materials
for the Jupiter probe, which was then able to
descend farther into the Jupiter atmosphere
than anyone expected. They used the mathe-
matics of the Schrodinger equation to evaluate
the bonding strengths of various materials.

Wayne Hughes: Wind tunnel simulation,
huh? Instead of a physical system.

Peter Denning: Instead of its technical name
“numerical aerodynamic simulation” I used to
call it “flying an airplane inside the computer.”
That phraseology caught people’s attention,
and they would ask how it works. Nobody
asked questions when I said we were working
on numerical aerodynamic simulation. It’s the
same thing as at Purdue, but the more pictur-
esque way of talking got a conversation going.

Bob Sheldon: You learned your salesmanship
from that high school science fair?
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Peter Denning: Yes, in the sense that I
learned from that high school experience that a
new computer might not sell if we didn’t pay
attention to saying what useful jobs it does. It’s
also the same issue I encountered at Purdue,
when I learned I didn’t know how to tell stories
of computer science that would appeal to peo-
ple in other fields.

Bob Sheldon: Say more about sparse mem-
ory. Did it use neural networks?

Peter Denning: The sparse memory was a
model of human long-term memory. Its in-
ventor, Pentti Kanerva, envisioned it as an
enormous random access memory whose ad-
dresses were bit patterns thousands of bits long.
Each pattern addressed a location that con-
tained another long pattern interpreted as the
response to the input. Because it is impossible
to build a random access memory so large,
Kanerva built it from a feasible number of lo-
cations at random points in the address space.
He implemented a location as a device with an
address field containing its random address and
a data field consisting of a series of up-down
counters. So, for example, if your pattern size
was 10,000 bits, one of these devices would have
10,000 bits of address and 10,000 counters. You
would build as many of them as your budget
could afford.

When you present an input pattern to the
memory, it selects all the devices whose ad-
dresses are within a given Hamming distance.
The distance was a fixed parameter of the
memory. Your input pattern would be written
into all the selected devices by upping a data
counter for each “1” bit of the input and
downing it for each “0” bit. You could read an
output pattern by combining all the counters of
the selected devices, outputting “1” when the
count was nonnegative and “0” otherwise.

Kanerva showed how this structure maps
directly onto the neuronal structure of the brain.
Although it could be implemented by an
equivalent neural network, Kanerva chose this
description because it was much easier to
understand.

The memory could do very interesting
things. Here was one experiment. The input
patterns were bit map images of handwritten
letters and numerals. Training consisted of
showing input bitmaps and desired outputs, for
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example, bitmapped handwritten “A” input and
ASCII code “A” output. When shown a new
bitmapped “A” not in the training set, the trained
memory correctly output the ASCII “A” most of
the time. In those tests, the memory had about
the same level of accuracy as existing optical
character recognizers, not bad for a prototype.

Our group also looked at neural network
models for other applications. In 1982, John
Hopfield, a physicist, proposed a new kind of
neural network. The NASA group interested in
automatic landing of aircraft tried one of his
networks. They trained it by recording the de-
tailed motions of pilots landing an aircraft.
Unfortunately, when they tried controlling the
aircraft in a simulator using the neural network
auto-lander, it occasionally crashed the aircraft.
For that application they wanted 100 percent
accuracy. The neural networks of the day could
not achieve that level of accuracy.

Bob Sheldon: How long did you spend at
NASA Ames?

Peter Denning: I stayed there until 1991.

Bob Sheldon: Can you say more about com-
putational science?

Peter Denning: In 1982, physicist Ken Wilson
from Cornell received the Nobel Prize in phys-
ics. He had been using supercomputers to in-
vestigate a problem in physics concerning
phase changes in materials, such as how ferro-
magnetic materials switch polarity under the
influence of an external magnetic field. He in-
vestigated this using computation to simulate
the relevant mathematical model and came up
with the breakthrough ideas that earned him the
Nobel Prize. He was a big advocate of compu-
tational science and advocated that the gov-
ernment should get into very high-performance
computers and make them available through-
out science. Scientists started talking about
“grand challenges” in science, which were very
ambitious science problems that might be
cracked with very high-powered computing
and algorithms. One of the favorite examples is
the ability to design an aircraft the size of a 777
aircraft. At that time, they projected it would
take a teraflops worth of computer to do that
job, which did not exist at the time. Building a
working teraflops computer became a goal of
DARPA and other government agencies. Boeing
and others took advantage of this research.
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The NASA scientists working in this area
advocated that computation is a new way of
doing science, different from the traditional
ways of theory and experiment. The new way
involved doing explorations and experiments
via models and simulations on supercomputers.
It also involved explaining natural phenomena
as information processes and using computing
to learn more about them. Computational sci-
ence became a strong movement throughout
science. Many fields formed a computational
branch to pursue it.

The computational science movement be-
came political. It culminated with a law in the
US Congress, the High Performance Computing
Act of 1991, sponsored by Senator Al Gore,
which recognized computational science and
supercomputing and set aside federal funding
to support research in those areas.

The computational science movement also
had a significant transformative effect on com-
puter science. Computing professionals and
educators had a self-story that computing was
concerned with automation. Computational
science focused on computing as a way of un-
derstanding, explaining, and exploiting natural
information processes. That is a much broader
perspective than automation.

Bob Sheldon: Then you left NASA Ames.
Where to next?

Peter Denning: In 1991, my wife and I both
wanted to return to the university environment.
Energized from our work outside, we thought
we had something to bring back. Because Cal-
ifornia universities were in a recession at the
time, we looked in the Washington, DC, area.
She became professor and chair of computer
science at Georgetown and I became professor
and chair of computer science at George Mason
University. We used to say to our friends that we
represented two of Washington’s three aca-
demic Georges. (Georgetown, George Mason,
George Washington)

Bob Sheldon: Had academia changed much
in the years you’d been away?

