
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2005-03

Improving software quality and management
through use of service level agreements

Gaines, Leonard T.
Monterey, California. Naval Postgraduate School .

https://hdl.handle.net/10945/10040

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited.

IMPROVING SOFTWARE QUALITY AND
MANAGEMENT THROUGH USE OF SERVICE LEVEL

AGREEMENTS

by

Leonard T. Gaines

March 2005

 Dissertation Supervisor James Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2005

3. REPORT TYPE AND DATES COVERED
Dissertation

 4. TITLE AND SUBTITLE: Improving Software Quality and Management
 Through Use of Service Level Agreements
6. AUTHOR: Leonard Troy Gaines

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Supply Systems Command
Mechanicsburg, PA

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In this dissertation we explore the use of service level agreements (SLAs) to improve the quality and management of software-
intensive systems. SLAs are typically used in outsourcing contracts for post-production support. We propose that SLAs be
used in software acquisition to support quality and process control throughout the lifecycle (requirements engineering through
post-production support) of a software-intensive system. The hypothesis was tested using two methodologies. The first
method explained how SLAs could be used throughout a system’s lifecycle to improve software quality. This concept was
validated by a survey of IT professionals. The results of the survey indicated that practitioners in the IT field felt that SLAs
could be used to improve overall quality in the development effort and in the end product. The second approach was to
develop actual SLAs for a specific lifecycle phase (post-production) to illustrate the concepts of SLAs and to demonstrate their
value as a quality control and management tool.

15. NUMBER OF
PAGES:

434

14. SUBJECT TERMS Software Engineering, Software Metrics, Software Management, Software
Acquisition, and Service Level Agreements

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

IMPROVING SOFTWARE QUALITY AND MANAGEMENT THROUGH THE
USE OF SERVICE LEVEL AGREEMENTS

Leonard T. Gaines

Commander, United States Navy
B.S., University of Nevada, 1986

M.S., Naval Postgraduate School, 2000
M.S., Industrial College of the Armed Forces, 2004

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

March 2005

Author: __
Leonard T. Gaines

Approved by:

______________________ _______________________
Bret Michael Dan Boger
Professor of Computer Science Chairman of Information Sciences
Dissertation Supervisor
Committee Chairman

______________________ _______________________
John Osmundson Man-Tak Shing
Professor of Information Sciences Professor of Computer Science

Rex Buddenberg
Senior Lecturer Information Sciences

Approved by: __
 Peter Denning, Chairman, Department of Computer Science

Approved by: __

Julie Filizetti, Associate Provost for Academic Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In this dissertation we explore the use of service level agreements (SLAs) to

improve the quality and management of software-intensive systems. SLAs are typically

used in outsourcing contracts for post-production support. We propose that SLAs be

used in software acquisition to support quality and process control throughout the

lifecycle (requirements engineering through post-production support) of a software-

intensive system. The hypothesis was tested using two methodologies. The first method

explained how SLAs could be used throughout a system’s lifecycle to improve software

quality. This concept was validated by a survey of IT professionals. The results of the

survey indicated that practitioners in the IT field felt that SLAs could be used to improve

overall quality in the development effort and in the end product. The second approach

was to develop actual SLAs for a specific lifecycle phase (post-production) to illustrate

the concepts of SLAs and to demonstrate their value as a quality control and management

tool.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. EXECUTIVE OVERVIEW ..1

1. Hypothesis...2
2. Methodology ...2
3. Results ...3
4. Original Contribution..3
5. Expanding the Body of Knowledge ..4
6. Outline of Dissertation...7
7. Deliverable ..8

B. IMPORTANCE OF INFORMATION TECHNOLOGY8
C. SOFTWARE QUALITY...9

1. Product Quality..11
2. Project Quality ...12
3. Process Quality...13
4. Post-Production Quality..14

D. CHALLENGES IN OBTAINING QUALITY SOFTWARE15
E. QUALITY PROBLEMS IN THE DEPARTMENT OF DEFENSE18

1. Clinger-Cohen Act ...19
2. Difficulty Managing Technology ..20
3. Shortage of Information-Technology Personnel23
4. Outsourcing ..25

F. PERFORMANCED-BASED SERVICE ACQUISITION (PBSA)27
G. SUMMARY ..29

II. SERVICE LEVEL AGREEMENTS..31
A. DEFINITION ...31
B. BACKGROUND ..34
C. SLA FORMAT...39
D. SLAS AS A FRAMEWORK...42
E. SUMMARY ..45

III. APPLYING SLAS..47
A. DEVELOPMENT ..47

1. Define the Problem ..47
2. Develop a Team..50
3. Service-Level Management ...51
4. Review Current Services ...54
5. Determine Requirements...56
6. SLA Preparation ..60
7. Negotiation..63
8. Contract ..66

B. SUCCESSFUL SLAS ..68
C. POST-PRODUCTION SUPPORT...72

1. Background ..72
2. Post-Production Services...74

 viii

3. Developing the SOW and SLAs in Appendix (A)76
D. SUMMARY ..78

IV. SOFTWARE DEVELOPMENT MODELS..81
A. TYPES OF PROCESS MODELS ..82
B. SELECTING APPROPRIATE PROCESS MODEL.................................85
C. PROCESS MODELS...87

1. Waterfall Model ...88
2. Spiral Model ...90
3. Evolutionary Prototyping Model..92
4. Commonality Among Models ...93

D. SLAs AND SOFTWARE PROCESS MODELS...95
E. SUMMARY ..97

V. REQUIREMENTS ENGINEERING...99
A. SYSTEM REQUIREMENTS ...99
B. REQUIREMENTS ELICITATION ..100
C. REQUIREMENTS ANALYSIS ...107
D. REQUIREMENTS SPECIFICATION..112

1. Vision and Scope Document..113
2. Business Rules ..114
3. Software Requirements Specification ..114

E. REQUIREMENTS VALIDATION..115
F. REQUIREMENTS MANAGEMENT ...118
G. SUMMARY ..121

VI. DESIGN ..123
A. ARCHITECTURE ANALYSIS..124
B. SOFTWARE QUALITY FACTORS EFFECT ON DESIGN.................126

1. Maintainability...126
2. Security ...128
3. Performance ...131

C. DEVELOPMENT QUALITY...135
1. Schedule ..136
2. Process Quality...136
3. Defects ...137

D. TESTING..139
E. SUMMARY ..141

VII. SOFTWARE QUALITY FACTORS...143
A. DETERMINING QUALITY FACTORS ..143
B. CONFLICT RESOLUTION...146
C. RESPONSE TIME...147
D. AVAILABILITY..152
E. SUMMARY ..158

VIII. CONFIGURATION MANAGEMENT ...159
A. CONFIGURATION IDENTIFICATION ...160
B. CONFIGURATION CONTROL ...162

1. Change Review Board ...163

 ix

2. Change Management ...166
3. Notification ...167
4. Release Management ...168

C. CONFIGURATION ACCOUNTING..169
D. CONFIGURATION AUDIT...170
E. ASSET MANAGEMENT..171
F. SUMMARY ..172

IX. PROGRAM MANAGEMENT ...175
A. RISK MANAGEMENT...175

1. Risk Management in Requirements Phase177
2. Performance Monitoring...181
3. Test Plan ...183
4. Post-Production Risk...184

B. FINANCIAL MANAGEMENT..187
C. QUALITY CONTROL..189
D. MAINTENANCE...190
E. CONTRACT MANAGEMENT ...193

1. Contact Preparation ..195
2. Proposal Evaluation...200
3. Contract Oversight ..202
4. Contractor Performance Management..205

F. CUSTOMER SATISFACTION ...207
G. SUMMARY ..209

X. RESEARCH METHODOLOGY ...211
A. PHILOSOPHICAL APPROACHES ...211
B. APPLYING VARIOUS METHODOLOGIES ...212
C. DISSERTATION METHODOLOGY ...215
D. QUESTIONNAIRE..217
E. RESULTS ...219
F. INTERPRETATION OF RESULTS ...220
G. RESEARCH USING HOSTING SLAS...222
H. WEAKNESSES..225
I. SUMMARY ..226

XI. CONCLUSION ..227
A. REASON FOR STUDY...227
B. KEY POINTS...228
C. FUTURE WORK...230

1. Evaluation in Actual Contracting ..230
2. Quality Factors...231
3. Availability..232
4. End-to-End SLAs ...232

APPENDIX A: NAVSUP HOSTING REQUIREMENTS AND SERVICE
LEVEL AGREEMENTS...233
A. ESSENTIAL PACKAGE SYSTEM SUPPORT AREAS234

1. Application Migration Service..234

 x

a. Midrange Site Transition Services234
2. Systems Management ..236

a. System and Network Monitoring..237
b. Performance Management ...238
c. Capacity Management ..239
d. System Operations Automation ..240

3. Software Management...240
a. Configuration Management ...240
b. System Product Integration and Problem Resolution241
c. System Software Maintenance..241
d. Software Refresh...242

4. Hardware Management...243
a. Hardware Configuration Management243
b. Hardware Support and Maintenance...................................243
c. Hardware Refresh Services ..244

5. Security Management..244
a. Security Management Services...245
b. Intrusion Detection Services...246
c. Vulnerability Assessment..247
d. Data Protection Software Services249
e. User Identification (ID) Maintenance and Password

Issuance...249
6. Customer Support Services...250

a. Request Management..250
b. Continuous Hours Operational Support Coverage251
c. Change Management..251
d. Problem Management...252

7. Service-Level Management ...253
a. Standard Service-Level Management Reviews and

Reporting ...253
8. Business Continuity ...254

a. Documented Recovery Action Plan......................................254
b. System Backup and Recovery ...254
c. Off-Site Tape Services...256
d. Disaster Recovery Test Service ...256
e. Recovery Site Requirements ...257

9. Facilities - General Requirements ..258
a. Electrical Power ..258
b. HVAC and Climate Controls ..258
c. Structural...259
d. WAN/BAN/LAN Connectivity ..260
e. Facility Physical Security ...260

10. Shared Services ..261
a. Shared Services – Disk..261
b. Shared Services – Platform...261

11. Essential Services – Optional Service Upgrades262
a. Essential Services –Optional Service Adjustments262

 xi

B. ENHANCED BASE PACKAGE SYSTEM SUPPORT AREAS263
1. Systems Management ..263

a. System DBMS Monitoring..263
b. Printer Definition and Queue Management264

2. Software Management...264
a. System Database (DBMS) Support Services264

3. Workload Management...265
a. Batch Scheduling Services..265
b. Batch Monitoring Services ...266

4. Application Security and Resource Controls266
5. Production Promotion ...267
6. Customer Support Services...267

a. Request Management – Multi-Site Coordination Services .267
7. Enhanced Service – Optional Service Upgrades268

a. Upgrade – Custom Product Support268
b. Upgrade – Local High-Availability Support268
c. Upgrade – Custom Service Level Reviews and Reporting...268
d. Enhanced Services – Optional Service Adjustments268

C. PREMIER BASE PACKAGE SYSTEM SUPPORT AREAS270
1. Systems Management ..270

a. Application Monitoring ..270
b. Web Site Monitoring ...270

2. Software Management...271
a. Custom Product Support...271
b. Local High-Availability Software Support...........................271

3. Hardware Configuration Management ...272
a. Local High-Availability Hardware Support.........................272

4. Customer Support Service ..272
a. Request Management – Global Coordination......................273
b. Custom Service Reviews and Reporting...............................273

5. Premier Services – Optional Service Upgrades.............................273
a. Upgrade – Remote High-Availability Support Services.......273
b. Premier Services – Optional Service Adjustments...............274

6. Contract Termination..274
7. Acknowledgements ..275

D. NMCI CONTRACT (APPENDIX A): ..276
E. NAVSUP SERVICE LEVEL AGREEMENTS...279

APPENDIX B ...353
A. PURPOSE OF QUESTIONNAIRE ...353
B. INSTRUCTIONS ...353
C. INTRODUCTION..353
D. CHALLENGES IN OBTAINING QUALITY SOFTWARE353
E. SLAS: WHAT THEY ARE AND HOW THEY ARE USED355
F. SLA FORMAT...356
G. CASE STUDY ..357
H. SAMPLE SLA ..358
I. QUESTIONNAIRE: ..364

 xii

APPENDIX C...367
A. EFFECTIVENESS OF SLAS IN SOFTWARE ACQUISITION384
B. USEFULNESS OF THE SLA FORMAT ..385
C. SLAS CONTRIBUTION TO SOFTWARE QUALITY386
D. SLAS CONTRIBUTION TO POST-PRODUCTION SUPPORT387
E. SLAS CONTRIBUTION TO LIFECYCLE MANAGEMENT388

LIST OF REFERENCES..389

INITIAL DISTRIBUTION LIST ...413

 xiii

LIST OF FIGURES

Figure 1. SLA Framework...44
Figure 2. Waterfall Model ...89
Figure 3. Spiral Model...91
Figure 4. Evolutionary Prototype ..92

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

 I would like to thank my family, friends, and co-workers who supported me in

this effort. I would especially like to thank Dr. Bret Michael for his encouragement, hard

work and help in bringing this dissertation to fruition. I appreciate the amount of time

and effort it takes to review and provide comments on a dissertation of this size. Given

their extremely busy schedules, I sincerely appreciate the efforts and dedication of Dr.

Dan Boger, Dr. Man-Tak Shing, Dr. John Osmundson, and Professor Rex Buddenberg.

The author would also like to acknowledge Scott Price and Joseph Vickery from EDS for

their support with drafting the SOW in Appendix A. Finally, I would like to thank my

wife, Sally, for her patience, support, and sacrifice.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

 Management and end-users have become increasingly dependent upon software-

intensive systems to support new ways of conducting business. These critical software-

intensive systems are becoming more complex, and difficult to manage, yet the

performance and quality expectations from management and the end-users continue to

increase. Unfortunately, despite software’s increased importance to organizations, the

quality of software can be lacking.

The dissertation describes a new approach to software acquisition: application of

service level agreements (SLAs) throughout a system’s lifecycle and at each major phase

of software development and maintenance to improve the overall quality of the end

product. The hypothesis is that the use of the SLAs in the software acquisition process

can improve product, process, project, and post-production quality by identifying and

defining relevant quality factors, quality metrics, quality thresholds, methods of

measurement, and by establishing penalties for failure to meet quality requirements.

 The basis for the hypothesis is our theory that the SLA development process aids

requirements engineering by identifying software quality factors that support the critical

business processes the software development or maintenance project supports. The

quality factors that are addressed in the SLAs then drive architectural and design

decisions about the business-critical system. If developers and maintainers of business-

critical systems know which of the characteristics are most critical to project success,

they can select – within the constraints of time and budget – among system architecture,

design, and implementation alternatives that have a high likelihood of meeting the quality

goals set forth by the stakeholders for the end product.

 To test the hypothesis, we used two approaches. The first approach explained

how SLAs could be used throughout a system’s lifecycle to improve software quality.

This approach was validated by a survey of information technology (IT) professionals.

The second approach was to develop actual SLAs for a specific lifecycle phase (post-

production) to illustrate the concepts of SLAs and to demonstrate their value as a quality

control and management tool.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. EXECUTIVE OVERVIEW

In the past, the typical information system tended to be homogeneous and

stovepiped, and was typically developed from scratch by a small number of vendors. In

contrast, today’s typical information system is software-intensive and distributed,

composed of heterogeneous subsystems, supplied by numerous vendors. The subsystems

themselves can consist of a mix of legacy and new-system development. Software is

viewed by many as the means for making systems readily adaptable to change, as the

environments in which the systems operate change. In this dissertation we treat the topic

of service level agreements (SLA) in the context of their use in managing modern

information systems over their entire system lifecycle.

Many of the advances in the principles and mechanics of software engineering

provide the software engineer with a means for improving the quality of software-

intensive information systems. However, actual practice does not always take advantage

of these advances. This can be attributed to such factors as training problems, the rush-to-

market mentality, and lack of proper quality control throughout the lifecycle of the

information system. Although quality control is the responsibility of the program

manager, he or she may choose to defer addressing quality to later in the system lifecycle,

focusing initially on realizing functional system requirements. As experience has shown,

retrofitting quality—and non-functional requirements in general—into an information

system can be difficult to do technically or even cost-prohibitive to achieve in some

cases. In this dissertation, we argue that program managers must address software

quality through the system lifecycle and that SLAs provide a means for managing the

activities needed to build quality into software-intensive information systems.

A SLA is a contractual mechanism that defines quantifiable quality metrics,

acceptable service levels, the method of measurement, responsibilities of the parties to

the SLA, and incentives—both positive and negative reinforcements—for meeting agreed

upon service levels. A SLA can be used for in-house development efforts and services as

well as those that are outsourced. Further, a SLA can also be used in any stage of the

 2

application’s lifecycle. Typically, a set—something akin to a portfolio—of SLAs are

used in conjunction with the management of an information system, with each SLA

representing a distinct quality attribute (e.g., reliability, maintainability) of the

information system or dimension of system development and maintenance (e.g., product

quality, process quality, project quality, and quality in post-production maintenance and

services).

1. Hypothesis

 Service level agreements can improve the management and quality of software-

intensive information systems throughout the system’s lifecycle. Embedded software and

other specialized application of software are not within the scope of this paper.

2. Methodology

To test the hypothesis, we utilized two approaches. In the first approach we

explained how SLAs could be used as a quality control tool in the various phases of

software development to improve product, process, project and post-production quality.

Our research identified areas within the development and post-production effort where

SLAs could be effectively utilized, as well as provided examples of standards and quality

models that could be incorporated into SLAs. We validated these concepts through a

survey instrument administered to information technology (IT) professionals.

The questionnaire consisted of three sections. The first section provided the

subject with a brief introduction to the topic of software quality, and a short discussion of

how SLAs can contribute to software program management from conceptualization of an

information system through post-production support. The second section was a case

study illustrating a real-world scenario along with a SLA for availability. The last section

consisted of a questionnaire comprised of twenty-nine questions and a comment section.

Each statement had a corresponding Likert scale from one to five, with a one representing

strong disagreement and a five indicating strong agreement. The survey was conducted

from a web site.

The second approach was to develop SLAs for a specific phase of the software

lifecycle to further illustrate how SLAs can be used as a quality control tool and to

demonstrate the usefulness of the new SLA format. Although the SLAs that were

 3

developed apply to post-production support, a similar approach can be utilized to apply

quality factors to other phases of development. The SLAs were also created to

demonstrated how SLAs could be used as a template for requirements elicitation and to

show that they can and should be tailored to meet project specific needs.

3. Results

 The survey supported the hypothesis that SLAs can improve the management and

quality of IT intensive systems throughout their lifecycle. Twenty-two of the twenty-five

statements had a statistically significant difference from the null hypothesis (mean equal

to three on the Likert scale, which indicates a neutral feeling about the statement).

4. Original Contribution

This dissertation has three major original contributions to the field of software

engineering. The first contribution is a unique approach to improving software quality

from a software acquisition perspective. For numerous reasons software acquisition

tends to concentrate on the functional aspects of an information-intensive system.

Unfortunately, this approach often leads to poor software quality as software can be of

poor design, but still meet functional requirements. In an effort to improve software

quality this dissertation advocates the use of SLAs in software acquisition contracts to

specify performance-based requirements relating to product, process, project and post-

production quality. This dissertation demonstrates how SLAs can be applied to the entire

lifecycle of a software-intensive system in an effort to improve the quality of the

management and development of the system. SLAs are not a new concept, however they

are used primarily in post-production support. In this dissertation we take the concept of

SLAs and demonstrate how they can be used as a quality control and management tool

throughout the software development cycle (i.e., requirements, design, coding, testing,

post-production support).

The dissertation introduces a unique format for the SLAs. The format forces the

SLA development group to define in detail (e.g., in terms that all stakeholders

understand) the services to be performed, quantitative service levels, the method of

measurement, and time frames or periodicity of measurements. The format helps to

ensure that all parties understand the terms of the SLAs by stating the responsibilities of

 4

the contractor and program manager, stating assumptions, deliverables, stating who will

perform monitoring, and how monitoring will be performed. The format also ties the

quality requirements to specific business needs and stakeholder concerns. Providing the

rationale for measuring the service ensures the development team has considered whether

the service and quality thresholds are relevant to business needs, that the quality

thresholds are realistic, and that metrics are meaningful and provide value.

Although SLAs are sometimes found in contracts with External Service Providers

(ESPs) for post-production support they are often used more to set expectations rather

than establish quality control measures. They are often poorly defined, they lack

information concerning monitoring techniques, and they generally favor the ESP.

In this dissertation we have developed thirteen original post-production SLAs that

are far more extensive than those found in the research conducted. The SLAs in

appendix (A) were developed to illustrate how SLAs can be used as a quality control tool,

not just for post-production, but for the other phases of the software lifecycle as well.

The SLAs in appendix (A) were used in actual source selection negotiations with very

favorable results.

5. Expanding the Body of Knowledge

Although numerous software engineering disciplines are discussed, this

dissertation has made contributions to the body of knowledge in the disciplines of

software acquisition, requirements analysis, software quality and software project

management.

