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ABSTRACT 
 
 

In this dissertation we explore the use of service level agreements (SLAs) to 

improve the quality and management of software-intensive systems.  SLAs are typically 

used in outsourcing contracts for post-production support.  We propose that SLAs be 

used in software acquisition to support quality and process control throughout the 

lifecycle (requirements engineering through post-production support) of a software-

intensive system.  The hypothesis was tested using two methodologies.  The first method 

explained how SLAs could be used throughout a system’s lifecycle to improve software 

quality.  This concept was validated by a survey of IT professionals. The results of the 

survey indicated that practitioners in the IT field felt that SLAs could be used to improve 

overall quality in the development effort and in the end product.  The second approach 

was to develop actual SLAs for a specific lifecycle phase (post-production) to illustrate 

the concepts of SLAs and to demonstrate their value as a quality control and management 

tool. 
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EXECUTIVE SUMMARY 
 

 

 Management and end-users have become increasingly dependent upon software-

intensive systems to support new ways of conducting business.  These critical software-

intensive systems are becoming more complex, and difficult to manage, yet the 

performance and quality expectations from management and the end-users continue to 

increase.  Unfortunately, despite software’s increased importance to organizations, the 

quality of software can be lacking. 

The dissertation describes a new approach to software acquisition: application of 

service level agreements (SLAs) throughout a system’s lifecycle and at each major phase 

of software development and maintenance to improve the overall quality of the end 

product.  The hypothesis is that the use of the SLAs in the software acquisition process 

can improve product, process, project, and post-production quality by identifying and 

defining relevant quality factors, quality metrics, quality thresholds, methods of 

measurement, and by establishing penalties for failure to meet quality requirements.   

 The basis for the hypothesis is our theory that the SLA development process aids 

requirements engineering by identifying software quality factors that support the critical 

business processes the software development or maintenance project supports.  The 

quality factors that are addressed in the SLAs then drive architectural and design 

decisions about the business-critical system. If developers and maintainers of business-

critical systems know which of the characteristics are most critical to project success, 

they can select – within the constraints of time and budget – among system architecture, 

design, and implementation alternatives that have a high likelihood of meeting the quality 

goals set forth by the stakeholders for the end product.  

 To test the hypothesis, we used two approaches.  The first approach explained 

how SLAs could be used throughout a system’s lifecycle to improve software quality.  

This approach was validated by a survey of information technology (IT) professionals.  

The second approach was to develop actual SLAs for a specific lifecycle phase (post-

production) to illustrate the concepts of SLAs and to demonstrate their value as a quality 

control and management tool.   
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I. INTRODUCTION 

A. EXECUTIVE OVERVIEW 

In the past, the typical information system tended to be homogeneous and 

stovepiped, and was typically developed from scratch by a small number of vendors.  In 

contrast, today’s typical information system is software-intensive and distributed, 

composed of heterogeneous subsystems, supplied by numerous vendors.  The subsystems 

themselves can consist of a mix of legacy and new-system development.  Software is 

viewed by many as the means for making systems readily adaptable to change, as the 

environments in which the systems operate change.  In this dissertation we treat the topic 

of service level agreements (SLA) in the context of their use in managing modern 

information systems over their entire system lifecycle.  

Many of the advances in the principles and mechanics of software engineering 

provide the software engineer with a means for improving the quality of software-

intensive information systems.  However, actual practice does not always take advantage 

of these advances. This can be attributed to such factors as training problems, the rush-to-

market mentality, and lack of proper quality control throughout the lifecycle of the 

information system.  Although quality control is the responsibility of the program 

manager, he or she may choose to defer addressing quality to later in the system lifecycle, 

focusing initially on realizing functional system requirements.   As experience has shown, 

retrofitting quality—and non-functional requirements in general—into an information 

system can be difficult to do technically or even cost-prohibitive to achieve in some 

cases.  In this dissertation, we argue that program managers must address software 

quality through the system lifecycle and that SLAs provide a means for managing the 

activities needed to build quality into software-intensive information systems. 

A SLA is a contractual mechanism that defines quantifiable quality metrics, 

acceptable service levels, the method of measurement, responsibilities of the parties to 

the SLA, and incentives—both positive and negative reinforcements—for meeting agreed 

upon service levels.  A SLA can be used for in-house development efforts and services as 

well as those that are outsourced.  Further, a SLA can also be used in any stage of the 
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application’s lifecycle.  Typically, a set—something akin to a portfolio—of SLAs are 

used in conjunction with the management of an information system, with each SLA 

representing a distinct quality attribute (e.g., reliability, maintainability) of the 

information system or dimension of system development and maintenance (e.g., product 

quality, process quality, project quality, and quality in post-production maintenance and 

services). 

1. Hypothesis 

 Service level agreements can improve the management and quality of software-

intensive information systems throughout the system’s lifecycle.  Embedded software and 

other specialized application of software are not within the scope of this paper.  

2. Methodology 

To test the hypothesis, we utilized two approaches.  In the first approach we 

explained how SLAs could be used as a quality control tool in the various phases of 

software development to improve product, process, project and post-production quality.  

Our research identified areas within the development and post-production effort where 

SLAs could be effectively utilized, as well as provided examples of standards and quality 

models that could be incorporated into SLAs.  We validated these concepts through a 

survey instrument administered to information technology (IT) professionals.   

The questionnaire consisted of three sections.  The first section provided the 

subject with a brief introduction to the topic of software quality, and a short discussion of 

how SLAs can contribute to software program management from conceptualization of an 

information system through post-production support.  The second section was a case 

study illustrating a real-world scenario along with a SLA for availability.  The last section 

consisted of a questionnaire comprised of twenty-nine questions and a comment section.  

Each statement had a corresponding Likert scale from one to five, with a one representing 

strong disagreement and a five indicating strong agreement.  The survey was conducted 

from a web site. 

The second approach was to develop SLAs for a specific phase of the software 

lifecycle to further illustrate how SLAs can be used as a quality control tool and to 

demonstrate the usefulness of the new SLA format.  Although the SLAs that were 
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developed apply to post-production support, a similar approach can be utilized to apply 

quality factors to other phases of development.  The SLAs were also created to 

demonstrated how SLAs could be used as a template for requirements elicitation and to 

show that they can and should be tailored to meet project specific needs. 

3. Results 

 The survey supported the hypothesis that SLAs can improve the management and 

quality of IT intensive systems throughout their lifecycle.  Twenty-two of the twenty-five 

statements had a statistically significant difference from the null hypothesis (mean equal 

to three on the Likert scale, which indicates a neutral feeling about the statement).   

4. Original Contribution 

This dissertation has three major original contributions to the field of software 

engineering.  The first contribution is a unique approach to improving software quality 

from a software acquisition perspective.  For numerous reasons software acquisition 

tends to concentrate on the functional aspects of an information-intensive system.  

Unfortunately, this approach often leads to poor software quality as software can be of 

poor design, but still meet functional requirements.  In an effort to improve software 

quality this dissertation advocates the use of SLAs in software acquisition contracts to 

specify performance-based requirements relating to product, process, project and post-

production quality.  This dissertation demonstrates how SLAs can be applied to the entire 

lifecycle of a software-intensive system in an effort to improve the quality of the 

management and development of the system.  SLAs are not a new concept, however they 

are used primarily in post-production support.  In this dissertation we take the concept of 

SLAs and demonstrate how they can be used as a quality control and management tool 

throughout the software development cycle (i.e., requirements, design, coding, testing, 

post-production support). 

The dissertation introduces a unique format for the SLAs.  The format forces the 

SLA development group to define in detail (e.g., in terms that all stakeholders 

understand) the services to be performed, quantitative service levels, the method of 

measurement, and time frames or periodicity of measurements.  The format helps to 

ensure that all parties understand the terms of the SLAs by stating the responsibilities of 
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the contractor and program manager, stating assumptions, deliverables, stating who will 

perform monitoring, and how monitoring will be performed.  The format also ties the 

quality requirements to specific business needs and stakeholder concerns.   Providing the 

rationale for measuring the service ensures the development team has considered whether 

the service and quality thresholds are relevant to business needs, that the quality 

thresholds are realistic, and that metrics are meaningful and provide value.  

Although SLAs are sometimes found in contracts with External Service Providers 

(ESPs) for post-production support they are often used more to set expectations rather 

than establish quality control measures.  They are often poorly defined, they lack 

information concerning monitoring techniques, and they generally favor the ESP.   

In this dissertation we have developed thirteen original post-production SLAs that 

are far more extensive than those found in the research conducted.  The SLAs in 

appendix (A) were developed to illustrate how SLAs can be used as a quality control tool, 

not just for post-production, but for the other phases of the software lifecycle as well.  

The SLAs in appendix (A) were used in actual source selection negotiations with very 

favorable results.   

5. Expanding the Body of Knowledge 

Although numerous software engineering disciplines are discussed, this 

dissertation has made contributions to the body of knowledge in the disciplines of 

software acquisition, requirements analysis, software quality and software project 

management.   

There is currently a lack of theoretical basis or intellectual body of knowledge in 

the field of software acquisition.  Although there is a great deal of research concerning 

software development methods and their affect on project success in terms of cost and 

schedule, similar research on contracting methodology for software development is 

lacking.  This dissertation proposes a methodology for acquiring software that focuses on 

project, process, product and post-production quality.  This approach goes beyond 

traditional acquisition by applying a holistic view of quality throughout a system’s 

lifecycle.  SLAs can be used as a quality control tool to enhance other software 

acquisition approaches such as the Software Acquisition Capability Maturity Model (SA-
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CMM) (Software Engineering Institute Mar 2000), IEEE Recommended Practice for 

Software Acquisitions (IEEE Std. 1062) or Performance-Based Acquisition. (DoD USD 

(A&T)  Utilizing SLAs in the acquisition process is an attempt to correct many of the 

software acquisition deficiencies sited in numerous articles, studies, and General 

Accounting Office (GAO) reports.  Although this dissertation does not empirically 

demonstrate that SLAs will lead to project success and better quality, it does provide a 

foundation upon which future studies can be based. 

The SLA development process supports and incorporates many of the theories 

proposed in the field of software requirements engineering such as Facilitated 

Application Specification Technique (FAST) (Zahniser), Mizuno and Akao’s Quality 

Function Deployment (Zultner, Krogstie) as well as use cases and scenarios (Hickley, 

Sutcliffe).  Many of the requirements elicitation techniques proposed by practitioners and 

academia can be incorporated in the SLA development process to generate quality 

requirements.  For example, the SLAs presented in appendix (A) can be utilized in 

scenario elicitation.   

SLAs also enhance existing requirement engineering techniques or methods.  

SLAs concentrate on non-functional quality requirements, which are not always 

considered in other methods.  Due to the nature of contracting for software services, 

SLAs introduce quality requirements early in the lifecycle where they are most effective.  

Quality software requires more than just identifying quality requirements.  Monitoring 

and measuring the requirements is necessary to ensure the requirements are being met.  

The literature on software requirements almost always implies that just because 

requirements are specified, that they are incorporated into the final product.  This is rarely 

the case.  SLAs enhance existing software requirement techniques by instituting a 

measuring and monitoring philosophy (quality control) and enforcing requirements by 

use of penalties for non-compliance.  

The SLA development process also enhances traditional software requirement 

techniques.  The level of detail necessary to develop the SLAs requires an understanding 

of the business processes the system is supporting, it incorporates multiple perspectives, 

and it requires a prioritization of the quality factors chosen.  The development effort will 
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not only generate discussion on which quality attributes are appropriate for the software 

system, but it will also identify whether resources, employee skill sets, and management 

support exist to properly support and enforce the SLAs.  SLAs and specifically the format 

proposed in this dissertation will help to produce requirements that are quantifiable, 

measurable, meaningful, and support business processes.   

This dissertation adds to work that has been conducted on software quality.  

While this dissertation does not introduce a new model for software quality, or a new 

measurement of quality, it does introduce the use of SLAs as a means to contract for 

software quality over the lifecycle of a product.  SLAs are the practical implementation 

of many of the quality models that will be discussed later in the dissertation.   

The SLA development effort also contributes to the discipline of software quality 

by incorporating quality (functional and non-functional) requirements in the requirements 

engineering process.  The development effort evaluates many of the quality models and 

metrics proposed in literature.  These metrics and models are then applied in part or in 

whole to measure or specify process, product, project, and post-production quality. 

There is no single quality model that can extend through the entire lifecycle of a 

software product.  SLAs are a means to incorporate many quality factors and models 

simultaneously to best support the system throughout its lifecycle.  The SLA 

development effort involves an analysis of the various quality factors and models to 

determine which best support the system given performance expectations, budget and 

time constraints, and the purpose of the system.  Prioritizing the quality factors and 

resolving quality requirement conflict are an important part of the development process.  

It is very likely that multiple quality models will have to be incorporated to evaluate the 

deliverables at the various stages of the development cycle. 

This dissertation has also added to the body of knowledge related to software 

project management.  SLAs enhance many of the existing processes or models associated 

with software project management such as Performance-based Management (Plunkett), 

Software-Performance Engineering (Smith, C. 1988), and Capability Maturity Model 

Integration (CMMI) (Software Engineering Institute, Aug 2002) by instituting the 

software quality control measures that are implied in these models.   
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In addition to quality management and quality control, SLAs can assist program 

managers in many of the tasks identified in project management models as important to 

the success of the project.   In the SLA development effort, the project is scoped, risks are 

identified and analyzed, resources are evaluated, quality factors are prioritized, specific 

business needs are identified, and success factors for those business needs are defined. 

SLAs also help the program manager in the areas of financial management, customer 

relations, configuration management, and especially contract management.   

6. Outline of Dissertation 

 Chapter I outlines the importance of IT systems, and describes the difficulty that 

both public and private sectors have had in developing quality IT systems.  The chapter 

also provides a detailed discussion on software quality.  Chapter II defines SLAs, 

discusses how they are utilized, and describes a recommended format.  Chapter III 

outlines an 8-step process for developing SLAs and provides a case study describing how 

the SLAs in appendix (A) were developed.  Chapter IV provides a detailed discussion on 

software development models, illustrating how SLAs can support various approaches.  

Chapter V describes how the SLA development process can support and enhance many 

of the recommended requirements engineering processes and techniques.  Chapter VI 

discusses how the quality metrics and quality factors incorporated in the SLAs can 

influence the architecture and design of the system.  Chapter VII illustrates the 

importance of selecting the appropriate software quality factors to incorporate in the 

SLAs.  Chapter VIII describes how SLAs can be utilized as a quality control tool to assist 

the program manager in managing the configuration of the project.  Chapter IX explains 

how SLAs can also assist the program manager with many aspects of program 

management and oversight.  Chapter X is a detailed discussion on the research 

methodology and results.  Chapter XI contains the conclusion and makes 

recommendations for future work.  Appendix (A) is a statement of work (SOW) along 

with thirteen SLAs that were used in a proposal for post-production support.  Appendix 

(B) contains the survey instrument.  The final section is Appendix (C), which provides a 

breakdown of the results of the survey. 

 



 8

7. Deliverable 

The concepts discussed in this dissertation were applied in the development of the 

SLAs and the SOW found in appendix (A).  The SLAs and SOW in appendix (A) were 

developed for the post-production hosting services under CLIN 0029 of the Navy/Marine 

Corps Intranet (NMCI) contract.  The SLAs and SOW were designed to allow program 

managers to select from three levels of services to support their programs.  Programs 

needing more advanced services would be able to modify the CLIN to support their 

needs.  The CLIN 0029 SOW and SLAs are currently still in contract negotiation. 

 

B. IMPORTANCE OF INFORMATION TECHNOLOGY 

 IT has offered an unprecedented opportunity for organizations to improve the 

efficiency and effectiveness of its operation.  The rapid growth of the Internet has lead to 

an ever increasing reliance by organizations on interconnected computer systems to 

provide critical operational services, from business processes to coordinating 

decentralized command, control, computers, communications, intelligence, sensors and 

reconnaissance (C4ISR) systems.  

 One can argue that IT-based systems have become the most critical, multi-faceted 

strategic tool any business or organization possesses. (Info Tech)  Organizations that 

have properly integrated IT into their overall business processes and have invested in the 

most current infrastructure have a significant advantage over any competition that has not 

taken advantage of IT.  

 The reliance on IT systems to provide strategic and tactical advantages has placed 

ever-increasing levels of pressure on the IT department to provide quality services and 

products than ever before.   Interruptions to IT systems are having a far greater impact 

than before in terms of opportunity loss, revenue loss, customer dissatisfaction, and 

efficiency.  As managers realize that their mission-critical processes are tied to IT 

services, they are demanding more control over the quality of the services provided.   

 Another factor bringing IT quality to the attention of senior management are the 

various third-party vendors, system integrators, or external service providers (ESP) that 

market IT services that are similar to those offered in most IT departments.  Outsourcing 
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is forcing IT organizations to reevaluate their relevancy to the organization.  When top 

executives hear the sales pitches from ESPs, they expect similar or higher levels of 

service from their internal staffs.  Competition has started to drive the levels of service 

higher and higher, especially when service performance is really the only differentiator 

the ESPs have with one another.  

 Information flow is the lifeblood of an organization allowing it to enable its 

personnel, respond to customers, and react to the external environment.  An 

organization’s ability to gather, manage, and use information will determine its success. 

(Gates)  Leveraging information technology allows organizations to interconnect 

disparate processes and information that was separated logically, physically, and 

chronologically.  The rapid growth of technology along with the greater globalization of 

enterprises has brought IT management to “center stage”.  However, as information 

systems become more complex and distributed, they also in general become increasingly 

difficult to manage, yet the performance expectations for the system, from management, 

and the end-users continue to increase.   

 All organizations want world-class quality levels, but achieving those quality 

levels requires a holistic view of quality that incorporates leadership support, repeatable 

and measurable quality processes and controls, resource planning, vision, customer 

support, and service-level management.  Organizations must do more than identify and 

incorporate quality attributes in their requirements, they must also monitor quality 

metrics to ensure those quality requirements are being met.  Quality is not something that 

is inherent in the development process: it must be planned, monitored and incorporated as 

part of standard business practices.   

 

C. SOFTWARE QUALITY 

 There are numerous definitions of quality.  The ISO 9000 model defines quality 

as the degree to which a set of inherent characteristics fulfills requirements. (Tricker)  

ISO 9126, a refinement of the ISO 9000 model, which proposes a quality standard for 

software product evaluation, defines software quality as the totality of features and 

characteristics of a software product that bear on its ability to satisfy stated or implied 
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needs. (Hansen)  Pressman states that software quality is conformance to explicitly stated 

functional and performance requirements, explicitly documented development standards, 

and implicit characteristics that are expected of all professionally developed software. 

(Pressman) 

 It is interesting that both ISO model definitions and Pressman’s definition are 

based on an assumption that all stakeholders have an input into the requirements-

specification process.  An IT system may meet all of the program requirements and thus 

be viewed as being a quality product.  However, the IT system will not be perceived as a 

quality product if the product does not perform according to the end-user’s perspective.  

Many believe that quality is based upon the perceptions of the stakeholders. This view is 

also supported by Garvin, who stated that quality is multifaceted and can be viewed by 

many perspectives. (Garvin) However, it is generally recognized that the consumer of the 

product is the ultimate judge of a product’s quality. (Glass, Tice, Briones, Weigers) The 

IEEE standard 610-1990 does incorporate user needs, by defining software quality as the 

degree to which a system, component, or process meets specified requirements and meets 

customer or user needs and expectations. (Schmidt)   

 Software quality can be broken down into four areas of focus.  The first area, 

product quality, is concerned with the requirements and specifications of the product as it 

applies to the attributes or characteristics of the software product.  This area could also be 

referred to as end-product quality.  The second area, project quality, is concerned with the 

metrics and measurements associated with the software production effort. (Wheeler, 

Hilburn)  The third area is process or management quality, which is concerned with the 

processes, planning and controls used to develop and manage the software product.  The 

last area of focus is on post-production quality or deployed application management.  

Although there is some overlap with process quality, this last area is focused on software 

maintenance, IT system performance, and hosting services after the application has been 

placed into production.  Software quality models have been developed in all of these 

areas in an attempt to evaluate and/or predict software quality.  
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1. Product Quality 

  Quality attributes are generally used to describe the degree to which software 

possesses certain characteristics. Quality can be viewed from numerous perspectives, and 

certain attributes are more preferable to others depending on the objective of the IT 

system.  As such, numerous quality attributes have been identified.  When referring to 

product quality, two perspectives are generally represented: those of the user and those of 

the developer.   

 In addition to the functional aspects of a system, the end user wants the product to 

exhibit specific qualities that will assist them in performing their task.  From a user’s 

perspective, some of the common quality attributes used in the quality models include 

availability, usability, integrity, interoperability, and reliability.  Personnel involved in 

the development of software or its maintenance may be more concerned with the 

software attributes such as portability, testability, maintainability, and reusability. 

(Wiegers)   

 Product quality models concerned with the developer’s perspective can be further 

broken down into three categories.  The first category is concerned with those quality 

factors, or their associated quality metrics that involve attributes associated with the 

software code.  A common quality metric for software code is defects per thousand lines-

of-code (KLOC).  The next category is concerned with quality metrics associated with 

the structure or architecture of the software.  Structure quality metrics are concerned with 

the features, components and relationships among the components.  Common structure 

quality metrics are quantitative counts of the sources (fan-in) and destinations (fan-out).  

The last group contains hybrid quality metrics, which combines code and architecture 

quality factors.  An example would be evaluating complexity by analyzing or weighing 

against the lines-of-codes in the modules. (Kafura) 

 One of the first software quality models to address product quality was the 

McCall quality model, based on earlier work by Boehm (Boehm).  McCall’s model 

consists of a number of questions and a subjective grading criterion based on a Lickert 

scale from 0 to 10.  McCall defined quality in a hierarchical manner in which quality 

factors defined a key characteristic of the software, such as ‘maintainability’.  Quality 
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factors consisted of quality criteria that represented an attribute of the quality factors, 

such as ‘understandability.’  Finally, quality metrics were used to assign quantitative 

measurements to the quality factors.  (Pressman, Ward, Kafura)  

There are numerous software product quality models that incorporate software 

quality factors or metrics in an effort to benchmark or measure software quality.   Some 

of the better-known quality models include early work done by Halstead, who calculated 

complexity based on the number of operators and operands. (Ogasawara)  The ISO 9126-

1 quality model is also well known.  The ISO 9126-1 model incorporates the quality 

factors functionality, reliability, usability, efficiency, maintainability and portability. 

(Cross, Ward)  The Hewlett-Packard FURPS model is also well known. (Pressman)   

There are also numerous software quality models that concentrate on specific 

quality factors such as complexity. (Ogasawara, McClure)  In his book Software 

Complexity- Measures and Methods, Horst Zuse identifies over ninety models for 

describing the software attribute complexity.  Other quality models are specific to object-

oriented systems (Coppick, Pritchett), some are specific to a language (Pritchett) or 

COTS components (Bertoa, Hansen), while others are only applicable at run-time. (Bass)   

2. Project Quality 

 Project quality is concerned with metrics that allow an organization to manage, 

track, and improve the quality of the software-development effort.  One of the most 

common quality factors involving project quality is project estimation.  Project estimation 

models such as COCOMO II (Boehm), Albrecht’s Function Points (Albrecht, Jones), and  

Putnam’s Software Life-cycle Model (SLIM) (Putnam, Chulani) address the cost to 

produce software, errors or defects that can be expected, as well as the level of effort 

required to produce the software.   

 Some of the project quality metrics that Motorola used to measure their software-

development projects included software-defect density, adherence to schedule, estimation 

accuracy, reliability, requirements tracking, and fault-type tracking. (Daskalantonakis) 

Other project quality models such as DoD Std 7935 are concerned with the degree 

of formalism necessary to manage the project. (McConnell)  Another metric used in 

assessing project quality is risk, which can be defined as any variable within a project that 
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results in project failure. General risk areas are schedule risk, requirements risk, budget 

risks and personnel risk. (Padayachee)  There are a number of risk assessment models 

including Gilb’s risk heuristics (Gilb), Boehm’s classification of risk (Boehm), Keil’s 

follow on identification of risk factors (Keil), the USAF AFCS/AFLC Pamphlet 800-45 

which outlines software risk identification and abatement (Pressman), interpretivist 

approaches (Gemmer, Padayachee), risks associated with enterprise software projects 

(Charette, Sumner), and Noguiera’s risk assessment model. (Noguiera de Leon) 

3. Process Quality 

 Quality metrics also apply to the processes and business practices used to manage 

software throughout its lifecycle.  Quality in the context of software process management 

refers to an adherence with explicit process requirements and those implicit processes 

necessary to meet user requirements and produce quality software.   Process metrics 

allow a holistic view of the activities that organizations are taking to ensure a quality 

software product.  Processes provide a clear understanding of what an organization does 

and the quality controls it has in place to do those activities. (Tricker) 

There are many who believe that the quality of the development process is the 

best predictor of software product quality. (Fenton) Repeatable software processes such 

as the Software Engineering Institutes Software Capability Maturity Model for software 

(SW-CMM), which lists five levels of organizational maturity levels, and the 

International Standards Organization (ISO 9001:2000) are designed to improve software 

quality, productivity, predictability and time to market. (Paulk, McGuire)  There is also 

some empirical evidence that there is a correlation between process maturity and software 

quality. (Harter, Diaz, Ferguson) 

 Other models of process quality include the new Capability Maturity Model 

Integration (CMMI) model.  CMMI integrates 3 CMM models into one to eliminate 

problems with different architecture, semantics, and approaches. (SEI)  Humphery 

developed the personal software process (PSP) to assist software engineers in producing 

quality software. (Humphrey)  Other process models include cleanroom engineering that 

has shown reduced errors per KLOC for small projects (Fenton), and the quality 

management metric (QMM) (Machniak, Osmundson).  There are also numerous IEEE 
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and ISO standards that provide processes on everything from software engineering 

product evaluation (ISO/IEC 14598) to selecting appropriate quality metrics (IEEE Std. 

1061-1998). 

4. Post-Production Quality 

 Quality control does not stop once a software product has been deployed.  Quality 

factors still need to be applied to the application performance, maintenance efforts, and 

hosting services throughout its lifecycle.  Monitoring the performance of the application 

once it is deployed is essential in quality control and maintaining customer satisfaction.  

Much of the application performance monitoring in the initial phases of deployment is 

used to validate product-quality factors identified in the initial requirements. However, in 

the post-production environment there is also an emphasis on monitoring system 

performance in terms of resource utilization, system capacity, network utilization and 

quality of service, storage management, and security.   

 Many of the quality models involving deployed applications are concerned with 

software maintenance and the quality factors that make maintenance cheaper and more 

effective.  Some of the maintenance-quality factors deal with ease of change (Royce), 

others deal with architectural design to promote maintenance (Hulse, Garlan), defect 

management (Kajko-Mattsson), organizational structure (Briand), complexity (Banker), 

and change management. (Bennett)   

Quality factors with deployed software are also concerned with the IT system as a 

whole.  Quality is not just concerned with the application itself: it is also concerned with 

the IT system as a whole, across distributed components.  Part of that distributed system 

is the network.  There are numerous quality metrics that can be applied to network quality 

of service. (Clark, Tanenbaum, Lee, Hochstetler, Packeteer) Quality metrics are also 

applied to the host server.  Quality metrics such as application-resource utilization 

(Aries), bandwidth utilization (Eager), concurrent user management (Aweya), and server 

performance (Dalal, Gama) are also utilized to address system-level quality.  Hosting 

services are another area that needs to be addressed when discussing the quality of 

production software.  Traditional hosting metrics have centered on total cost of operation 
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(TCO) benchmarking, and help desk support metrics, but areas such as backups, storage, 

configuration management, and security also need to be addressed. 

  There are numerous software-quality models and metrics that can be incorporated 

into SLAs.  The models or quality factors chosen will depend on those quality attributes 

that best support the underlying business process.  Regardless of the software-quality 

models incorporated in the SLAs, the software metrics must be meaningful, quantitative, 

and measurable.  

 In this dissertation, the term quality is used loosely to describe the degree to 

which a system, component, or process meets specified requirements and meets customer 

or user needs and expectations.  Quality thresholds or quality metrics are those 

measurements that specify the quality factors or quality requirements.   

 

D. CHALLENGES IN OBTAINING QUALITY SOFTWARE 

The software program manager is responsible for evaluating the program 

requirements and determining the methodology or process to deliver and maintain quality 

software.  There have been a number of initiatives proposed to improve the quality of 

software through its lifecycle.  Most approaches are based on the tenet that quality must 

be designed into a product.  Approaches such as formalizing specifications (Berzins), use 

of development standards and models, and utilizing architecture for quality analysis 

support this approach.  These approaches can be supplemented, for instance, by using 

programming languages such as Ada that are designed to prevent common design and 

coding errors, or utilizing rigorous testing and third-party debugging tools.   

If there are numerous approaches to developing quality software, why are there 

still problems?  Part of the answer lies with the lack of meaningful dialog between the 

developers, end-users and management.  Unrealistic completion dates, requirements 

churn, poor requirements elicitation, and lack of proper resources all lead to development 

problems.  Additionally, just because standards exist for developing software does not 

mean that they are being used.  In many cases adherence to developmental standards  
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requires additional training, additional development time, additional funds and a 

commitment from upper level management that those standards will be inspected and 

enforced.  

In his book “Decline and Fall of the American Programmer,” Yourdon estimates 

that eighty-five percent of US software organizations operated at level 1 of the SW-

CMM. (Yourdon)  This fact was reemphasized by Dietz who stated that most of the 

software companies that he evaluated were at level 1 of the CMM. (Dietz) 

A study published by the Standish Group reveals that the number of software 

projects that fail has dropped from 40% in 1997 to 26% in 1999. However, the 

percentage of projects with cost and schedule overruns rose from 33% in 1997 to 46% in 

1999 (Noguiera)  In another Standish study in 1999, a survey of 1,500 software projects 

found that 31% of the projects were canceled and of those projects that were delivered on 

average only 61% of the originally specified features were delivered. (Cross) 

Despite software’s increased importance to organizations, software program 

managers have not improved the quality of software. (Anthes) There are numerous 

examples of software errors leading to major incidents, including the Denver airport 

baggage handling system, the Hershey Foods ERP implementation, the Toys-R-Us e-

commerce site continuing to promise delivery of Christmas gifts after shipping cut-off 

dates, and the USS Yorktown Smart Ship system failure. (Slabodkin, Huckle) 

In the article “Why Software is so Bad”, Mann offers a number of reasons why 

the quality of software tends to be poor.  Mann states that software quality is actually 

getting worse rather than better, despite the advances in software engineering theory, 

processes, methodology and tools.  Poor software quality can be attributed to the 

following: 

• The perceived need to hurriedly develop and market a software-based product to 

be the first to market; such an approach can result in software artifacts that contain 

software flaws and are difficult to test and maintain.  In a 60-day development cycle, 

which is not uncommon, programmers are not going to spend two weeks searching for a 

bug, despite risks associated with deploying a faulty product. (Blacharski) 
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• Software can be poorly designed.  This is due in part to the poor training 

programmers have received, and the fact that as programmers bounce code off of the 

complier to fix errors, they often deviate from the original designs and end up with 

sloppy, poorly documented code.  

• Testing software often requires a different skill set than programming.  Often the 

testing personnel are not properly trained, or are not given the time to test properly.  Too 

many organizations are relying on testing as the primary means to improve quality 

instead of designing the application with quality factors built into their initial 

requirements—the latter approach actually can improve our ability to test systems. 

• Software is not designed for testing.  The designers do not utilize good component 

level design or software architecture, the software’s modularity and corresponding 

interconnectivity is not well defined, and the application is not internally coded to throw 

exceptions, or write faults to a log. 

• Software fails to meet the customer’s expectations.  The software developer must 

looks at requirements from the user’s perspective, the business’ perspective, and the 

programmer’s perspective.  Too often the user is not a part of the requirement elicitation 

process.   

• Requirements churn contributes to the poor reliability of software, as designs are 

altered, interfaces added, unplanned modules are glued together, with little consideration 

given to the additional resource demands.  

• Post-production support plays a large role in the success of an application, but 

software developers do not normally address it in their planning. 

• The application needs to be hosted in an environment that supports the 

application’s functionality. Software quality can be adversely affected by lack of 

resources within the server, and by network and bandwidth constraints.   

• Maintaining software without proper documentation or configuration information 

is very difficult and expensive.  Additionally, without proper documentation it is difficult 

to compare the original requirement specifications to the product throughout the 

software’s lifecycle. 
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E. QUALITY PROBLEMS IN THE DEPARTMENT OF DEFENSE 

 The next three sections discuss some of the problems that the DoD has with the 

management of software-intensive information systems, recruiting and retaining 

competent IT personnel and outsourcing.  Although these sections focus on the DoD, 

many of the same problems can be found in the commercial sector.   

In the past, the DoD has not excelled at managing software-intensive information 

systems through their lifecycles.  Managing information systems can be challenging.  

Utilizing the latest technology to exploit information requires highly developed 

intellectual and managerial skills, which are rare attributes (Rocheleau).  The difficulty in 

managing these systems has been demonstrated by the numerous system development 

and maintenance projects within the DoD that lacked sound planning, had poor controls, 

lacked measurements for success, and did not meet expectations.   

From 1986 to 1996, the US Government spent 200 billion dollars on information 

technology that did not produce the results that were desired. (Deputy Assistant Secretary 

of Defense)  One example is the Corporate Information Management (CIM) initiative. In 

October 1989, the DoD attempted to improve and consolidate almost 2,000 information 

systems relating to transportation, depot maintenance and material maintenance.  By 

October 1993, the DoD determined that efforts to develop and complete these logistics 

systems would take too long to develop and would not produce the costs savings they 

initially anticipated.  In response, the DoD standardized on its best logistics information 

systems—in terms of performance, maintainability, and other measures of 

effectiveness—across all military services.  This “migration strategy” as it was termed, 

was designed to quickly produce cost savings.  By 1995, the DoD realized that its 

migration strategy for materiel management and depot maintenance consumed more 

resources than it had anticipated, took longer than expected, and did not produce the 

benefits expected.  Over 700 million dollars was spent migrating material management 

systems before abandoning the project, having failed to produce a single operational 

system. (U.S. GAO OCG-99-4)   The CIM and migration-strategy effort cost eighteen 

billion dollars without achieving its objective.  The DoD abandoned its efforts at  
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standardizing the systems and opted instead to try to achieve interoperability between the 

different services’ information systems, and privatize some functions. (U.S. GAO AIMD-

96-109) 

Despite the failures of the CIM and the migration strategy, the US General 

Accounting Office (GAO) noted that the interoperability and privatization approach 

suffered from the same managerial problems that plagued the two prior attempts at 

system consolidation.  The DoD did not even conduct a thorough cost-benefit study to 

determine if the new strategy would achieve a positive return on investment.  The DoD 

failed to tie its efforts to its overall business objectives using strategic planning.  It had 

also not adequately explored better commercial alternatives such as reengineering or 

outsourcing. (U.S. GAO AIMD-97-6, U.S. GAO 01-244) 

1. Clinger-Cohen Act 

 On October 12, 1994, then Senator Cohen of Maine and a member of the Senate 

Governmental Affairs Committee released a report entitled “Computer Chaos: Billions 

Wasted Buying Federal Computer Systems.”  The report was a summary of reports from 

the GAO and Inspector General (IG) that detailed problems with major software-

development projects that were in progress.  The report concluded that antiquated 

systems were costing the government billions of dollars, government-planning efforts 

were inadequate, and the acquisition process forced the government to pay more for less. 

(Peckinpaugh) 

 The Information Technology Management Reform Act (ITMRA) of 1996 coupled 

with the Federal Acquisition Reform Act became known as the Clinger-Cohen Act.  

Congress’ intent in passing the Act was to solve some of the longstanding problems 

associated with the acquisition and maintenance of information systems by the DoD.  

Among those problems was inadequate attention to business processes, failure to improve 

processes before investing in information systems, investing in poorly planned and 

ineffective information systems, and outdated acquisition procedures that did not address 

the rapid evolution of information technology. (Deputy Assistant Secretary of Defense) 

The Act mandates that federal agencies develop internal investment-control and 

performance-management processes to improve their acquisition, use, and management 
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of information systems. (U.S. GAO-00-179)  The act established the positions of Chief 

Information Officer (CIO) for every major federal agency.  The CIO became responsible 

for ensuring the provisions of the Clinger-Cohen Act are executed.  Some of the 

responsibilities of the CIO were as follows:  encourage incremental phased development 

instead of grand projects, ensure that the information system supports the core mission—

as articulated in doctrine and policy—of the agency, determine whether other agencies or 

contractors have information systems with similar functionality as the system being 

developed, and perform cost-benefit analyses and risk assessments prior to embarking on 

developing an information system.  Another key provision in the Act is the requirement 

to ensure that measures of performance (functional and non-functional) are used to gauge 

the effectiveness of information systems in meeting system requirements. 

Furthermore, the Act requires software-acquisition personnel to answer three 

questions before initiating an IT project.  The first two-part question is what are the 

functions that the system will perform, and is it consistent with the organization’s 

mission?  The second question is if we need to perform a particular function, can it be 

performed more efficiently and at a cheaper cost by the private sector?  The third 

question is whether the function that is required can be reengineered or redesigned (i.e., 

are the processes it supports absolutely necessary)?  All of these questions must be 

answered before an investment in new technology can go forward. (SecDef) 

2. Difficulty Managing Technology 

 Despite the fact that the Clinger-Cohen Act requires the establishment of a 

process to identify, evaluate, and monitor risks and results from applying IT, the DoD is 

still having problems in both acquisition and management of information systems. (DoD 

IG D-2000-162)  Since the Act was enacted, the DoD record on implementing its 

provisions has been disappointing. (DoD IG Semiannual Report to Congress)  Some 

continuing problems with software acquisition have been attributed to the DoD’s failure 

to adopt the provisions of the Act (DoD IG D-2000-162, DAWIA), and some was due to 

the DoD’s current organizational structure and culture, which makes departmental 

oversight very difficult. (U.S. GAO OCG-99-4)  Moreover, the DoD has not been able to 
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implement practices conformant to the Clinger-Cohen Act that ensure prudent investment 

in information technology. (U.S. GAO AIMD-00-282) 

Notwithstanding the improvements that the DoD has made in the management of 

information technology, including establishing guidance to reflect best practices, and 

updating policies, the DoD continues to be plagued by problems in managing its portfolio 

of investments in information systems. (U.S. GAO AIMD-00-316)  Unless the provisions 

of the Act are fully understood by program managers, fully supported by the chain of 

command, and enforced, it is unlikely that the Act will have the effect that Congress had 

hoped for. 

 For example, in 1994, the Under Secretary of Defense for Acquisition, 

Technology and Logistics mandated the use of “open systems,” however, subsequent 

audits in 2000 revealed that fourteen of seventeen major weapon systems audited lacked 

open-system design objectives. Management either was not aware of the mandate, or they 

chose to ignore it.  The DoD Inspector General (IG) identified management weakness 

along with poor analyses of requirements in twenty audits conducted between 1 April 

2000 and 30 September 2000. (DoD IG Semiannual Report to Congress)  The GAO has 

designated managing the investment in information technology as a major management 

challenge. (U.S. GAO HR-99-1, U.S. GAO HR-97-9, U.S. GAO 01-244, U.S. GAO 

OCG-99-4) The GAO identified a number of weaknesses in the DoD’s management of its 

approximately 5,800 mission-critical or mission-essential information systems. (DoD IG 

D-2000-162) 

 Technology will not solve management problems.  Program managers and senior 

leadership need to understand and improve business processes before applying 

technology.  The GAO and the DoD IG have identified a number of systemic problems 

relating to the DoD’s management of information systems.  Of the programs audited, one 

of the most common problems was the lack of adequate documentation and validation of 

system requirements.  DoD program managers do not always develop well-defined 

project purpose and scope, and realistic and measurable expectations.  Audits also report 

the failure to perform risk assessments and develop appropriate risk mitigation strategies.  

Nine of the DoD IG audits identified inaccurate analyses of costs associated with the 
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system life-cycle. (DoD IG D-2000-162)  An additional area of concern was the 

perceived weakness of the DoD in conducting information technology investment-

selection and management-control processes. (U.S. GAO 01-244)  The DoD’s lack of 

centralized control over standards and architectures has also contributed to system 

failures. (DoD IG D-2001-121, U.S. GAO AIMD-00-282, U.S. GAO OCG-99-4)  The 

DoD’s inadequate software development, cost estimating, and system acquisition 

practices has greatly increased the risks associated with the information systems audited. 

(U.S. GAO AIMD-00-209R, U.S. GAO 01-244) The DoD has also shown significant 

computer security weaknesses in its programs. (U.S. GAO AIMD-00-295,  U.S. GAO 

AIMD-00-188R) 

 Although the Clinger-Cohen Act established the position of CIO, the DoD needs 

to build an effective organization with the proper leadership. (DoD IG D-2000-162, U.S. 

GAO 01-244)  Currently the DoD CIO and the CIOs in charge of the individual services 

do not control the budgets for IT.  Individual programs procure their own IT systems and 

services to support their needs.  As a result, CIOs often do not have the control or 

visibility they need to determine whether programs are complying with IT directives.   

In its report to the Senate on adopted best practices for software development, the 

DoD stated that the responsibility for successful fielding of the software product was the 

responsibility of the contractor developing the system.  However, in that report, the DoD 

could not state how it measures the success of a contractor’s efforts.  The DoD could also 

not state what requirements existed for maintenance or support.  The DoD did list some 

generic metrics such as maintenance costs and number of problems reported, but it did 

not have clear guidelines as to what was acceptable performance for each of the quality 

metrics. (U.S. GAO AIMD-00-209R)  Both the review and evaluation of performance 

metrics is essential in the acquisition of information systems (U.S. GAO T-AIMD/GGD-

00-179), but requires knowledgeable information specialists working for the government 

to accomplish this task. 

Shortcomings in information technology, contracting, and acquisition are 

attributable in part to human-capital issues. (U.S. GAO T-AIMD/GGD-00-179, U.S. 

GAO AIMD-00-282, U.S. GAO 01-244)  The DoD IG semi-annual report to Congress 
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reported on the adverse consequences from cutting the acquisition workforce in half 

without a proportional decrease in workload. (DoD IG Semiannual Report to Congress)  

A shortage of personnel with the skill sets to manage IT intensive systems has also 

contributed to the lack of software quality.  This is another reason that outsourcing has 

become more popular, although outsourcing efforts often require as much effort to 

manage as in-house efforts. 

3. Shortage of Information-Technology Personnel 

 The DoD and industry have both been plagued by a shortage of workers with the 

IT skills necessary to support their organizations needs.  Recruiting and retaining talented 

IT personnel is a problem for all organizations.  In many cases personnel that are not 

familiar with IT have been forced into managing IT systems because there are not enough  

 
skilled personnel.  This lack of IT knowledge has lead to many of the problems discussed 

in the previous section.  It has also increased the reliance on contractor support and 

outsourcing.    

 In 1998 and again in 2000 Congress increased the quotas of H-1B visas in 

response to claims of a significant IT labor shortage from organizations such as the 

Information Technology Association of America (ITAA) and the U.S. Department of 

Commerce’s Office of Technology Policy. (Matloff)  In addition, The Department of 

Commerce projects a 1.3 million shortage in core IT workers by 2006. (Department of 

the Navy)  In its 2002 study “Bouncing Back: Jobs, Skills and the Continuing Demand 

for IT Workers” the ITAA predicted that in 2002, of the projected demand for 1.15 

million IT workers, 578,000 will go unfilled due to a lack of qualified workers. 

Despite the amount of IT personnel that are currently unemployed, a recent study, 

and informal surveys have indicated that there still remains a shortage of IT personnel 

with the right skill sets necessary to help organizations achieve success in the complex, 

competitive IT market. (Griffith, Millard)  The government has identified its largest IT 

skill gaps are in the areas of enterprise system integration and web-development. (U.S. 

GAO AIMD-00-282)   

 Part of the skill shortage is in the areas of IT program management. The are many 

program managers in the government’s current workforce that lack the requisite skill sets 
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needed to administer the large, complex, software-intensive systems seen today.  Many of 

the program managers are functional experts that have risen through the ranks to become 

program managers of major systems.  There is no doubt that they understand the 

functional requirements of the system, but they do not have the training necessary to 

understand technical architectures, software documentation, software life-cycle 

management, or software engineering.  In addition, with the current work load, it is 

difficult for program managers to keep abreast of the protocols, interface challenges, 

architecture constraints, or technological advancements associated with the move to 

distributed computing. 

 The DoD has shown that it is adept at utilizing risk management in systems 

engineering and the system-design process.  However, it has not shown that same 

competency in software development.  Experience has shown that the software 

component of major acquisitions is the source of most system risks.  The software 

component is most frequently associated with late deliveries, cost escalation, and 

inefficient performance. (U.S. GAO AIMD-00-209R) 

 The GAO and DoD IG have acknowledged that the DoD does not have enough 

skilled information-technology workers to properly manage its information systems.  The 

GAO expressed its concern that during the downsizing efforts in the DoD, more attention 

was paid to the reduction in numbers than managing the various skill sets of the 

workforce. (U.S. GAO 01-244)  Thus, some people with necessary skills, such as 

information technology, were not been retained. 

DoD, like industry, is having difficulty retaining skilled IT employees.  The DoD 

civilian workforce is aging, and the GAO has identified retaining personnel with 

computer skills as one of the major managerial challenges for the DoD in the year 2001. 

(U.S. GAO 01-244)  The mean age of the civil service workforce in the Department of 

the Navy (DoN) is forty-six, with nineteen years of service.  Nearly fifty percent of the 

civilian workforce is approaching retirement.  Of these civil service employees, one third 

of the civilian computer specialists will be eligible for retirement in 2003. (DON CIO) 

 The civilian workforce has declined about forty-three percent since 1989. (U.S. 

GAO 01-244)  This downsizing in many cases has lead to the termination of the younger 
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employees.  The policy of “bump and retreat” has forced many of the most junior 

personnel from the workforce.  This policy, designed to protect senior workers, not only 

can lower morale among the existing entry-level workers, but it can discourage new 

accessions. 

 The DoD has difficulty in recruiting personnel to replace the civil service 

employees who retire.  During good economic times, the salaries and benefits offered by 

the private sector for information-technology personnel outdistance those offered to 

government employees.  The private sector offers from fifty to one hundred percent more 

for entry-level information-technology professionals than the government. (DON CIO)  

The advancement opportunities within DoD are limited due to downsizing, outsourcing, 

and the seniority of the existing staff.  There is also a perception that junior information-

technology professionals will be assigned to maintain legacy systems, rather than 

participating in the use of cutting-edge technology.  As a result, there has been a decline 

in the number of young people who are pursuing careers in the civil service.  

 Most program managers control the functional aspects of the systems they 

manage well, but due to their lack of IT knowledge and the shortage of in-house IT 

support, they are forced to rely more on contractors to manage the software components 

of their systems, including maintenance.  However, 0utsourcing IT functionality does not 

lessen a program manager’s responsibility for managing that functionality.   Program 

managers must still maintain control over their systems, they must be involved in the 

development and maintenance actions on their systems, ensure adherence to formal 

policies and procedures and provide contractual oversight.  

4. Outsourcing 

 Outsourcing is the process of contracting with a service provider to perform a 

function or functions that used to be performed by the organizations own (in-house) staff.  

Outsourcing has been a business strategy for a number of years.  Organizations are 

generally more comfortable assigning functionality to in-house staff as it gives them 

more flexibility, they do not need to contract for the services, in-house staff already 

understand the organization’s policies and procedures, they have greater trust in their 
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own staff, and in many cases in-house staff is cheaper than contractors.  However, in the 

IT industry outsourcing is becoming ever more appealing. 

Many organizations have discovered that they do not have the necessary IT skills 

within their organization.  Rather than hire IT specialists, or invest in training for their 

staff, they are considering outsourcing their IT work as a strategy.  The emergence of 

ESPs have provided a source of IT specialists that can in many cases provide high quality 

service for lower prices than internal IT organizations can.  IT outsourcing is gaining 

popularity and is increasing in volume worldwide. In many cases IT managers have little 

choice but to outsource as ESPs provide access to cutting edge technology and skilled 

staff, they share the project risk, and they allow organizations to concentrate on core 

competencies.  (King, Goth, Greaver)   

 Numerous books and papers have addressed the topic of outsourcing IT .  

Research has addressed outsourcing of information systems from a number of 

perspectives.  Some research has addressed the strategic implications of which 

information systems should be outsourced (Lacity, King, Beath, Nelson), others have 

written about the potential for offshore outsourcing efforts (Heeks, Smith, M., 

Kobitzsch), others have concentrated on the acquisition aspects of outsourcing (Farbey, 

Robert, Ripin), and some have addressed organizational risk (Duncan).  Given manning 

shortfalls and a shortage of technical staff within the DoD, outsourcing IT services can 

increase the risk that the DoD’s will not be able to provide proper oversight of the 

acquired service.   

 Currently program managers are increasingly forced to rely on contractors to 

provide technical guidance, because in-house expertise either does not exist, or it is 

overburdened supporting other programs.  This has however, added another level of 

complexity to the management of information systems.  Outsourcing efforts require 

additional discipline and management oversight that may not be necessary with in-house 

development and maintenance of information systems.   

 Outsourcing requires skill in software acquisition as well as project management.  

In many cases new processes must be created to manage the relationship between the 

organization and the outsourced contractor.  Issues such as the level of access to 
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information, reporting chain, problem resolution procedures, reporting mechanisms, 

common software, and roles and responsibilities will have to be negotiated.  In-house 

activities already have established operating procedures.  Software acquisition also 

involves activities such as requirements determination, solicitation preparation, contractor 

and proposal evaluation, requirement change management, risk assessment, contract 

management and oversight, and contractor performance management. (SA-CMM) 

 
F. PERFORMANCED-BASED SERVICE ACQUISITION (PBSA) 

The Department of Defense has been shedding its internal development activities 

for a number of years.  The DoD has moved from a producer of end-items to a consumer.  

Many of the services that were once performed by the military and DoD civilians are now 

being performed by commercial entities. Development activities such as SPAWAR and 

NAVAIR spend more of their effort managing outsourcing contracts than they do 

actually producing end-items.     

As a result, acquisition of services and end-items has increased in importance due 

to the DoD’s reliance on the commercial sector to meet its demands.  To ensure that 

quality services or end items were being acquired, the government developed very 

detailed military specifications (Mil-Specs) and standards (Mil-Stds) that not only 

described their requirements, but it also described steps (processes and procedures) that 

the contractor needed to take to meet those requirements.  Unfortunately the use of Mil-

Specs and Mil-Stds did not necessarily result in a quality product. Eventually, the DoD 

stopped requiring most of the Mil-Specs and Mil-Stds because they were difficult to 

enforce, they were difficult to understand, they allowed the contractor little innovation or 

flexibility in meeting the requirements, they were not being used correctly, they were 

expensive, and the government was loosing the expertise to develop and enforce them.   

After the DoD stopped utilizing Mil-Stds and Mil-Specs, their acquisition strategy 

concentrated on defining their requirements, and allowing the contractor to determine the 

method to best meet those requirements.  The DoD strategy of creating requirements, 

passing them to a contractor to develop a product, then testing the final product did not 

result in improved quality.  While this approach has a lot of advantages, including 

allowing contractors increased flexibility to derive solutions, it allows contractors to 
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utilize the best business procedures and latest technology, it increases innovation, and 

allows more contractors to compete for programs, it also has problems.  One of the major 

problems is that the requirements have to be very explicit, they have to be unambiguous, 

quantifiable, and measurable; this is not always the case.  Another problem with this 

approach is that the DoD advocates any responsibility for quality control until the test 

phase.   This presents major problems if requirements were not met.  This approach also 

does not foster good communication as requirements are “thrown over the wall” to the 

contractor, and discussions tend to be limited to better defining requirements and 

evaluations of the testing process and results.  This approach lacks monitoring and quality 

control on the part of the government. 

This strategy has been further refined into a new strategy called Performance-

Based Service Acquisition (PBSA).  Like the previous acquisition strategy, PBSA 

concentrates on defining service requirements in terms of performance objectives.  PBSA 

does not dictate processes; instead it depends upon the contractor to determine the most 

effective and efficient means to deliver the requested service.   A USD (AT&L) 

memorandum of 5 April, 2000 stated that at least 50 percent of service acquisition are to 

be performed under PBSA by 2005.  (USD (AT&L)) 

While both strategies advocate early planning and spending the appropriate time 

to develop well-defined requirements, the difference in the strategies is that PBSA 

concentrates on stating measurable requirements, determining acceptable performance 

parameters, it requires a performance assessment plan to determine how contractor 

performance will be measured and assessed, and the PBSA also encourages the use of 

incentives (positive and/or negative reinforcements for meeting stated requirements).  

The PBSA also advocates a team approach in developing the requirements, as well as 

performing a risk analysis associated with the requirements and development proposals.  

The PBSA strategy focuses on insight into the contractor’s performance, not 

oversight.  PBSA as opposed to the prior acquisition strategy encourages periodic 

assessment of contractor performance to promote quality control and enhance 

communication.  This approach does not concern itself with the processes that the 
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contractor chooses to incorporate during development, but it does assess the deliverables 

resulting from the development process used.     

  The PBSA applies to the field of software acquisition as well.  However, the 

PBSA strategy needs to be expanded to meet the unique needs associated with software 

acquisition.  As the DoD has become more dependent on commercial sources to meet its 

software development needs, it needs to adopt a software acquisition strategy that 

emphasizes quality, not only in the end product, but also in project management, process 

control, and post-production support.  This dissertation proposes the use of SLAs to 

achieve that end.   

SLAs incorporate many of the elements of PBSA.  In particular, SLAs support the 

performance assessment plan required by the PBSA approach.  SLAs specify measurable 

performance thresholds, the methods by which the requirements will be measured, the 

periodicity of the monitoring, and incentives for meeting or failing to meet requirements.  

SLAs help to institutionalize many of the quality control measures that were lacking in 

prior acquisition approaches.  SLAs focus on non-functional quality factors, while PBSA 

traditionally focuses on function requirements only.  SLAs also encourages all 

stakeholders participate in the requirements engineering process.   

While SLAs can be used to enhance PBSA, they can also be used to improve 

other software acquisition strategies in the commercial sector as well.  As such, 

subsequent discussions in this dissertation will not specifically mention the PBSA 

approach.  Instead, standard contracting terminology will be utilized.  The remainder of 

this dissertation is intended to demonstrate how SLAs can be utilized to improve software 

quality.  

  

G. SUMMARY 

IT systems are the primary enabler to an organization’s critical business 

processes.  However, managing software-intensive information systems has been 

problematic for both DoD and industry.  The difficulty recruiting and retaining skilled IT 

personnel, the rapid change of technology, and program manager’s inexperience with IT 

has lead to software quality problems.  Software quality has also suffered due to 
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organizations perceived need to rush software to market, poorly designed software, lack 

of programmer training, and dependence on testing to discover errors.   

 However, one of the primary reasons that many software-intensive information 

systems fail to meet expectations is due to the organization’s lack of a quality control 

methodology.  Program managers are not only responsible for defining the quality 

metrics that they need to ensure the success of their program, they must initiate the steps 

to ensure that quality is incorporated into the design, that quality is delivered, and that 

quality is maintained throughout its lifecycle.   
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II. SERVICE LEVEL AGREEMENTS 

Service level agreements are becoming more common as organizations are relying 

on IT systems to provide their core business functionality.  The increasing trend of 

outsourcing has also highlighted the need for a contractual mechanism, such as SLAs, 

which describes the services to be outsourced, but also holds the contractor accountable 

for their performance through penalties.  This chapter will describe SLAs and provide 

some background on why they are becoming more popular.  It will also illustrate a 

recommended format for the SLAs.  The proposed format was a result of our extensive 

research and is designed specifically for IT system development, management, and 

lifecycle support.  The chapter will conclude with a discussion on how SLAs can act as a 

framework to incorporate and integrate organizational and technical considerations.  

 

A. DEFINITION 

A SLA is a contractual agreement between a provider of services and a customer 

that defines a level of performance. (Aries, Strum, Factor, Surmacz)  This agreement 

defines in measurable terms the service to be performed, the level of service that is 

acceptable, and the means to determine if the service is being provided at the agreed upon 

levels.  SLAs define the quality of service, and how it is measured.   

In general, there are two types of SLAs.  The first is a contractual SLA and the 

second is an in-house SLA.  The contractual SLA is used when dealing with third party 

providers or External Service Providers (ESPs) that are outside of the organization. In-

house SLAs are used within an organization to describe the services the IT department 

provides to other departments.  Both types of SLAs define the services offered in great 

detail, and are very explicit in stating customer expectations, however, contractual SLAs 

are more formal, and because of their legal implications, generally take more time to 

develop.   

 Contractual SLAs are used by organizations to specify their requirements and to 

protect their interests.  Contractual SLAs usually have incentive or penalty clauses tied to 

the attainment of the service levels.  These clauses provide the ‘teeth’ in the contract in 
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an effort to instill in the service provider a level of accountability.  If organizations 

cannot receive the services that they specified in the contract, they will want some form 

of remediation.  The remediation can be in the form on monetary penalties, or it may be 

an escalation of the issues to upper management for resolution.  Some organizations try 

to avoid an adversarial relationship that penalties may cause by using incentives.  An 

incentive clause may state that if an ESP meets all of the SLAs for a particular month, 

then an additional fifteen percent bonus will be added to the monthly payment.  The goal 

of penalty or incentive clauses is to focus additional emphasis on meeting the quality 

thresholds or performance goals stated in the SLAs.  In many cases if SLAs are not met, 

business processes are adversely impacted; it is not unreasonable that the ESP should 

share some of that risk. 

 SLAs explicitly define the services to be performed and the levels of service (this 

dissertation will also refer to levels of service as quality thresholds or performance levels) 

that an organization requires to support its underlying business processes.  However, it is 

not uncommon to read service contracts that go to great lengths to define the services an 

organization requires, but neglect to include verbiage concerning the quality of those 

services.  There are a number of reasons that quality thresholds are not specified in the 

contract, including time constraints and lack of clear requirements, but it is usually a 

result of the organization’s lack of the technical expertise.  If SLAs are not included in 

the contract, the customer can do little if the service levels do not meet their expectations.  

In many cases the customer has to tolerate the poor service until the contract expires, or 

the customer may be forced to renegotiate or terminate the contract.  

 When constructing a house, a contract may state that the upstairs shower must be 

functional before acceptance.  However if the contract did not specify metrics by which 

to measure the term ‘functional’, the contractor could legally pipe the water into the 

shower with a ¼ inch pipe, or utilize a 10-gallon hot water heater, and still be in 

compliance with the contract.  Fortunately, there are building codes that protect the 

consumer, but the same is not true in the IT arena.  This is why SLAs are so important in 

IT acquisition. 
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 The SLAs provide a common understanding on the services that will be 

performed, the levels of service are expected, how they will be measured, as well as 

define the responsibilities of both parties.  Both parties must mutually agree upon 

contractual SLAs, or there will never be a contract.  It is commonplace to negotiate on the 

services and the performance levels that are requested and ultimately agreed upon.  A 

SLA should contain a definition of service requirement that is both achievable by the 

provider, and affordable by the customer.  The customer and the ESP must also define a 

mutually acceptable set of indicators of the quality of service. (Sturm) It is important to 

note that SLAs can and should be modified throughout the lifecycle of a system as 

requirements change, technology improves, and efficiencies are gained. 

 The second type of SLA is an in-house SLA, which is used within an 

organization.  This type of SLA provides the same type of information that a contractual 

SLA provides, but it is generally less formal.  It is however, no less important.  In-house 

SLAs specify the services and levels of performance that the internal IT department 

provides to other departments.  These types of SLAs are becoming more common as they 

play an important role in quality control.  The quality of services that the IT departments 

deliver are receiving more scrutiny as essential business processes are becoming more 

dependent upon the services delivered by the IT departments.  

 In some cases IT departments do not provide the services or the level of services 

that are needed by other departments, or they provide and charge for services that are not 

wanted.  The in-house SLAs highlight the users needs, so the IT department can better 

align itself to providing those needs. (Hiles)  The in-house SLAs ensure that departments 

get the level of service they need to support their requirements, the IT department can 

take the steps necessary to meet service levels that may exceed those currently being 

offered, and management can measure service against the agreed upon thresholds.   

SLAs define an acceptable level of service that both parties agree to.  Most 

program managers will demand 100 percent availability going into SLA development 

efforts.  However, when they discover the costs associated with even 99.5 percent 

availability, they begin to relax their requirements.  Program managers need to 

understand the levels of service associated with their current systems and the affect that 
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those levels have on their business processes, before they begin to develop SLAs for new 

services or systems.  The in-house SLAs set a reasonable level of expectation that 

everyone, especially the end-users can understand. 

In-house SLAs typically do not generally contain a lot of information on 

responsibilities or mediation procedures as those are usually covered elsewhere in the 

organization’s policies.  They also do not include penalty or incentive clauses.  However, 

just because penalty clauses are not included does not mean that poor performance will 

not result in fiscal implications.  In-house SLAs allow management to compare the costs 

of the IT department against the services they provide.  If management is not satisfied 

with the performance of the IT department, these same SLAs can be used to determine if 

outsourcing may be a better option.  Additionally, in-house SLAs provide a good 

business case for justifying positions, expenses, or needed capital investments.  In-house 

SLAs are also an important part of an organization’s quality control methodology. 

 

B. BACKGROUND 

 SLAs originated from the dissatisfaction of users of IT services and the lack of 

objective measurements to assess service quality. (Hiles)  Service level agreements are 

not a new concept, they have been around since the 1960s, however they are gaining 

more acceptance in both government and industry.    There are a number of reasons that 

organizations are beginning to embrace SLAs.  The main reason that SLAs have gained 

popularity is that there are now tools in the marketplace that provide the measurement 

capability to monitor SLA compliance.  Another reason is that organizations have 

become increasingly dependent upon information technology (IT) to satisfy their business 

needs.  As managers realize that their processes are tied to IT services, they are 

demanding more quality control over those services.  One way to establish that control is 

through SLAs.  The growing trend towards outsourcing IT functionality to ESPs has also 

encouraged SLAs as both a contract mechanism to define services, and as a marketing 

tool for the ESPs. 

 There has been a shift in industry from centralized funding of the IT department 

to handling the department as its own cost center.  It is very difficult to allocate all of the 
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IT costs among the various business units.  The direct costs associated with developing a 

specific project can be captured, as well as the costs associated with the software and 

hardware procured, the labor involved in the development and testing effort, and training 

can be captured.  However indirect costs such as the costs associated with the entire 

network infrastructure, IT staff not directly associated with a project (e.g., firewall 

administrator), facilities, and help desk support are difficult to assign to an individual cost 

center. (Atre, Byron) The difficulty of assigning costs to individual departments resulted 

in many organizations centrally funding the IT department with little regard to the 

support provided to the other departments.  However, as IT becomes more integrated in 

business processes, and IT costs continue to escalate, organizations are reassessing the 

way they perform IT accounting, resulting in reallocation of IT costs among the business 

units.  

 Organizations are increasingly under pressure to cut costs.  Competition is fierce 

and all business units must justify expenditures in terms of benefits to the organization.  

IT departments must also justify their expenses.  Unfortunately it is difficult to perform a 

cost-benefit study when expenditures cannot be tied to the specific business processes the 

funding is supporting.  As a result, many IT departments have initiated charge back 

systems where business units are charged for the IT services that they require. 

(Chutchian-Ferranti, Ellett)  Charge back is an effective mechanism for balancing the 

shape and quantity of the IT services with the requirements and resources of the business 

units. (ITIL p.64) 

 The main benefit of this type of IT accounting is that it provides management 

information on the costs of providing IT services that support the organization’s business 

needs.  This information is needed to enable IT and business managers to make decisions 

that ensure the IT service organization runs in a cost-effective manner. (ITIL) 

 Charge back systems focus a great deal of attention on the services that the IT 

department provides, and the quality of those services.  Departments that pay for IT 

services want to quantify the levels of service, so they can determine whether the service 

is worth paying for.  When individual business units are charged for IT services, an 

agreement must be developed between the business unit and the IT department that 
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outlines the services performed, the charge back mechanism utilized, and the level of 

services that the customer can expect.  The agreement that is developed usually forms the 

core of the in-house SLA.  

Even if a department is still funded centrally, organizations are demanding IT 

departments specify the services they provide, and the corresponding levels of service 

that other departments can expect.  As IT systems become more pervasive in business, 

they are increasingly receiving scrutiny.  The performance of the IT systems directly 

affects the business processes they support.  Business managers need to know the level of 

performance they can expect from the IT systems.  Utilizing SLAs, the levels of service 

are defined and the business impacts and financial repercussions of IT service levels can 

be identified and evaluated.  SLAs have been a popular means of both defining the levels 

of service the IT system can provide, and providing remediation procedures if they fail to 

meet performance thresholds.   

 Monitoring tools consists of the software, hardware, agents, and databases used to 

collect and record information on the state of the underlying hardware, software, or 

infrastructure that provides the services specified in the SLA.  In the past SLA 

performance thresholds were difficult to measure because good monitoring tools did not 

exist.  Consequently, it was difficult for a customer to hold the service provider 

accountable for poor performance.  As a result older SLAs were generally informal 

agreements that specified performance goals, but contractually they were very difficult to 

enforce.  

 Monitoring tools today are much more sophisticated.  Products such as Hewlett-

Packard’s OpenView, Tivoli’s Management Framework, and BMC’s Patrol are pervasive 

in the IT industry.  There are well over 800 vendors which market monitoring tools that 

measure performance. (Sturm) Unfortunately, few vendors can provide a complete 

monitoring solution. In many cases tools from multiple vendors may have to be utilized 

to ensure all services are adequately monitored.   

 Monitoring tools are bringing credibility to SLAs.  Organizations are more willing 

to utilize SLAs when they realize that monitoring tools exist that can verify performance 

thresholds.  Monitoring tools make SLAs more contractually binding; penalties or 
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incentives can be used more effectively to ensure that service levels are being adhered to.  

If a service cannot be adequately monitored to the satisfaction of both parties, it should 

not be included in a SLA as disputes will be difficult to resolve. 

 Organizations are outsourcing functionality for a number of reasons including 

cost reduction, taking advantage of commercial best practices, interoperability concerns 

with partners, utilizing technology that may not be otherwise available, and acquisition of 

expertise. (Loeb, Duncan, Greaver)  Many organizations are struggling to keep up with 

the rapid technology change.  Quality IT personnel are difficult to hire or retain, and it is 

hard to keep employees proficient in the latest technology.   

Today’s competitive pressures are forcing organizations to drive down costs and 

optimize on efficiency and effectiveness.  If IT services such as infrastructure 

management, application development, application maintenance, and hosting activities 

can be outsourced to an organization that because of specialization or experience is more 

efficient and cost effective, then organizations must consider outsourcing as a strategic 

business tactic.  It is also difficult to keep employees trained in the latest technology. 

(Feeny) Outsourcing IT functionality puts the risk and burden of managing a competent 

workforce on the service provider instead of the organization.  This strategy also 

complements the fact that many organizations are focusing on their core competencies, or 

those IT services that offer the most strategic business advantage, and are outsourcing the 

remaining IT services needed by the organization. 

 The outsourcing decision generally revolves around a cost-benefit study, a review 

of business processes and strategies, a determination of the current levels of service (as 

opposed to those offered if the services are outsourced), reviewing core competencies, 

and an evaluation of opportunity costs. (Domberger, Norris)  Issues such as costs to 

obtain the outsourced functionality or end product must be weighed against variables 

such as flexibility, complexity/uniqueness of the technology, business criticality, staffing 

skills, time criticality,risk, and organizational bias. (Nelson, King)    

 IT outsourcing has continued to experience significant growth.  In 2000 the IT 

outsourcing market was worth over $100 billion. Outsourcing IT as a strategic business 

practice has gained credibility by its acceptance in many of the largest corporations. 
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(Kern, EDS)  In addition, IT outsourcing is no longer just considering non-strategic 

services (e.g., those that do not affect business critical processes); businesses are now 

outsourcing strategic IT services. (Nelson, Duncan) As organizations begin to outsource 

business critical functionality to ESPs, SLAs become even more essential as they define 

the services to be provided, the performance levels associated with those services, 

responsibilities, and obligations of both parties.  The lack of clearly defined requirements 

will ultimately lead to problems with the ESPs.  There is much more to a good 

partnership than a contract, but the contract provides a foundation by which to develop 

the relationship.   

 It is important to make a subtle distinction between SLAs and requirements.  

SLAs are a subset of requirements and they are more contractually binding than 

requirements are.  SLAs contain penalties and/or incentives if thresholds are or are not 

met.  Other requirements do not have the same contractual rigor.  In most contracts, the 

only recourse if a requirement is not met is to cancel the contract, or terminate any 

ongoing contractor support.  Terminating a project is difficult, especially if the project is 

business critical.  The difference between requirements and SLAs is the degree of 

recourse if a requirement is not met. 

 The major reason for the contractual nature of traditional SLAs has been the 

perceived need to penalize the ESP for nonconformance or failure to meet agreed upon 

threshold levels.  The usefulness of penalties is subject to debate.  Some believe that 

service rebates or penalties are difficult to enforce and are normally nominal in nature.  

The failure to hold ESPs accountable has reinforced the view that the contractual nature 

of SLAs restricts the scope and usefulness of such agreements without adding any 

significant value to the process.  (Factor)  Others feel that penalties focus management 

attention on the service quality and penalties provide a method to distribute risk to both 

parties. 

 Many ESPs have SLAs already developed for the services that they provide.  

Each level of service that they are willing to provide is priced out so organizations can 

select from a menu of services and service levels.  However, it is not advisable to accept 

SLAs that are generated by the service provider.  In most cases organizations should 
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generate their own SLAs, and negotiate to levels that satisfy both parties.  The SLAs 

developed by the ESPs are generally very vague, usually do not provide access to 

monitoring tools or reports, rarely have penalty clauses associated with them, and 

ultimately are designed to favor the service provider.  Additionally due to the vague 

nature of the SLAs, they are difficult to legally enforce.  SLAs generated by the ESPs are 

usually marketing devises, designed to look appealing, but they almost always give the 

ESP a more favorable contractual position.  

 To date, the vast majority of SLAs have been written to cover services associated 

with the post-production support of an application (e.g., network services, help desk 

support, problems response).  This dissertation proposes an original approach to software 

acquisition by utilizing SLAs throughout the lifecycle of a software-intensive system.  

Many of the advantages of utilizing SLAs in post-production support can be leveraged in 

requirements engineering, development, program management, and testing.  This 

dissertation will demonstrate how SLAs can be used throughout a program’s lifecycle to 

improve quality.   

 

C. SLA FORMAT 

 SLAs serve as a mechanism to notify all parties of services that will be 

performed, performance expectations, responsibilities of all parties, penalties for non-

performance, and SLA resolution procedures.  SLAs also define the oversight and 

interaction between the program managers and the service provider. 

 Service level agreements have many formats depending upon how they are used. 

Internal SLAs between management and the IT department can be more informal because 

many of the procedural issues are stated elsewhere.  SLAs involving ESPs need to be 

more formal. 

 There are numerous variations to the format of the SLAs, although most have a 

couple data elements in common.  SLAs should describe the service to be provided in 

enough detail to ensure that both parties understand the requirement.   The description of 

the service should be concise, understandable, and accurate.  SLAs must also describe the 

performance thresholds for the services provided.  Most SLAs will also contain data 
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elements describing the roles and responsibilities of both parties, penalties or rewards, 

escalation procedures, and assumptions.  Good SLAs will also describe how the service 

level thresholds will be measured, which reports are required, data sources, and contract 

exceptions. 

 As was mentioned in the introduction of this dissertation, one of the original 

contributions of this dissertation is that it introduces a unique format for SLAs that 

combines some of the common elements found in SLAs with new elements that 

emphasize support for business processes, monitoring, conflict resolution, and identifying 

responsibilities.  This section will outline the unique format of the SLAs that were used 

for the hosting services covered in appendix (A).  The SLAs for hosting services added 

some additional data fields to provide clarity, ensure that the underlying business 

processes were being taken into consideration, and that there were people identified to 

validate the SLAs.  The section that is indented is utilized for sub-services.  For example 

if the service name is Help Desk Support, a sub-service category may be Customer Wait 

Time.  If there is no sub-service, the indented section will be used with the main service 

category. 

The following is the SLA template used in Appendix (A):  

Service Name: This is the name of the service category that is being measured (e.g., help 

desk support). 

Service Description:  This is a detailed discussion of the service that is to be performed.  

The service should be as detailed as possible.  In the government, the development team 

needs to be careful not to get to the level of detail where the government is telling the 

contractor how to perform the service.    

Reason for Measuring:  This section should provide the rational for this SLA.  In this 

section the core, primary and secondary processes that are being supported by this 

specific SLA should be identified.  This will help to justify the SLA, and it will help the 

program management team track which processes are tied to SLAs.  This section is 

intended to ensure that the SLAs are linked to a strategic or tactical business concerns. 

Time Frame:  This is the time period during which measurements are taken (e.g., 

24x7x365, or from 0700-1900 Monday through Friday) 
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Scope:  This section defines where the services apply (e.g., this applies to the system 

software only).  This section also provides amplifying information such as categorization 

of problem calls (e.g., priority 1 equates to an emergency), and information necessary to 

ensure all parties understand the areas that are covered by the SLA.  The scope also 

details areas not covered by the SLAs. 

Performance Category:  This section names sub-services that must be measured 

to determine the over-all efficacy of the service.  There can be numerous 

performance categories associated with one SLA.  The following subsections are 

associated with every performance category: 

Performance Metric:  This section describes the metric that will be utilized to 

measure performance. 

Threshold Levels:  This section describes the various service levels that must be 

met.  There can be multiple levels of service for each sub-service.  In the 

NAVSUP hosting SLA, three service levels are used, corresponding to the 

essential, enhanced, and premier services as outlined in the SOW.   

Formula:  The formula describes how the metric(s) will be computed.   

Assumptions:  All assumptions that went into the development of the SLA should 

be stated in this section.   

Contractor Responsibility:  This section details the contractor’s responsibilities 

in meeting the service level requirements. 

Customer Responsibility:  The program manager or the end-user’s 

responsibilities are outlined in this section (e.g., a trouble call must be initiated 

before metrics covering the help desk can apply).   

Frequency: This is the period of time over which measurements will be taken to 

determine SLA compliancy (e.g., monthly, quarterly).  This usually equates to the 

periodicity of the reporting requirements.   

Measurement Techniques:  This describes the procedures that will be used to 

collect or verify whether the threshold levels have been met. 

Reports Required:  This section details the reports required from the service 

provider to verify actual performance against SLA thresholds. It also details the 
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periodicity requirements of the reports (e.g., Trouble Tickets – Monthly).  In some 

cases, the person reviewing the SLAs has access to the report-generating tool, and 

can manipulate the reports as needed.  An example is if the reviewer has online 

access to the trouble tickets, that individual can do daily, weekly or monthly 

reports, at whatever level of abstraction is needed.  Details of the report contents, 

format, periodicity and distribution are detailed in the SOW or another document 

called the Contract Data Element Requirement (CDRL).  

Person Responsible for Verification:  This section details who will be reviewing 

the SLA measurements and determining compliancy.  In the government, this 

person is usually the Contracting Technical Representative (CTR).  

Escalation Procedures:  This section describes actions to be taken when thresholds are 

exceeded, and who should be notified.  For example if help desk response time is 15 

minutes for a critical application, and 30 minutes have passed, who should be notified? 

This also includes situations where thresholds are violated on numerous occasions 

throughout the reporting period.  Another use of this section is to describe the escalation 

procedures if the CTR and service provider cannot agree that a threshold violation has 

occurred.  

Contractual Exceptions: This section describes any exceptions to the SLA.  For 

example an emergency situation may require the service provider to violate a SLA 

threshold. 

Penalties/Rewards: An SLA without penalties or rewards is nothing more than an 

agreement.  SLAs must have a mechanism to enforce compliancy.  This section describes 

what action will be taken if thresholds are violated, or if SLAs are met.  It is important to 

identify minor and major thresholds to ensure that the service provider is taking action to 

correct the problems.  If the service being performed is mission critical, it is helpful to 

have a termination clause to ensure thresholds are not violated multiple times. 

 

D. SLAS AS A FRAMEWORK 

This section will illustrate how SLAs can be used to bridge the gap between 

organizational factors (this term includes social, organizational and programmatic issues) 
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and the more traditional technical factors associated with software engineering.  Early 

approaches to software engineering was based on the perception that modern scientific 

methods, with an emphasis on formalism, rationality, objectivity, and decomposition, 

could provide a solution to problems associated with software development.  Software 

engineering was attempting to apply engineering approaches by applying objective 

standards to computer programs to test their correctness.   Much of the early software 

engineering literature was associated with technical issues such as structured analysis and 

decomposition, modular structure, information hiding, reducing complexity, and process 

models intended to present a series of actions necessary to produce a quality product.  

(Ewusi-Mensah)  However, this approach makes the assumption that real world problems 

can be isolated, rationalized, and solved utilizing technology.  This assumption has not 

been correct to date, as the complexity of real world problems has evaded attempts at 

rationalization. 

In real-world software development projects the final product must not only be 

technically sound, but it must meet stakeholder and organizational needs.  Software 

projects are always embedded within an organizational context that includes 

organizational norms and culture, varying stakeholder perspectives, politics, economic 

considerations, as well as external business forces.  Post-modernists believe that these 

organizational aspects must also be considered in the development of software, as a 

technically perfect software program is worthless if it does not meet the needs of the end-

user.  The social or organizational variables are often difficult to identify, and they are 

difficult to model.  Organizational variables often present the largest problems in 

software development, and are the primary reason that software development fails (e.g., 

unrealistic project goals and objectives, project management and control problems, 

requirements churn, lack of executive support, and insufficient user involvement.)  

(Ewusi-Mensah)   

A successful software development project depends upon many interacting 

variables including technical, economic, organizational, environmental, and managerial 

factors.  Successful software projects take a holistic view of problem solving, 

incorporating technical considerations with the environment in which the problem is 
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framed.  Andelfinger has developed a conceptual framework that helps understand the 

merging of technical and organizational factors in real world software development.  His 

framework involves the concept of reflective practice where technical, social, 

organizational and economic perspectives are taken into consideration through problem 

solving and problem framing activities. (Andelfinger) 

This dissertation also proposes a framework utilizing SLAs as a means to 

intertwine the organizational and technical factors associated with software development.  