Peter Denning: 1 came back as a reformer. I
saw a number of ills affecting computer science
and engineering education. For example, em-
ployers did not seem to trust that computer
science degrees certified competence at the jobs
for which graduates were hired. Employers

seemed to regard degrees as evidence that a
rigorous screening process had identified the
greatest talent. But that only got the gradu-
ates an invitation to interview. Industry was
beginning to invent its own interview processes
to assess candidate competence. Interviews
looked like inquiries into a candidate’s skills as
a programmer and problem solver. Candidates
would visit with a series of groups of the em-
ployer, who would ask them to solve problems
right there on the spot. Candidates took out
their laptops right there and programmed
something to solve the problem. If you passed
all these tests, you would get an offer. This mode
of interviewing was relatively new at the time
and has since become very popular.

Problem solving ability was not the only
thing employers complained about. Being a
good member of a team and a good person
interacting with customers were other major
complaints. These complaints were a puzzling
kind of discontent because, on the one hand,
employers would say, “Your graduates coming
to our organization don’t know how to com-
municate. They don’t know how to get along on
a team. They don’t know how to interact with
customers. We are not able to put their engi-
neering to good use, because they just don’t
have the sense of what good use looks like.”
And on the other hand, they hired every grad-
uate we could produce and asked for more.

As I'was preparing for my transition back to
academia, I collaborated with my friend and
teacher Fernando Flores, to produce a manifesto
called “Educating a New Engineer” (Communi-
cations of the ACM volume 25, number 12, De-
cember 1992). We talked about what it means to
be an educated engineer in the kind of world
that exists and is emerging. Obviously, an edu-
cated engineer needs to be competent at engi-
neering, but that person also needs other skills
including sensibilities for how their teams are
moving, the new kinds of work emerging for the
digital world, and producing innovations. The
list of such sensibilities and skills was generally
labeled “soft skills.” Academics were at best
conflicted on how to teach soft skills. Some
maintained that there was no room in the
technology-packed curriculum for soft skills.
Others acknowledged that technology is de-
veloped by teams and sold to discerning
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customers. You cannot be successful without
these skills. Learning the soft skills is hard work!

When I interviewed, I had in hand my
written manifesto outlining concrete ideas
about how to modify the curricula to develop
these sensibilities. When I discussed all this in
my interview with the George Mason Univer-
sity president, he seemed very pleased and de-
clared, “This is a marriage made in heaven. You
should come here.”

I talked about my manifesto in my in-
terview with the Computer Science department.
The general reaction was, “Very interesting.” In
the months after I came on board, I boiled the
manifesto down to a set of principles for inter-
acting with our students. I asked the faculty to
adopt these principles for our department. They
voted affirmatively at a faculty meeting. I was
very encouraged that the fundamental princi-
ples of the manifesto were agreed to by the de-
partment! The provost was very pleased that I
got what appeared to be a commitment to re-
form the curriculum.

I enlisted a small group of faculty allies to
make proposals for curriculum changes. When
we started making specific course proposals to
implement the principles, we had trouble get-
ting the votes at the faculty meetings. Our critics
said, “Don’t mess around with my course; itis a
good, tried-and-true course.” Getting curricu-
lum revisions through the faculty was much
harder than getting the principles through the
faculty.

Bob Sheldon: They had their rice bowls.

Peter Denning: I suppose you could say that.
They were protective of the status quo, espe-
cially when a proposed change would alter the
part of the world they were a specialist in. It was
very disappointing to have the sense that they
agreed with principles, but they didn’t want to
implement the principles.

Bob  Sheldon: Was George Mason Uni-
versity’s Computer Science department in a big
growth mode then, because the university
overall had a big growth spurt?

Peter Denning: George Mason was in con-
stant growth and that continues to this day.
When I came, there were fewer than 20,000
students; today the enrollment exceeds 35,000.
Our computer science and engineering student
body was steadily growing. After I left, the
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administration decided to merge the computer
science and information systems departments,
to better accommodate the student loads and
develop an integrated curriculum. Now they
have a large department.

Bob Sheldon: Did you formulate your “great
principles” while you were at George Mason
University?

Peter Denning: I started to work seriously on
that around 1997 at George Mason. The seeds
were planted, as you recall, in my time as de-
partment chair at Purdue when I was engaged
in the question of how to have computer science
be more interesting for people. My time at
NASA nourished those seeds in the NASA soil.
After my involvement in the formation of
computational science, I became very interested
in refuting the claim that computer science was
not really a science. That old claim was still alive
because some people still resisted the idea that
computer science could be its own field.

I set out on a project to articulate what I
called the “core principles of the field.” I be-
lieved that a good articulation of our core sci-
entific principles would go a long way to refute
the claim that computer science is not science.
All the other fields—physics, astronomy,
chemistry, all of them—do that. Why not us? I
found many sympathetic colleagues who
wished as I did that we could give a good ac-
count of the core principles of our field.

Doing this turned out to be harder than I
imagined. I asked many people for their opin-
ions. “What do you say the core principles of
our field are?” Typical answers would be:
“Programming languages, databases, and op-
erating systems, and networks, graphics, ro-
botics, and a few more.” Echoing our critics, I
said, “Those aren’t principles. Those are tech-
nologies. What were the principles the tech-
nologies were based on?” It took a while to tease
those things out. I often had conversations that
went like this: “What is a core principle in your
area?” Frowns and scowls, and finally a ques-
tion, “What do you mean by a principle?” I'said,
“You're the expert in your area. What are the
principles you think are really important?
Principles that will still be here years from now
when the current technology is gone?” They
hadn’t actually asked that question before. They
were teaching mostly big ideas and clever
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technologies. I probed further: “What are the
deep, cosmic scientific principles you're work-
ing with?” They hadn’t thought about that. My
work turned into getting people to think about
that question and give voice to the deeper,
timeless scientific principles they deal with,
principles that keep showing up in each gener-
ation of technology.