There is currently a lack of theoretical basis or intellectual body of knowledge in

the field of software acquisition. Although there is a great deal of research concerning

software development methods and their affect on project success in terms of cost and

schedule, similar research on contracting methodology for software development is

lacking. This dissertation proposes a methodology for acquiring software that focuses on

project, process, product and post-production quality. This approach goes beyond

traditional acquisition by applying a holistic view of quality throughout a system’s

lifecycle. SLAs can be used as a quality control tool to enhance other software

acquisition approaches such as the Software Acquisition Capability Maturity Model (SA-

 5

CMM) (Software Engineering Institute Mar 2000), IEEE Recommended Practice for

Software Acquisitions (IEEE Std. 1062) or Performance-Based Acquisition. (DoD USD

(A&T) Utilizing SLAs in the acquisition process is an attempt to correct many of the

software acquisition deficiencies sited in numerous articles, studies, and General

Accounting Office (GAO) reports. Although this dissertation does not empirically

demonstrate that SLAs will lead to project success and better quality, it does provide a

foundation upon which future studies can be based.

The SLA development process supports and incorporates many of the theories

proposed in the field of software requirements engineering such as Facilitated

Application Specification Technique (FAST) (Zahniser), Mizuno and Akao’s Quality

Function Deployment (Zultner, Krogstie) as well as use cases and scenarios (Hickley,

Sutcliffe). Many of the requirements elicitation techniques proposed by practitioners and

academia can be incorporated in the SLA development process to generate quality

requirements. For example, the SLAs presented in appendix (A) can be utilized in

scenario elicitation.

SLAs also enhance existing requirement engineering techniques or methods.

SLAs concentrate on non-functional quality requirements, which are not always

considered in other methods. Due to the nature of contracting for software services,

SLAs introduce quality requirements early in the lifecycle where they are most effective.

Quality software requires more than just identifying quality requirements. Monitoring

and measuring the requirements is necessary to ensure the requirements are being met.

The literature on software requirements almost always implies that just because

requirements are specified, that they are incorporated into the final product. This is rarely

the case. SLAs enhance existing software requirement techniques by instituting a

measuring and monitoring philosophy (quality control) and enforcing requirements by

use of penalties for non-compliance.

The SLA development process also enhances traditional software requirement

techniques. The level of detail necessary to develop the SLAs requires an understanding

of the business processes the system is supporting, it incorporates multiple perspectives,

and it requires a prioritization of the quality factors chosen. The development effort will

 6

not only generate discussion on which quality attributes are appropriate for the software

system, but it will also identify whether resources, employee skill sets, and management

support exist to properly support and enforce the SLAs. SLAs and specifically the format

proposed in this dissertation will help to produce requirements that are quantifiable,

measurable, meaningful, and support business processes.

This dissertation adds to work that has been conducted on software quality.

While this dissertation does not introduce a new model for software quality, or a new

measurement of quality, it does introduce the use of SLAs as a means to contract for

software quality over the lifecycle of a product. SLAs are the practical implementation

of many of the quality models that will be discussed later in the dissertation.

The SLA development effort also contributes to the discipline of software quality

by incorporating quality (functional and non-functional) requirements in the requirements

engineering process. The development effort evaluates many of the quality models and

metrics proposed in literature. These metrics and models are then applied in part or in

whole to measure or specify process, product, project, and post-production quality.

There is no single quality model that can extend through the entire lifecycle of a

software product. SLAs are a means to incorporate many quality factors and models

simultaneously to best support the system throughout its lifecycle. The SLA

development effort involves an analysis of the various quality factors and models to

determine which best support the system given performance expectations, budget and

time constraints, and the purpose of the system. Prioritizing the quality factors and

resolving quality requirement conflict are an important part of the development process.

It is very likely that multiple quality models will have to be incorporated to evaluate the

deliverables at the various stages of the development cycle.

This dissertation has also added to the body of knowledge related to software

project management. SLAs enhance many of the existing processes or models associated

with software project management such as Performance-based Management (Plunkett),

Software-Performance Engineering (Smith, C. 1988), and Capability Maturity Model

Integration (CMMI) (Software Engineering Institute, Aug 2002) by instituting the

software quality control measures that are implied in these models.

 7

In addition to quality management and quality control, SLAs can assist program

managers in many of the tasks identified in project management models as important to

the success of the project. In the SLA development effort, the project is scoped, risks are

identified and analyzed, resources are evaluated, quality factors are prioritized, specific

business needs are identified, and success factors for those business needs are defined.

SLAs also help the program manager in the areas of financial management, customer

relations, configuration management, and especially contract management.

6. Outline of Dissertation

 Chapter I outlines the importance of IT systems, and describes the difficulty that

both public and private sectors have had in developing quality IT systems. The chapter

also provides a detailed discussion on software quality. Chapter II defines SLAs,

discusses how they are utilized, and describes a recommended format. Chapter III

outlines an 8-step process for developing SLAs and provides a case study describing how

the SLAs in appendix (A) were developed. Chapter IV provides a detailed discussion on

software development models, illustrating how SLAs can support various approaches.

Chapter V describes how the SLA development process can support and enhance many

of the recommended requirements engineering processes and techniques. Chapter VI

discusses how the quality metrics and quality factors incorporated in the SLAs can

influence the architecture and design of the system. Chapter VII illustrates the

importance of selecting the appropriate software quality factors to incorporate in the

SLAs. Chapter VIII describes how SLAs can be utilized as a quality control tool to assist

the program manager in managing the configuration of the project. Chapter IX explains

how SLAs can also assist the program manager with many aspects of program

management and oversight. Chapter X is a detailed discussion on the research

methodology and results. Chapter XI contains the conclusion and makes

recommendations for future work. Appendix (A) is a statement of work (SOW) along

with thirteen SLAs that were used in a proposal for post-production support. Appendix

(B) contains the survey instrument. The final section is Appendix (C), which provides a

breakdown of the results of the survey.

 8

7. Deliverable

The concepts discussed in this dissertation were applied in the development of the

SLAs and the SOW found in appendix (A). The SLAs and SOW in appendix (A) were

developed for the post-production hosting services under CLIN 0029 of the Navy/Marine

Corps Intranet (NMCI) contract. The SLAs and SOW were designed to allow program

managers to select from three levels of services to support their programs. Programs

needing more advanced services would be able to modify the CLIN to support their

needs. The CLIN 0029 SOW and SLAs are currently still in contract negotiation.

B. IMPORTANCE OF INFORMATION TECHNOLOGY

 IT has offered an unprecedented opportunity for organizations to improve the

efficiency and effectiveness of its operation. The rapid growth of the Internet has lead to

an ever increasing reliance by organizations on interconnected computer systems to

provide critical operational services, from business processes to coordinating

decentralized command, control, computers, communications, intelligence, sensors and

reconnaissance (C4ISR) systems.

 One can argue that IT-based systems have become the most critical, multi-faceted

strategic tool any business or organization possesses. (Info Tech) Organizations that

have properly integrated IT into their overall business processes and have invested in the

most current infrastructure have a significant advantage over any competition that has not

taken advantage of IT.

 The reliance on IT systems to provide strategic and tactical advantages has placed

ever-increasing levels of pressure on the IT department to provide quality services and

products than ever before. Interruptions to IT systems are having a far greater impact

than before in terms of opportunity loss, revenue loss, customer dissatisfaction, and

efficiency. As managers realize that their mission-critical processes are tied to IT

services, they are demanding more control over the quality of the services provided.

 Another factor bringing IT quality to the attention of senior management are the

various third-party vendors, system integrators, or external service providers (ESP) that

market IT services that are similar to those offered in most IT departments. Outsourcing

 9

is forcing IT organizations to reevaluate their relevancy to the organization. When top

executives hear the sales pitches from ESPs, they expect similar or higher levels of

service from their internal staffs. Competition has started to drive the levels of service

higher and higher, especially when service performance is really the only differentiator

the ESPs have with one another.

 Information flow is the lifeblood of an organization allowing it to enable its

personnel, respond to customers, and react to the external environment. An

organization’s ability to gather, manage, and use information will determine its success.

(Gates) Leveraging information technology allows organizations to interconnect

disparate processes and information that was separated logically, physically, and

chronologically. The rapid growth of technology along with the greater globalization of

enterprises has brought IT management to “center stage”. However, as information

systems become more complex and distributed, they also in general become increasingly

difficult to manage, yet the performance expectations for the system, from management,

and the end-users continue to increase.

 All organizations want world-class quality levels, but achieving those quality

levels requires a holistic view of quality that incorporates leadership support, repeatable

and measurable quality processes and controls, resource planning, vision, customer

support, and service-level management. Organizations must do more than identify and

incorporate quality attributes in their requirements, they must also monitor quality

metrics to ensure those quality requirements are being met. Quality is not something that

is inherent in the development process: it must be planned, monitored and incorporated as

part of standard business practices.

C. SOFTWARE QUALITY

 There are numerous definitions of quality. The ISO 9000 model defines quality

as the degree to which a set of inherent characteristics fulfills requirements. (Tricker)

ISO 9126, a refinement of the ISO 9000 model, which proposes a quality standard for

software product evaluation, defines software quality as the totality of features and

characteristics of a software product that bear on its ability to satisfy stated or implied

 10

needs. (Hansen) Pressman states that software quality is conformance to explicitly stated

functional and performance requirements, explicitly documented development standards,

and implicit characteristics that are expected of all professionally developed software.

(Pressman)

 It is interesting that both ISO model definitions and Pressman’s definition are

based on an assumption that all stakeholders have an input into the requirements-

specification process. An IT system may meet all of the program requirements and thus

be viewed as being a quality product. However, the IT system will not be perceived as a

quality product if the product does not perform according to the end-user’s perspective.

Many believe that quality is based upon the perceptions of the stakeholders. This view is

also supported by Garvin, who stated that quality is multifaceted and can be viewed by

many perspectives. (Garvin) However, it is generally recognized that the consumer of the

product is the ultimate judge of a product’s quality. (Glass, Tice, Briones, Weigers) The

IEEE standard 610-1990 does incorporate user needs, by defining software quality as the

degree to which a system, component, or process meets specified requirements and meets

customer or user needs and expectations. (Schmidt)

 Software quality can be broken down into four areas of focus. The first area,

product quality, is concerned with the requirements and specifications of the product as it

applies to the attributes or characteristics of the software product. This area could also be

referred to as end-product quality. The second area, project quality, is concerned with the

metrics and measurements associated with the software production effort. (Wheeler,

Hilburn) The third area is process or management quality, which is concerned with the

processes, planning and controls used to develop and manage the software product. The

last area of focus is on post-production quality or deployed application management.

Although there is some overlap with process quality, this last area is focused on software

maintenance, IT system performance, and hosting services after the application has been

placed into production. Software quality models have been developed in all of these

areas in an attempt to evaluate and/or predict software quality.

 11

1. Product Quality

 Quality attributes are generally used to describe the degree to which software

possesses certain characteristics. Quality can be viewed from numerous perspectives, and

certain attributes are more preferable to others depending on the objective of the IT

system. As such, numerous quality attributes have been identified. When referring to

product quality, two perspectives are generally represented: those of the user and those of

the developer.

 In addition to the functional aspects of a system, the end user wants the product to

exhibit specific qualities that will assist them in performing their task. From a user’s

perspective, some of the common quality attributes used in the quality models include

availability, usability, integrity, interoperability, and reliability. Personnel involved in

the development of software or its maintenance may be more concerned with the

software attributes such as portability, testability, maintainability, and reusability.

(Wiegers)

 Product quality models concerned with the developer’s perspective can be further

broken down into three categories. The first category is concerned with those quality

factors, or their associated quality metrics that involve attributes associated with the

software code. A common quality metric for software code is defects per thousand lines-

of-code (KLOC). The next category is concerned with quality metrics associated with

the structure or architecture of the software. Structure quality metrics are concerned with

the features, components and relationships among the components. Common structure

quality metrics are quantitative counts of the sources (fan-in) and destinations (fan-out).

The last group contains hybrid quality metrics, which combines code and architecture

quality factors. An example would be evaluating complexity by analyzing or weighing

against the lines-of-codes in the modules. (Kafura)

 One of the first software quality models to address product quality was the

McCall quality model, based on earlier work by Boehm (Boehm). McCall’s model

consists of a number of questions and a subjective grading criterion based on a Lickert

scale from 0 to 10. McCall defined quality in a hierarchical manner in which quality

factors defined a key characteristic of the software, such as ‘maintainability’. Quality

 12

factors consisted of quality criteria that represented an attribute of the quality factors,

such as ‘understandability.’ Finally, quality metrics were used to assign quantitative

measurements to the quality factors. (Pressman, Ward, Kafura)

There are numerous software product quality models that incorporate software

quality factors or metrics in an effort to benchmark or measure software quality. Some

of the better-known quality models include early work done by Halstead, who calculated

complexity based on the number of operators and operands. (Ogasawara) The ISO 9126-

1 quality model is also well known. The ISO 9126-1 model incorporates the quality

factors functionality, reliability, usability, efficiency, maintainability and portability.

(Cross, Ward) The Hewlett-Packard FURPS model is also well known. (Pressman)

There are also numerous software quality models that concentrate on specific

quality factors such as complexity. (Ogasawara, McClure) In his book Software

Complexity- Measures and Methods, Horst Zuse identifies over ninety models for

describing the software attribute complexity. Other quality models are specific to object-

oriented systems (Coppick, Pritchett), some are specific to a language (Pritchett) or

COTS components (Bertoa, Hansen), while others are only applicable at run-time. (Bass)

2. Project Quality

 Project quality is concerned with metrics that allow an organization to manage,

track, and improve the quality of the software-development effort. One of the most

common quality factors involving project quality is project estimation. Project estimation

models such as COCOMO II (Boehm), Albrecht’s Function Points (Albrecht, Jones), and

Putnam’s Software Life-cycle Model (SLIM) (Putnam, Chulani) address the cost to

produce software, errors or defects that can be expected, as well as the level of effort

required to produce the software.

 Some of the project quality metrics that Motorola used to measure their software-

development projects included software-defect density, adherence to schedule, estimation

accuracy, reliability, requirements tracking, and fault-type tracking. (Daskalantonakis)

Other project quality models such as DoD Std 7935 are concerned with the degree

of formalism necessary to manage the project. (McConnell) Another metric used in

assessing project quality is risk, which can be defined as any variable within a project that

 13

results in project failure. General risk areas are schedule risk, requirements risk, budget

risks and personnel risk. (Padayachee) There are a number of risk assessment models

including Gilb’s risk heuristics (Gilb), Boehm’s classification of risk (Boehm), Keil’s

follow on identification of risk factors (Keil), the USAF AFCS/AFLC Pamphlet 800-45

which outlines software risk identification and abatement (Pressman), interpretivist

approaches (Gemmer, Padayachee), risks associated with enterprise software projects

(Charette, Sumner), and Noguiera’s risk assessment model. (Noguiera de Leon)

3. Process Quality

 Quality metrics also apply to the processes and business practices used to manage

software throughout its lifecycle. Quality in the context of software process management

refers to an adherence with explicit process requirements and those implicit processes

necessary to meet user requirements and produce quality software. Process metrics

allow a holistic view of the activities that organizations are taking to ensure a quality

software product. Processes provide a clear understanding of what an organization does

and the quality controls it has in place to do those activities. (Tricker)

There are many who believe that the quality of the development process is the

best predictor of software product quality. (Fenton) Repeatable software processes such

as the Software Engineering Institutes Software Capability Maturity Model for software

(SW-CMM), which lists five levels of organizational maturity levels, and the

International Standards Organization (ISO 9001:2000) are designed to improve software

quality, productivity, predictability and time to market. (Paulk, McGuire) There is also

some empirical evidence that there is a correlation between process maturity and software

quality. (Harter, Diaz, Ferguson)

 Other models of process quality include the new Capability Maturity Model

Integration (CMMI) model. CMMI integrates 3 CMM models into one to eliminate

problems with different architecture, semantics, and approaches. (SEI) Humphery

developed the personal software process (PSP) to assist software engineers in producing

quality software. (Humphrey) Other process models include cleanroom engineering that

has shown reduced errors per KLOC for small projects (Fenton), and the quality

management metric (QMM) (Machniak, Osmundson). There are also numerous IEEE

 14

and ISO standards that provide processes on everything from software engineering

product evaluation (ISO/IEC 14598) to selecting appropriate quality metrics (IEEE Std.

1061-1998).

4. Post-Production Quality

 Quality control does not stop once a software product has been deployed. Quality

factors still need to be applied to the application performance, maintenance efforts, and

hosting services throughout its lifecycle. Monitoring the performance of the application

once it is deployed is essential in quality control and maintaining customer satisfaction.

Much of the application performance monitoring in the initial phases of deployment is

used to validate product-quality factors identified in the initial requirements. However, in

the post-production environment there is also an emphasis on monitoring system

performance in terms of resource utilization, system capacity, network utilization and

quality of service, storage management, and security.

 Many of the quality models involving deployed applications are concerned with

software maintenance and the quality factors that make maintenance cheaper and more

effective. Some of the maintenance-quality factors deal with ease of change (Royce),

others deal with architectural design to promote maintenance (Hulse, Garlan), defect

management (Kajko-Mattsson), organizational structure (Briand), complexity (Banker),

and change management. (Bennett)

Quality factors with deployed software are also concerned with the IT system as a

whole. Quality is not just concerned with the application itself: it is also concerned with

the IT system as a whole, across distributed components. Part of that distributed system

is the network. There are numerous quality metrics that can be applied to network quality

of service. (Clark, Tanenbaum, Lee, Hochstetler, Packeteer) Quality metrics are also

applied to the host server. Quality metrics such as application-resource utilization

(Aries), bandwidth utilization (Eager), concurrent user management (Aweya), and server

performance (Dalal, Gama) are also utilized to address system-level quality. Hosting

services are another area that needs to be addressed when discussing the quality of

production software. Traditional hosting metrics have centered on total cost of operation

 15

(TCO) benchmarking, and help desk support metrics, but areas such as backups, storage,

configuration management, and security also need to be addressed.

 There are numerous software-quality models and metrics that can be incorporated

into SLAs. The models or quality factors chosen will depend on those quality attributes

that best support the underlying business process. Regardless of the software-quality

models incorporated in the SLAs, the software metrics must be meaningful, quantitative,

and measurable.

 In this dissertation, the term quality is used loosely to describe the degree to

which a system, component, or process meets specified requirements and meets customer

or user needs and expectations. Quality thresholds or quality metrics are those

measurements that specify the quality factors or quality requirements.

D. CHALLENGES IN OBTAINING QUALITY SOFTWARE

The software program manager is responsible for evaluating the program

requirements and determining the methodology or process to deliver and maintain quality

software. There have been a number of initiatives proposed to improve the quality of

software through its lifecycle. Most approaches are based on the tenet that quality must

be designed into a product. Approaches such as formalizing specifications (Berzins), use

of development standards and models, and utilizing architecture for quality analysis

support this approach. These approaches can be supplemented, for instance, by using

programming languages such as Ada that are designed to prevent common design and

coding errors, or utilizing rigorous testing and third-party debugging tools.

If there are numerous approaches to developing quality software, why are there

still problems? Part of the answer lies with the lack of meaningful dialog between the

developers, end-users and management. Unrealistic completion dates, requirements

churn, poor requirements elicitation, and lack of proper resources all lead to development

problems. Additionally, just because standards exist for developing software does not

mean that they are being used. In many cases adherence to developmental standards

 16

requires additional training, additional development time, additional funds and a

commitment from upper level management that those standards will be inspected and

enforced.

In his book “Decline and Fall of the American Programmer,” Yourdon estimates

that eighty-five percent of US software organizations operated at level 1 of the SW-

CMM. (Yourdon) This fact was reemphasized by Dietz who stated that most of the

software companies that he evaluated were at level 1 of the CMM. (Dietz)

A study published by the Standish Group reveals that the number of software

projects that fail has dropped from 40% in 1997 to 26% in 1999. However, the

percentage of projects with cost and schedule overruns rose from 33% in 1997 to 46% in

1999 (Noguiera) In another Standish study in 1999, a survey of 1,500 software projects

found that 31% of the projects were canceled and of those projects that were delivered on

average only 61% of the originally specified features were delivered. (Cross)

Despite software’s increased importance to organizations, software program

managers have not improved the quality of software. (Anthes) There are numerous

examples of software errors leading to major incidents, including the Denver airport

baggage handling system, the Hershey Foods ERP implementation, the Toys-R-Us e-

commerce site continuing to promise delivery of Christmas gifts after shipping cut-off

dates, and the USS Yorktown Smart Ship system failure. (Slabodkin, Huckle)

In the article “Why Software is so Bad”, Mann offers a number of reasons why

the quality of software tends to be poor. Mann states that software quality is actually

getting worse rather than better, despite the advances in software engineering theory,

processes, methodology and tools. Poor software quality can be attributed to the

following:

• The perceived need to hurriedly develop and market a software-based product to

be the first to market; such an approach can result in software artifacts that contain

software flaws and are difficult to test and maintain. In a 60-day development cycle,

which is not uncommon, programmers are not going to spend two weeks searching for a

bug, despite risks associated with deploying a faulty product. (Blacharski)

 17

• Software can be poorly designed. This is due in part to the poor training

programmers have received, and the fact that as programmers bounce code off of the

complier to fix errors, they often deviate from the original designs and end up with

sloppy, poorly documented code.

• Testing software often requires a different skill set than programming. Often the

testing personnel are not properly trained, or are not given the time to test properly. Too

many organizations are relying on testing as the primary means to improve quality

instead of designing the application with quality factors built into their initial

requirements—the latter approach actually can improve our ability to test systems.