Project success depends upon three main factors: the design must satisfy user needs, there 

must be collaboration between users and designers throughout the development process, 

and finally there must be constant communication between designers and users to ensure 

prompt resolution of conflicts and misunderstandings. (Ewusi-Mensah)   

 

 
FIGURE 1.   SLA FRAMEWORK 
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The SLA development efforts and subsequent quality control efforts associated 

with SLAs not only produces meaningful and measurable requirements, but the 

monitoring efforts encourage constant communication.   Figure 1 provides a framework 

that illustrates how elements of SLAs and the activities associated with managing the 

SLAs help the program manager factor in organizational considerations and technical 

considerations in the problem solving process. 

To achieve a successful project, the program manager must understand how 

organizational factors can influence technical considerations and visa versa.  While this 

framework will not be discussed in further detail, it was presented at this point to provide 

a foundation.  When reading subsequent chapters this framework may be helpful to see 

how SLAs can help the program manager develop a quality solution to the problem 

proposed, while accounting for technical and environmental factors.  The SLA 

development process discussed in the next chapter will illustrate how technical and 

organizational factors must be taken into account in the requirements engineering phase 

of development.   

 

E. SUMMARY 

SLAs were developed as a means to reinforce contractual provision to increase 

the probability that the services provided by a contractor or the IT department meets the 

quality requirements necessary to support the underlying business process.  The SLAs 

describe the services to be provided, the levels of service that must be attained, 

quantifiable metrics to validate compliance, responsibilities of both parties, and penalties 

or incentives associated with meeting or failing to meet service levels.  Service level 

agreements improve quality by identifying quantifiable quality requirements that are 

incorporated into the requirements engineering process, and ensuring the test strategy 

evaluates the implementation of those quality factors from design to deployment.   

SLAs are gaining in popularity as outsourcing is becoming more common.  The 

owners of business processes are tying to gain more control over the IT services that 

support their business.  Financial personnel are looking at SLAs as a means to allocate 

service costs to the appropriate cost centers.  SLAs are also becoming more popular 
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because there are now commercial tools that are capable of performing the monitoring 

functions required by SLAs.  

The format of the SLAs presented in this dissertation are unique in that they not 

only help to tie the quality requirements back to the underlying business processes, they 

also help to establish quality controls necessary to monitor contractor performance.   The 

SLAs elements incorporate many of the organizational and technical considerations that 

affect the project.  As such, the SLAs provide a framework for generating the 

communication and oversight necessary to identify and monitor technical and 

organizational risks and challenges. 
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III. APPLYING SLAS 

This chapter proposes an 8-step process to develop SLAs that is applicable to 

most projects.  This process helps to identify constraints that may make applying SLAs 

difficult, it determines those quality factors that are necessary to support the system, and 

it prepares the development team for the negotiation phase.  This chapter will also discuss 

common traits found in successful SLAs.  The last section is a detailed case study that 

illustrates the approach utilized to develop the SLAs contained in appendix (A). 

 

A. DEVELOPMENT 

 There are numerous methodologies for developing SLAs.  The approaches to 

development vary due to organizational culture, the type of SLA, the skill sets of the 

personnel involved, and the criticality of the process affected by the SLA.  However, 

there exist some common steps that need to be addressed that span most SLA 

development efforts.   

1. Define the Problem  

Before SLAs are developed, management and the program management team 

must determine whether they should be used at all.  While it is intuitive that SLAs should 

be used for outsourcing to ESPs, resource constraints, lack of management support, and 

lack of the appropriate skill sets may make the effort of developing the SLAs wasteful.  

The same is true for in-house SLAs, they may cause more problems than they are 

solving.  

 Charles F. Kettering stated that a problem well stated is a problem half solved. 

The first step in developing SLAs is to define the problem that the SLA is supposed to 

solve.  When the SLAs involve ESPs, then the problem solved by the SLAs is how an 

organization can ensure that the services provided by a third party meet requirements.  

SLAs help solve the problem by explicitly defining the services, the quality of the service 

required, responsibilities of the parties, and methods to measure service levels.    

 When dealing with in-house SLAs, the problems become more difficult to define.  

SLAs used within an organization should be solving problems such as explicitly stating 
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the services required by various departments, producing measurable quantifiable data to 

support a level of service, and improving communications by explicitly stating service 

levels.  SLAs can also be used by the budgeting personnel to tie the costs of IT services 

to the business processes those services support.  This makes cost/benefit analysis much 

easier.  SLAs can also help the IT department justify infrastructure or capital 

improvement expenditures by linking IT service costs to the underlying business process 

the services support. Unfortunately, in-house SLAs can also be used for political reasons.  

 In-house SLAs should be invoked as part of an organization’s quality 

management initiative or program.  In-house SLAs will not necessarily make a poor 

performing IT department better, but it will identify problem areas so management can 

address those issues.  Some IT departments do not like SLAs because they feel that other 

departments use them as a hammer every time an SLA is not met.  In situations where 

internal power struggles are common and the environment is highly competitive, SLAs 

may put the IT director at a disadvantage by tying that individual’s performance to 

quantifiable metrics, while the other directors are not.  Additionally, in some cases the IT 

department may not have input into the SLA, they may be dictated from upper 

management. 

 Another important issue to evaluate is whether upper management will support 

the SLAs. Service-level management (SLM) in the context of SLAs deals with the 

generation and oversight of the SLA contract, and ensures that the agreed upon services 

are delivered within acceptable thresholds.  SLM must have management support and 

resources to succeed.  The world’s best SLAs will fail if there is not someone or a group 

of people that are responsible for monitoring, revising, and enforcing the SLAs.  SLM 

generally requires additional personnel to provide the oversight necessary.  If 

management is not willing to hire additional personnel or reassign personnel within the 

organization, the SLAs will not have the impact needed to ensure quality.   

 SLM also requires personnel with the skill sets necessary to understand the 

technical issues associated with the SLAs.  With in-house SLAs, these personnel should 

not be solely from the IT department, as that is tantamount to the fox guarding the hen 

house.  It is often difficult for organizations to find personnel with the skills necessary to 
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contribute to SLM that are outside of the IT department.  Management must be willing to 

contract or hire the personnel with the skill sets necessary to provide the proper level of 

SLM.   

 It is important that the end users and business process owners understand the level 

of services that are necessary to support their business processes.  If end users or the 

process owners are not willing to devote the time necessary to develop the SLAs, or if 

management is not willing to bring all stakeholders into the SLA development process, 

then little benefit will be gained from developing SLA that may not support the 

underlying business processes. 

 Knowledge of the business processes supported by the IT system is critical in 

developing the SLAs.  Developing SLAs for services that do not have a direct impact on 

the business process may not be worth the effort.  In some situations, external forces have 

more influence on a business process than the IT services that would be covered in the 

SLA.  Resource constraints, fiscal constraints, market forces, and other variables can 

render even the best SLAs meaningless.  If SLAs cannot improve the quality or 

performance of the supported business process, then the SLAs should not be pursued.   

 Upper management must be willing to take action if SLAs are not adhered to.  

With in-house SLAs, upper management must be willing to take action if the IT 

department continually fails to meet SLAs.  This may be an indication that the SLAs are 

unrealistic, but it could also be that the IT department is not allocating the assets or 

attention to solve the problem.  If the problem is the latter, management must take action; 

otherwise the SLA will have no value, and the end users will quickly become 

disillusioned.  In the case of contractual SLAs, management must be willing to enforce 

penalties, or withhold incentives.  In some cases, contracting personnel within the 

organization are not willing to perform the work necessary to monitor contractor 

performance, document problems, and take the actions necessary to ensure requirements 

are met.  The team must understand the environment in which they are working before 

embarking on the efforts to develop the SLAs.  If they are not going to receive the 

support they need, SLA development should not be started. 
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 The team developing the SLAs must weigh the costs and time of developing the 

SLAs against the intended benefits.  SLAs are essential when dealing with ESPs, but 

management must devote the proper resources to perform contractual oversight.  Without 

monitoring and enforcement, contractual SLAs become nothing more than goals.  In-

house SLAs should only be attempted with managerial concurrence, and the agreement of 

both the IT department and the recipients of the service.  Without agreement, the SLAs 

can cause more problems than they solve.  

2. Develop a Team 

 Once the decision to proceed with SLA development is made, the next step is to 

create a team to develop or review a proposed SLA.  This team should consist of all 

stakeholders.  At a minimum representatives from the IT department and the recipient of 

the services need to be represented.  The recipients can be individual programs or entire 

departments.  Representatives from ESPs do not need to be included in discussions at this 

stage, although they can be.  The team members should be able to contribute to the 

development of the SLA.  From the end users perspective, their members should 

understand the business processes, application functionality, and the services needed to 

support their requirements.  The IT department needs personnel that understand the 

technical aspects of the services offered, the quality levels they are capable of providing, 

and monitoring tools necessary to ensure delivery.   

 The team structure will vary with every organization, but there are a couple 

important elements that will help the development process.  The team leads from the IT 

department and the user community should be on the same level, and should have 

decision-making authority.  There should be a charter outlining the membership, 

responsibility of the team, leadership, structure, chain of command, and deliverable.  The 

team should have a specific amount of time in which to deliver the SLAs, or review a 

proposed SLA.  Representation on the team is needed from each stakeholder group, but 

the team should be as small as possible.  A representative team would consist of 

membership from the IT department, program manager’s organization, management, the  
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business process owner and end users (personnel inputting information or products into 

the business, or recipients of the output of the process).  In a medium organization four to 

ten people is typical. (Sturm) 

3. Service-Level Management 

Service level management (SLM) is the disciplined process of ensuring that 

adequate levels of service are delivered to all IT users. (Sturm) SLM normally refers to 

the procedures and methodology that the IT department or an ESP utilizes to ensure that 

the services they provide meet specified service levels.  In the context of developing 

SLAs, service-level management refers to the process of managing the SLA contract.  

SLM involves validating the levels of service against the quality thresholds outlined in 

the SLA, coordinating the change management process, evaluating the performance 

reports, and managing the business relationship with contractors and process owners.   

 The development team needs to determine the SLM functions that need to be 

performed, and then they need to scope those functions to determine the resources to 

allocate to ensuring that tasks are successfully executed.  Then the development team 

needs to get management support to ensure that there are people assigned to perform 

those functions.  SLM is resource intensive.  If the development team becomes resource 

constrained, they may have to scale back the number of SLAs, modify their oversight 

roles, or decide not to proceed with developing SLAs.   

 As part of the SLA development process, the development team must determine 

how to verify whether service levels have been met.  Depending upon the services 

provided, there are many ways to validate performance.  In some cases there are 

automated tools that will assist in the verification process.  In other situations, someone 

may have to review the raw data in server logs to determine compliance.  Another 

common verification technique is to audit the contractor’s processes for compliance.  If 

customer satisfaction is a part of the SLA, someone needs to be responsible for 

administering the survey and compiling the data.  One of the SLAs for backup tape 

accuracy requires that the contracting technical representative (CTR) physically audit the  
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backup tapes to ensure that they are properly documented, and that they are not 

corrupted.  Depending upon the scale of the contract, multiple people can be involved in 

monitoring and verifying service levels. 

 The person responsible for managing the contract should also be identified.  This 

person will play an important role in managing the business relationship as well as being 

a key member of the change review board.  Any changes that impact the service levels, or 

computing resources can involve additional contractual modifications as well as funding. 

If contract modifications are necessary, the program manager will work with the 

contracting official to develop and negotiate the modification. The contract manager is 

also responsible for mediating any disputes between the customer and the service 

provider.  Any escalation procedures should involve this individual.  In the case of the 

hosting SLAs, the person identified to deal with escalation procedures is the Contracting 

Officer Representative (COR).    

 The SLA development team along with the program manager should determine 

the representatives needed at the change review board.  At the very least the program 

management staff needs representation, the contract manager, the fiscal manager, the 

person or people responsible for monitoring the service levels, the user community and 

technical representatives from the IT department should be represented along with the 

service provider.  Depending upon the requirements volatility associated with the 

program, the meeting could be held weekly.  Additionally, the program manager’s staff 

and the IT department personnel need to determine before the meeting the affect that 

changing requirements are going to have on the SLAs.  For example if the application is 

going to be used by another command, and the concurrent user count is going to double, 

then the service provider will have a good case for requesting additional funds to 

purchase hardware for load balancing.  In some cases the change review boards can 

involve discussions on the need for additional services or the need to modify existing 

service levels. The man-hours associated with these meeting, and the preparation for the 

meeting needs to be considered. 

 SLAs require considerable time and resources from the program management 

staff.  If service level agreements have not been used in the past, the program 
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management group responsible for the development of an application, or the fielding of 

the application is going to have to devote additional time to developing, reviewing, or 

modifying template (already existing) service levels.  The program management staff will 

have to participate in the development of the SLAs.  They will also have to review the 

SLA reports, attend the change review boards, attend SLA review meetings, and spend 

time managing the relationship with the service provider.  As service level reports are 

distributed to the user community and upper management, the program management staff 

will be forced to be more involved in managing the performance of the service provider.  

The program manager is expected to take action if performance does not meet service 

levels.  The process of managing service provider performance will be much  

more labor intensive under SLAs than before.  The program managers and the 

development team need to make sure that there are proper assets in place to handle this 

additional workload. 

 IT accounting personnel will also be tasked with additional work when SLAs are 

deployed. Procedures should be developed for how to handle the penalty or incentive 

provisions in the contract.  They need to determine whether funds are budgeted up front 

anticipating incentives, or whether additional funds will have allocated if incentives are 

warranted.  If requirements change drives new SLA services, or capacity, they need to 

determine whether there are there enough funds to cover the costs.  The IT accounting 

personnel will have to work closely with the program manager and the COR to ensure 

that contract modification will not exceed the budget, and if they do, they will assist in 

preparing the justification for the financial review. 

 Personnel involved in SLM need to also constantly review the service levels 

against the underlying business process.  They need to determine if the service levels are 

in fact supporting the business processes, or whether they need to be modified.  

Additionally, it is possible that some services though to be essential to the performance of 

the business process are in fact not needed.  It is also possible that some service will have 

to be added to the SLA because they were not though of previously, or because additional 

requirements were added to the application. 
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 SLM is the process that an organization utilizes to ensure that the contractor 

adheres to the requirements in the SLA.  Poor SLM will undermine the efforts of 

establishing the SLAs in the first place.  When developing the SLAs, the development 

team needs to not only identify manpower shortfalls, but they need to brief management 

and the program manager of the roles and responsibilities that they are expected to 

perform.  The development team must also assess whether they have personnel with the 

skill sets necessary to verify service performance.  If management or the program 

managers are not willing to allocate the time or resources, then the development team 

must determine whether to proceed with developing the SLAs.  If the service levels are 

not monitored and verified by the customer, then they will quickly loose their 

effectiveness.  The trust between the end users and the program manager will quickly 

erode.  Users will become frustrated when service quality is poor, and the service 

provider will quickly determine that they will not be held to the threshold standards. 

4. Review Current Services 

 SLAs can be utilized for the development of new systems, maintenance of 

existing legacy systems, or for post-production support.  They can also be used for 

outsourcing services that were previously performed in-house.  Before the SLAs are 

developed, it is important that the team has a foundation understanding of services and 

service levels that are currently being used within the organization.  Once that foundation 

is built, services and service levels can be evaluated and applied to the new system, 

outsourcing project, maintenance action, or in-house project under consideration. 

 The development team needs to understand the underlying business processes that 

the IT system must support or enable.  The team needs to not only understand the main 

process being supported, but it must also evaluate the numerous interlinked, feeder, and 

cascading processes it supports, or is being supported by.  When evaluating processes it is 

useful to divide the processes into the core business process, primary supporting 

processes, and secondary supporting processes.  The core business describes the end-to-

end activities involved in supplying a deliverable or a service.  The primary supporting 

processes are those sub-activities, organized in a logical sequence, that make up the core 

business process.  The secondary processes are those activities that support (directly and 
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indirectly) the primary processes. (Tricker) It is difficult to control quality unless the 

quality objectives of the core, primary and secondary processes are defined.      

 When developing the SLAs the team must determine the organization’s key 

business processes and determine the types and levels of service that are needed to 

support those processes.  It is difficult to develop SLAs without first knowing what 

services are being provided, and at what level.  The team should develop a list of all of 

the services currently supporting the primary and secondary processes, and then try to 

define quality levels associated with each of the services.  The list of services should be 

as extensive as possible.   If the team is reviewing services that are currently being 

offered by an ESP, a review of the existing contract, interviews with end users and ESP 

personnel, and a review of any required reports will be helpful.  Interviews with the end 

users are especially important because many of the users may not be aware of the 

contract, and they may not be receiving services that they should be. 

 If the SLA is to be used internally, the IT department should list all of the services 

that they provide (relating to supporting the business processes).  This is their opportunity 

to show all of the work that goes into providing their current services.  There are many 

functions that must be performed that end users may not be aware of such as 24 X 7 

physical security, monitoring of hardware and software, application testing, configuration 

management, or tuning the server to optimize application performance.   

 The SLA development team must also interview end users to determine what 

services they are in fact receiving.  There may be differences between what the IT 

department claims they are providing and services the end users say they are receiving.  

The SLA development team must determine reality by observation and reviewing reports, 

trouble tickets, logs, and monitoring tools.   

 Once a list of services has been developed, the next step is to define the quality of 

the service.  Each service should have a quantitative measurement of quality.  However, 

it is not uncommon to discover that an organization does not have defined levels of 

service.  If service levels have not been previously defined, the SLA development team 

will have to determine them.  Interviews, observation, or benchmark testing will have to 

be performed to determine the level of service that is currently provided.   
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 Benchmark testing is typically used in measuring performance based services 

such as application response time, network bandwidth utilization, or processor 

capabilities.  However, benchmark tests can be utilized to measure service levels such as 

file retrieval, disaster recovery, or trouble ticket resolution times.  Benchmark testing not 

only helps to quantify the level of service, but it also helps verify that defined levels of 

service are actually being met.   

 If the SLA development team is not comfortable relying upon the IT department 

to perform the benchmark tests, they may find it advantageous to contract with a third 

party to perform the benchmark testing.  In some cases a third party may be necessary 

because the current IT department is not trained on the necessary monitoring tools, they 

do not have the background to develop a benchmark testing plan, or because the licensing 

costs of the monitoring tools are prohibitive.  A third party would also provide impartial 

results that may make lessen conflict between the IT provider and the end users.   

 In some cases it is very difficult to assign quantitative values to the services that 

are provided.  In some cases the services will have to be rolled into a higher service.  For 

example the service ‘tuning a server’ may have to be rolled into the service ‘availability’ 

for that server.   Conversely services such as ‘security’ may need to be broken into 

smaller services such as ‘data integrity’.  

5. Determine Requirements 

 Once the SLA development team has determined the services that are being 

provided, and at what level, they must determine if those services and service levels are 

appropriate for the business processes they support or are intended to support.  

Additionally, the team must determine if additional services are required, or if some 

current services can be deleted.  New services must be defined, quantified, and assigned a 

level of quality that meets every stakeholder’s needs.  

 IT managers need to understand their customer’s requirements in order to provide 

the services necessary to meet those requirements.  However, it is not uncommon for IT 

managers to make assumptions about customer requirements.  IT managers often make 

IT investments based on customer’s past requirements, customer’s perceived future 

requirements, or they plan for improvements to the IT infrastructure to meet their own 
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needs. (Briones)  Software cannot function in isolation from the system in which it is 

embedded, thus a systems level view must be used when performing requirements 

analysis. (Neseibeh)  A purely technical approach without regard to the underlying 

business processes that IT supports will not satisfy the end user’s needs.  The end users, 

management and the IT department must be involved in the requirements analysis 

process to ensure that the services needed are identified, that they support the current and 

future business processes, and that the IT department can provide those services.  The 

team approach to developing SLAs is essential in producing a product that is workable 

for all stakeholders.   

 If the SLA concerns the development of a new system, it is important for the team 

to understand the core, primary and secondary business processes that the IT systems 

(hardware, software, and infrastructure) are supporting.  Part of this analysis is to gather 

information on the business processes that the IT system is enabling. The team can start 

by asking some simple questions.  Is the process data query, data input, e-commerce, 

real-time collaboration, report generation, information sharing, or data warehousing?  

How does this process tie into the organization’s business strategy?  Is this a dynamic 

process or a relatively stable process?  Is the information used by the process internal or 

external to the organization?  If the information is external, what is the source, who 

controls it, and how is the information extracted?  Is the data sensitive?  How does this 

process tie into the overall IT architecture?  Does the process have to interface with any 

other processes?  How do they interface?  In two years, how might this process change?  

Do people outside of the organization (e.g., partners, suppliers, customers) need access to 

the data?  How old is the technology supporting this process?  Are there manual 

processes in addition to those being automated? 

 The team must then determine how the application is or is intended to be utilized.  

Interviews will help determine batch processing times, the amount of response time that 

is acceptable to users and management, the hours that the end users actually use the 

application, location of the users, methods for accessing the application (e.g., intranet,  
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internet, remote dial-in), and timeframes for required reports or queries. It is also helpful 

to understand how downtime or reduced capabilities will affect the end user’s ability to 

perform their tasks.   

 The team should also analyze the business criticality of the system from the end 

user and management’s perspective.  The financial implications of downtime should be 

determined so an accurate cost/benefit analysis can be performed.  Implications of 

downtime can include not only lost sales and clientele, but also frustration and lost 

productivity by the organization’s staff.  In some cases, especially those in the military, 

the implications of downtime could cost lives.  Highly critical business systems should 

also be viewed in terms of information assurance to protect both the data and the system 

itself from external and internal threats. 

 The business criticality of the business process gives the team a good indication 

of the types of services needed by the application, as well as how much funding the 

organization is willing to invest in those services.  Applications considered business 

critical will be capable of justifying a larger budget, and consequently will be able to 

request more services at higher quality levels.   If the application is being phased out for 

another application that works more effectively with partners or customers, then the 

services needed may be less that those needed by the replacement application.   

 Administrative requirements also need to be addressed in the SLAs.  Program 

managers want the ability to quickly monitor the contractor and IT system performance 

to ensure they are meeting requirements, so the SLAs must address the reports that are 

required from the service provider.  Reports are the vehicle to demonstrate whether actual 

performance met, that which was required.  The team needs to determine who will be 

reviewing the reports.  The reports (generated by the contractor, CTR, or through access 

to monitoring tools) will need to reflect the proper layer of abstraction to meet the 

manager’s needs.  Management may not understand the technical details of the reports, so 

they may need summary reports, whereas the personnel verifying the SLAs may need 

very granular data.  The team will need to determine the content of the reports, their 

frequency, their distribution, the source of the reports, who prepares the reports, the 

report format, how the report relates to the measurement of the service, and how the 
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report can be verified.  Any current reports can provide a baseline to determine the level 

of detail required, an acceptable periodicity, and management’s comfort with the formats.   

 The development team must not only determine the services and service levels 

associated with product quality, but they must also incorporate any process, project, or 

post-production quality requirements into the SLAs.  Reviewing SLAs that other 

companies have written for similar projects (template SLAs), or reviewing the 

contractor’s SLAs can help identify services that the development team may not have 

considered.   

 Template SLAs can significantly reduce the time spend developing SLAs as they 

already contain definitions of services, they have quality thresholds that at least one 

organization found acceptable (hopefully, industry standards can be developed for certain 

SLAs), they contain the methodology to measure the service, and they explicitly state the 

assumptions that were used when developing the SLAs.  Template SLAs provide a good 

framework to use.  The development team can then modify the template SLA to 

incorporate the organization’s requirements.  

 Benchmark testing produces information on the levels of service that are currently 

being provided.  The requirements analysis further defines those services to determine if 

the services are needed, and if they are needed, whether the levels of service are adequate 

to support the application.  Requirements analysis also determines if new services are 

needed and defines their associated level of service. Once requirements are defined, the 

team needs to be prepared to negotiate on the service levels.  Realistic maximum and 

minimum thresholds should be developed for each service.  Depending upon the costs 

associated with the maximum threshold, the team may decide to reduce the threshold 

level to at or near the minimum.   

 In most organizations, all costs must be justified, and as such, the team must be 

prepared to justify all of the services and their corresponding levels of service.  The 

justification should be directly related to the primary or secondary process supporting the 

core business process.  The team should be able to explain the business impact of the 

various levels of service.  If resources are limited, the team should be prepared to 
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compromise requirements, so they should be prioritized.  Before negotiations begin with 

either the IT department or an ESP, a draft SLA should be prepared.  

6. SLA Preparation 

Once requirements have been defined, and service thresholds have been 

established, the team can start to prepare the SLA.  In this stage, the SLA format must be 

decided determined, then populated with all of the required information.  This can be a 

difficult task, as the team will have to determine meaningful, measurable, and 

quantifiable metrics to measure the services needed.  They will also have to define the 

scope of the contract, the services that must be performed, the service level thresholds, 

and all other required fields.  

 Part of the development process is to determine the format of the SLA.  A 

recommended format will be presented later in this chapter.  This same format was used 

in the SLA for post-production support in appendix (A).  However, there are numerous 

formats that can be utilized depending upon the services requested, whether the SLA is 

in-house or contractual, and the needs of the organization. 

 The SLA development team needs to determine how the service required will be 

measured to ensure that the service levels are being adhered to.  The customer should 

never rely upon the service provider to determine whether the SLAs have been met.  The 

team must determine if monitoring tools, logs, software agents, or monitoring software 

packages are available to provide the information necessary to verify service levels.  It 

may be necessary to perform audits or run benchmark tests to determine performance.  

The team should also determine if there are personnel in the organization (outside of the 

IT department if in-house SLAs are used) with the technical expertise to perform the 

audits. 

 If the team is not experienced in developing SLAs, or if they lack the technical 

expertise necessary to determine how SLAs should be enforced, they should hire 

consultants that work with SLAs or outsourcing contracting.  Consultants can assist in 

determining the types of performance reports that should be generated by the service 

provider, and the means to audit those reports. 
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 Services that cannot be measured or verified should not be included in the SLA.  

Those types of services should be listed in the SOW.  In some cases the determination of 

performance is subjective, and it is difficult to get an objective measurement that both 

parties agree to.  In some cases a survey can be used to determine an overall subjective 

measurement regarding attributes such as customer satisfaction.  So long as the sample 

size is agreed upon, statistics can generate mean scores, which can be used in a SLA.  

Proxy attributes may be used to measure the performance. 

 Proxy attributes attempt to assign objective attributes to a subjective objective.  A 

proxy attribute does not directly measure an objective, but can be used to describe the 

degree to which an objective has been met.  It indirectly measures an objective.  Rather 

than explain the Bayesian theory and probability distributions used, an example illustrates 

the concept better.   

 The overall concept of security is a subjective one.  Many of today’s IT systems 

are comprised of distributed, heterogeneous systems that pull information from multiple 

sources.  There is not one simple measurement to determine if a system is secure or not.  

There are many objective indicators that can indicate a degree of confidence in a systems 

ability to withstand an attack.  Attributes such as all servers are set up in accordance with 

the National Security Agency (NSA) approved configurations, the firewall is configured 

in accordance with the Navy Firewall Policy, adherence to Common Criteria guidelines, 

and intrusion detection software is deployed within the system, generates a measure of 

confidence in the security of the system.  However, that confidence is still subjective. 

 None of those attributes directly measures security, but they can provide objective 

values that can be used to calculate a level of confidence in the security.  It is ultimately 

up to the team and the service provider to determine if the proxy attributes can adequately 

be used to measure security.  This means that the team and service provider must be able 

to understand the implication and extent that the proxy attributes relate to security.  The 

goal is to provide as much objective information as possible so that a decision regarding 

compliance with a service can be justified.   

 The next step in developing the SLA is to determine who will be responsible for 

ensuring SLA thresholds are being met.  That individual or team of individuals must have 
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the authority and resources necessary to provide the oversight necessary to audit 

performance and enforce noncompliance.  Managing service levels can be a time 

consuming effort and cannot usually be assigned to the program manager of an IT 

system.  In some organizations, a quality assurance department is responsible for SLM.  

The development team and the program manager must review the level of work 

necessary to perform the intended SLM functions when assigning the individual or 

individuals necessary to monitor SLAs.  In many cases multiple people will be employed 

in the SLM effort 

 The SLA development team also needs to determine the scope of the SLA.  The 

boundaries of the agreement need to be defined.  This seems straight forward, but in 

some cases the service provider may have not control all aspects of an IT system’s 

performance.  A good example is where a service provider is being tasked to host an 

application in its server environment.  The SLA specifies a threshold of a 2 second 

response time for a specific query in a client-server architecture.  In this case the service 

provider has no control over the client PC, the client network to the Internet Service 

Provider (ISP), or from the ISP to the service provider’s firewall.  In this case, the scope 

should be defined to the service area that the service provider actually has control over.   

 Once the team has developed the SLAs, they are almost ready for the negotiation 

phase.  The last step is to present the draft SLAs to the organizations attorneys.  The 

attorneys will review the SLAs as they would any contract between the organization and 

a third party provider.  They will undoubtedly modify the SLAs to add clarity and ensure 

there is verbiage to protect the organization if the services specified in the SLA are not 

delivered at the thresholds specified. 

 When an organization wants a contractor to propose a bid for the services that 

they want accomplished they prepare a request for proposal (RFP).   In this dissertation 

the RFP sent to the service provider will include the Statement of Work (SOW) and the 

SLAs in separate sections of the RFP.  It is important that the development team is 

familiar with the SOW. The SOW can define services that will be performed, but the 

SOW really concentrates on the functional requirements of the system.  SLAs concentrate 
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more on the non-functional, quality requirements of the system.  The SLAs should 

support the SOW, not conflict with it.  

7. Negotiation 

 The SLAs must be agreed upon by both parties in order to be successful.  SLAs 

that give undue advantage to either the organization or the service provider will cause 

problems.  As service levels are not achieved, or expectations are not met, disputes and 

finger pointing ultimately occur.  SLAs should not be viewed so much as a contractual 

mechanism to force the service provider into compliancy, but as a contract that defines 

expectations for both parties.  

 The contracting officials are generally responsible for leading the contract 

negotiations.  SLAs are contracts, and as such, members of the contracting branch or 

department should be part of the development effort, or they should at the very least 

review the draft before negotiation processes begin.  The program management team and 

the contracting official needs to determine if the process owners, IT personnel, 

contracting personnel, or management will be involved with the negotiations.  Although 

the SLAs and SOW will probably be negotiated as a package, it is recommended that if 

they are negotiated separately, whoever negotiates the SLAs is also the same person or 

group that negotiates the SOW.  This provides consistency and helps to ensure that the 

SLAs and SOW do not conflict. (Sopko) 

 Once the SLAs are drafted, they are incorporated into a Request for Proposal 

(RFP) along with the SOW.  In government contracting section H is where the SLAs are 

placed.  Section H provides additional guidance to the SOW. The contractors respond to 

the RFP and the SOW with a proposal that lists the services that they will provide along 

with the technical specifications on how they will achieve those services.  The contractor 

must also respond to the SLAs.  The contractors must not only determine whether they 

are capable of providing the services, but they must also be capable of performing to the 

service levels defined in the SLAs.  In-house SLAs are usually presented to the head of 

the IT department for consideration.   

 It is important that both parties understand the terminology and technology that is 

associated with the SLA.  Both parties need to understand and agree upon the verbiage in 
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the SLA.  If there are areas that need clarification, then mutually determined 

modifications will have to be made.  This may entail several meetings, especially when 

attorneys are involved. 

 The service providers must evaluate the SLAs for software and hardware 

requirement, staffing needs in terms of skill sets and effort to accomplish requirements, 

infrastructure needs, and managerial oversight needed.  Once the service providers 

understands the hardware, software and resources needed to satisfy the service thresholds 

outlined in the SLAs, they can start to determine the costs associated with providing 

those services.  They can also start to estimate the time frames associated with software 

development or software maintenance projects. 

 The service providers will also look at the deliverables and the responsibilities of 

both parties as defined in the SLA.  Every section of the SLA is subject to negotiation, as 

this is a contractual document that is legally binding.  Any areas that are subject to 

interpretation should be defined as much as possible to ensure both sides understand the 

services to be delivered.  Attorneys from the service provider will also review the SLAs 

and they will play a role in the negotiation process.  

 It is extremely important that the development team have good information from 

their benchmark studies.  The team should know the service levels that are currently 

being received and to the maximum extent possible, they should know or be able to 

estimate the costs associated with providing those services.  If that information is not 

known, then the team is entering the negotiation process in the blind.  The team will not 

be able to determine whether the services requested exceed requirements, nor will they be 

able to determine if the services and service levels that are ultimately decided upon will 

meet the requirements to support the underlying business process. 

 Once the service provider has scoped the requirements and has determined costs 

to provide the services, the negotiation process can begin.  It is important that both sides 

show flexibility in their approach to the negotiation process.  Both parties should attempt 

to arrive at terms that satisfy their mutual needs.  Inflexibility will not only drive up costs, 

but could jeopardize the entire negotiation process. 
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 When the development team has reviewed the service provider’s estimated costs 

associated with the team’s proposed SLAs, they need to weight their requirements against 

the costs, and determine the services and associated quality levels that they can afford.   

Understanding the business impacts of the various levels of service is essential in this 

phase.  The team must understand the minimum service requirements to support a 

business process, so funding is not wasted on satisfying requirements that are greater than 

necessary.   

 It is recommended that the type of services should be negotiated first, then 

technical issues, then legal terms, and finally price. (Sopko)  When services, their 

associated service levels and costs have been negotiated, the remaining sections of the 

SLA detailing responsibilities, penalties, incentives, deliverables, documentation, 

methodology for verification, escalation procedures, and management of the SLAs will 

have to be mutually agreed upon.  An important part of this negotiation is agreeing on the 

tools or products that will be used to monitor performance.  Another area that must be 

discussed is the required reports, their format, their periodicity, and their distribution.  

Reports are extremely important in that they provide the mechanism by which 

management can determine whether actual performance meets service thresholds.  The 

reports and other deliverables are usually outlined in the Contract Data Requirements List 

(CDRL). 

 SLAs also delineate areas of responsibility, which can make troubleshooting 

faults much easier.  When a fault occurs, the SLAs can be used to achieve a team effort in 

which everybody understands their respective areas of responsibility.  Poorly defined 

roles and responsibilities will lead to contractual challenges if SLA thresholds are 

violated. 

 Depending upon an application’s criticality, and the services being offered, 

acceptance testing may be necessary.  For example in a contract for hosting services, the 

application can be loaded on a server in the host facility and tests can be run to determine 

monitoring capabilities, resource utilization, software compatibility, and response times.  

Some vendors will object to this tactic, but the tests will ensure that the service provider 

can perform.  It is not unusual for a service provider’s sales staff to oversell their 
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capabilities in their zeal to close the deal.  Acceptance testing not only ensures that the 

service provider has the technical skills to perform the service, but it establishes that the 

organization will be actively monitoring the contractual terms of the agreement.  

Depending upon the services being offered, the organization can run the acceptance test 

and maintain current operations in parallel.  If the acceptance test fails, then it is easy to 

terminate the agreement.  Details of the acceptance testing, including the methodology, 

tools needed, duration and associated costs will have to be negotiated.  

8. Contract 

 When both parties are satisfied with the terms of the SLAs, the agreement needs 

to be formalized as a contract.  It is important that everything that was agreed to is 

documented in the contract, especially termination and penalty clauses.  It is also 

important that both parties agree to the terminology used in the contract. 

The roles and responsibilities of each party should be clearly defined in the 

contract.  The better defined the responsibilities are, the better the relationship between 

the two parties.  Functions such as the method of communication, chain of command, 

points of contact and management of change need to be agreed to and documented.  

Additionally, issues such as who can place orders or modify requirements with the 

service provider, and what procedures are used to modify those requirements needs to be 

identified.  In very dynamic environments it may be more important to manage the 

relationship than the contract.   

 Part of the negotiation process is to determine the scope and the duration of the 

contract.  The scope clearly defines the services to be provided, and the boundaries for 

those services.  The contract needs to specifically state those areas that are within the 

scope of the SLAs, and those services that are outside.  For example, in a hosting services 

SLA, the service provider might not be held accountable for the latency experienced in 

the Wide Area Network (WAN) outside of the host environment.  The scope also 

includes limitations such as the number of users supported, or application upgrades 

allowable.  Availability services scoped for 100 users on the same infrastructure are very 

different from when the user base expands to 1,000 users distributed throughout the  
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country.  Capacity requirements should be determined in the baseline tests, the service 

provider should not be held accountable for service levels when the application or the 

user base changes significantly.   

 The contract should also state the duration of the agreement.  It is not 

recommended that a SLA contract be signed for more than a two-year period.  

Technology is changing too rapidly to be tied into a long term contract.  In addition, the 

underlying business processes supported by the IT system can also be dynamic and 

rapidly changing. 

 The contract should also have provisions for review or revision of the SLAs.  This 

is especially important if the development team was not able to capture good data on its 

benchmark analysis of the IT system.  Often organizations have not adequately monitored 

their IT systems, so they are not sure of the level of service needed to support their 

business processes.  As procedures are better defined, they may need to adjust the SLAs 

to reflect better defined requirements.  Reports and monitoring tools may also need to be 

revised to better present the information to various levels of management and oversight 

personnel. 

 The service provider should also be able to address revisions to the SLAs.  In 

many cases the service provider will not have the ability to conduct a thorough analysis 

of the IT system or application to be supported.  Lack of due diligence may result in 

dependencies, resource utilization, bandwidth requirements and support that was not 

originally noted.  Additionally disagreements on interpretation of the SLAs will have to 

be worked out.  It is also possible that technical problems will force modifications to the 

SLAs, such as a particular monitoring tool that was agreed to will not interface with the 

application in the way it was intended. 

 SLAs are not static, as the workplace itself is not static.  As experience is gaining 

in tuning and monitoring the application, SLAs will need to be modified or refined.  Both 

parties should agree to modification of procedures and requirements as additional 

information is discovered regarding services provided and the efforts required to support 

those services.  SLAs should be reviewed on a weekly basis for the first two or three  
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months.  Any changes or modifications to the SLAs will have to be mutually agreed 

upon.   The contract needs to be explicit in explaining the process by which modifications 

or refinements of the SLAs occur.   

 The contract also needs to discuss procedures to modify the SLAs because of 

changes as a result of application modifications, or configuration updates to supporting 

software or hardware.  A mechanism such as a change review board must be instituted to 

address hardware or software changes initiated by either the customer or the service 

provider.  The change review board should have membership from the program 

management team, the service provider, contracting representatives, end users, and 

possibly the business process owner.  The change review board will review and approve 

software or hardware changes to the application or the supporting environment, 

determine if those changes will affect the SLAs, and if so, whether new SLAs should be 

agreed to.  Changes that have not been approved by the change review board are 

unauthorized and the offending party will be held accountable. Additionally, the change 

review board should have a mechanism for identifying who should pay for additional 

resources (hardware, software, personnel) as a result of application changes, or changes 

to the system software.  

Additional contractual provisions will have to be worked out if the nature of the 

application or its underlying business process is rapidly changing.  This is especially true 

for prototype applications.  Although the stability of the application should have been 

identified in the negotiation process, it is important that remediation processes are 

identified in the contract to account for rapid changes to the application.  For highly 

dynamic applications or applications associated with businesses that must react quickly to 

external forces, mechanisms will have to be built into the contract to allow the 

contracting official and the change review board to quickly modify requirements and 

their associated service levels.  SLAs are intended to protect business processes, not 

hinder them. 

 
B. SUCCESSFUL SLAS 

 The method of developing SLAs as well as the formats of the SLAs may differ, 

but all good SLAs have similar qualities.  This section outlines some lessons learned that 
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might assist in developing successful SLAs.   The lessons are not presented in any 

particular order of importance. 

 The SLAs should only focus on those requirements that drive a business need, or 

directly support a primary or secondary process.  Focusing on the business need ensures 

the SLAs are meaningful, have management support, and can be justified financially.  

SLAs should be based on what is important to measure, not what is easy to measure. 

 Service level agreements that measure the technical aspects of a service, yet fail to 

meet the requirements of the underlying business process will not be successful.  

Including the end users in the development process will help to focus on the customer’s 

requirements. 

 The number of SLAs should be kept relatively small.  If there are too many SLAs, 

the service provider looses focus on what the mission essential service are, and 

monitoring and validating the SLAs will be more difficult and time consuming.  

Additionally, too many SLAs may deter good service providers from competing for the 

services.  Too many SLAs will also prolong the negotiation process and ultimately cost 

the organization more. 

 Robert F. Kennedy stated, “Progress is a nice word.  But change is its motivator 

and change has its enemy.”  SLAs are only one part of quality control.  The entire 

organization needs to be involved in quality management to achieve success.  Upper 

management needs to implement the policies, drive the training, and allocate the 

resources to support the quality management initiative.  Without upper management 

support, SLAs will not achieve the success they are capable of. 

 Communicating the results of the SLAs to all of the stakeholders, in a timely 

manner is important.  This is part of an organization’s quality assurance effort to ensure 

that stakeholders have confidence in the quality of the services that they are receiving.  A 

great deal of effort goes into developing SLAs, upper management should take the credit 

for initiating and managing SLAs as part of a quality control program.  Both good and 

bad results should be shared.  If SLA results are not being communicated, then 

stakeholders may believe that they are not being met, thereby eroding confidence in the 

ESP or the IT department. 
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 James Magory said, “computers can figure out all sorts of problems, except the 

things in the world that just don’t add up.”  In other words, technology does not solve all 

management problems.  SLAs should be used as part of a quality control plan, not as a 

tool to correct bad management.  SLAs can identify where quality is not being provided, 

but SLAs will not solve the problem. 

 Penalties or incentives must be used.  Without them, the SLAs are just 

agreements.  The penalties or incentives should not be too large, but they must command 

the attention of the service provider. 

 SLAs must be easily understood by all parties.  If the end users cannot understand 

the SLAs, then they are probably concentrating too much on the technical aspects of the 

service and not enough on supporting the business processes.  Response times in a router 

mean little to the end user. The SLAs should reflect business terminology that the end 

users understand, such as the overall availability of the application, or mean time to 

failure instead of the listing the technical components that comprise the availability 

formula. 

 If a service cannot be accurately measured, in a timely manner (enough to support 

the business process, which may include real-time), it should not be included as part of 

the SLA. 

 SLAs should be reviewed frequently.  SLAs will change, and they must be 

approached as a dynamic agreement.  Change management processes need to be 

addressed in the development process, and agreed to in the negotiation process.  Capacity 

planning is another area that needs to be addressed as new requirements may require 

additional resources. 

 If prior service performance is not known, or if a new service is being initiated, 

trial SLAs without penalties or incentives may be necessary for a brief period (3 to 6 

months).  A cost-plus type of contract may also be helpful.   

 A SLA is a contract and should be treated as such.  To prevent any 

inconsistencies, the SLA and SOW should be negotiated as a whole.  Most ESPs are very 

experienced in negotiating SLA contracts.  They have the expertise; most organizations 
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do not.  Organizations should not be afraid to bring in outside contractors experienced 

with negotiating service agreements to assist in the negotiations.   

 If possible SLAs should reflect end-to-end services.  It is important to look at the 

entire IT system.  In a multi-tiered system, it is possible for all of the components to meet 

their individual availability thresholds, but when combined they still do not satisfy the 

end user’s requirements. End-to-end SLAs are aligned more to the business processes 

they support.   

 It is very important that both parties agree to terminology.  For example, the term 

‘downtime’ can be defined in many different ways.  An ESP may consider ‘downtime’ to 

be when a server has a hardware failure, whereas the organization may consider 

‘downtime’ to be when the end user cannot access the server from his or her PC.  Unless 

the terminology is agreed upon, there will be many contractual issues.  How will 

intermittent ‘downtime’ be handled? 

 The SLAs or SOW need to address how the data and reports will be generated and 

stored.  Issues such as who has access to the service level reporting tool, how information 

will be stored, and for how long, need to be discussed. 

 Cascading SLAs can be a problem.  This is when the service provider has to rely 

upon other third parties to perform a portion of the service being offered, and actions by 

the third party provider alters the original agreement.  For example, service provider X 

may offer end-to-end SLAs to customer A.  However service provider X has to rely on 

the long haul WAN services of provider Y.  Service provider X and Y have a service 

level agreement for the long haul services.  Service provider Y upgrades security 

protocols to meet the requirements of another customer.  Service provider X must adopt 

the new protocol, which is not supported by customer A.   

 End-to-end SLAs are difficult to achieve, especially in a highly distributed 

environment.  Achieving high levels of availability for distributed applications requires 

control (physical or contractual) over the component pieces that make up the entire 

system and infrastructure, strict configuration control, proper monitoring tools, and a 

change control methodology that can adapt to rapid changes. 
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 SLAs are part of a quality control methodology.  Once service levels have been 

measured and compared against the agreed upon thresholds, root cause analysis needs to 

be performed to determine why thresholds were violated.  Once cause has been 

determined, the SLM organization needs to take the steps necessary to correct the 

problem. 

 

C. POST-PRODUCTION SUPPORT 

The SOW and thirteen SLAs in appendix (A) illustrate how SLAs can be used to 

improve the management and quality of software post-production support by establishing 

a monitoring program to support process and quality control measures.  The SOW and 

SLAs in appendix (A) provide a detailed listing of post-production services and quality 

thresholds.  A discussion of how those services and quality thresholds improve the 

management and quality of the software-intensive system would be redundant. Rather 

than focus on the specifics of how the SLAs in appendix (A) contribute to the quality of 

post-production services, this section will discuss how those SLAs were developed. 

In the previous sections, we have discussed how SLAs should be developed, and 

offered some characteristics of good SLAs.  In this section we will offer another 

approach at developing SLAs that will illustrate more of a top-down approach.  The 

approach outlined in this section was utilized in the development of the statement of work 

(SOW) and SLAs in appendix (A) that were part of an actual request for proposal (RFP) 

to obtain quotes for post-production services.   

1. Background 

Today’s computer environment differs significantly from the more centralized, 

mainframe-intensive environment of the past.   Stand-alone and/or clustered servers have 

rapidly replaced mainframes as a result of the rapid adoption of the client-server 

architecture, the increased computing and storage capabilities found in today’s servers, 

the dramatic reduction in server size, and dramatic drops in the cost of computer 

hardware.  In addition, advances in distributed-computing technology, increased network 

speeds associated with broadband technology, and advances in web technology have also 

made the location of the server a moot issue.  Low cost hardware coupled with 
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distributed-computing technology allows program managers to quickly purchase, 

configure, and deploy a system.  Distributed-computing technology also increases the 

ease at which a program manager can outsource the hosting services associated with the 

application, as the server can be easily accessed using the Internet.  While the current 

computing environment makes deploying a system easier for the program manager, it 

makes managing the applications, and servers more difficult at the enterprise level. 

In an interview with a Chief Information Officer (CIO) staff member, he 

commented on the difficulty he was having tracking and managing servers.  He said, 

“servers are worse than rabbits, I swear they are breeding. I am finding them everywhere, 

including under desks and in closets.”  Unless all of the IT funding is coordinated through 

the CIO organization, it is very easy for program managers to buy servers and deploy 

applications with little or no oversight.  The proliferation of servers has caused numerous 

problems for IT departments. 

One problem with the decentralization associated with servers vice mainframes is 

that it is difficult to standardize policies and procedures.  Within the government it is not 

uncommon to find host service support ranging from twenty four hour support in a 

monitored hosting environment to servers that are receiving no support at all.  This range 

of support can be the result of funding constraints where programs are trying to save 

funds by reducing the level of support.  It can also be the result of a program manager’s 

lack of technical knowledge. 

It is difficult to manage post-production hosting contracts at an enterprise level 

unless the contracts are with a couple of stable, reliable contractors, and the services are 

similar.  If program managers have the ability to independently contract with ESPs for 

hosting services, the range of services and quality requirements can vary dramatically.  

Even when host services are provided by an internal IT staff, services can differ due to 

varying business priorities, hardware differences, and obsolete operating systems 

necessary to support legacy systems.   

Problems can also result when development was outsourced but hosting services 

were kept internal.  Good communication is needed between the developers and the 

internal system administrators to ensure that network quality of service (QOS), 
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interoperability concerns, resource constraints, monitoring software, and security 

concerns are discussed and conflicts are resolved.   

A third problem is that many of the program managers do not have the 

appropriate IT experience or background to be contracting for hosting services.  Many of 

the program managers do not know what services are required to host their applications, 

nor do they know what levels of quality they should require in their contracts.  In the 

government, contractors provide much of the technical expertise necessary to develop 

software-intensive systems.  Some of these contractors are very familiar with the tasks 

necessary to support an application in post-production, but it is more common to find that 

the contractors specialize in particular areas of the development process.   

Many of the larger IT consulting companies offer their own host services, which 

they include as part of the development contract.  These contracts provide many of the 

services necessary to support an application, but the contracts are written to minimize the 

risk to the hosting organization.  In most cases, the application is properly supported, but 

if problems occur, the host provider will have little if any liability.   

2. Post-Production Services 

The SOW and SLAs in appendix (A) were part of an effort by the Naval Supply 

Systems Command (NAVSUP) to consolidate their numerous servers, managed by 

multiple program managers and commercial entities, into a single hosting environment.  

As part of their server consolidation effort, NAVSUP wanted to explore the possibility of 

outsourcing hosting services.  One of the sources considered was Electronic Data 

Systems (EDS).  At that time the Navy was in the process of implementing the 

Navy/Marine Corps Intranet (NMCI), an effort to outsource all desktop and network 

support to EDS.  Contract line item number (CLIN) 29 of the NMCI contract was written 

to include additional IT services, including hosting services.  Although CLIN 29 was part 

of the negotiated NMCI contract, it was not priced, so the services provided under that 

CLIN had to be negotiated separately. 

One of the security issues with NMCI was defining trusted boundaries.  If EDS 

provided hosting services, the servers would be within the NMCI trusted boundary, 

offering greater security.  Any other service providers would be outside of the trusted 
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boundary, and access to those services would have to travel through the NMCI external 

firewalls.  Outside access would require greater security restrictions at the external router 

and firewall (e.g., port restrictions and protocol restriction such as use of Active X).  As 

such, the Navy was exploring the option of having EDS provide hosting services as part 

of CLIN 29.     

Since hosting services under CLIN 29 had to be negotiated, the author was tasked 

by NAVSUP to develop a contract for hosting services.  Since the NMCI contract had 

already been awarded to EDS, the author was able to negotiate a hosting contract with 

EDS that would provide the services necessary to support NAVSUP’s applications, 

contained enough flexibility to meet the requirements of specific projects, and was 

capable of being performed by EDS.  The author presented initial requirements and SLAs 

to EDS.  The resulting SOW in appendix (A), was a collaborative effort between the 

author and EDS (specifically Scott Price and Joe Vickery).  The final product of the SOW 

and SLAs were written to augment CLIN 29 of the NMCI contract, so they could be used 

by any Navy activities requiring hosting services.  

The SOW and SLAs contained in appendix (A) were intended to provide a listing 

of services and service levels that the program manager could use in outsourcing 

contracts, or in negotiations for support with an internal IT hosting provider.  Appendix 

(A) provides thirteen SLAs and three levels of service, which should contain sufficient 

options for most programs.  Although the SOW and the SLAs in appendix (A), are 

intended to be used as a template to be modified to meet specific needs of an application. 

At the time of this writing the NMCI program office had not accepted the SOW 

and SLAs as part of the NMCI contract, although working groups were formed to further 

define CLIN 29.  The work in appendix (A) was provided to the group for their 

consideration.  There are numerous business and political reasons for not immediately 

adopting the work in appendix (A), but due to the sensitive nature of these issues they 

will not be discussed in this dissertation.   

The SOWs and SLAs were however, used by NAVSUP to contract for server 

hosting services.  Although two commercial entities bid on the work, and a source 

selection board was convened, the contract had not been awarded at the time of the 



 76

contract.  Again a detailed discussion of why the contract was not awarded will not be 

discussed due to the proprietary nature of the bids and the sensitivity of the information.  

However, the failure to award the contract was not attributed to either the SOW or the 

SLAs. 

3. Developing the SOW and SLAs in Appendix (A)   

The first step in developing SLAs is to define the problem that needs to be solved.  

In this case the problem was that NAVSUP wanted to consolidate their servers under one 

hosting service provider.  NAVSUP needed to generate a requirements document that 

listed the services and service levels necessary to support its applications.  Ultimately, 

these requirements were to be used to form a proposal under CLIN of the NMCI contract.   

Although recommended, a team approach was not utilized in the creation of the 

SLAs in appendix (A), although the SOW was formed with a small team.  Before a team 

was formed, we conducted an initial inquiry to determine the services that program 

managers needed to support their applications.  Initial interviews and inspections revealed 

that there were no standards or procedures for application hosting.  While almost all of 

the applications were receiving adequate services, the services and service levels varied 

greatly.  Mission critical systems received good support, while those programs struggling 

for funding provided little support.  The disparate services being provided, and difficulty 

gathering program managers and stakeholders for a SLA development effort did not 

allow for a good bottom-up approach to developing the requirements.  A better approach 

was for the program managers and stakeholders to validate a list of services and service 

levels that were derived from a top-down approach. 

The top-down approach consisted of the author determining which hosting 

services and service levels were necessary to support an application.  The personnel 

requirements and activities associated with SLM were assumed as some of the personnel 

that were displaced as a result of any outsourcing were going to fill needed SLM 

positions.  The initial requirements were developed from a review of the hosting services 

that were being performed at that time.  Requirements were also derived from conducting 

benchmarking studies, reviewing previous contracts, literary searches (Philcox, Nemeth, 
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Minasi, Sjouwerman, Harney, OGC, and Factor), interviews, and collaboration with EDS 

personnel.  The resultant product formed the initial requirements generation document.  

As was mentioned previously, SLAs have been used for a number of years.  

However, a review of many commercially provided SLAs and those contained in 

previous contracts were ambiguous, difficult to measure, lacked qualitative 

measurements, or lacked penalties/incentives.  The SLAs also lacked many of the 

elements that we felt were necessary to address in both the development of the SLAs and 

the enforcement of the SLAs.   

The author attempted to address many of these deficiencies by writing the SLAs 

utilizing a new format that required more information on the services being performed, 

how those services will be measured, and the responsibilities of all parties.  The author 

also attempted to use the SLAs as a process and quality control mechanism to assist the 

program managers in the performance of their oversight duties. As such, the author also 

had to develop additional quality requirements for security, documentation, maintenance, 

tape backups, and technology refresh. These requirements were derived from prior 

experience, interviews, literary searches, review of current services, and prior contracts.  

Once the initial requirements were gathered, the author met with EDS to assist in 

the development of the SOW.  It was decided that the majority of the programs evaluated 

could be grouped into three packages of services (essential, enhanced, and premier).  

After much collaboration, the services were grouped into one of the three categories.  

Although most of the programs could be adequately supported by the services in the 

essential package, some programs required additional services due to their mission 

criticality.  Once the services were grouped into the three packages, the SLAs had to be 

modified to reflect three levels of quality thresholds.  The SLAs were also reviewed by 

EDS and were modified to increase readability, reduce ambiguity, incorporate better 

monitoring capabilities, and reflect penalties that were within the range of compromise 

(penalties are not designed to financially cripple an organization, they are designed to 

entice an organization to comply with requirements). 

The final product was presented to program managers, the NAVSUP CIO staff, 

System Administration personnel, EDS management, and two IT consulting groups for 
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their feedback.  Their responses were very favorable, but a common concern was that the 

services would be too expensive.   

Once comments concerning the SOW and SLAs were addressed, NAVSUP 

decided to utilize seven programs in a Request for Quotation (RFQ) utilizing the SOW 

and SLAs.  The RFQ was given to EDS and one other activity.  Although details of the 

proposals cannot be discussed in this dissertation given the business sensitivity of bids, 

general impressions from the source selection board and the two organizations involved 

was very favorable.  The companies liked the level of detail contained in the SOW and 

SLAs, although they did not like the penalties associated with non-performance.  The 

program managers also liked the comprehensive list of services that were being offered; 

in many cases they had not though to include some of the services in their own contracts.  

The source selection board indicated that due to the level of detail contained in the SOW 

and SLAs, they were able to better compare the services offered by the two organizations.  

They were able to disregard services (in many cases marketing hype) that were offered by 

the companies, but were not contained in the SOW.  This allowed a better “apples to 

apples” comparison.   

Although a contract for host services was not initiated for these seven programs, 

the SOW and SLAs in appendix (A) were still being evaluated for inclusion as part of the 

CLIN 29 of the NMCI contract.  Due to political and business sensitivity, and the 

possibility that the source selection between EDS and the other organization is still a 

possibility, the author felt that it was more appropriate to use generalities in this 

discussion. 

 
D. SUMMARY 

Many of the benefits from SLAs are derived from the process of developing the 

SLAs.  The development effort is best when a team approach is utilized, where each of 

the stakeholders is represented and has input.  When the team members feel that they are 

a part of the process to improve the software quality, they are more likely to take 

ownership of the quality assurance and quality control processes established.    

One of the major benefits of developing the SLAs is improved communication 

between all of the stakeholders.  The SLA development team identifies critical business 
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processes and jointly determines the quantifiable quality factors necessary to support the 

process and meet the organization’s needs. The team must also determine the means to 

determine whether quality factors have been met, which encourages communication with 

the test community.  Developing the SLAs fosters a common understanding about quality 

and performance requirements across the organization.  The SLAs also explicitly state the 

quality thresholds, which helps to limit unrealistic expectations by management and the 

end users.   

The SOW and SLAs in appendix (A) demonstrate how SLAs can be written to 

improve the quality of post-production services.  The SLAs establish many of the quality 

and process control measures that program managers need to properly manage post-

production support.  The SOW and SLAs in appendix (A) incorporated three levels of 

service to satisfy the majority of program needs, but they could be easily tailored to meet 

the specific needs of a program.  The SOW and SLAs also helped the average program 

managers by detailing services and quality thresholds that they many not have thought of.  

Appendix (A) offers a good template that other program managers can utilize in their 

software acquisitions and post-production support contracts.  

The discussion outlining how the SOW and SLAs in appendix (A) were 

developed illustrates some of the difficulties associated with software acquisition.  It is 

not always possible to get all of the stakeholders together for a development effort.  In the 

case of the SOW and SLAs in appendix (A), a top-down approach, which was later 

validated by stakeholders proved to be the best approach.   
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IV. SOFTWARE DEVELOPMENT MODELS 

One of the original contributions of this dissertation is to apply SLAs, which are 

used primarily in post-production support contracts with ESPs, to the entire lifecycle of 

software development in an effort to increase the management of the development 

process, or increase the quality of the deliverable or output from the development 

process.  However, before we explain how SLAs can positively affect the various 

lifecycles of the software, those lifecycles bear discussion.   

Models have been used for a long time to describe work processes by utilizing a 

top-down approach of decomposing the processes into discrete sets, then showing how 

information flows among them.  (Nutt)  Process models abstract the real world into sets 

of entities that flow through a system of activities such that they can explicitly capture the 

process artifacts, and information flows. (Martin)   

Software production is an extremely complex process.  The complexity stems in 

part from the difficulties in comprehending the various facets of the design problem in 

order to derive a robust and reliable design. (Ewusi-Mensah).  One means of reducing the 

complexity is to develop a model that describes a set of activities (in sequential order, 

recursive, or conducted in parallel depending on the model) that needs to be 

accomplished to produce a software product that meets requirements.  Presenting the 

development process in an abstraction allows a better understanding of the tasks to be 

accomplished, as thus assists in the selection of the proper methods and tools to 

accomplish those tasks. 

Early developers modeled their processes in an attempt to improve software 

development and product quality by applying a systematic development process based on 

lessons learned from other software development projects.  As new tools, procedures, and 

lessons emerged; new process models have been developed.  These software process 

models are used to guide development efforts by outlining a deliberate set of activities at 

an appropriate level of abstraction to create a software product that addresses end-user 

requirements.   
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In addition to providing a strategy to address the requirements initially proposed 

in the Statement of Work (SOW) or Performance Work Statement (PWS) process models 

can be utilized for a number of purposes.  Process models form the basis for planning, 

organizing, staffing, budgeting, scheduling, and directing software development 

activities.  The models also can be used for analyzing or estimating resource 

requirements, determining what software engineering tools and methodology will be 

most appropriate to support various development activities, and providing a basis for 

empirical studies to analyze and evaluate the effects that the prescribed activities had on 

cost, schedule, and performance.  (Scacchi)  Software process models are also useful in 

contracting to identify milestones and deliverables.  Test plans can then be developed to 

evaluate the deliverables for conformance to stated product and quality requirements.   

 

A. TYPES OF PROCESS MODELS 

 Every software development effort follows some process.  The development 

process may be informal, ad-hoc (some prefer the term chaotic), or it may be well 

documented with procedures to actively monitor the process.  There are numerous 

process models that range from general models at high levels of abstraction to models 

that are specific to a particular domain and are at a very granular level.    

 Over the last three decades there have been numerous software process models 

developed in an attempt to improve efficiency, effectiveness, and quality in the 

development process in an effort to improve quality in the end product.  The models 

differ in their approaches, methodologies, level of abstraction, relevance to the real 

world, structure, and incorporation of variables, such as user interaction.  The models 

also differ in techniques used.  The models can incorporate modeling techniques such as 

data modeling, object modeling, entity diagrams, process programming (uses 

programming notation and formalism to model the process), precedence networks, or 

Petri Nets (formal mathematical notation). (Gibson)  

 There are numerous ways to categorize process models.  There are also as many  

ways in which the models are utilized (i.e., some models estimate effort or duration, 

others analyze risk, some are intended to improve quality, and others are intended to 
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improve documentation).  Three methods of categorizing software process models are 

presented below.  It is also important to realize that the software product lifecycle can be 

viewed from a number of perspectives.  Albin describes four perspectives on how 

management, software engineers, software architects, and software designers can view 

the same development model differently. (Albin) 

Martin and Raffo broke software models into two categories. (Martin) The first 

category included models that estimated development characteristics (e.g., quality, 

duration, effort) by identifying key variables and determining their effect on the 

development process.  Examples of this type of model include COCOMO II (Boehm, 

2000), and Software Lifecycle Management (SLIM) (Putnam).  The other category of 

models attempts to estimate development characteristics by modeling and analyzing the 

details of the development process.  Examples of this approach include models by Raffo, 

Harrison, and Vandeville (Raffo), the Software Engineering Institute’s Software 

Capability Maturity Model (SW-CMM) and Personal Software Process (Humphrey).  

 Schacchi also broke the process models into two categories, but each had several 

subcategories. (Schacchi)  The first category was software lifecycle models which 

included those models that provided a framework to organize and structure how software 

development activities should be performed and in what order.  Subcategories included 

Classic Software Lifecycle models (software evolution proceeds through an orderly 

sequence of transitions from one phase to another), Stepwise Refinement (systems are 

developed through progressive refinement of high-level specifications (requirements and 

design) into more concrete low-level specifications capable of being converted to code), 

Incremental Development and Release (development consists of providing core 

functionality, then incorporating new requirements for an improved release), Industrial 

and Military Standards (these include the CMM models, which provide standardization of 

procedures and deliverables), and a subcategory called alternatives (focuses on the 

product, product processes, or production setting) which includes models such as rapid 

prototyping, joint application development, and component based development.   

 The other category was software production process models, which are models 

that represent a networked sequence of events, activities, objects and transformations that 
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form a strategy for accomplishing software evolution.  These models use rich notation, 

syntax and semantics to develop more precise and formalized descriptions of software 

development activities.  Schacchi broke the software production process models into two 

subcategories of operational and non-operational models.  Operational models can be 

viewed as computational scripts or programs, where many of the processes are automated 

within a software language or tool.  These models take a formal specification and 

generate code, which can constitute a functional prototype.  The code can also be 

analyzed for certain characteristics and parameters.  Many of the fourth generation 

techniques (4GT) are operational models.  Non-operational models present conceptual 

approaches to development, but they have not been developed to the point where they can 

be automated or codified.  He sites the Spiral model, (Boehm, 1988) as an example of 

this type of model because it incorporates elements of specification and prototype process 

with a traditional lifecycle model. (Schacchi) 

 Pressman broke software process models into 7 different categories. (Pressman) 

The first category was linear sequential models, like the waterfall model, that defines 

development activities and illustrate a sequential process to execute those actions.  

Another category is prototype models, which include iterative steps of defining 

requirements, designing the system, developing a prototype to test the concept, revising 

or enhancing requirements and repeating the process until a final product is developed.  

Rapid Application Development models are another type of process model where very 

short development cycles are utilized to quickly develop specific functionality in a 

system, modules within the system, or if the project is small enough, the entire system.  

Another large category of models is Evolutionary Software Process Models, which are 

iterative in nature.  These models provide an initial release, then add or enhance 

functionality.  Formal Models are another category in which formal mathematical 

specifications are used to apply more rigor.  The last category includes those process 

models that incorporate fourth generation techniques, which include automated activities 

that translate specifications into source code.    
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B. SELECTING APPROPRIATE PROCESS MODEL 

Software products are unique.  Requirements, resources, budgets, personnel, 

interface requirements, and external influences are never constant from one project to the 

next.  As a result it is better to think of software as being developed rather than produced.  

As a result, software process models have to be tailored to meet the specific needs of a 

particular project. (Verlage) The choice of development model (including tailoring for a 

particular project will depending upon the specific performance dimensions (e.g., defect 

rates, KLOC produced per day) that must be optimized. (MacCormack) 

Selecting the appropriate process model is one of the most important activities in 

the project development planning effort.  The appropriate model can streamline a project, 

maximize resource utilization, systematically ensure that activities are accomplished to 

achieve stated objectives, satisfy user needs, increase tracking and control, minimize risk, 

and improve quality. Conversely, the wrong process model, or no process model can 

result in longer schedule times, rework, unnecessary work, poor requirements, and 

frustration. (Alexander, McConnell)   While choosing an appropriate process model is 

important, is should be noted that adhering to specific processes does not guarantee a 

successful project.   

Software development models used today vary in approach, methodologies, 

domains of interest, areas of development, and level of abstraction.  Given the large 

number of software development practices and models, selecting the right mix of 

practices and models is difficult.  It is not possible to find a single model that will 

incorporate a set of practices that will optimize performance on all dimensions.  As such, 

program managers must tailor the process models to each project’s specific requirements. 

At the beginning of a project, the program manager should determine the primary 

performance objectives for the software deliverable, as those objectives will drive the 

type of development model utilized as well as the mix of practices they should utilize. 

(MacCormack)  A software development model should also be selected based on the 

nature of the project and application, the methods and tools to be utilized, the controls 

and deliverables that are required, and the application domain. (Pressman) 
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 The IEEE Standard 1074 (IEEE Standard for Developing Software Life Cycle 

Processes) outlines the activities necessary to develop software processes specific to a 

software project.  The first step is to select a software lifecycle model (IEEE Std. 12207 

describes 4 models and IEEE Std. 1012 describes Boehm’s Spiral Model).  Once a model 

is chosen they must be tailored to the project at hand.  This activity is described as 

mapping where the project-specific sequence of activities are selected or added to the 

software lifecycle model.  The result of the mapping is the project software life cycle.  

The next step is to evaluate an organization’s environment (policies, standards, tools, 

procedures, and metrics).  When the organization’s environmental variables are 

incorporated into the project software life cycle, then the software life cycle process is 

determined. (Schmidt) 

 Eljabiri and Deek describe software process models as a problem-solving 

framework designed to solve real world problems, within time and resource constraints.  

They identify a number of factors that have influenced the evolution of software process 

models. (Eljabiri) These same factors also need to be evaluated when selecting a process 

model to ensure that the model is accounting for the relevant factors.  One of the factors 

they discussed was the time dimension of the project (i.e., the anticipated length of the 

project).  The length of the project impacts other variables such as requirements churn 

resulting from environmental change, the degree of visualization, complexity, software 

economics, and changes in technology.  Projects with a long development cycle should 

select a different and more flexible process model than projects with shorter cycles.   

 Other factors that need to be considered include the amount of automation, the 

degree of control required/desired, the degree of interaction with other systems, and 

experience with the development process proposed.  Eljabiri and Deek also identified the 

importance that cognitive psychology had on process models.  Behavioral models, use-

case approaches, and prototyping are effective strategies if requirements are not well 

known, or if there is organizational conflict concerning requirements.  

   Alexander and Davis also presented guidelines for selecting the appropriate 

software process model.  (Alexander)  They described 20 criteria that they felt could be 

utilized in selecting the most appropriate software process model for a specific project.  
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They selected three grades for each criterion, and evaluated a number of software process 

models to determine whether the model satisfied the criterion at any of the three grades.  

To determine the best model for a particular project, each criterion would be graded 

based on the characteristics of a particular project.  The model with the highest ranking 

(satisfied the most criteria) would then be selected. 

 The criteria were broken into five categories, each containing sub-categories.  

Each of the sub-categories was scored using three values that corresponded to the type of 

sub-category. The categories were personnel, problem, product, resource, and 

organization.  The category of personnel was further divided into user experience in 

application domain (corresponding values for experience were novice, experienced, and 

expert), user’s ability to express requirements, developers experience in application 

domain, and developer’s software engineering experience.  The category of problem was 

subdivided into maturity of application, problem complexity, requirements for partial 

functionality, and frequency of change.  Product category was subdivided into product 

size, product complexity, non-functional quality requirements, and human interface 

requirements.  The resource category was broken down into funding profile, funds 

availability, staffing profile, staff availability, and accessibility of users.  The 

organizational criteria were subdivided into management compatibility and quality 

assurance/configuration management.  Matching the appropriate project criteria against 

the variety of models to determine which model best meets the program manager’s needs 

is an important part of the problem solving process required in software development. 

 

C. PROCESS MODELS 

 As mentioned earlier, there are numerous software process models, including 

MIL-STD-2167-A, the Rapid Prototyping model, the WinWin Spiral model, ISO-12207, 

Incremental Development and Release model, the Component Assembly model, the 

Concurrent Development model, the Cleanroom model, hybrid models, object oriented 

models, and fourth generation models.  This section will describe some of the process 

models and will point out the advantages and disadvantages of using each. 
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 A common model is the early days of software development was the code and fix 

model.  In this model the developers have a general idea of requirements, then they use a 

combination of methods to code and debug the software until they have a final product.  

This approach has the advantage of low overhead (little effort on documentation, 

standards enforcement, quality control), and anyone can use this model, as it requires 

little or no experience. This approach can be useful for very small projects with a well-

defined solution space, a proof of concept, or throw away prototypes. (McConnell)  

Despite its obvious faults, this model is the most common of all software development 

methods, as it is the default model if no other process models are utilized. (Charvat)   

1. Waterfall Model 

The waterfall model (Royce) was the first attempt at formalizing the development 

process by identifying an ordered set of work steps. (Becker)  The waterfall model is a 

sequential software process model that was based on traditional industrial engineering 

techniques.  Despite the fact that it was developed in 1970, it still serves as the basis for 

many, more effective software process models. (Eljabiri, Rakitin)   

In the waterfall model, development starts with the initial concept for the 

software-intensive system and progresses through a sequence of phases until the system 

undergoes testing and is approved.  The phases or steps do not overlap. Each phase is 

dependent upon the products produced in the prior phase.  The waterfall model also 

contains transition criteria for progression from one stage to the next.  Only when a 

deliverable or documentation is produced for a specific phase, and is approved by the 

program manager, can development continue to the next step.  If a deliverable is not 

complete, then the project must remain in the current phase until the deliverable is made 

acceptable.  If an error is discovered at some point in the process it is possible, although 

difficult, to return to an earlier step. 

 The model begins with understanding the requirements for the entire system.  

Functionality is then assigned to hardware and the software components.  Software 

requirements are generated, documented, and in many cases modeled.  The requirements 

are then analyzed for accuracy, consistency, conflicts, level of detail, amount of 

information, and adherence of overall system requirements.  The deliverable from this 
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phase is the software requirements specifications, which are then used by the software 

programmers to develop the software design.  In the design phase the software 

architecture is developed and functionality is assigned to the various software 

components or modules.  The documentation from the design phase is then used by the 

programmers to translate the requirement specifications into code.  The test phase 

validates that the coded software meets defined requirements.  When the software has 

completed testing and has been approved, it is then released to its intended customers and 

the operations phase begins.  As maintenance activities are required, the model begins 

anew.    

The waterfall model is still popular in that it is easy to understand, it has well 

defined deliverables at the end of each stage, and it emphasizes requirements analysis 

(define before design, design before code). (Rakitin)  The waterfall is a rigid model, but it 

works well when requirements are well known, the technology is mature, and developers 

are experienced.   

 

 
FIGURE 2.   WATERFALL MODEL 

 

The major disadvantage of the model is the assumption that once requirements are 

defined that they will not change.  As such the model does not reflect the true iterative 
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nature of development and requirements churn, therefore, it is rarely adhered to in actual 

use.  Another disadvantage is that testing is conducted too late in the process to prevent 

problems.  Despite its major disadvantages, the waterfall model is still widely used. 

2. Spiral Model 

Instead of the traditional document-driven or code-driven process models, the 

spiral model was an evolving risk-driven model. (Boehm 1988)  The spiral model is 

broken into four quadrants: planning, risk analysis, development and assessment.  The 

spirals through the various quadrants represent increased costs.  Each cycle of the spiral 

begins with requirements engineering, analysis and selection of alternative methods of 

implementation.  The purpose of the system or software component is determined with 

respect to functionality, quality attributes, and performance.  Alternative methods are 

then determined (COTS, reuse, different designs), and constraints are identified (cost, 

schedule, interfaces, resources).  The next step is to evaluate the alternatives in respect to 

the requirements, constraints, and risks.  Part of this step is risk mitigation by identifying 

areas of uncertainty and collecting more information, or by developing prototypes, 

simulations, or conducting benchmark studies.  The next step depends upon the risks 

identified.  During the first spiral many of the risks involve requirements, so efforts are 

made to improve and refine requirements.  As the spirals expand outward, the risks 

associated with the development effort increase, and detailed designs of the system are 

developed.  The last step in the spiral is planning for the next level of prototyping or 

development of a more robust design.  As requirements become more defined, and 

program development risks dominate, the steps will start to follow an incremental version 

of the waterfall model (requirements determination, design, code and test). (Boehm 1988)   

The spiral model has a number of advantages over more traditional models.  The 

largest advantage is that it represents the real world iterative approach to software 

development.  It also incorporates the best of the waterfall model (stepwise approach) and 

the rapid prototyping model. The model also demands a risk assessment (requirement as 

well as technical risk) at each stage within the spiral.  The risk mitigation focus of the 

model as well as emphasis on prototypes, simulation, and benchmarking, if properly 

applied should reduce risks before they become problematic. (Pressman)  The spiral 
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model also has some disadvantages.  The major disadvantage is that it requires 

considerable risk assessment expertise.  It is not a widely used model as it is difficult for 

managers without a technical background to understand. It is also difficult to convince 

customers that an evolutionary approach with multiple prototypes is cost effective, 

controllable, and fast enough to meet market demands. Another disadvantage is that the 

model is risk based, so if a major risk is missed, problems may result.  (Rakitin) Although 

performance and quality requirements can be addressed with risk analysis, the model 

does not specifically address those issues, so it is incumbent upon the users or the 

developers to include those areas in the risk assessments.  (Schmietendorf) A final 

critique is that it can be difficult to define verifiable milestones that indicate whether a 

program is ready to proceed to the next layer of the spiral. (McConnell) 

 

 
 

FIGURE 3.   SPIRAL MODEL 
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3. Evolutionary Prototyping Model 

There are a couple of models that are considered evolutionary prototype models.  

These groups of models have similar characteristics.  These models develop the system 

concepts and requirements through the various iterations or evolutions of the model.  The 

models begin with requirements elicitation and analysis.  The developers try to capture 

the most stable and visible requirements.  They design and code that portion of the 

system as a prototype, test it for functionality and conformance to stated requirements, 

and show it to the customer.  After customer feedback and additional requirements 

engineering, the developers begin another iteration of the development cycle, adding 

additional functionality to the prototype.  This process continues until the users determine 

that the system is “good enough”, at which point it is released. (McConnell)  

 Figure 4 shown below, from Wiegers’ book on software requirements (Wiegers), 

presents a model that incorporates three types of prototypes.  Vertical prototypes are 

designed to function like the actual system at a specific structural level.  Vertical 

prototypes act as a proof of concept to ensure interfaces function, algorithms perform to 

expectations, or architectural approaches are sound. 

 
FIGURE 4.   EVOLUTIONARY PROTOTYPE 
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Horizontal prototypes are used primarily to demonstrate portions of the system to the 

user.  These types of prototypes show some functionality (e.g., graphic user interfaces, 

screen layout) without the actual implementation.  The evolutionary prototype differs 

from the other prototype types in that it provides a solid architectural foundation for 

building the software incrementally as the requirements become better defined over time. 

(Wiegers)   

In this model the developers can utilize several approaches to refine requirements.  

Horizontal throwaway prototypes are being used to refine user interfaces, while parallel 

efforts utilizing vertical prototypes test concepts.  Both prototypes feed back into the 

evolutionary prototype, which also goes through a number of iterations until the final 

product is delivered.  

 The advantages of this model are that many of the processes occur in parallel, the 

model has stepwise refinement and multiple iterations to reflect real world experience.  

Some of the disadvantages to this type of model include determining when a project is 

“good enough” to deliver to customers, documentation and configuration management is 

a challenge, and it is difficult to keep the same stakeholders engaged in prototype 

evaluations through multiple iterations.   

4. Commonality Among Models 

Most of the software process models have the same basic activities, although the 

order of the activities, the iterations through the activities, and the deliverables associated 

with the activities differ.  The models all begin with an evaluation of the system to be 

built.  The project may be adding functionality/updating technology on an existing 

system, or it may consist of building a new system.  System requirements are then broken 

into components and functionality is assigned to either the hardware or software.  The 

software requirements are derived from the system requirements.  

Another group of activities can be grouped into requirements engineering 

activities include defining stakeholder needs, business objectives, system functionality 

and performance parameters, resources, and constraints.  Prototypes are often used as part 

of this activity to refine or capture user requirements.  This activity also includes 

requirements analysis to ensure the requirements are not in conflict, that they are 
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complete and quantifiable.  The requirements are then gathered and incorporated into 

specifications, which document the requirements.    