An example in my own specialty, operat-
ing systems, is the principle of locality. This is
the principle that computations tend to refer to
their code and data in relatively small subsets
over relatively long periods of time. Since the
code and data are stored in memory, this
principle leads to the design of efficient and
fast memory hierarchies and caches, including
Internet caches. Every generation of operat-
ing systems experts has investigated this prin-
ciple and found it in all their computational
workloads.

Bob Sheldon: Did you bounce these ideas off
other friends in the ACM community?

Peter Denning: Yes. 1 organized a “great
principles task force” of the ACM education
board, a group of about 30 or 40 people to collect
proposals for statements of the great principles
of computing. We put together quite a list. Some
proposed principle statements didn’t sound like
deep principles and were discarded. Others had
that “timeless, cosmic” feel to them and sur-
vived. Even after all our culling, we still had
quite a list, around 60 proposed statements.
I noticed they could be grouped into six
categories: communication, computation, co-
ordination, recollection, evaluation, and design.
These were not mutually exclusive, but instead
were important perspectives on computing. I
brought all that to NPS along with me in 2002,
and with my colleague Craig Martell I designed
a course for students called “Great Principles of
Computer Technology.” Our students found
this course to be a very helpful introduction to
computer science.

Bob Sheldon: So that’'s when you came up
with the textbook Great Principles of Computing?

Peter Denning: We wrote that book on eve-
nings and weekends in our personal time. The
course didn’t call for us to write a textbook.

Bob Sheldon: Was there general consensus in
the ACM and professional community about
these principles?

Peter Denning: We had consensus on that
ACM education task force. We had to blend it in
with some strong forces in the education world.
Let me say a few words about the gathering
forces so that you can see where this goes next.
For years, computing educators have tried to
get computer courses into K-12 schools, arguing
that computers were becoming so ubiquitous
that every child needed to know something
about them. In the 1980s, university educators
worked with middle and high school teachers to
get a “computer literacy” course into their cur-
ricula. The result was courses about how to use
common computer tools such as document
preparers and spreadsheets. The teachers did
not have the computing knowledge to teach
anything about computing principles or pro-
gramming. The literacy courses were not suc-
cessful. Children got bored with them and
learned nothing about computing principles or
programming. Literacy did not work out well.

In the late 1990s, some of our education
colleagues persuaded the National Academy of
Engineering to sponsor a study, which came to
be known as Fluency in Information Technology
(FIT). Their recommendation was that literacy
was too low level, and we should be going for
fluency—the ability to “speak the language
well” and do useful things with computing. The
leader of the panel, Larry Snyder, subsequently
wrote a book Fluency with Information Technology.
It became very popular; it’s used, I think, by a lot
of high schools and colleges. It's now in its sixth
edition. Fluency got us a bit further with more
penetration than literacy. But it didn’t turn into
the movement that educators were looking for.

In 2006, Jeanette Wing wrote a short essay as
an opinion piece in the Communications of ACM
called “Computational Thinking.” She pro-
posed that instead of the terms fluency or liter-
acy, we use “computational thinking.” She
argued that everyone wants to put computers to
good use and they need to think like a computer
scientist to do that. Computer scientists could
teach K-12 teachers how to think about com-
puting, thus empowering them to provide
computer education for their students. Educa-
tors who were frustrated with previous at-
tempts to get computer courses into K-12
schools found this proposition attractive. Wing
went to the National Science Foundation (NSF)
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in 2007 and started to mobilize NSF staff and
resources around computational thinking. They
defined a series of initiatives that brought a
large number of educators into a computational
thinking movement. These initiatives included
building a computational thinking component
into most research projects, sponsoring profes-
sional groups to define computational thinking
curricula for K-12 schools, training 10,000 K-12
teachers in computer science, and developing a
new advanced placement (AP) curriculum and
means to interface it with universities. In all,
NSF put about $48 million into these initiatives,
which were quite successful.

The AP curriculum in high schools culmi-
nates in an AP exam. Students who pass the
exam get credit for the introductory computer
science course at the university they select. A
version of the AP curriculum approved in 2001
emphasized object-oriented programming and
the Java language. Teachers did not understand
the complexities of object-oriented program-
ming and had difficulty teaching it. It turned
into a disaster with dramatically fewer students
enrolling in the AP curriculum for computer
science. The NSF initiative to reform the AP
took the form of support for a task force of the
Educational Testing Service to advise them on a
better curriculum, and the creation of a new
kind of university first course, called “CS prin-
ciples,” that interfaced with the new AP cur-
riculum. Several of the people who had
participated in the great principles task force
designed CS principles first courses at their
universities. Each transformed the general idea
of timeless principles into a course for their
students. This is how the earlier work on great
principles affected the design of the new CS
principles courses.

As the teachers’ professional societies be-
gan to weigh in with proposals for K-12 curric-
ula based around computational thinking, I
became very concerned. They were formulat-
ing computational thinking as basically pro-
gramming—how do you construct a program
that meets a specification. They didn’t even use
the word “design.” The objective of pro-
gramming became expressing solution pro-
cedures as computational steps; that was said to
be the heart of computational thinking. This just
didn’'t square with everything I've learned
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about computational thinking. It was way too
narrow. There was no engineering in it, for ex-
ample. We have to build real computers out of
real circuits and real components to do real
things. And they’re not even talking about that.
They're just talking about formalizations like
modularization, abstraction, recursion, data
structures, and other aspects of programming.
They’re not talking about how you design cir-
cuits of machines that do these things. Or what'’s
the right relationship between a program and a
machine. Or how to deal with issues of large
systems.