• Software is not designed for testing. The designers do not utilize good component

level design or software architecture, the software’s modularity and corresponding

interconnectivity is not well defined, and the application is not internally coded to throw

exceptions, or write faults to a log.

• Software fails to meet the customer’s expectations. The software developer must

looks at requirements from the user’s perspective, the business’ perspective, and the

programmer’s perspective. Too often the user is not a part of the requirement elicitation

process.

• Requirements churn contributes to the poor reliability of software, as designs are

altered, interfaces added, unplanned modules are glued together, with little consideration

given to the additional resource demands.

• Post-production support plays a large role in the success of an application, but

software developers do not normally address it in their planning.

• The application needs to be hosted in an environment that supports the

application’s functionality. Software quality can be adversely affected by lack of

resources within the server, and by network and bandwidth constraints.

• Maintaining software without proper documentation or configuration information

is very difficult and expensive. Additionally, without proper documentation it is difficult

to compare the original requirement specifications to the product throughout the

software’s lifecycle.

 18

E. QUALITY PROBLEMS IN THE DEPARTMENT OF DEFENSE

 The next three sections discuss some of the problems that the DoD has with the

management of software-intensive information systems, recruiting and retaining

competent IT personnel and outsourcing. Although these sections focus on the DoD,

many of the same problems can be found in the commercial sector.

In the past, the DoD has not excelled at managing software-intensive information

systems through their lifecycles. Managing information systems can be challenging.

Utilizing the latest technology to exploit information requires highly developed

intellectual and managerial skills, which are rare attributes (Rocheleau). The difficulty in

managing these systems has been demonstrated by the numerous system development

and maintenance projects within the DoD that lacked sound planning, had poor controls,

lacked measurements for success, and did not meet expectations.

From 1986 to 1996, the US Government spent 200 billion dollars on information

technology that did not produce the results that were desired. (Deputy Assistant Secretary

of Defense) One example is the Corporate Information Management (CIM) initiative. In

October 1989, the DoD attempted to improve and consolidate almost 2,000 information

systems relating to transportation, depot maintenance and material maintenance. By

October 1993, the DoD determined that efforts to develop and complete these logistics

systems would take too long to develop and would not produce the costs savings they

initially anticipated. In response, the DoD standardized on its best logistics information

systems—in terms of performance, maintainability, and other measures of

effectiveness—across all military services. This “migration strategy” as it was termed,

was designed to quickly produce cost savings. By 1995, the DoD realized that its

migration strategy for materiel management and depot maintenance consumed more

resources than it had anticipated, took longer than expected, and did not produce the

benefits expected. Over 700 million dollars was spent migrating material management

systems before abandoning the project, having failed to produce a single operational

system. (U.S. GAO OCG-99-4) The CIM and migration-strategy effort cost eighteen

billion dollars without achieving its objective. The DoD abandoned its efforts at

 19

standardizing the systems and opted instead to try to achieve interoperability between the

different services’ information systems, and privatize some functions. (U.S. GAO AIMD-

96-109)

Despite the failures of the CIM and the migration strategy, the US General

Accounting Office (GAO) noted that the interoperability and privatization approach

suffered from the same managerial problems that plagued the two prior attempts at

system consolidation. The DoD did not even conduct a thorough cost-benefit study to

determine if the new strategy would achieve a positive return on investment. The DoD

failed to tie its efforts to its overall business objectives using strategic planning. It had

also not adequately explored better commercial alternatives such as reengineering or

outsourcing. (U.S. GAO AIMD-97-6, U.S. GAO 01-244)

1. Clinger-Cohen Act

 On October 12, 1994, then Senator Cohen of Maine and a member of the Senate

Governmental Affairs Committee released a report entitled “Computer Chaos: Billions

Wasted Buying Federal Computer Systems.” The report was a summary of reports from

the GAO and Inspector General (IG) that detailed problems with major software-

development projects that were in progress. The report concluded that antiquated

systems were costing the government billions of dollars, government-planning efforts

were inadequate, and the acquisition process forced the government to pay more for less.

(Peckinpaugh)

 The Information Technology Management Reform Act (ITMRA) of 1996 coupled

with the Federal Acquisition Reform Act became known as the Clinger-Cohen Act.

Congress’ intent in passing the Act was to solve some of the longstanding problems

associated with the acquisition and maintenance of information systems by the DoD.

Among those problems was inadequate attention to business processes, failure to improve

processes before investing in information systems, investing in poorly planned and

ineffective information systems, and outdated acquisition procedures that did not address

the rapid evolution of information technology. (Deputy Assistant Secretary of Defense)

The Act mandates that federal agencies develop internal investment-control and

performance-management processes to improve their acquisition, use, and management

 20

of information systems. (U.S. GAO-00-179) The act established the positions of Chief

Information Officer (CIO) for every major federal agency. The CIO became responsible

for ensuring the provisions of the Clinger-Cohen Act are executed. Some of the

responsibilities of the CIO were as follows: encourage incremental phased development

instead of grand projects, ensure that the information system supports the core mission—

as articulated in doctrine and policy—of the agency, determine whether other agencies or

contractors have information systems with similar functionality as the system being

developed, and perform cost-benefit analyses and risk assessments prior to embarking on

developing an information system. Another key provision in the Act is the requirement

to ensure that measures of performance (functional and non-functional) are used to gauge

the effectiveness of information systems in meeting system requirements.

Furthermore, the Act requires software-acquisition personnel to answer three

questions before initiating an IT project. The first two-part question is what are the

functions that the system will perform, and is it consistent with the organization’s

mission? The second question is if we need to perform a particular function, can it be

performed more efficiently and at a cheaper cost by the private sector? The third

question is whether the function that is required can be reengineered or redesigned (i.e.,

are the processes it supports absolutely necessary)? All of these questions must be

answered before an investment in new technology can go forward. (SecDef)

2. Difficulty Managing Technology

 Despite the fact that the Clinger-Cohen Act requires the establishment of a

process to identify, evaluate, and monitor risks and results from applying IT, the DoD is

still having problems in both acquisition and management of information systems. (DoD

IG D-2000-162) Since the Act was enacted, the DoD record on implementing its

provisions has been disappointing. (DoD IG Semiannual Report to Congress) Some

continuing problems with software acquisition have been attributed to the DoD’s failure

to adopt the provisions of the Act (DoD IG D-2000-162, DAWIA), and some was due to

the DoD’s current organizational structure and culture, which makes departmental

oversight very difficult. (U.S. GAO OCG-99-4) Moreover, the DoD has not been able to

 21

implement practices conformant to the Clinger-Cohen Act that ensure prudent investment

in information technology. (U.S. GAO AIMD-00-282)

Notwithstanding the improvements that the DoD has made in the management of

information technology, including establishing guidance to reflect best practices, and

updating policies, the DoD continues to be plagued by problems in managing its portfolio

of investments in information systems. (U.S. GAO AIMD-00-316) Unless the provisions

of the Act are fully understood by program managers, fully supported by the chain of

command, and enforced, it is unlikely that the Act will have the effect that Congress had

hoped for.

 For example, in 1994, the Under Secretary of Defense for Acquisition,

Technology and Logistics mandated the use of “open systems,” however, subsequent

audits in 2000 revealed that fourteen of seventeen major weapon systems audited lacked

open-system design objectives. Management either was not aware of the mandate, or they

chose to ignore it. The DoD Inspector General (IG) identified management weakness

along with poor analyses of requirements in twenty audits conducted between 1 April

2000 and 30 September 2000. (DoD IG Semiannual Report to Congress) The GAO has

designated managing the investment in information technology as a major management

challenge. (U.S. GAO HR-99-1, U.S. GAO HR-97-9, U.S. GAO 01-244, U.S. GAO

OCG-99-4) The GAO identified a number of weaknesses in the DoD’s management of its

approximately 5,800 mission-critical or mission-essential information systems. (DoD IG

D-2000-162)

 Technology will not solve management problems. Program managers and senior

leadership need to understand and improve business processes before applying

technology. The GAO and the DoD IG have identified a number of systemic problems

relating to the DoD’s management of information systems. Of the programs audited, one

of the most common problems was the lack of adequate documentation and validation of

system requirements. DoD program managers do not always develop well-defined

project purpose and scope, and realistic and measurable expectations. Audits also report

the failure to perform risk assessments and develop appropriate risk mitigation strategies.

Nine of the DoD IG audits identified inaccurate analyses of costs associated with the

 22

system life-cycle. (DoD IG D-2000-162) An additional area of concern was the

perceived weakness of the DoD in conducting information technology investment-

selection and management-control processes. (U.S. GAO 01-244) The DoD’s lack of

centralized control over standards and architectures has also contributed to system

failures. (DoD IG D-2001-121, U.S. GAO AIMD-00-282, U.S. GAO OCG-99-4) The

DoD’s inadequate software development, cost estimating, and system acquisition

practices has greatly increased the risks associated with the information systems audited.

(U.S. GAO AIMD-00-209R, U.S. GAO 01-244) The DoD has also shown significant

computer security weaknesses in its programs. (U.S. GAO AIMD-00-295, U.S. GAO

AIMD-00-188R)

 Although the Clinger-Cohen Act established the position of CIO, the DoD needs

to build an effective organization with the proper leadership. (DoD IG D-2000-162, U.S.

GAO 01-244) Currently the DoD CIO and the CIOs in charge of the individual services

do not control the budgets for IT. Individual programs procure their own IT systems and

services to support their needs. As a result, CIOs often do not have the control or

visibility they need to determine whether programs are complying with IT directives.

In its report to the Senate on adopted best practices for software development, the

DoD stated that the responsibility for successful fielding of the software product was the

responsibility of the contractor developing the system. However, in that report, the DoD

could not state how it measures the success of a contractor’s efforts. The DoD could also

not state what requirements existed for maintenance or support. The DoD did list some

generic metrics such as maintenance costs and number of problems reported, but it did

not have clear guidelines as to what was acceptable performance for each of the quality

metrics. (U.S. GAO AIMD-00-209R) Both the review and evaluation of performance

metrics is essential in the acquisition of information systems (U.S. GAO T-AIMD/GGD-

00-179), but requires knowledgeable information specialists working for the government

to accomplish this task.

Shortcomings in information technology, contracting, and acquisition are

attributable in part to human-capital issues. (U.S. GAO T-AIMD/GGD-00-179, U.S.

GAO AIMD-00-282, U.S. GAO 01-244) The DoD IG semi-annual report to Congress

 23

reported on the adverse consequences from cutting the acquisition workforce in half

without a proportional decrease in workload. (DoD IG Semiannual Report to Congress)

A shortage of personnel with the skill sets to manage IT intensive systems has also

contributed to the lack of software quality. This is another reason that outsourcing has

become more popular, although outsourcing efforts often require as much effort to

manage as in-house efforts.

3. Shortage of Information-Technology Personnel

 The DoD and industry have both been plagued by a shortage of workers with the

IT skills necessary to support their organizations needs. Recruiting and retaining talented

IT personnel is a problem for all organizations. In many cases personnel that are not

familiar with IT have been forced into managing IT systems because there are not enough

skilled personnel. This lack of IT knowledge has lead to many of the problems discussed

in the previous section. It has also increased the reliance on contractor support and

outsourcing.

 In 1998 and again in 2000 Congress increased the quotas of H-1B visas in

response to claims of a significant IT labor shortage from organizations such as the

Information Technology Association of America (ITAA) and the U.S. Department of

Commerce’s Office of Technology Policy. (Matloff) In addition, The Department of

Commerce projects a 1.3 million shortage in core IT workers by 2006. (Department of

the Navy) In its 2002 study “Bouncing Back: Jobs, Skills and the Continuing Demand

for IT Workers” the ITAA predicted that in 2002, of the projected demand for 1.15

million IT workers, 578,000 will go unfilled due to a lack of qualified workers.

Despite the amount of IT personnel that are currently unemployed, a recent study,

and informal surveys have indicated that there still remains a shortage of IT personnel

with the right skill sets necessary to help organizations achieve success in the complex,

competitive IT market. (Griffith, Millard) The government has identified its largest IT

skill gaps are in the areas of enterprise system integration and web-development. (U.S.

GAO AIMD-00-282)

 Part of the skill shortage is in the areas of IT program management. The are many

program managers in the government’s current workforce that lack the requisite skill sets

 24

needed to administer the large, complex, software-intensive systems seen today. Many of

the program managers are functional experts that have risen through the ranks to become

program managers of major systems. There is no doubt that they understand the

functional requirements of the system, but they do not have the training necessary to

understand technical architectures, software documentation, software life-cycle

management, or software engineering. In addition, with the current work load, it is

difficult for program managers to keep abreast of the protocols, interface challenges,

architecture constraints, or technological advancements associated with the move to

distributed computing.

 The DoD has shown that it is adept at utilizing risk management in systems

engineering and the system-design process. However, it has not shown that same

competency in software development. Experience has shown that the software

component of major acquisitions is the source of most system risks. The software

component is most frequently associated with late deliveries, cost escalation, and

inefficient performance. (U.S. GAO AIMD-00-209R)

 The GAO and DoD IG have acknowledged that the DoD does not have enough

skilled information-technology workers to properly manage its information systems. The

GAO expressed its concern that during the downsizing efforts in the DoD, more attention

was paid to the reduction in numbers than managing the various skill sets of the

workforce. (U.S. GAO 01-244) Thus, some people with necessary skills, such as

information technology, were not been retained.

DoD, like industry, is having difficulty retaining skilled IT employees. The DoD

civilian workforce is aging, and the GAO has identified retaining personnel with

computer skills as one of the major managerial challenges for the DoD in the year 2001.

(U.S. GAO 01-244) The mean age of the civil service workforce in the Department of

the Navy (DoN) is forty-six, with nineteen years of service. Nearly fifty percent of the

civilian workforce is approaching retirement. Of these civil service employees, one third

of the civilian computer specialists will be eligible for retirement in 2003. (DON CIO)

 The civilian workforce has declined about forty-three percent since 1989. (U.S.

GAO 01-244) This downsizing in many cases has lead to the termination of the younger

 25

employees. The policy of “bump and retreat” has forced many of the most junior

personnel from the workforce. This policy, designed to protect senior workers, not only

can lower morale among the existing entry-level workers, but it can discourage new

accessions.

 The DoD has difficulty in recruiting personnel to replace the civil service

employees who retire. During good economic times, the salaries and benefits offered by

the private sector for information-technology personnel outdistance those offered to

government employees. The private sector offers from fifty to one hundred percent more

for entry-level information-technology professionals than the government. (DON CIO)

The advancement opportunities within DoD are limited due to downsizing, outsourcing,

and the seniority of the existing staff. There is also a perception that junior information-

technology professionals will be assigned to maintain legacy systems, rather than

participating in the use of cutting-edge technology. As a result, there has been a decline

in the number of young people who are pursuing careers in the civil service.

 Most program managers control the functional aspects of the systems they

manage well, but due to their lack of IT knowledge and the shortage of in-house IT

support, they are forced to rely more on contractors to manage the software components

of their systems, including maintenance. However, 0utsourcing IT functionality does not

lessen a program manager’s responsibility for managing that functionality. Program

managers must still maintain control over their systems, they must be involved in the

development and maintenance actions on their systems, ensure adherence to formal

policies and procedures and provide contractual oversight.

4. Outsourcing

 Outsourcing is the process of contracting with a service provider to perform a

function or functions that used to be performed by the organizations own (in-house) staff.

Outsourcing has been a business strategy for a number of years. Organizations are

generally more comfortable assigning functionality to in-house staff as it gives them

more flexibility, they do not need to contract for the services, in-house staff already

understand the organization’s policies and procedures, they have greater trust in their

 26

own staff, and in many cases in-house staff is cheaper than contractors. However, in the

IT industry outsourcing is becoming ever more appealing.

Many organizations have discovered that they do not have the necessary IT skills

within their organization. Rather than hire IT specialists, or invest in training for their

staff, they are considering outsourcing their IT work as a strategy. The emergence of

ESPs have provided a source of IT specialists that can in many cases provide high quality

service for lower prices than internal IT organizations can. IT outsourcing is gaining

popularity and is increasing in volume worldwide. In many cases IT managers have little

choice but to outsource as ESPs provide access to cutting edge technology and skilled

staff, they share the project risk, and they allow organizations to concentrate on core

competencies. (King, Goth, Greaver)

 Numerous books and papers have addressed the topic of outsourcing IT .

Research has addressed outsourcing of information systems from a number of

perspectives. Some research has addressed the strategic implications of which

information systems should be outsourced (Lacity, King, Beath, Nelson), others have

written about the potential for offshore outsourcing efforts (Heeks, Smith, M.,

Kobitzsch), others have concentrated on the acquisition aspects of outsourcing (Farbey,

Robert, Ripin), and some have addressed organizational risk (Duncan). Given manning

shortfalls and a shortage of technical staff within the DoD, outsourcing IT services can

increase the risk that the DoD’s will not be able to provide proper oversight of the

acquired service.

 Currently program managers are increasingly forced to rely on contractors to

provide technical guidance, because in-house expertise either does not exist, or it is

overburdened supporting other programs. This has however, added another level of

complexity to the management of information systems. Outsourcing efforts require

additional discipline and management oversight that may not be necessary with in-house

development and maintenance of information systems.

 Outsourcing requires skill in software acquisition as well as project management.

In many cases new processes must be created to manage the relationship between the

organization and the outsourced contractor. Issues such as the level of access to

 27

information, reporting chain, problem resolution procedures, reporting mechanisms,

common software, and roles and responsibilities will have to be negotiated. In-house

activities already have established operating procedures. Software acquisition also

involves activities such as requirements determination, solicitation preparation, contractor

and proposal evaluation, requirement change management, risk assessment, contract

management and oversight, and contractor performance management. (SA-CMM)

F. PERFORMANCED-BASED SERVICE ACQUISITION (PBSA)

The Department of Defense has been shedding its internal development activities

for a number of years. The DoD has moved from a producer of end-items to a consumer.

Many of the services that were once performed by the military and DoD civilians are now

being performed by commercial entities. Development activities such as SPAWAR and

NAVAIR spend more of their effort managing outsourcing contracts than they do

actually producing end-items.

As a result, acquisition of services and end-items has increased in importance due

to the DoD’s reliance on the commercial sector to meet its demands. To ensure that

quality services or end items were being acquired, the government developed very

detailed military specifications (Mil-Specs) and standards (Mil-Stds) that not only

described their requirements, but it also described steps (processes and procedures) that

the contractor needed to take to meet those requirements. Unfortunately the use of Mil-

Specs and Mil-Stds did not necessarily result in a quality product. Eventually, the DoD

stopped requiring most of the Mil-Specs and Mil-Stds because they were difficult to

enforce, they were difficult to understand, they allowed the contractor little innovation or

flexibility in meeting the requirements, they were not being used correctly, they were

expensive, and the government was loosing the expertise to develop and enforce them.

After the DoD stopped utilizing Mil-Stds and Mil-Specs, their acquisition strategy

concentrated on defining their requirements, and allowing the contractor to determine the

method to best meet those requirements. The DoD strategy of creating requirements,

passing them to a contractor to develop a product, then testing the final product did not

result in improved quality. While this approach has a lot of advantages, including

allowing contractors increased flexibility to derive solutions, it allows contractors to

 28

utilize the best business procedures and latest technology, it increases innovation, and

allows more contractors to compete for programs, it also has problems. One of the major

problems is that the requirements have to be very explicit, they have to be unambiguous,

quantifiable, and measurable; this is not always the case. Another problem with this

approach is that the DoD advocates any responsibility for quality control until the test

phase. This presents major problems if requirements were not met. This approach also

does not foster good communication as requirements are “thrown over the wall” to the

contractor, and discussions tend to be limited to better defining requirements and

evaluations of the testing process and results. This approach lacks monitoring and quality

control on the part of the government.

This strategy has been further refined into a new strategy called Performance-

Based Service Acquisition (PBSA). Like the previous acquisition strategy, PBSA

concentrates on defining service requirements in terms of performance objectives. PBSA

does not dictate processes; instead it depends upon the contractor to determine the most

effective and efficient means to deliver the requested service. A USD (AT&L)

memorandum of 5 April, 2000 stated that at least 50 percent of service acquisition are to

be performed under PBSA by 2005. (USD (AT&L))

While both strategies advocate early planning and spending the appropriate time

to develop well-defined requirements, the difference in the strategies is that PBSA

concentrates on stating measurable requirements, determining acceptable performance

parameters, it requires a performance assessment plan to determine how contractor

performance will be measured and assessed, and the PBSA also encourages the use of

incentives (positive and/or negative reinforcements for meeting stated requirements).

The PBSA also advocates a team approach in developing the requirements, as well as

performing a risk analysis associated with the requirements and development proposals.

The PBSA strategy focuses on insight into the contractor’s performance, not

oversight. PBSA as opposed to the prior acquisition strategy encourages periodic

assessment of contractor performance to promote quality control and enhance

communication. This approach does not concern itself with the processes that the

 29

contractor chooses to incorporate during development, but it does assess the deliverables

resulting from the development process used.

 The PBSA applies to the field of software acquisition as well. However, the

PBSA strategy needs to be expanded to meet the unique needs associated with software

acquisition. As the DoD has become more dependent on commercial sources to meet its

software development needs, it needs to adopt a software acquisition strategy that

emphasizes quality, not only in the end product, but also in project management, process

control, and post-production support. This dissertation proposes the use of SLAs to

achieve that end.