An additional series of activities involve design.  The requirements will specify 

what they want the system to do in terms of system behavior and performance.  The 

designers will determine how the system will meet those requirements.  The designers 

start by identify objects of computation, their attributes and relationships, operations to 

transform the objects, and constraints on system behavior.  Then they divide the system 

into components denoting logical subsystems.  These components can then be evaluated 

to determine if existing software already exists that can meet requirements (software 

reuse, component-based engineering, object-oriented designing), or whether new 

software will be needed.  The architecture design is also conducted to define the 

interconnection, and resource interfaces between subsystems, components, and modules.  

Detailed component design then determines the means that specific modules will 

transform inputs into outputs. (Scacchi)  

 Coding is the activity that transforms the design specifications into actual source 

code.  As the code is completed for each module, it is packaged into the overall system 

software.  As errors are discovered in either the module or interfaces between 

components or modules debugging efforts are performed to correct the code.  

 Testing is another activity.  In some models the testing validates the final 

deliverable, while other models conduct testing to validate the deliverables at each stage 

of the model.  The goal of testing is to discover errors, validate design, and verify 

conformance to user requirements.  All models conduct some form of testing at the unit 

level, module level, subsystem level, system level, or a combination of levels.  In 

addition to evaluating the code or design, testing is also used to verify and validate other 

deliverables such as documentation. 

 The final activity is the post-production deployment of the system.  This action 

consists of documenting the system (user guides, installation instructions, configuration 

documentation, system support information), installing the system in its host 

environment, configuring access, tuning the application, and performing system backups.  

This activity also includes training the end users, management, and system 
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administrators.  The final activity is maintenance of the system, which includes repair of 

the existing system, modification of the system, and rehosting of the system. 

 

D. SLAs AND SOFTWARE PROCESS MODELS 

 Many of the software process standards are based on the assumption that 

following a defined engineering process and having a quality management system, that 

higher quality software can be consistently produced.  (Gibson)  This is not necessarily 

the case.  Despite claims that adherence to a specific process model improves software 

quality, the data to support most models is anecdotal and biased towards reporting only 

successful projects. (MacCormack) 

 Software models should act as guides.  High-level models should be interpreted as 

an expression of general intent. (Nutt) Strict adherence to the models will result in 

problems as a model’s abstractions hides many of the problems and tasks that must be 

accomplished at lower level design.  Real world problems such as incomplete and 

changing requirements, unplanned dependent activities, time constraints, and design 

rework as a result of discovery can force organizations to deviate from planned processes.  

It can also cause inconsistencies between high-level processes and those that are more 

granular. 

 Software process models describe the sequence of activities necessary to produce 

a software product, processes involved, tools necessary to perform those functions, and 

exit criteria (deliverables) for moving from one activity to another.  However, these 

models are abstractions, and thus, do not capture some of the important variables that can 

impact program success.  For example, many of the models do not deal directly with 

performance or non-functional requirements, and if they are addressed it is only 

indirectly and without systemic background. (Schmietendorf)  Few models, if any, focus 

on representing organizational goals and process improvement. (Turk)   

 Although, there are some models that address software program management 

activities in the process model, such as Abdel-Hamid and Madnick’s model, which 

simulated the effects of staffing delays, schedule pressure, and unplanned work 

(undiscovered errors) on a projects’ planned cost and schedule, and Boehm’s Spiral 
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Model which included risk analysis, no model incorporates a holistic view of software 

development management. (Abdel-Hamid, Martin)   

There are good software process assessment model such as CMM and PSP that 

measure how well processes are defined and adhered to, but they do not specify which 

processes are most appropriate, nor do they evaluate the quality with which the processes 

are executed.  The focus on these models is on process management and process control, 

not on process quality or development quality. Critics have complained that approaches 

such as ISO 9001 and CMM emphasize managerial tasks and ignore the more important 

technical considerations.  

 Most of the software process models lack quality control and monitoring methods. 

All process models have transition criteria for progressing from one phase, activity, or 

module to another.  The models typically have completion criteria for a current phase, 

and entrance criteria for the next stage. (Boehm 1988)  Due to the abstract nature of the 

models and the recognition that the models will need to tailored, quantitative parameters 

for criteria acceptance is not specified.  As a result, additional tools are necessary to 

compliment the software process models at the practical implementation level.  SLAs are 

one of those tools. 

SLAs can be used with any process model in an attempt to incorporate process 

control and interject quality and performance requirements into the completion and 

entrance criteria for the various stages of a process model.  In the requirements 

engineering phase of the development process SLAs help to identify non-functional 

quality and performance requirements that are usually not considered until later in the 

development cycle.  In the design phase, SLAs can be used for process control and to 

ensure the deliverables meet stated quality requirements.  SLAs can also be written to 

monitor and evaluate a contractor’s compliance to agreed-upon processes, methods, 

standards, tools, and procedures.  SLAs can assist testing by identifying quantitative 

quality requirements for the deliverables at each phase of the process model.  In the post-

production phase SLAs can be used for process control and to identify the quality 

requirements necessary to ensure the application is properly supported.    
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As was previously mentioned selecting the appropriate process model is one of 

the most important activities in the project development planning effort. The selection of 

the appropriate process model is based primarily on the project’s primary performance 

objectives.  SLAs assist the selection process by identifying performance and quality 

objectives in addition to functional objectives.  Non-functional requirements may well 

require a different process model than if only the functional characteristics of the 

software were considered.   

The remainder of this dissertation will demonstrate in more detail how SLAs can 

be utilized at the various phases of software development to establish performance and 

quality requirements for deliverables as well as establishing monitoring actions to 

measure process compliance and detect problems through all of the major development 

steps.  The dissertation will also demonstrate how SLAs can also be utilized to assign 

quality parameters to many of the management processes and activities associated with 

software development.   

 

E. SUMMARY  

This section was intended to illustrate the numerous approaches to developing 

software.  Although there is a lot of commonality, each model represents a unique 

approach to development, including different processes, methods, and tools.  

Additionally, the need to tailor the models makes strict comparisons of models even more 

difficult.  However, regardless of the development model selected, SLAs help to establish 

quality control measures by defining quantifiable quality thresholds for the deliverables 

expected at the various steps.  SLAs also help to establish a process control program to 

measure adherence to whatever process is selected.    
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V. REQUIREMENTS ENGINEERING 

 The first step in the software-development process is the requirements 

engineering process, which entails those activities necessary to determine a system’s 

functions, capabilities, and behavior in order to satisfy the customer’s needs.  

Requirements engineering is a process of discovery, refinement, modeling, specification, 

and validation. (Pressman)  Skilled requirement engineers, management and stakeholder 

commitment, time, and proven processes are needed to deliver a good product.  

Requirements engineering can be very difficult, but the level of effort dedicated to 

requirements engineering will have a direct impact on software quality.   

Requirements engineering provides the building blocks for all other efforts in the 

software engineering process, so if quality is not addressed at the beginning of the 

software engineering process, it is usually addressed at the end of the project in the form 

of testing.  Unfortunately, quality evaluations are usually implemented too late, and the 

architecture that was already developed will dictate the solution space for addressing 

problems that were discovered.   

Unless the requirements engineering process is performed correctly, there will be 

an expectation gap between what the developers though they were supposed to build, and 

what the stakeholders really needed. (Wiegers)  Errors made in the requirements stage 

account for 40 to 60 percent of all defects found in a software project, yet organizations 

still practice poor requirements engineering processes. (Weigers)  This chapter will 

discuss the requirements engineering process and demonstrate how SLAs not only 

improves the requirements engineering process, but how they help to inject quality 

requirements into the beginning of the development cycle. 

 

A. SYSTEM REQUIREMENTS 

 Software requirements engineering begins with the overall system requirements, 

as specified in the requirements engineering portion of system engineering.  Before 

software can be developed, the requirements for the system in which the software resides 

needs to be defined at some level of abstraction.  When developing a new system, 
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requirements engineering is used to determine the customer’s needs.  The process starts 

with the customer developing an initial problem statement.  Users, program managers, 

and system engineers need to determine how the system must behave to support the 

overall objectives of the system.  From that problem statement, the system engineer must 

determine the product’s mission, functionality, performance levels, availability, design 

and interfacing constraints, information needs, communication needs, and other system 

specifications.  System engineers then need to scope the system; identify the roles of 

hardware, databases, and software; factor in user interaction; define processes and data 

sources; identify constraints; and determine interfaces with other systems. 

Requirements engineering consists of requirements elicitation, requirements 

analysis and negotiation, requirements specifications, requirements validation, and 

requirements management throughout the development process. (Pressman, Weigers) 

One of the main objectives of system level requirements engineering is to determine 

which components will be used to satisfy specific requirements. (Sawyer) Will a specific 

requirement be satisfied through hardware, software, or a combination of both?  When 

system level requirements are defined, the software engineer will then go through similar 

steps to convert system, user, and program requirements into a software design 

specification that developers can use to start coding. 

This chapter will discuss requirements in the context of software requirements; 

however, SLAs can assist and play a role in system engineering as well.  It is important to 

keep in mind that software is but one portion of a greater system.  The quality standards 

that are determined through the systems engineering process will flow down to the 

software requirements.  Software quality must be considered in the context of the entire 

system, not just the software.   

 

B. REQUIREMENTS ELICITATION 

Once the system requirements are understood, the requirements engineer can then 

determine the software’s function, its interfaces, its behavior, constraints, data elements,  
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and relation to the overall system.  The process for gathering that type of data is called 

requirements elicitation.  There are a number of methods for gathering data from users 

and developers. 

Requirements can be broken into four overlapping categories.  Business 

requirements represent the rationale for the system and its vision and scope.  User 

requirements represent the goals of the user and the tasks that a user must perform.  

Functional requirements are the behavioral characteristics of the software.  The last 

category is non-functional requirements such as quality factors, security, performance 

goals and constraints. (Heldman, Wiegers)  The challenge is to capture all four categories 

of requirements from as many perspectives as possible. 

Requirements elicitation can be a challenging task.  The software engineer tries to 

develop precise, specific requirements from the stakeholder’s (users, program managers, 

process owners) initial problem statement. In the beginning of the process, the 

stakeholders may not know exactly what he or she needs or wants.  It is not unusual for 

stakeholders to make broad, vague statements, such as, the “system must be user 

friendly.”  It is also common that stakeholders present inconsistent requirements that are 

driven by a specific individual’s wants, needs, or bias.  Requirement elicitation involves 

intensive interaction with stakeholders to drill down into the problem to determine what 

the stakeholder wants the system to do. Once the requirements are identified, they can be 

analyzed and checked for such things as internal consistency and consistency with respect 

to policy and business rules. 

This dissertation will use the term requirements engineer to describe the person 

responsible for the requirements engineering process.  In many cases this individual is a 

software engineer and is part of the software-development effort, in other cases the 

individual specializes in only requirements gathering.  This dissertation assumes that the 

requirements engineer is a contactor.  This individual may or may not be involved in the 

development of the SLAs.  In many cases outside contractors may be necessary to 

develop the SLAs to ensure objectivity, as most ESPs do not want SLAs.  While 

requirements engineering and SLA development may be handled separately, good 

cooperation and information sharing is absolutely necessary to obtain maximum benefits.  
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The software-development organization may want membership in the SLA development 

team to ensure knowledge sharing is occurring.  It is important to keep in mind that the 

quality requirements developed in the SLAs must be fed into the overall requirements 

engineering process.  

Requirements elicitation requires a great deal of interpersonal skills.  It is not 

always easy to get people to clearly articulate their ideas.  Everyone has his or her own 

societal beliefs, biases, values, parochial interests, agendas, educational backgrounds, and 

perspectives.  The requirements engineer needs to understand the beliefs of the 

stakeholders (epistemology), what is observable in the world (phenomenology) and what 

can be agreed upon as being objectively true (ontology). (Nuseibeh) 

Given the different viewpoints, social and political issues, and the stakeholder’s 

various perspectives, requirements elicitation utilizes a number of techniques to obtain 

complete, and accurate requirements.  Traditional requirements elicitation methods 

involve meetings, interviews and group meetings with the various stakeholders to 

determine requirements.  Some techniques include the use of collaborative software, 

group support systems and various scenarios or use cases. (Hickey) Others include 

ethnomethodological approaches (Sommerville, 1993), socio-technical modeling, 

stakeholder analysis methods, and artifact based elicitation. (Sutcliffe)  In determining a 

methodology to use in requirements elicitation, the requirements engineer needs to 

understand an organization’s perception of society and plan the approach accordingly.  

(Bickerton) All techniques have their advantages and disadvantages, and most software 

engineers utilize a combination of approaches. 

One of the first steps in the requirements elicitation process to identify all of the 

stakeholders and external forces that provide inputs and or constraints to the system.  

Obviously everyone cannot be consulted for their input, so the requirement engineer must 

determine those stakeholders that can provide meaningful input. Then representatives 

from each of the major stakeholder groups need to be determined so they can be 

consulted, or included in the elicitation process. 

Once stakeholders have been identified, the stakeholders need to determine the 

overall project or system mission or goal.  Everyone needs to understand the problem that 
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the system is attempting to solve, as well as the means in which the intended system will 

solve that problem.  The requirements engineer needs to gain consensus among all of the 

stakeholders on the problem to be solved and the approach that will be used to resolve 

that problem.   “The primary measure of success of a software system is the degree to 

which it meets the purpose for which it was intended.” (Nuseibeh)  Requirements 

elicitation is concerned with discovering that purpose, and determining the functional, 

non-functional, and behavioral characteristics of a system that will meet that purpose. 

The requirements that are generated as a result of interviews, market and 

environmental analysis, and interoperability constraints should be evaluated against the 

system’s mission or goal to ensure that the requirements support and add value to the 

mission.  Requirements that are ‘must haves’ need to be separated from those that are 

‘nice to have.’  The task of determining the scope of the project becomes easier when the 

system and software engineers can tie the requirements back to the goals of the system.   

Another important task during requirements elicitation is to document as much 

information as possible about each requirement.  The documentation should describe the 

requirement, assign it with a unique identifier, list the stakeholders, classify the 

requirement by type, group the requirements into a parent/child relationship if necessary, 

and eventually assign a priority to the requirements. 

As requirements are generated, the process of categorizing the requirements helps 

in the analysis process.  There are numerous ways of categorization, and the methodology 

and detail used by the requirements engineer varies based on experience and the 

elicitation process being used.  In many of the techniques utilized, the requirements are 

categorized according to whether the system requirement is part of the core system 

business process, whether it provides primary support to the process, or whether it 

provides secondary support.  The core requirements describe the functional 

processes/actions that the system must perform to meet the system’s mission.  The 

primary supporting requirements are usually derived from the higher-level core 

requirements, from system constraints or interoperability requirements (other systems or 

data). The secondary support generally lists the quality or non-functional requirements, or 

requirements that are necessary to support the primary supporting requirements.  
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Requirements classification should also include whether the requirement is for the system 

itself (product) or for the process (standards, constraints, analysis model, etc…).  Good 

requirements classification will help the requirements engineer assess the requirements to 

ensure that they support the system’s goals.   

Some common problems in requirements elicitation are managing the information 

from multiple sources (representing distinct viewpoints), tracing requirements back to 

their source and rationale, determining when the elicitation process has completed, and 

realizing that requirements are not always there to be elicited (there may not be a 

stakeholder). (Sommeville 1998, Sawyer) 

SLAs assist requirements elicitation in four major areas.  The development or 

modification of template SLAs provide an excellent starting point for group meetings, 

use cases based on those SLAs, or other techniques.  The SLAs not only generate 

meaningful discussion, but they focus that discussion on non-functional attributes that are 

often overlooked.  SLAs also tend to involve more management interaction in the 

requirements engineering process due to the contractual implications associated with 

SLAs.  Template SLAs may address quality issues that the stakeholders did not consider. 

This dissertation is making the assumption that the SLA development process is a 

part of the overall software requirements elicitation process.  The SLA development 

effort can provide valuable feedback to the overall elicitation process.  The team 

approach to the SLA development tries to ensure that all stakeholders are identified and 

that they are represented in the discussions.  The SLA development/tailoring effort is 

usually a facilitated meeting with the stakeholders.  The meetings allow brainstorming, 

debate, consensus, and can be a great way to identify conflicting requirements at the very 

beginning of the elicitation process. Group elicitation techniques aim to improve 

communication, foster stakeholder agreement and buy-in, while exploiting team 

dynamics to generate a richer understanding of needs. 

In addition to identifying stakeholder requirements and needs, the formulation of 

SLAs helps the requirements engineer better understand the business domain, 

organizational culture, and operational environment.  The process of developing SLAs is 

similar to the elicitation techniques of use cases and scenarios.  Use cases describe the 
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interaction required between the users and the system necessary to meet the business 

objectives of the system.  Use cases help to determine what users need to accomplish, as 

opposed to what they want the system to do or how it is expected to behave.  The 

objective of the use case approach is to describe all of the tasks that users will need to 

perform with the system.  (Weigers)  It is important to keep in mind that use cases are 

from the perspective of the end user only, and should be used in conjunction with other 

requirement elicitation techniques to ensure all perspectives are accurately represented. 

The process of developing the SLAs highlights and fosters discussion on the goals 

of the system, the processes and tasks that the system must perform to meet those goals, 

as well as identifying operational and organizational needs, policies, and constraints.  

Discussions necessary to develop the SLAs will generate information about the 

application domain, business and organization processes/culture, and the intended 

operating environment that the system will be placed in.  The discussions will help the 

requirements engineer capture tacit knowledge, identify constraints, and justify how 

quality factors support business needs.   

SLAs focus everyone’s attention on quality factors at the beginning of the 

development cycle.  Once the quality factors are included in the requirements, they will 

be incorporated into the design, and tracked throughout the product’s lifecycle.  The 

quality requirements will also be incorporated into the test plan at the beginning of 

development.  SLAs also support the software quality metrics methodology 

recommended by IEEE. (IEEE Std. 1061-1998) 

Quality factors can be affected by functional and non-functional requirements 

generated from sources other than the stakeholders.  Requirements can also be generated 

from the operating environment, the application domain, regulatory or policy constraints, 

as well as interoperability constraints.  Requirements can also be derived from the service 

needs of other systems in the environment.  The formulation of the SLAs help to make 

some of these requirements explicit in that quality is affected by all of these 

requirements.  

Additionally, SLAs are concerned with how quality factors or performance 

attributes will be measured.  As such, requirements that cannot be measured, 
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requirements that do not provide value to the underlying business process, and 

requirements that are not realistic will not be proposed or accepted.  The goal of 

requirements elicitation is to gather all of the requirements in a concise document with 

good objective outcomes that can be measured. (Heldman) 

SLAs also focus attention on those requirements that directly support the system’s 

goals.  SLAs are difficult to write and they require time and resources.  As a result, 

superfluous requirements and “gold plating” are less common.  Additionally those 

requirements that do not directly contribute to the goals of the system are generally 

eliminated as they create additional work that cannot be justified to management. 

In many organizations, managements involvement in and commitment to 

requirements engineering is low.  As a result, requirements are not normally related to 

business visions and objectives. (Bubenko)  SLAs help mitigate this problem to some 

extent, because the format of the SLAs requires that the development group tie the 

quality requirements to the business plan.  The contractual penalties and incentives 

involved with SLAs tend to capture more managerial attention than requirements 

gathering alone.  If an organization is not willing to devote the time and effort necessary 

to tailor or develop SLAs, it is a good indicator to the requirements engineer that 

management will probably not be devoting as much resource support as is desired.    

Use of a template SLAs can be useful when management or market forces do not 

allow sufficient time for requirements engineering.  It is much easier to take the template 

and modify the SLAs than it is to develop the SLAs from scratch.  Instead of spending 

time on determining a SLA format, writing the SLAs, and deciding how to measure a 

quality factor, effort can be spend on determining which SLAs best support a particular 

business process, and determining the specific quality thresholds to utilize.  The template 

SLAs are also helpful to illustrate to stakeholders and management what SLAs are, how 

they are developed, how they are utilized, and how they support business needs.  

The SLAs in appendix (A) are an example of how SLAs can assist.  Appendix (A) 

contains services and accompanying SLAs for hosting services.  The SLAs are based on 

industry standards, common practices, and thresholds that the author felt were essential to 

provide support for the hosted applications.  SLAs in appendix (A) are intended to be 
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used as a template.  These template SLAs provide good building blocks to guide 

discussion and focus thought on non-functional requirements and quality; and they are 

intended to be modified to suit the system being developed.  The fact that services and 

SLAs are already defined greatly assists both users and program managers in establishing 

their requirements with respect to hosting services.  Instead of every program developing 

their own services and SLA requirements from scratch, they can utilize the template, 

which already represents good business practices.  The SLAs in the template can be 

continually updated to reflect better/best business practices and lessons learned from 

other program’s contracting efforts.  The SLAs in Appendix (A) are specific to hosting 

services, but SLAs and the template concept can be applied to any stage of software 

development or lifecycle management.   

When the requirements engineer feel comfortable that requirements from the 

representative stakeholder groups have been identified, the process of analyzing the 

requirements begins.  There is conflicting guidance as to whether the process of 

validating requirements is part of the elicitation process or the analysis process, but in 

this dissertation the process of determining which requirements support the system’s 

goals will be in the analysis section.   

 

C. REQUIREMENTS ANALYSIS 

The goal of requirements analysis is to identify the goals of the system and 

develop an acceptable set of requirements that will meet those needs. The requirements 

should be necessary and sufficient; there should be nothing left out, and nothing 

superfluous added. (Sawyer)  The requirements engineer wants to ensure that the analysis 

verifies the goals and scope of the system, identifies the requirements necessary to meet 

the goals of the system, ensures there is sufficient documentation to evaluate the 

requirement, resolves conflicting requirements, assesses risk, identifies constraints, and 

assigns requirement functionality to the various software components.  

This dissertation is also assuming that SLAs will be analyzed in the same manner 

as the requirements captured in the elicitation process.  The requirements engineer will 

want to ensure the SLA thresholds support other functional requirements, that they are 



 108

technical and fiscally feasible, that the functional and non-functional requirements do not 

conflict, and that the SLAs support the overall system goals and quality requirements. 

It is important to note that the requirements analysis phase overlaps with the 

beginning of the software-development phase.  Software developers will start to become 

more involved towards the latter stages of the requirements analysis when requirements 

are allocated to software components, models and/or prototypes are developed, and the 

software architecture development is started.  

Before the analysis process starts, the team that will conduct the analysis of the 

requirements should be selected.  The team is generally composed of the requirements 

engineer, designer representatives, representatives from the stakeholders, and in some 

cases system engineering representatives will want to be on the team to ensure better 

integration between hardware and software.  It is important that the users participate in 

the analysis process, as this will influence user acceptance and help to establish user 

expectations. 

One of their first tasks of the analysis process is to review the documentation 

gathered on the requirements collected in the elicitation phase.  Requirements should be 

as descriptive as possible to eliminate ambiguity and allow those analyzing the 

requirements the opportunity to assess the requirements in terms of support to the 

underlying business process, whether the requirement is excessive, or not sufficient 

enough to meet its goals, whether it is technically feasible, and how it will be verified.   

If additional information is needed, the stakeholders will be asked to comment on 

the missing information.  The requirements engineering process is not a linear-sequential 

model, various parts of the process acts concurrently, and often feedback or additional 

information will be needed from a prior phase. 

  Once a baseline level of information is collected on each requirement, the 

requirements engineer can start the process of analyzing the requirements.  The 

requirements engineer needs to understand the domain environment, mission needs, 

underlying business processes, and the organizational culture in order to analyze the 

requirements.  Once the requisite information is obtained, the requirements engineer must 

evaluate the requirements in the context of the stakeholder needs, business needs, and 
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environmental conditions in order to determine the requirement’s implications, conflicts, 

interaction, scope, and feasibility.  Part of the assessment is to ensure that the 

requirements either directly or indirectly support the system’s goals.  The requirements 

are also evaluated for costs, risks, organizational acceptance, and whether they can be 

verified.  Requirements analysis must not only address functionality, it must also take 

into account non-functional attributes such as quality factors, as well as programmatic 

constraints (budget and schedule). 

It is not uncommon for stakeholders to have conflicting requirements, differing 

solutions to the problem being solved, or to demand differing levels of quality.  The 

requirements engineer is responsible for negotiating a resolution these conflicts.  It is 

important that the solution be worked with the various stakeholders so as not to alienate 

one party for the sake of another.  This is not an easy task as there are multiple political 

and social agendas at work.  An important step in the requirements analysis process is to 

document the priority of the requirements.  This is essential in order to analyze the 

priorities against the budget, and it may help alleviate some of the conflicts, or at least 

identify them up front.  In some cases, the primary customers (those in charge of the most 

business critical processes) will have to make the final decision.  In other cases, if a 

consensus cannot be reached, it will be necessary to have management dictate a solution 

in decisions that affect multiple stakeholders.  Boehm’s win-win model (In) was 

developed in an effort to resolve this type of requirement conflict. 

The requirements engineer also needs to perform a risk assessment of the 

requirements in context of defined constraints on the system and development effort.  The 

budget and time constraints may have a dramatic impact on the system development.  

Additionally, environmental, technical, interface, and implementation considerations also 

affect the development effort.  Requirements also need to be evaluated against the project 

timetable to determine if certain requirements with new or complex technology will 

present a risk to the project schedule. 

Another step in the requirements analysis process is to determine the scope of the 

system and how it interacts with its organizational and operational environment. This is 

best shown through the use of conceptual models.  There are numerous models that can 
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be used to model the problem and proposed solution set.  These models include OOA, 

formal models, data and control flows, state models, event traces, state transition 

diagrams, entity-relationship diagrams and user interactions. (Sawyer) There is no best 

type of model as the use of a particular type of model depends upon the skill set of the 

software engineering and design team, the type of problem to be solved, availability of 

certain tools, interface requirements, and user/customer input.    

Once the requirements have been analyzed and accepted by the stakeholders, the 

process of requirements allocation, or assigning/partitioning the requirements to the 

various subsystems, software components and sub-components can begin. This process is 

part of the architectural design.  The functionality assigned to the components and their 

interaction ultimately determines the extent to which the system will exhibit the desired 

properties. (Sawyer)  

It is important to note that many of the non-functional quality attributes can only 

be satisfied by more than one component.  The various components of the system must 

act together or interoperate with other components to achieve the specified quality 

requirements.  Two examples are reliability, which depends upon the mean time to failure 

for each of the components involved in a particular function, and built in redundancy.  

Another is response time, which depends upon the speeds at which the servers, 

application, firewalls, and supporting LAN/BAN/WAN operates. 

Once requirements have been allocated to components it is often necessary to 

conduct further analysis to start the process of translating the high level requirements into 

technical specifications that the programmers can use to code.  Details of the application 

domain, interfaces, protocols, types of data to be used, legacy components, and additional 

technical requirements will be derived from each system requirement.  It is often 

necessary to begin another round of requirements analysis as new questions are raised.   

Some of the issues associated with capacity management should be addressed in 

the requirements analysis portion of software design. Issues as simple as the anticipated 

number of users can have a large effect on resource requirements.  Servers will have  
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excess capacity if the estimated users are too small. On the other hand if the users are 

underestimated, the server and application may not be capable of handling that amount of 

concurrent users.  

The process of developing SLAs helps the requirements engineer in the analysis 

phase as well.  SLAs assist in the collection of documentation, risk analysis, and conflict 

resolution.   

A dynamic and rapidly changing business environment has forced end-users to 

demand more and better services from IT service providers.  Businesses are demanding 

faster speed, more flexible systems, and near real-time computing.  SLAs are an essential 

part of measuring and making explicit those needs.  Part of requirements analysis is 

determining both functional needs as well as user expectations. 

SLAs help the analysis process by ensuring that the quality factors and 

requirements are quantifiable and verifiable.  The process of generating the SLAs focuses 

the effort on determining quantifiable attributes of the quality factors being considered.  

In some cases proxy attributes that are quantifiable will have to be used. The SLA 

process specifies the metrics that will be used to verify if the requirement is satisfied, the 

method of measurement, and the acceptable threshold value. 

Requirements must be verifiable; otherwise they are just wishes that can consume 

and inordinate amount of time and resources.  In order to verify a requirement, 

quantifiable attributes must be assigned to the requirement.  Quality attributes can be 

difficult to express in quantifiable terms, however, this is a necessity to determine if the 

desired quality attribute was ever attained, or can be attained.   

SLAs assist with the determination of technical feasibility and risk assessment by 

forcing the stakeholders to quantify requirements and then determine how they will be 

measured.  The specified thresholds also assist in determining technical feasibility.  

During the SLA development, each requirement should be justified by a business case, 

which defines the benefits that the requirement provides to the overall business plan.  The 

quantifiable requirements allow the developers and designers the opportunity to assess 

whether the system can be designed to meet those requirements given schedule and fiscal 

constraints.  
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SLAs also help in assessing the risks associated with the requirements included in 

the SLAs.  The software engineer and developers can assess the various thresholds 

specified in the SLAs and determine whether they are technically feasible with respect to 

other requirements, proposed architectures, external forces outside of the system, whether 

the organization has end-to-end control, whether the thresholds are realistic, and to what 

extent the threshold levels indicated in the SLAs will support the system’s goals. 

In some cases SLA development will address and solve some of problems 

associated with conflicting requirements before the requirements engineer has to 

intercede. SLAs should always be tied back to the business process that the system is 

supporting.  A business case should be made for each SLA, and a prioritization of the 

SLAs should occur during the development process.  The SLA development process 

should begin by discussing and agreeing on the system’s goals, goal hierarchies and 

priorities, and project scope.  Requirements supporting a particular stakeholder’s agenda 

(social, political, or organizational) will not be supported unless that stakeholder can 

make the case that the requirement supports the system’s goals and is worth the 

investment (SLAs will drive up the cost of the contract as it imposes additional risk on 

the developer).     

The group effort to develop the SLAs also helps stakeholders understand other 

stakeholder’s perceptions, politics, and desires.  A group decision forces everyone to 

justify their requirements in terms all other stakeholders understand, disputes can then be 

based more on logic than emotion.   

 

D. REQUIREMENTS SPECIFICATION 

Requirements specification is the process of documenting the requirements.  This 

generally takes the form of three documents.  The first document defines the system 

vision and scope.  This document is known by many names such as user requirements 

document, concept of operations, or scope and vision document, but it typically includes 

four parts. (Wiegers, Sawyers)  
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1. Vision and Scope Document 

The first part of the vision and scope document outlines the business rationale for 

the new system.  This section lists the reasons the system is being developed and its 

intended benefits.  The intended benefits or business objectives of the system need to be 

defined in quantifiable terms so the success of the system can be measured.  This section 

provides information on the customer base, target environment, and the risks associated 

with the project. 

The second part is the vision statement.  This section details the long-term 

purpose for the system or product.  It describes why the system is needed, its intended 

customers, and how it is different/better than other systems already in the market place.  

This section also details the major functionality or features of the system as well as 

describing dependencies and constraints. 

The third section describes the scope of the project.  This includes a summary of 

the features that will be included as well as those that will not be included.    This section 

is intended to focus the development effort and establish user expectations.  Without a 

good scope document, there is a good chance of requirements creep.  This document will 

also discuss release strategies.  In some cases certain functionality is needed before 

others, so a base release with the main functionality may be planned, followed by 

upgrades introducing additional functionality.   

The last section describes management issues associated with the project.  This 

section lists the stakeholders, system functionality that concerns them, how they will 

benefit from the system, and their concerns.  Project priorities are also outlined in terms 

of cost, schedule, features, and quality.  Additionally this section describes the operating 

environment and the non-functional quality factors that will be necessary to achieve the 

business objectives.  The document may also include a conceptual model that further 

illustrates the boundaries of the system, interfaces, data flows, and control. 

The scope and vision document outlines the business case for the system allowing 

the requirements engineer to tie requirements back to the original business case.  This is 

an important part of requirements tracing.  As requirements change it is important to 

constantly evaluate them against the original business case to ensure that the 



 114

requirements support the vision and scope.  If they do not, it may be necessary to update 

the vision and scope or disregard the requirement modification request. 

2. Business Rules 

The next document describes the business rules that apply to the system.  The 

business rules incorporate internal business policies and procedures, regulations, 

formulas or algorithms that will be incorporated/impact the system, and external 

forces/market conditions that will influence or constrain the system.  Generally each 

business rule has a unique identifier, a description, taxonomy or classification, and the 

reference. 

3. Software Requirements Specification 

The third document is the software requirements specification (SRS).  The SRS 

states the functional and non-functional requirements of the system.  This establishes the 

contractual basis of the agreement between the customer and the developer of the system.  

Since the SRS provides the foundation for project management, requirements 

verification, test and evaluation, design, cost estimation, and development it is essential 

that it describe as accurately as possible the behavior of the system under expected 

conditions. (Weigers)   

There are several recommended standards for developing a SRS, including IEEE 

p123/D3 guide, IEEE std. 1233, IEEE std. 830-1998, ISO/IEC 12119-1994 and IEEE std. 

1362-1998. (Sawyer).  IEEE std. 830-1998 suggests a template composed of six sections 

and three appendixes.  The first section discusses the purpose and scope of the system 

(readers can be referred to the vision and scope document if applicable), document 

conventions, and references.  The next section is a high-level overview of the system, its 

intended operating environment, constraints, assumptions, and dependencies. The third 

section lists in detail the system features, the priorities attached to those features, and all 

requirements that are associated with that feature.  The fourth section lists all external 

interface requirements, including user interfaces.  The fifth section lists all non-functional 

requirements such as performance criteria, quality factors, safety, and security.  The sixth  
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section lists requirements that were not listed elsewhere.  The appendixes of the SRS 

included a glossary, any of the analysis models used, and a list of all outstanding issues. 

(Weigers) 

SLAs can assist in the formulation of the specifications in three important areas. If 

a format similar to that used in appendix (A) is utilized, the sections discussing why the 

measurements are necessary, scope of the measurements, assumptions, and 

responsibilities, provides good information to incorporate into the specifications.  During 

formulation of the SLAs, the format of the SLAs will drive communication and 

discussion among the stakeholders with respect to the scope of the system, ensuring that 

the requirements levied are necessary and support the business objective of the system, 

and that they are quantifiable and measurable. 

The SLAs must be written to withstand legal scrutiny.  The SLAs must be 

verifiable, concise, unambiguous, and understandable.  The requirements that are 

included in the SRS should contain those same attributes.  The examples included in a 

template SLA provide a good starting point that stakeholders can use for generating other 

requirements.  If new SLAs need to be generated, the team will quickly discover the 

difficulty of writing clear requirements that can withstand the rigor of analysis by other 

team members, project managers, legal staff, developers, and/or the contractor.  Either 

way, the lessons learned during the SLA development effort can be applied to the other 

requirements outlined in the SRS. 

The SLAs can be written to ensure quality in the specification documents 

themselves.  SLAs can specify quality factors such as adherence to specified formats, text 

structure, requirements labeling and tracing, completeness of the requirements (not all 

requirements must have all the needed information, but those that do not should be 

annotated, and tracked for resolution), and a consistent level of detail in the requirements. 

Davis has outline 24 quality factors that he feels are essential in a SRS. (Davis) 

 

E. REQUIREMENTS VALIDATION 

Once the specifications are written they need to be formally reviewed to ensure 

they are accurately represent stakeholder’s requirements, and that the specifications 
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reflect the desired quality.  The intent of the verification is to find any errors before they 

are incorporated into the design as the costs, as the cost to correct defects once 

incorporated into design is approximately 100 times more that it costs to correct them in 

the requirement engineering phase. (Cross)  Poor requirements engineering will result in 

poor product quality, cost and schedule overruns, and poor customer satisfaction.   

The validation is generally a formal inspection consisting of a team comprised of 

the software engineer’s staff, stakeholder representatives, and developers.  The group is 

looking for errors, omissions, assumptions, as well as implicit constraints and 

assumptions.  Stringent quality factors may generate implicit validation requirements.  

For example, the requirement for an exceptionally high degree of reliability or safety may 

implicitly drive the need for formal specifications and analysis to determine if the quality 

requirements can be met. (Sawyer) 

The verification of the quality of the requirements documentation is an essential 

part of the requirements validation process.  The documentation should be validated to 

ensure that it conforms to established standards, is understandable, modifiable, consistent, 

traceable and complete.  Validation also ensures that proper documentation or knowledge 

management is applied to the models.  A documented history of the rationale, reasons, 

and trade-off discussions is extremely valuable as the project progresses and tacit 

knowledge is lost. 

The requirement documents are also checked to ensure they contain the requisite 

amount of information necessary to validate requirement feasibility and necessity.  The 

documents are reviewed to ensure that the requirements do not contain any significant 

conflicts, the specifications contain enough information to start design (concise with no 

ambiguity), the requirements are within the project scope, the software requirements 

support/do not conflict with system requirements, and that business rules were correctly 

applied.   

Requirements validation also refers to the models that are used in the analysis 

phase of the requirements engineering process.  Any modeling technique biases the 

perceptions or views of the stakeholder as they offer only a limited number of primitive 

concepts for modeling its intended subject matter. (Mylopoulous)  Validation, through 
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formal walkthroughs or inspections will help to identify errors, emissions, or identify 

assumptions.  Validation can also help to ensure that the modeling used is sufficiently 

robust to capture the problem and proposed solution.   

The models also need to be validated to determine whether the analysis models 

accurately reflect stakeholder’s requirements.  One problem encountered when gathering 

requirements is the fact that a requirement engineer’s perception and description of 

problems can be influenced by the tools and methods that they utilize to capture 

requirements.  If stakeholders do not agree with that perception or frame of reference, 

then they are not likely to agree on the representation of the requirements. 

The approach utilized to capture requirements can be broken into two 

philosophies.  The first is a positivist approach where the requirements are founded and 

verified by empirical observation.  This approach has been criticized because it tends to 

force stakeholders to model reality into neat empirical terms, where others argue that 

reality is not that simple.  The other approach is an ethnomethodological approach that 

stresses value-free observations by not imposing modeling constructs.  However, the 

synthesis of the information gathered must still be presented and communicated in some 

form.  It is possible for the requirements engineer to taint the requirements with their own 

biases and social values. (Nuseibeh)  The validation process checks the requirements to 

ensure the stakeholders, developers and management agree on the frame of reference and 

the resultant models. 

Prototyping can also be used to validate both the models, and requirements.  

Prototypes are advantageous in that they can quickly demonstrate the requirement 

engineer’s assumptions and allow stakeholders to provide feedback.  However, 

prototypes can distract users from the core functionality by shifting attention to cosmetic 

user interface issues and any problems that may arise with the prototype. (Sawyer) 

The validation process is also another check to ensure that requirements do not 

conflict.  The conflict can be caused by numerous reasons, including problems describing 

the requirements in the specifications, new knowledge, problems missed in the analysis 

phase, new requirements as a result of prototypes or changing environments, missing 

requirements, and any aforementioned bias interjected during the requirements 
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engineering process.  Disputes are not unusual given the diverse backgrounds, cultural 

differences, inter-organizational politics, and different approaches to solving the 

perceived problem. Disputes can be resolved through goal hierarchies, prioritizing 

requirements, utilizing Boehm’s win-win model (In), and negotiating compromises.    

SLAs can also be used to specify quality factors for the specifications and the 

models.  SLAs can specify specific procedures and processes to utilize and it can specify 

the accuracy of the documentation.  A designer or developer of the system can then know 

the level of quality that is contained in the specifications and models.  Otherwise they 

would have to evaluate the models to ensure accurate notions such as events, states, cause 

and effect relationships, compatibility, and mutual exclusion.   

A common problem found in software projects is that they did not quantify the 

benefits or risks of different designs and requirements.  In many cases intangible benefits 

are not mentioned. (Bubenko)  The SLAs are quantifiable which allows the requirements 

to be measured to determine how well a design solution satisfies the requirement.  One of 

the most important traits of a requirement is that it is verifiable.  If there is no way to 

determine whether the requirement has been met, it should not be included in the 

specifications.  Part of the requirements verification effort is to determine whether a 

requirement as it is specified in the SRS can be verified, so an acceptance test can be 

developed to determine whether the system meets the requirement.    

Template SLAs are also helpful in that many of the methods used to measure the 

non-functional or quality aspects of a system are already defined, and used in other 

projects.  Verification of the SLAs is generally quicker that other requirements in that 

template SLAs have already withstood the scrutiny of verification.  However, that does 

not mean that SLAs should not be verified, they must be reviewed in relation to the 

systems they support.    

 

F. REQUIREMENTS MANAGEMENT 

Requirements management is the process of documenting new requirements and 

ensuring that any changes to the system that affect the requirements or their supporting 

information are accurately documented.  System and software requirements are not static; 
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they are constantly evolving as users gain more knowledge by analyzing models or 

prototypes, as designers discover omissions or need additional clarification, and as 

business environments are changed.  As change occurs, it is important that the 

documentation on any requirements affected by that change be updated to reflect any new 

information.  Requirements management occurs throughout a product’s lifecycle.   

Requirements management can be broken into three separate but related tasks.  

The first task is updating the requirement’s documentation to reflect change.  The second 

task is requirement’s tracing, which is concerned with identifying sources and rational for 

a requirement, as well as identifying where that requirement is reflected in the 

architecture.  The third function is an impact analysis of the proposed change.  

Requirements engineers have to be very organized to ensure that all of the 

information on a requirement is captured accurately.  The quality of the documentation is 

essential to the development effort as well as the life-cycle support of the system.  Every 

requirement needs to have a unique identifier, a classification, dependencies on other 

requirements should be noted, hierarchical relationships and the requirement’s rationale 

(why the requirement is justified and how it supports the business process) needs to be 

recorded, as well as the source of the requirements and the software component(s) it was 

assigned to.   

Since change is inevitable it is necessary to have a management system in place to 

ensure that when the system or requirements are changed, that there is a mechanism in 

place to capture that information.  The requirements engineer also needs to ensure that 

when change does occur that the documentation is updated.  It is important to note that 

the documentation does not just include the specification in the SRS, it also includes all 

ancillary information that is used to interpret and manage that requirement. (Sawyer)  In 

addition any context models that were used should also be updated to reflect that change.   

In many cases system characteristics and user perceptions of need change faster 

than the requirements engineering process. (Bubenko)  Changes in the design stage still 

need to be documented by updating the original specifications. When updating the 

documentation, it is extremely important to utilize version control of the individual 

requirements, as well as the vision and mission documents, SRS, and context models.  
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(Weigers)  Automated tools are making the process of updating documents and version 

control easier, but multiple data formats (including conceptual models), distributed 

working environments, and extremely large and complex systems still limit the 

effectiveness of these tools. (Bubenko)  

Requirements tracing is concerned with establishing links with the requisition 

(request for the requirement), its source, its specification documentation, other 

requisitions that would be affected by any change, higher-level system requisitions, and 

the business plan/process it supports.  In addition the requirements should also be 

traceable to the design element that satisfies it.   

It is very important that a requirement be traceable back to its source and/or 

rationale (business objectives, business rules, system requirements, dependencies, etc…).  

If there are no links between the business plan and the specifications, then it becomes 

very difficult to determine the impact that a change in the business plan/process will have 

on the system. It is also difficult to determine the impact that a requirement change will 

have on business processes.  In addition it makes risk management difficult when 

changes in the business environment cannot be evaluated in terms of which requisitions 

are affected.   

The third function of requirements management is performing impact studies on 

the effect of any proposed change.  Changing requirements need to be assessed to 

determine the affect of the change on the system’s cost, schedule, and performance.  As 

requirements are changed a cascading effect can occur in which dependent requirements 

are affected, conflicts can be introduced, the architecture can be affected, and 

performance and quality requirements can be impacted.  When the impact analysis is 

completed the software engineer, program managers, and stakeholders will have to 

determine if the change is necessary.    

Another consideration when conducting impact studies of proposed changes is 

user expectation.  Management and stakeholders need to understand the effect that 

requirements will have on the costs and schedule associated with the program.  In some 

cases change is needed and should be embraced, but in other cases the change is a result 

of requirements creep.  Impact studies may also inform stakeholders and management of 
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proposed changes that they may not have been aware of.  Stakeholders spend a great deal 

of effort and time during the elicitation and analysis of requirements, and they will not be 

pleased if the system is modified without them being informed.   

Requirements management is often a neglected part of the requirements 

engineering process.  It can be very time consuming, it is difficult to manage, it is not 

glamorous, and it is often neglected in the rush to market a product.  Additionally, 

programmers are notoriously poor at documenting anything.   

SLAs can be are extremely useful in the area of requirements management 

because it institutionalizes a change management review board that is responsible for 

impact analysis and change approval.  SLAs are contractual documents that generally 

have incentives or penalties associated with levels of performance or quality goals.  Any 

changes to the system that affects those specified quality or performance goals must be 

negotiated as part of the contract.  For example the new requirement for a content 

screening program on the e-mail system may affect performance thresholds.  This new 

requirement may necessitate a renegotiation of the SLA.  

As stated earlier, SLAs can be written to apply to the quality of the requirements 

documentation.  Audits of the system and the corresponding requirements documents will 

determine compliance with threshold levels (probably a percentage such as 98% 

accuracy).   

Requirements management continues throughout the system’s lifecycle.  A 

common problem with documentation is that once the system is fielded, it is turned over 

to another team to manage in its operational phase.  The more accurate the 

documentation, the easier the transition to the new team, and the system will be easier to 

maintain.  Unfortunately, there is generally little incentive to keep the documentation up 

to date, or accurate.  This is where SLAs enforce some rigger. 

 

G. SUMMARY 

The central theme of this dissertation is that SLAs can help program managers 

and software engineers produce higher quality software.  One of the ways that SLAs help 

is that they focus attention on the non-functional requirements of a system.  Specifically 



 122

the quality factors (including performance requirements) that users, program managers, 

and software engineers feel are essential in a system to support the underlying business 

process.  They also help make explicit many of the quality factors that users may 

implicitly assume.  SLAs also specify the quality metrics by which the software quality 

factors are measured.  Measuring and monitoring quality allows an organization to 

determine whether quality requirement have been met.  Measurements also support early 

detection and resolution of quality problems. 

The process of developing SLAs improves the requirements engineering process 

by involving all stakeholders in discussions that result in a common understanding of the 

business factors that drive the need for certain quality factors.  Ends users and program 

managers collaborate to determine quality factors and performance characteristics as well 

as functional requirements.  Those quality factors are taken into consideration when the 

system is designed, and that design is verified.   In addition to specifying quality 

characteristics SLAs can be used to specify and enforce standards and processes that also 

lead to quality software development.  The quality thresholds incorporated into the SLAs 

will also be represented in the testing scenarios to ensure compliancy. SLAs not only 

assist in the requirements engineering, but they are one of the first steps towards 

establishing a quality control process. 
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VI. DESIGN 

The intent of this chapter is to demonstrate how SLAs can influence software 

design to achieve a higher quality product.  The section will discuss how specific quality 

factors can drive design, it will discuss quality metrics that can be incorporated into SLAs 

that are specific to the design phase, and it will discuss how SLAs can help in the 

development of the test plan.  This chapter will not however provide an in depth 

discussion on how software is developed, as that is outside of the scope of this 

dissertation. 

SLAs can be used to specify quality factors specifically related to the design 

process, but SLAs real contribution to generating quality software is in the fact that the 

quality factors that are addressed in the SLAs drive the design.  When customer 

requirements have been collected and specified, design is the process that translates those 

requirements into a blueprint that programmers can use to build the product.  The design 

can then be assessed for quality, as it is a representation of the final product. (Pressman)  

The design model can be reviewed to ensure that the quality factors were adequately 

addressed.  In this way quality is designed in the beginning phases of the lifecycle.  

Waiting until the testing phase of development to determine whether quality factors have 

been met is too late. It is much easier and less expensive to achieve specified quality 

factors if they are addressed at the beginning of the application lifecycle.  Discovering 

problems during testing requires significant time in evaluating the symptoms and 

working backwards to discover a root cause.  (Cross)   

The quality factors identified in the requirement specifications enables the 

application developers to employ the pertinent technologies and products, in order to 

achieve a design that meets the desired level of quality.  (ITIL)  “From a technical 

perspective, quality attributes drive significant architectural and design decisions.” 

(Weigers)  If developers know which of the characteristics are most critical to project 

success they can select the architecture, design, and programming approaches that best 

achieve the specified quality goals. 
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The quality factors specified in the SLAs have penalties or incentives associated 

with them, as a result, the development team will focus more attention on ensuring those 

attributes are incorporated into the design.  Program managers and developers tend to 

concentrate more on functional requirements than non-functional requirements.  This is 

especially true when the program is experiencing significant schedule and/or monetary 

pressure.  The SLAs help to ensure non-functional requirements are not overlooked in the 

design process.  

 

A. ARCHITECTURE ANALYSIS 

Where the requirements define what a system is supposed to do, the design 

represents how the system will do it. The architecture of a software system models or 

defines the system in terms of the structure, behavior, organization of computational 

components, and interactions among those components. (Shaw, Pressman, Bass) 

Architecture also shows the correspondence between the system requirements and the 

elements of the constructed system, thus providing some rationale for the design decision. 

Software architecture is a compilation of design models representing the various 

aspects of the software system at different levels of abstraction.  Although there can be 

numerous levels of abstraction, depending upon how far the designers want to decompose 

the system, there are three general levels of abstraction.  The first level represents 

topographical arrangement of components (a unit of computation or data storage) and 

connectors (an entity that facilitates communication). (Dias) This level maps system 

requirements with components and describes the interactions among the components.  

The next level involves design issues involving algorithms, data structures, primitive 

operators, primitive language operators, and threads of control.  The bottom level consists 

of design issues involving memory maps, call stacks, and register allocations. (Shaw)    

The architecture also represents multiple views or perspectives of the system 

depending upon the information to be modeled.  These different architectural structures 

or models are interrelated and provide a holistic view of the system.  Some common 

structures are module structure, logical structures, process structures, physical structures, 

uses structures, call structures, data flows, control flows and class structures. (Bass) 
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These structures can also be broken into architectural design, data design, interface 

design, and component design. (Pressman)  They can also be broken into functional areas 

such as presentation services, information services, communications, interface design, 

transaction services, environmental services, and base services. (Goodyear).   

The different types of structures guide design with their own sets of components, 

notations, analysis techniques, and issues.  In addition each structure may have multiple 

levels of abstraction, which also have components, rules of composition, and rules of 

behavior.  Each structure and level of abstraction provides a unique perspective and can 

be considered a separate software blueprint. (Bass)  The structures are not necessarily 

independent, as they will often overlap.  As such, each structure and the interface with 

other structures need to be evaluated in terms of the quality factors defined in the SLAs.   

As more business essential processes and functionality rely on IT intensive 

systems, it is not realistic to expect that organizations will take a vendor’s word that the 

system under development will meet all of their quality requirements.  The organization 

should be able to independently evaluate the vendor’s architectural decisions and design 

as early in the software-development cycle as possible to ensure their requirements are 

being addressed. (Clements)   

Software architecture analysis is used to predict the quality of a product before it 

has been built.  The analysis provides information that can be used for architectural trade-

offs, risk analysis, and to ensure quality factors have been addressed.  Architectural 

analysis cannot be utilized to obtain qualitative measures (precise estimates) of the 

effectiveness of a particular design on a certain quality attribute. (Dobrica)  As a result, 

architecture analysis provides support for SLAs by ensuring the design addresses quality 

requirements, but caution should be used when utilizing analysis results as threshold 

measurements.  Although there are a number of methods to analyze architectures (Hulse, 

Dobrica, Garlan, Clements, Land, Bass), further work is needed before these models can 

produce qualitative or quantitative quality measurements needed for incorporation into 

SLAs. (Dobrica) They can however provide an estimate of how well the design will 

satisfy a particular quality factor.       
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SLAs also help to ensure that once the software architecture has been analyzed 

and accepted the architecture is not modified during the code phase.  Although an explicit 

software architecture is one of the most important software engineering artifacts to create, 

analyze, and maintain, it is difficult for developers to remain faithful to an intended 

architecture as design and implementation proceed. (Cross)  SLA penalties help to focus 

management attention on satisfying mission essential quality factors. 

 

B. SOFTWARE QUALITY FACTORS EFFECT ON DESIGN 

This section is intended to illustrate how quality factors can influence design.  The 

designer must choose an architecture that not only meets functional requirements, but it 

must also meet quality requirements.  In making that decision the designer needs to 

ensure requirements are met, risk are evaluated, trade-offs studies are performed, 

alternative designs are evaluated, and potential quality conflicts are resolved.  This 

section will briefly discuss some of the design considerations in meeting three quality 

requirements, but it is not intended to be a detailed study on design approaches and their 

effect on quality.    

1. Maintainability 

System maintainability is important to the availability of the system and lifecycle 

support.  Although the costs of developing a system increase as maintainability is 

improved, the end result is improved product performance and lower life-cycle costs. 

(Markeset)  Although it is difficult to quantify an overall measurement of system 

maintainability, proxy attributes and scenario-based measures can be utilized in SLAs.  

The attributes generally assess commonly accepted software engineering practices and 

processes.  Specific scenario based measures, such as the time it takes to recover the 

system from a power failure, can also be utilized. 

There are numerous design considerations that will affect maintainability.  Many 

of these properties can be measured utilizing automated tools once the code is 

constructed, but the designer must consider these properties before programmers begin to 

code.  The software needs to be designed with maintenance in mind.  There are a couple 
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of key design considerations that will help a design meet maintainability quality 

requirements, including modularity, testability, documentation, and complexity. 

Modularity is the decomposition of the system into specific components that 

satisfy assigned requirements.  These components are developed as part of the software 

architecture process.  Modules should be highly cohesive (perform only one task) with 

low coupling (simple interfaces between modules).  Other module characteristics that 

must be considered when designing for maintainability are intra-module control 

complexity, intra-module data complexity, and inter-module connectivity. Intra-module 

control complexity is concerned with the flow of decisions within a module. (Callis) This 

quality factor can be measured by the number of decision statements and nesting levels 

within statements (function calls shall not be nested more than 2 levels deep (Weigers)). 

(Callis)  Intra-module data complexity measures the average number of live variables per 

statement, the span of variables, and the number of operators and operands in the average 

statement. (Callis)  Inter-module connectivity measures information flow, including the 

number of information flows into a module, the number of data structures from which 

information is received, the amount of data produced from a module, the number of data 

structures that use that data, and the complexity of the information flow (Kitchenham) 

Maintainable software is also designed for testability.  Testability and 

maintainability have many of the same proxy attributes, as many of the characteristics 

that would make a program testable would also make it more maintainable.  Some of 

these characteristics include operability, observability, controllability, decomposability, 

simplicity, stability, and understandability. (Pressman)  Some of the design 

considerations for meeting these proxy attributes would include adopting common coding 

standards, managing change volatility, ensuring field verification so incorrect input and 

output are easily identifiable, functional separation, internal instrumentation, and error 

handling. 

As discussed previously, documentation is essential to good maintainability.  

Documentation needs to be well organized, accurate, accessible, and it must contain the 

appropriate level of detail necessary.  Requirement changes and modification during 

design is normal.  If those changes are not documented properly maintainability suffers.  
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Trouble shooting becomes more difficult if requirements are not mapped or recorded 

properly, models and the architecture were not updated, new interfaces are not recorded, 

and design rationale is not explained.       

The development team needs to have established procedures to ensure that once a 

change has been approved that all necessary documentation has been updated.  An audit 

of the processes used to implement an approved change can indicate whether the new 

requirement was properly documented, requirements models were updated, whether the 

change was properly approved and recorded, whether the change was communicated to 

others, and whether the architecture was updated. SLAs can help ensure documentation is 

accurate.  

Programmers must also document their code, so it can be easily audited.  The 

comment lines in the code capture the programmer’s tacit knowledge, and allows others 

to understand the programmer’s decision making rationale.  Once coding starts, another 

method to improve maintainability is to specify in the SLA an acceptable ratio of 

comment lines.   

Complexity is another measure of maintainability.  The less complex a program, 

the easier it is to maintain.  There are numerous metrics that can be used to measure 

complexity.  Two common models are McCabe’s cyclomatic complexity and Halstead’s 

theory of software science.  Both models can be utilized throughout the development 

process to ensure that the system in not overly complex.  Specific design considerations 

to reduce complexity include reducing lines of code and keeping operators and 

independent paths as small as possible.  

There are many other design considerations and models that impact and measure 

maintainability (Pearse, Basili).  Although maintainability of a system is difficult to 

measure holistically, specific metrics can be utilized in SLAs to influence design 

considerations.  The SLA development team in coordination with the developers can 

select the metrics or models that will be used to measure maintainability.    

2. Security 

There is a fundamental tension between designing for functionality and designing 

for security. There are several reasons for poor security in today’s software, including 



 129

lack of training on defensive programming techniques, programmers relying on 

compilers to identify errors, and the demand for novelty means that much software 

development is on the ‘bleeding edge’ and is thus less reliable. (Gilliam)  Another reason 

for poor security is the lack of a code analyzer that can parse through code, identifying 

common software vulnerabilities such as buffer overflows.     

The intent of a security SLA is to ensure that software security is incorporated 

into the design effort at the beginning of design efforts.  If designers concentrate all of 

their efforts on functionality and wait until testing discovers security vulnerabilities, the 

result will be schedule delays, less than optimal security, and greatly increased costs.   

The security of the system needs to be evaluated from a number of perspectives.  

The application, operating system, network (including firewall), data bases, PC, and the 

physical security of the host environment need to be evaluated for security, and all 

contain security metrics that can be utilized in SLAs.  An end-to-end SLA for security is 

difficult unless all parts of the system are managed and controlled by one entity, however 

pieces of the system can be analyzed and designed with security in mind.   

It is difficult to measure security as a holistic measure, however there are specific 

security metrics that can be utilized in an SLA to influence design.  One way an SLA can 

be utilized to address security concerns is to write the SLA such that an independent 

auditor will evaluate the security of the software design and in coordination with the 

software developers, they can develop a plan to correct deficiencies.  The SLA can 

stipulate the time necessary to perform the security corrections, or the SLA can mandate 

a percentage of the problems that must be corrected by a given date.     

Some of the most common security vulnerabilities include buffer overflows, 

script injections, changing environmental variables, numeric overflows, race conditions, 

information exposure, default settings, and programmer backdoors. (Gilliam)  Designers 

must also consider security vulnerabilities resulting from interfacing with other programs 

or systems.  

To combat these types of security problems, designers need to concentrate their 

efforts on four security requirements: identification and authentication, access control, 

audit, and system integrity. (Goodyear)  Identification and authentication ensures that the 
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system can uniquely identify an entity in a transaction.  Each entity must have a unique 

identifier, and there must be a way to bind the identifier to the entity. (Goodyear) 

Designers should utilize strong authentication where at least two authentication methods 

(what the user knows, what the user has, and what the user is) are used.  An example of a 

strong authentication is a smart card along with a biometric verification.   

Some examples of design considerations that address authentication include 

ensuring strong passwords (at least 8 characters that incorporate capitals, numbers, and 

special characters), establish an authentication period where the system times out after a 

period of inactivity, (Kabay) utilizing encryption protocols such as kerberos, ensuring 

passwords are strongly encrypted, and support for tokens or smart cards.  Controls also 

need to be established if the application is accessed via a portal where a single log on is 

utilized for all applications on the portal.   

Access controls determine what resources an entity can utilize. Access controls 

will determine whether an entity has been granted permission to access a program or a 

file.  The access controls also determine the rights that the entity has with respect to the 

resource (i.e., the entity can only read the file and not modify, or the entity has full rights 

and can read, write, save, delete).  Access controls are usually implemented by access 

control lists (ACLs) which specify the entity or a group that the entity is associated with, 

and the types of access that the entity has been granted with respect to specific files, 

systems, databases, application functions, or other resources.  Another way to implement 

access control is through role based access control (RBAC), which associates a job 

function to a set of resources, then assigns an entity to a job function. (Goodyear) It is 

also important to track those people that have root authority, and to keep root access to a 

minimum.   

Design considerations include ensuring essential files, operating system ports and 

files, database files, and application functions are restricted by access controls.  This also 

includes the ability to copy files.  The designer also needs to evaluate any interfaces with 

other systems to ensure that those programs are only given the access that they need.   

Auditing is the process of monitoring the system to record who accessed a 

specific resource and when. Designers can ensure logs capture the resources that were 
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accessed, the identification of the entity, times, what functions were performed, and the 

success of those actions. The logs should contain enough detail to allow security  

personnel to reconstruct events in the case of a security breach.  It should also be 

powerful enough to be used as an analytic tool for determining the root cause of poorly 

behaving systems. (Goodyear)   

System integrity is the assurance that a system’s implementation (or component) 

conforms to its design. Virus and worm attacks are probably the best example of system 

integrity attacks. Other examples are faulty parameters (setting that can be exploited), 

operational misuse, and data leakage. (Goodyear, Kabay) Designers need to keep system 

integrity in mind when designing the system.  Identifying all points where the program 

receives input from users and other programs and implementing procedures to 

authenticate, restrict, and validate input parameters will help to improve a system’s 

integrity.  In addition data integrity can be protected utilizing programs such as Tripwire.  

Security also includes the communication between the PC, servers, and database 

as well as network security.  Encryption, intrusion detection software, restrictive firewall 

policies, and security policies (remote access, placement of web servers) should also be 

addressed in the system design.   

Test personnel need to evaluate the project in all phases of its lifecycle to ensure 

that all security requirements were considered and incorporated.  They should also 

incorporate security requirements into their test plan to ensure security is evaluated in the 

development and testing phases.   

3. Performance 

Performance is another quality factor that is often ignored in the design process.  

Unless performance requirements are explicitly stated, developers will concentrate on 

ensuring the design meet functional needs.  Performance is often not considered until the 

testing phase, assuming it is incorporated into the test plan.  Unfortunately, if you design 

poor performance into a system, correcting the problems can be extremely difficult, 

resulting in cost and schedule overruns. (Loosley)   

Performance must be measured throughout the software’s lifecycle.  To manage 

performance, SLAs need to quantitatively define performance goals, so systems can be 
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designed to meet those objectives.  Performance models can be utilized to verify that the 

design incorporates the specified goals and test plans can be developed to ensure the 

performance requirements have been met.  Once the system has been fielded, the system 

must be monitored and tuned to ensure actual performance meets requirements.   

Software performance engineering (SPE) is a method for constructing software 

systems to meet performance objectives. (C. Smith, 1996) It is designed to augment other 

software engineering processes.  There are 10 fundamental activities of SPE including 

identify key business factors, specify performance objectives and priorities, evaluate 

design alternatives, summarize application workload mix, predict performance, monitor 

ongoing software performance, analyze observed performance data, verify performance 

expectations, tune application or system, and manage ongoing system performance. 

(Loosley)  SLAs drive many of the steps in SPE. 

Part of the SLA development effort is determining the performance qualities that 

are necessary to support critical business processes. The development effort also needs to 

identify key business factors that will affect the processing load placed on the system.   

Information processing needs depend on statistics like the number of customers, number 

of customer inquiries a day, peak hours, orders per hour, service hours, anticipated rate of 

growth, scheduled business events (monthly close-out), and use of remote sites. (Loosley)   

Performance is dependent on a given workload; therefore an anticipated workload 

should be included in any SLA with specific performance targets.  It is important to 

establish a baseline workload for the SLA, so that performance issues caused by 

excessive throughput that is outside the scope of the SLA may be identified.  Most of the 

components in the IT infrastructure have limitations on the level to which they should be 

utilized.  Beyond this level of utilization, the resource will be stressed and the 

performance of the application will be impaired. (ITIL)  For example, if the SLA is based 

on an average usage of 1,000 employees, and the application is actually being used by 

10,000 employees, the service provider may not be able to meet agreed upon SLAs.  In 

this case the service provider should not be held accountable due to revised user numbers.  

A system’s performance can be described in terms of workload (instruction sets or 

transactions), response time (the time to process a single unit of work), throughput (a 
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measure of the amount of work that can be done in a certain amount of time), resource 

utilization (the level of use of a particular system component), and resource service time 

(latency and queuing time for resources). (Loosley)  Some qualitative performance 

metrics that can be incorporated into a SLA include speed (processing time, retrieval 

time, response time), throughput (transactions per second), and timing (soft and hard real 

time demands). Strict performance requirements significantly affect software design 

strategies and hardware choices.   

Once performance quality factors have been determined, the next step is to 

develop models to assess the performance qualities of proposed designs, and select a 

design that best meets the performance requirements. The performance of a system must 

be evaluated in terms of the structure of the software program (instruction length, data 

accesses, instruction mix), and characteristics of the target system (CPU speed, bus 

width, operating system, I/O characteristics, memory).  The performance should also be 

analyzed at a number of different abstractions.  There are numerous models that can be 

utilized to predict performance qualities. (C. Smith 1998, Menasce, Lazarescu) These 

models tend to focus on the essential processes of the system, resource usage and speed, 

and queuing theory.  The models used depends on where in the lifecycle the model is 

being applied, the skill level of the design team, the size of the system being developed, 

the time, resources and funds available, and the level of abstraction being modeled.   

The models are usually grouped into analytic models and simulation models.  

Analytic models utilize queuing theory and mathematical analysis to evaluate the impact 

of all processes on each resource, then computing the delays each process experiences 

waiting for service. Simulation involves running a simulated process through a software 

model of the system, which includes modeling each resource, models of the queue for 

each resource, models of processes within the resource, a model of the clock, and running 

a simulated process. (Loosely) Depending upon the size of the application, its 

architecture and its distributed nature, multiple models may be necessary.  In a 

client/server architecture, it may be necessary to model message communication between  



 134

the client and the server, as well as model application procedures at the client and server 

side to capture the application logic and the pattern of access to the system resources. 

(Menasce) 

The results of analytic or simulation models can be used to validate performance 

quality factors specified in SLAs.  However, the models should be independently 

verified, and the quality factors should be rather general, (i.e., a specific procedure should 

process in less than 5 seconds) as the models are estimates and are not intended to be 

highly accurate (formal real-time models are an exception).  As the system progresses in 

its lifecycle more accurate testing can be performed against actual code.  Performance 

models are used more as a method of evaluating different designs than providing accurate 

quantitative values. 

Modeling performance is not without difficulty.  Estimations at the source level 

have problems taking into account compiler optimations such as loop optimizations, 

copying global variables into machine registries, dead-code elimination and constant 

propagation. (Lazarescu)  It is also difficult to account for constructs using dynamic data 

structures, recursive procedures, and unbounded looping. (Suzuki) In addition, as the 

level of abstraction rises, the structure of the software becomes more difficult to take into 

account as it becomes further removed from the abstract representation. (Suzuki)  

Approaches for dealing with these problems include modeling a program in terms of a 

pre-calculated instruction code size and execution time, or where execution time is a 

function of the number of instructions and the MIPS rating of the target system. (Suzuki)   

The intent of including performance quality factors in SLAs is to ensure 

performance is considered in the design of the system.  There are numerous design 

alternatives that can improve performance at the system architecture level through to the 

software components.  Some design considerations include load balancing (managing 

how processes are input into the server), thread architecture (taking advantage of 

parallelism and multiprocessor systems), balancing disk traffic (storing data on disks 

efficiently and strategically), locking strategies (identifying where locks are necessary, 

and when), resource management (identify resource intensive processes and potential 
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bottlenecks), and optimizing code for space as smaller code fits in fewer pages, leading to 

a smaller working set, fewer page faults, and it fits in fewer cache lines. (Reilly) 

High performing systems also demand efficient use of memory (strategic use of 

cache). Modern processors are so much faster than RAM that they need at least two 

levels of memory cache.  Memory cache consists of the fast L1 cache and the slower, but 

much larger L2 cache.  A reference to L1 may cost 1 CPU cycle, L2 may cost 4-7 cycles 

while reference to main memory may cost 12-100 cycles. (Reilly) If data that is used 

together (temporal locality) is not stored together (spatial locality), it can lead to poor 

performance.  Arrays have excellent spatial locality, while linked lists and pointer based 

data structures do not.  Packing data into the same cache line usually helps performance, 

but not necessarily on multiprocessor systems, as cache sloshing (different processors 

updating the same cache line with their data) may be a problem.  Caching must be done 

carefully.  If the wrong data is cached, it is wasted memory.  If too much is cached, less 

memory will be available for other operations.  Not enough cache will result in wasted 

processor cycles, as the information missed in the cache will have to be retrieved. (Reilly)  

To meet the performance quality factors specified in SLAs designers will have to 

increase their attention on performance issues such as memory allocations, cache lines, 

caching data, thread proliferation, locking strategies, resources available in the host 

environment, blocking calls, efficient algorithms, and resource utilization.  Performance 

models will help the designers to analyze tradeoffs and independent evaluation can verify 

that a particular design will or will not come close to meeting performance thresholds in 

an actual system.  

 

C. DEVELOPMENT QUALITY 

This section will briefly discuss how SLAs can be used to influence project and 

process quality.  Chapter 1 mentioned a number of project and process metrics and 

models.  This section will discuss a few of the project and process metrics, and whether 

they can be incorporated into SLAs to help improve software quality.  The metrics 

chosen to measure project and process quality will depend upon the size of the project, 

the skill of the developers and program managers, time to market, funds and resources 
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available, the return gained from the measurement effort, and the ability of the metric to 

accurately measure the quality objective. 

1. Schedule 

It is very important to choose the correct metric to measure a quality factor.  For 

example, cost, schedule and function are the most important metrics to a program 

manager.  However, cost and schedule may not be the best metrics to utilize in a SLA.  

There are numerous models that attempt to estimate cost and schedule (COCOMO II, 

Function Points), but these models are not accurate enough to utilize in a SLA.  Another 

difficulty is that establishing a software project’s true duration schedule can be one of the 

trickiest measurement tasks in the entire software domain. (C. Jones, 1995) Determining 

when a project starts and is truly complete is difficult and must be precisely defined in the 

contract. In addition the pressure to meet those thresholds may result in the developers 

skipping important development steps that will ultimately result in large maintenance 

costs later in the lifecycle.  It is difficult to develop a contract that is so all encompassing 

that the developers will not be able to “cut corners.”  Cost and schedule are metrics that 

are best included in the development contract, but not in a SLA. 

2. Process Quality 

One use of SLAs is to ensure that processes and standards are being adhered to.  

There are numerous standards that can be incorporated into SLAs.  The SLA will specify 

the standards that must be adhered to and it will define the method to verify compliance.  

A third party can easily be utilized to verify compliance.  Incorporating standards in 

SLAs provides a number of benefits.  Standards provide a common methodology that 

makes management easier as they provide the basis against which activities can be 

measured and evaluated. (Horch)  Standards are also useful in that they generally reflect 

industry best practices.  Standards can be applied to development, coding, naming 

conventions, documentation, user interfaces, interoperability, architecture, and operating 

procedures.  However, just because standards exist does not mean that they will be 

utilized.  Incorporating standards in an SLA ensures that developers are aware of the 

standards, and that the standards will be incorporated into the development effort.  



 137

Some standards include ISO/IEC 12207and IEEE 1074, which specify processes, 

activities and tasks for software acquisition, development, operation, and maintenance 

that should be accomplished throughout an application’s lifecycle.  NIST 4909 (Wallace) 

and IEEE/EIA 1498 provide standards on documentation.  IEEE 1059 provides standards 

on testing, as does ISO 9126.  IEEE, ANSI, ISO and the Electronic Industries Association 

(EIA) have numerous other standards that can be incorporated.  Although standards are 

useful, the SLA development team needs to be careful when selecting the standards to 

utilize.  Some standards are very general and are open to much interpretation, and others 

may not be applicable to the project being developed.      

Development processes can also be specified in a SLA.  Specifying specific 

processes has many of the same advantages of specifying standards.  Applying well 

defined, standardized software-development processes increases software quality and 

makes the development effort more cost effective and predictable. (Gnatz)  Specifying 

the processes in the SLA helps to ensure that they are recognized and adhered to.  Unless 

processes are contractually mandated, cost and schedule pressures quickly become more 

important, and necessary procedures are skipped.  

One example of a commonly utilized development process standard is the CMMI 

model.  The CMMI model defines specific key performance indicators (KPI) that must be 

established to obtain a specific level.  A SLA can easily state that a development agency 

must abide by CMMI level 3 or higher.  The Software Engineering Institute can be used 

to validate compliance.  Many of the KPIs cover procedures that need to be performed to 

ensure a quality product.  However, it must be noted that just because an organization has 

a process in place, it does not mean that they are utilized on a specific project.  The SLA 

needs to be specific that all procedures at a particular CMMI level are in fact applied to 

the project, and that they are applied correctly.  

3. Defects 

Another common metric used to measure the effectiveness of a development 

effort is the amounts of errors found at a particular milestone.  Some common metrics 

include defect density per software product, defect density per lifecycle phase, defects 

found by review, defects found by testing, user detected defects, cost of defect detection, 
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cost of defect correction, requirement errors as a percentage of total errors, defects 

incorrectly corrected, mean time to correct a defect, trouble tickets outstanding, and 

anticipated defects based on statistical analysis. (Horch) 

Incorporating defect rates in SLAs is intended to encourage developers to 

implement their own software quality control procedures.  Most development plans will 

contain formal quality control procedures such as audits, code walkthroughs, and testing. 

These plans should detail the quality control procedures, when they will be applied, and 

by whom. The quality control procedures are intended to measure product quality and 

provide feedback on the development process.  Any errors found during the reviews or 

tests can be corrected and analyzed to determine their cause.  Unfortunately, there are 

some developers that rely almost entirely on testing to discover any defects.  This 

approach will ultimately result in more maintenance and costs.  SLAs can be utilized to 

ensure reviews and audits are performed by third party inspectors at significant 

milestones.  SLAs can also be utilized to ensure that the errors identified in the reviews 

are corrected. 

A common metric that can be utilized in a SLA is defect density per KLOC (no 

more than 6 defects per 1000 lines of code).  When dealing with defects it may be a better 

strategy to offer an incentive rather than a penalty.  The goal is to encourage the 

developers to do their own internal reviews before the formal reviews to ensure they are 

using proper standards, procedures, and quality control procedures to analyze and correct 

defects.        

If defects are used in an SLA, it is important that all stakeholders, including any 

third party auditors understand the definition of a defect, what constitutes a significant 

defect and what does not, and the methods that will be used to audit the project or 

product.  A defect can be defined in terms of documentation errors, code errors, standards 

violations, requirements that were not met, improper output, model errors, module 

attributes (cohesion, coupling, complexity), or scheduling errors.  

The SLA should also establish thresholds based upon the severity of the defects 

discovered.  Stakeholders need to determine the various categories of defects and rate 

them based upon their impact to the mission and quality of the system.  All errors do not 
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need to be fixed immediately, as some errors will not affect the functions or performance 

of the system.  Those errors should be identified and fixed at a later time, as more effort 

can be expended working on more significant problems. 

Defect audits have the potential to anger or demoralize the development team.  

Nobody likes to have their work scrutinized by personnel outside of their organization.  

The fact that audits are designed to improve the overall quality of the product needs to be 

stressed.  The program manager will have to work hard to ensure that everyone views the 

audits and reviews in a positive light.  This is one reason to utilize incentives rather than 

the more negative connotations of a penalty.  Another approach is to write the SLA such 

that a percentage (95%) of all identified defect must be accurately resolved based on 

results from a follow-up inspection. 

 

D. TESTING 

This section will demonstrate how SLA development can assist the test 

community in the development of their test strategy.  The main goals of testing are to 

challenge the software implementation of the requirements and the early detection of 

problems.  Testing needs to be performed throughout a system’s lifecycle to predict and 

evaluate the quality of the proposed design and implementation.  SLAs can assist the 

testing and evaluation process in a number of ways, including identifying business 

critical processes, defining quantitative metrics to measure quality factors, identifying 

testing procedures, and ensuring testing is conducted throughout the system’s lifecycle.   

Much like the development effort, testing must be carefully planned, designed, 

executed, and reported.  The test strategy outlines how the software system will be tested 

throughout its lifecycle and at the end of each development phase.  It specifies what will 

be tested, when it will be tested, how it will be tested, the type of test needed, who will 

perform the testing, who will witness or verify the testing, what resources are needed 

(hardware, software, tools), calibration requirements for equipment, and acceptance or 

exit criteria.  Part of the SLA development process is determining how quality factors 

will be verified.  The SLA development process facilitates communication between the 

developers and the testing community at the beginning of the development effort.  
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Developers and testers need to have procedures and processes in place to identify and 

remove errors during requirements engineering and design before they are translated into 

code. (GSAM)  Developing the SLAs will encourage both communities to develop a 

mutually agreed upon test strategy for the quality factors.  Hopefully, this communication 

will encourage the developers and testers to also collaborate on a test strategy to address 

the functional requirements. 

The software-development plan should detail all of the processes to be performed 

at each phase in the lifecycle.  Each process should have deliverables, which will be 

validated and verified.  Verification ensures the deliverable is complete, correct, 

conforms to standards, and was developed using proper procedures.  Validation checks 

that the deliverables satisfy specified requirements (requirements tracing), and ensures 

that the deliverable does not have unintended consequences. Once the deliverables have 

been validated and verified, testing will be conducted to ensure that each specification 

has been properly implemented or satisfied. (Goodyear)  These phase end reviews 

include the software requirement review, the preliminary design review, the critical 

design review, test readiness review (against product baseline) and the formal acceptance 

audits. (Horch)  SLA can be used to ensure that phase end audits are incorporated into the 

test strategy and that they are performed.  

SLAs can also ensure that other audits are performed.  Some other audits include 

documentation reviews, requirements reviews, design reviews, test plan reviews, user 

documentation reviews, and implementation reviews. (Horch)  SLAs can also ensure that 

certain tests are performed to ensure quality factors are being addressed.  Some of the 

tests include unit testing, module testing, integration testing, coexistence testing, system 

testing, user acceptance testing, performance testing (stress tests), implementation testing, 

regression testing, and pilot implementation testing. (Philcox)   

The amount of time, effort, and money that needs to be devoted to the testing 

effort is often underestimated.  It is not uncommon for standard systems to spend 

between 50 and 80 percent of the development budget on test related activities (test 

execution, analysis, and error resolution). It is impossible to fully test a program. (Kaner)  

Traditional testing approaches only cover approximately 40 percent of the application 
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code. (Goodyear) SLAs help the test effort by focusing attention on the business critical 

processes that were identified in the SLA development process.  As a result testing can be 

prioritized and focused on those processes that present the greatest business risk. 