There was nothing in these formulations
about design. Writing programs is generally a
bigger issue than meeting precise mathematical
specifications. It is to create a world for users of
software and programs, in which they can get
jobs done of value to them. I began raising
objections.

Bob Sheldon: Was this when you were at
George Mason University?

Peter Denning: No, this started in 2007. I left
George Mason in 2002. My work at Mason fo-
cused on defining the fundamental principles of
computing. At that time, we were not paying
much attention to computational thinking. If
somebody were to ask at that point what com-
putational thinking was, I would have an-
swered with some generality such as “the
mental skills of designing computations and
computing systems to do jobs for us.”

The computational thinking movement be-
gan in 2007. Its main purpose was to get com-
puting into the curricula of K-12 schools. I
endorsed that purpose. However, in that
movement [ saw misconceptions emerging
that would undermine the purposes of the
movement.

First and foremost, I don’t know why the
activists in the movement wanted to ignore the
history of computational thinking. Yet they did.
The history of computational thinking goes
back 4,500 years! The algorithms of yore were
precise instructions for human beings to carry
out numerical calculations. The mathemati-
cilans and engineers who used them were
thinking computationally. In short, computa-
tional thinking has a much bigger tradition than
the proponents were making out. They were
unknowingly misrepresenting computing by
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portraying it as a much narrower field than it
really is. Even worse, in my mind, the educa-
tional recommendations for K-12 curricula in-
corporated a number of serious misconceptions
about computing. If we do not correct these
misconceptions, we're going to graduate gen-
erations of students who think they can get
computers to do things that are impossible.
That’s the essence of my concern.

The misconceptions sparking my concern
have not ameliorated. A couple of years ago I
wrote up a piece called the “Remaining Trouble
Spots with Computational Thinking,” formu-
lated to not sound too critical, but point out
major omissions in the computational thinking
juggernaut. It seemed to resonate with a lot of
people.

I've just completed a book, Computational
Thinking, with co-author Matti Tedre, which will
be published by MIT Press in Spring 2019.

Bob Sheldon: You said you left George Mason
University in 2002 and came to NPS. What
motivated the move?

Peter Denning: My wife Dorothy and I really
like California. We always had an objective in
the backs of our minds that if the right oppor-
tunity came up, we would return to California.

In spring 2002, Cynthia Irvine, a professor
here, asked Dorothy to write a letter of reference
for a faculty candidate. Dorothy said to Cynthia,
“You have open positions. I didn’t know that!”
Cynthia caught that one and said, “Are you in-
terested?” And Dorothy said, “You bet!” That
opened a conversation that led to interviews
and eventually to a pair of offers. My offer was
to join the Computer Science department as
chair. Hers was to join the Defense Analysis
department, where she could work on cyber-
space security issues in the defense domain. Not
only did these offers invite us to work on issues
of great interest to us, they brought us back to
the West Coast, in the Monterey area that we
always liked.

Bob Sheldon: You were able to keep up with
your research on the great principles when you
moved out here. Did you delve into other lines
of effort when you moved out here?

Peter Denning: I resurrected my interest in
memory management in computing systems
and partnered with the Locality Research
Group at University of Rochester, helping out

with several student theses including being an
external member of a PhD committee. This has
been also useful in our course on operating
systems.

A big question that I grappled with at MIT
and down through the years after was how to
arrange programs and data in the memory hi-
erarchy to get the best throughput from the
system. Consider an example to see why this is
important. Suppose I want to decide when to
keep a page of data in main memory or on the
hard disk, which is 1 million times slower. After
I'just used the page, if I could see exactly when
in the future it would be used again, I could do a
simple calculation comparing the cost of keep-
ing it in memory until next use (rent) with the
cost of removing it now from memory and
paying for its retrieval later (swapping). Even
though I can’t see into the future, I can ap-
proximate this ideal by appealing to the prin-
ciple of locality. If my page was used recently,
it’s likely to be used again shortly, so I pay the
rent and keep it. If not used recently, it’s likely to
not be used in the near future and I'm better off
removing it now. If l apply this strategy to every
page loaded in memory, I can get the system
throughput to be very close to what it would be
if I had infinite memory.

Long ago I invented a way to realize this
strategy, called “working set.” The working set
of a program is all the pages it used in an im-
mediate past sampling window. I run memory
management to detect working sets and protect
them from removal while their programs are
running. The theory, confirmed by experiment,
is that working set detection and memory
management yields close to optimum system
throughput.

The Rochester Group has been exploring
how to exploit the principle of locality to manage
the cache memories that pervade every computer
system. Doing it with methods related to the
working set optimizes cache performance.

I have been finding that my students have
trouble understanding the principle of locality.
It seems counterintuitive to many of them that
programs have such pronounced locality be-
havior, and that tracking it optimizes perfor-
mance. Maybe it’s because I've been so familiar
with this over the years, it is obvious to me, but
not to newcomers.
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Bob Sheldon: OR people would listen to your
explanation because optimizing is a big part of
our background.

Peter Denning: A different question, what is
innovation leadership, has become a central
focus of mine at NPS. The Defense Department
has made very strong statements about being
better at innovating. Some seeds planted when I
was at George Mason University in the early
1990s seemed to offer a new answer to this
question.