SLAs incorporate many of the elements of PBSA. In particular, SLAs support the

performance assessment plan required by the PBSA approach. SLAs specify measurable

performance thresholds, the methods by which the requirements will be measured, the

periodicity of the monitoring, and incentives for meeting or failing to meet requirements.

SLAs help to institutionalize many of the quality control measures that were lacking in

prior acquisition approaches. SLAs focus on non-functional quality factors, while PBSA

traditionally focuses on function requirements only. SLAs also encourages all

stakeholders participate in the requirements engineering process.

While SLAs can be used to enhance PBSA, they can also be used to improve

other software acquisition strategies in the commercial sector as well. As such,

subsequent discussions in this dissertation will not specifically mention the PBSA

approach. Instead, standard contracting terminology will be utilized. The remainder of

this dissertation is intended to demonstrate how SLAs can be utilized to improve software

quality.

G. SUMMARY

IT systems are the primary enabler to an organization’s critical business

processes. However, managing software-intensive information systems has been

problematic for both DoD and industry. The difficulty recruiting and retaining skilled IT

personnel, the rapid change of technology, and program manager’s inexperience with IT

has lead to software quality problems. Software quality has also suffered due to

 30

organizations perceived need to rush software to market, poorly designed software, lack

of programmer training, and dependence on testing to discover errors.

 However, one of the primary reasons that many software-intensive information

systems fail to meet expectations is due to the organization’s lack of a quality control

methodology. Program managers are not only responsible for defining the quality

metrics that they need to ensure the success of their program, they must initiate the steps

to ensure that quality is incorporated into the design, that quality is delivered, and that

quality is maintained throughout its lifecycle.

 31

II. SERVICE LEVEL AGREEMENTS

Service level agreements are becoming more common as organizations are relying

on IT systems to provide their core business functionality. The increasing trend of

outsourcing has also highlighted the need for a contractual mechanism, such as SLAs,

which describes the services to be outsourced, but also holds the contractor accountable

for their performance through penalties. This chapter will describe SLAs and provide

some background on why they are becoming more popular. It will also illustrate a

recommended format for the SLAs. The proposed format was a result of our extensive

research and is designed specifically for IT system development, management, and

lifecycle support. The chapter will conclude with a discussion on how SLAs can act as a

framework to incorporate and integrate organizational and technical considerations.

A. DEFINITION

A SLA is a contractual agreement between a provider of services and a customer

that defines a level of performance. (Aries, Strum, Factor, Surmacz) This agreement

defines in measurable terms the service to be performed, the level of service that is

acceptable, and the means to determine if the service is being provided at the agreed upon

levels. SLAs define the quality of service, and how it is measured.

In general, there are two types of SLAs. The first is a contractual SLA and the

second is an in-house SLA. The contractual SLA is used when dealing with third party

providers or External Service Providers (ESPs) that are outside of the organization. In-

house SLAs are used within an organization to describe the services the IT department

provides to other departments. Both types of SLAs define the services offered in great

detail, and are very explicit in stating customer expectations, however, contractual SLAs

are more formal, and because of their legal implications, generally take more time to

develop.

 Contractual SLAs are used by organizations to specify their requirements and to

protect their interests. Contractual SLAs usually have incentive or penalty clauses tied to

the attainment of the service levels. These clauses provide the ‘teeth’ in the contract in

 32

an effort to instill in the service provider a level of accountability. If organizations

cannot receive the services that they specified in the contract, they will want some form

of remediation. The remediation can be in the form on monetary penalties, or it may be

an escalation of the issues to upper management for resolution. Some organizations try

to avoid an adversarial relationship that penalties may cause by using incentives. An

incentive clause may state that if an ESP meets all of the SLAs for a particular month,

then an additional fifteen percent bonus will be added to the monthly payment. The goal

of penalty or incentive clauses is to focus additional emphasis on meeting the quality

thresholds or performance goals stated in the SLAs. In many cases if SLAs are not met,

business processes are adversely impacted; it is not unreasonable that the ESP should

share some of that risk.

 SLAs explicitly define the services to be performed and the levels of service (this

dissertation will also refer to levels of service as quality thresholds or performance levels)

that an organization requires to support its underlying business processes. However, it is

not uncommon to read service contracts that go to great lengths to define the services an

organization requires, but neglect to include verbiage concerning the quality of those

services. There are a number of reasons that quality thresholds are not specified in the

contract, including time constraints and lack of clear requirements, but it is usually a

result of the organization’s lack of the technical expertise. If SLAs are not included in

the contract, the customer can do little if the service levels do not meet their expectations.

In many cases the customer has to tolerate the poor service until the contract expires, or

the customer may be forced to renegotiate or terminate the contract.

 When constructing a house, a contract may state that the upstairs shower must be

functional before acceptance. However if the contract did not specify metrics by which

to measure the term ‘functional’, the contractor could legally pipe the water into the

shower with a ¼ inch pipe, or utilize a 10-gallon hot water heater, and still be in

compliance with the contract. Fortunately, there are building codes that protect the

consumer, but the same is not true in the IT arena. This is why SLAs are so important in

IT acquisition.

 33

 The SLAs provide a common understanding on the services that will be

performed, the levels of service are expected, how they will be measured, as well as

define the responsibilities of both parties. Both parties must mutually agree upon

contractual SLAs, or there will never be a contract. It is commonplace to negotiate on the

services and the performance levels that are requested and ultimately agreed upon. A

SLA should contain a definition of service requirement that is both achievable by the

provider, and affordable by the customer. The customer and the ESP must also define a

mutually acceptable set of indicators of the quality of service. (Sturm) It is important to

note that SLAs can and should be modified throughout the lifecycle of a system as

requirements change, technology improves, and efficiencies are gained.

 The second type of SLA is an in-house SLA, which is used within an

organization. This type of SLA provides the same type of information that a contractual

SLA provides, but it is generally less formal. It is however, no less important. In-house

SLAs specify the services and levels of performance that the internal IT department

provides to other departments. These types of SLAs are becoming more common as they

play an important role in quality control. The quality of services that the IT departments

deliver are receiving more scrutiny as essential business processes are becoming more

dependent upon the services delivered by the IT departments.

 In some cases IT departments do not provide the services or the level of services

that are needed by other departments, or they provide and charge for services that are not

wanted. The in-house SLAs highlight the users needs, so the IT department can better

align itself to providing those needs. (Hiles) The in-house SLAs ensure that departments

get the level of service they need to support their requirements, the IT department can

take the steps necessary to meet service levels that may exceed those currently being

offered, and management can measure service against the agreed upon thresholds.

SLAs define an acceptable level of service that both parties agree to. Most

program managers will demand 100 percent availability going into SLA development

efforts. However, when they discover the costs associated with even 99.5 percent

availability, they begin to relax their requirements. Program managers need to

understand the levels of service associated with their current systems and the affect that

 34

those levels have on their business processes, before they begin to develop SLAs for new

services or systems. The in-house SLAs set a reasonable level of expectation that

everyone, especially the end-users can understand.

In-house SLAs typically do not generally contain a lot of information on

responsibilities or mediation procedures as those are usually covered elsewhere in the

organization’s policies. They also do not include penalty or incentive clauses. However,

just because penalty clauses are not included does not mean that poor performance will

not result in fiscal implications. In-house SLAs allow management to compare the costs

of the IT department against the services they provide. If management is not satisfied

with the performance of the IT department, these same SLAs can be used to determine if

outsourcing may be a better option. Additionally, in-house SLAs provide a good

business case for justifying positions, expenses, or needed capital investments. In-house

SLAs are also an important part of an organization’s quality control methodology.

B. BACKGROUND

 SLAs originated from the dissatisfaction of users of IT services and the lack of

objective measurements to assess service quality. (Hiles) Service level agreements are

not a new concept, they have been around since the 1960s, however they are gaining

more acceptance in both government and industry. There are a number of reasons that

organizations are beginning to embrace SLAs. The main reason that SLAs have gained

popularity is that there are now tools in the marketplace that provide the measurement

capability to monitor SLA compliance. Another reason is that organizations have

become increasingly dependent upon information technology (IT) to satisfy their business

needs. As managers realize that their processes are tied to IT services, they are

demanding more quality control over those services. One way to establish that control is

through SLAs. The growing trend towards outsourcing IT functionality to ESPs has also

encouraged SLAs as both a contract mechanism to define services, and as a marketing

tool for the ESPs.

 There has been a shift in industry from centralized funding of the IT department

to handling the department as its own cost center. It is very difficult to allocate all of the

 35

IT costs among the various business units. The direct costs associated with developing a

specific project can be captured, as well as the costs associated with the software and

hardware procured, the labor involved in the development and testing effort, and training

can be captured. However indirect costs such as the costs associated with the entire

network infrastructure, IT staff not directly associated with a project (e.g., firewall

administrator), facilities, and help desk support are difficult to assign to an individual cost

center. (Atre, Byron) The difficulty of assigning costs to individual departments resulted

in many organizations centrally funding the IT department with little regard to the

support provided to the other departments. However, as IT becomes more integrated in

business processes, and IT costs continue to escalate, organizations are reassessing the

way they perform IT accounting, resulting in reallocation of IT costs among the business

units.

 Organizations are increasingly under pressure to cut costs. Competition is fierce

and all business units must justify expenditures in terms of benefits to the organization.

IT departments must also justify their expenses. Unfortunately it is difficult to perform a

cost-benefit study when expenditures cannot be tied to the specific business processes the

funding is supporting. As a result, many IT departments have initiated charge back

systems where business units are charged for the IT services that they require.

(Chutchian-Ferranti, Ellett) Charge back is an effective mechanism for balancing the

shape and quantity of the IT services with the requirements and resources of the business

units. (ITIL p.64)

 The main benefit of this type of IT accounting is that it provides management

information on the costs of providing IT services that support the organization’s business

needs. This information is needed to enable IT and business managers to make decisions

that ensure the IT service organization runs in a cost-effective manner. (ITIL)

 Charge back systems focus a great deal of attention on the services that the IT

department provides, and the quality of those services. Departments that pay for IT

services want to quantify the levels of service, so they can determine whether the service

is worth paying for. When individual business units are charged for IT services, an

agreement must be developed between the business unit and the IT department that

 36

outlines the services performed, the charge back mechanism utilized, and the level of

services that the customer can expect. The agreement that is developed usually forms the

core of the in-house SLA.

Even if a department is still funded centrally, organizations are demanding IT

departments specify the services they provide, and the corresponding levels of service

that other departments can expect. As IT systems become more pervasive in business,

they are increasingly receiving scrutiny. The performance of the IT systems directly

affects the business processes they support. Business managers need to know the level of

performance they can expect from the IT systems. Utilizing SLAs, the levels of service

are defined and the business impacts and financial repercussions of IT service levels can

be identified and evaluated. SLAs have been a popular means of both defining the levels

of service the IT system can provide, and providing remediation procedures if they fail to

meet performance thresholds.

 Monitoring tools consists of the software, hardware, agents, and databases used to

collect and record information on the state of the underlying hardware, software, or

infrastructure that provides the services specified in the SLA. In the past SLA

performance thresholds were difficult to measure because good monitoring tools did not

exist. Consequently, it was difficult for a customer to hold the service provider

accountable for poor performance. As a result older SLAs were generally informal

agreements that specified performance goals, but contractually they were very difficult to

enforce.

 Monitoring tools today are much more sophisticated. Products such as Hewlett-

Packard’s OpenView, Tivoli’s Management Framework, and BMC’s Patrol are pervasive

in the IT industry. There are well over 800 vendors which market monitoring tools that

measure performance. (Sturm) Unfortunately, few vendors can provide a complete

monitoring solution. In many cases tools from multiple vendors may have to be utilized

to ensure all services are adequately monitored.

 Monitoring tools are bringing credibility to SLAs. Organizations are more willing

to utilize SLAs when they realize that monitoring tools exist that can verify performance

thresholds. Monitoring tools make SLAs more contractually binding; penalties or

 37

incentives can be used more effectively to ensure that service levels are being adhered to.

If a service cannot be adequately monitored to the satisfaction of both parties, it should

not be included in a SLA as disputes will be difficult to resolve.

 Organizations are outsourcing functionality for a number of reasons including

cost reduction, taking advantage of commercial best practices, interoperability concerns

with partners, utilizing technology that may not be otherwise available, and acquisition of

expertise. (Loeb, Duncan, Greaver) Many organizations are struggling to keep up with

the rapid technology change. Quality IT personnel are difficult to hire or retain, and it is

hard to keep employees proficient in the latest technology.

Today’s competitive pressures are forcing organizations to drive down costs and

optimize on efficiency and effectiveness. If IT services such as infrastructure

management, application development, application maintenance, and hosting activities

can be outsourced to an organization that because of specialization or experience is more

efficient and cost effective, then organizations must consider outsourcing as a strategic

business tactic. It is also difficult to keep employees trained in the latest technology.

(Feeny) Outsourcing IT functionality puts the risk and burden of managing a competent

workforce on the service provider instead of the organization. This strategy also

complements the fact that many organizations are focusing on their core competencies, or

those IT services that offer the most strategic business advantage, and are outsourcing the

remaining IT services needed by the organization.

 The outsourcing decision generally revolves around a cost-benefit study, a review

of business processes and strategies, a determination of the current levels of service (as

opposed to those offered if the services are outsourced), reviewing core competencies,

and an evaluation of opportunity costs. (Domberger, Norris) Issues such as costs to

obtain the outsourced functionality or end product must be weighed against variables

such as flexibility, complexity/uniqueness of the technology, business criticality, staffing

skills, time criticality,risk, and organizational bias. (Nelson, King)

 IT outsourcing has continued to experience significant growth. In 2000 the IT

outsourcing market was worth over $100 billion. Outsourcing IT as a strategic business

practice has gained credibility by its acceptance in many of the largest corporations.

 38

(Kern, EDS) In addition, IT outsourcing is no longer just considering non-strategic

services (e.g., those that do not affect business critical processes); businesses are now

outsourcing strategic IT services. (Nelson, Duncan) As organizations begin to outsource

business critical functionality to ESPs, SLAs become even more essential as they define

the services to be provided, the performance levels associated with those services,

responsibilities, and obligations of both parties. The lack of clearly defined requirements

will ultimately lead to problems with the ESPs. There is much more to a good

partnership than a contract, but the contract provides a foundation by which to develop

the relationship.

 It is important to make a subtle distinction between SLAs and requirements.

SLAs are a subset of requirements and they are more contractually binding than

requirements are. SLAs contain penalties and/or incentives if thresholds are or are not

met. Other requirements do not have the same contractual rigor. In most contracts, the

only recourse if a requirement is not met is to cancel the contract, or terminate any

ongoing contractor support. Terminating a project is difficult, especially if the project is

business critical. The difference between requirements and SLAs is the degree of

recourse if a requirement is not met.

 The major reason for the contractual nature of traditional SLAs has been the

perceived need to penalize the ESP for nonconformance or failure to meet agreed upon

threshold levels. The usefulness of penalties is subject to debate. Some believe that

service rebates or penalties are difficult to enforce and are normally nominal in nature.

The failure to hold ESPs accountable has reinforced the view that the contractual nature

of SLAs restricts the scope and usefulness of such agreements without adding any

significant value to the process. (Factor) Others feel that penalties focus management

attention on the service quality and penalties provide a method to distribute risk to both

parties.

 Many ESPs have SLAs already developed for the services that they provide.

Each level of service that they are willing to provide is priced out so organizations can

select from a menu of services and service levels. However, it is not advisable to accept

SLAs that are generated by the service provider. In most cases organizations should

 39

generate their own SLAs, and negotiate to levels that satisfy both parties. The SLAs

developed by the ESPs are generally very vague, usually do not provide access to

monitoring tools or reports, rarely have penalty clauses associated with them, and

ultimately are designed to favor the service provider. Additionally due to the vague

nature of the SLAs, they are difficult to legally enforce. SLAs generated by the ESPs are

usually marketing devises, designed to look appealing, but they almost always give the

ESP a more favorable contractual position.

 To date, the vast majority of SLAs have been written to cover services associated

with the post-production support of an application (e.g., network services, help desk

support, problems response). This dissertation proposes an original approach to software

acquisition by utilizing SLAs throughout the lifecycle of a software-intensive system.

Many of the advantages of utilizing SLAs in post-production support can be leveraged in

requirements engineering, development, program management, and testing. This

dissertation will demonstrate how SLAs can be used throughout a program’s lifecycle to

improve quality.

C. SLA FORMAT

 SLAs serve as a mechanism to notify all parties of services that will be

performed, performance expectations, responsibilities of all parties, penalties for non-

performance, and SLA resolution procedures. SLAs also define the oversight and

interaction between the program managers and the service provider.

 Service level agreements have many formats depending upon how they are used.

Internal SLAs between management and the IT department can be more informal because

many of the procedural issues are stated elsewhere. SLAs involving ESPs need to be

more formal.

 There are numerous variations to the format of the SLAs, although most have a

couple data elements in common. SLAs should describe the service to be provided in

enough detail to ensure that both parties understand the requirement. The description of

the service should be concise, understandable, and accurate. SLAs must also describe the

performance thresholds for the services provided. Most SLAs will also contain data

 40

elements describing the roles and responsibilities of both parties, penalties or rewards,

escalation procedures, and assumptions. Good SLAs will also describe how the service

level thresholds will be measured, which reports are required, data sources, and contract

exceptions.

 As was mentioned in the introduction of this dissertation, one of the original

contributions of this dissertation is that it introduces a unique format for SLAs that

combines some of the common elements found in SLAs with new elements that

emphasize support for business processes, monitoring, conflict resolution, and identifying

responsibilities. This section will outline the unique format of the SLAs that were used

for the hosting services covered in appendix (A). The SLAs for hosting services added

some additional data fields to provide clarity, ensure that the underlying business

processes were being taken into consideration, and that there were people identified to

validate the SLAs. The section that is indented is utilized for sub-services. For example

if the service name is Help Desk Support, a sub-service category may be Customer Wait

Time. If there is no sub-service, the indented section will be used with the main service

category.

The following is the SLA template used in Appendix (A):

Service Name: This is the name of the service category that is being measured (e.g., help

desk support).

Service Description: This is a detailed discussion of the service that is to be performed.

The service should be as detailed as possible. In the government, the development team

needs to be careful not to get to the level of detail where the government is telling the

contractor how to perform the service.

Reason for Measuring: This section should provide the rational for this SLA. In this

section the core, primary and secondary processes that are being supported by this

specific SLA should be identified. This will help to justify the SLA, and it will help the

program management team track which processes are tied to SLAs. This section is

intended to ensure that the SLAs are linked to a strategic or tactical business concerns.

Time Frame: This is the time period during which measurements are taken (e.g.,

24x7x365, or from 0700-1900 Monday through Friday)

 41

Scope: This section defines where the services apply (e.g., this applies to the system

software only). This section also provides amplifying information such as categorization

of problem calls (e.g., priority 1 equates to an emergency), and information necessary to

ensure all parties understand the areas that are covered by the SLA. The scope also

details areas not covered by the SLAs.

Performance Category: This section names sub-services that must be measured

to determine the over-all efficacy of the service. There can be numerous

performance categories associated with one SLA. The following subsections are

associated with every performance category:

Performance Metric: This section describes the metric that will be utilized to

measure performance.

Threshold Levels: This section describes the various service levels that must be

met. There can be multiple levels of service for each sub-service. In the

NAVSUP hosting SLA, three service levels are used, corresponding to the

essential, enhanced, and premier services as outlined in the SOW.

Formula: The formula describes how the metric(s) will be computed.

Assumptions: All assumptions that went into the development of the SLA should

be stated in this section.

Contractor Responsibility: This section details the contractor’s responsibilities

in meeting the service level requirements.

Customer Responsibility: The program manager or the end-user’s

responsibilities are outlined in this section (e.g., a trouble call must be initiated

before metrics covering the help desk can apply).

Frequency: This is the period of time over which measurements will be taken to

determine SLA compliancy (e.g., monthly, quarterly). This usually equates to the

periodicity of the reporting requirements.

Measurement Techniques: This describes the procedures that will be used to

collect or verify whether the threshold levels have been met.

Reports Required: This section details the reports required from the service

provider to verify actual performance against SLA thresholds. It also details the

 42

periodicity requirements of the reports (e.g., Trouble Tickets – Monthly). In some

cases, the person reviewing the SLAs has access to the report-generating tool, and

can manipulate the reports as needed. An example is if the reviewer has online

access to the trouble tickets, that individual can do daily, weekly or monthly

reports, at whatever level of abstraction is needed. Details of the report contents,

format, periodicity and distribution are detailed in the SOW or another document

called the Contract Data Element Requirement (CDRL).

Person Responsible for Verification: This section details who will be reviewing

the SLA measurements and determining compliancy. In the government, this

person is usually the Contracting Technical Representative (CTR).

Escalation Procedures: This section describes actions to be taken when thresholds are

exceeded, and who should be notified. For example if help desk response time is 15

minutes for a critical application, and 30 minutes have passed, who should be notified?

This also includes situations where thresholds are violated on numerous occasions

throughout the reporting period. Another use of this section is to describe the escalation

procedures if the CTR and service provider cannot agree that a threshold violation has

occurred.

Contractual Exceptions: This section describes any exceptions to the SLA. For

example an emergency situation may require the service provider to violate a SLA

threshold.