SLAs specify quantifiable quality metrics.  These metrics should be incorporated 

into the test plan to assess the system’s quality.  This helps to guide the testing strategy 

and it prevent situations where the test program is aimed at showing that the software, as 

produced, runs as it is written, instead of challenging requirement compliance. (Horch)   

 To the extent that SLA encourages testing and the involvement of developers and 

the test community, it also drives testability in the design.  Several key drivers for 

testability include fault tolerance (log data errors rather than allowing a crash), controls 

(input validation, access control, database balancing), error handling (identify and log 

errors), multiple operating modes (the system should have a production and test mode), 

and self-testing (validation of entry criteria). (Goodyear) 

 

E. SUMMARY 

SLAs improve the quality of software by incorporating quality factors into the 

development effort.  The product quality factors specified in the SLAs drive design in 

much the same way as functional requirements.  SLAs force quality to be addressed at the 

beginning of development and SLAs ensure quality is monitored throughout 

development.  Once quality requirements are identified, the developers can select an 

architecture and design a system to best meet those goals.  The test strategy will measure 

and evaluate those quality factors throughout the lifecycle to identify any areas that may 

not meet quality requirements.  

Process quality and development quality can also be addressed by SLAs to 

improve the overall quality of the software.  Although adherence to standards and 

processes does not guarantee a quality product, their use will greatly improve the 

possibility of obtaining higher quality.  Monitoring the quality factors associated with 

process and project quality will also help to quickly identify problem areas and risks so 

they can be addressed early in the lifecycle. 
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VII. SOFTWARE QUALITY FACTORS 

This section on software quality factors provides additional information on how 

quality factors are determined.  It is expected that the processes discussed in this section 

were performed during the SLA development and/or requirements elicitation.  The intent 

of this section is to demonstrate some of the difficulties associated with determining 

which software quality factors to utilize, and how the template SLAs can provide some 

help in making that determination.  

Determining software quality factors that contribute to the success of the system 

or project can be difficult.  It is easy to state that a system must be maintainable, 

available, dependable, portable, usable, or secure, but determining the correct level of 

abstraction to apply those factors, and quantifying them is more difficult.   This difficulty 

is one of the reasons that non-functional quality factors are not always incorporated into 

the requirement specifications. 

There are numerous quality schemes.  Chapter II outlined some of the models.  

Papers from Charette, McCall, Boehm, and ISO 9126 discuss quality factors and their 

applicability to various situations.  However, a detailed discussion of quality factors and 

quality metrics is beyond the scope of this dissertation. Instead, the purpose of this 

section is to discuss a methodology for selecting quality factors, highlight some of the 

difficulties associated with some of the quality factors, and propose how template SLAs 

can assist in the selection of quality factors.   

 

A. DETERMINING QUALITY FACTORS 

Chapter I outlined four areas where quality factors can be applied.  This section 

will illustrate an approach to determining product quality, although this approach and 

discussion has applicability to project, process, and post-production quality factors.  IEEE 

standard 1061-1998 presents a good framework for determining what product quality 

factors are needed and what metrics will determine whether those goals have been 

achieved.   
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The first step is to determine the quality factors for the system.  The quality 

factors specified for the system requirements also need to be incorporated into the 

software components of the system.  In addition to system quality factors, the software 

will need quality factors to ensure the software supports the underlying business process.  

Each of these quality factors should have direct metrics that specify quantitative 

measurements.  In some cases it will not be possible to directly measure a quality factor.  

It may be necessary to specify surrogate or proxy attributes during each of the 

development stages.  For example, code complexity can be a surrogate for reliability, 

testability or verifiability. (Schneidewind 1997, Weigers) 

Part of this step is to determine those qualities that contribute to project success.  

The quality attributes may be prioritized based upon criticality to achieving a project 

goal, or it may be based upon a return on investment.  Regardless of the methodology 

used to prioritize the quality factors, the fact that they are prioritized makes conflict 

resolution easier.  The requirements engineer and the stakeholders can then evaluate the 

alternative design options and determine a solution that will satisfy the requirements.   

The next step is to assign quality sub-factors to the software quality factors.  This 

is essentially decomposing the quality factors into measurable software attributes.  

Building goal trees can assist in finding sub-factors.  An example is the quality factor 

‘usability’ which may be further decomposed into flexibility and sharing of information.  

Flexibility may be further decomposed into future growth and flexible work processes.  

Future growth can be further decomposed into design for extra personnel and design for 

modularity. (Mylopoulos) The quality sub-factors are usually more tangible and have 

greater meaning to programmers and analysts.  

This step also focuses on the object of the measurement.  Different parts of the 

same project may require different quality factors.  In a N-tiered architecture, the front-

end piece may need the quality factor of ‘usability’, whereas the back-end database may 

need the quality factor ‘security’ or ‘integrity’.  Differentiate the quality attributes that 

apply to the whole system from those that apply to specific components. (Weigers) 

The final step is determining the specific metrics to assign to the sub-factors. This 

phase will also assign threshold values to the metrics and identify the means to measure 
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the metrics.  This decomposition of quality attributes or factors helps the requirement 

engineers and software architects better understand the application domain, as well as 

highlights potential conflicts between the software goals.   

This process should be evaluated at each stage of the software’s lifecycle, and as 

changes are made to requirements. It is important to note that measurements obtained 

early in the development lifecycle will not be as quantifiable as those in the later stages of 

development.  As development progresses, requirements and processes will evolve; those 

artifacts measured during requirements analysis will generally not be the same as those 

measured in the testing phase.  In the early stages measurements will be taken on static 

objects such as architecture design, or specifications.  In the later stages the 

measurements will be taken on dynamic objects such as the code itself.  (Schneidewind 

2002) 

Template SLAs are SLAs that have already been developed for specific services.  

Template SLAs represent the best of breed or industry standard.  Although there is 

currently not an industry standard, appendix (A) represents an attempt at establishing a 

template SLA for host services.  Template SLAs that can be used to help in the quality 

factor selection.  In many cases the user and program manager do not know what quality 

factors to utilize, nor do they know how to prioritize the attributes.  Questions such as 

how reliable does the system have to be can be difficult to quantify.  In the elicitation and 

validation process, requirements engineers are able to use methods to extract this type of 

information from users, but template SLAs are a good place to start in that they provide 

good examples of the types of software factors and goals that other organizations felt 

were important to their projects.  Template SLAs also provide good examples of the level 

of abstraction to apply specific quality factors as well as presenting a scenario that 

illustrates the number of software factors and thresholds that should be used.  It is not 

unusual for organizations to collect too many measurements.  Excessive information is 

difficult to manage, and often leads to casual analysis or frustration. (Baker)  Finally, 

template SLAs help the program manager by defining the quality metrics, specifying 

thresholds, and identifying their method of measurement.  Some quality factors can be  
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difficult to define.  For example the quality factor of usability can only be used in the 

context of the target user population, but it is often developed from the program 

manager’s perspective. (Nuseibeh) 

 

B. CONFLICT RESOLUTION  

“Excellent software products reflect an optimum balance of competing quality 

characteristics.” (Weigers)  Determining the optimal balance is difficult in that the users, 

program managers, and developers all have different perspectives, and their respective 

quality factors will be determined from that perspective.  Each stakeholder will have 

different priorities supporting the qualities that they feel best meet their needs. 

The requirements engineer must first collect all of the quality attributes that the 

stakeholders feel are important.  The next step is to work with the stakeholders to 

prioritize the quality factors.  The goal of prioritizing the quality attributes is to focus on 

those attributes that best support the mission or goal of the project.  Prioritizing the 

quality factors is important because some quality factors conflict with one another.  The 

prioritization helps in the resolution of any possible conflicts. 

Resolving requirements conflict is not easy as some combinations of quality 

attributes conflict with one another.  It is important to understand the interrelationships 

that exist between the various quality attributes.  Some attributes complement each other 

such as reliability and availability or flexibility and portability.  Other attributes do not 

work well together.  The attributes of flexibility and security often conflict as the 

measures to make an application secure also make it less flexible.      

Attributes, such as efficiency, conflict with numerous other quality attributes.  

Tight precise code often conflicts with maintainability, portability, interoperability and 

flexibility.  Additionally, attributes such as flexibility, usability and portability often 

conflict with performance goals. (Weigers)  It is important to understand the trade-offs 

associated with each quality attribute as the choice of attributes will drive the 

architecture, coding, and testing.  Understanding the attribute trade-offs also helps to 

form or manage user expectations. 
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Template SLAs can assist in the determination of what quality factors were 

important to other projects.  The template SLAs can be used as a case study to see how 

other organizations weighed the benefits of the various quality factors against the mission 

or goals of their project.  The template SLAs can be used as a starting point to determine 

which attributes are important to the stakeholders.  The requirements engineer can then 

work on prioritizing the attributes, weighing the trade-offs, and resolving conflicts. 

 

C. RESPONSE TIME 

This intent of the next two sections is to discuss two quality attributes in depth 

and illustrate how they can be incorporated into SLAs.  The focus of these two sections 

will be on the post-production phase of the lifecycle.  Many of the issues discussed in this 

section were debated and the end result was incorporated into the SLAs in appendix (A).  

This section will discuss response time as a quality attribute, and the next section will 

discuss availability.   

Response rates are extremely difficult to measure, and may in some cases, be too 

difficult to utilize in SLAs.  The quality metric response time is a good indicator of 

customer satisfaction.  Many quality metrics are technical in nature, but response time 

maps well to end-user’s needs.  If an application does not respond within a certain time 

parameter, the user becomes frustrated and their perception may be that the IT 

department or the service provider is not doing their job, or that the application does not 

meet quality requirements.  Response rates are most useful from the perspective of the 

end-user.  When a user enters a command, that individual is only concerned with how 

fast an answer or response is provided.  Therefore, an end-to-end measurement of 

response time best satisfies the end user. 

Response time is generally described as a measure of how long it takes from the 

time a transaction is initiated until all of the results are received.  However, this definition 

needs additional clarification for use in a SLA.  The definition must state at what point 

measurements begin and when they terminate.  Additionally the SLA must state how 

response time will be measured.  The definition above assumes an end-to-end response 

time from the client to the server and back, but the service provider may not own the 
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entire infrastructure.  Many organizations have included response time SLAs in their 

contracts, but most of these SLAs do not adequately define the parameters of the 

measurements, nor do they define how measurements will be conducted.  The measuring 

of response times is a complex process even if the service is an in-house application 

running on an intranet. (ITIL)  It is very important that the SLA defines response time in 

sufficient detail that all stakeholders understand its meaning and how it will be measured.   

End-to-end response times are possible when working within an intranet structure, 

where the PC, server, and infrastructure are all owned and operated by one provider.  

Unfortunately, this architecture is rarely the case.  In the case of the Navy/Marine Corps 

Intranet (NMCI), the PC is owned and operated by Electronic Data Systems (EDS), the 

infrastructure to the outbound firewall is owned by EDS, the NIPRNET connectivity for 

the DoD intranet is managed by the Defense Information System Agency (DISA), 

external connectivity to the Internet is either managed by DISA, or contracted with local 

service providers such as SMARTLINK (AT&T), an application’s server and host 

environment may be owned and managed by another service provider, and finally the 

application itself can be run by a Navy activity, DoD, or a commercial service provider.  

In this scenario it is extremely difficult to guarantee any level of service, since no one 

provider owns all of the pieces between the PC and the application.   

The distributed nature of today’s environment further complicates response time 

SLAs.  Applications may have to query back-end databases over the Internet to gain the 

information necessary to satisfy a request.  In this case, Internet latency can significantly 

affect response time.  Issues such as bandwidth and control over the database are also 

issues.  If the same service provider did not manage all of the servers in the tiers it may 

be necessary to specify response times for the various tiers at the server level.  For 

example, when a front-end application receives a HTTP request, it may be necessary to 

measure the time from receipt of the request until the web server sends a request to the 

mid-tier server.  

It is possible to study the service level contracts that have been negotiated with 

each of the component service providers and develop an overarching response time.  For 

example, in a scenario where there are three service providers covering services from the 
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PC to the firewall, Internet access, and a host service provider, the response time for each 

can be added to determine a threshold.  If the service providers agree that 1-second is an 

acceptable response time for their portion of the transaction, then an end-to-end SLA can 

be written for 3 seconds.  In this scenario, a separate SLA will have to be negotiated with 

each service provider, or if there is one overarching organization responsible for the 

compute environment, then the third party agreements with other service providers will 

be tallied to arrive at an overall figure. 

In reality this scenario is still difficult to manage and enforce.  The application 

may have to be reengineered to incorporate certain APIs, time stamps, or exceptions to 

gain the response time information or monitoring devices would have to be established 

along the route from the PC to the server and back.  All of the monitoring devices must 

be synchronized to identify and track a specific transaction.  This would require that the 

service providers allow agents or monitoring software to be installed within their portion 

of the transaction.  This may pose too much of a management challenge and security risk 

for most ESPs, as they do not want every client insisting on installing their own 

monitoring devises.   

One problem with specifying response times with an application is that certain 

application functions may take longer than others.  Some financial applications can take 

hours to calculate end-of-month returns. The question is whether it is possible to identify 

specific transactions and track and record their response time.  If this is the case, then the 

application owner will have to identify those functions that are business essential, 

determine a response time threshold, and then tie a response time SLA to the specific 

functions.  For example a web server should load a page within 2 seconds, while a 

database may take 30 seconds to a minute to execute a complex report.  It is best to 

survey users to determine what response time is adequate for a given transaction.  

Typically the minimum and average measurements of response time are of interest.  

Benchmark studies of similar types of transactions can help determine acceptable 

thresholds for different types of queries.  

It is also difficult to measure and aggregate the response times for multiple 

threads within the same program.  If a session on the server consists of numerous threads 
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that in turn produce additional threads, some of which may execute distributed or 

sequential tasks, can the agents or measuring devices aggregate the total output?  This 

becomes even more difficult if processing occurs on both the servers and the PC.    

Especially if some of the events are sequential.   

Determining the cause of a delay may be difficult.  If the operating system (OS) is 

the cause of the delay, how is that information being captured? Network and firewall 

delays, Internet latency, application errors, and user errors can all contribute to slow 

response times.  To effectively isolate the cause of delays, monitoring devises will have 

to be installed at the various pieces of the infrastructure. 

Another difficulty in accurately measuring response time is that the software 

performing the monitoring must be able to identify inputs, and the corresponding outputs.  

This means that whatever software is performing the packet sniffing operation must be 

able to not only identify the header addresses, but it must also be capable of determining 

packet content and determining whether the packets are inputs to a transaction, or are 

simply communication protocols.  They must also be capable of determining whether the 

application is responding to the input in sequential order.  If the server receives input 1 

and input 2, before responding, can the software determine if the server is responding to 

input 2 before input 1?  

If an end-to-end measurement appears to be too difficult, another approach is to 

monitor response time on the server itself.  This approach does have some drawbacks.  

From an end user perspective, this is not a satisfactory solution as the application 

response time is the only part that is measured.  It is not representative of the end users 

needs.  Coordination problems with tracking individual inputs and their associated 

outputs still occur in the server.  Additionally, the overhead associated with recording 

response time for applications with hundreds of concurrent users may actually slow down 

response time.  

Rather than attempt to monitor the response time for every session, it is much 

easier to utilize the windows consoles on the server to run a program on the server itself 

that will measure response times to specific inputs.  This type of a program is essentially 
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a synthetic transaction.  In essence this is an end-to-end measurement from the server 

console through the operating system, to the application, and back.  

In this approach, the program manager needs to determine the most important 

application functions to monitor.  A program can then be developed to send input 

representing the various functions to the server to monitor response time.  The program 

can execute at various times, testing all of the functions, or selecting individual functions 

randomly.  This approach measures response times using statistical analysis, and is not 

concerned with attempting to measure response times for each concurrent user.   

This program could also be run remotely using active X, although this will not be 

allowed under NMCI, and will probably not be allowed through the server environment’s 

firewall. To ensure that the service provider does not tamper with the results, the server 

can e-mail the results to both the program manager and the service provider.  A read only 

file will not work as the service provider has root authority, and can change permissions.  

One disadvantage with this approach is that a program has to be written to 

perform the synthetic transactions.  A third party solution would be preferable, and some 

do exist for testing web sites, but application specific transactions will have to be 

developed.  Benchmark tests can help determine response times for each function 

executed.  The response times for specific synthetic transactions can be incorporated into 

a SLA.  Although this may not satisfy the end-user, it will ensure the server is operating 

effectively, and it will help to trouble shoot problems.  

If response time SLAs are used, automated tools are essential in measuring 

compliance with the threshold requirements.  SLAs that require help desk calls to 

determine whether response times have or have not been met should be discouraged.  

Automated tools are a necessity to remove the subjectivity associated with determining if 

the service is responsive or not.  Help desk metrics put all of the reporting responsibility 

on the end users and the help desk approach also does not scale well.  How many people 

have to report the incident before it is considered a violation of the SLA?  What if there 

are thousands of potential users? 

The SLAs in Appendix (A) do not contain response time as a quality metric.  It 

was too difficult to develop a SLA given thousands of different applications, multiple 
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service providers, and security concerns.  Synthetic transactions can be used, but each 

program will have to determine whether they want to use that approach or not. 

 

D. AVAILABILITY 

Availability can be defined as the ability of an IT service or component to 

perform its required function at a stated instant or over a stated period of time. (ITIL)  

Availability indicates the percentage of time that a system or service is expected to 

operate satisfactorily. (Wang) The formula for computing availability is composed of 

reliability and maintainability data.  Reliability is the probability that a system will not 

fail.  Reliability is generally defined in terms of the mean time between failures (MTBF) 

or mean time to failure (MTTF).  Maintainability is defined as the time it takes to repair 

the system and restore it to operating condition.  Maintainability is often expressed as a 

mean time to repair (MTTR).  A common formula for availability (a) is a = 

MTBF/MTBF + MTTR.  Another formula is uptime/uptime + downtime, where uptime 

consists of operating time and standby time, and downtime consists of unscheduled and 

scheduled downtime. (Hurst)  Although the formulas appear to be straightforward, 

availability is difficult to incorporate into a SLA. 

Overall availability is a function of the availability of the components (hardware, 

network, application software), the speed at which failures can be identified and repaired, 

the skill sets of the support personnel, the complexity of the infrastructure and 

application, the security of the system, logistical support, built in redundancy, and the 

application of tested procedures and processes. 

Availability directly influences business and user satisfaction.  However, unlike 

response time, availability is more technical in nature and does not map as well to an end-

user.  Many argue that response time is a better indicator of customer satisfaction.  Some 

even argue that an availability quality metric is not necessary, as problems with 

availability will be reflected in response time measurements.  For example, a server may 

be available, but the application may not be usable due to delays as a result of too many 

concurrent users. Response times would indicate situations where on-line shoppers 

disconnected due to slow processing times, where availability may not. 
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There has been much discussion on whether SLAs should concentrate on the 

technical side which concentrates on metrics associated with server, OS, infrastructure 

and application performance, or should be SLAs really be concerned with the perceptions 

of the end-user and the business processes owners.  If the end-user inputs a transaction 

and receives a result within an acceptable time, are any other SLAs really needed?  Is it 

necessary to specify server performance thresholds (CPU utilization, available table 

space) if the application is responding to input requests within specified time frames?   

The author believes that, if possible, both response time and availability should be 

included in SLAs.  Availability metrics require that the network, servers, and operating 

system be monitored for performance compliancy.  This monitoring activity is essential 

in performing trend analysis, capacity management, troubleshooting, and measuring the 

effects of configuration changes.  Availability monitoring is a proactive measure that will 

help to alleviate problems before they occur.  Response time monitoring is reactive in 

that it will only report a problem once it has occurred. 

Before SLAs can be determined for availability it is necessary to determine the 

level of availability that is needed by the application.  Availability thresholds must be 

realistic.  The higher the availability needed, the more costs will be incurred.  If a system 

has an availability of 99.9 percent, the cost of improving the system’s availability to 

99.99 increases from 5 to 10 times for every additional 9. (Factor) A cost benefit analysis 

is highly recommended to determine the business losses or opportunity losses resulting 

from application downtime as compared to the price of maintaining a certain level of 

availability.   

Availability is another area that is difficult to manage if the entire supporting 

infrastructure is not owned by a single entity.  Unless the contractor has control over the 

PC, the entire infrastructure and the server, end-to-end SLAs will be difficult.  Before any 

end-to-end agreements are made, the program manager needs to review the proposed 

SLAs with the service provider and all other third party service providers.  It may be 

necessary to review the agreements with each infrastructure service provider to ensure  
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that the appropriate conditions and controls necessary to comply with the SLA are met.  

However, this assumes the contractors and third party providers are willing and capable 

of meeting proposed SLAs.  

To properly determine an end-to-end SLA for availability, it is necessary to map 

and monitor all of the components necessary to provide full functionality.  The reliability 

of each component must then be determined.  Components can include server and 

network hardware, operating system software, as well as application software.  It is 

important to remember that in order to achieve an aggregate reliability figure for a 

system, the reliability of each component is multiplied.  If three items (PC, network, 

server) have 99 percent reliability, their aggregate reliability figure is .993 or 97.03 

percent.  The reliability of all of the component pieces in the system will determine the 

end-to-end SLA.  

If reliability is the probability that a system will not fail, then it is essential that 

the SLA define what a failure consists of.  That definition will also drive how the 

application, server, and infrastructure are measured and monitored.  Is a failure defined in 

terms of server crashes (e.g., no input processing or output processing), poor response 

time, inability to handle multiple threads, or incorrect results?  If the application is 

performing poorly because of limited server resources does that poor performance count 

against reliability metrics? How is reliability measured if the application is working in a 

degraded mode, but the server appears to be functioning?  Without an explicit definition 

of a failure, organizations will have difficulty legally enforcing availability SLAs. 

Maintainability is another important part of the overall availability of a system.  

Maintainability consists of the time it takes to identify that a failure has occurred, the 

time to isolate the cause of the failure, administrative and logistics lead times if parts or 

root access is required, the time to restore the system to operational capability, and the 

time to test the system to verify operational capability.  In hardware maintainability can 

be improved through its design and documentation.  The same is true for software.   

An important part of the maintainability is the documentation.  Accurate, timely 

documentation can mean the difference between meeting SLA and not. This 

documentation can include configuration data, documentation from the CRB, operating 
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procedures, recovery instructions, incident reports, monitoring information and trend 

analysis.  It may be as simple as correct recall numbers of staff members. 

Another very important part of maintainability is how well the backup tapes are 

documented and controlled.  If the application is being backed-up correctly, and one 

week supply is kept on hand, the ability to restore a file or entire program is much 

quicker.  The ability to quickly locate the correct tape and restore the necessary file 

depends upon proper documentation.  

Maintainability is also dependent upon the skills and training of the staff.  A well-

trained staff will be able to isolate problems and repair them quickly.  Additionally, good 

staff will be able to predict problems through trend analysis and good monitoring 

procedures before a failure occurs.  A service provider may have the most reliable 

hardware and software available, but may not be able to meet availability SLA thresholds 

if their ability to correct problems is poor. 

It is important that the program manager and the contractor define the concept of 

‘restored to operational condition.’  The SLA should specify whether testing is required 

to validate restoration, or whether the contractor can make repairs and immediately return 

the system to its operational state.  The SLA should also specify if someone from the 

program manager’s staff needs to verify that the system was restored.  The SLA needs to 

state the metrics that will be used to determine if the program is restored to operational 

condition. A method of determining the time the system went down and was considered 

restored also needs to be negotiated.   

The SLA should also specify how planned maintenance will be addressed.  

Scheduled maintenance is predictable in that the time to perform the maintenance and 

restore the system to an operational state is known.  Scheduled maintenance contributes 

to the downtime of the system, but some are reluctant to include scheduled maintenance 

in availability figures.  Others feel that scheduled maintenance should be added into 

availability figures, as they are not able to utilize the system during the maintenance.  

Those that advocate not using scheduled maintenance are fearful that if they included 

scheduled maintenance time in availability figures, that the contractor will rush or skip 
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procedures to ensure that overall downtime was minimized.  Either approach is 

acceptable so long as the SLA addresses the issue. 

One of the problems with utilizing availability in SLAs is that the mean time to 

failure and the mean time to repair are estimates based collected data.  In some cases 

enough historical data is available to calculate reliability and maintainability figures.  In 

other cases, formal analysis such as a failure modes, effects and criticality analysis 

(FMECA) can be conducted by reliability engineers to estimate availability.  In the case 

of new software, historical data may not exist.  In other cases, estimates are suspect 

because of the small data sample size.  In some cases it may be more appropriate to 

utilize confidence limits instead of a specific figure for determining availability in the 

SLA. (Wang)  Another problem is that most estimates are based on ideal conditions, not 

on actual operational performance.  Additionally, anytime new patches or versions of 

software are introduced, past historical performance may no longer be relevant.  The 

same is true when software is operated in a new environment, or interfaces with new 

software.  

The SLA needs to determine how availability measurements will be collected and 

applied.  The program manager and the contractor will have to determine whether the 

measurements will be end-to-end, or whether specific components or pieces of the system 

will be measured.  They will need to decide how many samples will constitute an 

accurate estimate of reliability and maintainability.  The SLA will also have to define the 

time period over which the data is collected.  A one-month period may be too small to 

collect enough data, and six months may be too long given the dynamic nature of most IT 

systems.   

The SLA that pertains to host environment availability in appendix (A) takes a 

different approach.  Because of the difficulty in determining a legally enforceable 

definition of a failure, and the difficulty in obtaining enough samples to evaluate whether 

availability thresholds were met, the author felt another approach was needed.  If 

availability was defined in terms of an ‘opportunity to compute,’ then key server and 

infrastructure performance parameters can be identified, quantified, and measured. The 

SLAs can identify key performance thresholds that must be maintained for an application 
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to properly function.  If the thresholds are violated, the application is considered 

impacted, and the service provider will be penalized accordingly.  The SLA will also 

specify expected recovery times based on the severity of the impact.  If the server, 

operating system, and infrastructure are operating within parameters, then the application 

should be able to perform all of its functionality.  If the application is programmed 

properly, then by guaranteeing the appropriate resources and latency, the application 

should always be able to meet operational needs.   

This approach alleviates many of the problems found with defining and 

measuring availability.  This approach is more straightforward, and there are numerous 

tools that can monitor the key performance metrics.  It is not however, without its own set 

of problems. 

Utilizing an ‘opportunity to compute’ approach makes the assumption that server 

and network performance is a good indicator of whether an application will perform as 

expected.  In the SLAs in appendix (A), the application was developed and is maintained 

by the government.  In this case, it is a reasonable expectation that the application will 

perform given adequate resources and bandwidth.  Although it is possible to have a 

poorly designed application fail even if it has all required resources and bandwidth. 

Unfortunately, specifying the appropriate resource requirements to meet 

operational requirements can be difficult and will vary depending upon the type of server, 

the operating system, and the architecture being used.  Network parameters are relatively 

straight forward, but server resources are more difficult to equate to application 

performance.  Most system administrators have their own set of key indicators and 

thresholds to monitor, based on experience, skill levels, and the equipment they are 

utilizing.  The metrics in appendix (A) are commonly utilized by the system 

administrators interviewed.     

Approaching availability as an opportunity to compute also makes the SLA more 

adaptive to changes.  Historical data on reliability and maintainability is not needed.  In 

terms of availability, the Configuration Review Board (CRB) only has to evaluate any 

hardware or software changes or modifications in terms of the key performance 

indicators, capacity management, and documentation. 
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E. SUMMARY 

The choice of quality factors depends upon the mission of the system, quality 

requirements from stakeholders, and the external environment.  Part of the SLA 

development process is to identify mission critical business processes and determine 

those quality factors necessary to support those processes.  Once the stakeholders have 

identified all of the quality factors, they must be prioritized and any conflicts must be 

resolved.  The quality factors are also broken down into sub-factors, if possible, and 

assigned quality metrics that will measure the quality factors.  The use of template SLAs 

can help identify various quality factors, but they must still be modified to meet the needs 

of each system.    

Quality factors are not always easy to measure.  The quality factor ‘response time’ 

is a good indicator of performance from the end-user’s perspective, but it is difficult to 

obtain end-to-end measurements, especially if the host provider does not own the 

infrastructure.  Response time can be measured at the server level using synthetic 

transactions, but this measurement has limited value to the end-user. Availability is also 

difficult to measure, as the contract must explicitly define downtime, statistical 

measurements are suspect because of the small sample size, and restore to operational 

condition must be defined.  Measuring availability as an ‘opportunity to compute’ makes 

the measurements easier, and it accomplishes the same goal.   
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VIII. CONFIGURATION MANAGEMENT 

This section will discuss configuration management in some detail.  The detail is 

necessary to show the difficulty of managing software configuration, but it also 

demonstrates the areas where SLAs can be utilized.  Quality factors can be established in 

the SLAs to ensure that proper procedures are followed, that the documentation is 

correct, that changes are being tracked, and that releases are managed properly.    

Configuration management is an integral part of both development and 

maintenance of software.  In its simplest form configuration management is how an 

organization manages change.  However, a better definition is that configuration 

management is the discipline that ensures that the state of the software at any given time 

is known and reconstuctable. (Horch)  Another more complex definition is that 

configuration management is the disciplined approach to managing the evolution of the 

software’s development and maintenance practices, the resultant products and artifacts 

(data, tests, web content) and the processes involved in creating and changing them. 

(Dart)  Configuration management can apply to software, hardware, and firmware, but 

this section will only discuss configuration management in the context of software. 

The business environment is constantly changing as organizations attempt to gain 

competitive advantage.  All projects will have changing requirements whether they are a 

result of external environmental pressures, new ideas, more efficient processes, changing 

technology, or corrections to problems encountered. Change is the one constant in any 

project.  For example, from the time that the initial conceptual design was frozen to when 

the first production 767 rolled off the production line, 12,000 changes were made to the 

design. (Simpson)  Good software engineering practices, as reflected in the CMM and 

IEEE standards, require a strong configuration management process to manage change. 

(Estublier, 2002)  Organizations that cannot manage change will quickly have chaos.   

Configuration management is incorporated throughout the software development 

and maintenance lifecycles.  Configuration management captures information on every 

artifact (requirements, design, models, code), every action (edit, pass code to the QA 

department for testing, notify), and every person working on the system (developer, 
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tester, software engineer, program manager). (Dart)  Some of the benefits of 

configuration management include better quality, dramatic productivity improvements, 

cost reductions, error/defect reductions, easier maintenance, and better technical support. 

(Leon)  Other benefits include easier auditing, visibility into all work status, knowledge 

management, better forecasting and planning, and better adaptability to changes in 

business processes. (Dart)  Unfortunately, despite the benefits, some developers feel that 

configuration management is just additional documentation and is not worth the extra 

work.  Some developers are also willing to sacrifice configuration management in their 

rush to bring the software to market.  SLAs can help to ensure that the contractor has an 

accurate and effective configuration management system.   

Configuration management consists of four basic areas: configuration 

identification, configuration control, configuration accounting, and configuration audits.  

Another area of configuration management that is discussed in Appendix (A) deals with 

asset management, which is very important when dealing with recovery, maintenance 

support, trouble shooting, and disaster recovery.  This section will also discuss the effects 

of configuration management on post-production maintenance activities.    

 

A. CONFIGURATION IDENTIFICATION 

IEEE Standard 828-1998 defines configuration identification as a process of 

selecting the configuration items for a system, and recording their functional and physical 

characteristics in technical documentation.  Configuration identification also includes the 

process of uniquely identifying the version or instance of every configuration item 

(documentation, models, files, tests, specifications) that makes up or supports a software 

product. These items can also include the tools that were used to create or modify the 

software such as the HTML editor, Java interpreter, modeling tools, and code generator. 

(Dart)  These configuration items can refer to versions of the entire system, modules, or 

they can refer to the smallest units of code that can be compiled.  Each item needs to be 

identified and described so the organization has knowledge of its existence, its status, its 

interrelationships, its dependencies, and the effect that changing it will have on other 

items and the system.  
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One of the first steps in managing software configuration is determining what 

constitutes a configuration item.  If every grouping of code that is capable of being 

compiled is included in the configuration management process the administrative efforts 

to document the code, report and analyze changes, and track status can overwhelm the 

developers and management.  One the other hand if the level of abstraction is at the 

module level, it may not provide management with enough documentation of the 

subroutines contained within the module.  At the module level, any changes within the 

module will require testing of the entire module instead of the individual subroutine that 

was changed.  Selecting the level of decomposition at which to apply configuration 

management is important and can depend upon many factors such as size of the project, 

importance of tracking changes at the lowest levels (safety or timing issues), whether the 

item is standalone, new technologies, interfaces, requirements volatility, complexity, and 

risk aversion. 

Another important decision is what information needs to be collected on each 

configuration item.  Ideally all characteristics of the configuration item is collected to 

include its content, the documents that describe its function, the requirement that it is 

satisfying, data needed for operation of the software, the different versions as the 

software is changed, interface information, dependencies, and any other information that 

makes the software what it is. (Leon) However, the type of project will dictate the data 

that needs to be collected on each configuration item. 

As each artifact or documentation is developed, reviewed, and approved, it must 

be included in the configuration management repository where it is assigned a unique 

identifier. When the configuration item is first entered into the repository, it is considered 

baselined.  A baseline is a configuration item that is frozen in time to represent a specific 

state of a product. (Dart)  Items that are in the process of development can be changed 

quickly and easily, but once they are baselined in the repository it must go through a 

formal process before it is modified.  Once modified, it is assigned a unique identifier, so 

it can be distinguished from its earlier version. 

The task of assigning a unique identifier has been made easier by a number of 

good automated configuration management tools.  These tools ensure that a standardized 
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methodology is applied to assigning the identifier.  Simple identification codes will 

include information on the parent or next higher component, when the item was created, 

and the version number of the item.  More complex identifications include the project 

number, project type, item type (document, program, data, test), relationships, 

dependencies, release, version, and edition. (Horch). 

The final step is to store the configuration item, documentation, and execution 

software (operating system, compilers, tools) in a secure repository where the item can be 

retrieved and reproduced when required.  This is especially important when software 

needs to be rolled back to a previous version, or when software needs to be reinstalled to 

correct problems. 

SLAs can be written to specify quality factors that deal specifically with the 

accuracy of the configuration identification and the information collected on each 

configuration item.  SLAs can also be written to verify the accuracy of the repository to 

ensure configuration items can be recovered if needed.        

 

B. CONFIGURATION CONTROL 

Configuration control consists of those processes necessary to ensure that every 

change to a configuration item is reviewed, authorized, tracked, and documented.  Once 

an item has been baselined, more formal procedures need to be instituted to ensure that 

only approved changes are made to an item.  Changes need to be reviewed to determine 

their relevance, their impact on other configuration items, and their impact on cost, 

schedule, and performance. 

A software change order may be needed for a number of reasons including the 

need to rework a component with poor quality, the need to rework a component to 

achieve better quality, or because of a user directed change in requirements.  The first 

two types of change need to be closely tracked as they are indicators of the quality of the 

product, and they provide a solid basis for estimating maintainability. (Royce) 

Configuration control also provides a documented evolution of how and why the 

file or module evolved to its present form, and the changes that were made along the way.  

The history of changes on a configuration item helps personnel understand why changes 
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were made, it helps with trouble shooting, and it helps maintenance personnel determine 

why specific changes were made. 

The goal of configuration control is to prevent ‘guerrilla programming,’ where 

developers are making changes to software without considering the effects that those 

changes will have on overall functionality, quality, or other configuration items.  

Configuration control ensures that changes are documented, analyzed, incorporated into 

the schedule, tracked, tested, and incorporated into user documentation.  Configuration 

control also ensures that only known and approved changes are being worked on which 

helps focus the work effort on those areas that provide the most utility.  Configuration 

control also helps to avoid situations where developers are working on ‘nice to have’ or 

unspecified functionality that they think the user might need. 

Configuration control can be broken down into four slightly overlapping areas.  

The change review board reviews proposed changes to evaluate their need and their 

impact.  Change management is concerned with tracking the status of the change.  

Notification is the process of keeping programmers informed about changes that impact 

their area of responsibility, and release management is concerned with releasing and 

tracking updates and patches to a baseline configuration.  Quality factors can be specified 

for each area, and they can be incorporated into SLAs so their respective quality metrics 

can be monitored. 

1. Change Review Board 

Configuration control starts with a change request form.  In most cases this form 

is now automated and is a part of the configuration management software package.  The 

change request form identifies the configuration item to be changed, it describes why the 

change is necessary, it describes the type of change, it describes the priority of the change 

it describes what changes will take place, and it provides an impact analysis.  The impact 

analysis evaluates whether any other configuration items will be affected by the change 

and what actions will have to be taken in those configuration items.  The impact analysis 

can also look at how long it will take to effect the changes, their costs, and the benefits.  

The change request form is often initiated from a software trouble report.  Once the 
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configuration item is baselined, a change request form should be utilized, as it has to be 

approved by the change review board.   

 Once a change request has been submitted, it is passed to the change review board 

for approval.  The change review board (CRB) is tasked with evaluating the change 

requests and determining whether they will be approved, delayed, or denied.  The change 

review board also monitors the progress of every approved change.  The change review 

board also determines which reported defects to correct, and when they should be 

corrected (what release). 

 The change review board should consist of the configuration manager, the 

program manager and members of that team (especially contracting personnel), 

developers, the test community and quality assurance, marketing, and essential 

stakeholders.  The head of the change review board should be the configuration manager 

as that person best understands the need for configuration control, and that individual is 

typically impartial, and does not have an agenda other than enforcing configuration 

mandates. (Harris) The CRB is designed to make informed business decisions regarding 

all proposed changes, which will provide the greatest business and customer value while 

controlling the system’s lifecycle costs. (Wiegers)    

 Depending upon how the configuration management process is implemented, 

change requests may include impact statements, or they may be ordered after the CRB 

makes an initial determination as to whether the change is warranted.  Before approving a 

change request the CRB needs to analyze the change with respect to the effect the change 

will have on functionality, the impact on other configuration items, and how it will 

impact cost and schedule. 

 The CRB must first determine whether the change is necessary.  The change 

request form should contain the information necessary to make a determination.  If not, 

the form will be returned for further information.  The CRB needs to evaluate the 

criticality of the change and determine whether it should be implemented in the current 

release (which will probably impact schedule), whether it is delayed (the change is 

incorporated into another release), or whether it should be rejected (the change was a 

result of an unauthorized request, the impact to the system was negligible). Changes that 
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are submitted to fix errors or improve quality need to be weighed against the benefits that 

those changes provide.  If the package meets requirements, but can be made better, the 

CRB must decide whether the change is warranted given other considerations such as 

time, money, goodwill, and lifecycle costs.  New requests must also be evaluated in terms 

of when they will be incorporated into the release.  Many projects have failed as a result 

of being unable to maintain a release baseline.  At some point changes need to be 

deferred to future releases or the baseline release will never be fielded.  

 It is important that the CRB determine what types of changes need to be 

reviewed, and which can be automatically authorized (automated) or referred to a lower 

level manager.  Minor changes still need to be logged into the configuration management 

system, but they do not need the attention of the CRB.  If the change approval process is 

too stringent, programmers will discover ways to circumvent the procedures. 

 The CRB also needs to review the changes to ensure that they do not adversely 

impact any requirements.  All proposed changes should be linked to the requirements that 

the configuration item satisfies.  The CRB needs to ensure the test community 

incorporates the revised configuration item into the test plan to ensure performance and 

functional requirements are met.  The CRB must also take a holistic look at the impact 

the change will have on SLA mandated non-functional quality requirements.  New 

requirements must be reviewed to ensure they do not conflict with functional or non-

functional requirements.  Any conflicts will have to be resolved by the program manager, 

stakeholders, and the contractor. 

 A good configuration management system will specify the other configuration 

items that interact with the file or module that is being changed.  The impact analysis will 

determine the amount of work necessary to modify those configuration items that are 

affected by the change.  A small change in one file or folder may cause a great deal of 

change in other areas.  The changes must also be reviewed to determine their impacts on 

the software architecture and supporting models that will need to be updated. 

 The CRB must also evaluate the changes with respect to costs and schedule.  New 

requirements may require revisions to both costs and schedule.  A contracting person 

from the program management office and the contractor should be part of the CRB to 
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ensure that contract modifications are drafted and approved before any changes are 

approved that will affect price.  Depending upon the requirements, SLAs may need to be 

revised.   

 If SLAs are utilized in a contract, a CRB must be established to ensure that any 

proposed changes do not impact the quality factors specified in the SLAs.  Since the 

SLAs are contractually binding any unauthorized change that impacts that contractor’s 

ability to satisfy a quality threshold can, in a worst case scenario, result in legal 

proceedings.  In most cases, the change will have to be reengineered so it will not impact 

the quality threshold.  If the change still impacts the SLA, then contractor will not be held 

accountable for meeting the SLA requirements, and new SLAs will have to developed 

and negotiated.  The lack of a CRB or a similar process will quickly undermine all of the 

efforts to establish the SLAs and will make them worthless.   

2. Change Management 

 A good configuration management system is capable of tracking every phase that 

a change request goes through (the change request form, the impact analysis, results and 

comments from the CRB, task assignment, the new or modified code, test, acceptance, 

and assignment of a new configuration identification). (Dart) The CRB is responsible for 

tracking and maintaining status on the configuration items that have been approved.  

Although most of those tasks are automated, the information still needs to be entered into 

the system.  Each time a change goes through a phase, that information needs to be 

captured in the configuration repository.     

 Another function of change management is coordinating the work on a 

configuration item.  The configuration manager or software librarian generally controls 

this function.  One of the main functions of configuration control is to coordinate the 

access to and modification of configuration items when multiple people could be working 

with the same configuration items. (Sarma) One approach to avoiding having multiple 

people modifying the same file or folder is when authorized changes are approved, the 

developer copies the file or module to be modified, and sets a lock on that file (check-

out) so another programmer does not make concurrent changes to the same file.  Only the 

authorized programmer is allowed to create a new version of the file (check-in). (Mei, 
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Estublier, 2000)  Part of the control process is defining who has authority to perform a 

specific change, when that change can be performed, and what changes can that 

individual make.  Controlling concurrent programming or distributed programming can 

be difficult, but lack of control can be disastrous. 

 Change management also includes risk analysis.  The CRB and the program 

manager need to assess the risks associated with introducing new requirements at either 

the system level or the software level.  At NASA they use several factors to assess that 

risk, including the size of the change, the location of the change, its criticality, the 

number of modifications, and resources needed to make the change. (Schneidewind 

2001)  The program manager needs to carefully monitor the amount of new requirements 

that are generated during development.  It is very difficult to limit changes to a baseline 

version (political factors, changing business environment, new ideas), but there has to be 

a cutoff point where additional changes are moved to later versions.  High requirements 

or change volatility throughout the initial stages of development indicates that the 

stakeholders do not really know what they want, or the development effort was more 

difficult than anticipated.  In either case the risk to the success of the project increases 

with change volatility.     

3. Notification 

 The Lantau Airport Railway project was a complex system of systems project to 

build a railway from the airport to the urban areas in Hong Kong.  It was a seven year 

project that consisted of over 40 contracts.  The command and control system and the 

billing system accounted for the majority of the software.  One of the major problems that 

they encountered was a failure to communicate changes among all of the contractors.  As 

the lifecycle of the project matured they discovered that the contractors would make 

small changes to the interface specifications.  These changes were not always 

communicated to other contractors that may have to interface with that system.  This was 

due in some cases to time differences in development schedules, and the lack of a central 

repository for all contractors. (Wong) 

 To coordinate access to a common set of configuration items by multiple 

programmers working on the same project, most configuration control systems utilize 
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workspaces (part of a file system where the file of interest is located) where the developer 

can work isolated from the outside world and other developers. The workspaces support 

concurrent engineering in two ways.  The first is controlling who has access to the 

workspace, and the second is resynchronizing (merging concurrent changes to the same 

file) where algorithms can identify changes to the file and blend them into one file. 

(Estublier,2000)  Control can be accomplished by locking files (which forces serial 

development) or concurrent changes and resynchronizing can be utilized.  Unfortunately, 

the workspace does not allow developers to know what changes are being made in 

parallel to their efforts as they cannot see into other workspaces.  Configuration 

management systems are still struggling with concurrent development issues and 

notification, although there is some good research in this area. (Sarma, Estublier, 2000)   

 Despite the notification problems at the working level, configuration management 

systems are able to identify at a higher level, those configuration items that will be 

changed, and what the changes will consist of.  The difficulty is determining how to 

convey that information to the developers and the stakeholders.  Notifying all of the 

people that need to know about an approved change is a process that needs to be planned, 

controlled, and monitored.  It is also important to note that the software CRB has 

representation on the system CRB, so as system changes are made, the appropriate people 

are notified, and the system changes are incorporated into change requests at the software 

level. 

 The configuration management system also needs a method to notify users of the 

status of their change request.  Users need to know whether their request has been review, 

whether it was accepted, who was assigned the work, and when the change will be 

incorporated (what release).  Some management systems have an e-mail notification that 

lets them know when their request was reviewed.   

4. Release Management 

Large organizations also have a representative release committee, which controls 

the content and timing of releases.  The release committee is responsible for coordinating 

releases with the stakeholders.  All projects have stakeholders with different agendas, 

priorities, and beliefs concerning how the project should be run.  The release committee 
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works with the stakeholders to achieve some form of consensus concerning the 

functionality that will be incorporated into the baseline and future releases.   The release 

committee also tries to ensure that all stakeholders have consistent information regarding 

what functionality will be included in the various releases. (Dikel)  

Another part of configuration control is monitoring which release stakeholders are 

using. While this appears to be straightforward, it is not.  It is not uncommon for multiple 

versions of the same software to be deployed by various stakeholders due to beta 

versions, unique functionality integrated into a specific version for a particular 

stakeholder, failure of the system administrators to load the new version, lack of 

resources to run the new version, or failure to receive/download the new version. It is 

also important to know what version of environmental software (the operating system or 

database management system (DBMS)) stakeholders are using.  Changing environmental 

software can be extremely time consuming as all applications and tools residing on the 

current operating system will have to undergo regression testing before migrating to the 

new operating system.  The Navy and EDS discovered how difficult that was when they 

migrated applications into the NMCI system.      

Coordinating version releases can be very difficult, especially when they interface 

with legacy applications.  The move to Oracle 9I may have a huge effect on some of the 

older systems.  In addition, the applications will have to be thoroughly tested to ensure 

that they are compatible with the new DBMS.  Some applications will have to be 

reengineered.  This will require time, money and manpower, all of which are in scarce 

supply.  This gets even more difficult with distributed systems that reach back into old 

databases that may not be under the control of the program management team.  

 

C. CONFIGURATION ACCOUNTING 

Configuration accounting is process of tracking and reporting the status of all 

versions of the software (from the configuration items to the entire software system), 

models, architectures, documentation, and change requests.  Configuration accounting 

starts with determining the baseline of the software system.  This is normally done during 

the major reviews that mark the end of a lifecycle phase such as the software 
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requirements review (SRR) or the CDR (critical design review).  The baseline can also be 

established once a package of configuration items has been tested and approved.   

Configuration accounting ensures information regarding the baseline (date, who 

approved it, how it was established) and any subsequent changes is captured.  

Configuration accounting maintains records regarding the change request, actions of the 

CRB, status of the change request, status of the change, the expected completion date, 

and the assigned release number.  Another purpose of configuration accounting is to 

ensure that the name, release, version, and edition of each configuration item, and each of 

its subordinate items are recorded, monitored, and when necessary updated.  When 

changes are made, the configuration identification of all affected configuration items 

must be updated. (Horch)  

Configuration accounting should support queries such as how many change 

requests are pending CRB review, how many changes have been rejected, the number of 

change requests in a particular module, as well as a breakdown of the type of requests.  

The configuration management system should also be a useful management tool in that it 

should be able to track all change requests that are in progress (being developed, awaiting 

testing, in testing, awaiting approval, completed and assigned new configuration 

identification) completion dates for those changes, how many changes are pending for a 

future release, the priority of the change, and which changes are not meeting schedule. 

 

D. CONFIGURATION AUDIT  

Configuration audit is the area that SLAs have the most utility.  Configuration 

auditing is the process of keeping an audit trail of all actions, events, notifications, and 

testing that happened to a configuration item. Configuration audit also constantly 

monitors the configuration management system to ensure that at any time configuration 

items are accurately identified and that the configuration management process is working 

correctly. (Dart)   

Establishing a good configuration management system can be very time 

consuming and the tools are expensive.  Unfortunately, the system is only as good as the 

people running it and the information that is being fed into the system.  If the information 
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in the configuration repository is not accurate or lacks the necessary information, then the 

systems usefulness as a quality control tool can be questioned.  The system must be 

audited to identify areas that may need more attention or training.  Additionally, auditing 

can also determine if the right changes were made to the configuration item by comparing 

the change request form to the documentation that was provided as part of the item’s 

modification.  A quality software product is dependent upon an accurate configuration 

management system and process.   

SLAs help the program manager audit the configuration management system 

through the use of quality metrics and the monitoring process implemented by the SLAs.   

SLAs can specify that configuration identification accuracy on weekly spot checks must 

be 98 percent and the accuracy of the accompanying documentation must be 95 percent.  

Spot checks can also determine the effectiveness of the CRB in controlling changes.  

SLAs can specify that of the changes that need to be reviewed by the CRB, 99 percent of 

the changes must have been reviewed by the CRB.  Similar quality thresholds can be 

applied to documentation requirements, notification procedures, configuration accounting 

accuracy, change management procedures, and audit trails. 

 

E. ASSET MANAGEMENT 

Program managers also need to maintain tight configuration control in the host 

environment once the application or system has been fielded.  Appendix (A) includes 

threshold values on the accuracy of the configuration management system in the host 

environment.  Accurate configuration data is essential for troubleshooting, disaster 

recovery, and it is an important element in capacity management.   

Accurate information regarding the hardware and environmental software that is 

hosting the software system will help evaluate the effect that changes to the software or 

environmental software will have on the system.  If developers are writing the program 

using the fastest available PCs, their users may experience performance problems 

because they are using PCs that are two or three generations old.  If distributed sites are 

using different firewalls and have different restrictions regarding port utilizations, 
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problems may occur.  Troubleshooting and planning will be easier if there is enough 

information concerning all hardware and software assets in the host environment.   

Asset management is critical during disaster recovery, especially is a cold site is 

used.  If new equipment needs to be procured and installed, knowing the type of 

equipment being used, the infrastructure and network configuration, environmental 

software, and system software is critical.  Small errors in the versions of software being 

utilized can take hours of troubleshooting to resolve.  Good configuration control will 

also help to ensure the proper files are restored in case of problems.  Installing the wrong 

file can have disastrous effects. 

Capacity management ensures that the IT infrastructure is capable of supporting 

the computing demands of the systems being supported.  In the post-production phase the 

change management process should also identify the performance requirements 

associated with each change.  Any changes (modification or new requirements) to the 

software may also affect the infrastructure in terms of throughput, performance, port 

utilization, security, CPU utilization, memory usage, response time, and availability.  For 

example a new requirement to encrypt any e-mail notifications that the system generates 

may impact the performance of user’s PCs, internal network performance, or it may 

require modifications to the firewall.  The configuration repository should be updated to 

include the technical specification for each change item (e.g., disk space, speed of 

processor, expected workload, demands on IT services).  New requirements may 

necessitate negotiating new SLAs. (ITIL) 

The CRB does not go away after a product is fielded.  Maintenance of the 

software needs the same configuration controls as development, or the fielded system 

will quickly develop problems.  Program managers need to understand the implications 

that maintenance actions are going to have on their systems.  They also need to assess 

how changes in the system requirements or architecture will affect their entire system.    

 

F. SUMMARY 

Configuration management gets little attention if it is done correctly, but if it is 

done poorly, the entire development and subsequent or maintenance process suffers, cost 
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and schedule predictions will be underestimated, and the defect rates will increase as 

programmers make changes that affect other artifacts.  Program managers can utilize 

SLAs to monitor the contractor’s configuration management procedures and accuracy.  

SLAs reduce the risks associated with poor configuration, and they promote quality 

throughout the configuration process. 
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IX. PROGRAM MANAGEMENT 

Organizations are increasingly relying upon information technology to enable 

their critical business processes.  Despite the increasing complexity of today’s systems, 

organizations are demanding extremely high levels of quality in the IT systems that they 

are acquiring or producing.  In many industries the efficiency and effectiveness of an 

organization’s IT systems is what gives them a competitive advantage in the market 

place.  Poorly performing IT systems can result in lost market share, lost customers, and 

lost opportunities.  As a result, upper management is placing great pressure on program 

managers to deliver quality products.   

It requires a great deal of management to produce quality software.  Program 

managers have to ensure that quality considerations are addressed early in the lifecycle 

and they must provide the proper amount of oversight to ensure those quality factors are 

incorporated into the final product.  One of the major difference between a software 

project manager and other areas of management is that the software project manager must 

not only understand the intricacies of management (requirements, planning, budgeting, 

contracting, oversight, tracking), but they must also understand all aspects of the 

software-development process, as well as understanding the application domain for 

which the software is being developed.  Unfortunately, there are not many program 

managers that have the software experience necessary to effectively manage a large 

software intensive project.   

Service level agreements can assist program managers in many of the tasks 

necessary to ensure quality is delivered in the final product.  SLAs are particularly useful 

in the areas of risk management, financial management, contract management, quality 

management, and customer satisfaction.  

 

A. RISK MANAGEMENT 

A risk in the context of program management is a potential event that can 

adversely affect the project.  Risk management is the proactive process of identifying and 

mitigating potential risks throughout the lifecycle of a system.  When developing 
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software there are many types of risk that have the potential to affect the project such as 

product risk (the system may not meet expectations), project risk (cost and schedule), 

financial risk (another investment may provide more benefit), business risk (the system 

will not generate expected competitive advantage), and technical risk (design, interfaces, 

compatibility).  The program manager is responsible for developing a risk management 

plan to deal with each type of risk.  SLAs can help to identify risks in the requirements 

engineering phase, they can mitigate risks through the use of standards and performance 

monitoring, they provide valuable input to the test plan, and they help manage risks in the 

post-production phase. 

Another categorization of risk proposes that there are three types of risk, known 

risk (can be discovered after careful evaluation), predictable risk (based on past 

performance and lessons learned), and unpredictable risk, which are very difficult to 

identify in advance. (Pressman)  Senior management and stockholders of the organization 

expect that the program managers will take all necessary steps to address the first two 

risks.  In the government, program managers have to submit their risk management plan 

to the director of the Office of Management and Budget (OMB), as OMB has been tasked 

with analyzing, tracking and evaluating risks and results of all major capital investments 

in information systems. (Clinton)  The government and industry realizes that failure to 

address risks can have serious ramifications.  The result of project failure can result in 

fiscal loss, a loss of reputation, loss of market share, damage to the brand name, and a 

loss of competitive advantage. (Frost) 

Although the program manager is generally tasked with risk management, it is a 

team effort that involves the input of all stakeholders.  Risk is a subjective notion, and it 

is important that risk, from the perspective of all stakeholders is examined.  It is also very 

important that the program management team understand the level of risk that upper 

management is willing to take regarding the program.  Factors such as the maturity of the 

company, its financial stability, its portfolio of other programs, and the expected return 

on investment all influence the level of risk management is willing to accept.   

The program manager needs to take a holistic look at risk management.  Risks 

need to be identified to the greatest extent possible at each stage of development and at 
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multiple levels of abstraction from the system level to component design.  It is also 

important to realize that risk management involves uncertainty and the intent of risk 

management is to take actions that reduce risk to levels that management is willing to 

accept. It is not possible to eliminate all risk.    

The risk management process generally consists of five steps.  The first is to 

properly scope the project and determine the risks associated with the project.  The next 

step is to analyze the risks to determine their impact, identify factors that will affect those 

risk areas, and evaluate the likelihood of occurrence.  The third step is to prioritize the 

risks.  The next step is to determine a course of action that will mitigate the risk if 

possible.  The final step is to monitor the effectiveness of the risk mitigation plans. 

(Peltier, P. Smith)  Each phase of the development cycle will contain risks unique to 

those phases, but the impact of those risks has the potential to affect the entire project.  

In the requirements phase, risks are evaluated in terms of the extent to which 

stakeholders can define what they want the system to do, project size, technical 

feasibility, interoperability concerns, project cost and schedule, and the effects the system 

will have on the business processes it supports.  In the development phase, the 

architecture, design, code, requirements churn, and processes are evaluated to determine 

whether the system will be delivered with the required functionality and quality within 

budget and schedule. Once the system is deployed risks are analyzed in terms of 

customer satisfaction, resource availability, maintenance actions, disaster recovery, and 

configuration management. 

1. Risk Management in Requirements Phase 

The first step in the development of a risk management plan is to scope the 

project and identify the risk drivers.  Most organizations utilize a risk identification 

checklist that is developed from industry standards, benchmarking other organizations, or 

they are internally developed to incorporate a specific organizational culture.  The 

checklists consist of primarily predictable risks, but they also include some known risks.  

The risks are then ranked based upon the probability of occurrence.  Then next step is to 

analyze the impact that the risk, if it occurs, will have on the project.  The risks can then 

be assessed to determine impacts on cost, schedule and performance.  A risk management 
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plan can then be developed to mitigate the occurrence of risk, monitor risk areas, and 

reduce the impact if the risk occurs.  Although risk management occurs throughout the 

lifecycle of a system, much of the plan is developed during the requirements engineering 

phase.  The SLA development process contributes to the development of the risk 

management plan by improving communication between stakeholders, challenging 

assumptions, prioritizing risks, identifying risks, and proposing steps to mitigate risks.  

Before the project is even started management must determine whether they 

should invest the time, resources, and capital in the system.  Management must evaluate 

their customers, employees, competitors, available resources, and the environment to 

determine where they should invest their capital to obtain the greatest return or position 

themselves in the market to obtain a competitive advantage given a dynamic business 

environment.  Some of the risks in the concept phase of the project are whether the 

system will return the benefits expected, whether other projects could return more 

benefits, whether the project can be completed in time to leverage its capabilities for 

financial gain, whether new technology will quickly make the investment obsolete, 

whether new partners will be able to interface with the system, and whether the end users 

will embrace the system. 

If the concept is approved, the program manager must first determine the proper 

scope and of the system.   When defining the scope of the project, the program manager 

must determine what functions the system will and will not perform.   

Some systems are inherently more risky than others.  Systems that utilize existing 

technology to support low value business processes are not as risky as systems that utilize 

complex or emerging technology to support a critical business process. 

Before specific requirements are gathered, the program manager should already 

be considering general risks associated with interoperability considerations, the operating 

environment that the system will be deployed in, whether emerging technology will be 

utilized, the skills of the management team, the experience of the contractor or in-house 

developers, schedule and cost constraints, the size and complexity of the projected 

system, and the affects of a dynamic market place.  
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During the requirements engineering phase, the scope of the system will be 

refined, and a better understanding of the requirements will lead to more risk 

identification.  In addition to risks associated with the system, there are also risks 

associated with the requirements engineering process itself. Some of the common 

program risks associated with requirements is whether customers were involved in the 

requirements engineering process, whether stakeholders have realistic expectations, 

whether requirements are stable, and whether the requirements are complete. (Pressman)  

The SLA development process addresses many of the requirement risks. 

Risk management tries to reduce the amount of uncertainty as much as possible.  

The SLA development process in beneficial in bringing stakeholders and the contractor 

together to discuss project scope, assumptions, functional requirements, as well as non-

functional quality requirements.  Risks can be reduced by gathered as much information 

as possible concerning stakeholder and management’s expectations in terms of system 

functionality, performance, costs, schedule, and budget.  The process of developing SLAs 

fosters communication among stakeholders and will serve to identify many assumptions 

and make explicit many implicit requirements.  The development team can provide the 

program management team with a great deal of information to reduce some of the 

uncertainty.   

The development team consisting of individuals with different backgrounds and 

perspectives can also help the program management team in identifying risk areas that 

the program management team did not consider. Many risk identification checklists do 

not include non-functional requirements, despite the fact that there are many risks 

associated with those requirements.  Template SLAs can also help to identify risks.      

The program manager must also evaluate the assumptions associated with the 

system.  Some of the assumptions include the amount of support management is willing 

to give the project in terms of talented workers, resources, facilities, and power.  Other 

assumptions include the degree to which requirements are known, whether all 

stakeholders have been identified, whether new technology will be mature by the 

implementation date, whether COTS packages should be incorporated into the system 

(Schneidewind 1998) and whether internal and external business trends will continue.  
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Assumptions should be evaluated in terms of the degree of uncertainty, possible impacts, 

whether they are valid, and how they will be addressed.   

The SLA development process is also helpful in defining and prioritizing those 

business critical processes that must be supported in the new system.  Identifying critical 

processes allows the program manager to concentrate risk management efforts in those 

areas.  In a large project it is very difficult to manage the all of the risks that have been 

identified.  Efforts need to be focused on those areas that have the largest potential to 

cause damage, or that have the highest probability of occurring.  Resources are too scarce 

to waste effort on low risk areas.  

Identifying critical processes also helps in assessing the security requirements and 

risks to the information used, processed, and sent from the system.  The efforts spent 

protecting the information in the various pieces of the system has to be weighed against 

the business criticality of that information and the processes they support.  Stringent 

security requirements provide more protection for the information, but they also make the 

system less flexible.  SLAs that deal with security focus on those critical information 

areas.    

SLAs can be utilized to mitigate and monitor product and process risk.  

Depending upon the risk identified, SLAs can be developed to establish quality 

thresholds for that area.  For example if one of the risks identified is in the schedule 

planned for the project, then measurements can focus on total project effort, aggregated 

schedule slippage, project staffing, requirements churn, critical path analysis, size (i.e., 

COCOMO II), and complexity.  The monitoring process and reports generated as a result 

of SLAs focus management and the contractor’s attention on the areas covered by the 

SLAs.   

SLAs can also be used to encourage the contractor to devote additional attention 

to risky areas through the use of incentives or penalties. If schedule risk is a high priority, 

then incentives can be offered if the actual schedule is better than the estimated schedule.  

In determining what to measure it is helpful to determine the behavior you want from the 

contractor, and determine what measurements will most likely encourage that behavior. 

(Kendrick)  The SLAs mandate monitoring of the quality factors associated with process 
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and project quality.  If quality thresholds are not met, program managers and the 

contractor are informed of the violation, and the program manager is at least aware of the 

increased risks associated with that particular quality factor.  That knowledge may lead to 

closer monitoring or corrective action to reduce the risk and improve the quality.   

Project managers should review risks identified in prior projects for lessons 

learned.  Evaluating risks identified in prior projects, remediation actions taken, and their 

effectiveness can offer valuable insights.  Risk management is easier when common 

processes and procedures (i.e. standards) are utilized.  Historical data can be gathered and 

statistical analysis can be applied to new projects.  Applying historical data on projects 

that differ in processes and methodologies is more difficult and less accurate.   

SLAs can be utilized to ensure management and contractors understand the 

standards to be used in the project.  As discussed earlier standards SLAs will also ensure 

that the project is monitored to ensure that the specified standards are being implemented 

correctly.  Deviations from prescribed standards are an indication that the software-

development process is veering away from the production of quality software. (Horch) 

Test plans can also incorporate audits of processes to measure contractor compliance. 

2. Performance Monitoring 

Performance management reduces overall program risks by ensuring that mission 

critical services, processes and procedures are being followed.  A good performance 

management plan will help the contractor identify potential problems throughout the 

system’s lifecycle before they result in loss of business functionality.  SLAs support 

performance management through performance data collection, real-time monitoring, 

problem detection and diagnosis, and trend analysis. (Simitchi) 

To reduce and manage risk, program managers need to measure or monitor 

contractor and system performance throughout the project’s lifecycle to ensure 

requirements, standards, and quality factors are being met.  Monitoring performance, 

whether through progress reports, milestone reviews, real time software monitoring, 

audits, or formal inspections, serves to inform the program manager of potential problems  
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(risks), it allows the program manager time to take corrective action, it influences 

contractor performance, it provides information for future projects, and it helps to achieve 

a higher quality product. 

The program manager must develop a plan or methodology to determine whether 

the contractor is performing in an effective (requirements are being met) and efficient 

(economical utilization of resources and time) manner.  Program managers cannot simply 

place requirements in a contract, award the contract, and test the final product to 

determine compliancy.  The risks and potential for failure are too great using that 

approach.  The plan must also cover system performance to ensure that it is operating 

within specifications.   

Performance management is a process whereby the contractor is given concise 

quantitative requirements, feedback mechanisms are put in place to evaluate compliance 

with the requirements, consequences for noncompliance are discussed, contractor 

behavior and subsequent performance is monitored, and actions are taken by both parties 

if problems persist. (Richman, De Waal)  Part of the SLA development process is 

identifying those functions, quality factors, standards, and processes that are critical to 

ensuring the delivery of a high quality product.  The SLAs not only specify the quality 

factors and thresholds that need to be adhered to, but they also specify the means and 

timeframes to measure compliance with those quality thresholds, they establish resolution 

procedures, and they contain penalties for noncompliance.  The program manager can 

utilize the information contained in the SLA as part of the overall performance 

monitoring plan.   

Analyzing the data collected from monitoring can identify trends that can also 

reduce risks.  Most SLAs require periodic as well as real time reports that provide 

performance information on the system.  By regular monitoring and comparison against 

SLA thresholds, exception conditions can be defined, and near misses of SLAs can be 

reported upon.  For example, analysis of monitoring data may identify issues such as 

contention (data, file, memory, processor), inappropriate locking policies, inefficiencies 

in the application design, unexpected increased in transaction rates, and inefficient use of 

memory.  (ITIL)  The data can also be used to modify the SLAs if necessary, predict 
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future resource usage, or evaluate the SLAs in terms of their effectiveness in reducing 

risk, improving software quality, and driving contractor behavior. 

Template SLAs specify quality requirements in many of the common critical 

success areas (e.g., if the results obtained in those areas are satisfactory, the project will 

be successful).  Although template SLAs have to be tailored to each project, they are 

useful in that they may highlight areas that other development teams felt were important 

to the success of their system.  Contractors are more likely to devote effort to areas that 

they know will be inspected.  As such, SLAs are useful in focusing the contractor on 

processes, procedures, and designs that will reduce risk and improve quality.   

Performance monitoring should also apply to the host environment.  In addition to 

monitoring system performance (throughput, resource utilization, response time) the 

program manager should monitor infrastructure performance (jitter, latency), security, 

problem response, end-to-end quality metrics, and availability.  Risks are reduced by 

monitoring the entire spectrum of the system because problems can be quickly identified 

and resolved, trend analysis can identify potential problems, and a holistic view of the 

system may identify end-to-end risks that were not seen by monitoring system 

performance only.  

3. Test Plan 

A good test plan helps to reduce product risk.  Managing risk attempts to reduce 

the amount of uncertainty as much as possible.  A well-developed and executed test plan 

can assist the program manager in reducing some uncertainty.  The purpose of testing is 

to validate that requirements have been met and to discover problems or defects.  

Reviews, inspections, and testing can create a great deal of information on the 

performance of the system and the contractor.  Testing provides confidence in the system, 

it provides an additional perspective on risk, and it reduces overall product risk.  

The additional personnel that conduct the testing also help to reduce risk by 

bringing additional skill sets and perspectives to the analysis of the module, architecture, 

system, or processes.  Additional input from the test community can be helpful in 

identifying problems and developing solutions or better processes.   
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Testing gives the program manager a certain amount of confidence in the product, 

and in the contractor’s ability to deliver a quality product.  Much like performance 

management, testing allows the program manager to measure the level of success in 

achieving specific critical success areas.  If a contractor is not performing well in unit or 

module testing, then the overall risks to the project being completed on budget and on 

time increase.  Testing in the early phases of a project allows the program manager to 

take action to resolve the risks. 

Testing also reduces risks by discovering defects before the project transitions to 

operational status.  Risks to schedule and budget increase the longer a defect remains 

undetected in the system, as it is much easier to correct deficiencies in the beginning 

phases of a project. (Horch)  A rigorous test plan reduces risk that is passed on to the 

customer in terms of functional problems, software safety and security, and user 

dissatisfaction. 

The previous chapter discussed how SLAs can help program managers in the 

development of the test plan by helping to identify critical quality factors, increasing 

communication with the test community, quantifying quality thresholds, and defining 

how the requirements would be verified.     

4. Post-Production Risk 

The program manager is also responsible for managing the risks associated with 

post-production support.  In post-production support the program manager is not only 

concerned with the performance of the system (meets functional and non-functional 

requirements), but they must also be concerned with the risks associated with the host 

environment (facilities, servers and infrastructure), the communications channels, and 

follow on maintenance actions.  SLAs can be written to address many of the post-

production risks including physical security, problem resolution, disaster recovery, and 

security.    

One of the risks that the program manager must address is the physical security of 

the host environment.  Physical security is not only concerned with employee access, but 

it also deals with issues such as whether the data center has fire detection and suppression  
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systems, the condition of the electrical grid, whether water pipes run through the data 

center, the condition of the heating and air condition system, and the amount of dirt or 

dust in the air.   

The system can be designed with great application security, but if unauthorized 

employees or maintenance personnel have access the data center or tape storage area, 

then those application security measures can be easily bypassed.  The data center should 

be restricted to only those personnel that must have access to perform their daily work, 

access to secure areas must be protected by an electronic access control system, and 

security must be monitored 24 x 7. The security system must also have a log of when 

employees accessed those secure areas for auditing purposes.  Appendix (A) lists a 

number of physical security requirements in the facilities requirements section. When 

security procedures and processes have been agreed to, SLAs can be used to ensure those 

processes and procedures are adhered to. 

The availability of a system depends in part on the speed at which the system can 

be restored once a crash has occurred.  If files or programs need to be restored from 

backup tapes, then those tapes need to be quickly accessed, and they must be accurate.  

The risk that the system will not meet availability goals increases if the host provider 

does not have good backup and tape management procedures in place to ensure that all 

system software and related storage configuration can be recovered if an operational or 

hardware failure occurs.  Appendix (A) contains a number of backup and recovery 

requirements.  SLAs can be utilized to ensure agreed upon procedures and documentation 

requirements are being implemented correctly.  

The program manager must also evaluate risks in terms of a natural disaster or 

terrorist attack.  The host provider must have a disaster recovery plan to cover the 

possibility that a hurricane, tornado, flood, or blizzard damages its ability to operate for 

an extended period of time.  Disaster recovery, or business continuity involves the 

planning and implementation of procedures to ensure critical business operations resume 

following a disaster and that they return to normal operations as soon as possible.  Part of 

the process is determining which applications are critical and which are not, then 

deciding upon the time frames for recovery and site recovery necessary to meet the 
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recovery needs.  In most cases organizations are too dependent upon their IT systems for 

their core business functions to loose that functionality for more than a couple of days.  

Some organizations cannot afford to loose their systems for more than a couple of hours.  

Good disaster recovery plans utilize backup sites that are not in the same 

geographical proximity to the data center. Appendix (A) describes three types of backup 

sites that are commonly used, shell sites, warm sites and hot sites.  A shell site just 

provides the necessary facilities for computing, it does not provide any equipment.  A 

warm site provides facilities and equipment, but all system software would have to be 

installed on the equipment.  A hot site provides facilities, equipment, and system 

software, which receive backup data from the host site at least daily or depending upon 

the criticality of the system in a near real time.  The hot site should mirror the system in 

the host environment to the greatest extent possible.      

Good recovery plans should have a disaster recovery team listed with cell phone 

numbers, a blueprint of where equipment and infrastructure are located, a list of vendors 

to call to replace equipment and software, a complete inventory of the hardware (model 

numbers, purchase date, associated software with version numbers), a complete inventory 

of the software (version numbers, licenses, license keys, date purchased), maintenance 

contracts, all relevant phone numbers (especially the recovery site), installation and 

operating procedures for the hardware and software, and personnel requirements to 

recover the existing site and run the remote site. (Philcox) The recovery plan must be 

exercised periodically to ensure the host service provider can provide recovery in the 

time frames stipulated in the contract or the SLAs.   

SLAs help to reduce risks by identifying risk areas and proactively monitoring 

development processes and procedures and system performance to identify problems 

before they become serious.  The SLAs also encourage the adoption of standards, which 

reduce risk, increase effectiveness, and standardize operations throughout the 

organization.  The SLA provide quality metric verification methods which can be used to 

test product risk, and it can be used to decrease post-production risks.  
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B. FINANCIAL MANAGEMENT 

One of the most important tasks that a program manager performs is obtaining 

and retaining funding for the project. Before a project is started a mission need statement 

(MNS) or a project overview statement (POS) must be approved.  The MNS and POS 

essentially define a problem that needs to be addressed, it describes how the problem will 

be solved or what the project will consist of, it states why the project is needed, and it 

details what specific business value or operational advantage it will provide. (Wysocki) 

This section makes the assumption that management has already approved a MNS or 

POS, and funding necessary for a detailed project plan has already been received.     

The development of SLAs provides valuable information that will assist the 

program manager in managing the projects finances.  SLAs specifically help financial 

management in determining the scope of the project, identifying business critical 

processes and functions, they help to allocate costs, they provide justification for service 

related expenditures, and they coordinate the IT strategy with business strategies. 

In the requirements engineering phase of development, stakeholders must 

determine the scope of the system.  Stakeholders need to determine what they need and 

do not need in the system. As was discussed in Chapter III, the SLA development process 

provided an additional venue and methodology to explore requirements, it concentrated 

on business essential non-quality factors that support critical success criteria, and it looks 

at long term requirements that will affect lifecycle costs.   

Once the system has been scoped, and requirements have been generated, it is 

possible to estimate the costs, schedule and resource requirements to development the 

system based on function points, KLOC analysis, COCOMO II, or other software 

estimation techniques.  The program manager can then take these more concise estimates 

back to management to give them a rough idea of the costs associated with the project 

(estimates early in the project are not as accurate as those made later in the development 

process).  Those costs can then be compared to the expected benefits to determine 

whether to proceed with the project.      

Program managers are typically fighting for funding with other competing 

interests.  Management will fund those projects that it believes will return the greatest 
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return for the least amount of risk.  Management also expects that they are purchasing a 

quality product.  If management is confident that the program manager has conducted a 

comprehensive analysis of the requirements, has identified critical success areas or 

factors, has developed a risk management plan, has formulated a plan to closely monitor 

development and has developed a comprehensive test plan, they are more likely to fund 

that project over another project that is not as well organized.  SLAs provide management 

with that confidence.  

Chapter X outlines research that demonstrates that IT professionals believe that 

the use of SLAs will improve software quality.  Research has shown that quality 

improvement, although expensive in the short run can produce cost savings over the 

lifecycle of the product.  The same research also demonstrated that quality improvements 

were most cost effective at the beginning of the project. (Slaughter)  However, the 

marginal return on quality improvement decreases as more effort in that area is applied.  

As such, program managers need to determine how much to invest in quality 

improvement.  The SLA development process attempts to make a business case 

(demonstrate how the IT investment supports and advances business practices) for every 

SLA.  As such, many requirements that are ‘nice to have’ are eliminated or are deferred 

to another release.  The business case allows management to see the effect of funding 

cuts on specific SLAs, or their return on investment.  It also allows the program manager 

and management to prioritize the SLAs based on business needs.  The SLA development 

process helps to ensure funding is only spent on mission critical requirements. 

To gather the information necessary to negotiate or develop SLA thresholds, it is 

often important to gather measurements on existing systems.  It is important to measure 

actual performance against that which is expected.  In many cases stakeholders have 

unrealistic expectations such as wanting 100 percent reliability.  The SLA development 

process and template SLAs will help to identify those requirements that deviate from 

industry standards or benchmarked measurements.  Program managers cannot waste 

funds on unrealistic or unsupported requirements.  SLAs can be expensive and it is very  
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important that the quality thresholds specified can be justified (what are the upper and 

lower threshold boundaries and what affect will they have on the supported business 

process).       

SLAs are also useful in reducing overall lifecycle costs by concentrating on 

quality at the beginning of development.  Quality factors such as maintainability and 

security can have long term financial implications if either are not incorporated in the 

requirements or the design.  Quantifiable software metrics assist in making good design 

tradeoffs between development costs and operational costs.  This is important when tight 

development schedules and limited funding could cause contractors to skimp on quality 

factors such as maintainability, portability or usability. (Boehm 1991)  It is also important 

to remember that in large software systems, the majority of costs occur after the 

development phase.  Unfortunately, few organizations make conscious tradeoffs between 

development and maintenance costs. (Vigder) 

SLAs are also useful in supporting IT accounting where costs are allocated to 

specific budget centers or stakeholders.  Since SLAs are justified based on business case 

analysis, the services or benefits that the SLA supports can be traced back to the program 

management effort, the development effort, or to a specific stakeholder requirement (e.g., 

finance department).  The fundamental benefit of IT accounting is that it provides 

management information on the costs of providing IT services that support the 

organization’s business needs.  This information is needed to enable IT and business 

managers to make decisions that ensure the IT services organization run in a cost-

effective manner. (ITIL) 

 

C. QUALITY CONTROL 

Program managers are expected to produce high quality products.  Unfortunately, 

there are numerous examples of failed software projects because program managers did 

not or could not exercise proper quality control.  Quality control consists of the actions 

necessary to certify that desired standards and quality requirements are adhered to during 

design, implementation and production. (Tricker) In addition quality control consists of 
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those activities necessary to detect, document, analyze, and correct defects. (Horch)  

SLAs are a quality control mechanism. 

SLAs help the program manager institute a quality control program by identifying 

business essential quality factors throughout the system’s lifecycle, quantifying those 

factors in measurable terms, defining how and when the quality requirement was going to 

be verified, and encouraging the contractor to meet quality goals through penalties or 

incentives.    

The development of SLAs helps make those involved with the process more 

aware of how quality considerations influence design, lifecycle costs, and performance.  

SLAs also make management and the contractor more aware of quality in general.  The 

penalties/incentives will help to focus stakeholder’s attention on quality issues. 

 

D. MAINTENANCE 

Software maintenance is the modification of a product after delivery to correct 

errors, improve performance, or adapt the product to a modified environment. The 

modification relates to the code as well as the underlying documentation. The object of 

software maintenance is to modify the product, while preserving its integrity. (Bennett)  

The program manager must still maintain quality control over the software even after it 

has been deployed.  Configuration control processes and performance monitoring are 

essential elements in post-production IT management. 

Maintaining IT systems is every bit as challenging as developing new systems, 

however post-production support does not receive the same resources as a system in 

development.  New systems generally receive the funding, support and oversight 

necessary to develop the system.  Once a system is developed, program management is 

typically turned over to a functional specialist who deploys and maintains the system.  