In 1993, I developed a course called “Sense
21,” shorthand for “a new engineering common
sense for the 21st century.” It was related to the
engineering education manifesto we discussed
earlier. The word “sense” in that title means that
we need to learn a new “common sense” about
how the world works if we are going to be
successful engineers and innovators in a world
of accelerating change full of contingencies and
surprises. The prevailing common sense is that
we find recurrences and then try to control
events and people to exploit the recurrences and
attain the desired outcomes. The new common
sense is that we become navigators who can
skillfully blend with surprises and contin-
gencies to move toward the desired goal, and
we mobilize people to follow us. In other words,
recurrences and control give way to navigation
and mobilization. I started Sense 21 because my
students had important questions about how to
function as engineers that were not being
addressed in the standard curriculum. A com-
mon question was time management. How do
they deal with demands of their day jobs, their
evening classes, and their families within lim-
ited time constraints? Another was finding in-
novative ideas. How do they find them? Having
found them, what should they do when some-
one else’s stupid idea is selected instead of their
good idea? How do they deal with unruly cus-
tomers who do not understand the technology
they are asking for? How do they work effec-
tively on a team, especially when there are
conflicts? Buried inside all of these is the con-
cern that “They want me to be a better in-
novator, but they don’t tell me how to do it, and
I don’t know how to do it. I'm being held ac-
countable and I don’t know how to do it.”

The Sense 21 course was about how to
generate innovations. It offered a “new common
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sense” about what shapes action in the world
and how innovation works as a skill. Our new
common sense was that “innovation is new
practice adopted in a community.” Along the
way, the students found answers to their prag-
matic questions that I just mentioned. They all
produced small innovations by the end of the
course and saw that later, with more experience
and skill, they could produce larger in-
novations. They resolved many of their work
issues that motivated them to come to the
course. They found the course transformative.

At the end of the first offering of that course,
the students asked, “Are you going to have a
follow-on course, like Sense 21 part 2? What
comes next?” I said, “We have nothing
designed.” And they implored, “We have to
have something! You can’t leave us stranded!”
They wanted more because what they had al-
ready learned changed their lives. Wow, this is
deep stuff. To accommodate their request to
continue their learning, we formed an alumni
group. We met monthly in the evening over
pizza and talked about topics the students se-
lected, always true to the interpretation that
innovation is a new practice adopted by a
community. This alumni group continued for
the next 10 years, finally disbanding when I left
Mason in 2002. Parenthetically,  would add that
this is the only course I ever taught where the
students wanted to form an alumni group.
Nobody from my operating systems courses
wanted to form an alumni group.

Bob Sheldon: Can innovation be taught at a
university?

Peter Denning: It can. My starting point—
innovation is adoption of a new practice in a
community—is completely different from the
more familiar notion of creating new ideas or
inventions. But it leads to new insights into how
innovation works and how you as an innova-
tion leader can facilitate or shape it. What is the
skill set that enables me to be a successful in-
novation leader?

Over the years of looking into this question,
I'learned enough that I was able to write a book.
Robert Dunham and I wrote The Innovator’s Way,
published by MIT Press in 2010. In that book we
talk about why popular theories of innovation
fail to consistently produce the adoption out-
come. We discuss at length the eight essential
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practices written on the cover of the book:
sensing, envisioning, offering, adopting, sus-
taining, executing, leading, and embodying. We
called them essential practices because if any
one of them fails to produce its intended out-
come, the whole innovation is likely to fail.

Bob Sheldon: Is that used for an engineering
course here at NPS?

Peter Denning: No. Marine Corps Colonel
Todd Lyons and I have designed a course now
called “Innovation Leadership.” It is an adap-
tation of the Sense 21 course I taught at George
Mason from 1993 to 2002. The course has really
helped our students shape their innovation
projects, which are likely to span many years of
their careers beginning with their thesis here. At
the end of the last version our students gave
presentations of their innovation projects. All
were TED quality.  mean that if any one of them
stood on the TED stage, they would move the
audience with their big ideas just as much as the
professionally produced TED talks. All these
students found something deep inside their
own histories that gave them a sense of destiny
and a determination to pursue their project for
years beyond their NPS thesis. In the course
debrief at the end, the two most common com-
ments we get from students are: “This course
changed my life,” and “I learned I can in-
tentionally produce innovations, starting first in
small groups and expanding later to large ones.”

Bob Sheldon: Was this a master’s level
course?

Peter Denning: Yes. This is an elective
course. Colonel Lyons and I screen the students
who want to join to be sure they are truly in-
terested in the outcome we promise and will be
committed to doing the work on the course to
get it. This course is about leadership practices
for intentionally producing innovations. It is not
about generating ideas for innovation. Most
organizational leaders say they are honestly
overloaded with lots of proposed ideas, but they
have to figure out which ones are worth
spending their limited energy and resources.
Organization leaders say they have no shortage
of ideas, but rather a shortage of people who
know how to transform ideas into practice.
That’s where we come in.

Bob Sheldon: You were at George Mason
University and then here at NPS. At George

Mason University almost all your grad students
worked during the daytime and went to school
at night. Here at NPS, going to school is a full-
time day job. How does the relationship be-
tween the students and the instructor compare
in those two environments?

Peter Denning: There’s a world of difference.
It took me a couple of years to figure it out. In
2004, I realized that the core of my relationship
with Mason students was markedly different
from NPS students. At Mason, I was the com-
puter science guru, a gatekeeper whose ap-
proval was needed if they were to get the degree
and enter the field as a professional. Their job
was to convince me, the gatekeeper, that they're
worthy of passage through the gate. At NPS it
took me a while to uncover my hidden as-
sumption and learn that NPS students do not
see me as a gatekeeper; their profession is already
chosen—military officer—and my job is to give
them computer science skills that will enable
them to be better officers. That’s a different job
from being a gatekeeper. Once I learned this, my
interactions with students were much better.

Bob Sheldon: Another difference is that at
George Mason University, the classes are typi-
cally one night a week for three hours, and here
at NPS you have them three days a week for an
hour.