Penalties/Rewards: An SLA without penalties or rewards is nothing more than an

agreement. SLAs must have a mechanism to enforce compliancy. This section describes

what action will be taken if thresholds are violated, or if SLAs are met. It is important to

identify minor and major thresholds to ensure that the service provider is taking action to

correct the problems. If the service being performed is mission critical, it is helpful to

have a termination clause to ensure thresholds are not violated multiple times.

D. SLAS AS A FRAMEWORK

This section will illustrate how SLAs can be used to bridge the gap between

organizational factors (this term includes social, organizational and programmatic issues)

 43

and the more traditional technical factors associated with software engineering. Early

approaches to software engineering was based on the perception that modern scientific

methods, with an emphasis on formalism, rationality, objectivity, and decomposition,

could provide a solution to problems associated with software development. Software

engineering was attempting to apply engineering approaches by applying objective

standards to computer programs to test their correctness. Much of the early software

engineering literature was associated with technical issues such as structured analysis and

decomposition, modular structure, information hiding, reducing complexity, and process

models intended to present a series of actions necessary to produce a quality product.

(Ewusi-Mensah) However, this approach makes the assumption that real world problems

can be isolated, rationalized, and solved utilizing technology. This assumption has not

been correct to date, as the complexity of real world problems has evaded attempts at

rationalization.

In real-world software development projects the final product must not only be

technically sound, but it must meet stakeholder and organizational needs. Software

projects are always embedded within an organizational context that includes

organizational norms and culture, varying stakeholder perspectives, politics, economic

considerations, as well as external business forces. Post-modernists believe that these

organizational aspects must also be considered in the development of software, as a

technically perfect software program is worthless if it does not meet the needs of the end-

user. The social or organizational variables are often difficult to identify, and they are

difficult to model. Organizational variables often present the largest problems in

software development, and are the primary reason that software development fails (e.g.,

unrealistic project goals and objectives, project management and control problems,

requirements churn, lack of executive support, and insufficient user involvement.)

(Ewusi-Mensah)

A successful software development project depends upon many interacting

variables including technical, economic, organizational, environmental, and managerial

factors. Successful software projects take a holistic view of problem solving,

incorporating technical considerations with the environment in which the problem is

 44

framed. Andelfinger has developed a conceptual framework that helps understand the

merging of technical and organizational factors in real world software development. His

framework involves the concept of reflective practice where technical, social,

organizational and economic perspectives are taken into consideration through problem

solving and problem framing activities. (Andelfinger)

This dissertation also proposes a framework utilizing SLAs as a means to

intertwine the organizational and technical factors associated with software development.

Project success depends upon three main factors: the design must satisfy user needs, there

must be collaboration between users and designers throughout the development process,

and finally there must be constant communication between designers and users to ensure

prompt resolution of conflicts and misunderstandings. (Ewusi-Mensah)

FIGURE 1. SLA FRAMEWORK

 45

The SLA development efforts and subsequent quality control efforts associated

with SLAs not only produces meaningful and measurable requirements, but the

monitoring efforts encourage constant communication. Figure 1 provides a framework

that illustrates how elements of SLAs and the activities associated with managing the

SLAs help the program manager factor in organizational considerations and technical

considerations in the problem solving process.

To achieve a successful project, the program manager must understand how

organizational factors can influence technical considerations and visa versa. While this

framework will not be discussed in further detail, it was presented at this point to provide

a foundation. When reading subsequent chapters this framework may be helpful to see

how SLAs can help the program manager develop a quality solution to the problem

proposed, while accounting for technical and environmental factors. The SLA

development process discussed in the next chapter will illustrate how technical and

organizational factors must be taken into account in the requirements engineering phase

of development.

E. SUMMARY

SLAs were developed as a means to reinforce contractual provision to increase

the probability that the services provided by a contractor or the IT department meets the

quality requirements necessary to support the underlying business process. The SLAs

describe the services to be provided, the levels of service that must be attained,

quantifiable metrics to validate compliance, responsibilities of both parties, and penalties

or incentives associated with meeting or failing to meet service levels. Service level

agreements improve quality by identifying quantifiable quality requirements that are

incorporated into the requirements engineering process, and ensuring the test strategy

evaluates the implementation of those quality factors from design to deployment.

SLAs are gaining in popularity as outsourcing is becoming more common. The

owners of business processes are tying to gain more control over the IT services that

support their business. Financial personnel are looking at SLAs as a means to allocate

service costs to the appropriate cost centers. SLAs are also becoming more popular

 46

because there are now commercial tools that are capable of performing the monitoring

functions required by SLAs.

The format of the SLAs presented in this dissertation are unique in that they not

only help to tie the quality requirements back to the underlying business processes, they

also help to establish quality controls necessary to monitor contractor performance. The

SLAs elements incorporate many of the organizational and technical considerations that

affect the project. As such, the SLAs provide a framework for generating the

communication and oversight necessary to identify and monitor technical and

organizational risks and challenges.

 47

III. APPLYING SLAS

This chapter proposes an 8-step process to develop SLAs that is applicable to

most projects. This process helps to identify constraints that may make applying SLAs

difficult, it determines those quality factors that are necessary to support the system, and

it prepares the development team for the negotiation phase. This chapter will also discuss

common traits found in successful SLAs. The last section is a detailed case study that

illustrates the approach utilized to develop the SLAs contained in appendix (A).

A. DEVELOPMENT

 There are numerous methodologies for developing SLAs. The approaches to

development vary due to organizational culture, the type of SLA, the skill sets of the

personnel involved, and the criticality of the process affected by the SLA. However,

there exist some common steps that need to be addressed that span most SLA

development efforts.

1. Define the Problem

Before SLAs are developed, management and the program management team

must determine whether they should be used at all. While it is intuitive that SLAs should

be used for outsourcing to ESPs, resource constraints, lack of management support, and

lack of the appropriate skill sets may make the effort of developing the SLAs wasteful.

The same is true for in-house SLAs, they may cause more problems than they are

solving.

 Charles F. Kettering stated that a problem well stated is a problem half solved.

The first step in developing SLAs is to define the problem that the SLA is supposed to

solve. When the SLAs involve ESPs, then the problem solved by the SLAs is how an

organization can ensure that the services provided by a third party meet requirements.

SLAs help solve the problem by explicitly defining the services, the quality of the service

required, responsibilities of the parties, and methods to measure service levels.

 When dealing with in-house SLAs, the problems become more difficult to define.

SLAs used within an organization should be solving problems such as explicitly stating

 48

the services required by various departments, producing measurable quantifiable data to

support a level of service, and improving communications by explicitly stating service

levels. SLAs can also be used by the budgeting personnel to tie the costs of IT services

to the business processes those services support. This makes cost/benefit analysis much

easier. SLAs can also help the IT department justify infrastructure or capital

improvement expenditures by linking IT service costs to the underlying business process

the services support. Unfortunately, in-house SLAs can also be used for political reasons.

 In-house SLAs should be invoked as part of an organization’s quality

management initiative or program. In-house SLAs will not necessarily make a poor

performing IT department better, but it will identify problem areas so management can

address those issues. Some IT departments do not like SLAs because they feel that other

departments use them as a hammer every time an SLA is not met. In situations where

internal power struggles are common and the environment is highly competitive, SLAs

may put the IT director at a disadvantage by tying that individual’s performance to

quantifiable metrics, while the other directors are not. Additionally, in some cases the IT

department may not have input into the SLA, they may be dictated from upper

management.

 Another important issue to evaluate is whether upper management will support

the SLAs. Service-level management (SLM) in the context of SLAs deals with the

generation and oversight of the SLA contract, and ensures that the agreed upon services

are delivered within acceptable thresholds. SLM must have management support and

resources to succeed. The world’s best SLAs will fail if there is not someone or a group

of people that are responsible for monitoring, revising, and enforcing the SLAs. SLM

generally requires additional personnel to provide the oversight necessary. If

management is not willing to hire additional personnel or reassign personnel within the

organization, the SLAs will not have the impact needed to ensure quality.

 SLM also requires personnel with the skill sets necessary to understand the

technical issues associated with the SLAs. With in-house SLAs, these personnel should

not be solely from the IT department, as that is tantamount to the fox guarding the hen

house. It is often difficult for organizations to find personnel with the skills necessary to

 49

contribute to SLM that are outside of the IT department. Management must be willing to

contract or hire the personnel with the skill sets necessary to provide the proper level of

SLM.

 It is important that the end users and business process owners understand the level

of services that are necessary to support their business processes. If end users or the

process owners are not willing to devote the time necessary to develop the SLAs, or if

management is not willing to bring all stakeholders into the SLA development process,

then little benefit will be gained from developing SLA that may not support the

underlying business processes.

 Knowledge of the business processes supported by the IT system is critical in

developing the SLAs. Developing SLAs for services that do not have a direct impact on

the business process may not be worth the effort. In some situations, external forces have

more influence on a business process than the IT services that would be covered in the

SLA. Resource constraints, fiscal constraints, market forces, and other variables can

render even the best SLAs meaningless. If SLAs cannot improve the quality or

performance of the supported business process, then the SLAs should not be pursued.

 Upper management must be willing to take action if SLAs are not adhered to.

With in-house SLAs, upper management must be willing to take action if the IT

department continually fails to meet SLAs. This may be an indication that the SLAs are

unrealistic, but it could also be that the IT department is not allocating the assets or

attention to solve the problem. If the problem is the latter, management must take action;

otherwise the SLA will have no value, and the end users will quickly become

disillusioned. In the case of contractual SLAs, management must be willing to enforce

penalties, or withhold incentives. In some cases, contracting personnel within the

organization are not willing to perform the work necessary to monitor contractor

performance, document problems, and take the actions necessary to ensure requirements

are met. The team must understand the environment in which they are working before

embarking on the efforts to develop the SLAs. If they are not going to receive the

support they need, SLA development should not be started.

 50

 The team developing the SLAs must weigh the costs and time of developing the

SLAs against the intended benefits. SLAs are essential when dealing with ESPs, but

management must devote the proper resources to perform contractual oversight. Without

monitoring and enforcement, contractual SLAs become nothing more than goals. In-

house SLAs should only be attempted with managerial concurrence, and the agreement of

both the IT department and the recipients of the service. Without agreement, the SLAs

can cause more problems than they solve.

2. Develop a Team

 Once the decision to proceed with SLA development is made, the next step is to

create a team to develop or review a proposed SLA. This team should consist of all

stakeholders. At a minimum representatives from the IT department and the recipient of

the services need to be represented. The recipients can be individual programs or entire

departments. Representatives from ESPs do not need to be included in discussions at this

stage, although they can be. The team members should be able to contribute to the

development of the SLA. From the end users perspective, their members should

understand the business processes, application functionality, and the services needed to

support their requirements. The IT department needs personnel that understand the

technical aspects of the services offered, the quality levels they are capable of providing,

and monitoring tools necessary to ensure delivery.

 The team structure will vary with every organization, but there are a couple

important elements that will help the development process. The team leads from the IT

department and the user community should be on the same level, and should have

decision-making authority. There should be a charter outlining the membership,

responsibility of the team, leadership, structure, chain of command, and deliverable. The

team should have a specific amount of time in which to deliver the SLAs, or review a

proposed SLA. Representation on the team is needed from each stakeholder group, but

the team should be as small as possible. A representative team would consist of

membership from the IT department, program manager’s organization, management, the

 51

business process owner and end users (personnel inputting information or products into

the business, or recipients of the output of the process). In a medium organization four to

ten people is typical. (Sturm)

3. Service-Level Management

Service level management (SLM) is the disciplined process of ensuring that

adequate levels of service are delivered to all IT users. (Sturm) SLM normally refers to

the procedures and methodology that the IT department or an ESP utilizes to ensure that

the services they provide meet specified service levels. In the context of developing

SLAs, service-level management refers to the process of managing the SLA contract.

SLM involves validating the levels of service against the quality thresholds outlined in

the SLA, coordinating the change management process, evaluating the performance

reports, and managing the business relationship with contractors and process owners.

 The development team needs to determine the SLM functions that need to be

performed, and then they need to scope those functions to determine the resources to

allocate to ensuring that tasks are successfully executed. Then the development team

needs to get management support to ensure that there are people assigned to perform

those functions. SLM is resource intensive. If the development team becomes resource

constrained, they may have to scale back the number of SLAs, modify their oversight

roles, or decide not to proceed with developing SLAs.

 As part of the SLA development process, the development team must determine

how to verify whether service levels have been met. Depending upon the services

provided, there are many ways to validate performance. In some cases there are

automated tools that will assist in the verification process. In other situations, someone

may have to review the raw data in server logs to determine compliance. Another

common verification technique is to audit the contractor’s processes for compliance. If

customer satisfaction is a part of the SLA, someone needs to be responsible for

administering the survey and compiling the data. One of the SLAs for backup tape

accuracy requires that the contracting technical representative (CTR) physically audit the

 52

backup tapes to ensure that they are properly documented, and that they are not

corrupted. Depending upon the scale of the contract, multiple people can be involved in

monitoring and verifying service levels.

 The person responsible for managing the contract should also be identified. This

person will play an important role in managing the business relationship as well as being

a key member of the change review board. Any changes that impact the service levels, or

computing resources can involve additional contractual modifications as well as funding.

If contract modifications are necessary, the program manager will work with the

contracting official to develop and negotiate the modification. The contract manager is

also responsible for mediating any disputes between the customer and the service

provider. Any escalation procedures should involve this individual. In the case of the

hosting SLAs, the person identified to deal with escalation procedures is the Contracting

Officer Representative (COR).

 The SLA development team along with the program manager should determine

the representatives needed at the change review board. At the very least the program

management staff needs representation, the contract manager, the fiscal manager, the

person or people responsible for monitoring the service levels, the user community and

technical representatives from the IT department should be represented along with the

service provider. Depending upon the requirements volatility associated with the

program, the meeting could be held weekly. Additionally, the program manager’s staff

and the IT department personnel need to determine before the meeting the affect that

changing requirements are going to have on the SLAs. For example if the application is

going to be used by another command, and the concurrent user count is going to double,

then the service provider will have a good case for requesting additional funds to

purchase hardware for load balancing. In some cases the change review boards can

involve discussions on the need for additional services or the need to modify existing

service levels. The man-hours associated with these meeting, and the preparation for the

meeting needs to be considered.

 SLAs require considerable time and resources from the program management

staff. If service level agreements have not been used in the past, the program

 53

management group responsible for the development of an application, or the fielding of

the application is going to have to devote additional time to developing, reviewing, or

modifying template (already existing) service levels. The program management staff will

have to participate in the development of the SLAs. They will also have to review the

SLA reports, attend the change review boards, attend SLA review meetings, and spend

time managing the relationship with the service provider. As service level reports are

distributed to the user community and upper management, the program management staff

will be forced to be more involved in managing the performance of the service provider.

The program manager is expected to take action if performance does not meet service

levels. The process of managing service provider performance will be much

more labor intensive under SLAs than before. The program managers and the

development team need to make sure that there are proper assets in place to handle this

additional workload.

 IT accounting personnel will also be tasked with additional work when SLAs are

deployed. Procedures should be developed for how to handle the penalty or incentive

provisions in the contract. They need to determine whether funds are budgeted up front

anticipating incentives, or whether additional funds will have allocated if incentives are

warranted. If requirements change drives new SLA services, or capacity, they need to

determine whether there are there enough funds to cover the costs. The IT accounting

personnel will have to work closely with the program manager and the COR to ensure

that contract modification will not exceed the budget, and if they do, they will assist in

preparing the justification for the financial review.

 Personnel involved in SLM need to also constantly review the service levels

against the underlying business process. They need to determine if the service levels are

in fact supporting the business processes, or whether they need to be modified.

Additionally, it is possible that some services though to be essential to the performance of

the business process are in fact not needed. It is also possible that some service will have

to be added to the SLA because they were not though of previously, or because additional

requirements were added to the application.

 54

 SLM is the process that an organization utilizes to ensure that the contractor

adheres to the requirements in the SLA. Poor SLM will undermine the efforts of

establishing the SLAs in the first place. When developing the SLAs, the development

team needs to not only identify manpower shortfalls, but they need to brief management

and the program manager of the roles and responsibilities that they are expected to

perform. The development team must also assess whether they have personnel with the

skill sets necessary to verify service performance. If management or the program

managers are not willing to allocate the time or resources, then the development team

must determine whether to proceed with developing the SLAs. If the service levels are

not monitored and verified by the customer, then they will quickly loose their

effectiveness. The trust between the end users and the program manager will quickly

erode. Users will become frustrated when service quality is poor, and the service

provider will quickly determine that they will not be held to the threshold standards.

4. Review Current Services

 SLAs can be utilized for the development of new systems, maintenance of

existing legacy systems, or for post-production support. They can also be used for

outsourcing services that were previously performed in-house. Before the SLAs are

developed, it is important that the team has a foundation understanding of services and

service levels that are currently being used within the organization. Once that foundation

is built, services and service levels can be evaluated and applied to the new system,

outsourcing project, maintenance action, or in-house project under consideration.

 The development team needs to understand the underlying business processes that

the IT system must support or enable. The team needs to not only understand the main

process being supported, but it must also evaluate the numerous interlinked, feeder, and

cascading processes it supports, or is being supported by. When evaluating processes it is

useful to divide the processes into the core business process, primary supporting

processes, and secondary supporting processes. The core business describes the end-to-

end activities involved in supplying a deliverable or a service. The primary supporting

processes are those sub-activities, organized in a logical sequence, that make up the core

business process. The secondary processes are those activities that support (directly and

 55

indirectly) the primary processes. (Tricker) It is difficult to control quality unless the

quality objectives of the core, primary and secondary processes are defined.

 When developing the SLAs the team must determine the organization’s key

business processes and determine the types and levels of service that are needed to

support those processes. It is difficult to develop SLAs without first knowing what

services are being provided, and at what level. The team should develop a list of all of

the services currently supporting the primary and secondary processes, and then try to

define quality levels associated with each of the services. The list of services should be

as extensive as possible. If the team is reviewing services that are currently being

offered by an ESP, a review of the existing contract, interviews with end users and ESP

personnel, and a review of any required reports will be helpful. Interviews with the end

users are especially important because many of the users may not be aware of the

contract, and they may not be receiving services that they should be.

 If the SLA is to be used internally, the IT department should list all of the services

that they provide (relating to supporting the business processes). This is their opportunity

to show all of the work that goes into providing their current services. There are many

functions that must be performed that end users may not be aware of such as 24 X 7

physical security, monitoring of hardware and software, application testing, configuration

management, or tuning the server to optimize application performance.

 The SLA development team must also interview end users to determine what

services they are in fact receiving. There may be differences between what the IT

department claims they are providing and services the end users say they are receiving.

The SLA development team must determine reality by observation and reviewing reports,

trouble tickets, logs, and monitoring tools.

 Once a list of services has been developed, the next step is to define the quality of

the service. Each service should have a quantitative measurement of quality. However,

it is not uncommon to discover that an organization does not have defined levels of

service. If service levels have not been previously defined, the SLA development team

will have to determine them. Interviews, observation, or benchmark testing will have to

be performed to determine the level of service that is currently provided.

 56

 Benchmark testing is typically used in measuring performance based services

such as application response time, network bandwidth utilization, or processor

capabilities. However, benchmark tests can be utilized to measure service levels such as

file retrieval, disaster recovery, or trouble ticket resolution times. Benchmark testing not

only helps to quantify the level of service, but it also helps verify that defined levels of

service are actually being met.

 If the SLA development team is not comfortable relying upon the IT department

to perform the benchmark tests, they may find it advantageous to contract with a third

party to perform the benchmark testing. In some cases a third party may be necessary

because the current IT department is not trained on the necessary monitoring tools, they

do not have the background to develop a benchmark testing plan, or because the licensing

costs of the monitoring tools are prohibitive. A third party would also provide impartial

results that may make lessen conflict between the IT provider and the end users.

 In some cases it is very difficult to assign quantitative values to the services that

are provided. In some cases the services will have to be rolled into a higher service. For

example the service ‘tuning a server’ may have to be rolled into the service ‘availability’

for that server. Conversely services such as ‘security’ may need to be broken into

smaller services such as ‘data integrity’.

5. Determine Requirements

 Once the SLA development team has determined the services that are being

provided, and at what level, they must determine if those services and service levels are

appropriate for the business processes they support or are intended to support.

Additionally, the team must determine if additional services are required, or if some

current services can be deleted. New services must be defined, quantified, and assigned a

level of quality that meets every stakeholder’s needs.

 IT managers need to understand their customer’s requirements in order to provide

the services necessary to meet those requirements. However, it is not uncommon for IT

managers to make assumptions about customer requirements. IT managers often make

IT investments based on customer’s past requirements, customer’s perceived future

requirements, or they plan for improvements to the IT infrastructure to meet their own

 57

needs. (Briones) Software cannot function in isolation from the system in which it is

embedded, thus a systems level view must be used when performing requirements

analysis. (Neseibeh) A purely technical approach without regard to the underlying

business processes that IT supports will not satisfy the end user’s needs. The end users,

management and the IT department must be involved in the requirements analysis

process to ensure that the services needed are identified, that they support the current and

future business processes, and that the IT department can provide those services. The

team approach to developing SLAs is essential in producing a product that is workable

for all stakeholders.