Deployed systems do not generally receive the same funding and personnel resource 

considerations that they deserve.  Businesses are constantly trying to divert more funding 

from support expenditures to new production.   

Maintaining systems is especially difficult with older legacy systems.  Older 

systems are often plagued by inconsistent, inadequate, or missing documentation.  These 
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systems also tend to be fragile when it comes to software migration or modifications.  

These legacy systems are constantly being pressured to adopt the latest technology, 

architectural mandate, or respond to new customer or market driven enhancements.  

Additionally, contractors or junior programmers, who may not understand the “big 

picture” view of the system, often because of their junior status, are assigned to 

implement the changes to these older systems. (Prouten)     

Ensuring the integrity of the original requirements is extremely difficult as a 

system ages.  As personnel with the tacit knowledge of the original system leave the 

program office and the contractor’s team, the need for accurate documentation becomes 

more important.  To maintain the integrity of the original system, all modifications and 

maintenance actions must be entered into the configuration management system, where 

they will be submitted to a CRB with the appropriate documentation, the changes will be 

tracked and controlled, new identification will be issued, and the change release will be 

carefully managed.  Unfortunately, as systems age, it is not uncommon to discover that 

programmers have violated standards, architectures and procedures in order to make a 

system operational.   

Software maintenance is extremely important because some studies indicate that 

maintenance costs can account for up to 70 percent of a system’s lifecycle costs, (Hulse) 

and other place the figure at three to four times the initial cost of the system. (Vigder)  

Additionally, the maintenance philosophies incorporated into the system design 

influences programmers’ ability to quickly and reliably change software.  Slow change 

equates to lost business opportunities. (Bennett)  An example of a systems designed for 

software maintenance is one that contains architecture that are well defined, clearly 

documented, and promotes design consistency through guidelines and design patterns. 

(Hulse) The maintenance philosophy can also have a tremendous influence on the total 

lifecycle costs of a program.  Unfortunately, few organizations make conscious tradeoffs 

between development and maintenance costs.  Many systems are delivered without 

proper documentation and are given to the maintenance centers without the necessary 

knowledge.  This increases the cost of maintenance and reduces the quality of the work. 

(Vigder)    
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In the post-production phase, any proposed maintenance changes or changes to 

requirements still needs to be reviewed by the CRB.  Although the composition of the 

members of the CRB may change as maintenance contractors or personnel replace those 

that were involved in the development (an ideal situation is when the people performing 

the development work are also involved in the long term maintenance of the system) the 

functions that the CRB perform are still essential.   

The CRB review the proposed maintenance action and the effects it will have on 

the operating system, architecture, functionality, service level agreements, documentation 

and training.  The board also discusses the time frames to implement, security of the 

source code, methods of issuing the update, effect on interfaces, and scheduling server 

down time to implement changes.  The board also reviews the effect that the maintenance 

action will have on the underlying processes and business logic built into the system.   

It is still important to include stakeholders in the CRB as it is difficult to fully 

understand and analyze such process issues as information flow, division of work, and 

coordination without including organizational context in the analysis.  Organizational 

context refers to characteristics of relationships between process participants. (Briand) 

The CRB also helps to ensure that the test community is involved in the change 

management process.  The changes need to meet specific performance requirements that 

need to be specified as part of the maintenance package.  The changes need to be 

incorporated into the testing package so when changes are made, the test community will 

verify that the changes actually meet the specified requirements.  In some cases it is 

difficult to determine the actual status of a program.  Many organizations that do not 

include the test community in the CRB are forced to declare a task complete when the 

person responsible for the task declares it to be complete. (Vigder) The test community 

will have processes and metrics in place to determine if a maintenance effort was 

completed correctly.   

The CRB can also be helpful in evaluating the effects that new technologies will 

have on the system.  As business needs change and new technology is introduced, the 

system may have to undergo dramatic change to incorporate proposed modifications.  

Often, management proposes the adoption of new technologies without consideration of 



 193

what happens when the software has to be changed.  For example, object oriented 

languages were supposed to make maintenance much easier, however, these languages 

must be designed with care (e.g., controlling inheritance and threads) or their 

maintenance can be more difficult that traditional languages. (Bennett)  The CRB along 

with contractors can help the program manager scope the maintenance project and what it 

will take to accomplish in terms of cost and schedule.  

Quality control is stressed during the development of software, but it is rarely 

evaluated after the application goes to production, unless there are major problems.  The 

program manager must constantly monitor the program throughout its lifecycle to 

measure the effectiveness of the program, quality, and to detect early signs of problems 

that may require maintenance action.  The SEI quality framework lists attributes that may 

help program managers track and categorize problems. This information can improve 

overall knowledge about problems within the program, and can be used to determine if 

maintenance action is warranted. (Kajko-Mattsson) 

SLAs can be utilized for the maintenance actions in much the same manner as 

development efforts.  Software quality can be improved in the maintenance phase by 

utilizing SLAs to ensure the contractor adheres to SLA mandated documentation 

requirements, specific standards and processes (configuration management process), 

quality requirements (defects, complexity, security), and performance requirements 

(throughput, availability, response rate).  As most of the program managers in the post-

production phase do not have a technical background, template SLAs can help them 

understand the metrics that should be collected when maintenance action is performed.  

Although the program manager may need assistance modifying the template SLAs to 

meet the unique maintenance needs of the system, the major quality areas will be 

addressed, and the program managers will be more informed.   

 

E. CONTRACT MANAGEMENT 

Organizations are becoming more reliant upon IT as a tactical and strategic 

business tool.  IT has provided organizations with the increased computational powers 

and communications to rapidly process and act on data.  The advent of e-business 
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(business utilizing the Internet) has introduced a new distribution channels for goods and 

services, increased corporate partnerships, introduced new markets, and has lead to 

innovations such as just-in-time inventories.  IT has also enabled organizations to become 

flatter, allowing them to respond and adjust to external forces quicker and more 

effectively.  Organizations that can leverage IT better than their competitors will gain a 

significant competitive advantage. 

As technology rapidly advances, these mission essential IT systems are becoming 

more complex and more difficult to manage internally.  Many organizations have 

discovered that they do not have the necessary IT skills within their organization to 

develop and/or manage these systems.  Rather than hire IT specialists, or invest in 

training for their staff, they are considering outsourcing their IT work as a strategy.  This 

is especially true for smaller businesses that cannot afford to keep the in-house IT staff 

necessary to develop, maintain, and monitor IT intensive systems. 

Outsourcing is the process of contracting with a service provider to perform a 

function or functions that used to be performed by the organizations own (in-house) staff.  

Outsourcing has been a business strategy for a number of years.  Organizations are 

generally more comfortable assigning functionality to in-house staff as it gives them 

more flexibility, they do not need to contract for the services, in-house staff already 

knows the organization’s policies and procedures, they have greater trust in their own 

staff, and in many cases they were cheaper than contractors.  However, as more 

specialized skills are needed to develop and maintain IT intensive systems, outsourcing is 

becoming more advantageous. 

The emergence of companies specializing in providing IT services (external 

service providers (ESP)) have provided a source of IT specialists that can in many cases 

provide high quality service for lower prices than internal IT organizations can.  IT 

outsourcing is gaining popularity and is increasing in volume worldwide. In many cases 

IT managers have little choice but to outsource as ESPs provide access to cutting edge 

technology and skilled staff, they share the project risk, and they allow organizations to 

concentrate on core competencies, and they can be cheaper. (King, Goth, Greaver, 

Nelson)    
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However, outsourcing efforts require additional discipline and management 

oversight that may not be necessary with in-house development and maintenance.  

Program managers not only need to be involved in requirements determination, risk 

assessment, quality management, change management, and test and evaluation, but they 

must also be involved contract preparation, contractor evaluation, proposal evaluation, 

contract tracking and oversight, and contractor performance management.  The program 

manager must be an informed buyer. (Feeny)  Program managers must develop strategy 

to deal with ESPs that includes how the program manager will manage the contract 

relationship, access to proprietary information, chains of command, monitoring policies, 

dispute resolution procedures, and early termination.  

Contract management is one of the program manager’s most important tasks.  The 

purpose of contract management is to obtain the services that are defined in the contract 

and achieve a return (business value) on the investment. (Lewis) A poorly developed and 

managed contract can quickly lead to performance and fiscal problems.  Contractors are 

profit driven, nothing that they do is altruistic; their stockholders will not allow it.  As a 

result, contractors are looking for every cost cutting measure that they can employ to 

maximize their profits.  While not the majority, there are contractors that will not fully 

meet requirements (e.g., cutting corners) if they believe they can get away with it.  Other 

contractors will take advantage of vague requirements to deliver a cheaper product that 

may not meet user expectations.  The program manager needs to develop a contract that 

accurately specifies the requirements (terms and conditions for acceptance of the 

deliverable); while at the same time holds the contractor accountable.  The program 

manager must also balance the desire to constantly monitor and control the contractor 

with the reality that a partnering relationship works better than an adversarial one.   

1. Contact Preparation 

This section will discuss contracting as it applies to outsourcing of IT services, 

but the same concepts can be used internally between a business entity and the IT 

department.  Contracting for IT services can be very complex, especially when dealing 

with the government where the Federal Acquisition Regulations (FAR) and Defense 

Federal Acquisition Regulations (DFAR) must be followed.  A detailed discussion on 
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contracting is outside of the scope of this dissertation; therefore this section will 

oversimplify the contracting process to emphasize the positive affects that SLAs have on 

the process.     

When contracting for IT services, the organization requesting the services needs 

to first determine their requirements.  Those requirements (including the SLAs) are 

incorporated into a document called a request for proposal (RFP).  The RFP is sent to 

organizations that the contracting officer believes can perform the work requested.  In the 

government, the RFP is advertised in the Federal Business Operations, (formerly the 

Commerce Business Daily). Those organizations responding to the RFP or to the Federal 

Business Operations submit a statement of work (SOW) that describes how they will 

meet the requirements requested in the RFP.  The SOW also includes the organization’s 

estimate on how much it will cost to provide the service, and a schedule that defines how 

long it will take to start or provide the service.  When the contracting officer has received 

SOWs from the organizations interested in performing the work, proposal evaluation 

begins.  The contracting officer evaluates the SOW for competency (demonstrating an 

understanding of the domain and contracting procedures), professionalism 

(responsiveness to RFP), risk, costs, schedule, past performance, and technical 

proficiency.  When a contractor is selected to perform the work, a contract is written, 

which specifies the requirements, and contract type (e.g., firm fixed price, cost-plus, cost-

plus incentive). At this point the contracting officer and the organization negotiate a price 

and timeline for the service, as well as other terms such as control of intellectual property 

rights and whether equipment or material will be furnished to the contractor to perform 

the requested service.  When a price is agreed to, the contract is awarded, a contracting 

officer representative is assigned to manage the contract performance, and work begins. 

Throughout the contracting process (i.e., before contract award), the contractors 

and the organization’s contracting officer are meeting and exchanging questions to ensure 

that the contractor understand the requirements, and in some cases to educate the 

contracting officer and the program manager about conflicting requirements or technical 

feasibility.  The vendors bidding on the contract want to ensure they perform due 

diligence so they understand the scope, the work to be accomplished, performance and 
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quality criteria, the operating environment, what deliverables are expected, schedule 

constraints, and acceptance criteria.  When the vendors feel they understand all of the 

requirements, they can begin to prepare their SOW that will detail how they will 

accomplish the work.    

The foundations of contract management are laid in the contract itself.  The 

contract should specify agreed levels of service, quantifiable functional and non-

functional attributes, incentives, timetables (milestones), measures of performance, 

communication channels, escalation procedures, change control procedures, and price. 

(Lewis)  Well written contracts also define the authority that each party has to assign, 

remove or supervise personnel from the contractor’s team, intellectual property rights, 

ownership of the source code, terms and conditions to terminate or modify the contract, 

use of third party contractors, transfer or purchase of equipment, migration plans, and 

acceptance critieria. (Chorafas)   

SLAs help to form the foundations of the contract because many of the elements 

of the contract such as escalation procedures, quality thresholds, points of contact, and 

roles and responsibilities are already incorporated if a template SLA similar to those 

found in appendix (A) is used.  Strong formalized requirements along with performance 

monitoring can help to improve the working relationship between the vendor and the 

contractor.  Poor contracts lead to friction, which in turn leads to distrust and ultimately 

results in poor performance. (Chorafas)   

A common understanding of the goals of the project and a monitoring system that 

identifies and resolves problem issues before they affect contract performance creates an 

environment that is more conducive to forming a good partnership.  A good working 

relationship requires continuous meaningful two-way dialog between the organization 

and the contractor.  SLAs help establish communication by identifying the chain of 

command, escalation procedures, and identifying the individual(s) that will be monitoring 

the SLA.  In addition, the very process of monitoring the SLA will in many cases open 

dialog between the monitor and the contractor that may identify problems, or signal that 

the contractor is meeting or exceeding all requirements. 
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Contracting for services requires that all stakeholders and the contractor have a 

clear understanding of the requirements.  It requires a great deal of time and effort to craft 

a contract that accurately describes the deliverables and acceptance criteria.  There is a 

tendency to write ambiguous language into the contract in the hope that as the contract 

progresses details can be worked out.  This is common when there are time pressures 

forcing the program manager to get the contract signed and get the work started.  

Unfortunately, unless there is a great working relationship between the organization and 

the contractor, there will be conflicts when it comes to defining the small details.  In 

many cases contract modifications are needed to better define the requirements, and extra 

funds will be needed before the contractor will execute those new requirements.  

Organizations will have little contractual recourse if they disagree with the contractor’s 

interpretation of their ambiguous requirements.   

The SLAs development process and template SLAs show organizations the value 

of writing very detailed requirement specifications for the product.  Detailed 

specifications make it much easier for any organization (in-house or outsourced) to 

deliver a quality product on time. (McLaughton)  Detailed specifications also make it 

much easier for contractors to put together a bid on the RFP.  Precise requirements allow 

the contractor to make better estimates of the resources (manpower, skills, funding) and 

time that it will take to complete the project.  (Lewis) The more effort that the contractor 

can put into the bid, the easier it is for the organization to evaluate. 

It is not unusual for organizations to bid low (i.e., low ball or buying in) on a RFP 

to get the contract.  Once they get the contract, they send in a team to perform true due 

diligence to determine what it will cost to actually perform the services specified in the 

contract.  If they underbid the contract, they look for additional work that was assumed, 

but not implied in the contract, and they look to recoup funds by overcharging on 

additional requirements that are generated during the development or support effort. 

Either approach tends to strain the contract relationship. It is important to note that any 

additional work must be accomplished through a contract modification, where the 

contractor must demonstrate that there were deficiencies in the RFP, or that new 

requirements have been generated.    When SLAs are included in the contract, contractors 
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are more likely to take the time to develop good estimates and determine what steps are 

necessary to accomplish the tasks while reducing their risks, because the financial risks 

(penalties or incentives) of not doing so can be severe.        

SLAs are useful in contracts not only because they concentrate on quality factors, 

but they also have the ability to penalize the contractor for non-performance without 

having to resort to termination clauses (In government contracting the term ‘penalty’ is 

used to represent the withholding of any incentive payments or bonuses associated with 

the SLA, the FAR does not allow a fine for nonperformance).  Most contracts include 

termination provisions where a contract can be terminated if the contractor is not abiding 

by the terms and conditions of the contract (requirements, processes, cost or schedule 

constraints, personnel turnover). Unfortunately, while it may be advantageous to 

terminate a contractor for fiscal reasons, it achieves little in terms of fielding the system. 

As a result some contractors will work at the minimum accepted levels of performance in 

an effort to gain more profits.   To motivate contractors to perform better many contracts 

include incentives, which are normally based on cost and schedule thresholds.  Incentives 

are normally based on passing milestone reviews, with the assumption that the reviews 

will determine whether functional requirements have been met or not.     

SLAs support standard contracts by providing incentives or penalties for 

achieving or not achieving quality thresholds throughout the lifecycle, not just at the 

milestones (In government contracting the SLAs provide the quality threshold and the 

associated penalties or incentives, but the contract itself, which will refer to the SLAs, 

provides the incentives). This gives the program manager more options.  In most 

contracts, if a contractor has met functional requirements on time and on budget, but its 

configuration management system is poorly maintained, there are few options that the 

program manager has other than writing a poor evaluation/recommendation to resolve the 

problem. Termination clauses generally do not address quality issues, which have a lower 

priority than functional requirements, cost, and schedule. If SLAs are used, incentive pay 

can be withheld for the reporting period agreed to in the SLA (monthly or quarterly) or 

the contractor can be fined until the configuration system meets the quality threshold.  If 

the problem persists, the program manager has the option of terminating the contract  
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(write termination clauses into the SLAs for persistent failure to achieve thresholds), or if 

the program manager sees improvement, the incentive pay can continue to be withheld 

until thresholds are met.     

In outsourcing contracts, quality is best achieved by comprehensive and detailed 

requirements specifications coupled with well defined SLAs with built-in penalties 

should service levels go awry.  (Chorafas, Baron) The SLAs help to reduce overall 

contract risk by monitoring quality throughout the lifecycle.  Most SLAs measurement 

periods are over a monthly or quarterly time period.  Accordingly, problems with meeting 

quality thresholds are identified long before a milestone review.  This contract 

monitoring allows the program manager to quickly take action to resolve the problem, 

and if necessary to terminate the contract before too much time and money is spent.     

2. Proposal Evaluation 

Once SOWs are received from contractors interested in performing the requested 

services the organization must develop a methodology to select the contractor that can 

best meet their requirements.  The criteria used to evaluate proposals should be 

determined before the RFP is completed to ensure that the RFP effectively communicates 

all of the areas that need to be evaluated.  The evaluation criteria must be included in the 

RFP.  In most cases the evaluation consists of a balance scorecard type of approach 

where weights are attached to specific attributes such as reputation, price, schedule, risk, 

and processes.    

The process of selecting a business partner should be well thought out.  A good 

partnership can provide benefits to both organizations; however, a poor relationship can 

jeopardize the project, alienate customers, anger stockholders, and damage both 

organizations’ reputation.   

In some cases a pre-qualification can be accomplished to limit the amount of 

applicants.  Pre-qualification audits or screens are done to ensure that the organization is 

not wasting its time evaluating a contractor that does not have the capability to satisfy the 

conditions of the contract. (Roberts)  Pre-qualification audits review the SOWs to 

evaluate the number of staff and their skill sets, the financial condition of the contractor,  
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pending lawsuits, the reputation of the contractor (check references), CMM ratings if 

applicable, the type of work (technical level and complexity) the contractor has done in 

the past.  

SLAs aid organizations in the pre-qualification of applications. SLAs contain 

quantifiable quality requirements along with a methodology to confirm whether the 

requirements have been met.  The detail of the requirements along with non-performance 

penalties will generally discourage all but the most serious contractors. The SLAs tend to 

limit the proposal to only those that are capable of providing a quality product or service. 

When the pre-qualification has been completed the remaining proposals are 

reviewed.  A more detailed analysis is conducted of the proposals and the contractors.  

Although many factors are scored (balance scorecard), the selection criteria can be 

grouped into seven main categories.  The categories and the way they are scored should 

be aligned to the underlying business processes that the IT system supports, and the 

overall business goals of the organization.  The first category evaluates a contractor’s 

quality control and quality management processes.  The second category looks at the 

technical competency of the contractor in terms of employee skills, tools, training 

programs, innovation, and past performance.  The third category analyzes the contractor 

resource management practices in terms of employee management (employee turn-over, 

pay, training opportunities) and knowledge management (how is tacit knowledge 

captured, how is information collected and shared).  Determining the financial strength of 

the contractor is the forth category.  The fifth category determines whether there is a good 

cultural fit between the organization and the contractor (e.g., a contractor may operate in 

an environment that has to rapidly respond to the business environment, the contractor 

will have to be have quick, flexible processes to accommodate that need).  The sixth 

category evaluates the contractor’s program management processes, such as 

configuration control and change management. The last category is the costs of the 

project and projected costs over the lifecycle of the project. (Roberts) 

SLAs are also helpful when scoring the proposals.  The quality factors 

represented in the SLAs represent those areas that stakeholders felt were essential to 

achieving a quality deliverable.  As a result, the quality factors identified in the SLAs 
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should be scored higher than other non-essential factors such as the contractor’s 

administrative support.  In addition SLAs make it easier to focus part of the assessment 

on the contractor’s ability to meet the quality thresholds specified in the SLAs.  If 

maintainability is a major concern to the organization, the assessment can evaluate the 

configuration control system that the contractor used on past projects.  The SLAs allow 

the assessment team to focus on specific areas rather than conducting a general overview 

of the contractor’s processes and past work.  

3. Contract Oversight 

After the proposal evaluation is completed and a contractor is selected the details 

of the contract are negotiated.  When both parties sign the contract, the process of 

contract oversight starts.  The main purpose of contract oversight is to ensure that both 

parties are fulfilling their contractual obligations. (Hill)  SLAs were developed in part to 

provide contract oversight by monitoring the quality factors specified in the contract. In 

this dissertation contract oversight is broken into maintaining a good relationship 

between the parties, and ensuring the contractor is adhering to the terms and conditions of 

the contract.    

There are a couple of different types of contractor-organization relationships.  A 

partnership is a formal business relationship that is established to achieve common 

business objectives.  Partnerships are usually long term and are characterized by a close 

working relationship where the contractor is an active team member.  In partnerships the 

organization and the contractor have a vested interest in the success of the project. (Hill)   

An affiliation is also a formal business relationship where pre-qualified contractors are 

engaged, as their services are needed.  Examples of an affiliation are buyer purchase 

agreements (BPAs), where the service and price have already been negotiated, and a 

contract is executed only when the service is needed.  Another formal relationship is the 

project specific relationships where the contractor is needed on a specific project.  This 

type of relationship is very common and it includes RFPs, SOWs and a selection process.  

The last type of relationship is a service provider relationship where the contract may be 

formal or informal.  An example of this type of relationship is the local server hardware 

maintenance professional who has been pre-approved to do preventive maintenance work 
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(i.e., run diagnostics, vacuum dust) for the organization.  When the maintenance man’s 

services are needed, he is called.  The maintenance man provides a quick estimate of the 

cost of the job, and if the price is acceptable, the organization will contract for the 

services (in many cases an account already exists). (Hill)  In each case a good working 

relationship is beneficial to both parties. 

There is a common misconception that SLAs can cause an adversarial relationship 

between an organization and a contractor as a result of penalties for noncompliance.  

However, many contractors like SLAs because they define the services that must be 

performed in detail, they provide the quality thresholds that must be met, and they state 

the means by which those services will be measured.  The detail provided in the SLAs 

helps to prevent much of the ambiguity that causes disagreements.  Both parties agree to 

SLAs; and if a contractor does not meet requirements, then they understand the 

repercussions, because they also understand the effect that not meeting those 

requirements has on the organization.  Contractors expect to be penalized for poor 

performance; problems arise when there are differing interpretations as to the services 

being provided, and their associated performance requirements.  Specifying the 

methodology to verify compliancy also eliminates many of the arguments that may occur.  

As was discussed previously, depending upon the organization-contractor relationship, 

the maturity of the technology, or how well requirements are understood, it may be better 

to structure the SLAs as incentives instead of penalties. 

Managing the relationship between a vendor and an organization is a difficult but 

extremely important task.  Both parties need to understand the motivations of the other 

party to be successful. Contractors are motivated by profit, but they must price their 

services to be competitive with other contractors and the internal IT shop within the 

organization.  Contractors try to not only win the contract, but they want to establish a 

good long term working relationships to gain more work and generate additional profits. 

Organizations want a system that performs to specifications, so the system can enable 

business processes that will allow them to generate profit.  The solicitation process is the 

means that the organization uses to ensure they are not paying too much for the service 

(competition will lower the price of the service), and the contract is the process that they 
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use to ensure they will receive the functionality and quality that they desire.  

Organizations must also understand that if the contractor is not making profits, the risk of 

default or non-performance on the contract increases significantly.  SLAs tie the vendor’s 

most important concern, profits, with the program manager’s most important concerns, 

performance and quality.  (Agarwal) 

The program management office needs to develop procedures and processes to 

manage the contractors.  The program manager needs to determine the type of 

information that the contractor needs access to, whether the contractor is included in daily 

meetings, whether they are managed at a distance, how information will be shared (e-

mail, meeting minutes, central repository), the chain of command, security clearances, 

and the degree of freedom that the contractor has to develop solutions or to resolve 

situations. If the SLAs include end-to-end components or if the system is a part of a 

system or systems, the program manager may have to manage multiple development and 

maintenance contracts with many different contractors.  The program manager will have 

to determine how to manage the various contractors and their interactions (i.e., are 

contractors allowed to communicate among themselves, or do they have to communicate 

through the program management office).  

SLAs provide information that helps both parties manage their relationship better.  

SLAs identify the individual who is responsible for managing the SLA.  Depending upon 

the complexity of the system, manpower availability, and the criticality of the system the 

SLA will assign an individual to act as a contract monitor who is responsible for 

verifying that quality thresholds have been met, but an addition individual may be needed 

to act as a contract facilitator who would be responsible for working with the contractor 

to resolve day-to-day issues relating to the SLA. (Currie)  In smaller projects, the same 

individual will perform both functions.  Although one individual may be responsible for 

multiple SLAs, it is helpful to specify the specific point of contact for each SLA as it 

helps to build and maintain the organization-contractor partnership.   

Conflict is a normal part of the development process, requirements are not always 

known well enough to specify in exacting detail, systems are complex, and the business 

environment is dynamic. The ability of both parties to resolve these disputes amicably 
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will determine the strength of the working relationship.  SLAs help to provide some 

structure by designating responsibilities for various tasks as they relate to the SLA.  This 

definition of roles and responsibilities provides greater clarity and better defines the 

working relationship.  The SLAs also state assumptions that were used to build the SLAs, 

which may also resolve possible disputes before they occur.      

4. Contractor Performance Management 

SLAs help to manage the contractor by defining the quality factors and metrics 

that must be met, they define how the metrics will be collected, they increase 

communication between the contractor and the program management team, and they 

define roles and responsibilities of both parties.   

The key to contractor performance management is oversight.  The program 

manager is responsible for ensuring that the contractor is complying with the terms and 

conditions of the contract.  The program manager must also verify that any deliverables 

meet stated requirements.  It is very important that quality control measures are in place 

to inspect and verify the contractor’s product at each milestone.  (Hill)  SLAs explicitly 

state the quality factors that an organization expects in the end product.  SLAs also 

explicitly state the metrics and the collection mechanisms that will be utilized to verify 

that the quality requirements have been met.  SLAs also establish a monitoring process to 

verify compliance with quality requirements.  As such, any deviations from the 

organization’s expectations can be quickly resolved before they become major problems.  

Additionally, monitoring provides information to utilize in forecast analysis. 

When the contractor was preparing the solicitation in response to the RFP, the 

contractor had an opportunity to challenge or question any of the SLAs.  If the contractor 

decided to bid on the contract, then they agreed to abide by the SLA.  SLAs establish a 

clear understanding of the product quality, process quality, production quality and post-

production quality expectations.  Although SLAs place constraints on the behavior of 

contractors, numerous contractors interviewed have indicated that they favor contracts 

that clearly articulate expectations as it resolves may of the conflicts that normally occur 

over interpretation of requirements. 
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 During the solicitation process, or in some cases if the contractor participated or 

lead the requirements engineering process, the SLAs generated meaningful 

communication between the contractor and the organization.  The SLAs not only 

introduce quality requirements at the beginning of the development cycle, they also 

generate discussion on standards, testing, monitoring, design, critical business processes, 

change management, quality models, and quality control.  These discussions hopefully, 

improved the SLAs, established common frames of reference, and established a good 

working relationship between the parties.  The reports generated as a result of the SLAs 

also help establish communication between the contractor, program manager, end users, 

and upper management.   

Many contracts drafted by lawyers include long, tortuous statements full of 

legalese and cross references that are difficult to understand. (Nellore)  Lawyers do not 

draft SLAs, they are written by end users, management, IT personnel, and business 

process owners.  Lawyers should review SLAs to protect the organization, but they need 

to be understandable by all parties involved.  The ease of reading makes SLAs more 

effective in communicating requirements than some contracts. 

Contractor performance management is more than monitoring quality metrics and 

assigning blame if they are not met.  Contractor performance management also needs to 

monitor the relationships between all parties. Blaming the contractor for quality problems 

does not solve the problem.  If relations between the organization and the contractor 

reach a point where both sides are blaming the other for problems, then both parties 

loose.  

Although both parties may not have the same objectives or policies, and both have 

constraints (internal and external) that influence their behavior, SLAs can be used to 

influence both parties to take appropriate actions to come to the mutually accepted 

behavior as agreed upon in the contract. (Milosevic)  SLAs specify the roles and 

responsibilities of both parties, they specify the assumptions, they specify quality 

expectations, and both parties agree them upon.  SLAs also specify procedures for 

dispute resolution, so issues can be resolved quickly. 
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F. CUSTOMER SATISFACTION 

Another important task that the program manager has is ensuring that all major 

stakeholders are pleased with the delivered product.   A program can meet cost, schedule 

and performance parameters, but if the stakeholders are not pleased with the product, the 

perception will be that the project failed.  Customer satisfaction is an important role for 

the program manager.  The program manager must ensure that the delivered product is 

acceptable to the stakeholders; however, the program manager must also ensure that once 

the product is delivered, that it is properly supported through the use of SLAs. 

The process of developing the SLAs helps the program manager by establishing 

buy-in from the major stakeholders.  Representatives from the major stakeholders are 

able to participate in the development process, and they determined the quality 

requirements and quality metrics that they felt best support the business critical 

processes.  They also have the ability to state their own expectations and make a case for 

quality factors that they feel are important.  When those stakeholders return to the 

positions they left, they are generally advocates for the program manager and the SLAs 

because they helped develop them.    

The program manager can utilize the SLAs to set customer expectations.  The 

SLAs define the quality factors and the quality thresholds that the user can expect.  The 

SLAs also demonstrate that the program manager has an aggressive plan in place to 

monitor performance and penalize the contractor if quality thresholds are not met.  SLAs 

also help institutionalize the change review board, which helps to inform users of 

approved changes to the system.  The SLAs help to prevent expectation creep, a situation 

where users constantly want better and faster performance. The program manager can 

easily point to the SLAs and declare that despite the user’s concerns, the stakeholders 

have determined that the current quality levels are sufficient to support the critical 

business processes. 

Program managers need to monitor customer satisfaction to ensure that the 

services are meeting end user needs.  A survey is one method of measuring whether end 

users are satisfied with the services that a contractor is providing.  SLAs can be written 

such that the contractor needs to achieve a certain score (90% satisfactory or above) to 
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meet a quality threshold.  Before SLAs are developed for surveys, the program manager 

should assess the environment to ensure that the contractor will have a chance of meeting 

the quality thresholds.  If the internal IT department lost jobs because of work outsourced 

to the contractor, end users may have a hostile attitude toward the contractor.  In that 

case, the program manager may want to wait until attitudes towards the contractor have 

softened.   

An important part of customer service is monitoring the performance of the 

system to ensure that it is supporting the critical business processes in a manner 

acceptable to the customer.  In the deployment or post-production phase of a system’s 

lifecycle the host provider (whether those functions are outsourced or kept in-house) must 

perform certain services to keep the system operational.  Service-level management 

(SLM) is the proactive methodology used to ensure that adequate levels of service are 

provided to all users in accordance with business priorities. (Sturm)  SLM involves 

monitoring, reporting, modifying, and improving the quality of the services being 

provided to an organization.  SLAs are a part of SLM in that they define the services to 

be performed, and the levels of service expected.    

Some of the areas of SLM include availability management, quality of service, 

and resource management. An integral part of maintaining an availability threshold is the 

constant monitoring of each of the hardware and software components that comprise the 

system’s infrastructure.  Components that are not performing as expected, should be 

examined and action should be taken to resolve any problems.  This may require 

additional monitoring, trend analysis, or changing to another component from another 

vendor.   

When measuring the network infrastructure performance, traffic behavior needs to 

be evaluated with respect to four characteristics: importance, time sensitivity, size, and 

jitter.  For applications that are critical to the success of the organization, efforts need to 

be taken to protect its performance.  This may mean allocating bandwidth specifically for 

the application, or prioritizing those packets in a QOS scenario.  Application traffic that is 

time sensitive, interactive, or subject to latency problems will also need prioritization 

(e.g., telnet or Oracle). Applications that have network traffic that expand to meet the 
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amount of bandwidth available, or produce large surges of packets (e.g., FTP, streaming 

video, *.jpg files) can have a negative impact on other applications.  Bandwidth hungry 

applications can deprive higher priority traffic of necessary bandwidth.  Streaming 

applications need a minimum bits-per-second rate to deliver acceptable performance.  

The bandwidth needed to support these types of applications (e.g., VoIP, Real Audio) 

need to be balanced against available bandwidth, the business value of the application, 

and the needs of other applications. (Packeteer, May 2002) 

Capacity management provides the necessary information on current and planned 

resource utilization of individual components to enable organizations to determine which 

components to upgrade, when to upgrade and how much the upgrade will cost. (ITIL) 

Service capacity management needs to monitor, analyze, tune, and report on 

service performance, establish baselines and profiles of use of services, and manage 

demand for services. (ITIL)  It is important that a good baseline be established so the 

service provider understands the resources and capability requirements of the application.   

Capacity management helps mitigate risks associated with resource requirements.  

Proper planning ensures that an application will have the resources necessary to execute 

all functionality to specifications.  Capacity management is also involved in analyzing the 

resource needs resulting from any application modifications approved by the change 

review board.  In the host environment, new applications, or modifications to existing 

applications can affect the resources (e.g., infrastructure) used by other applications.  

Accurately predicting resource needs of the new application, in addition to information 

collected on the usage of other applications will ensure that there are enough resources 

for all of the application, or identify the need for additional resources. (ITIL) 

 

G. SUMMARY 

The use of SLAs helps the program manager with many of the tasks necessary to 

managing complex IT systems.  The development of SLAs improves the communication 

between the stakeholders, management, and the contractor.  Increased communications 

helps to improve relationships, identify risk areas, better understand the requirements, 

and it leads to better problem resolution.  The monitoring processes resulting from the 
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SLAs help the program manager monitor performance and contractor compliancy.  SLAs 

need to define the quality requirements in great detail to ensure that all parties understand 

the quality expectations for the system.  Well defined quality requirements reduce the 

possibility of conflict due to misinterpretations of requirements, and helps to set user 

expectations regarding performance. SLAs can also be utilized to entice the contractor to 

take the necessary measures to ensure that their quality control measures are in place and 

are accurate.     
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X. RESEARCH METHODOLOGY 

A. PHILOSOPHICAL APPROACHES 

The objective of the questionnaire is to gather evidence to support the hypothesis 

that service level agreements can increase software quality and management of IT 

intensive systems.  If the hypothesis is supported, the results of the questionnaire can be 

predicted.  If the outcome of the questionnaire is similar to predictions, then the 

hypothesis is supported.  The questionnaire is designed to demonstrate the causality 

between the hypothesis and expected results. (Xia) 

There has been a great deal of debate on research methodology within software 

engineering field. Much of the debate centers on the various philosophical approaches to 

ontology (the nature of being) and epistemology (the theory of knowledge).  Those 

beliefs drive the methodology in conducting research and engaging in problem solving.  

The various philosophical approaches can be grouped into four distinct groups. (Reeves) 

The first group is the analytic-empirical-positivist-quantitative group.  This group 

is most often identified with mathematicians and physicists.  This group believes that the 

world is deterministic, or it is operated by the laws of cause and effect.  Research 

methodology associated with this group is generally highly structured and is centered on 

laboratory experiments.  This group believes in empiricism, or the idea that observations 

and measurements are the core of the scientific endeavor. (Trochim) Problems are 

decomposed into elements, variables, covariants, attributes, and values.  Tests are 

conducted under controlled conditions to not only establish a repeatable test, but also to 

systematically alter the variables, observe the phenomena, and measure outcomes against 

predictions.  This group only tests what they can measure and observe.   

The second group is the constructivist-hermeneutic-interpretivist-qualitative 

group.  This group does not subscribe to the detached, objective, nomothetic approach to 

research.  This group views the nature of reality differently.  This group believes that 

reality can only be defined by multiple perspectives, and that factors such as culture, sex, 

context, and emotion influence individual perspective.  They believe that laboratory 

experiments are a poor substitute for testing ideas in organizational contexts using real 
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practitioners. (Moody).  They view information technology as an applied science instead 

of a pure science.  Scientific rigor does not apply well to applied science.  This group 

tends to borrow many of the research methods used in anthropology and sociology. 

(Travis)  This group utilizes focus groups, interviews, and case studies.  These are the 

same techniques used in requirements elicitation. (Pressman, Nuseibeh, Galliers)    

The third group is not as representative as the other two, but they bear 

mentioning.  They are the critical theory-neomarxist-postmodern-praxis group.  This 

group believes that all assumptions must be challenged.  This group is essentially anti-

establishment, believing that there are hidden agendas and contradictions in most 

research.  They are critical of our ability to know reality with certainty. (Trochim) They 

challenge the underlying cultural, legal, scientific assumptions that form the basis of 

reality. (Reeves) For example, Einstein postulated that light (c) has a constant speed 

regardless of the frame of reference.  Numerous experiments have confirmed his 

postulation, however recent work by Montgomery and Dolphin are challenging that 

postulation.  Their research has indicated that the speed of light decreased over time, thus 

the atomic clock is decreasing with respect to dynamic time. (Montgomery) 

The last group is the eclectic-mixed methods-pragmatic group.  This group is not 

averse to using techniques of the other three groups to collect data and solve problems.  

The approach used depends upon the problem to be solved (i.e., hypothesis), the context 

in which it resides, and the purpose of the research. (Travis, Moody) This group tends to 

be more practical and they are not as philosophically driven as the other groups.  They 

recognize the weaknesses of the various methodologies and try to construct an approach 

that maximizes the value of the information gained in relation to the objectives of the 

research. 

 

B. APPLYING VARIOUS METHODOLOGIES 

Developing a pure positivist approach to supporting the hypothesis in this 

dissertation is difficult.  In scientific rigor, all variables that affect the end result (i.e., 

quality software and post-production support) must be identified.  To ascertain that 

results are only caused by the hypothesis, and not other conditions, other irrelevant 



 213

factors must be controlled and kept constant to eliminate their influence. (Xia) It is 

therefore necessary to identify all of the factors that lead to quality software and support.  

This approach makes the assumption that the concepts of quality and support and their 

associated properties can be defined in measurable terms.  It is possible to use the quality 

measures derived by McCall, Hewlett-Packard, and ISO 9126, but these measures are 

indirect measurements of quality, and are often subjective.     

It is possible to rephrase the hypothesis in terms that are more quantitative, but 

that does not make defining the terminology any easier.  For example, if the hypothesis 

stated that SLAs could reduce coding errors, the end result is still not clearly defined, and 

it does not address the underlying theory.  The hypothesis does not state whether the 

errors that will be reduced are in the development, coding, or maintenance stage of the 

application’s lifecycle.  The hypothesis also fails to explain how coding errors are 

reduced.  To properly test the hypothesis, all of the factors contributing to coding errors 

would have to be explicitly defined. Establishing a control group to test the hypothesis 

will be difficult, when variable factors such as education, experience, code complexity, 

fatigue, and time pressures contribute to coding errors.  Researchers ascribing to the 

positivist beliefs need to be careful to avoid the pitfall of focusing only on problems that 

can be researched (using scientific rigor) rather than those problems that should be 

researched (i.e., provide practical knowledge). (Moody) 

Interpretivists claim that software cannot function in isolation from the system in 

which it is embedded, and a systems view necessitates evaluation of human factors.  They 

believe that many software methodologies, heuristics, and guidelines are dependent not 

upon pure scientific research (i.e., positivist approach), but upon human cognition (Xia), 

social action, and even the human body (Mingers). An interpretivist approach to testing 

the hypothesis would consist of group discussions or individual interviews to determine 

people opinions regarding the hypothesis.  The core of interpretivist research is the need 

to understand the relationship between an individual’s behavior and that individual’s 

mental state of preparedness to act in a predetermined way. (Smith)  The researcher starts 

with an existing (theoretical) knowledge of the topic under investigation.  Through a 
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process of interviews, the researcher gathers new evidence and compares the results 

against what is already known about the phenomenon under investigation. (Smith)     

It is possible to test portions of this hypothesis using an interpretivist approach, 

but testing the entire hypothesis will be extremely time consuming and will also be very 

difficult.  Interpretivist studies are designed more towards the development of concepts, 

generation of new theory, examining relations between attitudes and behavior, mapping 

an individual’s overall range of behavior and attitudes, and collecting a rich amount of 

insight into an issue. (Smith)  In qualitative research, the goal is to establish a match 

between an aggregation of subject’s view of reality and the reality that the researcher has. 

Results obtained from qualitative data are generally not used to support theoretical 

propositions. This is due in part to the argument that social sciences (e.g., anthropology, 

sociology) cannot explain events by cause and effect, because they cannot capture all of 

the contributing factors.   

If the hypothesis was that software developers would be more likely to spent the 

requisite time and effort to reducing coding errors if SLAs with strong incentive or 

penalties were utilized, then individual interviews or focus groups could discuss SLAs, 

and whether the incentives or disincentives motivated them to produce faster and better 

code.  Researchers could ask questions such as, “If you were fined for each error you 

produced, would you concentrate more on reducing errors?’  Another question might be 

“In your company are you evaluated by quality or quantity of code produced?”  By 

comparing the results of the research against predicted outcomes, the researcher could 

determine if the evidence collected supported their view of reality. 

The eclectic group believed that it was possible to combine positivist and 

interpretivist methodologies to derive a richer solution set. Limiting research to one type 

of methodology offers a limited perspective.  The best hope of achieving objectivity in 

research is to triangulate across many different perspectives and approaches. (Trochim)  

Software engineering is not computer science; it involves a great deal of human 

interaction and subjectivity. As such neither positivist nor interpretivist approaches can 

provide an overall solution.  Rather than concentrate on a specific methodology to use, it 
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is more important to determine what critically, theoretical, and practically informed mix 

of methodologies best deals with the problem to be solved. (Clarke)   

 

C. DISSERTATION METHODOLOGY 

The research conducted in this dissertation will combine both the interpretivist 

and positivist approach.  When this approach is used, researchers gather information, 

opinions, and attitudes concerning a particular topic by which to form propositions.  

When the interviews reach a point of sampling saturation (i.e., the point where new 

interviews fail to reveal any new insights), the information is compared to predictions.  

New insights are collected and the original proposition is supported, or amended to 

reflect the new information.  At this point the positivists can start gathering statistical 

data such as determining the frequency at which the issues, ideas, or insights occur.  The 

statistical data will offer additional data to apply towards a new or already existing 

hypothesis.  Utilizing positivist approaches towards information obtained through 

interpretivist research in not unique (Sarker, Kumar, Smith) and can be used very 

effectively. 

At the beginning of a study it is helpful to utilize qualitatitive research 

methodology to establish an aggregate of people’s ‘frame of reference’ toward a given 

topic.  When issues involve subjective interpretation, it is recommended that researchers 

only go directly to quantitative methodology if they fully understand their subject’s view 

of reality.  Otherwise obtaining qualitative data first is the preferred methodology. 

Determining the proper mix of qualitative and quantitative research is dependent upon the 

problem to be solved, and it is likely that one methodology will have more weight than 

the other. (Smith)   

The research conducted in this dissertation will utilize both positivist and 

interpretivist approaches.  The research will appear to be more quantitative than 

qualitative, but only because much of the qualitative information was distilled into the 

information presented in the questionnaire.   

The qualitative portion of the research consists of a combination of top-down and 

bottom up approaches.  In a top-down approach to qualitative research, the interviewer 
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begins the research with a particular view of reality and the research is gathered to 

support this view.  This approach has merit if the researcher’s theory is formulated in 

solid normative evidence. It also adds a form of structure and discipline to the subsequent 

analysis. (Smith) At the other end of the spectrum is the bottom-up approach.  The 

bottom-up approach is where the researcher has no preconceived notions and during the 

course of interviews and analysis, the formulation of a proposition is created. Most 

qualitative research uses a combination of both approaches.  The researcher generally has 

a rough concept of reality, and uses the information collected from the research to 

compare against that view.     

The questionnaire in this dissertation started with an informal qualitative analysis 

among a number of colleagues. In a series of meetings on server consolidation the issue 

of post-production support was discussed.  After reviewing numerous government and 

commercial contracts for host support, it was determined that none of the contracts 

reviewed provided the support required.  A new contract needed to be developed.  While 

writing the SOW for post-production support, and the accompanying SLAs, interviews 

were conducted with system administrators, information assurance professionals, 

program managers, software developers, database administrators, and commercial 

external service providers (ESP).  In addition to the interviews over 100 articles and 

books were reviewed.  The results of these informal interviews and the literary search 

formulated the bottom-up approach that generated the starting view of reality. 

Once the central theme was developed, an article written by Charles Mann 

initiated the top-down analysis portion of the research.  His article detailed a number of 

reasons that software quality was lacking, and he proposed legislating software quality as 

a solution to the situation.  His solution was to hold software developers accountable for 

faulty code.  On the magazine’s web site, readers were able to post comments concerning 

the article on a bulletin board.  Over 100 people responded to his article.  The information 

from that sample group in addition to those of Mann and other articles detailing poor 

software quality provided additional information to support the starting view of reality. 
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To take advantage of the information gained in the previous qualitative research, 

the questionnaire was designed to both validate the information previously collected 

(qualitative part), and provide a measurement of the strength of the aggregate opinion 

(quantitative part).   

 

D. QUESTIONNAIRE 

Interviews traditionally have a moderator that guides the discussion in order to 

obtain the information being sought.  When the issues are complex, it is often necessary 

to provide the appropriate amount of education to ensure that the subjects are 

knowledgeable enough about the topic to make informed decisions.  The moderator must 

ensure that every group or individual is given the appropriate amount of information, and 

that all relevant topics are discussed.  Additionally, any bias needs to be presented to all 

participants in the same manner.  This is extremely difficult when more than one 

moderator is used.  It is even difficult when multiple sessions are conducted with the 

same moderator. The approach used in this research is to provide all of the information 

needed to form opinions explicitly in the questionnaire.  This ensures that all participants 

are presented with the same information, and that any bias that is introduced is presented 

to all participants.     

To generate thought on the subject, opinions generated from the earlier ad hoc 

qualitative analysis in addition to information derived from literature review is presented 

in the first section of the questionnaire.  The section discusses Charles Mann’s article, 

along with numerous opinions on the issue of software quality.  The opinions were from 

multiple sources and represent many different perspectives.  Also in this section is a 

discussion on the merits of SLAs.   

To further illustrate the concepts in a real-world scenario, the second section of 

the questionnaire is a case study on how SLAs are developed, along with an example of a 

SLA for availability.  The case study provides additional information and allows the 

subject to apply the lessons learned in the first section to a case study.  The second 

section presents a different perspective from the first section, and also generates thoughts, 

opinions, and emotions on the subject.  
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The last section consists of the questionnaire itself.  Many of the statements were 

based on the opinions already gathered with the prior qualitative analysis.  The statements 

were designed to provide a more formalistic validation of information previously 

collected.  Although this approach does not incorporate a mediator, the subject is guided 

through the discussions by the first two parts of the questionnaire, and the last part allows 

the subject to express opinions concerning the topic.  In addition, the questionnaire 

includes some open-ended questions in which the subjects are free to express their 

opinion in their own words, from their own perspective. 

The three parts of the questionnaire were formulated from the information 

obtained during the previous qualitative analysis.  The subsequent quantitative analysis 

will concentrate on how strongly subjects feel about various aspects of SLAs and their 

ability to improve the quality and management of software intensive systems. 

The quantitative phase of the research consists of a number of statements 

(representing the common themes from the qualitative analysis) and an accompanying 5-

point Likert scale.  The questionnaire begins with demographic data to provide some 

possible insight to the analysis.  Statements 4  through 29 utilized a bipolar Likert scale 

that ranged from strongly disagree (1) to strongly agree (5).  The Likert scale also 

incorporates a neutral response (3).   

The sample was not random in that IT professionals from both the government 

and industry were asked to fill out the survey.  The topic was considered too complex for 

a random sample of individuals.  The IT professionals were also sought for their practical 

experience in dealing with SLAs, ESPs, software development, program management, 

and post-production support.   

A great deal of effort was expended trying to balance information presentation 

with the amount of time a respondent would spend on the questionnaire.  If the 

questionnaire is too long, few people will be willing to exert the time or effort to 

complete the questionnaire.  If the questionnaire is too small, the respondent does not 

have enough information to form an educated opinion.   

Good surveys will contain some catch questions or statements.  These statements 

are closely related to as a previous question.  The respondent should answer the same 
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way to both questions.  If the respondent answers differently to both questions it may be 

an indication that the respondent was simply completing the questionnaire without much 

thought.  This survey contains two such questions. 

The questionnaire was loaded on a web page, and the URL was e-mailed to 

numerous IT professionals soliciting their responses. The questionnaire consisted of four 

web pages.  The first page explained the purpose of the questionnaire, and instructions.  

The second and third pages correspond to the sections on software quality and the case 

study.  The fourth page was the questionnaire itself.  When the respondent accessed the 

fourth page to provide input to the statements, they give their permission to utilize the 

information they provided in the research.  Appendix (B) contains the actual 

questionnaire. 

 

E. RESULTS 

Results from the questionnaire were captured in an access database.  The results 

were then converted to an excel spreadsheet and statistical information was generated and 

the results are displayed in appendix (C).  A Likert scale was used on the questionnaire to 

determine the degree to which a respondent agreed, disagreed or was neutral on a 

statement.  Using standard statistical analysis on Likert scale responses can be 

problematic. 

In the questionnaire, responses ranged from 1 to 5.  All responses were discrete 

vice continuous.  As such using measures such as a mean (average of all values in the 

sample) and standard deviation (variability of observed values from the mean) can lead to 

inference problems.  For example, what does a mean of 2.5 infer?  Is the difference 

between strongly agree and agree the same as neutral and agree?  Additional information 

was needed to reinforce the results of the mean and standard deviation.  As such 

measures such as median (the middle value when observations are ordered from smallest 

to largest) and mode (the value that occurs most frequently in the sample) have also been 

calculated.   
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Appendix (C) lists the individual questions, the mean, mode, median, standard 

deviation as well as a bar chart to visually display the results in percentages.  Appendix 

(C) also lists the T-value and the P-value to determine if the results were significantly 

significant.   

The null hypothesis (Ho) was that µ = 3, or a neutral response.  The alternative 

hypothesis (Ha) was that µ ≠ 3.  Since the values above and below the mean both have 

meaning (agree and disagree), a two-tailed test was conducted.  Given a sample of 43 

responses, a Z value could be used (central limit theorem states that a normal distribution 

curve can be used with a population over 30), but a T-value would give better results 

given that the population was not much greater than 30.  The significance level (α) is .05.  

So the null hypothesis would be rejected if t ≥ tα/2,n-1 or t ≤ - tα/2,n-1.  The value of tα/2,n-1 is 

2.021 using a population of 41.  The extrapolated value for a population of 43 was 2.023.  

This means that the probability of a type I error (Ho is rejected when it is true) is α or 5 

percent.   

P-values were also calculated to give a better understanding of where the Ha value 

would be rejected.  Simply comparing the calculated t value against 2.023 forces the 

reader to accept the significance value of .05.  The P-value is the smallest level of 

significance at which Ho would be rejected.  Once the P-value has been determined it can 

be compared against whatever specified level of significance an individual desires. If P ≤ 

α the Ho should be rejected at level α. (Devore) 

 

F. INTERPRETATION OF RESULTS 

The first analysis was to evaluate the responses on the catch questions.  These are 

questions that are closely associated with one another.  Questions 18 and 22 both 

concerned program management.  There were only three responses where there was a 2 

Likert scale difference.  Overall the means of the two questions were the same.  

Questions 9 and 23 dealt with the affect of SLAs on software quality in the development 

stage.  There were two responses where there was a difference of 2 Likert scales.  The 

difference in the means of the two questions was .0148.  A t-test on the means of the two 

groups of samples showed that the differences between the means were not significant. 
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Additionally some of the questions that the author predicted a response of agree 

or strongly agree were intentionally worded to be negative, so the respondent would be 

expected to answer with a response of strongly disagree, or disagree.  The respondents 

did actually respond with a mean towards 2 on those statements with negative wording.  

This meant that the respondents were actually reading the questions and were not 

randomly selecting answers. 

Statistics on the respondents indicated that the majority had over 6 years of 

experience in IT.  The respondents were well represented in management (58.1 percent) 

and IT implementers (41.9 percent), and almost half had more than 1 year of experience 

working with SLAs.   

Questions 4 through 29 only had 3 questions that were not statistically different 

from a mean of 3 or a response of neutral using the T-value test.  The Ho could not be 

rejected on the questions of whether respondents were satisfied with the quality of 

software they use, and whether a lack of in-house skills would prevent the development 

of SLAs. Similarly the question of whether it was too difficult to enforce penalty clauses 

was too difficult also could not be rejected.   

Respondents agreed that SLAs would improve software quality throughout its 

lifecycle.  Results strongly indicated that respondents felt that SLAs could improve 

software quality in the development and post-production phase. However, in the 

comments column some of the respondents felt that SLAs must be backed up my 

managerial commitment to be affective.  They also felt that SLAs were not a silver bullet, 

and must be used in conjunction with other quality initiatives. Along this same vain 

respondents felt that SLAs could not resolve the quality issue associated with 

management rushing software to market.  The results also indicated that there was neutral 

to mild agreement that software quality in the software they were currently utilizing was 

acceptable.   

Overall, respondents felt that SLAs would improve software program 

management.  Results indicated significant agreement that SLAs would improve program 

management through configuration management, change management, managing user 

expectations, focusing on key performance issues, source selection, and ensuring 
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underlying business processes were supported.  Comments indicated that respondents felt 

that SLAs could contribute to software lifecycle management, but the level of success 

depended upon management’s commitment to those SLAs.   

Respondents also felt that SLAs assisted in the development of requirements.  

Results indicated that subjects felt that the SLA development process not only facilitates 

the involvement of end users, but in doing so it also helps to manage the end user’s 

expectations.  Respondents indicated that they believed that the team development 

concept helps to identify those quantitative metrics that are critical to the success of the 

underlying business process.  The survey also indicated that subjects felt SLAs could help 

inject quality and security into the early parts of the development process. 

The respondents approved of the format of the SLA presented in the survey.  

Results indicated that they felt that the format was easy to understand and clearly defined 

the services and the methodology to measure whether a requirement met the specified 

threshold levels. 

People taking the survey believed that the work required to generate the SLAs 

were worth the effort.  They also felt that developing SLAs were not too difficult for their 

organization.  The two of the questions that had no significant deviation from a neutral 

response were on whether the skill sets to develop SLAs existed in their organization and 

whether penalty clauses were too difficult to enforce.   

 

G. RESEARCH USING HOSTING SLAS 

The SOW and SLAs in Appendix (A) were developed to determine in a practical 

business environment whether SLAs could assist program managers maintain quality in 

their post-production applications.  Appendix (A) contains SLAs that have been 

developed for hosting services for the NAVSUP claimancy.  The intent of the SLAs were 

to demonstrate the potential to utilize SLAs to manage information-intensive systems and 

inject software quality in the post-production environment.   

The NAVSUP claimancy, like most, has been hit by fiscal cuts, IT manpower 

shortages, and a lack of strong centralized policy.  To combat these problems NAVSUP 

has been aggressively pursuing a policy to consolidating their servers.  During the 
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inventory of servers it became obvious that there was no standard for how servers or 

applications were maintained or hosted.  Additionally, many of the program managers 

that were interviewed did not know enough about hosting services to be able to contract 

for those services.  The contracts that did exist did not provide a good definition of the 

services to be provided, nor were there any SLAs mandating performance levels.   

The SLAs in appendix (A) were developed for the program managers to assist 

them in the management of their post-production applications.  The SLAs outline the 

standard hosting services that should be used across the claimancy.  The intent was that 

these services would provide the necessary functions to properly monitor and host an 

application.  The levels of service are broken into three levels of support: essential, 

enhanced and premium.  The levels of service would depend upon the type of application, 

its criticality and fiscal constraints on the program.   

The SLAs were designed to be used as a template.  Each program will have to 

select those services and service levels that best meet the needs of their respective 

applications and the underlying business process.  The use of a template alleviates the 

necessity for each program manager to research and develop hosting requirements.  The 

template also offers services that will provide the appropriate quality and performance 

standard that can be used by all program managers in the claimancy.  The performance 

thresholds were based on industry standards, or current NAVSUP standards.  Program 

managers are expected to use benchmarking of their current services, forecasting future 

needs, and consulting with stakeholders to gather information to determine whether the 

thresholds specified in appendix (A) will meet their needs.  Based on preliminary reviews 

most of the applications in the NAVSUP claimancy will use the standard services as 

outlined in the three levels of service, although some of the thresholds will have to be 

modified. 

The SLAs are grouped in thirteen service areas that cover many of the services 

that were outlined in the previous chapter.  Each SLA contains 17 data elements that 

define the service, specify the quantitative metrics that will be used to measure 

performance, outline roles and responsibilities, methods for collecting measurements, the 

threshold levels that must be met, and associated penalties or incentives. 
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The original intent of the dissertation was to utilize the SLAs in appendix (A) in 

an actual contract, and gather information from the program managers and the contractors 

to determine their reaction to the SLAs, their thoughts on the process of developing 

SLAs, and whether they felt that the SLAs were effective in delivering quality services.  

Unfortunately, the contract negotiations were stalled numerous times for various political, 

fiscal, and technical reasons.  As a result, negotiations were still ongoing at the writing of 

this dissertation.  The answers to the questions posed above would make a good follow 

on thesis or dissertation. 

The SLAs and SOW in appendix (A) were however, used by NAVSUP in 

contract negotiation to compete hosting services between two organizations.  Before the 

source-selection board met, Gartner and MetaGroup (both IT consultants) reviewed the 

SOW and SLAs.  Both groups felt that the documents were excellent, but that the price to 

achieve that level of service may be too expensive.  The NAVSUP source-selection board 

for the contract stated that the SOW and SLAs made it easy to compare the bids, as the 

two organizations had to address the specific services and service levels outlined in the 

documents.  It allowed the selection board to make more of an apples-to-apples 

comparison.  Many of the extraneous service claims from the service providers were 

discarded, as they did not apply to the services specified in the SOW or SLAs. Based on 

the estimates from the two organizations, the source-selection board applied a balanced 

scorecard approach and selected a winner. Unfortunately, comments and results from the 

source-selection board are considered proprietary, so they could not be used in this 

dissertation. 

NAVSUP is in the process of negotiating hosting service with the winner of the 

source-selection board using the SOW and SLAs in appendix (A).  The SLAs and SOW 

in appendix (A) are also being reviewed at NAVAIR, NAVFAC, SPAWAR, and  

NAVNETWARCOM for inclusion into a Navy-wide contract for hosting services under 

CLIN 0029 of the NMCI contract.  To date the SLAs have received very favorable 

review.   
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H. WEAKNESSES 

After evaluating the data, there were a couple weaknesses in the research used for 

this dissertation.  The first weakness was that the questionnaire was biased toward 

supporting the hypothesis.  The questionnaire did not go into the disadvantages of SLAs, 

nor did it mention case studies where SLAs were not effective.  Although some negative 

aspects of managing SLAs were addressed in the questions in the questionnaire, all of the 

arguments were designed to show the user that SLAs could be used to help improve 

software quality and manage IT intensive systems.  As the survey was targeted to IT 

professionals, the questionnaire was designed to present an argument that the respondents 

could provide comments on.  The questionnaire was not intended to convince an 

uninformed individual of the benefits of SLAs.  However, the fact that 9 percent of the 

respondents had less than 4 years of IT experience and over 30 percent had not dealt with 

SLAs before, could lead one to believe that some respondents were biased in support of 

the hypothesis. 

In the bottom-up analysis the qualitative analysis did not consist of formal 

interviews with predetermined questions and documented results.  Additionally 

information obtained from the interviews often concentrated on specific problems, and as 

such, the sample size contributing information on a specific topic would not be 

representative.   

The top-down analysis also had some weaknesses.  In qualitative analysis, the 

researcher must to some degree interact with the subject.  In the top-down analysis, the 

researcher did not interact at all with the subjects.  As such, the subjects were free to 

comment on the article in whatever direction they chose, and at whatever depth they 

determined.  Although a great deal of information was obtained, this approach lacked 

regiment. 

The survey had 43 responses.  A greater number of responses would have 

provided more statistically meaningful data with respect to how the different groups 

answered the same questions. Unfortunately the size of the survey coupled with the busy 

schedule of most IT professionals made gathering more responses a difficult task.  It 
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would have also been useful to add a question on whether the respondent represented 

public or private industry.  That information may have lead to some additional insight. 

Finally, the respondents were only allowed to see one example of a SLA.  

Respondents may have made more informed decisions if they could see a SLA for 

development work, maintenance, and hosting services.  Unfortunately, that was not 

possible as the length of the survey was overly burdensome for some respondents.  The 

amount of information presented in the questionnaire had to be weighed against the fact 

that fewer people would fill out the questionnaire if it became too large. 

 

I. SUMMARY 

The research utilized a pragmatic approach where both postitivist and 

interpretivist approaches were utilized. The survey results indicated that the respondents 

felt strongly that SLAs could be used to increase software quality.  They also felt that 

SLAs helped in the management of IT intensive systems.  However, comments collected 

from the survey indicated that SLAs, while helpful, would not be successful without 

upper management support.     
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XI. CONCLUSION 

A. REASON FOR STUDY 

To maintain a competitive advantage, organizations have to rely more on 

software-intensive information systems to support or enable their critical business 

processes.  As a result, organizations are starting to look upon software quality 

management as a critical, strategic aspect of the product-development process.  Despite 

advances in the principles and mechanics of software engineering, the quality of software 

is still lacking.  This can be attributed in part to poor practice, including but not limited to 

marketing pressure, improper training, and lack of managerial oversight.   

Another reason for poor quality is that contracts for outsourcing are not as explicit 

as they need to be.  As software-intensive information systems become ever more 

complex and large, organizations are increasingly tempted to outsource IT development 

and support to companies specializing in providing IT services.  While organizations are 

now able to take advantage of external expertise, they must write good outsourcing 

contracts to take the maximum advantage of that expertise.  However, there are many 

real-world examples in which outsourcing contracts do not contain a good specification 

of requirements.  In some cases, principle stakeholders, such as the end user, are not 

involved in the requirements specification activity; quality requirements are not 

incorporated into the requirements; and quantifiable, measurable, meaningful metrics are 

not identified.   

Another problem leading to poor quality is that many program managers do not 

have the technical expertise to manage IT systems.  Program managers not only need to 

understand the technology associated with architectures, standards, software-

development processes, and software-systems engineering, but also need a firm 

grounding in contract management, project scheduling and tracking, risk assessment, and 

budgeting.   

This study was conducted in an effort to determine whether SLAs could be 

utilized to improve software quality, and in turn, the overall quality of software-intensive 

information systems.  This is a foundational study with the aim of determining feasibility 
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and collecting feedback from IT professionals on whether they believed that SLAs would 

improve the management and quality of IT systems.  Follow on studies can evaluate the 

effectiveness of SLAs in providing software quality in actual projects.  The SLAs in 

Appendix (A) have not been incorporated into the NMCI contract at this time.    

 

B. KEY POINTS 

This dissertation has explored the concept of utilizing SLAs as a tool to improve 

the management and quality of software-intensive systems throughout its lifecycle.  We 

demonstrated how SLAs could be used in the requirements, development and post-

production phase of software development to improve software quality.  We also showed 

how SLAs could aid the program manager by improving configuration management, 

contract management, risk management, quality control, and customer satisfaction.   

This dissertation demonstrated how many of the problems with software 

acquisition could be addressed from a software acquisition perspective.  Program 

managers need to do more than add quality requirements to their software development 

contracts.  In many cases requirements are not measured until the end of a major 

milestone, and if there are any problems with the requirements, the program managers 

have little recourse short of canceling the program.  Although SLAs are also 

requirements, their format makes them a more effective contracting tool.  SLAs provide a 

detail description of the services, service levels, and the method to measure and monitor 

the service level.  SLAs are also more effective because the measurement period is short 

enough to resolve problems and the penalties in the SLAs give the program manager 

recourse if quality levels are not met.   

SLAs can help to improve quality in the various phases of the software lifecycle.  

In the requirements engineering phase of software development SLAs help to bring all 

stakeholders together to focus on identifying quantifiable quality factors that they feel are 

essential in a system to support the underlying business process.   SLAs specify the 

quality metrics and quality thresholds that allow an organization to determine whether 

quality requirement have been met.  As such, SLAs make explicit many of the quality 

factors that users may implicitly assume.  Measurements and monitoring resulting from 
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SLAs also support early detection and resolution of quality problems.  SLAs help 

reinforce the notion that quality management is a strategic, critical aspect of the quality 

control process throughout a system’s lifecycle.    

In the development phase, the quality factors that are addressed in the SLAs drive 

architectural and design decisions.  If developers know which of the characteristics are 

most critical to project success they can select the architecture, design, and programming 

approaches that best achieve the specified quality goals. SLAs help ensure that quality is 

designed in at the beginning phases of the lifecycle.  SLAs can also improve software 

quality in the development phase by contractually mandating that certain quality control 

measures (e.g., adhering to specified standards and processes) be performed. 

In the post-production phase of software development SLAs can be used to 

specify the quality requirements for application performance, software maintenance 

efforts and hosting services throughout its lifecycle.  Monitoring the performance of the 

application and its supporting infrastructure once it is deployed is essential in 

implementing process and quality control, as well as maintaining customer satisfaction.  

It requires a great deal of management to produce quality software.  Program 

managers have to ensure that quality considerations are addressed early in the lifecycle 

and they must provide the proper amount of oversight to ensure those quality factors are 

incorporated into the final product.  SLAs provide quality control measures that can assist 

program managers in many of the managerial tasks necessary to ensure quality is 

delivered in the final product.   

Program managers need to measure and monitor contractor, project, and system 

performance throughout the project’s lifecycle to ensure requirements, standards, 

processes, and quality requirements are being met.  SLAs mandate monitoring of the 

quality requirements associated with process, product, and project quality.  If quality 

levels are not met, program managers and the contractor are informed of the violation and 

potential risks, allowing them to take the action necessary to correct the situation. 

The thirteen SLAs in appendix (A) illustrate how SLAs could be used in the post-

production phase of software lifecycle to assist the program manager by establishing 

process and quality control measures necessary to support a software-intensive system.  
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The SLAs in appendix (A) introduced a new format that was useful in coupling the 

quality requirements back to the business processes they supported.  If used properly, the 

new SLA format improved on standard SLA formats by provided greater detail with 

respect to the services required, the means of measuring the services and the 

responsibilities of all parties.   

The survey of IT professionals indicates agreement that SLAs can play an 

important role in addressing software quality. SLAs can drive product, process, project, 

and deployment quality solutions. SLAs can help ensure that quality requirements are 

established early in the development cycle in order to be incorporated into preliminary 

designs.  SLAs help program managers with the oversight of the various aspects of the 

projects.  SLAs also carry sufficient weight through penalties and incentives to focus 

management and contractor attention on the quality issues that will impact business 

critical areas. 

 

C. FUTURE WORK 

Although SLAs are not uncommon in application-hosting services, they are not 

usually found in software-development contracts.  There are a number of areas that can 

build upon the work conducted in this dissertation.   

1. Evaluation in Actual Contracting 

Future study is necessary to determine the magnitude and direction of effects of 

utilizing SLAs in actual contracts for host services, as well as application development.  

Studies can evaluate how well the SLAs helped in requirements engineering, design, 

post-production support and program-management tasks.  This research can also evaluate 

whether SLAs helped in the negotiation and source-selection process, or whether they 

complicated the contracting process.  These studies should also focus on the reactions of 

program managers, end users, and contractors, as well evaluating upper level 

management’s support of the SLAs, and whether they believe SLAs are effective tools 

for quality control.   

SLAs in theory should lead to higher levels of software quality, but additional 

research utilizing actual contracts is needed to test the hypothesis proposed in this 
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dissertation.  If quality is defined as the extent to which a system, process or component 

meets specified requirements and meets user needs, studies can be conducted to compare 

similar software projects with SLAs against those without SLAs to determine if the SLAs 

improved quality.  Future studies can also evaluate the success or adoption of the concept 

of SLAs within public and private organizations.  Studies can also focus on the 

effectiveness of SLAs on large and small software-development projects.   

Template SLAs, such as those found in Appendix (A), are designed to assist 

program managers that may not have the technical skills necessary to lead the SLA 

development effort on their own.  Program managers can modify the existing template 

SLAs to suit their application requirements.  Additional research can focus on the 

effectiveness of template SLAs.  Studies can evaluate whether template SLAs helped the 

program manager, contractor, or end users incorporate quality requirements into the 

software specifications.   

2. Quality Factors  

Although there has been a great deal of research on software metrics, few models 

have been widely adopted in the commercial sector.   There are no industry-accepted 

standards that define quality factors, quality metrics, and their associated quality 

thresholds.  In many cases quality models are not used because automated tools do not 

exist to make measurements easy to gather, or because the measurements are too 

subjective to be of value outside of a particular organization.   

Research is needed to determine the quality factors, their associated quality 

metrics, and meaningful quality thresholds that can best measure product, process, and 

project and post-production quality.  Studies are needed to determine which quality 

models and quality attributes are best suited for different types of IT systems (e.g., 

missile systems should have high reliability and response rates, whereas logistics systems 

should have high interoperability, portability, reliability and usability). These studies 

should concentrate on quality models and metrics that can support commercial software 

development.  A measurement of cyclic complexity of X means little to commercial 

developers unless there is a cause and effect associated with a measurement of X.  For 

example, organizations with project complexity between X and Y have a sixty-five 
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percent failure rate (cost and schedule overrun) as demonstrated in over 500 software 

projects analyzed for cyclic complexity.  

Follow-on research can also concentrate on writing template SLAs for product, 

process and project quality.  This research can evaluate various quality models and 

determine which can be utilized in SLAs to encourage the adoption of processes leading 

to a quality product.  The research would not only identify potential quality factors, but it 

would also have to identify quality metrics and thresholds that could be utilized in SLAs. 

Research can also improve the template SLAs in Appendix (A) that were written for 

hosting services. 

3. Availability 

In Appendix (A), we discussed availability in the context of ability to compute.  

Current monitoring tools such as Tivoli and HP Open View can provide a wealth of 

information concerning server and network performance, but it is difficult to determine 

which metrics warrant the most attention, and what quality thresholds are acceptable.  

There is an ongoing debate among system and network administrators as to which 

metrics are most important.  For example, if CPU utilization in a server is important, 

should the system administrator take action when the utilization is eighty percent, ninety 

percent, ninety-five percent, or higher?  Appendix (A) lists some common quality metrics 

and thresholds, but further research is needed to determine an industry-accepted list of 

quality factors that represent an ability to compute.   

4. End-to-End SLAs 

SLAs are most meaningful when the measurements come from the end user’s 

perspective; however, end-to-end SLAs are difficult to achieve.  More research is needed 

to generate tools or processes that will easily allow end-to-end measurements for 

response time, availability, and other quality metrics across an infrastructure that is 

owned by different entities.   

There are currently tools that can account for end-to-end response times, but 

agents are needed within the client and server side of the application to properly account 

for where delays occur.  Research can concentrate on other approaches such as coding the 

application to send timestamps for certain test inquires.   
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APPENDIX A: NAVSUP HOSTING REQUIREMENTS AND 
SERVICE LEVEL AGREEMENTS 

Abstract 
 

This paper consists of a statement of work (SOW) and its related service level 
agreements (SLAs) for hosting services.  The paper will be used as part of contract 
negotiations to outsource the hosting functions for NAVSUP owned applications.  The 
SOW contains the hosting requirements that NAVSUP believes are necessary to support 
the application.   

NAVSUP will maintain control and responsibility of the application software, but 
all server and infrastructure hardware as well as system software support (operating 
system, monitoring software, utilities, and infrastructure software), is the responsibility of 
the service provider.  The SOW details hosting requirements at three levels to allow 
program managers to select the levels and the corresponding services that best meet their 
needs. 

A service level agreement (SLA) is an agreement between a provider of services 
and a customer that defines a level of performance. This agreement defines in measurable 
terms the service to be performed, the level of service that is acceptable, and the means to 
determine if the service is being provided at the agreed upon levels.  SLAs define the 
quality of service, and how it is measured.  There are fourteen SLAs defined that support 
the SOW.   

This paper provides a starting point for negotiating host services.  The intent of 
this paper is to give the program managers a document that listed hosting services that 
will provide a high level of support for their application. The SOW and SLA were 
designed to meet the needs of most applications, but each program manager will have the 
flexibility to select and modify the services and service levels required to support their 
specific applications. 
   
NAVSUP Hosting Statement of Work 
 

The scope of this document is to define the requirements for hosting Navy 
midrange application systems.  Midrange systems are defined as those systems that fall 
between stand-alone applications residing on a personal computer (PC), and those that 
reside on a mainframe computer.  The scope assumes the Supplier maintains ownership 
of the servers, networking hardware, and associated systems software that is necessary to 
provide the hosting environment.  It is not the responsibility of the Supplier to purchase 
or maintain application software unless otherwise negotiated between the Navy’s 
Application Program Manager and the Supplier.  The scope does not include hosting 
hardware that is owned by the Navy, which is referred to as co-location services.  
Although many of the requirements in this document apply to co-located hardware, co-
location services are not part of this document and will be negotiated separately between 
the Navy and the Supplier.  The government is contracting for a hosting service.  The 
government does not intend to procure or maintain any of the hardware in the host 
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environment.  The Supplier is responsible for the hardware hosting the application.  That 
allows the Supplier the flexibility to maximize efficiencies within their organization, 
resulting in a lower cost to the government. 

This document is intended for production applications.  It does not apply to test 
platforms, although this document can be easily modified to support that need.  Test 
platforms will be negotiated under another contract vehicle with appropriate service level 
agreements (SLAs).   

This document attempts to draw a clear line between application support, which is 
the responsibility of the program manager, and system software support (operating 
system, monitoring software, utilities, and infrastructure software), which is the 
responsibility of the Supplier.  Any application support, other than monitoring, is outside 
the scope of this contract. 
 
A. ESSENTIAL PACKAGE SYSTEM SUPPORT AREAS 

 
This statement of work (SOW) outlines three levels of support, the essential 

package, enhanced package and the premier package.  The application’s support 
requirements will dictate which package should be selected. If the enhanced package is 
selected, all of the services included in the essential package will also be included in the 
enhanced package.  The premier service will also include services outlined in the 
enhanced package.  

In addition to the services offered by each package, specified services can be 
added or deleted from the package.  Adjusted services are outlined at the end of each 
package description. 

The essential package is designed for stable, non-critical applications with 
minimal requirements for change, and predictable growth. As such, the services will 
reflect predictable capacity utilization, a consistent user base, and reliable application 
software.  

 
1. Application Migration Service 

 
Application Migration Services are the tasks necessary to transfer an application 

from one host environment to another.  This seemingly simple task can be extremely 
complicated and difficult.  A well-defined process needs to be implemented to ensure a 
successful migration.   Migration services include information collection, platform and 
environment design, execution planning, testing, and ultimate deployment of the 
application.    
 

a. Midrange Site Transition Services 

 
Midrange site transition services must be available for moving Navy 

applications into the host environment.  These services must include the use of a proven 
project management methodology and proven experience with transitioning similar 
applications. 
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Midrange Site Transition Services Requirements are: 
• The Supplier will gather information on the application, develop a design plan for 

hosting the application, perform testing in accordance with the test plan, redesign if 
needed, prepare for ongoing production support services and deploy the application in 
a production environment. 

• The Supplier must obtain, assemble, install, customize deploy, and tune network 
and server hardware, operating systems, and associated applications.  

• The Supplier must coordinate with Navy Program Managers and technical staff to 
perform requirements determination and obtain a site survey of the application system 
being transitioned. 

• The Supplier must develop a risk assessment plan.  The Supplier must work with 
Navy Program Managers to identify and mitigate the risks associated with the 
transition of the application into the hosted environment. 

• The Supplier must provide a project manager to oversee transition execution. 
• The Supplier must provide a project plan with extensive detail, a work breakdown 

structure, and timelines to enable the execution to be managed and executed 
effectively within the Navy’s operational constraints and business requirements. 

• The Supplier must test the project plan execution in a test environment to validate 
the documented process and to confirm the defined production infrastructure supports 
the application and integrates into the host environment.   

• The Supplier will work with the Navy application development team in 
developing a test plan to ensure the application performs as expected in the host 
environment.  The Navy must approve the Supplier’s test plan.  The plan must outline 
the various tests to be performed, and establish thresholds for success.  The Navy 
Program Manager must be responsible for functional testing, or for developing test 
scripts.   

• The Supplier must ensure that the application’s performance in the new 
production environment is equal to or greater than the performance the application 
demonstrated before the transition.  Benchmark tests will be performed in both 
environments for comparison. 

• The Supplier must test the application in a test environment before moving the 
application into production.  The test of the application must follow the processes 
defined in the test plan.  The test plan must ensure the testing environment emulates 
the application’s production environment.  

• The Supplier must provide project status or updates (at least weekly) of the plan 
from development through to implementation and post-migration. 

• The Supplier must be able to execute the transition using a proven and repeatable 
set of processes that include multiple implementation options based on Navy 
requirements. 

• The Supplier must provide a design solution for the hosted applications and be 
able to implement the solution.   

• The Supplier must review implementation requests and the platform solution 
design with Navy Program Managers to verify the requirements, educate developers 
or maintainers on the technology being employed, and ensure they understand the 
new architecture. 
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• The Supplier must interact with the identified network provider to help confirm 
that the platform configuration integrates the network requirements and connectivity 
is established to the Navy’s LAN/BAN/WAN. 

• The Supplier must ensure that applications that print to network printers have the 
necessary connectivity to the network and that the printer is properly set up on the 
server. 

• The Supplier must verify that the appropriate hardware and system-level software 
products, for example, the operating system and non-application software, are 
obtained and ready to implement before the transition begins. 

• The Supplier must work with the Navy technical staff to obtain, install and 
configure the application being transitioned.  