Peter Denning: In my Computer Science
department, we have a lot of courses with four
hours of lecture and two hours of labs—we’re
seeing those students for six hours a week. Most
of these students have four courses. From their
perspective, each day is packed. Most days,
they’ll see three of their four courses, and other
days they’ll see all four. They’ve got homework
to do for all these courses. And they’re trying to
balance that with family life because they have
kids. These students have many of the same
problems that these George Mason students had
about time management. They also have con-
cerns about chain of command, often believing
it is better to shut up and say “Yes, sir!” than to
ask a more senior officer a question. They also
have a big concern about good grades since
their performance reports depend on that. I find
myself helping students with many similar,
non-course issues as the Mason students. They
have to break through these taboos if they are to
be innovation leaders.
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Bob Sheldon: Since you came from a non-
military background yourself, and now you're
in a military academic department, how has
your view of the military changed?

Peter Denning: 1 had basically no contact
with the military before I got to NPS; I came
with an open mind. I developed a lot of respect.
A lot of the stereotypes of the military didn’t
apply to what I was seeing. The military ste-
reotype might be that the military are bent on
trying to quietly subjugate society to the mili-
tary way of thinking. Or that they are itchy to
use military power and are annoyed by politi-
cians reluctant to do so. Instead, I learned that
our officers and their military leadership are
very wary about getting involved in wars. They
see the magnitude of destruction and disrup-
tion and don’t want to do that unless absolutely
necessary. It’s the politicians who itch for war.
For example, when first asked to enter the Iraq
war, the military advised the president, “You
have a bigger objective here. You want Iraq to be
a democracy. That’s not a military mission. We
can certainly go in and knock out Saddam
Hussein, which we did, but we can’t deal with
all the rebuilding. That’s not our job. You want
us to do this job, but it’s not a job we know how
to do.” The military is extremely cautious about
getting involved in these things. In the end, it’s
the politicians that say, “Do it.” So the military
has to do the best they can.

The military is also interested in the big is-
sue of innovation. They face innovative and
agile adversaries who are not part of govern-
ments and who are very clever about leveraging
technology to undo the US military asymmetric
advantage. The military wants to be able to
counter them. They don’t want to lose their
military advantage. They want our officers to
become much more agile and able to get in-
novations in place despite the bureaucracy. Ev-
erybody says the military bureaucracy is
stifling, but military people have a way of get-
ting around the bureaucracy when they have a
genuine need to do so. So innovation inside the
military is a big concern. They see there is a limit
to how much they can accomplish simply by
purchasing technology through the very slow
acquisition process. They have numerous ex-
amples of great technologies languishing in
warehouses because no one knows how to use
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them. In other words, they want adoption—not
simply the delivery of devices. We're trying to
help them with that.

I should add that the military is quite in-
novative already. Their concern is to be more
innovative than adversaries so that the US mil-
itary advantage is not eroded. They’re not
warmongers. We would actually probably be
involved in more wars, except for military
pushback not always publicly visible to avoid
conflicts that cannot achieve a clear win.

Bob Sheldon: Could you comment about how
the Computer Science department at NPS pro-
vides value-added to NPS, to the Navy and the
Marine Corps?

Peter Denning: Inside the department we
have several tracks. They're actually areas of
specialization. They are cyber security, net-
working, artificial intelligence and data science,
modeling, virtual environments, and simula-
tion (MOVES), and software engineering.

The cyber specialization, one of our most
popular, deals with cyber defense and some
cyber attack. Cyber defense and attack go to-
gether pretty strongly, because to defend you
need to know how the adversary is likely to
attack. A lot of students are involved in that,
trying to become cyber warriors. The Navy
Cyber Command asks us for a very strong
technical program because they have come to
understand that most of the attacks we're trying
to defend against are happening down at the
lowest levels of the operating systems and
networks. You really need to understand the
operation of the system at those low levels to
figure out how an attacker is working. This re-
quires a good deal of technical expertise with
operating systems and networks. We're trying
to provide that. Admiral Tighe (who served as
Deputy Chief of Naval Operations for In-
formation Warfare) believes that a leader of a
defense team cannot be a good leader unless
they understand the technology they’re trying
to defend. It’s not enough to have an MBA-type
degree. Our operating systems, networking,
and low-level programming courses give the
students the depth they need to be good leaders
of successful defense teams.

The networking area is another popular
specialization. Marines particularly like that
one. They are very interested in mobile devices
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for field use and the security of the networks of
these devices. And they want powerful apps
that can be put on these devices to support field
operations.

Our artificial intelligence track responds to
the Navy interest in unmanned, artificially in-
telligent systems. We get a lot of inquiries for
education on artificial intelligence and machine
learning and the related area of data science.
Our students work with other departments on
this area. For example, the mechanical engi-
neering department has an active drone re-
search program to which some computer
science students have contributed.

Our MOVES track provides students with
expertise in vision, decision support through
visualization, training environments including
games, and augmented reality.

Our software engineering track focuses on
the design and implementation of large soft-
ware systems that are reliable, dependable, us-
able, safe, and secure. This is an advanced topic
that deals with systems, not individual pro-
grams. We work closely with the systems engi-
neering department because most of the
applications of software engineering fit in that
context. When 1 first came to NPS, we had a
software engineering master’s degree, but the
Navy stopped sending students to it. That de-
cision always puzzled me because almost all
systems today incorporate software. I'm a little
disappointed that the Navy hasn’t sent more
students to us to learn software engineering.

Bob Sheldon: Is software reliability taught as
part of computer science?