 If the SLA concerns the development of a new system, it is important for the team

to understand the core, primary and secondary business processes that the IT systems

(hardware, software, and infrastructure) are supporting. Part of this analysis is to gather

information on the business processes that the IT system is enabling. The team can start

by asking some simple questions. Is the process data query, data input, e-commerce,

real-time collaboration, report generation, information sharing, or data warehousing?

How does this process tie into the organization’s business strategy? Is this a dynamic

process or a relatively stable process? Is the information used by the process internal or

external to the organization? If the information is external, what is the source, who

controls it, and how is the information extracted? Is the data sensitive? How does this

process tie into the overall IT architecture? Does the process have to interface with any

other processes? How do they interface? In two years, how might this process change?

Do people outside of the organization (e.g., partners, suppliers, customers) need access to

the data? How old is the technology supporting this process? Are there manual

processes in addition to those being automated?

 The team must then determine how the application is or is intended to be utilized.

Interviews will help determine batch processing times, the amount of response time that

is acceptable to users and management, the hours that the end users actually use the

application, location of the users, methods for accessing the application (e.g., intranet,

 58

internet, remote dial-in), and timeframes for required reports or queries. It is also helpful

to understand how downtime or reduced capabilities will affect the end user’s ability to

perform their tasks.

 The team should also analyze the business criticality of the system from the end

user and management’s perspective. The financial implications of downtime should be

determined so an accurate cost/benefit analysis can be performed. Implications of

downtime can include not only lost sales and clientele, but also frustration and lost

productivity by the organization’s staff. In some cases, especially those in the military,

the implications of downtime could cost lives. Highly critical business systems should

also be viewed in terms of information assurance to protect both the data and the system

itself from external and internal threats.

 The business criticality of the business process gives the team a good indication

of the types of services needed by the application, as well as how much funding the

organization is willing to invest in those services. Applications considered business

critical will be capable of justifying a larger budget, and consequently will be able to

request more services at higher quality levels. If the application is being phased out for

another application that works more effectively with partners or customers, then the

services needed may be less that those needed by the replacement application.

 Administrative requirements also need to be addressed in the SLAs. Program

managers want the ability to quickly monitor the contractor and IT system performance

to ensure they are meeting requirements, so the SLAs must address the reports that are

required from the service provider. Reports are the vehicle to demonstrate whether actual

performance met, that which was required. The team needs to determine who will be

reviewing the reports. The reports (generated by the contractor, CTR, or through access

to monitoring tools) will need to reflect the proper layer of abstraction to meet the

manager’s needs. Management may not understand the technical details of the reports, so

they may need summary reports, whereas the personnel verifying the SLAs may need

very granular data. The team will need to determine the content of the reports, their

frequency, their distribution, the source of the reports, who prepares the reports, the

report format, how the report relates to the measurement of the service, and how the

 59

report can be verified. Any current reports can provide a baseline to determine the level

of detail required, an acceptable periodicity, and management’s comfort with the formats.

 The development team must not only determine the services and service levels

associated with product quality, but they must also incorporate any process, project, or

post-production quality requirements into the SLAs. Reviewing SLAs that other

companies have written for similar projects (template SLAs), or reviewing the

contractor’s SLAs can help identify services that the development team may not have

considered.

 Template SLAs can significantly reduce the time spend developing SLAs as they

already contain definitions of services, they have quality thresholds that at least one

organization found acceptable (hopefully, industry standards can be developed for certain

SLAs), they contain the methodology to measure the service, and they explicitly state the

assumptions that were used when developing the SLAs. Template SLAs provide a good

framework to use. The development team can then modify the template SLA to

incorporate the organization’s requirements.

 Benchmark testing produces information on the levels of service that are currently

being provided. The requirements analysis further defines those services to determine if

the services are needed, and if they are needed, whether the levels of service are adequate

to support the application. Requirements analysis also determines if new services are

needed and defines their associated level of service. Once requirements are defined, the

team needs to be prepared to negotiate on the service levels. Realistic maximum and

minimum thresholds should be developed for each service. Depending upon the costs

associated with the maximum threshold, the team may decide to reduce the threshold

level to at or near the minimum.

 In most organizations, all costs must be justified, and as such, the team must be

prepared to justify all of the services and their corresponding levels of service. The

justification should be directly related to the primary or secondary process supporting the

core business process. The team should be able to explain the business impact of the

various levels of service. If resources are limited, the team should be prepared to

 60

compromise requirements, so they should be prioritized. Before negotiations begin with

either the IT department or an ESP, a draft SLA should be prepared.

6. SLA Preparation

Once requirements have been defined, and service thresholds have been

established, the team can start to prepare the SLA. In this stage, the SLA format must be

decided determined, then populated with all of the required information. This can be a

difficult task, as the team will have to determine meaningful, measurable, and

quantifiable metrics to measure the services needed. They will also have to define the

scope of the contract, the services that must be performed, the service level thresholds,

and all other required fields.

 Part of the development process is to determine the format of the SLA. A

recommended format will be presented later in this chapter. This same format was used

in the SLA for post-production support in appendix (A). However, there are numerous

formats that can be utilized depending upon the services requested, whether the SLA is

in-house or contractual, and the needs of the organization.

 The SLA development team needs to determine how the service required will be

measured to ensure that the service levels are being adhered to. The customer should

never rely upon the service provider to determine whether the SLAs have been met. The

team must determine if monitoring tools, logs, software agents, or monitoring software

packages are available to provide the information necessary to verify service levels. It

may be necessary to perform audits or run benchmark tests to determine performance.

The team should also determine if there are personnel in the organization (outside of the

IT department if in-house SLAs are used) with the technical expertise to perform the

audits.

 If the team is not experienced in developing SLAs, or if they lack the technical

expertise necessary to determine how SLAs should be enforced, they should hire

consultants that work with SLAs or outsourcing contracting. Consultants can assist in

determining the types of performance reports that should be generated by the service

provider, and the means to audit those reports.

 61

 Services that cannot be measured or verified should not be included in the SLA.

Those types of services should be listed in the SOW. In some cases the determination of

performance is subjective, and it is difficult to get an objective measurement that both

parties agree to. In some cases a survey can be used to determine an overall subjective

measurement regarding attributes such as customer satisfaction. So long as the sample

size is agreed upon, statistics can generate mean scores, which can be used in a SLA.

Proxy attributes may be used to measure the performance.

 Proxy attributes attempt to assign objective attributes to a subjective objective. A

proxy attribute does not directly measure an objective, but can be used to describe the

degree to which an objective has been met. It indirectly measures an objective. Rather

than explain the Bayesian theory and probability distributions used, an example illustrates

the concept better.

 The overall concept of security is a subjective one. Many of today’s IT systems

are comprised of distributed, heterogeneous systems that pull information from multiple

sources. There is not one simple measurement to determine if a system is secure or not.

There are many objective indicators that can indicate a degree of confidence in a systems

ability to withstand an attack. Attributes such as all servers are set up in accordance with

the National Security Agency (NSA) approved configurations, the firewall is configured

in accordance with the Navy Firewall Policy, adherence to Common Criteria guidelines,

and intrusion detection software is deployed within the system, generates a measure of

confidence in the security of the system. However, that confidence is still subjective.

 None of those attributes directly measures security, but they can provide objective

values that can be used to calculate a level of confidence in the security. It is ultimately

up to the team and the service provider to determine if the proxy attributes can adequately

be used to measure security. This means that the team and service provider must be able

to understand the implication and extent that the proxy attributes relate to security. The

goal is to provide as much objective information as possible so that a decision regarding

compliance with a service can be justified.

 The next step in developing the SLA is to determine who will be responsible for

ensuring SLA thresholds are being met. That individual or team of individuals must have

 62

the authority and resources necessary to provide the oversight necessary to audit

performance and enforce noncompliance. Managing service levels can be a time

consuming effort and cannot usually be assigned to the program manager of an IT

system. In some organizations, a quality assurance department is responsible for SLM.

The development team and the program manager must review the level of work

necessary to perform the intended SLM functions when assigning the individual or

individuals necessary to monitor SLAs. In many cases multiple people will be employed

in the SLM effort

 The SLA development team also needs to determine the scope of the SLA. The

boundaries of the agreement need to be defined. This seems straight forward, but in

some cases the service provider may have not control all aspects of an IT system’s

performance. A good example is where a service provider is being tasked to host an

application in its server environment. The SLA specifies a threshold of a 2 second

response time for a specific query in a client-server architecture. In this case the service

provider has no control over the client PC, the client network to the Internet Service

Provider (ISP), or from the ISP to the service provider’s firewall. In this case, the scope

should be defined to the service area that the service provider actually has control over.

 Once the team has developed the SLAs, they are almost ready for the negotiation

phase. The last step is to present the draft SLAs to the organizations attorneys. The

attorneys will review the SLAs as they would any contract between the organization and

a third party provider. They will undoubtedly modify the SLAs to add clarity and ensure

there is verbiage to protect the organization if the services specified in the SLA are not

delivered at the thresholds specified.

 When an organization wants a contractor to propose a bid for the services that

they want accomplished they prepare a request for proposal (RFP). In this dissertation

the RFP sent to the service provider will include the Statement of Work (SOW) and the

SLAs in separate sections of the RFP. It is important that the development team is

familiar with the SOW. The SOW can define services that will be performed, but the

SOW really concentrates on the functional requirements of the system. SLAs concentrate

 63

more on the non-functional, quality requirements of the system. The SLAs should

support the SOW, not conflict with it.

7. Negotiation

 The SLAs must be agreed upon by both parties in order to be successful. SLAs

that give undue advantage to either the organization or the service provider will cause

problems. As service levels are not achieved, or expectations are not met, disputes and

finger pointing ultimately occur. SLAs should not be viewed so much as a contractual

mechanism to force the service provider into compliancy, but as a contract that defines

expectations for both parties.

 The contracting officials are generally responsible for leading the contract

negotiations. SLAs are contracts, and as such, members of the contracting branch or

department should be part of the development effort, or they should at the very least

review the draft before negotiation processes begin. The program management team and

the contracting official needs to determine if the process owners, IT personnel,

contracting personnel, or management will be involved with the negotiations. Although

the SLAs and SOW will probably be negotiated as a package, it is recommended that if

they are negotiated separately, whoever negotiates the SLAs is also the same person or

group that negotiates the SOW. This provides consistency and helps to ensure that the

SLAs and SOW do not conflict. (Sopko)

 Once the SLAs are drafted, they are incorporated into a Request for Proposal

(RFP) along with the SOW. In government contracting section H is where the SLAs are

placed. Section H provides additional guidance to the SOW. The contractors respond to

the RFP and the SOW with a proposal that lists the services that they will provide along

with the technical specifications on how they will achieve those services. The contractor

must also respond to the SLAs. The contractors must not only determine whether they

are capable of providing the services, but they must also be capable of performing to the

service levels defined in the SLAs. In-house SLAs are usually presented to the head of

the IT department for consideration.

 It is important that both parties understand the terminology and technology that is

associated with the SLA. Both parties need to understand and agree upon the verbiage in

 64

the SLA. If there are areas that need clarification, then mutually determined

modifications will have to be made. This may entail several meetings, especially when

attorneys are involved.

 The service providers must evaluate the SLAs for software and hardware

requirement, staffing needs in terms of skill sets and effort to accomplish requirements,

infrastructure needs, and managerial oversight needed. Once the service providers

understands the hardware, software and resources needed to satisfy the service thresholds

outlined in the SLAs, they can start to determine the costs associated with providing

those services. They can also start to estimate the time frames associated with software

development or software maintenance projects.

 The service providers will also look at the deliverables and the responsibilities of

both parties as defined in the SLA. Every section of the SLA is subject to negotiation, as

this is a contractual document that is legally binding. Any areas that are subject to

interpretation should be defined as much as possible to ensure both sides understand the

services to be delivered. Attorneys from the service provider will also review the SLAs

and they will play a role in the negotiation process.

 It is extremely important that the development team have good information from

their benchmark studies. The team should know the service levels that are currently

being received and to the maximum extent possible, they should know or be able to

estimate the costs associated with providing those services. If that information is not

known, then the team is entering the negotiation process in the blind. The team will not

be able to determine whether the services requested exceed requirements, nor will they be

able to determine if the services and service levels that are ultimately decided upon will

meet the requirements to support the underlying business process.

 Once the service provider has scoped the requirements and has determined costs

to provide the services, the negotiation process can begin. It is important that both sides

show flexibility in their approach to the negotiation process. Both parties should attempt

to arrive at terms that satisfy their mutual needs. Inflexibility will not only drive up costs,

but could jeopardize the entire negotiation process.

 65

 When the development team has reviewed the service provider’s estimated costs

associated with the team’s proposed SLAs, they need to weight their requirements against

the costs, and determine the services and associated quality levels that they can afford.

Understanding the business impacts of the various levels of service is essential in this

phase. The team must understand the minimum service requirements to support a

business process, so funding is not wasted on satisfying requirements that are greater than

necessary.

 It is recommended that the type of services should be negotiated first, then

technical issues, then legal terms, and finally price. (Sopko) When services, their

associated service levels and costs have been negotiated, the remaining sections of the

SLA detailing responsibilities, penalties, incentives, deliverables, documentation,

methodology for verification, escalation procedures, and management of the SLAs will

have to be mutually agreed upon. An important part of this negotiation is agreeing on the

tools or products that will be used to monitor performance. Another area that must be

discussed is the required reports, their format, their periodicity, and their distribution.

Reports are extremely important in that they provide the mechanism by which

management can determine whether actual performance meets service thresholds. The

reports and other deliverables are usually outlined in the Contract Data Requirements List

(CDRL).

 SLAs also delineate areas of responsibility, which can make troubleshooting

faults much easier. When a fault occurs, the SLAs can be used to achieve a team effort in

which everybody understands their respective areas of responsibility. Poorly defined

roles and responsibilities will lead to contractual challenges if SLA thresholds are

violated.

 Depending upon an application’s criticality, and the services being offered,

acceptance testing may be necessary. For example in a contract for hosting services, the

application can be loaded on a server in the host facility and tests can be run to determine

monitoring capabilities, resource utilization, software compatibility, and response times.

Some vendors will object to this tactic, but the tests will ensure that the service provider

can perform. It is not unusual for a service provider’s sales staff to oversell their

 66

capabilities in their zeal to close the deal. Acceptance testing not only ensures that the

service provider has the technical skills to perform the service, but it establishes that the

organization will be actively monitoring the contractual terms of the agreement.

Depending upon the services being offered, the organization can run the acceptance test

and maintain current operations in parallel. If the acceptance test fails, then it is easy to

terminate the agreement. Details of the acceptance testing, including the methodology,

tools needed, duration and associated costs will have to be negotiated.

8. Contract

 When both parties are satisfied with the terms of the SLAs, the agreement needs

to be formalized as a contract. It is important that everything that was agreed to is

documented in the contract, especially termination and penalty clauses. It is also

important that both parties agree to the terminology used in the contract.

The roles and responsibilities of each party should be clearly defined in the

contract. The better defined the responsibilities are, the better the relationship between

the two parties. Functions such as the method of communication, chain of command,

points of contact and management of change need to be agreed to and documented.

Additionally, issues such as who can place orders or modify requirements with the

service provider, and what procedures are used to modify those requirements needs to be

identified. In very dynamic environments it may be more important to manage the

relationship than the contract.

 Part of the negotiation process is to determine the scope and the duration of the

contract. The scope clearly defines the services to be provided, and the boundaries for

those services. The contract needs to specifically state those areas that are within the

scope of the SLAs, and those services that are outside. For example, in a hosting services

SLA, the service provider might not be held accountable for the latency experienced in

the Wide Area Network (WAN) outside of the host environment. The scope also

includes limitations such as the number of users supported, or application upgrades

allowable. Availability services scoped for 100 users on the same infrastructure are very

different from when the user base expands to 1,000 users distributed throughout the

 67

country. Capacity requirements should be determined in the baseline tests, the service

provider should not be held accountable for service levels when the application or the

user base changes significantly.

 The contract should also state the duration of the agreement. It is not

recommended that a SLA contract be signed for more than a two-year period.

Technology is changing too rapidly to be tied into a long term contract. In addition, the

underlying business processes supported by the IT system can also be dynamic and

rapidly changing.

 The contract should also have provisions for review or revision of the SLAs. This

is especially important if the development team was not able to capture good data on its

benchmark analysis of the IT system. Often organizations have not adequately monitored

their IT systems, so they are not sure of the level of service needed to support their

business processes. As procedures are better defined, they may need to adjust the SLAs

to reflect better defined requirements. Reports and monitoring tools may also need to be

revised to better present the information to various levels of management and oversight

personnel.

 The service provider should also be able to address revisions to the SLAs. In

many cases the service provider will not have the ability to conduct a thorough analysis

of the IT system or application to be supported. Lack of due diligence may result in

dependencies, resource utilization, bandwidth requirements and support that was not

originally noted. Additionally disagreements on interpretation of the SLAs will have to

be worked out. It is also possible that technical problems will force modifications to the

SLAs, such as a particular monitoring tool that was agreed to will not interface with the

application in the way it was intended.

 SLAs are not static, as the workplace itself is not static. As experience is gaining

in tuning and monitoring the application, SLAs will need to be modified or refined. Both

parties should agree to modification of procedures and requirements as additional

information is discovered regarding services provided and the efforts required to support

those services. SLAs should be reviewed on a weekly basis for the first two or three

 68

months. Any changes or modifications to the SLAs will have to be mutually agreed

upon. The contract needs to be explicit in explaining the process by which modifications

or refinements of the SLAs occur.

 The contract also needs to discuss procedures to modify the SLAs because of

changes as a result of application modifications, or configuration updates to supporting

software or hardware. A mechanism such as a change review board must be instituted to

address hardware or software changes initiated by either the customer or the service

provider. The change review board should have membership from the program

management team, the service provider, contracting representatives, end users, and

possibly the business process owner. The change review board will review and approve

software or hardware changes to the application or the supporting environment,

determine if those changes will affect the SLAs, and if so, whether new SLAs should be

agreed to. Changes that have not been approved by the change review board are

unauthorized and the offending party will be held accountable. Additionally, the change

review board should have a mechanism for identifying who should pay for additional

resources (hardware, software, personnel) as a result of application changes, or changes

to the system software.

Additional contractual provisions will have to be worked out if the nature of the

application or its underlying business process is rapidly changing. This is especially true

for prototype applications. Although the stability of the application should have been

identified in the negotiation process, it is important that remediation processes are

identified in the contract to account for rapid changes to the application. For highly

dynamic applications or applications associated with businesses that must react quickly to

external forces, mechanisms will have to be built into the contract to allow the

contracting official and the change review board to quickly modify requirements and

their associated service levels. SLAs are intended to protect business processes, not

hinder them.

B. SUCCESSFUL SLAS

 The method of developing SLAs as well as the formats of the SLAs may differ,

but all good SLAs have similar qualities. This section outlines some lessons learned that

 69

might assist in developing successful SLAs. The lessons are not presented in any

particular order of importance.

 The SLAs should only focus on those requirements that drive a business need, or

directly support a primary or secondary process. Focusing on the business need ensures

the SLAs are meaningful, have management support, and can be justified financially.

SLAs should be based on what is important to measure, not what is easy to measure.

 Service level agreements that measure the technical aspects of a service, yet fail to

meet the requirements of the underlying business process will not be successful.

Including the end users in the development process will help to focus on the customer’s

requirements.

 The number of SLAs should be kept relatively small. If there are too many SLAs,

the service provider looses focus on what the mission essential service are, and

monitoring and validating the SLAs will be more difficult and time consuming.

Additionally, too many SLAs may deter good service providers from competing for the

services. Too many SLAs will also prolong the negotiation process and ultimately cost

the organization more.

 Robert F. Kennedy stated, “Progress is a nice word. But change is its motivator

and change has its enemy.” SLAs are only one part of quality control. The entire

organization needs to be involved in quality management to achieve success. Upper

management needs to implement the policies, drive the training, and allocate the

resources to support the quality management initiative. Without upper management

support, SLAs will not achieve the success they are capable of.

 Communicating the results of the SLAs to all of the stakeholders, in a timely

manner is important. This is part of an organization’s quality assurance effort to ensure

that stakeholders have confidence in the quality of the services that they are receiving. A

great deal of effort goes into developing SLAs, upper management should take the credit

for initiating and managing SLAs as part of a quality control program. Both good and

bad results should be shared. If SLA results are not being communicated, then

stakeholders may believe that they are not being met, thereby eroding confidence in the

ESP or the IT department.

 70

 James Magory said, “computers can figure out all sorts of problems, except the

things in the world that just don’t add up.” In other words, technology does not solve all

management problems. SLAs should be used as part of a quality control plan, not as a

tool to correct bad management. SLAs can identify where quality is not being provided,

but SLAs will not solve the problem.

 Penalties or incentives must be used. Without them, the SLAs are just

agreements. The penalties or incentives should not be too large, but they must command

the attention of the service provider.

 SLAs must be easily understood by all parties. If the end users cannot understand

the SLAs, then they are probably concentrating too much on the technical aspects of the

service and not enough on supporting the business processes. Response times in a router

mean little to the end user. The SLAs should reflect business terminology that the end

users understand, such as the overall availability of the application, or mean time to

failure instead of the listing the technical components that comprise the availability

formula.

 If a service cannot be accurately measured, in a timely manner (enough to support

the business process, which may include real-time), it should not be included as part of

the SLA.