• The Supplier must communicate migration support issues or implementation 
concerns through the site-specific communication process.  The Supplier must 
provide progress reports to the Navy Program Manager as required. 

• The Supplier must install and configure system-level software according to 
requirements defined in the platform solution design. 

• The Supplier must work with the Navy Program Manager to define the backup 
and recovery needs for the application being transitioned. 

• The Supplier must obtain signoff from the Navy Program Manager before going 
live with the application in the new environment.  

• The Supplier must provide a final review of the implementation to determine 
whether the requirements have been met. Based on the final review, a production 
implementation live date is agreed to, at which point Transition Services end. 

• The Supplier must incorporate the new application and associated hardware and 
software into all necessary documentation (e.g., hardware and software configuration 
documents, the backup plan, the disaster recovery plan, operation procedures, 
network diagram, etc…) 

• The Supplier must complete a vulnerability assessment of the host environment 
(hardware, software and supporting infrastructure) that will be used to host the 
application.  The information will be incorporated into the Supplier’s System Security 
Authorization Agreement (SSAA) in accordance with the DoD Information 
Technology Security Certification and Accreditation Process (DITSCAP) program 
outlined in DoD Instruction 5200.40 to cover the host environment.  This requirement 
is also included under the security section in more detail. 

• The Supplier must provide the following documentation to the Navy Program 
Manager upon request:  Project Plan, Risk Assessment Plan, Initial Configuration 
Audit, Design Solution, Results from initial audit of the application and the 
requirements determination, Backup Plan, Disaster Recovery Plan, the Test Plan, and 
SSAA documentation. 

 
2. Systems Management 

 
Systems Management is the process of monitoring, evaluating, and reviewing the 

compute operation to determine whether operational requirements are met. The system 
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management services included in the Essential Package are host system and network 
monitoring, performance monitoring, intrusion detection, automating compute 
operations, and system backup and recovery. 
 

a. System and Network Monitoring 

 
The System and Network Monitoring Services provide the operational 

support processes and procedures required for monitoring midrange compute 
environments for delivery of a stable, reliable functional environment. 

System and Network Monitoring Services Requirements are: 
• Monitoring of all network hardware (including firewall) must comply with 

NMCI, DoN, and DoD guidance and regulations. 
• The Supplier should monitor application software status to determine if the 

application is responding. 
• The Supplier must monitor all systems hardware and systems software that are 

used to support the application systems being hosted.  Exclusions are listed below, 
however, monitoring for services on the list of excluded services must be available as 
a separate offering where indicated. 
Exclusions are: 

• The Supplier should monitor application databases for space utilization 
and database performance and other specific database criteria such as dead 
locks (available under enhanced services). 

• The Supplier should monitor applications database to ensure the database 
is responding to requests (available under enhanced services). 

• The Supplier must monitor all system consoles and logs.  Console 
monitoring must be done using industry standard procedures and industry standard 
software.  Some examples of industry standard monitoring software are: HP 
Openview, Cisco Works, CA-TNG, and NetScout.  
Console Monitoring Includes: 

• The Supplier must implement Event Detection Monitoring on the servers to 
detect any message sent to the system log and then cause an automated event 
to occur. 

• The Supplier must implement Network Monitoring on network assets within 
the host environment.  Some of the monitoring functions include quality of 
service analysis, pinging an IP address or collecting data from an SNMP 
device on the network resulting in an automated event. 

• The Supplier must implement automated notification for console event alerts 
(e.g., e-mail, alarms, automatic trouble ticket generation). 

• The Supplier must monitor network bandwidth for each application. 
• The Supplier must monitor network bandwidth for the host environment  network. 
• The Supplier must monitor IP availability for each machine.  Furthermore, 

selected sites on the Internet must be periodically (hourly) pinged to alert the staff to 
potential Internet problems. 

• The Supplier must monitor web sites for hosted applications. 
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Web Site Monitoring includes: 
• The Supplier must monitor polling of the Web site index (main) page. 
• The Supplier must implement automated notification for console event alerts 

if the site does not respond.  
• The Supplier must provide reports using a standard reporting tool on web site 

activities of the hosted applications (popularity documents, SLA compliance, 
report of the sites that access the user's Web server most often, etc). 

• The Supplier must provide monthly URL availability reports, if applicable, for 
the hosted application. 

• The Supplier must monitor URL availability to check the correct function of 
HTTP processes at timed intervals as specified by the Navy Program 
Manager. 

• The Supplier must monitor HTTP response times. A threshold will be set on a 
site-by-site basis; the party responsible for support is notified if the threshold 
is exceeded. 

• The Supplier must monitor HTTP Process Availability to ensure processes 
operating on the Web server do not have “out-of-bounds” conditions that may 
indicate an immediate or potential problem. 

 
b. Performance Management 

 
Performance Management processes include defining reasonable and 

measurable performance metrics, documenting and executing performance monitoring 
methods, maintaining contingency plans with corrective actions for exception 
performance, maintaining a support plan that incorporates the appropriate performance 
monitoring of documented requirements, reporting, implementing the monitoring 
activities, and measuring ongoing results.  

Performance Management Services include the support processes to collect, 
monitor, and analyze system performance information, including, but not limited to: 
• Processor(s) usage 
• Input/output (I/O) throughput activity (e.g., operating system response time, disk 

access times, transfer times to disk, backplane speed, paging) 
• Disk usage 
• Memory usage 

As needed, performance changes are implemented according to a change 
management process to modify the configuration and tune the system to optimize the 
effectiveness and efficiency of the midrange environment.  

Performance Management Requirements are: 
• The Supplier must maintain operating system parameters to manage performance 

and workload throughput.  This includes tuning the system in the attempt to optimize 
the application’s performance. 

• The Supplier must monitor CPU, memory, I/O, and disk utilization against 
predetermined thresholds. 
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• The Supplier must monitor predetermined exception thresholds for Network 
bandwidth to assist in establishing monitoring alerts.  

• The Supplier must provide monthly reports on CPU, Disk, and Memory 
utilization. 

• The Supplier must provide monthly reports on network bandwidth and utilization. 
• The Supplier must manage predefined exception thresholds for the operating 

system and major components to assist in establishing monitoring alerts. 
• The Supplier must monitor real-time performance using system management tools 

to resolve system resource and performance problems. 
• The Supplier must collect performance data dynamically to assist in problem 

determination. 
• The Supplier must analyze historical performance data to isolate or identify 

potential performance issues. 
• The Supplier must be able to recommend and implement workload allocation 

changes as they relate to applications use of server and network resources to assist the 
Navy Program Managers in resolving performance problems. 

• Historical performance data will be retained for 1 year for trend analysis. 
 

c. Capacity Management 

 
Capacity Management Services include planning and monitoring system 

usage and capacity, both short-term and long-term, forecasting resource requirements, 
and analyzing and reporting resource trends. The Supplier’s capacity processes should 
use metrics and reports that enable a clear understanding of overall performance and 
trends.    

The Capacity Management Services Requirements are: 
• The Supplier must perform resource usage analysis, including tracking, trending, 

and graphically illustrating resource usage by CPU, memory, I/O, storage, and tape 
consumption. 

• The Supplier must provide reports, at least monthly, to the Navy Program 
Manager that show standard resource usage, trending and analysis.  The Supplier 
must assist the Navy Program Manager in understanding the hosted applications 
current resource usage and future resource needs. 

• The Supplier must use capacity planning to project the effects of new business 
and workload changes as needed. For example, the Supplier will perform capacity 
modeling when new business or application growth is anticipated, when substantial 
changes to existing business are anticipated, or when substantial configuration 
(hardware/software) changes are performed within the systems. 

• The Supplier must take appropriate action to mitigate resource problems, 
including increasing the necessary resources.  Additional resources needed to directly 
support the application  as a result of an application change must be addressed at the 
Change Review Board.  The Supplier will provide cost information associated with  
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resource changes resulting from an approved application change.  If the application 
change is approved, the program will be charged for the additional resources 
identified.  

 
d. System Operations Automation 

 
System Operations Automation Services include the use of Industry 

Standard automation software that provides for the automatic monitoring and remote 
reconfiguration of system environment resources or files to achieve operational 
efficiencies.  Examples of Industry Standard automation tools are CA-TNG and HP 
OpenView. 

System Operations Automation Services Requirements are: 
• The Supplier must perform problem determination, day-to-day maintenance, and 

support for automation products and operational processes. 
• The Supplier must be able to customize the automation requirements based on 

contracted services. 
• The Supplier will continuously identify opportunities to remove manual 

interventions for ongoing support services. 
• The Supplier will review automation software to ensure that they reflect the most 

recent policies and procedures. 
 

3. Software Management 

 
Software Configuration Management Services provide and maintain software for 

the operating environment, including operating system software and related system 
software. As part of these services the Supplier must perform the basic operating system 
software tuning that is required to maintain day-to-day operations.   
 

a. Configuration Management 

 
Configuration management involves the steps necessary to review and 

document changes to both the system software and the application, so that program 
manager and the Supplier are aware of maintenance or upgrades that may affect their 
application, or support processes.  Accurate software configuration is essential when 
troubleshooting errors, performing software maintenance, and developing software (test 
beds should emulate production environment).  Changes to the hardware or system 
software that impact the operations of the network, the servers, or the application must be 
reported to the Change Review Board (e.g. router configuration changes to close specific 
ports, or adding monitoring tools that impact server resources.) 

The Change Review Board is chaired by the program manager for the application.  
The Change Review Board consists of the program manager, design personnel, functional 
experts (if necessary), a representative from the Supplier’s organization, government 
Information System Security Manager (ISSM) to address information assurance issues, 
and other personnel deemed necessary by the program manager or their chain of 
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command.  The intent of the Change Review Board is to approve any hardware or 
software configuration changes.  The program manager and designers need to know if the 
Supplier’s proposed changes will impact the application, or architecture.  The Supplier 
must know if proposed application changes will affect resources, monitoring software, 
and network bandwidth.  Additionally all approved changes are documented, improving 
communication channels, and ensuring only approved changes are implemented. 

Configuration data will be held in a central repository that is web accessible.  The 
repository will be populated using industry standard COTS packages, such as PVCS.  
The same configuration software should be used for all Navy applications. 

Software Configuration Service requirements are: 
• The Supplier must maintain documentation of server and network software 

configurations including OS release levels, configurations, patches, etc. 
• The Supplier must, in coordination with Navy Program Managers, maintain 

documentation of application configurations including application software release 
levels, configurations, patches, etc. 

• The Supplier must maintain documentation of all changes approved by the 
Change Review Board including date approved, change summary and date change 
applied. 

• The Supplier must make all documentation available to the Navy upon request.  
The Navy program manager’s staff will have web access to view configuration data 
held in the central repository. 

 
b. System Product Integration and Problem Resolution 

 
The Supplier must integrate the software components of the operating 

system and various third-party software products. System Product Integration and 
Problem Resolution provide the operational processes necessary to maintain a stable 
operation environment to meet the Navy’s application specific operational requirements. 

System Product Integration and Problem Resolution Services Requirements 
are: 
• The Supplier must perform the planning, installation, testing, and upgrading of 

system-level software, such as operating system and other non-application software, 
or application software requiring super user access. 

• The Supplier must perform problem resolution including problem determination, 
interface, and escalation with third-party suppliers, if necessary, to correct system 
component problems. 

• The Supplier must participate in identifying system product problems including 
connectivity and associated network problems. 

 
c. System Software Maintenance 

 
System Software Maintenance Services provide ongoing maintenance and 

support for the software supporting the application.  These services also provide 
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preventive software maintenance services when required. System software also includes 
maintenance to the infrastructure (e.g., routers, firewalls). 

System Software Maintenance Services Requirements are: 
• The Supplier must assist the Navy technical support staff with installing 

applications software when root/Administrator access is needed and when loading the 
application software media into the hosted server. 

• The Supplier must review product status and maintenance information for system 
patches to identify current version information and potential problems. All patches 
should be installed, unless there are mitigating circumstances.  The program’s Change 
Review Board must be notified of patches to be installed, and those patches that will 
not be installed. 

• The Supplier must install preventive maintenance (e.g. software updates, software 
releases, and virus and anti-spam updates) to supported system software products to 
prevent known problems from impacting the operating environment.  

• The Supplier must implement a permanent corrective action with appropriate 
monitoring procedures to ensure software faults are eliminated from the operating 
environment. 

• The Supplier must communicate changes that require system down time to the 
Change Review Board.  In the case of emergent changes that effect system 
availability the Supplier must notify the Navy Program Manager.  If the change 
cannot wait for approval, the Supplier should notify the Navy Program Manager and 
the Change Review Board as soon as possible. 

• The Supplier must ensure that the application has proper licenses for COTS 
products that are incorporated into the application.  This includes accounting for 
usage-charged types of software agreements. 

• The Supplier must review the Navy Program Manager’s software service and 
licensing agreements and provide recommendations.  Application consolidation may 
allow program manager’s to reduce or eliminate some third party software 
requirements. 

 
d. Software Refresh 

 
Software refresh (system software, not application software) ensures that 

the software supporting the application does not become obsolescent.  Technology is 
evolving at a rapid pace, and software must be updated to take advantage of new 
technology.  

Software Refresh Services Requirements are: 
• The Supplier must plan for, install, and support new operating system, 

infrastructure and related system software.  The plan must include the steps necessary 
for a successful migration of the application systems software. 

• The Supplier must maintain a test system for systems software. 
• The Supplier must work with the Navy Program Managers and Navy Technical 

Staff to research and resolve software compatibility issues allowing migration from 
the current suite of products to upgraded products and releases. 



 243

• The Supplier must have a documented software refresh plan. Some legacy 
applications currently in production have dependencies that do not allow for systems 
software upgrades and therefore should be exempt from this requirement.  The 
application systems that should be exempt and their dependencies will be provided by 
the Navy Program Manager on an application-by-application basis. The refresh plan 
will have to be agreed upon with the Navy Program Manager and will have to take 
NMCI desktop systems into consideration.  

• The Supplier must work with the Navy Program Managers to identify software 
changes that may impact applications.  The Supplier will then work with the Program 
Manager to create a test plan, if necessary, to confirm that changes in software 
functionality do not adversely impact an application.  The Supplier must address 
these changes with the Navy Program Managers at a meeting of the Change Review 
Board. 

• The Supplier must design the necessary back-off processes to restore to the 
former operating environment if unforeseen problems occur. 

 
4. Hardware Management 

 
Hardware Configuration Management provides services for installing and 

maintaining the compute configurations to meet changing requirements for compute 
resources and maintains the configuration plan to meet application specific requirements. 
 

a. Hardware Configuration Management 

 
Configuration management involves the steps necessary to review and 

document changes to hardware used to support the application, so that program 
manager’s staff is aware of changes that may affect their application.   
• The Supplier must present hardware changes to the Change Review Board (CRB).  

Hardware changes resulting from hardware vendor requirements will still have to be 
briefed to the CRB.  

• The Supplier must maintain documentation of hardware configurations, including 
equipment placement, network diagrams, cabling, connectivity details, application 
mapping, disk partition information, peripherals, etc. 

• The Supplier must address new hardware installations or modification at a 
meeting of the Change Review Board. 

 
b. Hardware Support and Maintenance 

 
Hardware Support and Maintenance Services provide the support services 

necessary to ensure compute equipment is maintained, and operational.  
Hardware Support and Maintenance Requirements are: 

• The Supplier must monitor midrange compute hardware, including processors, 
storage, and peripherals for malfunction. 
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• The Supplier must coordinate trouble-shooting, repair and, if necessary, escalation 
of hardware-related malfunctions with the hardware support vendor. 

• The Supplier must manage hardware maintenance requirements based on the 
manufacturer’s recommended schedule. 

• The Supplier must coordinate and provide installation support hardware 
corrective maintenance requirements with hardware vendors. 

• The Supplier must maintain documentation of all hardware changes approved by 
the Change Review Board including date approved, change summary and date change 
applied. 

• The Supplier must make all hardware configuration documentation available to 
the Navy upon request. 

• The Supplier must include a schedule for maintenance downtime. The downtime 
will abide by timeframes and duration specified in the service level agreements.  

• The Supplier will have a documented preventative maintenance program for 
hardware support. 

 
c. Hardware Refresh Services 

 
The Supplier is responsible for replacing existing hardware components to 

include firewall, network, servers, etc.   The Supplier will determine the hardware refresh 
rate, based upon their ability to meet requirements outlined in the service level 
agreements. 

Hardware Refresh Services Requirements are: 
• The Supplier must have a documented hardware refresh policy that includes 

migration strategies, timelines, accessibility, etc. 
• The Supplier must coordinate planning, installation and testing, including 

shipping and receiving, of midrange compute hardware and environmental 
equipment. 

• The Supplier must create a complete migration project plan and timeline and 
present the plan to the Change Review Board for approval. 

• The Supplier must coordinate testing activities for the hosted applications with the 
effected Navy Program Managers. 

• The Supplier must manage data migration and data movement processes, where 
possible, based on current hardware and software configuration to enable storage 
asset replacement. 

• The Supplier must update documentation of hardware configurations, including 
equipment placement, cabling, and connectivity details as hardware configurations 
are refreshed. 

 
5. Security Management 

 
The Supplier must provide Security Management Services to protect the 

confidentiality, integrity, and availability of the Navy’s information assets. The Services 
must adhere to all DoD, DoN policies and procedures (appendix (c) provides a list of 
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relevant information assurance policies).  Services include supporting data integrity 
protection software, user identification maintenance (authentication services), and 
password issuance.  Server security must be monitored 24x7x365 unless an adjustment is 
made to the business hours of operational support coverage.  Network security must be 
monitored 24x7x365 regardless of any adjustments.  Physical security requirements for 
the hosting facility are defined as part of the Facilities requirements in the Enterprise 
Foundation section. 

Security Management Services only address those areas that deal directly with the 
network, servers and associated hardware that support the Navy’s application systems 
and do not address access to the application systems themselves.  For instance, the 
Supplier must provide an identification and authentication mechanism for access to the 
application, but will not address or control identification and authentication mechanisms 
that allow access into the application itself. 

The scope of these services includes the entire server farm from the firewall to the 
actual server.  The firewall protecting the server farm is inside the scope of this SOW.  
The network from the end-user to the host environment firewall is not within scope for 
this SOW.   
 

a. Security Management Services  

 
• The Supplier must implement the appropriate INFOCON conditions when 

dictated by designated Navy personnel. The end users within NMCI must be able to 
maintain connectivity with the application during all INFOCON conditions. 

• The Supplier must ensure that all personnel with access to government 
information have received the proper clearance from the government.  Personnel 
without proper clearance will not be authorized access to any government data, nor 
will they be allowed to monitor any government applications. 

• The Supplier must implement Root/Administrator Access Restriction/Verification 
– Access is restricted to a known set of Supplier support personnel. 

• The Supplier must provide Vulnerability Scanning that identifies vulnerable 
configurations settings on network/system components, as well as identifying 
unauthorized ports/protocols and their associated applications.  The scans must be 
periodically reviewed to provide a secure environment. 

• The Supplier must run periodic (once a shift) scans against systems comparing 
current file permissions against an approved baseline. 

• Security logs (server, firewall and network) will be reviewed once a shift at 
random hours. Although log entries can be sent to a central monitor it is necessary to 
physically review logs to discern patterns that may not be automatically detected.  

• The Supplier must ensure that access to system-level files and services be 
restricted by use of operating system-level file permissions. The Supplier must 
maintain a database listing users, their access and permissions, their roles and security 
level.  
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• The Supplier must ensure that access through routers and firewalls adhere to the 
NMCI, DoD, and DoN Network requirements as they relate to protocols and specific 
IP address or ranges. 

• The Supplier must ensure that security changes are processed, reviewed, tested 
and approved by Supplier and Navy Change Review Board before implementation. 

• The Supplier will use base DoD and DoN configurations for server and network 
installations when they are available. 

• The Supplier will configure each system platform based on a government 
supplied secure configuration guide.  IAVA/B/TA will be implemented as required by 
DoN.  Attachment (b) provides the listing of Secure Configuration Guides. 

• DoD System Administrators will be properly trained and certified in accordance 
with the Office of the Secretary of Defense (DoD Memorandum dated 29 June 1998).  
This is a requirement for government agencies only. 

• The Supplier is responsible for revoking all access rights and privileges of the 
Supplier’s employees that were transferred, are retiring, or have been terminated.  
The Supplier must notify the Navy Program Manager that those individuals are no 
longer working on the project. 

• The Supplier will provide a security point of contact or contacts to interface with 
the government on matters relating to information assurance issues. 

• The Supplier will provide government access (customer, Naval audit) to the 
applicable information assurance documentation (logs, procedures) in accordance 
with the Government Information Security Reform Act (GISRA) with is part of 
section 811 of the Defense Authorization Act. 

• The applicable System Administrator for each platform/system will maintain a 
repository of access request forms and user agreement forms for administrator 
accounts for their platform/system.  The application administrator will maintain a 
repository of access request forms and user agreement forms for user accounts. 

• The applicable platform/system systems administrator will ensure all non-public 
web sites implement identification and authentication mechanisms (e.g., user 
id/password, DoD PKI certificate, CAC card with hardware certificate), and are SSL 
enabled with a DoD PKI server certificate.  The systems administrator will ensure the 
server certificate is renewed prior to expiration date. 

 
b. Intrusion Detection Services 

 
The Supplier must incorporate Intrusion Detection Services using an 

Intrusion Detection System (IDS) that is designed to monitor the network for known 
security threats. 

Intrusion Detection Services Requirements are: 
• The Supplier must implement an industry standard (NSA approved) IDS that 

enables real-time notification of potential security problems, such as denial-of-service 
attacks or other security breaches.  

• The Supplier must implement an industry standard (NSA approved) IDS that 
monitors inbound network traffic for numerous attack signatures. In the event of an 
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intrusion alert, the Supplier must be automatically notified and appropriate action 
must be taken based on the alert’s nature. 

• The Supplier must implement the most current versions of software that recognize 
activity patterns of known attack signatures. 

• The Supplier must provide monthly reports of security incidents to the 
government. 

• The Supplier must notify the affected government Program Managers if an 
intrusion is successful and provide an assessment of the damage. 

• The Supplier must have sensors in place that monitor network traffic and search 
for known attack signatures. 

• The Supplier must use agents that monitor the network and analyze audit logs and 
search for attack signatures and policy violations. 

• The Supplier must have a console to remotely manage the sensors through 
authenticated and encrypted communications. 

• The Supplier must use an automated incident response capability that may 
reconfigure firewall rule sets to repel an attack. 

• The Supplier must use automated notification to administrators in the event of an 
attack. 

• The Supplier must utilize authenticated and encrypted (128-bit) communications 
between sensors/agents and consoles. 

• The Supplier must ensure that sensors/agents are hardened from attack.  This is 
usually done by ensuring the integrity of the software through products that create an 
encrypted hash of the file. 

• The Supplier must notify the affected government ISSM and program manager 
within 30 minutes if an incident causes service degradation/disruption or if a 
successful intrusion occurs.  The Supplier will complete the Navy Incident Report 
(see appendix c) with assessment of the damage, and provide a copy to the ISSM in 
accordance with the timelines outlined in instruction OPNAVINST 2201.2.  

• If an intrusion is successful, the Supplier will notify the appropriate government 
personnel and activities within the timeframes established in the SLA. 

 
c. Vulnerability Assessment 

 
The Supplier will have a developed perimeter vulnerability assessment 

methodology specifically designed to determine an organization’s overall vulnerability to 
Internet-based attacks, along with identifying exposures and risks associated with any of 
the organization’s firewalls, FTP servers, Web servers, DNS servers, and e-mail servers 
residing on their Internet perimeter. 

This assessment will run remotely, probing the Internet/Intranet perimeter for all 
hosted applications in the same way a “hacker” would. The process will identify 
weaknesses in the hosted network and system configurations, thus providing the 
capability to immediately address and correct any identified deficiencies or shortcomings. 

This vulnerability assessment is separate from the “red team” assessment, which 
is a government-funded assessment.  Service Level Agreements will dictate the metrics 
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used to determine compliance with regard to the “red team” assessment.  The assessments 
discussed in this section will be undertaken by the Supplier to prepare for the government 
assessments. 

Vulnerability scanning will assess system vulnerabilities from two perspectives: 
network vulnerabilities and host-based vulnerabilities.  Network vulnerabilities are those 
weaknesses in systems and network components that could be exploited by an attack 
originating outside the system, including IP spoofing, TCP/UDP port attacks, SYN 
floods, and other denial-of-service attacks.  Host (operating system) vulnerabilities are 
weaknesses in systems that could be exploited at the system itself, including poor 
authentication, easily guessed passwords, and poor access control lists. System 
vulnerability detection also investigates system vulnerabilities on primary service entities 
such as servers, routers, and firewalls. 
 
• The results of all Vulnerability Assessments are classified in accordance with the 

appropriate classification guide.  The Supplier must provide personnel with the 
appropriate security clearance to conduct and review the assessments and produce a 
corrective action plan based on the results of the Assessments. 

• Port Scanning runs an in-depth port scan of the platform on the host 
environment’s Internet perimeter to identify “high-risk” services found running on the 
hosts visible to the Internet.  The Supplier will take action to mitigate the risks 
associated with those ports.   

• Vulnerability Assessment Scanning uses a variety of automated and commercially 
available tools to remotely probe the specified networks for security vulnerabilities, 
known software bugs, configuration problems, and unnecessary services, uncovering 
security weaknesses. 

• The Supplier should also provide a periodic review of systems and administrative 
security controls to make sure that they meet or exceed NMCI, DoD, and DoN 
standards. The review is required to make sure that all changes made to security 
control mechanisms can be traced to a duly authorized security change request. 

• Server Vulnerability Assessment is a service designed to determine 
vulnerabilities, exposures, and risks associated with the Navy’s specific server(s).  
This will include completing a System Security Authorization Agreement (SSAA) in 
accordance with the DoD Information Technology Security Certification and 
Accreditation Process (DITSCAP) program outlined in DoD Instruction 5200.40 to 
cover the host environment.   The SSAA will be made available to the Navy Program 
Manager for incorporation into their systems’ SSAA.  The application specific 
information required by the SSAA is the program manager’s responsibility.  The 
application specific information will be shared with the Supplier to ensure that the 
Supplier is aware of possible security problems that may affect the host network, 
systems, or other applications.  If an application evaluation is necessary to complete 
the application’s SSAA, that task will be negotiated separately.  

• The Supplier must ensure that vulnerability scanning adheres to all DoD and DoN 
security policies and procedures as they pertain to Networks and Servers. 

• The Supplier must run the vulnerability assessment directly on the Web and 
application server(s), scanning the configuration for known security weaknesses. 
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• Supplier personnel must review the results of the server scan and provide a 
summary of findings to the Navy. 

• The Supplier must provide one annual vulnerability scan run on the Navy’s server 
– occurs just before the site goes online (LIVE URL); all other scans must occur at a 
minimum of annually. 

• Real time Terminal in-state Residency (TSR) antivirus software protection will be 
implemented on each system to protect against malicious code as a result of file 
uploads/downloads. 

• For DoD owned co-located servers, the DoD antivirus protection software may be 
used (DoD has already paid for an enterprise license). 

• The Supplier must implement and maintain industry standard anti-spam software 
on servers running SMTP or E-Mail gateways. 

• Upon report of an incident affecting the government application, the Supplier will 
allow FIWC to perform an Online survey (OLS) on the applicable network where the 
incident occurred.  The OLS is an external probe that attempts to recreate the 
incident, or test to ensure the vulnerability that was exploited is corrected. 

 
d. Data Protection Software Services  

 
The Supplier will use Data Protection Software Service to ensure the 

integrity of essential data files.  Data integrity processes and procedures will be in 
accordance with DoD, DoN policies. 

Data Protection Software Service Requirements are: 
• The Supplier must install, maintain, and administer security system software that 

controls user access to information on a midrange server platform, such as access 
control lists. 

• Files containing passwords must be protected at the same level of protection as 
the most sensitive asset it protects or as “sensitive but unclassified data”, whichever 
security level is higher. 

• The Supplier must have processes, procedures and tools to maintain essential 
operating system and related system software data integrity. 

 
e. User Identification (ID) Maintenance and Password Issuance 

 
These services ensure only authorized users have access to their requested 

files and unauthorized access is denied without hindering business practices. 
User ID Maintenance and Password Issuance Services Requirements are: 

• The Supplier must use unique user identification (IDs) and passwords to control 
access. 

• Identification and authentication mechanisms stored in the system must be 
encrypted in accordance with FIPS standards. 

• The Supplier must execute DoN and DoD policies regarding password expiration 
times and minimum password lengths. 
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• The Supplier must be able to support Secured Network Communications. (i.e. 
SSL, PKI). 

• The Supplier must provide the processes, procedures, and a security administrator 
to maintain unique user identification and password control access into midrange 
environments, not specific DBMS or applications. 

• The Supplier must implement a system where the user is responsible for 
maintaining and changing their password on a server in accordance with the security 
policy. 

• The Supplier must process authorized requests to create, delete, or change a user 
ID from an authorized submitter. 

• The Supplier must provide the avenue to receive and respond to user problems in 
the areas of sign-on difficulties, password resets, and Logon/Login/Sign-On 
assistance.  Response times are outlined in the service level agreements. 

• The Supplier must maintain control of all Administrator/root access to all network 
and server hardware including applicable disk storage devices such as EMC RAID 
arrays. 

 
6. Customer Support Services 

 
The Supplier must have Customer Support Services that provide request 

management through a Supplier liaison.  The Supplier liaison must provide a 
communication focal point to facilitate all systems support and professional services. 
Client Service Management for the Essential Services also includes business hours 
operational support coverage, problem management, and change management processes.  
 

a. Request Management 

 
The Supplier must have Request Management Services that provide a 

communications liaison to facilitate rapid response to the Navy’s requests. These services 
must include coordination to receive and process the Navy’s requests for services. 
Examples include Platform Solution Design Services, Site Migration Services, Software 
Refresh Services, and Shared Services to accommodate ongoing Navy business needs or 
growth requirements. Requests may also address a temporary service requirement, a 
temporary service level requirement, or the implementation of a long-term requirement in 
which the Service Level Agreement must be revised.  

Request Management Services Requirements are: 
• The Supplier must have a process to receive and execute requests. 
• The Supplier must provide oversight and coordination to understand request 

requirements to ensure deliverables and timeframes are met for the execution of the 
requests. 

• The Supplier must mediate scheduling conflicts between program managers that 
have applications residing on the same server.  
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• The Supplier must provide regular communication of issues, concerns, and 
request schedules and attend application systems meetings when requested by the 
Navy Application Program Manager. 

 
b. Continuous Hours Operational Support Coverage 

 
The Supplier must be able to provide continuous hours of coverage by 

skilled staff to support all selected compute management packaged services. The Supplier 
must provide all systems management functions from the Supplier’s monitoring location 
24x7x365 and all other Supplier personnel required to provide the selected packaged 
solution services must be readily available 24x7 as necessary.  If continuous support is 
not necessary, services can be adjusted based upon application requirements.   

Continuous Hours of Operation Support requirements are: 
• The Supplier will have skilled staff to support the midrange environment and all 

Enhanced Services. 
• The Supplier must provide a monitoring location with on-site leveraged staff to 

monitor 24x7x365.  
 

c. Change Management 

 
The Supplier must have a Change Management process that controls 

changes to the midrange compute environment. The Supplier’s Change Management 
process will allow for the proper planning, analyzing, testing, communicating, and 
scheduling of hardware, system software, and environmental changes.   Any changes 
made to the application, server software and hardware, or the infrastructure must be 
briefed at the Navy Program Manager’s Change Review Board (CRB).   

Change Management Requirements are: 
• The Supplier must participate in the program’s CRB as they are scheduled.   
• The Supplier must document and track scheduled changes and status.  

Configuration documentation is available upon request. 
• The Supplier must manage dependency requirements for all change scheduling. 
• The Supplier must assist Navy Program Managers in assessing the risk of 

proposed changes, including review of change complexity, dependencies, duration of 
the change, ease of recovery, potential impact, and feasibility of the proposed 
implementation date. 

• The Supplier must evaluate application changes to ensure that there is adequate 
resources and capacity to support the application. 

• The Supplier must research and test all proposed system software upgrades and 
patches.   

• The Supplier must manage and brief the status of proposed changes according to 
established CRB processes. 

• The Supplier must assist Navy Program Managers in coordinating required testing 
to enable the successful implementation of changes. 
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• The Supplier must have a process in place that addresses the severity of change 
requests.  The Supplier and the Navy Program Manager will determine the criticality 
of the change to ensure it is addressed in a timely manner as defined in the SLA’s. 

• The Supplier and the Navy must establish a mediation process to address changes 
that affect the contract, service level agreements or resource requirements. 

• The Supplier must coordinate with the CRB in scheduling maintenance downtime 
and testing. 

• The Supplier should document any tuning actions.  If OS files are modified, that 
action should be documented.  Routine tuning does not need to be presented to the 
Change Review Board. 

 
d. Problem Management 

 
The Supplier must have a developed Problem Management process that 

details the actions to be taken in response to operational issues. This process should 
enable timely communication of the status and corrective actions. Problem resolution 
must be prioritized based on the severity of the problem.  As part of the Problem 
Management process it may be necessary to bring the critical application back on-line 
before the root cause of a problem is determined.  If a problem persists, then the Supplier 
must coordinate a time with the Navy Program Manager to determine the root cause of 
the problem while allowing the application to be off-line for a longer period of time.  For 
non-critical applications more time can be taken to determine the root cause of a problem.   

Problem Management Requirements are: 
• The Supplier must maintain a Help Desk with a centralized phone number for 

reporting and resolving problems.  The Supplier’s Help Desk must interface with the 
NMCI Help Desk because the Navy has designated that trouble calls be reported to 
the NMCI Help Desk first. 

• The Supplier must prepare and communicate with the Navy Program Manager 
impact statements documenting the cause of the problem, the efforts required to 
temporarily correct the problem, a root cause analysis, and any follow-up steps. In 
addition to notifying the Navy Program Manager of a problem, updated status of the 
problem resolution, and estimated completion times must be provided as well.  

• The Supplier must escalate any problems exceeding a response threshold based on 
severity of the problem. Thresholds are outlined in the service level agreements 
(SLAs). 

• The Supplier must assist the Navy technical support staff if problem resolution 
points to the Navy application instead of the operating system or infrastructure. 

• The Supplier response times will be determined by the negotiated SLA’s. 
• The Supplier must provide a monthly report to the Navy Program Manager with 

the appropriate help desk statistics, trend analysis, and a brief summary of the 
problems experienced, the means in which they were resolved, and the time necessary 
to fix the problem. 
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• The Supplier must coordinate with the Navy Program Manager to determine if 
they need to test the application to evaluate corrective action.  All configuration 
changes resulting from the problem resolution must be documented and relayed to the 
CRB. 

 
7. Service-Level Management 

 
The Supplier must provide Service Level Management Services through a 

communications liaison. The liaison must provide the avenue to understand and address 
the Navy’s issues and concerns as well as be aware of the Navy’s future plans, which 
would impact midrange services.  The liaison will be the Navy’s contact for reports and 
SLA issues and will work with the Navy’s Program Managers to develop strategic and 
tactical plans for the hosted systems. 

Service-Level Management Requirements are: 
• The Supplier must provide oversight of Service Level requirements and monitor 

and escalate any issues as necessary to help meet required Service Level standards.   
• The Supplier must provide regular communications (weekly) and participate in 

joint planning processes (if necessary) with the Navy Program Managers and 
application teams to integrate service level management issues with directions on 
tactical and strategic planning; and near-term and long-term initiatives. 

• The Supplier must work with the Navy Program Managers to develop a yearly IT 
plan that addresses Navy Program Manager requirements and the needs of the 
systems being hosted.  The plan should include the expected growth rate of the 
application’s user base, storage requirements, software releases, resource needs, 
future application releases, etc. 

 
a. Standard Service-Level Management Reviews and Reporting 

 
This service provides quarterly Service Level Management Reporting and 

Reviews. The Supplier must provide reporting with data to measure conformance to the 
service levels on a quarterly basis. Additionally, the Supplier must provide application 
specific weekly change reports and quarterly trends reporting for all change metrics. 

Standard Service-Level Management Reviews/Reporting Requirements are: 
• The Supplier must provide standard quarterly reports that outline the Supplier’s 

services against those delineated in the Service Level Agreements. 
• The Supplier must conduct quarterly review meetings to discuss service level 

reporting information. 
• The Supplier will provide at least one weekly report that describes change activity 

for the midrange systems to include description of change, system affected, date and 
time of change, duration of change, and status of change for approved changes. 

• The Supplier will provide a  quarterly report of change activity metrics that 
includes the number of changes, number of successful changes, missed change 
windows, and number of changes not meeting lead-time requirements. 
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8. Business Continuity 

 
Business Continuity involves the planning and implementation of procedures that 

ensure critical business operations resume following a disaster and that they return to 
normal operations as soon as possible.  Part of the process is determining which 
applications are critical and which are not, then deciding upon the time frames for 
recovery and site recovery necessary to meet the recovery needs.  Site recovery options 
are discussed in the Recovery Site Requirements section of the Enterprise Foundation 
Services of this document.  Business Continuity is also referred to as contingency 
planning, recovery planning, business resumption planning, or disaster recovery 
planning.  
 

a. Documented Recovery Action Plan 

 
The Supplier must maintain a plan for recovering the midrange operating 

system and related system software. The Supplier must work with the Navy Application 
Program Managers to define the appropriate software recovery plans. The plans can be 
tailored to the solution defining the backup schemas, critical components, and test plans 
based on the specific workload.  The recovery plan provides the processes, and 
documentation covering tape backups, recovery, and disaster recovery.  

Documented Recovery Action Plan Services Requirements are: 
• The Supplier must maintain documented recovery procedures for restoring the 

operating system and related system if a disaster occurs. 
• The Supplier must conduct an annual review of the midrange environment to 

determine whether the operating system data backup and off-site storage rotation 
schedules meet recoverability objectives. 

• The Supplier must have documented hardware and software configuration data to 
ensure the system is recovered to the most current environment. 

 
b. System Backup and Recovery 

 
The Navy needs to have operational support and management processes 

that meet operating system and related application requirements for data availability, 
accessibility, and retention. This service allows all system software and related storage 
configuration to be recovered if an operational or hardware failure occurs. This service 
supplements the Business Continuity Services that allow recovery if a disaster occurs. All 
backup media and the information on the media relating to the application or application 
database is the property of the Navy. 

System Backup and Recovery Requirements are: 
• The Supplier must implement backup software that monitors the backups via log 

files and reports any files that were not successfully backed-up. 
• The Supplier must adhere to the documented backup plan to ensure that a 

minimum of one backup copy is maintained for each critical file.  The normal backup 
schedule is where backups are performed daily 6 times a week and a full backup is 
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performed on Saturday or Sunday.  Additionally a full monthly and end of year 
backup are performed.  Unless increased by the Navy Program Manger the minimum 
retention requirements for backups are: 

• Daily incremental backups  
• Weekly full backups must be stored for 2 months 
• Monthly full backups must be stored for 12 months 
• Annual full backups must be stored for 5 years. 

• The Supplier must implement backup software that verifies backed-up files by 
reading what was written. 

• The Supplier must implement backup software that is able to perform unattended 
automatic backups of all systems. 

• The Supplier must test full system restoration of the systems, including hardware, 
software and processes annually at a minimum or as specified by the Navy Program 
Manager.  Results and lessons learned must be provided to the Navy Program 
Manager. 

• The Supplier must have a process in place to facilitate requests for recovery of 
application specific files.  The restoration times for each hosted application will be 
addressed in the application’s SLA. 

• The Supplier must monitor, verify, and escalate issues as necessary for operating 
systems and related application software backups and authorized restores. 

• The Supplier must manage operational support processes for performing 
operating system and related application software recoveries as required in resolving 
software and hardware problems. 

• The Supplier must adjust data backup and restore plans as new components are 
added to the system or availability requirements change. 

• The Supplier must maintain the tape library to ensure the availability of the media 
and storage location to include scratch and foreign tapes. 

• The Supplier must provide and maintain media including media reliability 
evaluation and aging and replacement processes. 

• The Supplier must dispose of old backup medium in accordance with DoD and 
DoN policies. 

• The Supplier must store the on-site backup medium in a separate space as the 
systems that are being backed up to ensure the safety of the medium in case of a 
disaster. 

• The Supplier must transfer magnetically stored media to a new medium every 
three years to prevent degradation. 

• At the conclusion of the contract, or if the contract is terminated for cause, the 
Supplier must deliver all application specific backup media and corresponding 
documentation to the Navy Program Manager. 

• The Supplier must monitor and manage the SAN or NAS network if used. 
• The SAN or NAS network can only be used to backup military/government 

applications.  No civilian applications can utilize the same network to perform 
backups.  The entire SAN or NAS network and system will be protected at the same 
level as the highest security classification of the information that it is backing up. 
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• Each tape must be protected in accordance with the highest security classification 
of any information on the tape.  For example, if a tape contains information that is 
sensitive, but unclassified (SBU), and the tape also contains information from another 
application that is unclassified, the tape must be treated as SBU.  Any confidential 
information on a tape makes the entire tape confidential. 

 
c. Off-Site Tape Services 

 
The Supplier must provide the processes necessary to ensure a copy of the 

operating environment (operating system, system software and application software) is 
stored in a secure, off-site location.   

Off-Site Tape Services Requirements are: 
• The Supplier must prepare tapes for shipment to the off-site tape vault. 
• The Supplier must provide off-site vault storage for backup and recovery media. 
• The Supplier must provide transportation of backup and recovery media to and 

from the vault. 
• The Supplier must provide a mechanism for specifying which tapes are to be 

returned from the vault. 
• The Supplier must audit the off-site storage location at least annually.  
• The Supplier must ensure that each tape is properly documented and labeled. 
• The Supplier must ensure that at a minimum the full weekly backups are stored 

offsite. 
 

d. Disaster Recovery Test Service 

 
The Supplier must be able to provide full testing for the documented 

recovery action plan. Testing verifies that the Disaster Recovery Plan meets the Navy’s 
Application Program Manager’s requirements. It also can be used to evaluate how well 
the recovery plan integrates with the Supplier’s other service providers to provide timely 
recovery from a disaster. At the Navy’s discretion, network personnel, the application 
team, and some set of the user base can be involved to test the recovered environment 
along with the Supplier’s staff.  After each test is complete, the Supplier must identify 
any deficiencies encountered and enhance the plan if required to meet the Application 
Program Manager’s recovery objectives.  

Disaster Recovery Test Service Requirements are: 
• The Supplier must conduct annual recovery testing based on the recovery option 

chosen by the Navy’s Program Manager for the specific application. 
• The Supplier must be able to restore the operating environment from the data 

backups. 
• The Supplier must verify and test operating environment functionality. 
• The Supplier must coordinate with the application team and user base for testing 

time, as required. 
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• The Supplier must provide annual drill reports to include recommendations on 
procedural changes that can make data restoration time frames more cost-effective 
while meeting realistic recovery requirements. 

 
e. Recovery Site Requirements 

 
Recovery sites are necessary to meet the Navy’s business continuity 

needs. The Supplier must offer three levels of recovery facilities – shell-site, warm-site, 
and hot-site. These options are linked to the Business Continuity Services described in 
the Essential, Enhanced, and Premier Packages. The shell-site option is mainly targeted 
for the Essential Package, which provides only off-site tape storage. The warm-site 
option most closely matches the Enhanced Package and the hot-site option aligns with the 
high availability services provided in the Premier Package. 

This section is an extension of the Business Continuity Service requirements and 
is not meant as a replacement for any other requirements in this document.  All other 
requirements for the hosted applications are implied in this section. 

Hosted application systems will be designated as requiring one of three levels of 
recovery facilities.  These are defined as shell-site, warm-site, and hot-site recovery sites.  
The Supplier must be able to provide each of these facilities.  The Supplier must also be 
able to accommodate changes to an application system’s recovery facility needs.  

To reiterate the requirement is that the Supplier be able to provide these sites 
(through contracts, existing partnership arrangements, etc…), not that the Supplier has to 
actually has to own, staff, or manage these sites on a full time basis.  Service level 
agreements will determine if a hot site is needed, and whether it will have to be staffed 
for contingency purposes.   

Shell-Site Recovery Facility requirements: 
• Must meet all the General Facility requirements excluding the Structural 

Requirements. 
• No hardware is available to support the applications that are running. 
• The facility used must not be in the same physical location as the production 

facility. 
• Shell-Site recovery testing for critical applications must be done at least annually. 
• A third party may provide the facility and hardware.  
• Documented procedures for redirecting applications to the Shell-Site Recovery 

Facility must be developed and maintained by the Supplier.   
• Warm-Site Recovery Facility requirements: 
• Must meet all the General Facility requirements. 
• The facility used must not be in the same physical location as the production 

facility. 
• A third party may provide the facility and hardware.  
• For designated applications and systems the hardware equivalent to the 

production environment is available in the warm-site facility. 
• Warm-Site recovery testing for critical applications must be done at least 

annually. 
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• Documented procedures for redirecting applications to the Warm-Site Recovery 
Facility must be developed and maintained by the Supplier.   

• Hot-Site Recovery Facility requirements: 
• Must meet all the General Facility requirements. 
• The facility used must not be in the same physical location as the production 

facility. 
• The facility and hardware must be maintained in a standby operating environment 

or as part of a high-availability server implementation located in two physical 
locations. 

• Hot-Site recovery testing must be done at least annually. 
• Documented procedures for redirecting applications to the Hot-Site Recovery 

Facility must be developed and maintained by the Supplier.   
 

9. Facilities - General Requirements 

 
Facilities are defined in this section as the physical locations of the hardware.  

The services addressed in this section include but are not limited to electrical power, 
HVAC controls, structural characteristics of the areas where the hardware is located and 
security as it concerns the physical access to the areas where the hardware is located.     

All Facilities must comply with DoN and DoD requirements. 
 

a. Electrical Power 

 
• The facility must have a clean energy source.  Power fluctuations must not affect 

the equipment. 
• In data centers, emergency power-off switches that shut off all power supplies 

must be installed and be readily accessible with posted notices showing their location. 
The Supplier must monitor the emergency power-off switches continuously. 

• Backup electrical facilities (e.g., generators) are needed to ensure long term 
uninterrupted power.  The facility must have n + 1 generators. 

• Backup electrical facilities must be tested annually at a minimum. 
• Each server must have access to a secondary power source. 
• In the event of a power failure, Uninterruptible Power Supply (UPS) systems 

must be configured and tested to ensure safe operations of critical hardware for a 
minimum of 30 minutes and to carry the load until automatic switching to the backup 
power supply takes place. 

 
b. HVAC and Climate Controls 

 
• Facilities must be climate controlled and have environmental conditions 

conducive to multiple computer systems. 
• The air conditioning unit must be included in the fire suppression system, so in 

case of a fire the A/C shuts off. 



 259

• Sensors and alarms must be installed in data centers to monitor the environment 
surrounding the equipment to ensure that climate controls remain within the levels 
specified by equipment design. 

• The Supplier must monitor environmental controls and take actions based on 
detected problems or issues. 

• Reports of the climate control systems must be generated monthly at a minimum. 
• The computer room should have positive air pressure. 
• Fire Suppression 
• The data center must have its own alarm systems. 
• Fire Suppression must be a pre-action / dry pipe sprinkle system and a gaseous 

system such as the replacement agent to Halon 1301, called FM-200.  These systems 
must meet the National Fire Protect Act 75 as well as comply with most NAVFAC 
requirements to ensure the overall system adheres to commercially acceptable 
standards. 

• The facility must ensure that it has working smoke and heat detectors.   
• Computer supplies (for example paper) must be stored in a separate location away 

from the computer equipment to minimize risk of fire damage. 
 

c. Structural 

 
• Drop ceilings must include smoke, heat and water sensors. 
• The facility must have a raised floor to support connections and airflow. 
• The facility must have a loading ramp or easy access for loading equipment. 
• Raised floor loading capacities must be a minimum of 150 lbs. / sq. ft. 
• Raised floor must support a minimum-rolling load of 600 lbs (272 kg.) over the 

entire floor. 
• The minimum floor loading capacities for the mechanical, electrical and battery 

room must be 400 lbs / sq. ft. 
• Exterior walls should be able to withstand wind loads of 115 mph (185 kph).  This 

is equivalent to a ‘class 3’ hurricane. 
• Exterior envelope wall and roof deck composites should include a vapor barrier. 
• No windows or curtain walls will abut the area where servers are located.  
• Servers must not be housed in areas subject to flooding or water infiltration 

through walls, floors or ceiling. 
• Walls separating critical mechanical and electrical equipment rooms must extend 

from the floor slab to the bottom of the roof or floor deck above and must be 
constructed with a minimum of a 2-hour fire rated assembly. 

• Walls surrounding mission critical equipment in the data center areas must be 
constructed with a minimum of a 1-hour fire rated assembly. 

• Walls surrounding magnetic tape and other media storage must extend from the 
floor slab to the bottom of the roof or floor deck above. 

• Walls surrounding magnetic tape and other media storage must be constructed 
with a minimum of a 2-hour fire rated assembly. 
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• Blueprints must be available with markings for the following: 
• Power Supply 
• Fire Suppression 
• Access Points 
• Point of Presence to outside networks (PoP) 

• The Supplier must comply with all Uniform Federal Accessibility Standards 
(UFAS) and must incorporate the American Disabilities Act (ADA) in its structural 
designs.  

 
d. WAN/BAN/LAN Connectivity 

 
• The Supplier must provide the service to connect geographically separated Navy 

and Marine Corps users/devices/printers. The Supplier must provide connection to 
external networks, for example: 

• Non-Secure IP Router Network (NIPRNET) 
• Secure IP Router Network (SIPRNET) 
• FTS-2001 
• Defense Research Engineering Network (DREN) 
• Defense Switched Network (DSN) 
• Public Switched Telephone Network (PSTN) 
• NMCI provided wide area transport services (commercial/DISA) 
• The Internet 

• The Supplier must provide service to interconnect geographically co-located 
Navy and Marine Corps LANs and BAN attached devices.  

• The data center’s network must conform to DoD and DoN Internet and Intranet 
security policies. 

 
e. Facility Physical Security 

 
• Data center personnel are required to have picture identification badges. 
• The Supplier must adhere to the personnel guidelines outlined in section 1.1.4 

Contractor Specific Internal Information Guidelines of the N/MCI Contract N00024-
00-D-6000 Attachment 4 Security Requirements document.  Section 1.1.4 of the 
N/MCI Contract N00024-00-D-6000 can be found in Appendix A. 

• Visitors must sign in and be escorted into and out of the facility to provide an 
audit log. 

• A log of physical access to controlled areas must be kept. 
• A list of individuals authorized to grant physical access to controlled areas must 

be maintained. 
• A list of individuals granted physical access to controlled areas must be 

maintained. 
• Access to secure areas must be protected by an electronic access control system. 
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• Access to data center equipment must be physically restricted to authorized 
personnel by locating the equipment in a closed area. 

• The facility must have surveillance covering the entire server area 24x7x365. 
• Detection devices or true floor to ceiling data center perimeter walls must be 

installed to prevent unauthorized access attempts. 
• Physical security must implement multiple access control points with access 

controls to restrict access to authorized parties only (i.e. Tape Librarians should only 
have access to the tape library.) 

• Attempts to gain unauthorized access to secured areas must be reported on a 
monthly basis.  

 
10. Shared Services 

 

Shared services are described as the use of shared servers and disk arrays that are 
utilized by multiple application systems.  The Supplier must be able to use a strategy of 
leveraging its infrastructure to support the Navy’s current and future business needs.  
Shared services should be used to help the Navy reduce its overall operations costs by 
making efficient use of available resources.  Shared services should be available on a 
case-by-case basis determined by the supported applications requirements. 

The application requirements are defined in the review of the application that is 
performed as part of the Midrange Site Transition Services for the application.  As part of 
the review the Supplier and the Navy Program Manager will determine if shared services 
are appropriate for the application and if the use of shared services will enhance the 
performance, price and availability of the application in the hosted environment. 
 

a. Shared Services – Disk 

 

Shared Disk options include the use of current technology providing state-
of-the-art speed of access to midrange disk components. The advantages of using Shared 
Disks are the availability of capacity on demand, application availability and economies 
of scale for large applications and databases.   
 

b. Shared Services – Platform 

 
Shared Platform Services are the use of state-of-the-art midrange servers 

that are able to support multiple application environments with the ability to reconfigure 
and reallocate server resources on the fly.  These platforms may be implemented by the 
Supplier as a means of providing on-demand processing capacity and flexibility for the 
hosted application systems.  Shared platform usage should be based on specific Navy 
application systems resource requirements as defined in the application requirements, 
selected SLA’s and audit results. 
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11. Essential Services – Optional Service Upgrades 

 
The Supplier must provide for service upgrades described in this section.  The 

upgrades can be selected at an additional charge to expand the range of services provided 
in the Essential Package based on application-specific requirements. 
Upgrade – No Upgrades defined for the Essential Services 
 

a. Essential Services –Optional Service Adjustments  

 
The Supplier must be able to adjust the service offerings for the Essential 

Services.  These service adjustments can be selected to reduce the range of services 
provided in the Essential Services Package based on application-specific requirements. 

 
Adjustment – No Documented Recovery Action Plan 
This adjustment removes the Documented Recovery Action Plan Services from 

the Essential Services Package.  
 

Adjustment – No Disaster Recovery Test Service 
This adjustment removes the Disaster Recovery Test Services from the Essential 

Services Package.  
 

Adjustment – Business Hours Operational Support Coverage 
The Supplier should be able to adjust the 24X7 coverage provided in the Essential 

Services Package and reduce the level of coverage to support the times users are 
accessing the system.  The support hours needed may be 8 or 16 consecutive hours per 
day across five consecutive business days (Monday – Friday) or seven business days 
(Monday – Sunday) depending on the location of the user base of the application. 
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B. ENHANCED BASE PACKAGE SYSTEM SUPPORT AREAS 

 
The systems support services described in this section encompass the Enhanced 

Packaged Systems Support Services.  These services can be expanded with the selection 
of upgrades for an additional fee or reduced with the selection of adjustments that reduce 
pricing. 

The services provided in the Enhanced Package are designed for dynamic, 
growing applications that are critical to the Navy’s business enterprise.  
 

1. Systems Management 

 
The Supplier must provide Systems Management Services that include all 

services defined in the Essential Package plus system DBMS monitoring and printer 
definition and queue management.  
 

a. System DBMS Monitoring 

 
Administration and support of a DBMS is divided into two separate areas 

of responsibility: System Database Support and Application Database Support.  System 
Database Support and Application Database Support functions are differentiated as 
follows: 
• System Database Administration is responsible for managing global DBMS 

resources that perform functions that require DBMS owner userid authority or 
functions required to provide overall system integrity for the database (e.g.,  
installation of the DBMS Server software, runtime procedures and parameters for the 
database instance, creating users and access rights, creating DBMS tablespaces, 
creating and maintaining rollback and redo logs, etc). 

• Application Database Administration is responsible for managing objects within 
the database (e.g., the Table definitions, indexes, views, procedures etc). 

Throughout this document, anytime DBMS requirements are discussed they are 
directed toward System Database Support and not Application Database Support, which 
is the responsibility of the program manager.   

The Supplier must be able to support Database Management System (DBMS) 
Monitoring Services that provide the required operational support to monitor the Navy’s 
DBMS environments. 

System DBMS Monitoring requirements are: 
• The Supplier must monitor DBMS throughput and performance. 
• The Supplier must monitor DBMS availability. 
• The Supplier must provide a monthly report for DBMS availability as part of the 

service-level management services. 
• The Supplier must monitor to detect potential DBMS problems. 
• The Supplier must monitor databases for space utilization, database performance, 

and other specific database criteria such as dead locks. 
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Note: These support services do not include the services of an application 
database administrator, but rather the services to maintain the system level components 
of the DBMS system. 
 

b. Printer Definition and Queue Management 

 
The Supplier must provide Printer Definition and Queue Management 

Services that provide the support and processes required to define printers to a midrange 
system and to manage print queues on a midrange system to resolve problems in the 
queues through purging and resetting print jobs and queues. Problems are reviewed and 
actions taken as required in accordance with the problem management procedure. Manual 
manipulation of print jobs within the queue is not included.  

Printer Definition and Queue Management requirements are: 
• The Supplier must have a defined printer definition process. 
• The Supplier must manage throughput of print queues. 
• The Supplier must install and test the printers that are located in the hosted 

environment. 
• The Supplier must resolve problems, including resetting or purging jobs, as 

needed. 
• The Supplier must ensure that applications that print to network printers have the 

necessary connectivity to the network and that the printer is properly set up on the 
server.  The Supplier must work with NMCI and program management staff to 
resolve connectivity and reach back problems. 

 
2. Software Management 

 
The Supplier must provide Software Configuration Management Services that 

include all services defined in the Essential Services Package plus system DBMS support 
services. 
 

a. System Database (DBMS) Support Services 

 
The Supplier must provide System DBMS Support Services that include 

the processes to plan, install and maintain the required DBMS operating environment to 
support DBMS software.  These support services do not include the services of an 
application database administrator, but rather includes those services required to maintain 
the system level components of the DBMS system.   

System DBMS Support Service requirements are: 
• The Supplier must configure, install, and test DBMS system environment. 
• The Supplier must maintain, install, and test DBMS upgrades and patches.  All 

DBMS changes must be presented to the Change Review Board. 
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• The Supplier must, in coordination with Navy Program Managers, maintain 
documentation of DBMS configurations including application software release levels, 
configurations, patches, etc. 

• The Supplier must maintain documentation of all changes approved by the 
Change Review Board including date approved, change summary and date change 
applied. 

• The Supplier must make all documentation available to the Navy upon request. 
• The Supplier must create, maintain, and execute DBMS system start-up/shutdown 

scripts and processes. 
• The Supplier must maintain and configure DBMS system disk including slicing 

and placing. 
• The Supplier must create and maintain DBMS files, DBMS tablespace, and 

application tablespaces.  
• The Supplier must verify effectiveness of changes on DBMS files and tablespaces 

utilizing an approved test plan. 
• The Supplier must perform backup and recovery of DBMS system files and 

tablespaces, as well as the database application itself.  Backup schedules and storage 
requirements are outlined in backup section of the Essential services. 

• The Supplier must maintain DBMS Backup/Recovery  and Disaster Recovery 
Procedures and Documentation. 

• The Supplier must manage and if necessary modify DBMS file and DBMS 
tablespace characteristics. 

• The Supplier must participate in design reviews and project meetings to provide 
technical guidance for DBMS related issues. 

• The Supplier must work with the Navy Application Program Managers and Navy 
Technical Application Support Staff to resolve DBMS performance related issues. 

• The Supplier must maintain security and access to the DBMS and its associated 
files. 

• DBMS software refresh provides the same services outlined in the software 
refresh portion of the Essential package. 

• The Supplier must work with the Navy’s DBA to install application updates or 
patches. 

 
3. Workload Management 

 
The Supplier must be able to provide Workload Management Services that 

include support for Batch Scheduling and Batch Monitoring to determine whether 
production batch cycles are completed in required time frames.  
 

a. Batch Scheduling Services 

 
 The Supplier must be able to provide Batch Scheduling Services that 
involve activities associated with defining and maintaining the execution requirements of 
an application’s batch processing that is scheduled under the system’s automated 
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scheduling product. The objective of production batch scheduling is that all pre-defined 
application cycles execute in the proper sequence with cycle completion scheduled 
realistically within the defined processing windows. 

Batch Scheduling Services requirements are:  
• The Supplier must maintain the job-scheduling database for the automated 

scheduling product. 
• The Supplier must perform day-to-day maintenance and operational support of the 

scheduling system. 
• The Supplier must perform additions, changes, or deletions to the scheduled batch 

workload as requested by authorized personnel. 
• The Supplier must assist the Navy Application Program Managers and Navy 

Technical Support Staff in performing batch scheduling or cycle flow problem 
determination. 

 
b. Batch Monitoring Services 

 
The Supplier must provide Batch Monitoring services to support processes 

necessary to monitor the application batch cycle. If abnormal termination or a restart 
occurs, the scheduled batch processing will be executed based on pre-defined instructions 
or the issue will be escalated to the Navy’s Application Team as necessary. 

Batch Monitoring Services requirements are: 
• The Supplier must monitor resource availability, abnormal termination, and cycle 

start and end times for scheduled batch processing.  The Supplier must provide 
monthly of reports of batch processing statistics to the Navy Program Manager. 

• The Supplier must perform and/or assist the application team in performing 
production batch restarts and reruns. 

• The Supplier must assist the Navy Technical Support Staff in resolving abnormal 
termination because of system abnormalities. 

 
Note: The Batch Monitoring Services do not include monitoring of the execution 

of user-submitted jobs. 
 

4. Application Security and Resource Controls 

 
The Supplier must be able to install any required software tools and set up access 

parameters and ongoing support required to create and maintain application resource 
controls for the midrange environment in accordance with the Navy’s Application Team 
requirements. 

Application Security and Resource Controls requirements are: 
• The Supplier must provide processes to secure application files according to DoN, 

DoD, and NMCI security requirements. 
• The Supplier must manage user access to the applications including the processes 

and procedures necessary for Adding, Updating and Deleting user access.  



 267

• The Supplier must have a process in place to receive and respond to user 
problems in the areas of file access difficulties and security violations. 

 
5. Production Promotion 

 
Production Promotion Services include change control services and software for 

managing the promotion of source and object code for developed programs or 
applications from test to production environments.  This service is designed to make the 
Supplier responsible for migrating changes into production alleviating the need for Navy 
Program Managers to perform such tasks.  As such the program manager will not need to 
gain the assistance of the Supplier to gain root access to install an update.  The program 
manager will give the update to the Supplier and the Supplier take all of the steps 
necessary to install the application update. 

The Supplier must provide Production Promotion Services for ongoing 
maintenance of the hosted applications. These services incorporate procedures for 
promoting application software changes and application file changes made by the Navy’s 
technical staff into the hosted application’s production environment.  

Production Promotion Support Services Requirements: 
• The Supplier must provide a change control process for source and object code 

promotion. 
• The Supplier should provide version control for source and object code. 
• The Supplier must manage the promotion of source and object code from test to 

model office to production files or server environments. 
 

6. Customer Support Services 

 
The Supplier must provide Customer Support Services that include request 

management, change management, problem management, and service-level management 
as they affect the midrange environment. Besides the services provided in the Essential 
Services Package, the Enhanced Package provides regional coordination of requests. 
  

a. Request Management – Multi-Site Coordination Services 

 
The Supplier must be able to provide Enhanced Request Management 

Services that include the coordination of receiving and processing Navy requests for 
services in a single location as provided in the Essential Services Package, but also 
regional request coordination. The Supplier must be able to provide request coordination 
via a single client liaison across multiple regional processing environments that are under 
the Supplier’s control.  

 This service should integrate software and hardware refresh requests, 
coordinate scheduling, and provide regional consistency while meeting the Navy’s 
application-specific business requirements. Regional coordination in this context is across 
multiple sites. When requests requiring this level of coordination are received, the 
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Supplier’s request management processes should provide regional communications to 
coordinate and execute the request among all required locations.  

 
Request Management – Multi-Site Coordination Services requirements are: 

• The Supplier will review all requests to determine and understand potential 
regional requirements and present the findings to the Change Review Board. 

• The Supplier will monitor request status across all impacted regional sites to 
determine whether deliverables and time frames are met among all environments 
throughout the region as required.  The Supplier will brief the request status to the 
program manager on a weekly basis. 

• The Supplier will coordinate the scheduling of actions resulting from the request 
across affected sites. 

 
7. Enhanced Service – Optional Service Upgrades 

 
The service upgrades can be selected to expand the range of services provided in 

the Enhanced Services Package based on client-specific requirements. 
 

a. Upgrade – Custom Product Support  

 
The Supplier will integrate and support a completely customized set of 

products as defined by the Navy Application Program Managers and the Supplier’s 
Technology Advocate. This set of products should be fully integrated into the operating 
platform package for installation. Please see the Premier Services Package definition for 
a detailed list of services. 
 

b. Upgrade – Local High-Availability Support  

 
The Supplier will support High-Availability Services that provide 

processes and support for redundant server and storage environments that are clustered 
together in the same physical site. Please see the Premier Services Package for a detailed 
list of services included.  
 

c. Upgrade – Custom Service Level Reviews and Reporting 

 
The Supplier will to provide customized service level reviews and 

reporting. Please see the Premier Services Package for a detailed list of services included. 
 

d. Enhanced Services – Optional Service Adjustments 

 
These service adjustments can be selected to reduce the range of services 

provided in the Enhanced Services Package based on application-specific requirements. 
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Adjustment – No Printer Definition and Queue Management 
The Supplier will remove the Printer Definition and Queue Management Service 

of Systems Management Services from the Enhanced Services Package. 
 

Adjustment – No Workload Management 
The Supplier will remove all Workload Management Services from the Enhanced 

Services Package. This includes removing support for batch job and cycle scheduling as 
well as monitoring scheduled batch processing.  
 

Adjustment – No Batch Scheduling 
The Supplier will remove the Batch Scheduling Service of Workload 

Management Services from the Enhanced Services Package. The Operational Monitoring 
Service for scheduled Batch Processing is not affected.  
 

Adjustment – No System Database (DBMS) Support 
The Supplier will remove the System Database (DBMS) Support Service for 

Software Configuration Management and all monitoring of DBMS from the Enhanced 
Services Package.   
 

Adjustment – No Production Promotion 
This adjustment removes the Production Promotion Service of Workload 

Management Services from the Enhanced Services Package.  
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C. PREMIER BASE PACKAGE SYSTEM SUPPORT AREAS  

 

The Premier Services Package is designed for Navy’s most mission-critical 
systems that require a customized infrastructure design, build, and operation because of 
the business application complexity, diversity, and variety. In addition to the services 
provided in the Enhanced Services Package, the Premier Services Package provides 
support for more complex software and hardware configurations to provide high 
availability for business critical processing requirements.  
 

1. Systems Management 

 
Systems Management is the process of analyzing, evaluating, and reviewing the 

compute operation to verify that operational requirements are met. The range of services 
includes all services defined in the Enhanced Services Package plus Application 
Monitoring and advanced web site monitoring.  
 

a. Application Monitoring 

 
The Application Monitoring Service provides the Navy with proactive 

automation and monitoring that result in more stable, functional applications that meet 
Navy and operational requirements. Application monitoring involves more than the 
monitoring of application resources.  Application monitoring can involve monitoring 
distinct functions within the application for input/output speed, checking for 
looping/hung processes, analyzing application usage patterns (which options or branches 
are used most often), and reviewing exception logs. 

This service is designed for monitoring purposes only.  Program manager 
cooperation may be required to interface monitoring agents with the application code. 

Application Monitoring Services Requirements are: 
• The Supplier must develop, install, and test specific application automation agents 

for use in application monitoring. 
• The Supplier must configure, install, and test custom product automation agents. 
• The Supplier must manage and monitor the application and/or custom product 

operational environment. 
• The Supplier should monitor the application database to ensure the database is 

responding to requests if applicable. 
 

b. Web Site Monitoring 

 
The Web Site Monitoring Service provides the Navy with automated 

monitoring of web sites to ensure there are no broken links in the Web Site.  A broken 
link is defined as a hyperlink from one web page to another that is no longer available.  
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Web Site Monitoring Services Requirements are: 
• The Supplier should monitor identified web pages for broken links on a periodic 

basis as defined by the Navy Program Manager. 
• The Supplier should provide results of broken links to the Navy Program 

Manager. 
 

2. Software Management 

 

Software Configuration Management Services provides for the installation, 
maintenance, documentation and upgrading of midrange environments. The range of 
services includes all services defined in the Essential and Enhanced Services Packages 
plus Custom Product Support and Local High-Availability Support Services. 
 

a. Custom Product Support  

 
The Supplier must integrate and support a completely customized set of 

products (operating systems, network devices, server hardware, etc.) as agreed upon by 
the Navy and the Supplier.  Custom products in this context refer to support for 
nonstandard software or hardware that is utilized by the application.  Operating systems 
such as Linux or BSD UNIX are nonstandard, and the contractor may have to hire 
additional personnel to support the software.  Custom support does not refer to the 
application itself. 

Custom Product Support Services Requirements are: 
• The Supplier must support a custom-designed solution of system-related vendor 

products selected by the Navy and the Supplier.  
• The Supplier must plan, install, integrate, and upgrade the custom product set. 
• The Supplier must resolve problems, including problem determination, interface, 

and escalation with third-party suppliers, for the custom product set. 
• The Supplier must install corrective and preventive maintenance to custom 

product sets. 
• The Supplier must conduct inventory, track, and document the custom product set 

components and changes. 
• The Supplier must provide software refreshes to allow early adoption or to 

maintain currency to current software versions of the custom product.  Software 
refresh may not be applicable in some cases where the custom product is being used 
because of hard coded dependencies specific to a particular version. 

 
b. Local High-Availability Software Support  

 

Local High-Availability Software Support Services provide the processes 
and support staff to support system software required to provide redundant server and 
storage configurations clustered together in the same physical site. 



 272

Local High-Availability Support Services Requirements are: 
• The Supplier must install and maintain the system software and related tools 

required to provide a midrange compute environment that meets availability 
requirements and removes single points of failure from the compute configuration. 

• The Supplier must provide high-availability software expertise to manage and 
monitor the operational environment. 

• The platform will support non-disruptive software maintenance to both the system 
software and the application. 

 
3. Hardware Configuration Management 

 

The Hardware Configuration Management of the Premier Services Package 
includes the processes and procedures for the installation, upgrade, coordination and 
oversight of midrange high-availability environments. The range of services includes all 
services defined in the Enhanced Package plus hardware refreshes as required to maintain 
state-of-the-art high availability configurations.  
 

a. Local High-Availability Hardware Support  

 
Local High-Availability Hardware Support services provide the processes 

and support for redundant server and storage configurations that are clustered together in 
the same physical site to support continuous availability requirements.  

Local High-Availability Hardware Support Services Requirements are: 
• The Supplier must manage platform solution configuration requirements to meet 

availability requirements and remove single points of failure from the compute 
configuration. 

• The Supplier must provide subject-matter expertise to manage and monitor the 
operational environment. 

• The Supplier must coordinate with vendors to provide non-disruptive 
maintenance processes. 

• The Supplier must provide the capability to dynamically reconfigure resources to 
support applications experiencing high demand. 

 
4. Customer Support Service 

 
The Supplier must be able to provide Customer Support Services that include a 

more extensive range of Change and Problem Management Services. The complete set of 
services that are provided encompass all services defined in the Enhanced Package and 
additional client-specific change and service reviews. 
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a. Request Management – Global Coordination 

 
Premier Request Management Services include not only the coordination 

of receiving and processing Navy requests for services within geographic regions as 
provided in the Enhanced Services Package, but also global request coordination. The 
Premier Services Package must provide request coordination via a single Supplier client 
liaison across all global processing environments. This service integrates such services as 
software and hardware refresh requests, coordinates scheduling, and provides global 
consistency while still meeting client-specific business requirements.  When requests 
requiring this level of coordination are received, Supplier request management processes 
provide the global communication to coordinate and execute the request among all 
required locations.  

Request Management – Global Coordination Services Requirements are: 
• The Supplier must review all hardware and system software requests to determine 

and understand potential global requirements. 
• The Supplier must communicate and monitor the status of the request across all 

impacted global sites to ensure deliverables and time frames are met among all global 
environments as required. 

 
b. Custom Service Reviews and Reporting  

 
Custom Service Reviews and Reporting includes additions to Standard 

Service-Level Management Reviews and Reporting. Navy-specific service level 
reporting must be available and customized to address unique reporting requirements. 
The review and reporting services for change and problem management can be 
customized to meet application specific requirements. More frequent problem and change 
management review services that encompass weekly Navy-specific problem review 
meetings and daily service review meetings for all problem metrics are also provided.  
 

5. Premier Services – Optional Service Upgrades 

 
The service upgrades can be selected to expand the range of services provided in 

the Premier Package based on program-specific requirements. There is an additional 
charge associated with each service upgrade. 
 

a. Upgrade – Remote High-Availability Support Services 

 
The Supplier must have Remote High-Availability Support Services that 

provide the processes and support for redundant server and storage configurations that are 
located in geographically distributed physical sites either via hardware and/or software 
tools to support specified availability requirements. Besides the protection provided by a 
local high-availability solution, a remote high-availability configuration provides 
business continuity if the local operating site is incapacitated.  
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The components of a remote high-availability configuration include remotely 
clustered platform configurations and remote mirrored disk storage configurations. When 
redundant sites are requested, the Supplier and the solution vendors  
perform a risk/cost/benefit analysis for Navy approval. Eliminating single points of 
failure helps prevent interruptions in service because of discrete hardware and software 
failures. 

Remote High-Availability Support Services Requirements are: 
• The Supplier must design and implement a configuration to meet availability 

requirements and remove single points of failure from the compute configuration. 
• The Supplier must provide subject-matter expertise to manage and monitor the 

environment as defined by the services selected for the application. 
• The Supplier must coordinate vendors to provide non-disruptive maintenance 

processes to ensure the availability of the hardware components of the compute 
configuration. 

• The platform configuration must allow non-disruptive system and application 
software maintenance to ensure the availability of the software components of the 
compute configuration. 

 
b. Premier Services – Optional Service Adjustments 

 
These service adjustments can be selected to reduce the range of services 

provided in the Premier Package based on client-specific requirements. There is a price 
reduction associated with each service adjustment. 
 

Adjustment – No High-Availability Support 
This adjustment removes local High-Availability Services from the Premier 

Package. This includes removal of local High-Availability Services that provide the 
processes and support staff to support redundant server and storage configurations that 
are clustered together in the same physical site either via hardware and/or software tools 
to support continuous availability requirements.  
 

Adjustment – No Request Management – Global Coordination Support 
This adjustment removes Request Management – Global Coordination Services 

from the Premier Package.  
 

6. Contract Termination  

 
At the conclusion of the contract, the Supplier must assist the Navy Program 

Manager and any third party contractor in migrating the application to a new 
environment.  This includes allowing a third party contractor access to the servers to 
evaluate the applications.  The Supplier must perform the following actions upon the 
completion of the contract: 
• Transfer the application or groups of applications to a suitable media for transport 

to the new environment. 
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• Provide software and hardware configuration information. 
• The Supplier must provide audit information to assist any third party organization 

in gathering data necessary to migrate the application. 
• The Supplier must turn over all application related backup disks. 
• The Supplier must purge all application data from their systems in accordance 

with DoD and DoN regulations.   
• The Supplier must provide all required end-of-month reports and documentation. 
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D. NMCI  CONTRACT (APPENDIX A):  

 
N/MCI Contract N00024-00-D-6000 Attachment 4 Security Requirements Section 
1.1.4 
 
1.1.4 Contractor Specific Internal Information Guidelines 

 
1.1.4.1 Classified (DoD) Information Support 

The highest classification level of information required in connection with this 
procurement is TOP SECRET.  
 

In accordance with the National Industrial Security Program Operating Manual, 
DoD 5220.M, the contractor shall possess or be able to possess a Facility Security 
Clearance equal to the highest level of classified information necessary to perform the 
tasks or services required on this contract.  
 

Contractor personnel, whose duties require access to systems processing classified 
information, shall possess a security clearance at least equal to the highest degree of 
classification involved and shall have a validated need-to-know prior to beginning work 
on the classified system. 
 

The sponsoring agency security requirements for classified systems shall be met 
by all contractor personnel accessing classified information, or contractor systems 
processing classified information. 
 

The contractor shall perform internal assessments to determine position sensitivity 
and management controls necessary to prevent individuals from bypassing controls and 
processes, such as individual accountability requirements, separation of duties, access 
controls, and limitations on processing privileges at contractor facilities. These position 
sensitivity assessments will be forwarded to the Government for a determination of 
personnel suitability and requirements for individuals assigned to these positions in 
accordance with DRD3. Periodic re-evaluations of positions and suitability requirements 
will be necessary during the life of the contract as positions and assignments change. 
 

The contractor shall conduct risk assessments, document the results, develop and 
maintain internal security plans. These plans shall describe how the contractor ensures 
the integrity, availability, and confidentiality of the information that it is operationally 
responsible to protect within the vendor’s facilities.  
 
1.1.4.2 Sensitive Information Support (Non-classified) 

Under current Federal guidelines, all officially held information is considered 
sensitive to some degree, and shall be appropriately protected by the contractor as 
specified in applicable IT Security Plans. 
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Types of sensitive information that will be found on DoN systems that the 
contractor shall have access to include, but are not limited to: Privacy Act information; 
proprietary information of other companies or contractors; resources protected by 
International Traffic in Arms Regulation (ITAR); technology restricted from foreign 
dissemination for competitive reasons; DoN administrative communications, including 
those of senior government officials; procurement or budget data; information on pending 
Equal  employment Opportunity (EEO) cases; labor relations; legal actions; disciplinary 
actions; complaints; IT security pending cases; civil and criminal investigations; 
information not releasable under the Freedom of Information Act (FOIA) (e.g. payroll, 
personnel, and medical data). 
 

The contractor shall perform internal assessments to determine position sensitivity 
and management controls necessary to prevent individuals from bypassing controls and 
processes, such as individual accountability requirements, separation of duties, access 
controls, and limitations on processing privileges at contractor facilities. These position 
sensitivity assessments will be forwarded to the Government for a determination of 
personnel suitability and requirements for individuals assigned to these positions. 
Periodic re-evaluations of positions and suitability requirements will be necessary during 
the life of the contract as positions and assignments change. 
 

The contractor shall conduct risk assessments, document the results, develop and 
maintain internal security plans. These plans shall describe how the contractor will ensure 
the integrity, availability, and confidentiality of the information that is operationally 
responsible to protect within the vendor’s facilities and at government facilities. For 
example the contractor shall ensure that foreign nationals within their corporate staff will 
not have access to NMCI data that is not releasable. A decision to accept any residual risk 
will be the responsibility of the DoN system owner and the DoN information owners. The 
contractors risk assessments and IT Security Plans shall be updated at least every three 
years or upon significant change to the functionality of the assets, network connectivity, 
or mission of the system, whichever comes first. If new or unanticipated threats or 
hazards are discovered by the contractor, or if existing safeguards have ceased to function 
effectively, the contractor shall update the risk assessments and IT Security Plans (within 
30 working days) and shall make appropriate risk reduction Recommendations to the 
DoN system owner and the DoN information owners (within 5 working days). 
 