Peter Denning: Yes, in several places. Our
software engineering covers reliability of soft-
ware systems. Our cyber courses cover secure
coding practices. Reliability is significantly
complicated in software that is so big it requires
teams to develop. Our lower-level program-
ming courses discuss reliability as the meeting
of specifications of a program. Often mathe-
matical methods such as correctness proofs, or
testing methods are sufficient for these small
programs. It's the large programs and large
systems of programs that are so difficult. Re-
liability is a big concern of systems engineering,
with whom we collaborate.

Bob Sheldon: 1 know that “R”"—the free
software environment for statistical computing

and graphics—is used for some of the courses
here at NPS, and open-source software is be-
coming popular. What are your thoughts on
open-source software?

Peter Denning: Linux is a widely used open-
source operating system. It’s been worked over
by thousands of programmers and is very reli-
able. But it’s also very large. The main Linux
distribution is something like 420 million lines
of code. Literally, it’s all those thousands of
volunteer contributions tied together, and it’s
not structurally optimized in any way. It's ex-
tremely complex, even though it’s reliable. By
comparison, the Apple Mac OS system and
Microsoft Windows are 50 to 80 million lines of
code. Those two operating systems are less
complex than Linux. They are much more reli-
able than their predecessors but still suffer in-
stabilities and need for frequent security
patching. There are numerous security stresses
including malware attacks, botnets, denial of
service, social engineering, and more. It’s hard
to tell whether Linux is more resistant to secu-
rity attacks than Windows or Mac OS.

Bob Sheldon: For the past several years, I've
read about the shortage of pure computer sci-
entists, because there’s a big demand for them
and not too many students going into it. Is
computer science having trouble selling itself to
the younger generation?

Peter Denning: There has been little problem
in the last few years with marketing computer
science. Everybody seems to be on board with it.
Across the country and the world, students are
flocking to computer science majors and many
departments are engaged in very aggressive
hiring of new faculty to meet the teaching need.
This has happened because everyone now sees
there is an ongoing computer revolution, which
is producing amazing technologies such as the
cloud, and many students see a future for them
by learning to be builders and designers. The
growth of cloud platforms now enables almost
anyone to get massive amounts of computing
power and storage quite cheaply. There has
been an explosion of startups with many new
ideas of how to exploit the new technology with
new products and platforms. We also are awash
in buzzwords including not only the cloud, but
also artificial intelligence, deep learning, data
science, social media, and blockchains. Young
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people want to be part of the action. I don’t see a
loss of demand for their skills in the near future.
I see a widespread acceptance of computer sci-
ence. Employers still complain, as they have
done for years, about lack of soft skills in our
graduates, and yet they hire nearly every
graduate. The companies have their own
unique ways; once the new people are brought
in, they seem to do well developing soft skills
such as teamwork and collaborating. I don’t see
a backlash of any kind against computer
science.

Bob Sheldon: A sort of wrap-up question.
Where do you see the field of computer science
evolving over the next few years?

Peter Denning: That’s always hard to say. A
computer revolution is definitely under way,
but it’s hard to say which of the many possi-
bilities now emerging will become a big thing. I
like the term “avalanche” for a large-scale
economic-social force that is beyond anyone’s
control and can sweep away familiar ways
of doing things. The Internet was a past ava-
lanche—look at all the things it has changed
since we were young professionals. The cloud
is an avalanche-in-progress. Amazon has a
multibillion-dollar industry—Amazon Web
Services—which is their cloud. It’s huge, all
over the world. Google, Microsoft, and Apple
are all doing similar things. Many new small
players can now access massive computing very
cheaply. The cloud libraries are getting better
and better—powerful tools for speech recogni-
tion, image recognition, big data analytics,
modeling, and simulation are now available. All
these things are transforming the way people
approach getting into the computer career field
and using computers. Of course, there’s a dark
side to transformations, such as mass surveil-
lance and massive data collection threatening
privacy. All that is part of the big forces gath-
ering around the cloud avalanche. It will all
have a very significant influence on how the
field turns out. We don’t know how many of our
current questions are going to be answered, but
we do know the status quo is not going to
survive.

I doubt that the cloud is the only economic
avalanche that will reshape our world. We need
to be better observers of the precursors of ava-
lanches and take steps to prepare.
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We have already noted that previously
technical terms such as artificial intelligence, big
data analytics, deep learning, and blockchains
are all highly hyped buzzwords. Everybody
seems to be jumping on someone’s bandwagon.
A lot of claims are being made that can’t be
substantiated. We’ll see how that plays out.

Consider big data. Ever since I was a grad-
uate student there’s always been a big data
problem in every generation of computers I've
ever seen. There’s always data around, bigger
than whatever computer you've got. Now
we’ve just come to the point with fast world-
wide Internet connectivity that we can now
dream of the whole planet as a computer and
the whole world as planetary-size big data.
Some of the things that are being done with big
data are pretty amazing, and some of them are
downright scary and creepy. How is that going
to play out? I don’t know. Trying to read how all
this is moving is like earthquake preparedness.
Everybody hears about it all the time, but few
people are actually prepared. Avalanches are
like that. They might come, but day after day
nothing happens, and we become complacent.
Then suddenly one day it lets loose, and we find
how few of us are actually prepared. Not only
are a lot of people unprepared, governments
aren’t prepared either. As artificial intelligence
is accelerating automation of some jobs, many
people are getting nervous about being dis-
placed. Governments don’t have good educa-
tional safety nets in place to help people
transition to the new jobs. This creates a lot of
social discontent. As computing continues to
push forward and accelerate the pace of change,
it will foster more avalanches and disruptions
with large-scale economic fallout. Many of the
new problems that appear won’t be solvable by
computing technology. They will be social
problems. We’ve all got to learn to live together
to deal with these things.