 SLAs should be reviewed frequently. SLAs will change, and they must be

approached as a dynamic agreement. Change management processes need to be

addressed in the development process, and agreed to in the negotiation process. Capacity

planning is another area that needs to be addressed as new requirements may require

additional resources.

 If prior service performance is not known, or if a new service is being initiated,

trial SLAs without penalties or incentives may be necessary for a brief period (3 to 6

months). A cost-plus type of contract may also be helpful.

 A SLA is a contract and should be treated as such. To prevent any

inconsistencies, the SLA and SOW should be negotiated as a whole. Most ESPs are very

experienced in negotiating SLA contracts. They have the expertise; most organizations

 71

do not. Organizations should not be afraid to bring in outside contractors experienced

with negotiating service agreements to assist in the negotiations.

 If possible SLAs should reflect end-to-end services. It is important to look at the

entire IT system. In a multi-tiered system, it is possible for all of the components to meet

their individual availability thresholds, but when combined they still do not satisfy the

end user’s requirements. End-to-end SLAs are aligned more to the business processes

they support.

 It is very important that both parties agree to terminology. For example, the term

‘downtime’ can be defined in many different ways. An ESP may consider ‘downtime’ to

be when a server has a hardware failure, whereas the organization may consider

‘downtime’ to be when the end user cannot access the server from his or her PC. Unless

the terminology is agreed upon, there will be many contractual issues. How will

intermittent ‘downtime’ be handled?

 The SLAs or SOW need to address how the data and reports will be generated and

stored. Issues such as who has access to the service level reporting tool, how information

will be stored, and for how long, need to be discussed.

 Cascading SLAs can be a problem. This is when the service provider has to rely

upon other third parties to perform a portion of the service being offered, and actions by

the third party provider alters the original agreement. For example, service provider X

may offer end-to-end SLAs to customer A. However service provider X has to rely on

the long haul WAN services of provider Y. Service provider X and Y have a service

level agreement for the long haul services. Service provider Y upgrades security

protocols to meet the requirements of another customer. Service provider X must adopt

the new protocol, which is not supported by customer A.

 End-to-end SLAs are difficult to achieve, especially in a highly distributed

environment. Achieving high levels of availability for distributed applications requires

control (physical or contractual) over the component pieces that make up the entire

system and infrastructure, strict configuration control, proper monitoring tools, and a

change control methodology that can adapt to rapid changes.

 72

 SLAs are part of a quality control methodology. Once service levels have been

measured and compared against the agreed upon thresholds, root cause analysis needs to

be performed to determine why thresholds were violated. Once cause has been

determined, the SLM organization needs to take the steps necessary to correct the

problem.

C. POST-PRODUCTION SUPPORT

The SOW and thirteen SLAs in appendix (A) illustrate how SLAs can be used to

improve the management and quality of software post-production support by establishing

a monitoring program to support process and quality control measures. The SOW and

SLAs in appendix (A) provide a detailed listing of post-production services and quality

thresholds. A discussion of how those services and quality thresholds improve the

management and quality of the software-intensive system would be redundant. Rather

than focus on the specifics of how the SLAs in appendix (A) contribute to the quality of

post-production services, this section will discuss how those SLAs were developed.

In the previous sections, we have discussed how SLAs should be developed, and

offered some characteristics of good SLAs. In this section we will offer another

approach at developing SLAs that will illustrate more of a top-down approach. The

approach outlined in this section was utilized in the development of the statement of work

(SOW) and SLAs in appendix (A) that were part of an actual request for proposal (RFP)

to obtain quotes for post-production services.

1. Background

Today’s computer environment differs significantly from the more centralized,

mainframe-intensive environment of the past. Stand-alone and/or clustered servers have

rapidly replaced mainframes as a result of the rapid adoption of the client-server

architecture, the increased computing and storage capabilities found in today’s servers,

the dramatic reduction in server size, and dramatic drops in the cost of computer

hardware. In addition, advances in distributed-computing technology, increased network

speeds associated with broadband technology, and advances in web technology have also

made the location of the server a moot issue. Low cost hardware coupled with

 73

distributed-computing technology allows program managers to quickly purchase,

configure, and deploy a system. Distributed-computing technology also increases the

ease at which a program manager can outsource the hosting services associated with the

application, as the server can be easily accessed using the Internet. While the current

computing environment makes deploying a system easier for the program manager, it

makes managing the applications, and servers more difficult at the enterprise level.

In an interview with a Chief Information Officer (CIO) staff member, he

commented on the difficulty he was having tracking and managing servers. He said,

“servers are worse than rabbits, I swear they are breeding. I am finding them everywhere,

including under desks and in closets.” Unless all of the IT funding is coordinated through

the CIO organization, it is very easy for program managers to buy servers and deploy

applications with little or no oversight. The proliferation of servers has caused numerous

problems for IT departments.

One problem with the decentralization associated with servers vice mainframes is

that it is difficult to standardize policies and procedures. Within the government it is not

uncommon to find host service support ranging from twenty four hour support in a

monitored hosting environment to servers that are receiving no support at all. This range

of support can be the result of funding constraints where programs are trying to save

funds by reducing the level of support. It can also be the result of a program manager’s

lack of technical knowledge.

It is difficult to manage post-production hosting contracts at an enterprise level

unless the contracts are with a couple of stable, reliable contractors, and the services are

similar. If program managers have the ability to independently contract with ESPs for

hosting services, the range of services and quality requirements can vary dramatically.

Even when host services are provided by an internal IT staff, services can differ due to

varying business priorities, hardware differences, and obsolete operating systems

necessary to support legacy systems.

Problems can also result when development was outsourced but hosting services

were kept internal. Good communication is needed between the developers and the

internal system administrators to ensure that network quality of service (QOS),

 74

interoperability concerns, resource constraints, monitoring software, and security

concerns are discussed and conflicts are resolved.

A third problem is that many of the program managers do not have the

appropriate IT experience or background to be contracting for hosting services. Many of

the program managers do not know what services are required to host their applications,

nor do they know what levels of quality they should require in their contracts. In the

government, contractors provide much of the technical expertise necessary to develop

software-intensive systems. Some of these contractors are very familiar with the tasks

necessary to support an application in post-production, but it is more common to find that

the contractors specialize in particular areas of the development process.

Many of the larger IT consulting companies offer their own host services, which

they include as part of the development contract. These contracts provide many of the

services necessary to support an application, but the contracts are written to minimize the

risk to the hosting organization. In most cases, the application is properly supported, but

if problems occur, the host provider will have little if any liability.

2. Post-Production Services

The SOW and SLAs in appendix (A) were part of an effort by the Naval Supply

Systems Command (NAVSUP) to consolidate their numerous servers, managed by

multiple program managers and commercial entities, into a single hosting environment.

As part of their server consolidation effort, NAVSUP wanted to explore the possibility of

outsourcing hosting services. One of the sources considered was Electronic Data

Systems (EDS). At that time the Navy was in the process of implementing the

Navy/Marine Corps Intranet (NMCI), an effort to outsource all desktop and network

support to EDS. Contract line item number (CLIN) 29 of the NMCI contract was written

to include additional IT services, including hosting services. Although CLIN 29 was part

of the negotiated NMCI contract, it was not priced, so the services provided under that

CLIN had to be negotiated separately.

One of the security issues with NMCI was defining trusted boundaries. If EDS

provided hosting services, the servers would be within the NMCI trusted boundary,

offering greater security. Any other service providers would be outside of the trusted

 75

boundary, and access to those services would have to travel through the NMCI external

firewalls. Outside access would require greater security restrictions at the external router

and firewall (e.g., port restrictions and protocol restriction such as use of Active X). As

such, the Navy was exploring the option of having EDS provide hosting services as part

of CLIN 29.

Since hosting services under CLIN 29 had to be negotiated, the author was tasked

by NAVSUP to develop a contract for hosting services. Since the NMCI contract had

already been awarded to EDS, the author was able to negotiate a hosting contract with

EDS that would provide the services necessary to support NAVSUP’s applications,

contained enough flexibility to meet the requirements of specific projects, and was

capable of being performed by EDS. The author presented initial requirements and SLAs

to EDS. The resulting SOW in appendix (A), was a collaborative effort between the

author and EDS (specifically Scott Price and Joe Vickery). The final product of the SOW

and SLAs were written to augment CLIN 29 of the NMCI contract, so they could be used

by any Navy activities requiring hosting services.

The SOW and SLAs contained in appendix (A) were intended to provide a listing

of services and service levels that the program manager could use in outsourcing

contracts, or in negotiations for support with an internal IT hosting provider. Appendix

(A) provides thirteen SLAs and three levels of service, which should contain sufficient

options for most programs. Although the SOW and the SLAs in appendix (A), are

intended to be used as a template to be modified to meet specific needs of an application.

At the time of this writing the NMCI program office had not accepted the SOW

and SLAs as part of the NMCI contract, although working groups were formed to further

define CLIN 29. The work in appendix (A) was provided to the group for their

consideration. There are numerous business and political reasons for not immediately

adopting the work in appendix (A), but due to the sensitive nature of these issues they

will not be discussed in this dissertation.

The SOWs and SLAs were however, used by NAVSUP to contract for server

hosting services. Although two commercial entities bid on the work, and a source

selection board was convened, the contract had not been awarded at the time of the

 76

contract. Again a detailed discussion of why the contract was not awarded will not be

discussed due to the proprietary nature of the bids and the sensitivity of the information.

However, the failure to award the contract was not attributed to either the SOW or the

SLAs.

3. Developing the SOW and SLAs in Appendix (A)

The first step in developing SLAs is to define the problem that needs to be solved.

In this case the problem was that NAVSUP wanted to consolidate their servers under one

hosting service provider. NAVSUP needed to generate a requirements document that

listed the services and service levels necessary to support its applications. Ultimately,

these requirements were to be used to form a proposal under CLIN of the NMCI contract.

Although recommended, a team approach was not utilized in the creation of the

SLAs in appendix (A), although the SOW was formed with a small team. Before a team

was formed, we conducted an initial inquiry to determine the services that program

managers needed to support their applications. Initial interviews and inspections revealed

that there were no standards or procedures for application hosting. While almost all of

the applications were receiving adequate services, the services and service levels varied

greatly. Mission critical systems received good support, while those programs struggling

for funding provided little support. The disparate services being provided, and difficulty

gathering program managers and stakeholders for a SLA development effort did not

allow for a good bottom-up approach to developing the requirements. A better approach

was for the program managers and stakeholders to validate a list of services and service

levels that were derived from a top-down approach.

The top-down approach consisted of the author determining which hosting

services and service levels were necessary to support an application. The personnel

requirements and activities associated with SLM were assumed as some of the personnel

that were displaced as a result of any outsourcing were going to fill needed SLM

positions. The initial requirements were developed from a review of the hosting services

that were being performed at that time. Requirements were also derived from conducting

benchmarking studies, reviewing previous contracts, literary searches (Philcox, Nemeth,

 77

Minasi, Sjouwerman, Harney, OGC, and Factor), interviews, and collaboration with EDS

personnel. The resultant product formed the initial requirements generation document.

As was mentioned previously, SLAs have been used for a number of years.

However, a review of many commercially provided SLAs and those contained in

previous contracts were ambiguous, difficult to measure, lacked qualitative

measurements, or lacked penalties/incentives. The SLAs also lacked many of the

elements that we felt were necessary to address in both the development of the SLAs and

the enforcement of the SLAs.

The author attempted to address many of these deficiencies by writing the SLAs

utilizing a new format that required more information on the services being performed,

how those services will be measured, and the responsibilities of all parties. The author

also attempted to use the SLAs as a process and quality control mechanism to assist the

program managers in the performance of their oversight duties. As such, the author also

had to develop additional quality requirements for security, documentation, maintenance,

tape backups, and technology refresh. These requirements were derived from prior

experience, interviews, literary searches, review of current services, and prior contracts.

Once the initial requirements were gathered, the author met with EDS to assist in

the development of the SOW. It was decided that the majority of the programs evaluated

could be grouped into three packages of services (essential, enhanced, and premier).

After much collaboration, the services were grouped into one of the three categories.

Although most of the programs could be adequately supported by the services in the

essential package, some programs required additional services due to their mission

criticality. Once the services were grouped into the three packages, the SLAs had to be

modified to reflect three levels of quality thresholds. The SLAs were also reviewed by

EDS and were modified to increase readability, reduce ambiguity, incorporate better

monitoring capabilities, and reflect penalties that were within the range of compromise

(penalties are not designed to financially cripple an organization, they are designed to

entice an organization to comply with requirements).

The final product was presented to program managers, the NAVSUP CIO staff,

System Administration personnel, EDS management, and two IT consulting groups for

 78

their feedback. Their responses were very favorable, but a common concern was that the

services would be too expensive.

Once comments concerning the SOW and SLAs were addressed, NAVSUP

decided to utilize seven programs in a Request for Quotation (RFQ) utilizing the SOW

and SLAs. The RFQ was given to EDS and one other activity. Although details of the

proposals cannot be discussed in this dissertation given the business sensitivity of bids,

general impressions from the source selection board and the two organizations involved

was very favorable. The companies liked the level of detail contained in the SOW and

SLAs, although they did not like the penalties associated with non-performance. The

program managers also liked the comprehensive list of services that were being offered;

in many cases they had not though to include some of the services in their own contracts.

The source selection board indicated that due to the level of detail contained in the SOW

and SLAs, they were able to better compare the services offered by the two organizations.

They were able to disregard services (in many cases marketing hype) that were offered by

the companies, but were not contained in the SOW. This allowed a better “apples to

apples” comparison.

Although a contract for host services was not initiated for these seven programs,

the SOW and SLAs in appendix (A) were still being evaluated for inclusion as part of the

CLIN 29 of the NMCI contract. Due to political and business sensitivity, and the

possibility that the source selection between EDS and the other organization is still a

possibility, the author felt that it was more appropriate to use generalities in this

discussion.

D. SUMMARY

Many of the benefits from SLAs are derived from the process of developing the

SLAs. The development effort is best when a team approach is utilized, where each of

the stakeholders is represented and has input. When the team members feel that they are

a part of the process to improve the software quality, they are more likely to take

ownership of the quality assurance and quality control processes established.

One of the major benefits of developing the SLAs is improved communication

between all of the stakeholders. The SLA development team identifies critical business

 79

processes and jointly determines the quantifiable quality factors necessary to support the

process and meet the organization’s needs. The team must also determine the means to

determine whether quality factors have been met, which encourages communication with

the test community. Developing the SLAs fosters a common understanding about quality

and performance requirements across the organization. The SLAs also explicitly state the

quality thresholds, which helps to limit unrealistic expectations by management and the

end users.

The SOW and SLAs in appendix (A) demonstrate how SLAs can be written to

improve the quality of post-production services. The SLAs establish many of the quality

and process control measures that program managers need to properly manage post-

production support. The SOW and SLAs in appendix (A) incorporated three levels of

service to satisfy the majority of program needs, but they could be easily tailored to meet

the specific needs of a program. The SOW and SLAs also helped the average program

managers by detailing services and quality thresholds that they many not have thought of.

Appendix (A) offers a good template that other program managers can utilize in their

software acquisitions and post-production support contracts.

The discussion outlining how the SOW and SLAs in appendix (A) were

developed illustrates some of the difficulties associated with software acquisition. It is

not always possible to get all of the stakeholders together for a development effort. In the

case of the SOW and SLAs in appendix (A), a top-down approach, which was later

validated by stakeholders proved to be the best approach.

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

IV. SOFTWARE DEVELOPMENT MODELS

One of the original contributions of this dissertation is to apply SLAs, which are

used primarily in post-production support contracts with ESPs, to the entire lifecycle of

software development in an effort to increase the management of the development

process, or increase the quality of the deliverable or output from the development

process. However, before we explain how SLAs can positively affect the various

lifecycles of the software, those lifecycles bear discussion.

Models have been used for a long time to describe work processes by utilizing a

top-down approach of decomposing the processes into discrete sets, then showing how

information flows among them. (Nutt) Process models abstract the real world into sets

of entities that flow through a system of activities such that they can explicitly capture the

process artifacts, and information flows. (Martin)

Software production is an extremely complex process. The complexity stems in

part from the difficulties in comprehending the various facets of the design problem in

order to derive a robust and reliable design. (Ewusi-Mensah). One means of reducing the

complexity is to develop a model that describes a set of activities (in sequential order,

recursive, or conducted in parallel depending on the model) that needs to be

accomplished to produce a software product that meets requirements. Presenting the

development process in an abstraction allows a better understanding of the tasks to be

accomplished, as thus assists in the selection of the proper methods and tools to

accomplish those tasks.

Early developers modeled their processes in an attempt to improve software

development and product quality by applying a systematic development process based on

lessons learned from other software development projects. As new tools, procedures, and

lessons emerged; new process models have been developed. These software process

models are used to guide development efforts by outlining a deliberate set of activities at

an appropriate level of abstraction to create a software product that addresses end-user

requirements.

 82

In addition to providing a strategy to address the requirements initially proposed

in the Statement of Work (SOW) or Performance Work Statement (PWS) process models

can be utilized for a number of purposes. Process models form the basis for planning,

organizing, staffing, budgeting, scheduling, and directing software development

activities. The models also can be used for analyzing or estimating resource

requirements, determining what software engineering tools and methodology will be

most appropriate to support various development activities, and providing a basis for

empirical studies to analyze and evaluate the effects that the prescribed activities had on

cost, schedule, and performance. (Scacchi) Software process models are also useful in

contracting to identify milestones and deliverables. Test plans can then be developed to

evaluate the deliverables for conformance to stated product and quality requirements.

A. TYPES OF PROCESS MODELS

 Every software development effort follows some process. The development

process may be informal, ad-hoc (some prefer the term chaotic), or it may be well

documented with procedures to actively monitor the process. There are numerous

process models that range from general models at high levels of abstraction to models

that are specific to a particular domain and are at a very granular level.

 Over the last three decades there have been numerous software process models

developed in an attempt to improve efficiency, effectiveness, and quality in the

development process in an effort to improve quality in the end product. The models

differ in their approaches, methodologies, level of abstraction, relevance to the real

world, structure, and incorporation of variables, such as user interaction. The models

also differ in techniques used. The models can incorporate modeling techniques such as

data modeling, object modeling, entity diagrams, process programming (uses

programming notation and formalism to model the process), precedence networks, or

Petri Nets (formal mathematical notation). (Gibson)

 There are numerous ways to categorize process models. There are also as many

ways in which the models are utilized (i.e., some models estimate effort or duration,

others analyze risk, some are intended to improve quality, and others are intended to

 83

improve documentation). Three methods of categorizing software process models are

presented below. It is also important to realize that the software product lifecycle can be

viewed from a number of perspectives. Albin describes four perspectives on how

management, software engineers, software architects, and software designers can view

the same development model differently. (Albin)

Martin and Raffo broke software models into two categories. (Martin) The first

category included models that estimated development characteristics (e.g., quality,

duration, effort) by identifying key variables and determining their effect on the

development process. Examples of this type of model include COCOMO II (Boehm,

2000), and Software Lifecycle Management (SLIM) (Putnam). The other category of

models attempts to estimate development characteristics by modeling and analyzing the

details of the development process. Examples of this approach include models by Raffo,

Harrison, and Vandeville (Raffo), the Software Engineering Institute’s Software

Capability Maturity Model (SW-CMM) and Personal Software Process (Humphrey).

 Schacchi also broke the process models into two categories, but each had several

subcategories. (Schacchi) The first category was software lifecycle models which

included those models that provided a framework to organize and structure how software

development activities should be performed and in what order. Subcategories included

Classic Software Lifecycle models (software evolution proceeds through an orderly

sequence of transitions from one phase to another), Stepwise Refinement (systems are

developed through progressive refinement of high-level specifications (requirements and

design) into more concrete low-level specifications capable of being converted to code),

Incremental Development and Release (development consists of providing core

functionality, then incorporating new requirements for an improved release), Industrial

and Military Standards (these include the CMM models, which provide standardization of

procedures and deliverables), and a subcategory called alternatives (focuses on the

product, product processes, or production setting) which includes models such as rapid

prototyping, joint application development, and component based development.

 The other category was software production process models, which are models

that represent a networked sequence of events, activities, objects and transformations that

 84

form a strategy for accomplishing software evolution. These models use rich notation,

syntax and semantics to develop more precise and formalized descriptions of software

development activities. Schacchi broke the software production process models into two

subcategories of operational and non-operational models. Operational models can be

viewed as computational scripts or programs, where many of the processes are automated

within a software language or tool. These models take a formal specification and

generate code, which can constitute a functional prototype. The code can also be

analyzed for certain characteristics and parameters. Many of the fourth generation

techniques (4GT) are operational models. Non-operational models present conceptual

approaches to development, but they have not been developed to the point where they can

be automated or codified. He sites the Spiral model, (Boehm, 1988) as an example of

this type of model because it incorporates elements of specification and prototype process

with a traditional lifecycle model. (Schacchi)

 Pressman broke software process models into 7 different categories. (Pressman)

The first category was linear sequential models, like the waterfall model, that defines

development activities and illustrate a sequential process to execute those actions.

Another category is prototype models, which include iterative steps of defining

requirements, designing the system, developing a prototype to test the concept, revising

or enhancing requirements and repeating the process until a final product is developed.

Rapid Application Development models are another type of process model where very

short development cycles are utilized to quickly develop specific functionality in a

system, modules within the system, or if the project is small enough, the entire system.