1.1.4.3 Privacy And Security Safeguards 

The contractor shall not publish or disclose in any manner, without written 
consent of the government, the details of any security safeguards designed, developed, or 
implemented by the contractor under this contract or existing at any DoN Center. 
 

The contractor shall develop procedures and implementation plans to ensure that 
IT resources leaving the control of the assigned user (such as being reassigned, removed 
for repair, replaced, or upgraded) is cleared of all DoN data and sensitive application 
software by a technique approved by the government.  For IT resources leaving DoN use, 
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applications acquired with a "site license" or "server license" shall be removed. Damaged 
IT storage media will be degaussed and destroyed. 
 

To the extent required to carry out a program of inspection and audit to safeguard 
against threats and hazards to the confidentiality, integrity, and availability of 
government data, the contractor shall afford DoN access to contractor facilities, 
installations, technical capabilities, operations, documentation, records, databases, and 
personnel. 
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E. NAVSUP SERVICE LEVEL AGREEMENTS 

 
Service level agreements have many formats depending upon how they are used. 

Internal SLAs between management and the IT department can be more informal because 
many of the procedural issues are stated elsewhere.  SLAs involving external service 
providers need to be more formal. 

SLAs serve as a mechanism to notify all parties of services that will be 
performed, performance expectations, responsibilities of all parties, penalties for non-
performance, and SLA resolution procedures.  SLAs also define the oversight and 
interaction between the program managers and the service provider. 

SLAs are often used in conjunction with a Statement of Work (SOW), which 
provides the actual requirements.  The SLAs provide the metrics to measure whether the 
requirements are being met.  Most activities find it easier to keep the two documents 
separate, as many requirements will not have SLAs associated with them.   

The following is the SLA template that NAVSUP will be utilizing:  
Service Name: This is the name of the service category that is being measured (e.g., help 
desk support). 
Service Description:  This is a detailed discussion of the service that is to be performed.  
This represents the business function, process, or procedure that is to be measured.  
Reason for Measuring:  This section should provide the rational for this SLA. A valid 
justification prevents measuring for measurement sake.  The results of the measurement 
should result in problem determination, lead to corrective action, and maintain the 
performance achieved by the corrective action.  The SLAs should be linked to a strategic 
or tactical business concern.   
Time Frame:  This is the time period during which measurements are taken (e.g., 
24x7x365, or from 0700-1900 Monday through Friday) 
Scope:  This section defines where the services apply (e.g., this applies to the system 
software only).  This section also provides amplifying information such as categorization 
of problem calls (i.e., priority 1 equates to an emergency), and information necessary to 
ensure all parties understand the areas that are covered by the SLA.  The scope also 
details areas not covered by the SLAs. 

Performance Category:  This section names sub-services that must be measured 
to determine the over-all efficacy of the service.  There can be numerous 
performance categories associated with one SLA.  The following subsections are 
associated with every performance category: 
Performance Metric:  This section describes the metric to measure performance. 
Threshold Levels:  This section describes the performance thresholds that must 
be met at the various service levels.  There are generally more than one level of 
service.  In the example that will be presented, three service levels will be used.  
Obviously as the thresholds become more difficult to meet, the costs of providing 
the service will rise.   
Formula:  The formula describes how the metric will be computed.   
Assumptions:  All assumptions should be stated in this section. 
Contractor Responsibility:  This section details the contractor’s responsibilities 
in meeting the service level requirements. 
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Customer Responsibility:  The program manager or the end-user’s 
responsibilities are outlined in this section (e.g., a trouble call must be initiated 
before metrics covering the help desk can apply).   
Frequency: This is the period of time over which measurements will be taken to 
determine SLA compliancy (e.g., monthly, quarterly).  This usually equates to the 
periodicity of the reporting requirements.   
Measurement Techniques:  How will the metrics be gathered?  This describes 
the procedures that will be used to collect the performance measurements. 
Reports Required:  This section details the reports required from the service 
provider to verify actual performance against SLA thresholds. It also details the 
periodicity requirements of the reports (e.g., Trouble Tickets – Monthly).  The 
person reviewing the SLAs may have access to the report generating tool, and can 
manipulate the reports as needed.  An example is if the reviewer has online access 
to the trouble tickets, that individual can do daily, weekly or monthly reports, at 
whatever level of abstraction is needed.   
The specific reports required will be outlined in the Contractor Data 
Requirements List (CDRL), which is separate from this SLA.  The CDRL will 
detail the format and content required, the frequency, distribution, and means of 
dissemination.  The reports required will vary depending upon the type of 
application, the criticality of the application, monitoring tools used, funds 
available, and management needs.  Typically daily reports are more technically 
oriented and are used by the CTR for verification; weekly or monthly reports are 
generally aggregate reports that provide service level summaries to management. 
Person Responsible for Verification:  This section details who will be reviewing 
the SLA measurements and determining compliancy.  In the government, this 
person is usually the Contracting Technical Representative (CTR).  

Escalation Procedures:  This section describes actions to be taken when thresholds are 
exceeded, and who should be notified.  For example if help desk response time is 15 
minutes for a critical application, and 30 minutes have passed, who should be notified? 
This also includes situations where thresholds are violated on numerous occasions 
throughout the reporting period.  This section also describes escalation procedures if the 
CTR and service provider cannot agree that a threshold violation has occurred.  
Contractual Exceptions: This section describes the exceptions to the SLA.  For example 
an emergency situation may require the service provider to violate a SLA threshold. 
Penalties/Rewards: An SLA without penalties or rewards is nothing more than an 
agreement.  SLAs must have a mechanism to enforce compliancy.  This section describes 
what action will be taken if thresholds are violated, or if SLAs are met.  It is important to 
identify minor and major thresholds to ensure that the service provider is taking action to 
correct the problems.   
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Service Name SLA 1.0: Compute Service Availability 
Service Description  Availability measures the capability of an end-user to 

access and fully utilize an application (according to 
specifications) over a period of time.  Availability is 
usually expressed as a percentage of time that the system 
was available for use divided by the agreed upon hours of 
operation. The time period that an end-user cannot utilize 
the application is considered ‘downtime’. 
 
Availability metrics are generally intended to be end-to-
end, reflecting availability from the end users perspective.  
However, these SLAs only cover the host environment, so 
availability metrics will be restricted to the host 
environment only, and will not apply to the client piece or 
the connectivity from the client to the host environment 
firewall. 
 
Downtime can also be difficult to define.  This SLA will 
concentrate on an application’s opportunity to compute.  
The thresholds will contain metrics to ensure that the 
application has sufficient resources to operate to 
specifications.  If the compute environment is not 
operating at a certain level of efficiency, the application 
performance suffers.  As a result, if certain resource 
thresholds are not met, the period of time the resources do 
not meet the thresholds will count as downtime. 
 
Response time is another element of availability that must 
be addressed.  The SLA is limited to the host 
environment, so application response time will be 
calculated from the time a server receives application 
input until it provides the correct output.  It is necessary to 
develop a program that resides on the server in order to 
generate the information necessary to measure response 
time (this is often referred to as synthetic transactions).  
The program will test key application functionality at 
random times and measure the response time from when 
the input is initiated until the desired output is correctly 
received.  Response times will apply to enhanced and 
premier services only.  It is assumed that the government 
will develop the synthetic transaction software. 
Development of the program will be negotiated as a 
separate line item if the program wants the service 
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provider to perform that function. 
 

Reason for Measuring Availability is a measure of quality.  The program 
manager and the contractor need to constantly monitor the 
infrastructure, hardware and system software to measure 
the effectiveness of the hardware and software in 
supporting the application.  Diligent monitoring will 
detect early signs of problems that may require 
maintenance action.   
 
The efficacy of the application support has direct business 
impacts.  When the application is not available any 
business related to that application stops; opportunities are 
missed, business processes are impacted, and deadlines 
can be missed.   
 
The program manager must identify a target availability 
threshold and be able to justify expenses associated with 
it.  This will involve determining the business impact of 
lost service.  The contractor must evaluate the 
infrastructure to determine if it is possible to support the 
availability, or if redesign or additional redundant or high 
availability equipment is needed.   
 
The host environment cannot be designed, implemented, 
or managed unless an availability threshold is established.  

Time Frame Derived by the contracted number of support hours. 
The Default is 24x7x365.  Scheduled maintenance time 
that is within the maintenance window, and does not 
exceed the agreed upon maintenance time frames will not 
be included in availability computations. 
 
Additionally, scheduled maintenance involving the 
application (i.e., granting root access to maintenance 
personnel to perform an upgrade) will not be considered 
down time. 
 
The Maximum "Available" time will be determined from 
the hours of support that were contracted.  
Example (1): Hours of Support = 24 x 7. The maximum 
"available" time in a 30 day month is 30 x 24 x 60 = 
43,200 minutes. 
 
Example (2): Hours of Support = 9 x 5. The maximum 
"available" time in a month with 21 work days is:  
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21 x 9 x 60 = 11,340 minutes. 
Scope This is an end-to-end metric from the host environment 

firewall to the application.  It includes the hardware and 
the software for the firewall and server farm network, in 
addition to the hardware and software necessary to support 
the application.  It does not apply to the application itself. 

Performance Category 1.0 Host Environment Availability 
Performance Metric Availability is expressed as a percentage of the time that 

an application is fully functional divided by the total time 
encompassed in the support hours. 

Threshold Levels Availability thresholds are as follows: 
    Essential Services:  99.50%  
    Enhanced Services:  99.90%  
    Premier Services:  99.95%  
 
In this SLA, availability is not only dependent upon the 
individual components that comprise the infrastructure 
(servers, network and firewall); it also addresses 
application and data availability from a security 
perspective. 
  
The following thresholds apply to resource utilization and 
network efficiency.  If these thresholds are violated, then 
the application is considered ‘down’, and will count 
against availability: 
 
Server Measures: 
CPU Utilization: 75% sustained for over 1 hour.  Not to 
exceed 90% for more than 2 polling cycles (5 minute 
intervals). 
Frequency of Failure: More than 3 service interruption in 
one day. 
Disk Utilization: 90% 
Disk Response Time: .25 second 
Disk Average Queue Length: 3 
Disk I/O rate: 100 ms average  
Swap space availability: 90% of defined space 
Memory paging: 5 per second 
 
Network Measures: 
Data Delivery Rate: 99.95% 
LAN Latency (one way): 70 ms  
LAN Packet Collisions:  More than 7% of packets 
transmitted (average based on a 1 hour interval). 
Bandwidth Availability: 85% of defined bandwidth 
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Ethernet Segment Utilization: Less than 30% 
 
Security Related Measures: 
If application performance is degraded due to an intruder 
attack, virus, worm, or security breaches previously 
identified, the application is considered “down”.  This 
includes the time that the application is affected during 
efforts to correct the violation.  New attacks that have no 
previous history or signature will not be counted as “down 
time” against availability as long as the attacks did not 
exploit vulnerabilities that were corrected by security 
patches that should have been installed. 
 
Application Response Time:  Will be dependent upon the 
types of transactions that are being performed.  If all 
transactions are similar, one threshold value can be 
determined (e.g., query requests must be generated and 
returned within 1 second).  If the transaction response 
times vary considerably, the response thresholds should be 
specific to the transaction.  In this SLA, response times are 
generated from synthetic transactions and are measured 
from the server only. 
 
All hardware errors affecting the application are 
considered ‘downtime’, and will be counted against 
availability. 
 

Formula Availability = (total uptime minutes) / (total uptime 
minutes + total downtime minutes) * 100 

Assumptions Downtime starts with the generation of a trouble ticket, or 
when the monitoring tools capture a threshold violation.  
Problems relating to the firewall, network, server or 
system software will count towards downtime.  A review 
of the trouble tickets and monitoring software reports will 
verify that the downtime is properly assigned.   
 
Downtime attributed to application errors will not be 
included in the computation.  Downtime that is a direct 
result of government actions will not be included in the 
computation.  An example would be rebooting the system 
following an application update. 
 
Errors attributed to the client side portion of the compute 
environment will not be charged against reliability 
calculations. 
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Contractor Responsibility Adopt and implement an industry-standard software 

solution for automatically polling and calculating compute 
service availability. 
 
Monitor compute services for earliest identification of 
outages. 
 
Take appropriate actions to correct deficiencies. 
 

Customer Responsibility The customer is responsible for prompt notification of any 
suspected compute service outages. 

Frequency Monitoring is conducted during scheduled support hours.  
Report frequency is monthly.  Assigned government 
representatives will have real-time or near real-time access 
to monitoring software (read-only mode is acceptable). 

Measurement Techniques The server will be ’Pinged‘ from a management server 
every 5 minutes. Failure by the server to respond will start 
the service outage time. The time between the first 
’Failed‘ Ping and the first successful Ping after repair will 
be reported as Downtime. 
 
Example: Server A polled at 10:40, 10:45 and 10:50 and 
does not respond to the 10:45 poll but does respond at 
10:40 and the 10:50.  This would be calculated as 5 
minutes of downtime. 
 
Approved industry standard monitoring tools such as 
Tivoli® and Open View® will be used to monitor the 
server and network.  Operating system logs will also be 
used to determine compliance.  Threshold violations will 
be considered downtime.  
 
Each threshold specified will have to be evaluated to 
determine the period over which the measurement is 
determined.  Unless otherwise specified, thresholds that 
specify averages will be computed over a 1-hour period.  
Other thresholds will normally be monitored in real-time, 
or near real time.  “Down time” is considered when a 
threshold is violated for more than 5 minutes.    
 
The downtime will be reviewed and adjusted by a 
contractor representative to exclude all outages from 
maintenance windows or outside the scope of service: 
All planned outages 
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All outages due to application failures  
 
Adjusted Compute Service Availability is then 
recalculated.  The new formula would be as follows: 
 
Availability = (total uptime minutes – downtime outside 
of scope) / (total uptime minutes – downtime outside of 
scope + total downtime minutes) * 100 
 
Example Calculation: 
Server contracted for 7 x 24 hour support. Two outages 
occurred during a month with 30 days: (1) 100 minute 
application outage and (2) a 360 minute system failure 
occurred for a total downtime of 460 minutes. Availability 
is reported as: 
 
Reliability =  (43,200 – 100) / ((43,200 – 100) + 360) * 
100 = 99.17% 

Reports 1. Monitoring reports: Weekly, in addition to real-
time/near real time viewing of the monitoring tools 
that will allow visibility to raw data. 

2. Trouble tickets: Weekly 
Person Responsible for 
Verification 

The Contractor Technical Representative (CTR) will be 
responsible for reviewing the monitoring reports and 
trouble tickets to determine compliance with the SLAs.   

Escalation Procedures The CTR will be notified if the application is not 
accessible or functioning by the following time frames: 
    Essential Service – after 30 minutes 
    Enhanced Service – after 15 minutes 
    Premier Service – after 10 minutes 
 
If there are any disagreements concerning whether 
downtime should be charged to the application, or the host 
environment, the CTR will make the decision.  
Disagreements can be escalated to the Contracting Officer 
Representative (COR). 

Contractual Exceptions Availability does not include scheduled maintenance 
downtime within the maintenance window.  

Penalties/Rewards Minor penalty: 10% of monthly rate 
• Threshold values exceed agreed upon rates. 
       Major violation: 25% monthly rate 
• More than 3 minor penalties during the year 
• Any availability less than the following:   

Essential Services:  98.0% available 
Enhanced Services:  99.0% available 
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Premier Services:  99.5% available 
• More than 2 major violations will force escalation 

procedures between the COR and the contractor.  
Following escalation procedures additional missed 
targets may be cause for termination. 
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Service Name SLA 2.0: Restoration of Service 
Service Description  Restoration of Service involves the implementation of 

procedures that ensure critical business operations resume 
following a disaster and that they return to normal as soon 
as possible. Service restoration is part of an organization’s 
COOP plan. 

Reason for Measuring Restoration of Service is measured to ensure that systems 
can meet the recovery times and resume full operations 
within acceptable time limits based on the criticality of the 
application. 

Time Frame The time frame of measurement is from the time that the 
application is no longer available until the application is 
fully restored (operating in accordance with SLA defined 
performance criteria). 

Scope Restoration of Services applies to all of the components 
(hardware and software) that are required to access and 
run the application.   

Performance Category 2.0 Restoration Time  
Performance Metric The metric used to measure compliance with restoration 

services is the amount of time from when services were 
terminated to when the end user can access and fully 
utilize an application. 

Threshold Levels The thresholds are as follows: 
    Enhanced:  Less than 5 days 
    Essential:  Less than 48 hours 
    Premier:  Less than 4 hours 
 
Premier with Remote High Availability: Less than 15 
minutes 

Formula The amount of time from the initial disaster report until 
the application can be accessed and utilized to its full 
functionality by an end-user.   

Assumptions The contractor will notify the CTR and program manager 
as soon as possible after a disaster occurs.  Help desk 
personnel should also be notified so they can inform users 
reporting problems with the application. 

Contractor Responsibility The Contractor must work with the Program Manager’s 
staff to help define the recovery requirements and then to 
document the procedures for the Resumption of Service 
for the system in a Disaster Recovery Plan. 
 
The Contractor must test the Disaster Recovery Plan for 
the systems annually and provide a summary of the test to 
the CTR. 
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The contractor must have accurate, timely hardware and 
software configuration data as well as application and 
system software implementation procedures. 

Customer Responsibility The Program Manager must define the level of criticality 
of the application being hosted and work with the 
Contractor to define the Disaster Recovery Requirements.  
 
The Program Manager must ensure that any government 
employees needed to restore an application be available in 
the event a disaster occurs and that they participate in the 
annual testing.  
 
In the event that government personnel are not able to 
assist in the application recovery efforts, the program 
manager is responsible for providing loading instructions 
and test scripts to ensure that the application is functioning 
correctly after the application is installed in the new 
environment. 

Frequency Disaster recovery will be tested annually.  This SLA will 
apply when a disaster occurs. 

Measurement Techniques The Resumption of Service is measured by adding the 
total minutes that it takes from the time a disaster is 
recognized as having occurred (defined as the time that 
service was no longer available) to the time the system has 
resumed business operations (defined as services are 
resumed to full SLAs). 
 
The CTR will check with the help desk to determine if a 
trouble ticket has been opened for the applications 
affected by the disaster.  If a trouble ticket has been 
opened, the CTR will use that trouble ticket as a start time 
for measuring the time of disaster.  If a trouble ticket has 
not been opened, the CTR will initiate the trouble ticket 
for the application(s). 
 
The Service Provider will notify the CTR when the 
applications are ready for operation (this assumes the 
application was tested using the test scripts).  If test scripts 
were not available, any time between when the application 
is available for testing and the time that the program 
management staff performs a functional test of the 
application will not be held against the Service Provider 
unless the tests fail.  The trouble ticket should be closed 
after resumption of operations. 
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Reports 1.   Disaster recovery test results 
2.   Disaster recovery plan 
3.   Trouble tickets 

Person Responsible for 
Verification 

The CTR will be responsible for determining a time when 
the application was not available due to a disaster, and 
when services were resumed to SLA defined standards. 

Escalation Procedures If services exceed thresholds, the CTR will be notified. 
Contractual Exceptions None 
Penalties/Rewards Minor penalty: 5% of monthly rate 

• Threshold values exceed agreed upon rates. 
 
Major Penalties:  25% of monthly rate 
• Restoring services violated thresholds by more than 

20%. 
• 5% of monthly rate will be penalized for each day 

after a major penalty is assessed. 
 
The CTR and program manager have the discretion on 
whether to apply any penalties. 
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Service Name SLA 3.0: Help Desk Service Reporting 
Service Description  The help desk is the central point of contact for problem 

resolution.  If a customer is experiencing any problems, or 
needs to request services, they must contact the central 
help desk for assistance.  The help desk will either resolve 
the problem while they are on the phone, or they will 
generate trouble call tickets to assign the problem or task 
to the appropriate point of contact.   
 
Under the Navy/Marine Corps Intranet (NMCI), the Navy 
has outsourced personal computers and infrastructure to 
EDS.  As a result any end-user problems will start with 
the NMCI help desk.  If the problem appears to reside 
within the host environment, the NMCI help desk will 
pass the trouble ticket to the contractor’s help desk.  

Reason for Measuring The help desk is the central point of contact for problem 
resolution.  They are the direct interface to the end-user.  
The help desk collects metrics needed to identify problem 
areas, and to provide the quality assurance that is needed 
to ensure that customers are supported.    
 
The trouble tickets that are generated indicate problems 
that may extend beyond a single caller.  Prompt response 
by the help desk may avert more problems.  
 
The help desk not only collects information on problems 
through the generation of trouble tickets, but they also 
provide an initial resolution to problems by answering 
questions, or guiding users through procedures.  Help desk 
performance must be measured to ensure the end-users are 
receiving the support they require, trouble tickets are 
being accurately generated, and action is being taken to let 
users know the status of their trouble tickets. 
 
Trouble tickets are one way to measure availability.  It is 
possible that a server and application are operating within 
established performance thresholds, but the aggregate of 
the various components are affecting the performance of 
the application.  The end-user can contact the help desk to 
report the application’s poor performance. 

Time Frame Help Desk service will be measured during support hours.  
The default is 24 x 7. 

Scope Under NMCI, the help desk will take the initial call, and 
will pass a trouble ticket to the contractor help desk if the 
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problem does not involve the client piece of the 
application, or the client side of the infrastructure.  The 
help desk at the host environment will take the appropriate 
action to resolve the problem. 
 
This SLA applies to the contractor’s help desk, and does 
not include any actions taken by the NMCI help desk.  
Thresholds will be based on direct phone calls or e-mails, 
and trouble tickets (or similar measures) passed from the 
NMCI help desk. 
 
The contractor’s help desk is responsible for contacting 
the individual submitting the trouble call if additional 
information is needed.  The help desk is also responsible 
for providing feedback on efforts to fix the problem, and 
to provide an estimated problem resolution time.  When 
the problem is resolved, the help desk will close out the 
trouble ticket. 
 
In some cases the contractor’s help desk will service 
requests directly from the CTR, ISSM, program manger’s 
staff, and software developers/maintainers.  The vast 
majority of telephone calls will be for services, instead of 
reporting problems.  Most problem calls are initiated by 
the end-user, and they should initially be routed through 
the NMCI help desk. 
 
Software exists that can monitor every incoming call to 
determine an average time to respond, dropped call rate, 
time on hold, and average length on time responding to 
callers.  Unfortunately this software is very expensive.  If 
the contractor already has this software, then metrics can 
be revised to take advantage of that monitoring capability.  
However since the NMCI help desk will field most calls, 
the cost to collect these metrics is not justified.  Instead 
the help desk metrics in this SLA will concentrate on the 
response to the passed trouble tickets and the response to 
phone calls will be based on surveys taken from end-users.

Performance Category 3.0 Help Desk Availability 
Performance Metric This is a measurement of the availability of the help desk 

to respond to requests or problems.  The metric used will 
be the probability expressed as a percentage that the help 
desk will answer a call, or receive and process a trouble 
ticket passed from the NMCI help desk. 

Threshold Levels The following are the thresholds for help desk availability: 
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    Essential - Premier: 99% 
 
Automatic answers to voice mail are not acceptable for 
contractor help desk operations. 

Formula The formula will consist of dividing all phone calls, e-
mails or passed trouble tickets that the contractor’s help 
desk has taken action on divided by the total calls, e-mail 
or trouble tickets sent to the contractor’s help desk.  

Assumptions The NMCI help desk will be able to pass trouble tickets to 
the contractor’s help desk.  The NMCI help desk software 
is Remedy.  The contractor’s help desk must be able to 
interface with Remedy©, or another method of passing the 
trouble tickets will have to be developed and approved by 
the government.    

Contractor Responsibility The contractor should have a system to ensure that trouble 
tickets passed from the NMCI help desk are received by 
the contractor’s help desk. 

Customer Responsibility If the end-user is experiencing problems with an 
application, the problem needs to be routed through the 
NMCI help desk.  The contractor’s help desk will 
primarily respond to trouble tickets from the NMCI help 
desk and phone calls requesting hosting specific services. 

Frequency Monthly 
Measurement Techniques The total trouble tickets sent from the NMCI help desk to 

the contractor’s help desk will be gathered from the NMCI 
help desk software.  Tickets received will be gathered 
from the contractor’s help desk software. 
 
The measurement of phone calls answered will be 
gathered from interviews and spot checks by the CTR. 

Reports 1. Trouble tickets from the NMCI help desk 
2. Trouble tickets from the contractor’s help desk 

Person Responsible for 
Verification 

The CTR will verify the contractor’s help desk 
availability. 

Performance Category 3.1 Initial Feedback 
Performance Metric This is the period of time from submission of the trouble 

call until the caller is notified that a trouble ticket has been 
filled out, and an estimated completion time is given. 
 
Feedback is generally provided in the form of an e-mail 
with the information that is contained on the trouble ticket.  
This allows the caller to verify that the information on the 
trouble ticket is correct, and it provides the caller with an 
anticipated resolution time.  The feedback must also 
categorize the problem and provide the agreed upon 
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resolution time frames. 
Threshold Levels The following are the thresholds for initial feedback: 

    Essential - Premier: Less than 15 minutes 
Formula Time trouble ticket is completed minus the time the e-mail 

is sent.  Measurements are in whole minutes.  For 
example, if the trouble ticket was finished at 10:20am and 
the e-mail was sent at 10:29, then the time period was 9 
minutes. 

Assumptions The help desk software program must have the capability 
to e-mail the caller the trouble ticket, or the e-mail of the 
end-user reporting the problem must be contained in the 
trouble ticket passed from the NMCI help desk. 

Contractor Responsibility When feedback is provided to the caller, a copy of the e-
mail should be sent to the CTR.   

Customer Responsibility If there are problems with the trouble ticket as it was 
passed, or if the end-user disagrees with the categorization 
of the problem, the end-user needs to respond to the e-
mail outlining the issues.  A copy will be sent to the CTR.  
If the CTR disagrees with a categorization of the problem, 
the CTR needs to contact the contractor and resolve the 
issue. 

Frequency The data will be gathered over the period of 1 month. 
Measurement Techniques The CTR will utilize the feedback e-mails to determine 

the time periods of the feedback. 
Reports 1. Trouble tickets  

2. E-mails received from the contractor’s help desk 
Person Responsible for 
Verification 

The CTR is responsible for verification.   

Performance Category 3.2 Repeat Problems 
Performance Metric This is a measurement of the accuracy with which 

problems are resolved.  When a trouble ticket is closed 
out, the problem should be investigated and corrected.  
Repeat problems are those problems that have been 
reported via a trouble ticket that have occurred again 
within 30 days from the close out of the trouble ticket. 

Threshold Levels The following are the thresholds for repeat problems: 
    Essential - Premier: 05% 
 
Problems that reoccur within a 30-day window will be 
counted against the month in which the problem 
reoccurred. 

Formula Number of repeat trouble calls divided by total trouble 
calls.  For example if 5 trouble calls had to be reworked, 
out of a total of 100 trouble calls, the formula would be as 
follows: (5/100)*100 = 05% 
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Assumptions In some cases the problem will require in-depth problem 
analysis.  Rebooting the system will not allow a root 
determination of the problem.  
 
The program manager and the contractor will determine 
when in-depth analysis should be performed.  If the 
program manager is reluctant to perform in-depth analysis, 
and is comfortable with rebooting the system to solve the 
problem, then the CTR after receiving concurrence from 
both parties will not count those faults towards this SLA. 

Contractor Responsibility The contractor needs to notify the program manager when 
there appears to be a recurring problem that cannot be 
solved without in depth trouble shooting.   

Customer Responsibility When recurring problems are occurring, the program 
manager needs to make the determination on whether they 
need to conduct in-depth root cause analysis when the 
next fault occurs. 

Frequency Every quarter. 
Measurement Techniques The CTR will receive copies of the trouble call feedback 

e-mails, which can be used to determine reoccurring 
problems.  In addition interviews with program 
management staff and end-users will be conducted to 
determine if the root cause for different problems are the 
same. 

Reports 1. Trouble ticket feedback e-mails 
2. Monitoring tools 

Person Responsible for 
Verification 

The CTR is responsible for verification.   

Escalation Procedures Issues will be brought to the attention of the CTR.  The 
CTR can escalate the issue to the COR if it cannot be 
resolved at the CTR level. 

Contractual Exceptions Problems that require in-depth analysis will be excluded 
from the total of reworked trouble tickets.  This exclusion 
will require concurrence from the contractor and program 
manager. 

Penalties/Rewards Minor penalty: 5% of monthly rate 
• Threshold values exceed agreed upon rates. 
 
Major Penalty: 15% monthly rate 
• 3.0 Help Desk Reliability 

Essential - Premier: Less than 95% 
• 3.1 Initial Feedback 

Essential - Premier: Less than 45 minutes 
• 3.2 Repeat Problems 



296 

 Essential - Premier: 10% 
 Penalties will be levied at the discretion of the CTR. 
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Service Name SLA 4.0: Problem Resolution 
Service Description  Problem resolution measures of the contractor’s ability to 

identify, respond, and correct problems or issues that 
affect compute services. 

Reason for Measuring Problem resolution is a portion of the mean time to repair 
(MTTR), which factors into overall availability.  This has 
a direct impact on the end-user’s ability to utilize the 
application. If the occurrence of problems remains 
constant, a lower MTTR will increase the operational 
availability of the application.   
 

Problem resolution is an important metric in measuring 
customer support.  It measures the contractor’s response 
time to resolving issues, as well as the skill at which they 
apply long-term solutions.    

Time Frame Derived by the selected hours of support.  The default is 
24 X 7. 

Scope This SLA measures the resolution time frames for 
problems reported to the contractor’s help desk, or 
detected by monitoring software.  The SLA applies to 
problems within the host environment.  Problems are 
defined as a change of state in the software, hardware, or 
infrastructure within the host environment that adversely 
affects the performance of the application.  Hardware or 
software errors that do not affect the application’s 
performance or functionality will not be included in this 
SLA. 
 

The contractor will be held responsible for the resolution 
time on any third party hardware or software that is 
residing in the host environment. 
 

Problem resolution does not include problems that can be 
corrected by the contractor’s help desk during the initial 
trouble report.  Problems associated with the client side 
computer or infrastructure will be passed to the NMCI 
help desk, and the NMCI SLA will pertain.   
 

Problem resolution applies to the firewall, infrastructure, 
hardware, and software in the host environment, except 
the application software.  Problems relating specifically to 
the application will be passed to the appropriate 
application point of contact and will not be within the 
scope of problem resolution.   
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Priority 1 issues:  Mission Critical Impact:  Priority 1 
issues involve critical component failure resulting in loss 
of application access or functionality.  Examples of 
priority 1 issues include: faulty routers, server failure, or 
disk failure on a non-replicated disk. 
 

Priority 2 issues:  Significant Impact:  Priority 2 issues 
involve critical components that are degraded, or 
important functionality is not available.  Examples 
include: moderate server faults where users may notice 
degraded system performance, failure to a replicated web 
server, or disk failure in a mirrored raid environment.. 
 

Priority 3 issues:  Minor Impact:  Priority 3 issues involve 
non-critical components that are inoperative, or are 
degraded.  These are minor faults that the end-user may 
not noticed and cause little disruption in service.  
Examples of priority 3 issues include rebooting of a 
replicated router, restarting aborted processes, or memory 
short-runs. 
 

Priority 4 issues:  No immediate impact.  Priority 4 issues 
are generally non-outage situations involving requests for 
information.  An example of priority 4 issues would be a 
request for the version of software on a server, or filling 
out a questionnaire. 

Performance Category 4.0 Problem Resolution Rate 
Performance Metric The resolution rate measures the percentage of problems 

that are resolved within the established timeframes.  
Maximum response times are established to ensure all 
problems are resolved expeditiously. 

Threshold Levels Problem resolution rate: 
Priority 1 Critical:  95% Compliance with the following  
timeframes, no problem will exceed 12 hours. 
    Essential - Premier:  Less than 4 hours 
        

Priority 2 Major Impact:  95% Compliance with the 
following timeframes, no problem will exceed 24 hours. 
    Essential:  Less than 8 hours 
    Enhanced:  Less than 8 hours 
    Premier:  Less than 4 hours 
 

Priority 3 Moderate Impact:  95% Compliance with the 
following timeframes, no problem will exceed 4 days. 
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    Essential - Premier:  Less than 2 days 
     

Priority 4 Minor Impact:  95% Compliance with the 
following timeframes, no problem will exceed 48 hours. 
     Essential - Premier:  Less than 8 hours 
        

Password Resets: 95% Compliance with the following 
timeframes, no problem will exceed 2 hours. 
    Essential - Premier:  Less than 30 minutes       

Formula Total number of problems resolved within the defined 
time frames divided by the total number of problems that 
have occurred. 
 
For example, 20 trouble tickets at priority 3 were received 
by the contractor help desk, 18 were resolved within the 
timeframes, 1 was resolved in 3 days, and 1 was resolved 
in 5 days.  The formula would be 18/20 = .90.  90 percent 
is not in compliance, nor is the 1 trouble ticket that took 5 
days to resolve.  

Assumptions The contractor’s monitoring software should detect the 
vast majority of the problems that will affect an 
application’s performance.  The start of the problem 
resolutions begins when the monitoring software detects 
events that affect the application’s performance.  Another 
way of reporting a problem is through trouble tickets.  
Under NMCI the end-user will notify the NMCI help desk 
if there are problems with the application.  If the NMCI 
help desk believe that the problem originates at the host 
environment, they will pass the trouble ticket to the 
contractor’s help desk.  The time that the contractor’s help 
desk receives the trouble ticket from the NMCI help desk 
is when the time starts for problem resolution within the 
contractor’s host environment. 
  
The contractor’s help desk will categorize the problem and 
assign responsibilities for resolution appropriately.  
 
The contractor will be able to accept trouble tickets 
generated from the NMCI help desk.  The contractor does 
not have to have the same software as NMCI, but they 
must have a process for receiving and responding to 
trouble tickets generated by the NMCI help desk. 
 
When the contractor’s help desk provides feedback on a 
problem, they must provide a categorization of the 
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problem, and the agreed upon timeframes for resolution.  
If the end-user does not agree with the categorization of 
the problem, the issue can be escalated to the CTR for 
resolution. 

Contractor Responsibility The contractor must have a process in place to monitor 
and document problems in the host environment.  
Documenting problems identified by the monitoring 
software is essential in trend analysis and long-term 
problem resolution.  The contractor must also have a 
system in place to accurately categorize problems into 
their respective category.   
 
The contractor must have procedures in place to 
communicate responses and resolutions back to the NMCI 
help desk.  In addition the contractor must provide 
feedback to the end-user detailing estimated resolution 
timeframes, based on problem severity 

Customer Responsibility The CTR must review the trouble tickets and monitoring 
logs to ensure that the appropriate categorization was 
assigned to the trouble ticket.   
Navy personnel or their associated contractors will assist 
in problem resolution with issues that may point to the 
application software as the cause of the problem. 

Frequency Monthly 
Measurement Techniques Response times are based on the hours of support and are 

calculated by subtracting the time the trouble ticket was 
received by the contractor’s help desk to the time the 
trouble ticket was closed out, indicating that the problem 
was successfully resolved.  Response times associated 
with problems identified by monitoring tools will start 
when resource thresholds are violated, or the tools indicate 
that application performance is degraded. 
 
Example (1) Hours of Support 24 X 7 
 
A Priority 2 problem was reported to the NMCI help desk.  
NMCI staff determined that the problem was at the host 
environment.  They passed the trouble ticket to the 
contractor’s help desk.  The contractor received the 
trouble ticket from NMCI at 16:55. 
The contractor responds at 17:05 
Response time = 10 minutes 
The response time is calculated by subtracting the time the 
trouble ticket was received from NMCI from the time the 
contractor responded to the problem. 
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17:05 – 16:55 = 10 minutes 
 
Example (2):  Hours of Support = 5 X 9 (08:00 – 17:00) 
 
Priority 2 problem reported in a monitoring toolat 16:55. 
Contractor Responds at 08:05 the next day. 
Response time is 10 minutes 
The response time is calculated by subtracting the time of 
threshold violation 16:55 from the end of the hours of 
support for that day 17:00, and then adding the difference 
between the start of the hours of support for the following 
day and the time the response was made.  
(17:00 – 16:55) + (08:05 - 08:00)  = 5 + 5 = or 10 minutes.
 
The CTR will review monitoring logs and trouble tickets 
received from the NMCI help desk, as well as those that 
may have been called directly into the contractor’s help 
desk to determine resolution timeframes.  In some cases 
developers will notice problems with the servers, and they 
should interface directly with the contractor help desk.  

Reports 1.    NMCI Trouble tickets 
2.    Contractor’s trouble tickets 
3.    Monitoring tool reports 

Person Responsible for 
Verification 

The CTR is responsible for verification.   

Escalation Procedures The CTR must be contacted if the maximum time frames 
for problem resolution are exceeded.  If there are disputes 
concerning the categorization of problems, the CTR will 
resolve the issue.  It is important that all parties 
understand how to categorize the severity of the problems 
before application support begins.   

Contractual Exceptions Response times are only applicable during support hours. 
Penalties/Rewards Minor penalty: 5% of monthly rate 

• Threshold values exceed agreed upon rates. 
 
Major penalty: 20% monthly rate 
• Threshold values fall below 85% compliance for any 

of the timeframes. 
• Problem resolution is more than twice the agreed 

upon maximum response time. 
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Service Name SLA 5.0: Request Management 
Service Description  Request management measures the contractor’s ability to 

respond to service requests from the government.  The 
contractor must have a process in place to receive 
requests, perform requirements review to ensure they 
understand the request, execute the request, track 
execution status, , and report request completion.   
 

Reason for Measuring The government expects quality service.  One type of 
service is request management, which measures the speed 
with which a contractor reacts to and completes a service 
request.        
 
Consistent time frames for implementing service requests, 
such as complex configuration changes are needed to 
accurately forecast completion times.  Request metrics can 
be used in project scheduling, budgeting, and planning. 
 

Time Frame Derived by the selected hours of support.  The default is 
24 X 7. 

Scope Request services apply to requests that effect host 
environment hardware and software, and do not apply to 
application software.   
Examples of request services include: Platform design 
services, hardware configuration changes, large-scale 
software maintenance (e.g., upgrading to a new operating 
system), or software maintenance that involves 
coordination between client and server software releases 
(such as changing to a new version of a DBMS). 
 
Request services do not cover requests associated with 
problem resolution nor does it cover requests for normal 
software maintenance.  Those areas are covered under 
separate SLAs. 
 
Level 1 High Application Impact:  Examples of level 1 
requests are changes that have a significant impact on the 
majority of end-users, , are difficult to reverse once they 
are applied, are highly complex such as designing 
platform solutions, or require a great deal of coordination.  
 
Level 2 Moderate Application Impact:  Level 2 requests 
affect the application, but not the end-users.  Examples of 
level 2 requests are modifications to peripheral hardware, 
adding additional agents to monitor resources, adding 
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additional server resources, or installing shared services. 
 
Level 3 Minor Application Impact:  Level 3 changes have 
little, if any, impact on the application itself.  Examples 
are modifications to the infrastructure such as modifying 
the access control list in the firewall, requests for facility 
access, adding user identification/passwords for access to 
the server, and routine requests that do not fall anywhere 
else. 
 

Performance Category 5.0 Response Time 
Performance Metric The metric measures the compliance with adhering to the 

time frames established for responding to requests.   
Threshold Levels Level 1 Major Application Impact:    

Essential - Premier:  15 Days to develop and propose a 
project plan.  Resolution time frames will be negotiated 
between the government and the contractor. 

  
Level 2 Moderate Application Impact:    

Essential - Premier:  5 Days to develop implementation 
plan, 10 Days to complete request. 

   
Level 3 Minor Application Impact:    
     Essential - Premier:  2 Days to complete request.   

Formula Calculate the time that the trouble ticket was initiated until 
the trouble ticket was closed out, indicating that the 
request was performed to the customer’s satisfaction. 

Assumptions Funding for any requests that are not covered within the 
scope of the contract will be negotiated separately. The 
timeframes in this SLA will not be impacted by the time it 
takes to successfully negotiate for additional services.  
This includes the time it takes the contractor to develop an 
estimate of the costs associated with executing the request. 
 
The government and the contractor agree on the level of 
the request and the Change Review Board approves any 
proposed configuration changes. 
 
Level 1 request completion times will have to be 
negotiated separately.  Estimated completion times will 
have to consider complexity, operational schedules, and 
coordination concerns.  Both the government and the 
contractor will agree to the estimated project completion 
times.    
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Contractor Responsibility The contractor must provide the documented policies and 
procedures for submitting changes and requests.  The 
procedures will include the use of the contractor’s help 
desk to record the initial request for service on a trouble 
ticket.  Trouble tickets will be used to measure the time 
the request was submitted until the request was completed.  
The contractor must also provide a coordinator to manage 
the requests. 

Customer Responsibility The government will submit requests in compliance with 
the documented policies and procedures.  The CTR will 
determine the request level.  If the distinction is not clear, 
the CTR, contractor and program manager can negotiate a 
response time that is acceptable to all parties. 

Frequency Monthly 
Measurement Techniques Times are calculated by subtracting the time the trouble 

call is submitted until a project plan is delivered, and/or 
the request is completed. 
 
The total number of requests will be categorized into those 
that met the threshold levels and those that did not.  The 
numbers will then be utilized in the formula to determine 
compliance.    
 

Reports 1.   Trouble tickets 
Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 5.1 Project Completion 
Performance Metric The metric used is a percentage of time that the actual 

project completion date deviated from the estimate in the 
project plan.  

Threshold Levels The thresholds apply to the timeframes established by 
SLA 5.0, or to the timeframes presented in the approved 
project plan.  The following thresholds represent an 
acceptable percentage deviation from the promised 
completion date:  
    Essential:  15 percent 
    Enhanced:  15 percent 
    Premier:  10 percent 

Formula The difference between the actual time to complete the 
request (AT) minus the estimated time to complete the 
request as outlined in the project plan (ET) divided by the 
estimated time. 
 
Formula = (AT – ET)/ET * 100 
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Actual time = 17 days 
Estimated time = 14 days 
 
Formula = (17-14)/14 * 100  = 21.43 percent 

Assumptions The government and the contractor agree on the project 
completion estimates before the contractor agrees to 
perform the request.   
 
Additional requirement or scheduling changes by the 
government will require a renegotiation of the estimated 
completion times.   
 
Level 1 tasks that can be performed in less than 10 days 
will default to level 2, and the thresholds for level 2 will 
apply. 
 
The time of request completion will be entered on the 
trouble ticket and the job will be closed out. 

Contractor Responsibility The contractor will provide an estimate of the time it will 
take to complete the request.  The estimate will be part of 
the project or implementation plan. 

Customer Responsibility Review the estimated completion time to determine if the 
time frames meet operational commitments.  Agree on 
time frames for completion before any work is actually 
performed. 
 
Allow the contractor adequate time to properly scope and 
research the request.  What may appear to be a simple 
request may in fact be very complex. 

Frequency This SLA will apply to every request on a case-by-case 
basis.  The CTR will apply any penalties at the end of the 
month in which thresholds were violated. 

Measurement Techniques The actual completion times for a level 1 request (taken 
from the trouble ticket) will be compared to the project 
completion estimate in the project plan.  If the time 
actually completed exceeds the estimate, then the 
percentage of time difference needs to be computed.   
 

Reports 1. Trouble tickets 
2.    Implementation plans: As they are developed 

Person Responsible for 
Verification 

The CTR will be responsible for verification. 

Escalation Procedures Any disputes will be resolved by the CTR.  If there are 
still conflicts, the COR will make the final determination. 
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Contractual Exceptions None 
Penalties/Rewards Minor penalty: 5% monthly rate 

• Threshold values exceed agreed upon rates.  
 
Major penalty: 15% monthly rate. 
• 5.0 Response Time Level 1 through level 3: 

compliance rate less than 85%. 
• 5.1 Project Completion Level 1: Project completion 

time exceeds 25% for Essential and Enhanced, and 
20% for premium.   

• 5.1 Project Completion Level 2 and level 3: Time to 
complete the request exceeds 25% of the threshold. 
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Service Name SLA 6.0: Security Management 
Service Description  Security Management Services are those services required 

to protect the confidentiality, integrity and availability of 
the compute environment.  The services include 
vulnerability assessments, intrusion detection, virus 
protection and compliance with DoD, and DoN policies 
and procedures. 

Reason for Measuring The Internet is an inherently untrustworthy medium.  Any 
system that has connectivity to the Internet must have 
defensive systems, policies, and procedures in place to 
protect against attack.   
 
Many applications in the government contain information 
that is business sensitive.  The sensitive but unclassified 
classification assigned to that information requires that the 
government take aggressive steps to ensure the 
confidentiality and integrity of the information. 
 
Information warfare or cyber-terrorism seeks to exploit 
security vulnerabilities to gather information, insert 
erroneous information, destroy information, and disable 
systems.  A successful attack against a system or 
application can result in compromised information and 
hours or days of down time, depending upon the severity 
of the attack.  Determining the extent of the damage can 
take days or weeks.  An attacker may have penetrated the 
system months before; so corrupted files would be 
incorporated into the backup tapes.  Without strong 
security measures it can be very difficult to determine 
when an attack occurred, and the extent of the damage. 

Time Frame Derived by the selected hours of support.  The default is 
24 X 7.  Security monitoring is 24 X 7 regardless of the 
selected hours of support. 

Scope Security management includes the firewall, network and 
server hardware and software within the host environment, 
and does not apply to application software. 

Performance Category 6.0 DoD Information Technology Security Certification 
and Accreditation Process (DITSCAP) Certification 

Performance Metric The DITSCAP documentation outlined in DoD Instruction 
5200.40 states that the environment and all applications 
residing in that environment must be certified.  This 
metric measures compliancy with the DITSCAP program.  
The metric is a percentage expressed as the number of 
applications certified in accordance with the DITSCAP 
program divided by the total number of applications in the 
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host environment.  
Threshold Levels The DITSCAP documentation includes a security risk 

assessment of the host environment (firewall, network, 
servers, and all supporting software) and each of the 
applications that reside in that environment.  The 
thresholds are split between the host environment 
assessment and the individual application’s risk 
assessments.    
 
The following thresholds apply to the certification of the 
host environment: 
    Enhanced – Premier:  100 percent 
 
The following thresholds apply to the certification of 
applications within the host environment: 
    Enhanced – Premier:  95 percent 

Formula The number of applications certified in accordance with 
the DITSCAP regulations divided by the total number of 
applications in the host environment. 

Assumptions The information in the DITSCAP documentation will be 
classified in accordance with the appropriate classification 
guide. 
 
The DITSCAP program refers to systems and not 
individual applications.  However, the intent of the 
program is to gather enough information on the 
application to accurately determine the application’s 
security risk.   
 
The DITSCAP documentation for the host environment 
will consist of the assessment of the security risks 
associated with the environment, and the appropriate 
documentation assessing the risk for each application.  
The contractor is responsible for the host environment 
assessment, and the government is responsible for the 
application specific documentation. 
 
At a minimum, the government activity will provide a 
type or system accreditation document approved by the 
developmental Designated Approving Authority (DAA) to 
be included in the contractor's host environment 
accreditation document.   See NIST Special Pub 800-37, 
Guidelines for Security Certification and Accreditation of 
Federal Information Technology Systems for definitions. 
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The government developmental (DAA) will evaluate the 
DITSCAP documentation, review the security risks, and 
determine if the system or application will be hosted in the 
contractor’s host environment.   

Contractor Responsibility The contractor if responsible for certifying the host 
environment, as well as obtaining documentation from the 
government identifying the risks associated with the 
applications to be hosted in the host environment. 
 
The will be present the DITSCAP documentation to the 
appropriate government developmental DAA for review.   

Customer Responsibility Provide the contractor with the type or system 
accreditation documentation identifying security risks 
associated with the application.  If a System Security 
Authorization Agreement (SSAA) already exists, provide 
the document to the contractor for incorporation into the 
contractor’s accreditation documentation.  If the customer 
needs assistance in documenting the appropriate risk 
information, the contractor can perform that function, 
however that task will be negotiated separately. 

Frequency This review will be conducted on a quarterly basis. 
Measurement Techniques The software configuration documentation will contain an 

inventory of all software in the host environment.  The 
Information System Security Manager (ISSM) will spot 
check the configuration document against the SSAA to 
ensure that the proper information has been collected on 
the application. 
 
The ISSM will also have a listing of all applications that 
are hosted in the contractor’s environment.  Every 
application should have the appropriate DITSCAP 
documentation. 
 
The ISSM will check the periodicity of the host 
environment SSAA to ensure that it is renewed every 
three years. 

Reports 1. A listing of all applications hosted with the contractor 
2. The contractor’s software configuration database. 
3. The contractor’s DITSCAP documentation that will 

include the host environment documentation as well 
as the documentation for every application. 

Person Responsible for 
Verification 

The appropriate government ISSM. 
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Performance Category 6.1 Adherence to Security Policies and Procedures 
Performance Metric The metric applied to security policies is based on spot 

checks performed by the government to validate that the 
contractor is abiding by DoD, DoN and contractor 
mandated security policies and procedures.  The metric 
will be expressed as a percentage of spot checks showing 
adherence to policies divided by the total number of spot 
checks. 

Threshold Levels This performance category will evaluate how well the 
daily operations at the host environment abide by 
mandated security policies and procedures.  Areas that 
will be evaluated include ensuring security changes can be 
traced back to approved change requests, users have the 
appropriate permission and access levels, passwords are 
the appropriate length, personnel with root access match 
the personnel approved to have root access, and physical 
security. 
 

DoD and DoN security policy states that successful 
intrusions must be reported.  The incident report will be 
used as one of the spot checks for the quarter.  If it is 
determined that the intrusion was a result of a failure to 
execute security procedures, then that spot check will 
count as a failed spot check. 
 

This review is separate from red team vulnerability 
assessments. 
 

The following thresholds apply to adherence to security 
policies and procedures: 
    Enhanced – Premier: 95 percent 

Formula The number of spot checks indicating adherence with the 
mandated security policies and procedures divided by the 
total number of spot checks that were conducted. 

Assumptions The government will provide audit results to the 
contractor for comment.  The contractor will take action to 
correct noted deficiencies. 
 

The audit results will be classified in accordance with the 
appropriate classification guide. 

Contractor Responsibility The government representative will have full access to all 
documentation, hardware, and software necessary to 
conduct the spot checks.  The government expects full 
cooperation from the contractor.  

Customer Responsibility The government will provide the contractor with a 
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checklist of the possible spot checks that will be 
performed. If discrepancies are discovered, the 
government will provide any necessary instructions or 
documentation to assist the contractor in correcting the 
problem. 
 

The appropriate ISSM will forward any modifications to 
the checklist, or any new DoD or DoN security guidance 
to the contractor. 

Frequency Quarterly 
Measurement Techniques The government representative will use an extensive 

checklist and personal knowledge to conduct the spot 
checks.   

Reports 1. The security checklist. 
2. The appropriate logs and reports to validate security 

procedures and policies are being adhered to 
3. Configuration data to ensure security patches were 

installed. 
Person Responsible for 
Verification 

The appropriate government ISSM. 

Performance Category 6.2 Access Revocation 
Performance Metric The metric to measure this category is the amount of time 

taken to remove an individual’s access rights and 
privileges to the server. 

Threshold Levels As personnel rotate jobs, retire, or are terminated, their 
ability to access and/or authenticate to a server (password, 
PKI certificate) must be removed.  This prevents hostile 
activity from a disgruntled worker, and it ensures that only 
authorized personnel have access to the server.  Revoking 
access rights ensures that the authorized personnel are not 
held accountable for actions that may have been 
accomplished by someone no longer working with the 
server. 
 

This threshold applies to government personnel as well as 
the contractor’s employees. 
 

The ISSM will notify the contractor when access rights for 
government employees need to be removed.  Notification 
will be initiated through a trouble call to the server farm 
help desk.   
 

If contractor employees are terminated, transfer to another 
position that does not necessitate access to an 
application’s server, or retire the ISSM will be notified 
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within 8 working hours. 
   

The following thresholds apply to removing an 
individual’s access rights: 
    Enhanced – Premier: Less than 8 hours 

Formula For revocation of a government employees access rights, 
the time will be measured from the issuance of the trouble 
ticket to the completion time on the trouble ticket.  If the 
revocation concerned a contractor employee, the time will 
be measured from the time the employee was removed 
from the project (as reported to the ISSM) until the time 
the employee’s rights were removed.  Log entries will 
detail the time the employee’s rights were removed. 

Assumptions If a contractor employee is transferred to another position 
that does not need access to a server, the contractor will 
revoke that individual’s access.  The contractor will have 
to determine whether an internal employee needs access 
rights.  In some cases, the contractor may want multiple 
employees to have access rights for redundancy purposes. 

Contractor Responsibility The contractor must notify the appropriate ISSM of 
contractor personnel terminated, retiring, or transferred off 
of the project.  Notification must occur within 8 working 
hours after the individual has been terminated or 
reassigned. 

Customer Responsibility The customer is responsible for notifying the contractor of 
personnel that no longer need access to the server.  
Notification will be through a trouble ticket.   
 

The ISSM will notify the appropriate government 
personnel of contractor employee terminations or 
reassignments. 

Frequency Monthly 
Measurement Techniques The ISSM will use the trouble tickets, notification 

received from the contractor, and server logs to compute 
the formula. 

Reports 1. Database of users and corresponding access rights. 
2. Trouble tickets 
3. Server logs 

Person Responsible for 
Verification 

The appropriate government ISSM. 

Performance Category 6.3 Red Team Vulnerability Assessment 
Performance Metric The red team is a government security team that will 

evaluate the host environment for vulnerabilities.  The 
metric used will be the success rate at preventing an 
attacker from affecting the integrity, confidentiality, or 
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availability of data or systems hosted in the contractor’s 
environment. 
 

The metric will be a percentage representing the amount 
of unsuccessful attempts to breach security in the area 
being assessed divided by the total attempts to breach 
security in the area assessed (for example, blocking denial 
of service attacks).   

Threshold Levels The red teams will test all aspects of the host environment 
security.  They will evaluate a number of areas including, 
but not limited to: physical security, personnel security, 
firewall compliance, system penetration, planting (e.g., 
Trojan horse), data integrity, denial of service, virus 
protection, media security, communication monitoring, 
communication tampering, administrative security 
procedures, authorization violation, and authentication.  
 
Successful red team attacks against components that are in 
full compliance with DoD/DoN guidance and industry 
standards will not count against threshold figures.  
 
Threshold levels are as follows: 
    Enhanced – Premier:  99.00 percent  

Formula The number of unsuccessful attacks divided by the 
number of total attacks.  An attack is defined as an attempt 
to exploit a vulnerability by utilizing one form of attack.  
For example using a war dialer to determine the phone 
numbers of the modem bank constitutes one attack, even if 
10,000 phone numbers were dialed.  Denial of service 
attacks against one port constitutes one attack even if 
numerous messages were sent to that port. 

Assumptions The first red team assessment will be used as a training 
mechanism, and will incur no penalties for identified 
vulnerabilities. 
 
The red team will provide a brief to the contractor’s 
management to explain the purpose of the assessment and 
to get their authorization to conduct the test.  The red team 
will also provide a debrief explaining the results of the 
assessment.  Government personnel will also be invited to 
the briefs. 
 
The results of the red team assessment will be classified in 
accordance with the appropriate classification guide. 
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The red team assessment will have minimal impact on the 
applications residing in the host environment.  If SLAs are 
affected as a result of the red team assessment, the 
contractor will not be penalized. 

Contractor Responsibility The contractor will provide full cooperation with the red 
team, including granting full access to the host 
environment (it is assumed that they will be escorted).    

Customer Responsibility The customer will provide the contractor with the 
vulnerability assessment results so appropriate action can 
be taken to correct or reduce the vulnerabilities identified. 

Frequency If a host environment has not received a red team 
assessment within 1 year, then the assessment should be 
done before the application becomes operational.  
Otherwise the periodicity is annual. 

Measurement Techniques The red team results will contain the information to apply 
to the formula.  The red team will determine if an attack 
was successful. 

Reports 1.   Red Team vulnerability assessment 
Person Responsible for 
Verification 

The red team will perform the assessment, and the ISSM 
will verify the results against thresholds.  If the ISSM does 
not have the appropriate security clearance to view the 
results of the assessment, then the verification will be 
conducted by a member of the Chief Information Officer’s 
(CIO) staff with the appropriate clearance. 

Performance Category 6.4 Correction of Red Team Identified Vulnerabilities  
Performance Metric The metric is the number of days to correct a deficiency or 

vulnerability identified in the red team attack. 
Threshold Levels The time to correct deficiencies should be prioritized by 

the criticality of the vulnerability, and the risk it presents 
to the application.   
 
Critical Vulnerability: The application is at risk from an 
attack that is commonly utilized (hackers have used the 
vulnerability to attack organizations more than 30 times).  
This categorization is subjective and will depend upon the 
red teams assessment of the vulnerability and the 
criticality of the application.  The red team will make this 
determination. 
 
Moderate Risk:  The vulnerability has been exploited in 
the past, but its risk is not high.  The application would be 
affected, but not for any significant time (over 1 day).  A 
denial of service attack would be an example of this type 
of risk.  This is also a subjective assessment and the red 
team will make this determination. 
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Non-critical Vulnerability: All other vulnerabilities 
identified by the red team. 
 
The time thresholds are as follows: 
Critical Vulnerability: 
    Essential – Premier: 5 days 
 
Moderate Risk: 
    Essential – Premier: 14 days 
 
Non-critical Vulnerability: 
    Essential – Premier: 21 days 
 
Successful attacks against an application will have a direct 
impact on availability computations.  

Formula The time, expressed in days, from the red team debrief 
until the vulnerabilities are corrected, verified, and 
reported to the ISSM. 

Assumptions The red team will debrief the contractor on all identified 
security vulnerabilities.  The red team will be available to 
answer questions from the contractor after the debrief. 

Contractor Responsibility Trouble tickets should be initiated to record actions 
necessary to correct vulnerabilities.  The description on 
the trouble tickets does not have to detail specific 
vulnerabilities (e.g., tasks necessary to correct discrepancy 
#5).  The contractor will correct the vulnerabilities and 
notify the ISSM when each is corrected. 

Customer Responsibility The ISSM will verify when the vulnerability has been 
corrected.  The ISSM should be able to accomplish 
verification by physical inspection, working with the red 
team to replicate the attack, discussing the issue with the 
contractor staff, or talking to the red team personnel and 
describing the corrective action. 

Frequency Annually 
Measurement Techniques The time is measured from the day after the red team 

debrief until the CTR has verified that the vulnerability 
has been corrected.  The trouble tickets will be used to 
measure completion times. 

Reports 1. Red Team vulnerability assessment 
2. Appropriate logs and reports necessary to verify that 

vulnerabilities were corrected. 
3. Trouble tickets 

Person Responsible for 
Verification 

The appropriate government ISSM. 
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Performance Category 6.5 Incidence Reporting  
Performance Metric The period of time from detection of a security breach to 

the report of that incident.  It is the contractor’s 
responsibility to provide security for the application.  The 
purpose of reporting an incident to the Fleet Information 
Warfare Center is to capture information and generate 
statistics concerning cyber-attacks on government assets 
and data.  The information also helps to determine the 
extent of the attack or the resultant damage (e.g., worm 
attacks). 

Threshold Levels Incident definitions and categories are outlined in the 
CJCSM 6510.01 of 15 March 2002.  The corresponding 
timeframes and method of reporting are outlined in table 
B-10 of that same document.  Reports will be made to the 
Fleet Information Warfare Center (FIWC), and the ISSM 
assigned to the activity of the application supported.  The 
CJCSM 6510.01 states the information required for the 
report. 
 
The ISSM is notified within 4 hours of the incident: 

Essential – Premier: 100% 
Formula The time expressed in minutes from the initial detection 

until a report is properly filed (in accordance with CJCSM 
6510.01).   

Assumptions Taking action to mitigate the impact of an incident takes 
precedence over reporting criteria. 

Contractor Responsibility Upon detection of an incident, the contractor will make an 
initial report within the timelines outlined in CJCSM 
6510.01.  If all information is not available within the 
timeframes, submit a partial report, and follow up later 
when all of the information is known.  The contractor will 
notify the appropriate ISSM of the incident as soon as 
possible (no more than 4 hours after the incident).  

Customer Responsibility The customer will provide the incident reporting 
documentation, and all points of contact for incident 
reporting.  The customer will provide the contractor 
training on how to respond to incidents and fill out the 
appropriate forms. The customer will provide the 
contractor with recall numbers to notify the appropriate 
government personnel in the case of an incident.   

Frequency As an incident occurs.  Each incident will be measured 
individually. 

Measurement Techniques Security logs from the firewall, network and servers will 
be reviewed to determine when an incident has occurred.  
The initial report will also indicate the time of discovery.  
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If the security logs do not indicate an incident, the time on 
the report can be used.   
 
The ISSM will compare the time the contractor provided 
notice, to the time of incident discovery to determine the 
threshold for notifying the ISSM.   

Reports 1. The appropriate security logs 
2. Reports from monitoring tools 
3. Reports from FIWC 
4. The incident report generated by the contractor 

Person Responsible for 
Verification 

The appropriate government ISSM. 

Performance Category 6.6 IAVA, NAVCIRT, and INFOCON Response 
Performance Metric The time measured in hours from when the government 

notifies the contractor of an Information Assurance 
Vulnerability Alert (IAVA), Naval Computer Incident 
Response Team (NAVCIRT) advisory or Information 
Condition (INFOCON) action, and when the action has 
been completed. 

Threshold Levels IAVAs, NAVCIRTs and INFOCON advisories are issued 
to prevent security incidents from occurring.  These 
advisories identify newly discovered or recently exploited 
vulnerabilities and outline action to correct or mitigate 
those vulnerabilities.  Each advisory gives a time frame 
for complying with and reporting the actions outlined in 
the advisory.  In the case of INFOCON alerts, compliance 
may be required within the hour, but these are rare 
occurrences. 
 
The timeframes for complying and reporting compliance 
will determine the threshold timeframes.  Reports will be 
made through the activity ISSM.   

Formula The time period from when the advisory was reported as a 
trouble call and the time that compliance was reported to 
the ISSM. 

Assumptions If any of the actions mandated by an advisory adversely 
affects the operation of the host environment, (e.g., 
interferes with monitoring agents, system settings, IDS 
agents) the ISSM will be notified, and a resolution will be 
determined. 

Contractor Responsibility The contractor is safeguarding government data.  As such 
adherence to IAVAs, NAVCIRTS and INFOCON is 
required.  The contractor will notify the appropriate ISSM 
when the actions outlined in the advisories have been 
completed. 
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Customer Responsibility The ISSM will initiate a trouble call to the server help 
desk notifying the contractor of receipt of an IAVAs, 
NAVCIRTS and INFOCON.  The ISSM will then deliver 
the alert to the contractor (fax, e-mail) as soon as they are 
received. 

Frequency Each advisory will be tracked individually. 
Measurement Techniques The ISSM will initiate a trouble call informing the 

contractor that they need to take action on an advisory.  
The ISSM will e-mail the advisory (a confirmation of 
receipt is required), or fax it to the contractor (a follow up 
phone call confirming receipt is required).  The advisory 
will contain the time frame for compliance.  That time 
period sets the threshold.  The time from when the trouble 
ticket was submitted until the contractor reports 
compliance will be measured against the time requirement 
in the advisory to determine compliance.      

Reports 1. IAVA, NAVCIRT or INFOCON messages 
2. Trouble tickets 

Person Responsible for 
Verification 

The appropriate government ISSM. 

Escalation Procedures The activity DAA and associated ISSMs will be notified 
of vulnerability results.  The CTR will be notified if any 
thresholds are violated.   
 
Any disputes will be resolved by the CTR.  If there are 
still conflicts, the COR will make the final determination. 

Contractual Exceptions The initial red team attack will evaluate vulnerabilities and 
adherence to DoD and DoN policies and guidance.  The 
results from the first vulnerability assessment will not 
count against this SLA.  The first assessment will not only 
identify areas that need improvement, but will also clarify 
policy and procedural interpretation. 

Penalties/Rewards Minor penalty: 5% monthly rate 
• Any threshold values were exceeded.  
 
Major penalty:  15% monthly rate. 
• More than 4 minor penalties during the year. 
• 6.3 Success rate against red team less than 95%   
• 6.4 Correction of security vulnerabilities in the red 

team assessment or in an advisory exceeds 20% of 
thresholds. If time periods exceed 20% of threshold, 
there will be a 5% monthly rate penalty for every 
week until compliance. 
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Service Name 7.0 Software Maintenance 
Service Description  Software maintenance involves installing new files, 

updates, or patches to the infrastructure, DBMS, and 
system software.  For the purposes of this service level 
agreement, the terms patches, upgrades, and modifications 
are all considered maintenance actions, and the terms will 
mean the same. 
 
This SLA is concerned with the time it takes to realize that 
an upgrade to software in the host environment has been 
released until it is tested and finally installed in the 
production environment.  This SLA does not cover the 
development of the maintenance software, nor does it 
cover the quality of the maintenance software.  In most 
cases the software upgrade is from a third party vendor, 
and the quality of the software upgrade is a risk that the 
contractor must incur and manage. 
 
Software maintenance also has to be performed on the 
application, and its associated software.  If the 
maintenance action requires root access to install the 
changes, then assistance will be required from the 
contractor, as only the contractor has full root control.   

Reason for Measuring Upgrades are generally released to correct problems with 
the software (bugs), update software to prevent new 
attacks, or to add/enhance functionality. 
 
The security of the application is dependent upon the 
speed at which the contractor installs security related 
updates.  As a result it is important to place time frames 
on the contractor to ensure that security related patches 
and updates are installed as soon as possible. 
 
The contractor controls root access to the server.  
Application maintenance action requiring root access must 
be coordinated with the contractor.  The threshold time 
frames are designed to give the contractor sufficient time 
to have staff available to assist with the installation of the 
application update.  The government’s maintenance 
personnel also have consistent response time frames that 
they can use to schedule their maintenance.   

Time Frame Derived by the selected hours of support.  The default is 
24 X 7. 

Scope Software maintenance covers all system, DBMS and 
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infrastructure software.  The software maintenance is only 
concerned with the software that resides in the host 
environment, and is not concerned with the client side of 
the software. 
 
Software maintenance concerns patches and upgrades to 
system and infrastructure software.  The upgrades are not 
new releases of the software, but are supplements to 
existing installed versions.  Upgrades to an existing 
version, (version 2.0) of application X, would be covered 
by this service level agreement, whereas installing a new 
version, (version3.0) would fall under the service level 
agreement for software refresh.  
 
Maintenance actions initiated by the government will not 
be constrained by this SLA.  However, government 
initiated down time will not count against availability or 
contractor initiated maintenance time. 
 
Maintenance action to the application that does not require 
root access is not covered under this SLA.   
 
Tuning operating system software is not covered under 
this SLA.  Tuning is considered a routine operation 
necessary to host an application. 
 

Performance Category 7.0 Installation Time Frames 
Performance Metric The metric is the amount of time from release of a patch 

or update, until it is tested and installed. 
Threshold Levels System, DBMS, and infrastructure software installation 

priorities are as follows: 
 
Priority 1: Critical Security Related Patches.  An example 
would be alerts covered under an IAVA or NAVCIRT.  
However, government generated alerts are covered under 
another SLA.  This SLA is concerned with third party 
vendors, or the contractor, releasing patches in response to 
newly identified vulnerabilities. 
 
Priority 2: Routine Security Patches.  Examples are virus 
or IDS signature updates. 
 
Priority 3:  Upgrades correcting known errors:  Examples 
are upgrades correcting functional problems, such as 
interfacing with new drivers. 
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Priority 4:  Routine upgrades or patches:  Examples are 
upgrades adding new functionality.  Thresholds are as 
follows: 
 
Priority 1 Maintenance Action: 

Essential – Priority:  Within 8 hours from release from     
third party vendor. 

 
Priority 2 Maintenance Action: 

Essential – Priority:  Submit to test lab within 1 day 
after release.  Install within 3 days of release. 

 
Priority 3 Maintenance Action: 

Essential – Priority: Submit to test lab within 1 week 
after release.  Submit the maintenance action to the 
configuration review board (CRB) at the first 
opportunity.  Install within 1 week from CRB approval. 

 
Priority 4 Maintenance Action: 

Essential – Priority:  Submit to test lab within 2 weeks 
of release.  Submit the maintenance action to the 
configuration review board (CRB) at the first 
opportunity.  Install within 1 week from CRB approval. 

Formula The time from the release of the patch or update to the 
time it is tested and installed. 

Assumptions Government personnel will notify the contractor of any 
priority 1 maintenance actions initiated from the 
government.  Priority alerts from commercial sources will 
be the responsibility of the contractor.  It is assumed that 
the contractor will subscribe to security alert services.  
 
If a third party’s security patch is included in an IAVA, or 
NAVCIRT, the timeframes for installation will default to 
the government alert instead of this SLA. 
 
Due to the short timeframes involved with installing 
priority 1 maintenance actions, the CRB will be notified 
after the installation has been completed.  Notification will 
be made through the government ISSM. 
Priority 2 maintenance actions are considered routine and 
part of daily business, and do not require the approval of 
the CRB.  All maintenance actions must be properly 
documented. 
 



322 

All maintenance actions will be annotated on the weekly 
schedule maintenance plan.  Priority 3 and 4 maintenance 
actions will be performed during the maintenance 
window. 

Contractor Responsibility The contractor will develop procedures to ensure that the 
time frames are met.   
 
The contractor must annotate the release date of a patch or 
upgrade on the scheduled maintenance plan. 
 
All priority 3 and 4 maintenance actions must be 
presented and approved by the change review board. 
 
The contractor will notify the ISSM after any priority 1 
patches are installed.  Notification will be no later than the 
day following the installation. 

Customer Responsibility Notify the contractor of any government issued security 
alerts. 

Frequency Monthly 
Measurement Techniques The ISSM can check compliance with priority 1 

maintenance actions by reviewing the trouble tickets and 
monitoring logs, and comparing those entries to the date 
the vendor released the update. 
 
The ISSM can check Internet history logs to determine if 
the contractor is downloading security patches on a daily 
basis.  Software configuration documentation will list 
when those security patches were installed. 
 
The history logs will also ensure that the contractor is 
checking vendor’s web sites, or monitoring security 
bulletins on a daily basis for new software patches or 
upgrades.   
 
The ISSM can check the software release dates on the 
scheduled weekly maintenance report, and compare those 
to actual release dates by calling the central design agency 
(CDA).  The actual software release dates can be 
compared to the CRB notes to ensure that the maintenance 
action was presented to the CRB at the first opportunity. 
 
The CRB notes will contain approved maintenance action.  
The software configuration documentation will contain the 
date the software update was installed.  The ISSM can 
check the dates to ensure the maintenance action was 
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performed within 1 week of CRB approval.   
Reports 1. Scheduled Maintenance Report 

2. Server Logs 
3. CRB Minutes 
4. Software Configuration Documentation 
5. Internet History Logs 

Person Responsible for 
Verification 

The appropriate ISSM 

Performance Category 7.1 Root Access Assistance 
Performance Metric Only the contractor has root access to the operating 

system.  As such, application developers needing access to 
files requiring root authority will have to coordinate with 
the contractor for access.  This metric measures the time 
from the request for root access assistance until the 
application upgrade installation begins.   
 
This SLA affects application problem resolution because 
in some cases root access will be needed to restore 
corrupted or missing files.  

Threshold Levels Installation of application upgrades requiring root access 
is broken into three levels. 
 
Level 1:  Installing Critical Application Upgrades:  
Examples include repairing security vulnerabilities, or 
significant functional errors. 
 
Level 2: Installing Serious Application Upgrades:  
Examples include repairing degraded functionality or 
performance. 
 
Level 3:  Installing Routine Application Upgrades:  
Examples include adding new functionality. 
 
Thresholds are as follows: 
Level 1: Critical Upgrades 

Essential – Premier: Grant root access 4 hours after 
notification. 

 
Level 2: Serious Upgrades 

Essential – Enhanced: Grant root access 8 hours after 
notification 
Premier: Grant root access 4 hours after notification. 

 
Level 3: Routine Upgrades 

Essential – Premier: Grant root access within 3 working 
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days after notification. 
Formula The time of the request for root access assistance minus 

the time that the application upgrade installation begins.     
Assumptions The government will perform the actual application 

upgrade installation.  The contractor is only needed to 
grant root access to the government personnel.  
 
The CTR will track all government initiated maintenance 
actions to ensure that the maintenance down time is not 
charged against the contractor.   
 
The software configuration documentation will include 
not only the time frames for application upgrade 
installation, but also all pertinent information about the 
upgrade such as a detailed description, developer, purpose 
of the upgrade, and patch/version number. 
 

Contractor Responsibility Ensure that personnel are available and trained to grant 
root access during scheduled support hours.  After hours 
personnel must be accessible by phone or pager to respond 
to after support hour level 1 root access requests. 
 
The contractor help desk will be used to generate a trouble 
ticket for root access requests.  The help desk will 
determine the appropriate level.  If there are disputes 
concerning level 1 requests, the contractor will grant the 
request and file a grievance through the CTR for 
resolution.   

Customer Responsibility The CTR will initiate contractor assistance through a 
trouble call to the contractor’s help desk. 
 
The government maintenance personnel must inform the 
CTR if the maintenance action affected the application.  If 
the application was impacted as a result of the 
maintenance action, that ‘down time’ will not count 
against availability SLAs. 

Frequency Monthly 
Measurement Techniques The CTR will review the trouble ticket to determine the 

time between the request and the time the contractor 
granted root access to the server.  The trouble tickets will 
be grouped into the three levels and the appropriate 
thresholds will be applied.  The CTR can also review the 
maintenance records and configuration documentation to 
the times that the software was installed. 

Reports 1. Trouble Tickets 
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2. Software Configuration Documentation 
3. Maintenance Records 

Person Responsible for 
Verification 

The CTR is responsible for verification.   

Escalation Procedures The CTR will attempt to resolve all disputes concerning 
the maintenance priorities or request levels.  Disputes that 
cannot be resolved will be presented to the COR. 

Contractual Exceptions Maintenance downtime associated with application 
upgrades will not count against the contractor’s 
availability or maintenance SLA thresholds. 

Penalties/Rewards Minor Penalty:  No monetary penalty 
• Any threshold values were exceeded. 
 
Major Penalty:  25% of monthly rate. 
• More than 3 minor penalties in any maintenance 

category in one year.   
• Any of the priority 1-4 response thresholds for 

upgrades were exceeded by more than 50%. 
• If any of the level 1-3 response thresholds for root 

access were exceeded by more than 50%. 
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Service Name  SLA 8:  Maintenance Schedules 
Service Description  Maintenance in this SLA involves hardware and software 

maintenance.  Hardware maintenance can involve 
changing routers, installing memory, or repartitioning 
drives.  Software maintenance involves installing new 
files, updates, or patches to the infrastructure, DBMS, and 
system software.   
 
This service level agreement outlines the day and the 
times that will be used to perform maintenance that affects 
the application.  The SLA also specifies the amount of 
time that the application is affected as a result of the 
maintenance actions throughout the month. 

Reason for Measuring Fixed maintenance windows set a level of user 
expectation.  Users should not expect full access to an 
application during scheduled maintenance windows.   
 
Maintenance down time has direct business repercussions.  
When an application is not functioning, users cannot 
perform their jobs, schedules are affected, morale 
declines, and opportunities are lost.  Specifying 
maintenance windows, and the total amount of 
maintenance down time allows an organization to take the 
application down time into consideration.  Activities can 
be planned around the scheduled maintenance down time. 

Time Frame Derived by the selected hours of support.  The default is 
24 X 7. 

Scope Any hardware or software maintenance actions within the 
host environment (including the firewall) that affect the 
application will apply to this SLA.   
 
Maintenance to the application itself will not be covered 
under this SLA.    

Performance Category 8.0 Maintenance Window 
Performance Metric This is the scheduled time period in which maintenance 

actions can occur. 
Threshold Levels The following thresholds apply: 

Essential: Sunday 0800-1200    
Enhanced:  Sunday 0800-1200 
Premier:  No scheduled downtime 

 
Any maintenance action performed outside of the 
maintenance window will count as application down time 
and will be used in the availability computations.   
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Any deviations from the maintenance window will have to 
be approved by the application program manager.  The 
CTR must be informed of any approved maintenance 
activity outside of the maintenance window. 

Formula None 
Assumptions Installation of security signatures on the IDS, anti-spam 

and anti-virus software will not require downtime.   
Contractor Responsibility All maintenance action initiated by the contractor will be 

performed within the maintenance window.  Notify the 
CTR of scheduled maintenance action during the week. 

Customer Responsibility Inform users of the application that there may be 
difficulties in accessing the application during scheduled 
maintenance windows. 

Frequency Monthly 
Measurement Techniques The CTR will review the weekly maintenance schedule 

from the contractor.  The maintenance should all be 
scheduled within the maintenance window.  The CTR will 
review monitoring logs to ensure that the application was 
only “down” for maintenance time within the scheduled 
time frames.  The CTR must be informed of any 
negotiated deviations from the maintenance window.  
Application down time not within the scheduled 
maintenance window will count against the availability 
SLA. 

Reports 1.   Maintenance schedule 
2.   Trouble tickets 
3.   Monitoring logs 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 8.1 Maintenance Hours 
Performance Metric This is the total scheduled maintenance time for the 

month. 
Threshold Levels The following thresholds apply: 

Essential: 4 hours    
Enhanced:  4 hours 
Premier:  No scheduled downtime 

Formula Add the maintenance time during which the application 
was affected. 

Assumptions The change management board must approve all software 
maintenance actions, with the exception of emergency 
security updates. 
 
All maintenance action is tested before installation.  In the 
case of emergency security installation, the application is 
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tested after the installation.  Tests will be conducted in 
accordance with the approved test plan. 
 
Any system or infrastructure down time outside of the 
scheduled maintenance time will be considered down time 
and will count against availability service level 
agreements.  For example if the scheduled maintenance 
down time is 4 hours, and 5 hours were actually used to 
perform maintenance during the month, then 1 hour will 
be considered down time in the availability computations. 

Contractor Responsibility Notify the CTR of maintenance actions that will be 
scheduled during the week.   

Customer Responsibility The customer is responsible for notifying end-users if their 
access to the application will be affected by scheduled 
maintenance. 