Consider also blockchains. Ever since the
bitcoin crypto-currency appeared in 2009, its
underlying technology of a distributed ledger
has attracted huge investment and massive
public attention. The price of a bitcoin sky-
rocketed to $20,000 in late 2016 but has plum-
meted to $3,500 lately and appear to be headed
lower. The advocates of blockchain say bitcoin is
not the source of the value; the blockchain is.
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However, there are serious questions about
blockchain. The cost of adding a new block to
the chain is purposely set very high to prevent
fraudsters from tampering with previous
blocks. The cost of synchronization messages
among servers holding copies of the blockchain
is high. The databases stored in a blockchain are
typically very, very large and the full blockchain
cannot be accommodated on a single server.
Established database companies such as Oracle
have other, faster, and much cheaper ways to
implement distributed databases. If an ava-
lanche is forming, it might backfire and wipe
out the blockchain companies, or it might lead
to more distributed databases that are not
implemented as blockchains. It is hard to say
how all this will play out.

There will certainly be avalanches in-
volving computing but they are unlikely be the
ones featured in the buzzwords.

Bob Sheldon: Any other parting shots?

Peter Denning: Sure. I have been mulling an
issue that concerns the health of computer sci-
ence and engineering in the years ahead. Basi-
cally, I think we have come to be dominated by a
science interpretation of what we do and have
lost touch with an engineering interpretation.
For a healthy computing field, we need both,
and they must be in balance.

As recently as 200 years ago, engineering
and science were not distinguished from each
other. They were seen as technology. Many of
our hero stories, for example the Wright
brothers and Edison and others, come from a
time when science and engineering were not
distinguished as separate fields.

Beginning after World War II, we started
making the distinction, in the United States
anyway, that science was separate from engi-
neering. Vannevar Bush, the President’s science
advisor right after the war, was the main articu-
lator of the distinction. He advocated the forma-
tion of the NSF to explicitly support university
research in science. Engineering was part of NSF
but was downplayed. What we call the science
interpretation today grew from this start and
became dominant.

Fundamentally, science is looking for
recurrences—repeatable patterns—and then
showing that they’re sufficiently reliable that
you can use them for explanation and prediction.

We call them laws when we find them. The
science interpretation also places a high value
on the “dispassionate observer.” This observer
is always situated outside of whatever they
are observing and aims to be objective and
unemotional.

The engineering tradition, which predates
science by thousands of years, is almost the
opposite of science. Egyptian engineers built the
pyramids; Roman engineers the aqueducts;
English engineers the great steamships. Engi-
neers have always been involved in their com-
munities trying to solve pragmatic issues using
technology as the means. The engineer is not
outside the action; the engineer is part of the
action. The engineer is not a dispassionate out-
side observer of the community; the engineer is
passionately involved in the community. The
historical engineer often does not “apply re-
currences”; the engineer harnesses effects that
might become recurrences in the future. The
historical engineers learned to care about the
concerns of their clients. The modern scientist
learns to be dispassionate and uninvolved with
clients. I'm making a distinction between the
historical engineer and the modern view of en-
gineer as an applied scientist.

The modern definitions of engineering say
that “engineering is the application of science to
solve useful problems.” According to this defi-
nition, engineering is a subset of science! Engi-
neering curricula have adapted to this idea and
teach engineering as if systems and artefacts can
be designed without an understanding of the
concerns and interests of their customers. Sys-
tems and artefacts are objects that meet specifi-
cations produced by disinterested observers.

The historical engineer is not a disinterested
observer, but is rather a very concerned and
involved and interested observer. I've por-
trayed science and engineering in a stark way
here to make the distinction. In practice, science
and engineering cannot get along without each
other.

Consider how the different interpretations
approach contingencies—those unanticipated
events that pop up unexpectedly and derail a
project. Scientists approach contingencies by
giving them names (e.g., “black swans”),
building mathematical models (e.g., “power
laws”), and developing theories (e.g., “chaos
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theory”). At best that explains a contingency
but does nothing to resolve it. Engineers re-
spond to contingencies by inventing patches
and workarounds, and then having after-
action meetings to determine how to ap-
proach the issue in the future. Clearly this
common practice of engineering is not science
or the application thereof.

For me, the notion “engineering is the ap-
plication of science” is just wrong. The di-
chotomy between “searching for recurrences”
and “harnessing effects and handling contin-
gencies” is false. Engineering and science have
always worked together. They can’t live without
each other. Engineers have often discovered
phenomena that could be harnessed in the en-
gineering sense before anybody fully un-
derstood the phenomena. The scientists helped
to understand it, came up with the explanations
and the laws, which the engineers could then
use to optimize. Many of the great discoveries of
science started with engineers trying to deal
with pragmatic issues; the scientists came in
later. The examples of science preceding engi-
neering are generally building machines to
confirm scientific predictions, such as building
apparatus to measure the bending of starlight
around the sun as Einstein predicted. Science

Military Operations Research, V24 N2 2019

J. DENNING

and engineering are not the same. It’s unhealthy
for us to entertain the notion that engineering is
a subset of science. Science, with its stress on
objectivity and abstractions, is not enough to
deal with a lot of the pragmatic technology is-
sues that need to be solved.

When I talk about educational reform, I1ook
for a better marriage between science and en-
gineering. It's not just an abstract mathematical
exercise of coming up with a computational
procedure. It’s trying to get a machine to do
something useful for people and not screw it up.
I worry about the current trend toward more
science and less engineering in computer sci-
ence. Computer engineering is a separate field,
and computer science is trying to organize itself
like it’s an abstract mathematical field. I think it
will peter out if that’s the way it really sees itself,
because in the end, if you can’t do something
useful with a computer, no one is going to be
interested. So I would like to see our future in
computer science appreciate both the science
and the engineering side, willing to be involved
in their community, listen, design, and all these
things, find pragmatic solutions to problems.
Not try to deal with everything as another
programming problem.

That’s my parting shot.
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