Frequency Monthly 
Measurement Techniques The CTR will verify the scheduled maintenance down 

time against the system monitoring logs. The CTR will 
then calculate total maintenance time by adding the 
maintenance down time during the month.   
 

Reports 1. Maintenance schedule 
2. Monitoring logs 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Escalation Procedures The CTR will be notified of any deviations from the 
maintenance windows or schedules.   

Contractual Exceptions Scheduled maintenance initiated by the government will 
not be applied to this SLA. 

Penalties/Rewards Maintenance action outside of the schedule maintenance 
window, or maintenance down time exceeding thresholds 
will be considered down time for availability 
computations.  Availability penalties will apply. 
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Service Name 9.0 Migration Services 
Service Description  Migration services are those services required to move, 

install, and operate an application in the contractor’s 
Application Hosting environment. 

Reason for Measuring Transition services are measured to ensure that the project 
is completed on time, and that the application’s 
performance does not suffer as a result of being hosted in 
the contractor host environment.  

Time Frame This SLA covers the time period from contract award until 
the application is installed in the production environment, 
can be accessed by its intended end-users, and is fully 
operational.  The completion time will be determined 
when the government validates that all migration 
requirements have been satisfied. 

Scope Migration in the context of hosting applications is the 
process by which an application is transferred from one 
platform to another.   
 
The specific tasks that need to be performed during the 
migration phase and the deliverables are specified in the 
statement of work (SOW). 
 
The scope covers all activities necessary to migrate the 
application to the contractor host facility, including 
application audits, designing activities, performing 
requisite testing (outlined in the migration plan), placing 
the application into the production environment, 
establishing connectivity, and operating the application at 
full functionality.   

Performance Category 9.0 Implementation, Integration, and Test Service (IIT) 
Service Window. 

Performance Metric The metric establishes the amount of time to perform all 
actions required to migrate an application to the 
contractor’s host environment. 

Threshold Levels The threshold levels are as follows: 
Essential Services:  3 months 
Enhanced Services: 3 months 
Premier Services: 3 months 

Formula The time is measured from the date the contract is 
awarded and concludes at documented acceptance of 
migration services. 

Assumptions Actions relating to estimating migration costs will not be 
included in the migration time.  For example audits must 
be conducted on the application to properly scope a bid.  
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The time necessary to conduct a preliminary audit will not 
count as migration time.  Once the contract is awarded any 
subsequent audits will count as migration time. 

Contractor Responsibility The contractor must coordinate with the government for 
functional testing and access to the application.  The 
contractor must understand and operate within the 
government’s operational constraints. 

Customer Responsibility After the contract has been signed, the contractor must 
have access to the application and current hosting facilities 
to perform a full audit, and to package the application.  
The government may have to negotiate with third parties 
to obtain access permission. 

Frequency The frequency spans the time from contract award until 
the government documents acceptance of the migration 
action.  

Measurement Techniques The date that the government has documented acceptance 
of migration services is subtracted from the date the 
contract was awarded. 

Reports 1.    Hosting contract: It will determine threshold start 
times. 

2.    Migration plan: The government will document 
acceptance of migration services.  This document will 
be incorporated into the migration plan for official 
acceptance. 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 9.1 Application Performance 
Performance Metric The metric used to test application performance will be an 

industry standard benchmark test.  Areas measured will 
include areas such as input-output times, memory paging, 
bandwidth utilization, and processing speeds. 

Threshold Levels Threshold levels are based on a comparison of benchmark 
tests run in the previous host environment with identical 
tests run on the application in the contractor’s host 
environment. 
 
The following thresholds apply: 

Essential – Premier: Identical or greater performance in 
all areas of the benchmark tests. 

Formula This will be a direct comparison of the benchmark tests in 
the two environments.  The tests in the new environment 
should be equal to or exceed the results obtained in the 
previous host environment. 

Assumptions The government and contractor will determine benchmark 
tests to execute to test the performance of the application.  
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Contractor Responsibility If the government has not determined which benchmark 
tests to utilize, the contractor will recommend industry 
standard benchmark tests to the government.  Execute the 
benchmark tests on the application in both host 
environments and provide results to the CTR. 

Customer Responsibility The contractor must have full access (root) to the 
application and associated servers in the previous host 
environment in order to run the benchmark tests.   The 
government is responsible for obtaining the cooperation of 
the staff in the previous host environment. 
 
The government will monitor the testing to understand 
any differences in how the benchmark test was applied.  In 
some cases the differences in the tests occur as a result of 
configuration differences in the host environments.  The 
government representative will ensure the results 
accurately measure the application’s performance.   

Frequency This measurement is from the time that the contract is 
awarded until the government documents that all 
migration requirements have been met. 

Measurement Techniques The government representative will compare the 
application benchmark tests in both environments to 
ensure that the application’s performance equals or is 
better in the contractor host environment. 

Reports 1.   Benchmark test results 
Person Responsible for 
Verification 

The CTR is responsible for verification.  Verification in 
this case may require the assistance of the application 
developers to ensure the tests are run correctly. 

Escalation Procedures The contractor will notify the CTR if the migration cannot 
be accomplished within time frame thresholds.   
 
Designated government representative will approve results 
of the benchmark tests.  COR will resolve all conflicts.  

Contractual Exceptions None 
Penalties/Rewards Minor penalty: 5% monthly rate 

• Any threshold values were exceeded. 
 
Major: 15% monthly rate 
• Migration transition times exceed 50% of the 

threshold. 
• Application benchmark tests in the new host 

environment do not meet or exceed the benchmark 
tests in prior host environment.  If there are 
performance issues, the application will not be placed 
in operation until the problems are resolved. 
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Service Name  SLA 10 Backups 
Service Description  Backups refer to the process of copying data, files, disks, 

or the entire application to tape.  There are two general 
types of backups.  A full backup contains all of the data in 
a file system.  An incremental backup contains only those 
files that have changed since the last backup. 
 
This service level agreement will measure the accuracy of 
the backup, adherence to the back up schedule, accuracy 
of tape labeling, accuracy of tape library, and restoration 
timeframes.  

Reason for Measuring Computers are not 100 percent reliable, disk drives can 
fail, files and data can be corrupted, and disasters can 
destroy the entire system.  If the information stored in the 
file system has any value, it must be backed up.   
 
Backups act as a form of redundancy, and are designed to 
protect the integrity of a system’s data.  If a disk drive 
crashes, the information on the backup tapes can be used 
to restore the system. Restoration speed, tapes accuracy, 
and the accuracy of the tape library affect the MTTR, 
which influences overall availability of the application.   
 
There may also legal requirements for the retention of 
financial data, audit logs, or other data required for 
possible investigations or audits.  

Time Frame The time frames is 24 X 7. 
Scope Backups refer to application software, system software, 

DBMS, database files, and system and monitoring logs 
hosted in the contractor’s host environment.   
 
There are numerous DoD and DoN policies and directives 
concerning backups, such as on-site storage requirements, 
and protecting the security of the data on the tape.  
Adherence to those policies will be covered under the 
security SLA. 

Performance Category 10.0 Backup Schedule  
Performance Metric The metric will measure the contractor’s adherence to the 

backup schedule.  The metric will be expressed as a 
percentage of backups performed within the schedule 
divided by the total number of backups that should have 
been performed. 
 
Adherence to the schedule is vital in protecting the data in 
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the file systems.  If an incident occurs where the files are 
destroyed, any data received, modified, or deleted from 
the time between the incident and the last backup is lost.  
This may have serious repercussions for mission critical, 
data intensive systems.  If the schedule is not followed, 
the risk of loosing business essential data increases.  

Threshold Levels The normal backup schedule is where incremental 
backups are performed daily 6 times a week and a full 
backup is performed on Saturday or Sunday.  Additionally 
a full monthly and end of year backup are performed.  
Once the backup tapes are created they must be stored for 
a period of time before they can be reused.  It is possible 
for a file to be corrupted and not noticed for weeks or 
months because the file is rarely accessed.  As a result, it 
is prudent to keep copies of the file systems for a 
reasonable period of time.  The following is a 
recommended backup schedule with storage days: 
Daily incremental backups must be stored for 8 days 
Weekly full backups must be stored for 2 months 
Monthly full backups must be stored for 12 months 
Annual full backups must be stored for 5 years. 
 
The thresholds for conforming to the backup schedule are 
as follows: 

Enhanced – Premier: 99% 
 
The thresholds for conforming to the backup storage 
requirements are as follows: 

Enhanced – Premier: 99% 
Formula The number of backups performed within the backup 

schedule divided by the total number of scheduled 
backups. 
 
The number of backups stored within the storage 
requirements divided by the total number of stored tapes. 

Assumptions The contractor will be responsible for providing the tape 
media. The media can be reused, but after a period of 
time, the media degrades and must be replaced.  The 
contractor is responsible for replacing the media.  

Contractor Responsibility Brief the application program manager on the backup 
schedules and procedures that will be used to backup the 
application.  

Customer Responsibility Cooperate with the contractor in developing the backup 
schedule and associated backup procedures for the 
application. 
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Frequency Monthly   
Measurement Techniques The government auditor must perform spot checks to 

ensure the backups were conducted within the scheduled 
time frames, and that they are stored for the appropriate 
amount of time.  The auditor will check the system logs 
and monitoring logs to determine when the backups were 
actually performed.  The auditor will have to physically 
check the tape storage areas to ensure tapes are being 
stored for the appropriate amount of time.  The tapes must 
be labeled with the date of the backup, so determining the 
storage time is simply a matter of ensuring all of the tapes 
for the required storage period are present.  For example, 
when checking the daily tapes, there should be 7 days of 
backups available (1 day is a weekly update). 

Reports 1. Monitoring logs 
2. System logs 
3. Backup schedule 

Person Responsible for 
Verification 

The CTR will be responsible for verification. 

Performance Category 10.1 Tape Backup Accuracy 
Performance Metric This category measures the accuracy of the tape backup.  

If the system is not backed up correctly, then the system’s 
data is not protected, and data critical to the organization 
could be lost. 
 
Tapes have a shelf life of approximately 3 years.  After 3 
years the files on the tape must be transferred to new 
medium.  The accuracy of the file transfer from the old 
medium to the new medium will be included in this 
category. 
 
The measurement will be the percentage of files that were 
backed up correctly divided by the number of files that 
were spot-checked. 

Threshold Levels Backup accuracy thresholds are as follows: 
Essential: 99.5% 
Enhanced: 99.5% 
Premier: 99.7% 

Formula The number of files that were accurately backed up 
divided by the total number of files sampled. 

Assumptions Restoration should be performed on a test platform.   
Contractor Responsibility The contractor must implement backup software that 

verifies backed up files by reading the files after they are 
written to the tape. The contractor will assist the 
government representative with loading the tapes to 
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conduct the spot checks. 
Customer Responsibility Coordinate with the contractor for performing the spot 

checks.  Access to a test server will be required. 
Frequency Quarterly 
Measurement Techniques The proof that the files were correctly backed up is to read 

and/or restore the contents of the tape.  A representative 
sample of tapes will be evaluated.  Random files will be 
accessed to determine if they can be read.  Other files will 
be restored.  Sample files will be evaluated from each 
tape. 

Reports 1.   Tape library 
Person Responsible for 
Verification 

The CTR will be responsible for verification. 

Performance Category 10.2  Tape Documentation Accuracy 
Performance Metric Tape documentation refers to the labeling on each tape, 

and the tape library documentation.  It is essential that 
each tape be clearly and accurately labeled.  The tape 
labels will have detailed information to uniquely identify 
their contents.  Information such as date and time of the 
backup along with the format of the files will also be 
included. 
 
The tape library records at a minimum, the files stored on 
each uniquely numbered tape as well as the dates the files 
were backed up. 
 
The metric used will be a percentage of tapes accurately 
labeled and recorded in the tape library.  If any of the files 
on the tape do not match the documentation of either the 
tape label or the tape library, then the tape documentation 
is considered incorrect. 
 
Tape documentation is essential in rapidly restoring files.   

Threshold Levels The following are the thresholds for backup 
documentation. 

Essential: 97% 
Enhanced: 97% 
Premier: 98% 

Formula The formula is the number of tapes accurately labeled and 
recorded in the tape library divided by the total number of 
tapes spot checked. 

Assumptions The documentation requirements in this SLA also pertain 
to backup media other than tapes. 

Contractor Responsibility Provide the necessary tape library documentation to 
perform the spot check.  Assist the government 
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representative with loading the tapes to conduct the spot 
check.  

Customer Responsibility Coordinate the spot check with the contractor.  Allow 
enough time for the contractor to have the equipment and 
staff on hand to assist with the spot check. 

Frequency Quarterly 
Measurement Techniques The tapes will be loaded onto a platform for read access.  

The files contained in the tapes that are spot-checked will 
be evaluated against the tape label and the tape library.    

Reports 1. Tape labels 
2. Tape library 

Person Responsible for 
Verification 

The CTR will be responsible for verification. 

Performance Category 10.3 Restoration Time Frames 
Performance Metric Restoration refers to the task of retrieving a file from a 

backup tape and installing it on a system.  The first step is 
to determine which tape has the version of the file needed.  
The individual file then has to be found and copied to the 
system server.  The backup copy of the file then replaces 
the missing or corrupted file on the server.    
 
This section refers specifically to restoring application 
related files.  Restoration time for system software will be 
included in the overall timeframes for system availability 
or problem resolution.  The files being restored are part of 
the application; as government personnel may require root 
access from the contractor. 
 
The performance metric is the time from the request to 
restore a fileuntil the file is installed and operational.  The 
request will be placed with the contractor’s help desk. 

Threshold Levels The restoration time thresholds will depend upon the 
severity of the problem necessitating the restore action.   
 
Priority 1 issues:  Mission Critical Impact:  Priority 1 
issues involves loss of application access or functionality.  
 
Priority 2 issues:  Significant Impact:  Priority 2 issues 
involve degraded application functionality.  
 
Priority 3 issues:  Minor Impact:  Priority 3 issues involve 
minor faults that the end-user may not noticed and cause 
little disruption in service. Priority 3 issues also involve 
restoration of files for inspection or audit purposes. 
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File restoration thresholds are as follows: 
Priority 1 Critical:  95% Compliance with the following 
time frames, no problem will exceed 12 hours. 
     Essential:  Less than 4 hours 
     Enhanced:  Less than 4 hours 
     Premier:  Less than 4 hours 
 
Priority 2 Major Impact:  95% Compliance with the 
following timeframes, no problem will exceed 24 hours. 
     Essential:  Less than 8 hours 
     Enhanced:  Less than 8 hours 
     Premier:  Less than 4 hours 
 
Priority 3 Moderate Impact:  95% Compliance with the 
following timeframes, no problem will exceed 4 days. 
     Essential - Premier:  Less than 2 days 

Formula The number of restoration procedures performed within 
stated thresholds divided by the total number of 
restoration procedures performed. 

Assumptions When a problem occurs, the NMCI help desk will field the 
trouble call.  The trouble ticket will be passed to the 
contractor’s help desk.  If the problem points to the 
application itself, the government personnel will trouble 
shoot the application.  If a file needs to be restored, the 
government personnel will place a trouble call to the 
contractor’s help desk to start the restoration trouble 
ticket.   
 
The restoration times associated with problems with 
DBMS, infrastructure, or system software will count 
against availability calculations, and not this SLA. 

Contractor Responsibility Cooperate with the government personnel that are 
restoring the application files.  If root access is required, 
that SLA will apply.   
 
The contractor’s help desk will determine the priority 
level of the restoration request.  The level of the request 
will be annotated on the trouble ticket.  If there are 
disputes covering the priority of the request, grant the 
request and file a grievance through the CTR for 
resolution. 

Customer Responsibility The government will request file restoration using the 
contractor’s help desk.  The government will work with 
the contractor to train the help desk personnel determine 
the appropriate priority levels for requests. 
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Frequency Monthly 
Measurement Techniques Review the trouble tickets for restoration services and 

determine whether any of the requests did not meet the 
designated time frames.  Check restore times against 
server and monitoring logs, if designated time frames 
were violated; apply the formula to determine compliance 
with the thresholds. 

Reports 1. Trouble tickets 
2. Server logs 
3. Monitoring logs 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Escalation Procedures The CTR will be notified of threshold violations.  If there 
is disagreement concerning the categorization of priorities, 
the CTR will work with both the contractor and the CTR 
to resolve the issues. If the problems persist, the issue will 
be referred to the COR. 

Contractual Exceptions None 
Penalties/Rewards Minor penalty: 5% monthly rate 

• Any threshold values were exceeded. 
 
Major penalty: 20 % monthly rate 
• Three minor penalties within the year 
• 10.0 Backup schedule compliance in each service 

level (essential – Premier) is below 90%  
• 10.1 Backup Accuracy is below 95% in each service 

level 
• 10.2 Backup documentation accuracy in each service 

level is below 90% 
• 10.3 Restoration services exceed maximum response 

times for the priority assigned to the service. 
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Service Name  SLA 11 Batch Services 
Service Description  Batch processing used to refer to the processing of a batch 

of punch cards.  Today the term is used more to describe 
the sequential processing of data.  Typically once a batch 
job begins, it continues until it is done or until an error 
occurs. The next sequential program is then run, until all 
programs have executed fully.  Many financial programs 
contain batch processing, especially during reconciliation 
processes.   

Reason for Measuring Batch jobs require additional oversight because they must 
be run in sequence, and they usually must be run within 
specified time windows.  When batch jobs are running, 
there is no user input into the program.  As a result it is 
important that batch jobs are run efficiently, because users 
are locked from the program while the batch jobs are 
processing.  Additionally, if any errors occur while 
processing a batch job, it must be run again, and any 
information processed must be either backed out, or over 
written.     

Time Frame The time frames is 24 X 7. 
Scope Batch jobs will be identified to the contractor during the 

migration audit.  The contractor is responsible for 
maintaining a batch job schedule, which lists the batch 
job, and the time frames allotted for processing.  This 
service level agreement refers to the batch jobs contained 
on the batch schedule.    
 
Maintaining a batch schedule is a systems administrator 
function, even though it directly supports an application, 
or its associated databases.  As such, it is the 
responsibility of the contractor to run the batch jobs. 

Performance Category 11.0 Batch Accuracy 
Performance Metric The batch job should execute as desired.  If errors occur in 

the process, then the process should be run again.  The 
contractor is responsible for monitoring batch program 
execution.  The performance metric is a percentage of the 
programs executed within specifications divided by the 
total number of programs executed.  Each sequential 
program is distinct.  If the entire batch contains 15 
sequential programs, then each program will be counted 
individually.   

Threshold Levels The thresholds for batch processing accuracy is as 
follows: 

Essential: N/A 
Enhanced: 99.5% 
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Premier: 99.7% 
Formula The batch programs executed within specifications 

divided by the total number of programs executed.  
Assumptions The contractor must perform, or assist the government in 

batch program restarts.  Detailed execution procedures 
will be developed for each batch job.  If problems with the 
batch job persist, the contractor will notify the designated 
government personnel. 

Contractor Responsibility Ensure the batch job schedule is accurate, and the staff is 
properly trained to execute the batch programs. 

Customer Responsibility Ensure that the batch job schedule contains all of the batch 
jobs that pertain to an application.  Provide the contractor 
all pertinent information to execute and monitor the batch 
jobs.  This includes providing test scripts or a description 
of the expected output to ensure the program is executing 
to specifications. 

Frequency Monthly   
Measurement Techniques The CTR will review the batch processing monitoring 

reports and evaluate trouble tickets that may pertain to the 
batch jobs.  

Reports 1. Trouble tickets 
2. Monitoring logs 
3. Server logs 
4. Batch job schedule 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 11.1 Batch Job Completion 
Performance Metric Many batch jobs must be completed within a specific time 

window.  The metric will be presented as the percentage 
of batch jobs executed successfully within the scheduled 
time frames. 
 
Recommended time frames are as follows:  All daily, 
weekly and monthly batch runs must be completed by 
0700 AM of the following business day.  If a batch job is 
not completed by the deadline, the contractor and 
government must determine if the batch job should still be 
run, or if it should be terminated.   

Threshold Levels The thresholds for batch job completion are as follows: 
Essential: N/A 
Enhanced: 95% 
Premier: 95% 

Formula The formula will be the number of batch jobs executed 
within the scheduled time frames divided by the total 
number of batch jobs scheduled to be executed. 
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Assumptions Government requests for batch job execution for jobs not 
listed on the schedule will not count against this SLA. 
 
The recommended time frames for batch processing will 
be modified to suit the needs of each application. 

Contractor Responsibility Notify the government representative if a batch job cannot 
be completed within the scheduled time frame.   

Customer Responsibility Work with the contractor to determine a course of action if 
a batch job is not processed by the deadline. 

Frequency Monthly 
Measurement Techniques Review the batch job schedule and the batch job 

monitoring report to determine any processing outside of 
the scheduled time frames.  Divided the number of batch 
jobs completed within the time frames by the total number 
of scheduled batch runs. 

Reports 1. Monitoring logs 
2. Server logs 
3. Batch job schedule 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 11.2 Batch Job Requests 
Performance Metric This category is concerned with the addition, deletion, 

modification, or stopping of a batch job.  The batch job 
schedule may need to be modified for a number of 
reasons, including seasonal requirements, new regulations, 
changing business processes, new requirements, or errors 
were found in the program.  

Threshold Levels Response times for request to add to, delete from or 
modify the batch job schedule are contingent upon the 
impact that the batch job has to the organization’s 
business process. 
 

Priority 1 issues:  Mission Critical Impact:  Priority 1 
issues involves a critical impact to business processes.   
 

Priority 2 issues:  Significant Impact:  Priority 2 issues 
have a noticeable impact on business processes. 
 

Priority 3 issues:  Minor Impact:  Priority 3 issues are 
routine adjustments to the batch job schedule. 
 

Stop Action:  There are instances where the batch jobs 
should not be run as scheduled.  The government must 
give the contractor proper notification before the 
contractor can stop the batch job. 
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Request response thresholds are as follows: 
Priority 1 Critical:  95% Compliance with the following 
timeframes, no request will exceed 12 hours. 
    Essential:  N/A 
    Enhanced:  Less than 4 hours 
    Premier:  Less than 4 hours 
 
Priority 2 Significant Impact:  95% Compliance with the  
following timeframes, no problem will exceed 24 hours. 
    Essential:  N/A 
    Enhanced:  Less than 8 hours 
    Premier:  Less than 8 hours 
 
Priority 3 Moderate Impact:  95% Compliance with the  
following timeframes, no problem will exceed 5 days. 
    Essential – Premier:  Less than 3 days 
 

Stop Action:   
Essential – Premier:  The batch process will not be run 
if notification is given 1 hour before the scheduled run. 

Formula The number of requests that were satisfied within the time 
frames divided by the total number of requests. 

Assumptions Any requests to modify the batch jobs will have to be 
requested through the contractor’s help desk. 

Contractor Responsibility Work with the program manager in determining criteria 
for categorizing the criticality of batch job requests. 

Customer Responsibility Give the contractor as much time as possible to make the 
modifications to the batch schedule.  If adding or 
modifying batch jobs, ensure there are government 
personnel available to assist the contractor. 

Frequency Monthly 
Measurement Techniques The CTR will review the trouble tickets for requests and 

verify performance against the batch job monitoring 
reports. 

Reports 1. Trouble tickets 
2. Monitoring logs 
3. Server logs 
4. Batch job schedule 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Escalation Procedures The CTR will be notified of any threshold violations.  The 
CTR will attempt to resolve all disputes.  Disputes that 
cannot be resolved will be presented to the COR. 

Contractual Exceptions None 
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Penalties/Rewards Minor penalty: 5% monthly rate 
• Any threshold values were exceeded. 
 
• Major penalty: 20 % monthly rate 
• Three minor penalties within the year 
• 11.2 If any of the maximum time frames designated 

in the batch job request section were exceeded. 
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Service Name  SLA 12.0 Technology Refresh Rates 
Service Description  Technology is changing at a rapid pace.  To take 

advantage of new innovations, technology must be 
updated.  This SLA specifies the time frames for 
technology refresh rates.   
Technology refresh requires coordination between the 
government and the contractor.  The coordinator cannot 
upgrade to a new version of system software or hardware 
without ensuring that the application is not affected.  
Conversely the government must ensure that if the 
application developers are designing new functionality 
that requires an upgraded hardware or a new version of 
software that the contractor is willing and able to support 
the upgrade. 

Reason for Measuring Technology needs to be updated on a consistent basis, not 
only to take advantage of the benefits offered by that 
technology, but for interoperability purposes as well.  
Technology refresh also allows software developers the 
opportunity to take advantage of the most recent scientific 
advancements. 

Time Frame Quarterly 
Scope Technology refresh applies to all hardware and software in 

the contractor’s host environment that supports the 
application, including firewalls.   

Performance Category 12.0 Software Refresh 
Performance Metric The contractor is responsible for the planning, installation, 

and testing of system and infrastructure software 
upgrades.  New software will not be installed upon 
release.  The contractor must have time to test the new 
version, and develop an installation plan if the upgrade is 
extensive.  However, the time from release to installation 
should be quick enough to allow the government to take 
advantage of any benefits, and to ensure interoperability. 
 
This SLA is concerned with the installation timeframes for 
new versions of software.  Patches or upgrades to existing 
versions are covered under another SLA. 
 
The metric used will be the time from the release of the 
new software version until it is installed in an operational 
environment.  

Threshold Levels The following are the thresholds for software refresh: 
Essential: 18 months 
Enhanced: 12 months 
Premier: 6 months 
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No system or infrastructure software will be more than 2 
releases behind the most current software release. 

Formula None 
Assumptions Some legacy application software have dependencies that 

do not allow for system software upgrades.  In the case of 
hard coded dependencies, only non-dependent software 
would be upgraded.  

Contractor Responsibility Notify the configuration review board of any software 
upgrades.  This requires that the contractor keep abreast of 
latest changes in technology.  It also requires that the 
contractor determine how the new changes will affect the 
hosted application.  This will require testing and 
coordination with the government developers. 

Customer Responsibility Cooperate with the contractor in any functional tests 
required to test a new software release.  The government 
developers should also be aware of and take advantage of 
the latest software releases.    

Frequency Quarterly   
Measurement Techniques The CTR will verify software refresh rates by reviewing 

recommendations from the vendor, minutes from the 
change review board, scheduled maintenance reports, 
configuration documentation, and spot-checking the latest 
releases with the applicable vendors.  

Reports 1. Minutes from the Change Review Board 
2. Scheduled maintenance reports 
3. Configuration documentation 
4. Software refresh recommendations from contractor 

Person Responsible for 
Verification 

The CTR is responsible for verification. 

Escalation Procedures The COR will be notified if there are any disagreements 
on interpretation. 

Contractual Exceptions None 
Penalties/Rewards Minor penalty: 5% monthly rate 

• Any threshold values were exceeded. 
 
Major penalty: 25 % monthly rate 
• Two minor penalties within the year 
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Service Name  SLA 13.0 Administration  
Service Description  Administration is a general category that is concerned 

with ensuring documentation is up to date, accurate and is 
delivered in a timely manner.  It also addresses attendance 
at required meetings and adhering to contractual 
procedures. 
 
The delivery of reports address the time frame that the 
various report deliverables must be delivered to the 
designated government representatives.  

Reason for Measuring Since many of the reports produced by the contactor are 
used to provide oversight of the contractor’s performance, 
it is important that the reports are accurate and timely.  
Some reports are also used to perform quality control.  If 
the information contained in those reports is delayed, 
potential corrective actions will also be delayed. 
 
Everyone’s time is valuable.  If a contractor is needed at a 
meeting, such as the configuration review board, it is 
important that a representative, with the appropriate power 
making authority attend, not only to represent the interests 
of the contractor, but also to ensure that the scheduled 
business can proceed.   

Time Frame The time frame is 24 X 7. 
Scope Delivery of Reports includes all the reports defined and 

agreed upon in the deliverables documentation.  In 
addition to the reports defined in the deliverables 
document the contractor must also provide SLA 
compliance reports and associated reports that provide 
background, detailed information, or the raw information 
that may have been consolidated for the SLA reports.  
Delivery time frames are outlined in the statement of work 
or the corresponding deliverables section of the contract. 
 
Scheduled meetings refer to planned meetings that occur 
on a frequent basis, such as the configuration review 
board.  It does not include short notice meetings that were 
not on the agreed upon meeting schedule. 
 
License management covers all software that is utilized in 
the contractor’s host environment, including the 
application itself.  Licenses for GOTS applications are not 
in the scope of this SLA. 
 
Change management procedures covers changes made to 
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any software or hardware in the contractor’s host 
environment, including the application.  The contractor 
and the government will promulgate the change 
management procedures in a change management 
document that will be mutually agreed upon.  This plan 
will discuss how the change review board will function, 
requirements for documenting the change, and testing 
requirements. 

Performance Category 13.0 Delivery Schedule 
Performance Metric The contracted delivery time frames for the document 

deliverables will be evaluated against the actual delivery 
time. 

Threshold Levels The thresholds are as follows: 
Essential – Premier: Reports are due within one business 
day of their due date. 

Formula None 
Assumptions Government requests for reports that are not specified in 

the contract will go through the CTR for contract scope 
determination.  If the contractor agrees, the request will be 
categorized as a priority 4 problem resolution and will 
require a trouble ticket from the contractor’s help desk.  
Conflicts, or requests outside of the scope of the contract 
will be referred to the COR. 

Contractor Responsibility The government will work with the government 
representatives to determine the method of delivery.  If 
there are problems, the contractor will contact the CTR for 
resolution. 

Customer Responsibility The government representative will work with the 
contractor to determine delivery methods and designate a 
primary and alternative receipt representative. 

Frequency Monthly 
Measurement Techniques The CTR will spot check documentation deliverables and 

determine when they were delivered.  The contract will 
specify when the documents are to be delivered.  The CTR 
will compare the delivery time designated in the contract 
with the actual delivery time to determine compliance 
with the thresholds.  Actual delivery times will be 
determined by interviews, or the timestamp on 
documentation that has been e-mailed. 

Reports 1.   Hosting contract 
Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 13.1 Documentation Accuracy 
Performance Metric This measurement ensures the accuracy of the 
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documentation that is delivered.  For example, 
configuration data must be accurate and up to date for 
disaster recovery, testing, and software development 
purposes.  It is not enough to simply deliver 
documentation; the information contained in that 
documentation must be timely and accurate.   

Threshold Levels The thresholds apply to all required documentation.  
Inaccuracy is a subjective determination made by the 
CTR.  The document must contain more than three non-
significant errors, or one significant error.  The CTR will 
determine the criticality of the error with respect to its 
affect on the application and the business processes the 
application supports.   
 
Non-significant error would be addition errors that do not 
significantly affect the computational outcome, missing 
serial numbers on hardware configuration documentation, 
or fail to update equipment moves within the host 
environment. 
 
Significant errors would include failure to update the 
backup schedule with new systems, failing to update the 
software configuration documentation with new upgrades, 
or failing to produce installation procedures for a system. 
 
The thresholds for accurate documentation is as follows: 

Essential – Premier: 95%  
Formula The number of documents audited with no errors divided 

by the number of total document deliverables. 
Assumptions The CTR will be able to determine whether a problem is 

significant or not. Discussions with the program manager 
and the contractor may help to categorize the severity of 
the document oversight/error.  

Contractor Responsibility The contractor will determine the root cause of any 
documentation errors, and attempt to automate as much 
reporting as possible. 

Customer Responsibility The CTR will inform the contractor of any errors 
discovered in the documentation.   

Frequency Monthly 
Measurement Techniques The CTR will perform spot checks on the documentation.  

Most errors in the documentation will be discovered 
through problem resolution, red team vulnerability 
assessments, and configuration audits. 

Reports 1. All required documentation is subject to audit. 
2. Red team vulnerability assessments 
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Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 13.2 License Management 
Performance Metric It is illegal to operate third party software without proper 

licenses.  The contractor is responsible for ensuring that 
all software that is a part of the host environment is 
supported by valid licenses.  License management also 
includes the application and it’s associated databases.   

Threshold Levels All software must have current licenses.  Shareware and 
freeware can be utilized in accordance with the acceptance 
agreements related to the specific software. 
 
The threshold for proper licenses are as follows: 

Essential – Premier: 95% 
Formula None 
Assumptions Government Off the Shelf (GOTS) software will not have 

to have a license. 
Contractor Responsibility The contractor must have a process in place to ensure that 

all software in the host environment, including the 
application, has valid licenses.  If the license is based on 
the number of concurrent users, the contractor will be 
responsible for ensuring the users do not exceed the 
license agreement.  The contractor will notify the 
government of licenses about to expire, as well as when 
licenses need to be renegotiated to support an expanding 
user base. 

Customer Responsibility Copies of all license agreements must be turned over to 
the contractor before the software can be utilized. 

Frequency Quarterly 
Measurement Techniques The CTR will conduct spot checks of the licenses against 

the software configuration documentation.  
Reports 1. Software configuration documentation 

2. Software licenses 
Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 13.3 Meeting Attendance 
Performance Metric The contractor must have a representative at all scheduled 

meetings.  The contractor would not have been invited to 
the meeting if the business did not involve the contractor.  
Participation is necessary to ensure that time is not wasted 
waiting for contractor input, or decisions from the 
contractor.  All contractor representatives are expected to 
be able to represent the contractor and make decisions. 
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The contractor and the government must develop a 
schedule for the meetings that the contractor is expected to 
attend.  Meetings other than those agreed upon in the 
schedule of meetings will not apply to this SLA. 

Threshold Levels Thresholds for attending scheduled meetings is as follows: 
Essential – Premier: 95% 

Formula The number of meetings with a contractor representative 
in attendance divided by the total number of scheduled 
meetings. 

Assumptions The contractor will make every effort to attend meetings 
that were not in the official schedule. 
 
If enough warning is given, meetings will be rescheduled.  
Rescheduling of meeting should be coordinated with the 
program manager’s staff.  

Contractor Responsibility Ensure the individual attending the meeting has the ability 
to represent the interests of the contractor as a voting 
member. 

Customer Responsibility The customer must determine which meetings the 
contractor needs to attend.  Once the meetings have been 
identified, then the government must work with the 
contractor to develop a schedule that both parties can 
agree to. 
 
The government will notify the CTR if the contractor has 
failed to attend any scheduled or rescheduled meetings.  A 
copy of the notification will be sent to the contractor.  It is 
not necessary to notify the CTR of rescheduled meetings. 

Frequency Monthly 
Measurement Techniques The government will notify the CTR and the contractor 

when the contractor has failed to attend a scheduled 
meeting.  If there are any challenges from the contractor, 
the CTR will compare the schedule of meetings against 
the minutes for those meetings.  The meeting minutes will 
contain the attendees.  If no contractor representatives 
were in attendance, then the challenge will not be 
accepted.  
 
If in the opinion of the CTR and program manager, the 
contractor has provided enough warning to reschedule a 
meeting, that particular meeting will not be counted in the 
SLA computations.   

Reports 1. Meeting schedule 
2. Meeting minutes 
3. Notification from the government of missed meetings 
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Person Responsible for 
Verification 

The CTR is responsible for verification. 

Performance Category 13.4  Change Management Processes 
Performance Metric Before a software or hardware change (modification, 

upgrade, new version, updated hardware, etc…) is 
implemented, it must first be approved by the change 
review board.  Maintaining control of software and 
hardware configuration changes is essential to the 
ensuring architectural conformity, disaster recovery, 
compatibility with other software, interoperability, and 
quality assurance. 
 
The metric will be the percentage of hardware and 
software changes that were executed in accordance with 
the change management procedures. 

Threshold Levels The thresholds for abiding by the change management 
procedures is as follows: 

Enhanced – Premier: 95% 
Formula The number of hardware and software changes that were 

executed in accordance with the change management 
processes divided by total number of changes executed. 

Assumptions All change review board meetings are documented to 
capture those changes that have been approved, and 
disapproved.   
 
All configuration changes will be documented. 

Contractor Responsibility Ensure change management procedures are followed.  If 
changes are needed before the board can convene, the 
contractor will work with the government to gain 
approval.   

Customer Responsibility The government must hold change review boards often 
enough to support change requirements.  If changes are 
occurring at a rate that is not supported by the change 
review boards, the government will appoint a 
representative to review and approve urgent changes. 

Frequency Monthly 
Measurement Techniques The CTR will review the configuration documentation and 

the system and monitoring logs to ensure that only 
approved changes were installed on the system. 

Reports 1. System logs 
2. Configuration documentation 
3. Change Review Board Meetings 
4. Monitoring logs 

Person Responsible for The CTR is responsible for verification. 
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Verification 
Escalation Procedures The COR will resolve any disputes regarding contractual 

interpretations, or categorization of document errors. 
Contractual Exceptions None 
Penalties/Rewards Minor delivery penalty: No monetary penalty 

• Any threshold values were exceeded. 
 
Minor accuracy, attendance, and change management 
penalty: 5% monthly rate 
• Any threshold values were exceeded. 
 
13.0 Major delivery penalty: 10 % monthly rate 
• More than 3 minor penalties within the year 
• Daily reports exceeding 3 days 
• Weekly reports exceeding 4 days 
• Monthly reports exceeding 7 days 
• Quarterly reports exceeding 7 days 
• Annual reports exceeding 10 days 
 
13.1 Major accuracy penalty: 20 % monthly rate 
• More than 3 minor penalties within the year 
• More than 1 significant error in one month 
 
13.2 Major license penalty: 25% monthly rate 
• Any threshold values were exceeded. 
 
13.3 Major attendance penalty: 10% monthly rate 
• More than 3 minor penalties within the year 
• Less than 80% attendance in one month 
 
13.4 Major change management penalty: 20% 
• More than 3 minor penalties within the year 
• Less than 80% adherence to the policy in one month 
 
Any malicious or intentional inaccuracies in required 
documentation directly affecting SLAs may result in 
termination of the contract.  
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APPENDIX B 

A. PURPOSE OF QUESTIONNAIRE 

The purpose of this questionnaire is to determine if the readers believe that the use 
of service level agreements can improve software quality and post-production support for 
applications. 
 

B. INSTRUCTIONS 

This questionnaire consists of four sections.  The first section is a brief 
background discussion on how service level agreements can contribute to software design 
and post-production support.  The second section discusses the format of an effective 
service level agreement.  The third section is a case study illustrating a real world 
scenario along with a service level agreement for availability.  The last section consists of 
a questionnaire.  Each statement has a corresponding Likert scale from 1 to 5, with a 1 
representing strong disagreement and a 5 indicating strong agreement.    
 

C. INTRODUCTION 

Information technology has become pervasive in our daily business.  The rapid 
growth of the Internet has lead to an increased reliance on interconnected computer 
systems to provide critical operational services from business processes to coordinating 
decentralized command and control systems.  

 As advances in technology encourage the adoption of new ways of conducting 
business, management and end users have become increasingly reliant on the underlying 
technology.  Systems that used to be managed by functional experts are now totally 
reliant upon information technology to function.  These business critical, IT intensive 
systems are becoming more complex, and difficult to manage, yet the performance 
expectations from management and the end-users continue to increase.  

Unfortunately, despite software’s increased importance to organizations the 
quality of software is still lacking.  There are numerous examples of software errors 
leading to major incidents, including the Denver airport baggage handling system, the 
Ariane 5 explosion, the Mars Sojourner, and the Mars Climate Orbiter.   
 
D. CHALLENGES IN OBTAINING QUALITY SOFTWARE 

In his article “Why Software is so Bad”, Charles Mann offers a number of reasons 
why the quality of software tends to be poor.  Mann states that software quality is 
actually getting worse rather than better, despite the advances in software engineering 
theory, processes, methodology and tools.  Poor software quality can be attributed to the 
following: 
• The perceived need to hurriedly develop and market a software-based product to be 

the first to market; such an approach can result in software artifacts that contain 
software flaws and are difficult to test and maintain. 
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• Software is generally poorly designed.  This is due in part to the poor training 
programmers have received, and the fact that as programmers bounce code off of the 
complier to fix errors, they often deviate from the original designs and end up with 
sloppy, poorly documented code.  

• Testing software often requires a different skill set that programming.  Often the 
personnel are not properly trained, or are not given the time to test properly.   

• Software is not designed for testing.  The designers did not utilize component level 
design or software architecture, the software’s modularity and corresponding 
interconnectivity was not well defined, and the application was not internally coded 
to throw exceptions, or write faults to a log. 

• Software fails to meet the customer’s expectations.  The software developer must 
looks at requirements from the user’s perspective, the business’ perspective, and the 
programmer’s perspective.  Too often the user is not a part of the requirement 
elicitation process.   

• Requirements churn contributes to the poor reliability of software, as designs are 
altered, interfaces added, unplanned modules are glued together, with little 
consideration given to the additional resource constraints.  

• Post-production support plays a large role in the success of an application, but the 
software developers do not normally address it in their planning. 

• The application needs to be hosted in an environment that supports the application’s 
functionality. Software quality can be adversely affected by lack of resources within 
the server, and by network and bandwidth constraints.   

• Maintaining software without proper documentation or configuration information is 
very difficult and expensive.  Additionally, without proper documentation it is 
difficult to compare the original requirement specifications to the product throughout 
the software’s lifecycle. 

  
There have been a number of initiatives proposed to improve the quality of 

software through its lifecycle.  Most approaches believe that quality must be designed 
into a product.  Approaches such as formalizing specifications, use of development 
standards and models, and utilizing architecture for quality analysis support this 
approach.  Others believe that the answer lies in creating languages that are designed to 
prevent common errors such as Ada, or utilizing rigorous testing and third party 
debugging tools.   

If there are numerous approaches to developing quality software, why are there 
still problems?  Part of the answer lies with the lack of meaningful dialog between the 
developers, end-users and management.  Unrealistic completion dates, requirements 
churn, poor requirements elicitation, and lack of proper resources all lead to development 
problems.  Additionally, just because standards exist for developing software does not 
mean that they are being used.  In many cases adherence to developmental standards 
requires additional training, additional development time, and additional funds.   
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E. SLAS: WHAT THEY ARE AND HOW THEY ARE USED 

One approach to improving software quality and post-production support is 
through the use of service level agreements (SLAs). Service Level Agreements (SLAs) 
have long been used as a contractual mechanism to specify the means to measure whether 
requirements were performed as desired.  SLAs specify the metrics to measure adherence 
to specific requirements (usually contained in the Statement of Work).  SLAs are 
traditionally used with outsourcing contracts, but more organizations are using them 
internally to measure the level of service that the IT department is delivering.   In his 
article Mann advocates the use of litigation to force organizations to develop software in 
a more responsible manner.  SLAs are contractually binding, and can be used in a similar 
fashion, but without the need for excessive legislation.   

SLAs are typically written from the end-users perspective and represent what 
levels of service or performance are acceptable to the end-user and what is attainable by 
the developer or provider.  However, the levels of performance identified in the SLA 
must also ensure that the underlying business processes are supported.  To ensure that all 
perspectives are taken into account, teams are normally formed to develop SLAs.  The 
various stakeholders are represented and the levels of performance are identified, 
quantified, and agreed upon.  The team must resolve a number of issues such as 
determining the business impact of the various level of service need to be identified, 
identifying metrics that are meaningful and measurable, assessing technical capability, 
identifying costs associated with the various levels of service, determining benefits of the 
service, and the team must develop SLAs that are agreeable to all of the stakeholders.  
The group development of SLAs help the various stakeholders understand each others 
bias, viewpoints, concerns, terminology, and perceptions.  That understanding is essential 
in requirements determination. 

Service level agreements assist in the development of quality software and post-
production support in the following ways: 
• Involving the end-users and business process owners in the SLA development process 

helps to better define requirements by converting non-functional requirements such as 
performance into quantitative metrics.   

• Incorporating quality metrics into the SLAs ensures that the developers are focusing 
on quality early in the development process, where it can be effective.   

• Developing the SLAs forces the team to evaluate the constraints on the project in 
terms of personnel, resources, funds, technical capability, and time.   

• SLAs define specific performance parameters that are required to support a business 
process.  As such, every SLA performance requirement must be analyzed, and 
validated to ensure that they are meaningful, cost-effective, and that they add to 
improving overall performance.  

• SLAs help institutionalize a change review board to continually review the SLAs, 
evaluate new requirements and ensure maintenance actions do not affect the SLAs. 
The change review board not only ensures that changes are tested against 
performance thresholds, but they can also be used to ensure the changes conform to 
architectural constraints, and that they are properly documented. 
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• SLAs also require monitoring to ensure that quality standards or thresholds are being 
adhered to.  Monitoring the application and host environment provides feedback on 
performance quality and identifies areas that may need improvement.   

• Monitoring of the network, hardware, operating system, and the application not only 
assist in problem resolution, but trend analysis can indicate potential problems before 
they occur.  Software quality cannot be measured without proper monitoring.   

• By defining meaningful and measurable metrics in the SLAs, the end-users, business 
managers and programmers have realistic quantifiable requirements that can be used 
to determine architecture and design. 

• SLAs set user expectations through defined performance levels.  By explicitly stating 
acceptable performance levels, SLAs prevent expectation creep.   

• SLAs help drive the managerial oversight to ensure that quality processes are adopted 
and adhered to. 

• SLAs concerning application availability drive numerous quality initiatives in both 
the design and post-production support.  Reliability constraints may drive code reuse, 
application monitoring, complexity analysis, extensive testing, efficient problem 
resolution procedures, a good backup plan, and disaster recovery.   

• SLAs concerning maintainability could drive a well-defined and documented 
architecture that would promote design consistency through guidelines and design 
patterns, as well as accurate configuration management.  

• SLAs can be drafted to include numerous security issues such as protocols and ports 
utilized, interface with third party products, encryption, VPNs, and tunneling. 

 
SLAs can play an important role in addressing software quality.    SLA thresholds 

drive many of the quality solutions that were discussed previously.  SLAs established 
early in the development cycle can be incorporated into the overall design and 
architecture. SLAs applied to the post-production phase, such as security SLAs ensure the 
application is being supported in a quality host environment. SLAs carry sufficient 
weight through penalties and incentives to focus management attention on quality issues. 
 
F. SLA FORMAT 

Service level agreements have many formats depending upon how they are used. 
Internal SLAs between management and the IT department can be more informal because 
many of the procedural issues are stated elsewhere.  SLAs involving external service 
providers need to be more formal. 

SLAs serve as a mechanism to notify all parties of services that will be 
performed, performance expectations, responsibilities of all parties, penalties for non-
performance, and SLA resolution procedures.  SLAs also define the oversight and 
interaction between the program managers and the service provider. 

SLAs are often used in conjunction with a Statement of Work (SOW), which 
provides the actual requirements. The SLAs provide the metrics to measure whether the 
requirements are being met.  Most activities find it easier to keep the two documents 
separate, as many requirements will not have SLAs associated with them.  SLAs should 
concentrate on the business critical measurements.  The costs and managerial oversight 
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needed to track and verify whether SLAs are being met can quickly become 
overwhelming if too many SLAs are mandated. 
  
G. CASE STUDY 

A Navy activity has just completed a cost-benefit analysis study involving server 
consolidation and hosting services.  They have decided to consolidate their servers and 
have them hosted by an external service provider (ESP).  The ESP has state-of-the-art 
facilities, a highly knowledgeable staff, and can provide the needed services at a lower 
cost than the Navy activity is currently paying. 

The same cost-benefit study recommended that the Navy activity retain 
responsibility for the application maintenance.  It was decided that the current staff would 
be more responsive and flexible than a contractor.  Additionally due to the complex 
reach-back issues with numerous legacy systems it was decided that the company could 
not loose the tacit knowledge the Navy employees possessed.  

The Navy activity met with their current sysadmin staff, program managers, and 
contractors that they hired to advise them on hosting services.  After numerous meetings, 
they generated the requirements they felt were necessary to support their applications.  
They also looked at the standard SLAs that the various External Service Providers (ESP) 
used.  After review, they decided that the ESP SLAs were too vague, and did not provide 
the service levels they felt they needed. 

The Navy activity then formed a group to generate SLAs for each application.  
The group consisted of various users, the program manager’s staff, the business process 
owner, and participants from the various ESPs that were interested in participating.  They 
decided to develop template SLAs that would provide the foundation that all of the 
applications would use, but that were easily tailored to meet the business needs of each 
application.   

The Navy activity was also aware of the fact that they were soon going to go 
under the Navy/Marine Corps Intranet (NMCI).  NMCI is a contract that the Department 
of the Navy has with EDS for desktop and infrastructure management.  The Navy activity 
wanted to use end-to-end SLAs (measuring the performance from the client to the 
server), but could not, because the ESP did not control the client piece, the BAN/WAN, 
or connectivity from the ESP’s Internet Service Provider to the servers.  Additionally 
some of the applications were distributed and had to use the Internet to access data.  As 
such, the team scoped the SLAs to include the host environment only.  

The team developing the SLAs identified 14 service areas that they felt should be 
incorporated into the SLAs.  The availability of the compute environment was the first 
service area they addressed.  The team debated long and hard attempting to define 
availability.  Since the application itself was the Navy’s responsibility, the host 
environment then consisted of the operating system and monitoring software, the server, 
the host environment network, and the firewall.  Ultimately they decided that availability 
should be defined in terms of an application’s ability to compute.  Defining the 
availability in these terms not only captured hard downtime (i.e., system crashes), but it 
also allowed them to determine resource thresholds that would impact the application’s 
performance (soft crashes where application performance was degraded enough that it 
did not produce the desired utility).  This approach was needed since response time 
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measurements from the client to the server were not meaningful, as the service provider 
did not control the entire infrastructure.   

The team felt that other service areas that should be covered by SLAs are 
restoration of service, help desk services, problem resolution, request management, 
security management, software maintenance, maintenance schedules, migration service, 
backups, batch services, technology refresh rates, administration, and customer 
satisfaction.  Many of the service areas had sub-sections that dealt with specific areas 
within the larger service area.  For example, help desk services included sub-sections for 
help desk availability, initial feedback (monitoring time when user is informed the 
trouble ticket was received and an estimated resolution time was given), accuracy of 
problem resolution, customer satisfaction, accuracy of trouble ticket reports, and 
occurrence of repeat problems.   

The SLA that the team developed for host environment availability is presented 
below.  The intent was that this SLA would serve as a template for other applications.  
The SLA would cover most applications, but the SLAs could be modified if needed. 
 
H. SAMPLE SLA 

 
Service Name SLA 1.0:  Compute Service Availability 
Service Description  Availability measures the capability of an end-user to 

access and fully utilize an application (according to 
specifications) over a period of time.  Availability is 
usually expressed as a percentage of time that the system 
was available for use divided by the agreed upon hours of 
operation. The time period that an end-user cannot utilize 
the application is considered ‘downtime’. 
 
Availability metrics are generally intended to be end-to-
end, reflecting availability from the end users perspective.  
However, these SLAs only cover the host environment, so 
availability metrics will be restricted to the host 
environment only, and will not apply to the client piece or 
the connectivity from the client to the host environment 
firewall. 
 
Downtime can also be difficult to define.  This SLA will 
concentrate on an application’s opportunity to compute.  
The thresholds will contain metrics to ensure that the 
application has sufficient resources to operate to 
specifications.  If the compute environment is not 
operating at a certain level of efficiency, the application 
performance suffers.  As a result, if certain resource 
thresholds are not met, the period of time the resources do 
not meet the thresholds will count as downtime. 
 



359 

Response time is another element of availability that must 
be addressed.  The SLA is limited to the host 
environment, so application response time will be 
calculated from the time a server receives application 
input until it provides the correct output.  It is necessary to 
develop a program that resides on the server in order to 
generate the information necessary to measure response 
time (this is often referred to as synthetic transactions).  
The program will test key application functionality at 
random times and measure the response time from when 
the input is initiated until the desired output is correctly 
received.  Response times will apply to premier services 
only.  Development of the program will be negotiated as a 
separate line item if the program wants the service 
provider to perform that function. 

Reason for Measuring Availability is a measure of quality.  The program 
manager and the contractor need to constantly monitor the 
infrastructure, hardware and system software to measure 
the effectiveness of the hardware and software in 
supporting the application.  Diligent monitoring will 
detect early signs of problems that may require 
maintenance action.   
 
The efficacy of the application support has direct business 
impacts.  When the application is not available any 
business related to that application stops; opportunities are 
missed, business processes are impacted, and deadlines 
can be missed.   
 
The program manager must identify a target availability 
threshold and be able to justify expenses associated with 
it.  This will involve determining the business impact of 
lost service.  The contractor must evaluate the 
infrastructure to determine if it is possible to support the 
availability, or if redesign or additional redundant or high 
availability equipment is needed.   
 
The host environment cannot be designed, implemented, 
or managed unless an availability threshold is established.  

Time Frame Derived by the contracted number of support hours. 
The Default is 24x7x365.  Scheduled maintenance time 
that is within the maintenance window, and does not 
exceed the agreed upon maintenance time frames will not 
be included in availability computations. 
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Additionally, scheduled maintenance involving the 
application (i.e., granting root access to maintenance 
personnel to perform an upgrade) will not be considered 
down time. 
 
The Maximum "Available" time will be determined from 
the hours of support that were contracted.  
Example (1): Hours of Support = 24 x 7. The maximum 
"available" time in a 30 day month is 30 x 24 x 60 = 
43,200 minutes. 
 
Example (2): Hours of Support = 9 x 5. The maximum 
"available" time in a month with 21 work days is:  
21 x 9 x 60 = 11,340 minutes. 
 

Scope This is an end-to-end metric from the host environment  
firewall to the application.  It includes the hardware and 
the software for the firewall and server farm network, in 
addition to the hardware and software necessary to support 
the application.  It does not apply to the application itself. 

Performance Category 1.0 Host Environment Availability 
Performance Metric Availability is expressed as a percentage of the time that 

an application is fully functional divided by the total time 
encompassed in the support hours. 

Threshold Levels Availability thresholds are as follows: 
Essential Services:  99.50%  
Enhanced Services:  99.90%  
Premier Services:  99.95%  

 
In this SLA, availability is not only dependent upon the 
individual components that comprise the infrastructure 
(servers, network and firewall); it also addresses 
application and data availability from a security 
perspective. 
  
The following thresholds apply to resource utilization and 
network efficiency.  If these thresholds are violated, then 
the application is considered ‘down’, and will count 
against availability: 
 
Server Measures: 
CPU Utilization: 80% sustained for over 1 hour.  Not to 
exceed 90% for more than 2 polling cycles (5 minute 
intervals). 
Frequency of Failure: More than 3 service interruptions in 
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one day. 
CPU run queue length: 3 
Disk Utilization: 90% 
Disk Response Time: .25 second 
Disk Average Queue Length: 3 
Disk I/O rate: 100 ms avg (Specific to hardware and 
configuration). 
Swap space availability: 90% of defined space 
Memory paging: 5 per second 
 
Network Measures: 
Data Delivery Rate: 99.95% 
LAN Latency (one way): 70 ms  
LAN Packet Collisions: More than 7% of packets 
transmitted (average based on 1 hour interval). 
Bandwidth Availability: 85% of defined bandwidth 
Ethernet Segment Utilization: Less than 30% 
 
Security Related Measures: 
If application performance is degraded due to an intruder 
attack, virus, worm, or security breaches previously 
identified, the application will be considered “down”.  
This includes the time that the application is affected 
during efforts to correct the violation. New attacks that 
have no previous history or signature will not be counted 
as “down time” against availability.   
 
Response Time: Will be depended upon the types of 
transaction that are being performed.  If all transactions 
are similar, one threshold value can be determined, if they 
are all different, the thresholds should be specific to the 
transaction.  The time to generate a simple report might be 
1 second. 
 
Another area that we may want to include in the 
availability SLA is frequency of failure. This represents 
service interruption.   
 
All hardware errors affecting the application are 
considered ‘downtime’, and will be counted against 
availability. 
 
Application response time is dependent upon the type of 
functionality that is processed by the application.  The 
SLA will specify the key functional processes and the 
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corresponding response time expected.  The processes and 
response times will be negotiated on an application-by-
application basis.   
 

Formula Availability = (total uptime minutes) / (total uptime 
minutes + total downtime minutes) * 100 

Assumptions Downtime starts with the generation of a trouble ticket, or 
when a threshold violation is captured by the monitoring 
tools.  Problems relating to the firewall, network, server or 
system software will count towards downtime.  A review 
of the trouble tickets will verify that the downtime is 
properly assigned.   
 
Downtime attributed to application errors will not be 
included in the computation.  Downtime that is a direct 
result of government actions will not be included in the 
computation.  An example would be rebooting the system 
following an application update. 
 
Errors attributed to the client side portion of the compute 
environment will not be charged against the server farm 
reliability calculations. 
 

Contractor Responsibility Adopt and implement an industry-standard software 
solution for automatically polling and calculating compute 
service availability. 
 
Monitor compute services for earliest identification of 
outages. 
 
Take appropriate actions to correct deficiencies. 

Customer Responsibility The customer is responsible for prompt notification of any 
suspected compute service outages. 

Frequency Monitoring is conducted during scheduled support hours.  
Report frequency is monthly. 

Measurement Techniques The server will be ’Pinged‘ from a management server 
every 5 minutes. Failure by the server to respond will start 
the service outage time. The time between the first 
’Failed‘ Ping and the first successful Ping after repair will 
be reported as Downtime. 
 
Approved industry standard monitoring tools such as 
Tivoli® and Open View® will be used to monitor 
resources.  Operating system logs will also be used to 
determine compliance. 
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Critical threshold violations will be considered downtime.  
Violations will be considered when a threshold is violated 
for three consecutive monitoring cycles.   
 
Example: Server A polled at 10:40, 10:45 and 10:50 and 
does not respond to the 10:45 poll but does respond at 
10:40 and the 10:50.  This would be calculated as 5 
minutes of downtime. 
 
The downtime will be reviewed and adjusted by a 
contractor representative to exclude all outages from 
maintenance windows or outside the scope of service: 
• All planned outages 
• All outages due to application failures  

 
Adjusted Compute Service Availability is then 
recalculated.  The new formula would be as follows: 
 
Availability = (total uptime minutes – downtime outside 
of scope) / (total uptime minutes – downtime outside of 
scope + total downtime minutes) * 100 
 
Example Calculation: 
Server contracted for 7 x 24 hour support. Two outages 
occurred during a month with 30 days: (1) 100 minute 
application outage and (2) a 360 minute system failure 
occurred for a total downtime of 460 minutes. Availability 
is reported as: 
 
Reliability =  (43,200 – 100) / ((43,200 – 100) + 360) * 
100 = 99.17% 

Reports 1. Monitoring Reports: Weekly 
2. Trouble Tickets: Weekly 

Person Responsible for 
Verification 

The CTR will be responsible for reviewing the monitoring 
reports and trouble tickets to determine compliance with 
the SLAs.   

Escalation Procedures The CTR will be notified if the application is not 
accessible or functioning by the following time frames: 
Essential Service – after 30 minutes 
Enhanced Service – after 15 minutes 
Premier Service – after 10 minutes 
 
If there are any disagreements concerning whether 
downtime should be charged to the application, or the host 
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environment, the CTR will make the decision.  
Disagreements can be escalated to the COR. 

Contractual Exceptions Availability does not include scheduled maintenance 
downtime within the maintenance window.  

Penalties/Rewards Minor penalty: 10% of monthly rate 
• Threshold values exceed agreed upon rates. 

 
Major violation: 25% monthly rate 
• More than 3 minor penalties during the year 
• Any availability less than the following:   

Essential Services:  98.0% available 
Enhanced Services:  Target:  99.0% available 
Premier Services:  Target:  99.5% available 

• More than 2 major violations will force escalation 
procedures between the COR and the contractor.  
Following escalation procedures additional missed 
targets may be cause for termination. 

 
 
I. QUESTIONNAIRE: 

 
1. How does your job relate to information technology? 

CIO Staff 
Software Developer 
SysAdmin 
Project Manager 
IT User 

2. How many years have you been working in the IT field? 
0-2  2-4 4-6 6-10 Greater than 10 

 
The following questions are based on a Likert scale.  The scale is as follows: 
1 = strongly disagree 2 = mildly disagree 3 = neutral 4 = mildly agree 5 = strongly agree 
Annotate the number corresponding to your answer next to the statements. 
 
3. Use of SLAs will improve software quality throughout the application’s lifecycle. 
4. Use of SLAs will improve software quality in the development stage. 
5. Use of SLAs will improve the quality of hosting services for applications. 
6. Use of SLAs will improve the maintenance of software. 
7. Service level agreements will improve requirements determination. 
8. Use of SLAs will improve software security. 
9. Service level agreements will facilitate the development of a change review 

board. 
10. Service level agreements will ensure rigorous reviews of software changes to 

ensure quality is maintained. 
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11. Service level agreements will improve configuration management. 
12. Service level agreements will improve the management of IT intensive systems. 
13. Service level agreements will help to ensure that the IT system supports its           

underlying business process. 
14. Service level agreements help manage customer’s expectations. 
15. End-users are more willing to accept a system its performance parameters are well 

defined within a SLA. 
16. Use of SLAs will assist in the source selection of potential service providers. 
17. The format of the SLA was easy to understand. 
18. The format of the SLA provided enough information to specify the means to 

measure whether a requirement was performed as desired. 
19. The format of the SLA was detailed enough to determine services to be 

performed, performance expectations, and responsibilities of all parties.  
20. The format of the SLA provides a template that could be easily modified to 

support any application. 
21. The SLAs would make source selection of potential service providers easier. 
22. The administrative burden of managing the SLAs would outweigh their benefit. 
23. The difficulty in developing the SLAs would be too cumbersome for 

organizations. 
24. SLAs would not be developed because the people with the knowledge base to 

develop the SLAs were outsourced, or are not available. 
25. Enforcing penalty clauses/withholding incentives is too difficult. 
26. Service level agreements will not resolve the quality issues associated with 

rushing software to market. 
27. Comments:  Please group comments into the following categories: 

a. Effectiveness of using SLAs in software acquisition. 
b. Usefulness of the SLA format. 
c. SLAs contribution to software quality. 
d. SLAs contribution to post-production support.  
e. SLAs contribution to lifecycle management. 
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APPENDIX C 

 
1. How does your primary job function relate to information technology?  

CIO Staff   20.9% 
Software Developer               9.3% 
System Administrator             18.6% 
Project Manager  37.2% 
IT User   14.0% 

 
2. How many years have you been working in the IT field? 

0-2     4.7% 
2-4     4.7% 
4-6    11.6% 
6-10               20.9% 
Greater than 10  58.1% 

 
3. Do you have any previous experience working with SLAs? 

No    32.6%  
Less than 6 months               9.3% 
6 Months – 1 Year              11.6% 
More than 1 Year  46.5% 

 
The following questions are based on a Likert scale.  The scale is as follows: 
1 = strongly disagree 2 = mildly disagree 3 = neutral 4 = mildly agree 5 = strongly agree 
Annotate the number corresponding to your answer next to the statements. 

 
4. You are satisfied with the software quality in the applications you are familiar 

with. 
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Question 4
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Mean:   3.2381  Median: 3  
Standard Deviation: 0.8782  Mode:  4 
T-Value:  1.7571  P-Value: 0.0864 
Statistically Significant: No 

 
5. Management is concerned with post-production support of software. 

 

Question 5

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

 
 

Mean:   3.5238  Median: 4  
Standard Deviation: 1.1096  Mode:  4 
T-Value:  3.0595  P-Value: 0.0039 
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Statistically Significant: Yes 
 

 
6. The format of the SLA was easy to understand. 
 

Question 6
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Mean:   3.5349  Median: 4  
Standard Deviation: 0.9089  Mode:  4 
T-Value:  3.8589  P-Value: 0.0004 
Statistically Significant: Yes 
 

 
7. The format of the SLA provided enough information to specify the means to 

measure whether a requirement was performed as desired. 
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Question 7
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Mean:   3.8140  Median: 4  
Standard Deviation: 0.8239  Mode:  4 
T-Value:  6.4781  P-Value: <0.0001 
Statistically Significant: Yes 
 

 
8. The format of the SLA was detailed enough to determine services to be 

performed, performance expectations, and responsibilities of all parties.  
 

Question 8
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Mean:   3.7907  Median: 4  
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Standard Deviation: 0.7419  Mode:  4 
T-Value:  6.9889  P-Value: <0.0001 
Statistically Significant: Yes 

 
 

9. Use of SLAs will improve software quality in the development stage. 
 

Question 9
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Mean:   3.6047  Median: 4  
Standard Deviation: 1.0268  Mode:  4 
T-Value:  3.8616  P-Value: 0.0004 
Statistically Significant: Yes 

 
 

10. Use of SLAs will improve the quality of hosting services for applications. 
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Question 10
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Mean:   3.9048  Median: 4  
Standard Deviation: 0.9055  Mode:  4 
T-Value:  6.4753  P-Value: <0.0001 
Statistically Significant: Yes 

 
 

11. Use of SLAs will improve the maintenance of software. 
 

Question 11

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

 
 

Mean:   3.6977  Median: 4  
Standard Deviation: 0.8319  Mode:  4 
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T-Value:  5.4991  P-Value: <0.0001 
Statistically Significant: Yes 

 
 

12. Service level agreements will improve requirements determination. 
 

Question 12
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Mean:   3.6512  Median: 4  
Standard Deviation: 1.0439  Mode:  4 
T-Value:  4.0904  P-Value: 0.0002 
Statistically Significant: Yes 

 
 

13. Use of SLAs will improve software security. 
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Question 13
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Mean:   3.3488  Median: 4  
Standard Deviation: 0.9731  Mode:  4 
T-Value:  2.3508  P-Value: 0.0235 
Statistically Significant: Yes 

 
14. Service level agreements will facilitate the development of a change review 

board. 
 

Question 14
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Mean:   3.6190  Median: 4  
Standard Deviation: 0.9615  Mode:  3 



375 

T-Value:  4.1725  P-Value: 0.0002 
Statistically Significant: Yes 
 
15. Service level agreements will ensure rigorous reviews of software changes to 

ensure quality is maintained. 
 

Question 15
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Mean:   3.4186  Median: 3  
Standard Deviation: 0.9570  Mode:  4 
T-Value:  2.8683  P-Value: 0.0064 
Statistically Significant: Yes 

 
16. Service level agreements will improve configuration management. 
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Question 16
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Mean:   3.6279  Median: 4  
Standard Deviation: 0.8735  Mode:  4 
T-Value:  4.7137  P-Value: <0.0001 
Statistically Significant: Yes 

 
17. Use of SLAs will improve software quality throughout the application’s lifecycle. 
 

Question 17
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Mean:   3.5714  Median: 4  
Standard Deviation: 0.8874  Mode:  4 
T-Value:  4.1732  P-Value: 0.0002 
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Statistically Significant: Yes 
 

18. Service level agreements will improve software program management. 
 

Question 18
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Mean:   3.7907  Median: 4  
Standard Deviation: 0.8326  Mode:  4 
T-Value:  6.2273  P-Value: <0.0001 
Statistically Significant: Yes 
 
19. Service level agreements will help to ensure that the IT system supports its 

underlying business process. 
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Question 19
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Mean:   3.8605  Median: 4  
Standard Deviation: 0.8614  Mode:  4 
T-Value:  6.5505  P-Value: <0.0001 
Statistically Significant: Yes 
 
20. The use of monitoring tools will improve software quality. 

 

Question 20
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Mean:   3.7442  Median: 4  
Standard Deviation: 0.9535  Mode:  4 
T-Value:  5.1179  P-Value: <0.0001 
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Statistically Significant: Yes 
 
21. Service level agreements help manage customer’s expectations. 

 

 
 

Mean:   4.1395  Median: 4  
Standard Deviation: 0.8614  Mode:  4 
T-Value:  8.6750  P-Value: <0.0001 
Statistically Significant: Yes 
 
22. SLAs will help program managers focus on business critical measurements. 
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Mean:   3.7907  Median: 4  
Standard Deviation: 0.7733  Mode:  4 
T-Value:  6.7049  P-Value: <0.0001 
Statistically Significant: Yes 

 
23. In a contract for application development, a SLA for availability will focus 

management attention on software maintainability, reliability and security early in 
the design stage, where it can be more easily implemented. 
 

 
 

Mean:   3.6190  Median: 4  
Standard Deviation: 0.9615  Mode:  3 
T-Value:  4.1725  P-Value: 0.0002 
Statistically Significant: Yes 
 
24. The SLAs would make source selection of potential service providers easier. 
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Question 24
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Mean:   3.4884  Median: 3  
Standard Deviation: 1.0322  Mode:  3 
T-Value:  3.1027  P-Value: 0.0034 
Statistically Significant: Yes 

 
25. The administrative burden of managing the SLAs would outweigh their benefit. 

 

Question 25
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Mean:   2.6279  Median: 2  
Standard Deviation: 1.1344  Mode:  2 
T-Value:            -2.1509  P-Value: 0.0373 
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Statistically Significant: Yes 
 

26. The difficulty in developing the SLAs would be too cumbersome for 
organizations. 
 

Question 26
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Mean:   2.5476  Median: 2  
Standard Deviation: 1.0170  Mode:  2 
T-Value:            -2.8828  P-Value: 0.0062 
Statistically Significant: Yes 

 
27. Service level agreements would not be developed because the people with the 

knowledge base to develop the SLAs were outsourced, or are not available. 
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Question 27
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Mean:   2.9535  Median: 3  
Standard Deviation: 0.9500  Mode:  3 
T-Value:            -0.3210  P-Value: 0.7498 
Statistically Significant: No 

 
28. Enforcing penalty clauses/withholding incentives is too difficult. 

 

Question 28
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Mean:   2.8837  Median: 3  
Standard Deviation: 1.0737  Mode:  2 
T-Value:            -0.7102  P-Value: 0.4815 



384 

Statistically Significant: No 
 
29. Service level agreements will not resolve the quality issues associated with 

rushing software to market. 
 

Question 29
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Mean:   3.5116  Median: 3  
Standard Deviation: 1.0550  Mode:  3 
T-Value:  3.1802  P-Value: 0.0028 
Statistically Significant: Yes 

 
30. Comments:  If you have any comments, please group them into the following 

categories: 
 

A. EFFECTIVENESS OF SLAS IN SOFTWARE ACQUISITION 

 
• As you said in the introduction, the presence of standards for developing software 
does not mean they are being used.  While, theoretically, a SLA would improve upon 
this, I believe we see too many instances today where SLAs are in use but fail to make 
this improvement, generally, in my opinion due to requirement changes.  I do believe, 
however, that concerted use of SLAs should be a major aid in all the areas you address 
(contribution to software quality, post-production support, etc.) 
• SLAs are only as effective as the people and organizations supporting them.  
Strong leadership, knowledge of the SW lifecycle and a good working relationship 
between the developer and the user can help to ensure quality.  SLAs are really nothing 
more than contracts, and they are only as good as the enforcement. 
• The flaw with the SLA used in the example is it only covers the host environment. 
The application is maintained by a separate organization and the network by a third 
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organization.  If the SLA covered the entire suite, application, host, network and client, 
then one person would be responsible for service to the end user.  With responsibility 
clearly in the hands of one organization, that organization can then be held accountable 
for the performance from the end users perspective. 
• Good guide.  Referential users better. 
• Probably minimal. 
• Most of the questions above are accurate only if the two parties involved, enforce 
the requirements identified in the SLA and the requirements are identified satisfactorily. 
• A well-written RFP is appropriate before the SLA comes into play, but the SLA 
can be utilized to manage the on-going process in that it will force the contractor to hire 
more qualified programmers or make sure their technicians providing service are more 
qualified so that they can meet the SLA/RFP requirements.  That will improve the entire 
cycle: requirements and demand. 
• Software vendors are not held accountable to agreed upon capabilities.  
Procurement seems to lean toward buying new and not holding vendors accountable. 
• I think that best use, as they will improve expectations. 
• Good measure of forcing everyone to document expectations will help. 
• Probably the standing. 
• SLAs are only as good as it is managed.   
• Not sure whether you are referring to custom development or off-the-shelf or 
both. 
• For custom applications, it is exceptionally effective. 
• In my opinion, effective metrics should be applied at the varying levels of a 
system (e.g. hardware, transport, OS, application, overall system). 
• Software acquisition is always difficult and developing an SLA for software 
acquisition is much harder than for hardware and other more tangible items.  A 
comprehensive SLA will never be able to capture all the minimum requirements needed 
and the problem that you face is the lack of flexibility in changing an SLA.  At the 
various stages in the acquisition reviews of the SLA and how the development of the 
software is progressing should be conducted and the flexibility of adjusting the SLA 
should be available. 

 
B. USEFULNESS OF THE SLA FORMAT 

 
• The format must be simple, transparent and readable.  The example given is clear 
and straightforward. 
• Anyone with a IT background enjoys them. 
• Format usually needs focusing and re-writing. 
• Appropriate for the requirements. 
• Any template or format will aid in a mutual focus on general topic areas.  
However, a mutual understanding of what each area really means would be key to its 
usefulness determination.  It will only be as good as the data/words actually input for 
each area. 
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• Provides a structured framework to ensure all areas are discussed, managed and 
evaluated. 
• Easy to understand. 
• SLAs should be used more often. 
• The format presented should be very useful in the creation of SLAs for 
operational support. I think SLAs for custom application development require a 
somewhat different SLA. 
• Very useful. 
• I like the clear definition of the SLA's intent; the method of calculation and 
definition of roles for the supplier and owner. 
 
C. SLAS CONTRIBUTION TO SOFTWARE QUALITY 

 
• SLAs can contribute to SW quality, but do not necessarily provide a silver bullet. 
• Too soon to tell. 
• If the company developing the applications is also responsible for the O&M of the 
application, then an SLA is a strong motivator for developing a quality system.  How 
ever if the developer just hands the application over to the O&M provider, the incentive 
to the developer is removed. 
• Can substantially improve quality from the get go. 
• Microsoft themselves have proven that software only needs to be slightly better 
than what is out there. Quality software will always be rare despite SLAs. 
• Great to prescribe document a set of criteria and/or data elements.  However, 
quality goes back to the commitment and support by the team.  Quality is not just setting 
a criteria/goal. 
• Am doubtful that it will have a significant impact. 
• Just OK, Not great or bad 
• Again, if someone is actually monitoring, then SLAs will work. 
• At face value an SLA could significantly improve software quality by providing 
stakeholders (including the CDA) a means to agree upon requirements and performance 
standards.  However, complete and accurate requirements gathering is the key to software 
quality and having the ability to track software adherence to identified requirements 
throughout the development process and production upgrades (cradle to grave) in 
addition to the SLA would provide for the best quality in the delivered product. 
• I think SLAs that mandate conformance to developmental standards and 
architectural guidelines can contribute immeasurably to software quality and usefulness 
over time. It is difficult to write an SLA that guarantees efficient coding. 
• SLAs are a good tool to monitor operations and control expectations and such. I 
believe an SLA is an awkward tool to monitor software quality. 
• A clear objective from the beginning will increase the probability of success for 
many application software-development activities.  However, a changing market, 
compressed delivery needs and requirements evolving late in the development cycle will 
generally force decisions to move forward at the expense of quality.  Furthermore, the 
cost of not having software may be greater than benefit of waiting until bugs are resolved. 
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• SLA could contribute to SQA but it is not the key contributor. 
• I don’t buy the basic thesis that SLAs would improve software quality.  There is 
too much separation between the worlds.  The software developers know nothing about, 
and never think about, the server/hosting environment that their applications will run on.  
It’s their job to write the code and “throw it over the wall” to the network administrators.  
Only one of the items in “why software is so bad” is related to running the application 
once it is programmed.  If you try to hold programmer’s feet to the fire re: a SLA for 
availability, they are only going to point fingers at the network administrators and say, 
“it’s their problem”.  The only person who cares about both worlds is the contract or 
program manager. 

 
D. SLAS CONTRIBUTION TO POST-PRODUCTION SUPPORT 

 
• SLAs can help to ensure that the proper post-production support is put into place, 
but they will not ensure success. 
• Critical. Must have. 
• Contribution will be dependent on the support being provided.  For example, 
maintenance of a program would depend on the complexity of program, the type of 
problem reported, the recommended solution to fix the problem, etc. 
• Probably none. 
• Better then average. 
• If post-production means maintenance and modification/enhancement, it is 
important to have an agreement that continues to ensure software quality as above. 
• Consider the following items in an SLA for monitoring production.  Blackout 
periods for servers during backup periods as your CPU utilization will probably be 100 
percent for a significant period of time.  This is a typical scenario that should not trigger a 
review action.  Another item would be system availability.  Never use ping to see if a 
server is available.  Always use telnet.  You can have a box in single-user mode that ping 
will detect but that server is not available for applications. 
• Ensures support from multiple ends, from software design to IT implementation. 
• SLAs definitely aid in the effective management of systems after delivery to 
production.  Too often the end of development is considered the end of system 
investment. 
• Most of the things that cause the application to go down are not application 
issues; their operating system and platform issues.  Windows 2000 is better than prior 
versions, but I still consider it a 6 x 24 operating system in a 7 x 24 world.  The things 
that cause our system to go offline are: server OS crashes, applying security patches that 
require servers to be rebooted, simple configuration tweaks that require rebooting etc…  
If the damn OS would stay running, then our applications would only be offline for 
scheduled maintenance.  UNIX systems are totally different: we ran Oracle on a Sun box 
for 5 years with no reboots. 
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E. SLAS CONTRIBUTION TO LIFECYCLE MANAGEMENT 

 
• Big benefit here.  SLAs can help to define what the level and requirements for post-
production support are intended to be. 
• Serious. Need to have. 
• It is a starting point for the project and can be used to verify successfully meeting 
customer documented expectations. 
• Probably none. 
• Just Ok, More monitoring and testing needs to be done. 
• Should be a staff that does exclusive SLA management.  SLAs are written but no one 
seems to really monitor them.  There is still "no consequence for actions". 
• SLAs theoretically could be used for configuration management and lifecycle 
maintenance assuming all parties involved maintain adherence to the SLA (to include 
change management of the SLA itself). 
• This gets really hard over time, particularly when software acquisition, and 
operational support responsibilities are divided between multiple vendors and 
government agencies, as in the case study. Not impossible, but hard to keep multiple 
SLAs synchronized. 
• SLAs contribute to the program lifecycle and should benefit development by having 
clearer requirements earlier in the cycle.  Effectiveness of their contribution, however, is 
typically a derivative of what the author knew at the time of their creation.  If a clear 
vision was available, SLA's will be effective.  If the vision is vague and constantly 
evolving, their contribution will be less effective. 
• It could be very helpful if it integrated in an automated software process 
environment. If not, it could be viewed as extra work only. 
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