Another large category of models is Evolutionary Software Process Models, which are

iterative in nature. These models provide an initial release, then add or enhance

functionality. Formal Models are another category in which formal mathematical

specifications are used to apply more rigor. The last category includes those process

models that incorporate fourth generation techniques, which include automated activities

that translate specifications into source code.

 85

B. SELECTING APPROPRIATE PROCESS MODEL

Software products are unique. Requirements, resources, budgets, personnel,

interface requirements, and external influences are never constant from one project to the

next. As a result it is better to think of software as being developed rather than produced.

As a result, software process models have to be tailored to meet the specific needs of a

particular project. (Verlage) The choice of development model (including tailoring for a

particular project will depending upon the specific performance dimensions (e.g., defect

rates, KLOC produced per day) that must be optimized. (MacCormack)

Selecting the appropriate process model is one of the most important activities in

the project development planning effort. The appropriate model can streamline a project,

maximize resource utilization, systematically ensure that activities are accomplished to

achieve stated objectives, satisfy user needs, increase tracking and control, minimize risk,

and improve quality. Conversely, the wrong process model, or no process model can

result in longer schedule times, rework, unnecessary work, poor requirements, and

frustration. (Alexander, McConnell) While choosing an appropriate process model is

important, is should be noted that adhering to specific processes does not guarantee a

successful project.

Software development models used today vary in approach, methodologies,

domains of interest, areas of development, and level of abstraction. Given the large

number of software development practices and models, selecting the right mix of

practices and models is difficult. It is not possible to find a single model that will

incorporate a set of practices that will optimize performance on all dimensions. As such,

program managers must tailor the process models to each project’s specific requirements.

At the beginning of a project, the program manager should determine the primary

performance objectives for the software deliverable, as those objectives will drive the

type of development model utilized as well as the mix of practices they should utilize.

(MacCormack) A software development model should also be selected based on the

nature of the project and application, the methods and tools to be utilized, the controls

and deliverables that are required, and the application domain. (Pressman)

 86

 The IEEE Standard 1074 (IEEE Standard for Developing Software Life Cycle

Processes) outlines the activities necessary to develop software processes specific to a

software project. The first step is to select a software lifecycle model (IEEE Std. 12207

describes 4 models and IEEE Std. 1012 describes Boehm’s Spiral Model). Once a model

is chosen they must be tailored to the project at hand. This activity is described as

mapping where the project-specific sequence of activities are selected or added to the

software lifecycle model. The result of the mapping is the project software life cycle.

The next step is to evaluate an organization’s environment (policies, standards, tools,

procedures, and metrics). When the organization’s environmental variables are

incorporated into the project software life cycle, then the software life cycle process is

determined. (Schmidt)

 Eljabiri and Deek describe software process models as a problem-solving

framework designed to solve real world problems, within time and resource constraints.

They identify a number of factors that have influenced the evolution of software process

models. (Eljabiri) These same factors also need to be evaluated when selecting a process

model to ensure that the model is accounting for the relevant factors. One of the factors

they discussed was the time dimension of the project (i.e., the anticipated length of the

project). The length of the project impacts other variables such as requirements churn

resulting from environmental change, the degree of visualization, complexity, software

economics, and changes in technology. Projects with a long development cycle should

select a different and more flexible process model than projects with shorter cycles.

 Other factors that need to be considered include the amount of automation, the

degree of control required/desired, the degree of interaction with other systems, and

experience with the development process proposed. Eljabiri and Deek also identified the

importance that cognitive psychology had on process models. Behavioral models, use-

case approaches, and prototyping are effective strategies if requirements are not well

known, or if there is organizational conflict concerning requirements.

 Alexander and Davis also presented guidelines for selecting the appropriate

software process model. (Alexander) They described 20 criteria that they felt could be

utilized in selecting the most appropriate software process model for a specific project.

 87

They selected three grades for each criterion, and evaluated a number of software process

models to determine whether the model satisfied the criterion at any of the three grades.

To determine the best model for a particular project, each criterion would be graded

based on the characteristics of a particular project. The model with the highest ranking

(satisfied the most criteria) would then be selected.

 The criteria were broken into five categories, each containing sub-categories.

Each of the sub-categories was scored using three values that corresponded to the type of

sub-category. The categories were personnel, problem, product, resource, and

organization. The category of personnel was further divided into user experience in

application domain (corresponding values for experience were novice, experienced, and

expert), user’s ability to express requirements, developers experience in application

domain, and developer’s software engineering experience. The category of problem was

subdivided into maturity of application, problem complexity, requirements for partial

functionality, and frequency of change. Product category was subdivided into product

size, product complexity, non-functional quality requirements, and human interface

requirements. The resource category was broken down into funding profile, funds

availability, staffing profile, staff availability, and accessibility of users. The

organizational criteria were subdivided into management compatibility and quality

assurance/configuration management. Matching the appropriate project criteria against

the variety of models to determine which model best meets the program manager’s needs

is an important part of the problem solving process required in software development.

C. PROCESS MODELS

 As mentioned earlier, there are numerous software process models, including

MIL-STD-2167-A, the Rapid Prototyping model, the WinWin Spiral model, ISO-12207,

Incremental Development and Release model, the Component Assembly model, the

Concurrent Development model, the Cleanroom model, hybrid models, object oriented

models, and fourth generation models. This section will describe some of the process

models and will point out the advantages and disadvantages of using each.

 88

 A common model is the early days of software development was the code and fix

model. In this model the developers have a general idea of requirements, then they use a

combination of methods to code and debug the software until they have a final product.

This approach has the advantage of low overhead (little effort on documentation,

standards enforcement, quality control), and anyone can use this model, as it requires

little or no experience. This approach can be useful for very small projects with a well-

defined solution space, a proof of concept, or throw away prototypes. (McConnell)

Despite its obvious faults, this model is the most common of all software development

methods, as it is the default model if no other process models are utilized. (Charvat)

1. Waterfall Model

The waterfall model (Royce) was the first attempt at formalizing the development

process by identifying an ordered set of work steps. (Becker) The waterfall model is a

sequential software process model that was based on traditional industrial engineering

techniques. Despite the fact that it was developed in 1970, it still serves as the basis for

many, more effective software process models. (Eljabiri, Rakitin)

In the waterfall model, development starts with the initial concept for the

software-intensive system and progresses through a sequence of phases until the system

undergoes testing and is approved. The phases or steps do not overlap. Each phase is

dependent upon the products produced in the prior phase. The waterfall model also

contains transition criteria for progression from one stage to the next. Only when a

deliverable or documentation is produced for a specific phase, and is approved by the

program manager, can development continue to the next step. If a deliverable is not

complete, then the project must remain in the current phase until the deliverable is made

acceptable. If an error is discovered at some point in the process it is possible, although

difficult, to return to an earlier step.

 The model begins with understanding the requirements for the entire system.

Functionality is then assigned to hardware and the software components. Software

requirements are generated, documented, and in many cases modeled. The requirements

are then analyzed for accuracy, consistency, conflicts, level of detail, amount of

information, and adherence of overall system requirements. The deliverable from this

 89

phase is the software requirements specifications, which are then used by the software

programmers to develop the software design. In the design phase the software

architecture is developed and functionality is assigned to the various software

components or modules. The documentation from the design phase is then used by the

programmers to translate the requirement specifications into code. The test phase

validates that the coded software meets defined requirements. When the software has

completed testing and has been approved, it is then released to its intended customers and

the operations phase begins. As maintenance activities are required, the model begins

anew.

The waterfall model is still popular in that it is easy to understand, it has well

defined deliverables at the end of each stage, and it emphasizes requirements analysis

(define before design, design before code). (Rakitin) The waterfall is a rigid model, but it

works well when requirements are well known, the technology is mature, and developers

are experienced.

FIGURE 2. WATERFALL MODEL

The major disadvantage of the model is the assumption that once requirements are

defined that they will not change. As such the model does not reflect the true iterative

 90

nature of development and requirements churn, therefore, it is rarely adhered to in actual

use. Another disadvantage is that testing is conducted too late in the process to prevent

problems. Despite its major disadvantages, the waterfall model is still widely used.

2. Spiral Model

Instead of the traditional document-driven or code-driven process models, the

spiral model was an evolving risk-driven model. (Boehm 1988) The spiral model is

broken into four quadrants: planning, risk analysis, development and assessment. The

spirals through the various quadrants represent increased costs. Each cycle of the spiral

begins with requirements engineering, analysis and selection of alternative methods of

implementation. The purpose of the system or software component is determined with

respect to functionality, quality attributes, and performance. Alternative methods are

then determined (COTS, reuse, different designs), and constraints are identified (cost,

schedule, interfaces, resources). The next step is to evaluate the alternatives in respect to

the requirements, constraints, and risks. Part of this step is risk mitigation by identifying

areas of uncertainty and collecting more information, or by developing prototypes,

simulations, or conducting benchmark studies. The next step depends upon the risks

identified. During the first spiral many of the risks involve requirements, so efforts are

made to improve and refine requirements. As the spirals expand outward, the risks

associated with the development effort increase, and detailed designs of the system are

developed. The last step in the spiral is planning for the next level of prototyping or

development of a more robust design. As requirements become more defined, and

program development risks dominate, the steps will start to follow an incremental version

of the waterfall model (requirements determination, design, code and test). (Boehm 1988)

The spiral model has a number of advantages over more traditional models. The

largest advantage is that it represents the real world iterative approach to software

development. It also incorporates the best of the waterfall model (stepwise approach) and

the rapid prototyping model. The model also demands a risk assessment (requirement as

well as technical risk) at each stage within the spiral. The risk mitigation focus of the

model as well as emphasis on prototypes, simulation, and benchmarking, if properly

applied should reduce risks before they become problematic. (Pressman) The spiral

 91

model also has some disadvantages. The major disadvantage is that it requires

considerable risk assessment expertise. It is not a widely used model as it is difficult for

managers without a technical background to understand. It is also difficult to convince

customers that an evolutionary approach with multiple prototypes is cost effective,

controllable, and fast enough to meet market demands. Another disadvantage is that the

model is risk based, so if a major risk is missed, problems may result. (Rakitin) Although

performance and quality requirements can be addressed with risk analysis, the model

does not specifically address those issues, so it is incumbent upon the users or the

developers to include those areas in the risk assessments. (Schmietendorf) A final

critique is that it can be difficult to define verifiable milestones that indicate whether a

program is ready to proceed to the next layer of the spiral. (McConnell)

FIGURE 3. SPIRAL MODEL

 92

3. Evolutionary Prototyping Model

There are a couple of models that are considered evolutionary prototype models.

These groups of models have similar characteristics. These models develop the system

concepts and requirements through the various iterations or evolutions of the model. The

models begin with requirements elicitation and analysis. The developers try to capture

the most stable and visible requirements. They design and code that portion of the

system as a prototype, test it for functionality and conformance to stated requirements,

and show it to the customer. After customer feedback and additional requirements

engineering, the developers begin another iteration of the development cycle, adding

additional functionality to the prototype. This process continues until the users determine

that the system is “good enough”, at which point it is released. (McConnell)

 Figure 4 shown below, from Wiegers’ book on software requirements (Wiegers),

presents a model that incorporates three types of prototypes. Vertical prototypes are

designed to function like the actual system at a specific structural level. Vertical

prototypes act as a proof of concept to ensure interfaces function, algorithms perform to

expectations, or architectural approaches are sound.

FIGURE 4. EVOLUTIONARY PROTOTYPE

 93

Horizontal prototypes are used primarily to demonstrate portions of the system to the

user. These types of prototypes show some functionality (e.g., graphic user interfaces,

screen layout) without the actual implementation. The evolutionary prototype differs

from the other prototype types in that it provides a solid architectural foundation for

building the software incrementally as the requirements become better defined over time.

(Wiegers)

In this model the developers can utilize several approaches to refine requirements.

Horizontal throwaway prototypes are being used to refine user interfaces, while parallel

efforts utilizing vertical prototypes test concepts. Both prototypes feed back into the

evolutionary prototype, which also goes through a number of iterations until the final

product is delivered.

 The advantages of this model are that many of the processes occur in parallel, the

model has stepwise refinement and multiple iterations to reflect real world experience.

Some of the disadvantages to this type of model include determining when a project is

“good enough” to deliver to customers, documentation and configuration management is

a challenge, and it is difficult to keep the same stakeholders engaged in prototype

evaluations through multiple iterations.

4. Commonality Among Models

Most of the software process models have the same basic activities, although the

order of the activities, the iterations through the activities, and the deliverables associated

with the activities differ. The models all begin with an evaluation of the system to be

built. The project may be adding functionality/updating technology on an existing

system, or it may consist of building a new system. System requirements are then broken

into components and functionality is assigned to either the hardware or software. The

software requirements are derived from the system requirements.

Another group of activities can be grouped into requirements engineering

activities include defining stakeholder needs, business objectives, system functionality

and performance parameters, resources, and constraints. Prototypes are often used as part

of this activity to refine or capture user requirements. This activity also includes

requirements analysis to ensure the requirements are not in conflict, that they are

 94

complete and quantifiable. The requirements are then gathered and incorporated into

specifications, which document the requirements.

An additional series of activities involve design. The requirements will specify

what they want the system to do in terms of system behavior and performance. The

designers will determine how the system will meet those requirements. The designers

start by identify objects of computation, their attributes and relationships, operations to

transform the objects, and constraints on system behavior. Then they divide the system

into components denoting logical subsystems. These components can then be evaluated

to determine if existing software already exists that can meet requirements (software

reuse, component-based engineering, object-oriented designing), or whether new

software will be needed. The architecture design is also conducted to define the

interconnection, and resource interfaces between subsystems, components, and modules.

Detailed component design then determines the means that specific modules will

transform inputs into outputs. (Scacchi)

 Coding is the activity that transforms the design specifications into actual source

code. As the code is completed for each module, it is packaged into the overall system

software. As errors are discovered in either the module or interfaces between

components or modules debugging efforts are performed to correct the code.

 Testing is another activity. In some models the testing validates the final

deliverable, while other models conduct testing to validate the deliverables at each stage

of the model. The goal of testing is to discover errors, validate design, and verify

conformance to user requirements. All models conduct some form of testing at the unit

level, module level, subsystem level, system level, or a combination of levels. In

addition to evaluating the code or design, testing is also used to verify and validate other

deliverables such as documentation.

 The final activity is the post-production deployment of the system. This action

consists of documenting the system (user guides, installation instructions, configuration

documentation, system support information), installing the system in its host

environment, configuring access, tuning the application, and performing system backups.

This activity also includes training the end users, management, and system

 95

administrators. The final activity is maintenance of the system, which includes repair of

the existing system, modification of the system, and rehosting of the system.

D. SLAs AND SOFTWARE PROCESS MODELS

 Many of the software process standards are based on the assumption that

following a defined engineering process and having a quality management system, that

higher quality software can be consistently produced. (Gibson) This is not necessarily

the case. Despite claims that adherence to a specific process model improves software

quality, the data to support most models is anecdotal and biased towards reporting only

successful projects. (MacCormack)

 Software models should act as guides. High-level models should be interpreted as

an expression of general intent. (Nutt) Strict adherence to the models will result in

problems as a model’s abstractions hides many of the problems and tasks that must be

accomplished at lower level design. Real world problems such as incomplete and

changing requirements, unplanned dependent activities, time constraints, and design

rework as a result of discovery can force organizations to deviate from planned processes.

It can also cause inconsistencies between high-level processes and those that are more

granular.

 Software process models describe the sequence of activities necessary to produce

a software product, processes involved, tools necessary to perform those functions, and

exit criteria (deliverables) for moving from one activity to another. However, these

models are abstractions, and thus, do not capture some of the important variables that can

impact program success. For example, many of the models do not deal directly with

performance or non-functional requirements, and if they are addressed it is only

indirectly and without systemic background. (Schmietendorf) Few models, if any, focus

on representing organizational goals and process improvement. (Turk)

 Although, there are some models that address software program management

activities in the process model, such as Abdel-Hamid and Madnick’s model, which

simulated the effects of staffing delays, schedule pressure, and unplanned work

(undiscovered errors) on a projects’ planned cost and schedule, and Boehm’s Spiral

 96

Model which included risk analysis, no model incorporates a holistic view of software

development management. (Abdel-Hamid, Martin)

There are good software process assessment model such as CMM and PSP that

measure how well processes are defined and adhered to, but they do not specify which

processes are most appropriate, nor do they evaluate the quality with which the processes

are executed. The focus on these models is on process management and process control,

not on process quality or development quality. Critics have complained that approaches

such as ISO 9001 and CMM emphasize managerial tasks and ignore the more important

technical considerations.

 Most of the software process models lack quality control and monitoring methods.

All process models have transition criteria for progressing from one phase, activity, or

module to another. The models typically have completion criteria for a current phase,

and entrance criteria for the next stage. (Boehm 1988) Due to the abstract nature of the

models and the recognition that the models will need to tailored, quantitative parameters

for criteria acceptance is not specified. As a result, additional tools are necessary to

compliment the software process models at the practical implementation level. SLAs are

one of those tools.

SLAs can be used with any process model in an attempt to incorporate process

control and interject quality and performance requirements into the completion and

entrance criteria for the various stages of a process model. In the requirements

engineering phase of the development process SLAs help to identify non-functional

quality and performance requirements that are usually not considered until later in the

development cycle. In the design phase, SLAs can be used for process control and to

ensure the deliverables meet stated quality requirements. SLAs can also be written to

monitor and evaluate a contractor’s compliance to agreed-upon processes, methods,

standards, tools, and procedures. SLAs can assist testing by identifying quantitative

quality requirements for the deliverables at each phase of the process model. In the post-

production phase SLAs can be used for process control and to identify the quality

requirements necessary to ensure the application is properly supported.

 97

As was previously mentioned selecting the appropriate process model is one of

the most important activities in the project development planning effort. The selection of

the appropriate process model is based primarily on the project’s primary performance

objectives. SLAs assist the selection process by identifying performance and quality

objectives in addition to functional objectives. Non-functional requirements may well

require a different process model than if only the functional characteristics of the

software were considered.

The remainder of this dissertation will demonstrate in more detail how SLAs can

be utilized at the various phases of software development to establish performance and

quality requirements for deliverables as well as establishing monitoring actions to

measure process compliance and detect problems through all of the major development

steps. The dissertation will also demonstrate how SLAs can also be utilized to assign

quality parameters to many of the management processes and activities associated with

software development.

E. SUMMARY

This section was intended to illustrate the numerous approaches to developing

software. Although there is a lot of commonality, each model represents a unique

approach to development, including different processes, methods, and tools.

Additionally, the need to tailor the models makes strict comparisons of models even more

difficult. However, regardless of the development model selected, SLAs help to establish

quality control measures by defining quantifiable quality thresholds for the deliverables

expected at the various steps. SLAs also help to establish a process control program to

measure adherence to whatever process is selected.

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

V. REQUIREMENTS ENGINEERING

 The first step in the software-development process is the requirements

engineering process, which entails those activities necessary to determine a system’s

functions, capabilities, and behavior in order to satisfy the customer’s needs.

Requirements engineering is a process of discovery, refinement, modeling, specification,

and validation. (Pressman) Skilled requirement engineers, management and stakeholder

commitment, time, and proven processes are needed to deliver a good product.

Requirements engineering can be very difficult, but the level of effort dedicated to

requirements engineering will have a direct impact on software quality.

Requirements engineering provides the building blocks for all other efforts in the

software engineering process, so if quality is not addressed at the beginning of the

software engineering process, it is usually addressed at the end of the project in the form

of testing. Unfortunately, quality evaluations are usually implemented too late, and the

architecture that was already developed will dictate the solution space for addressing

problems that were discovered.

Unless the requirements engineering process is performed correctly, there will be

an expectation gap between what the developers though they were supposed to build, and

what the stakeholders really needed. (Wiegers) Errors made in the requirements stage

account for 40 to 60 percent of all defects found in a software project, yet organizations

still practice poor requirements engineering processes. (Weigers) This chapter will

discuss the requirements engineering process and demonstrate how SLAs not only

improves the requirements engineering process, but how they help to inject quality

requirements into the beginning of the development cycle.

A. SYSTEM REQUIREMENTS

 Software requirements engineering begins with the overall system requirements,

as specified in the requirements engineering portion of system engineering. Before

software can be developed, the requirements for the system in which the software resides

needs to be defined at some level of abstraction. When developing a new system,

 100

requirements engineering is used to determine the customer’s needs. The process starts

with the customer developing an initial problem statement. Users, program managers,

and system engineers need to determine how the system must behave to support the

overall objectives of the system. From that problem statement, the system engineer must

determine the product’s mission, functionality, performance levels, availability, design

and interfacing constraints, information needs, communication needs, and other system

specifications. System engineers then need to scope the system; identify the roles of

hardware, databases, and software; factor in user interaction; define processes and data

sources; identify constraints; and determine interfaces with other systems.

Requirements engineering consists of requirements elicitation, requirements

analysis and negotiation, requirements specifications, requirements validation, and

requirements management throughout the development process. (Pressman, Weigers)

One of the main objectives of system level requirements engineering is to determine

which components will be used to satisfy specific requirements. (Sawyer) Will a specific

requirement be satisfied through hardware, software, or a combination of both? When

system level requirements are defined, the software engineer will then go through similar

steps to convert system, user, and program requirements into a software design

specification that developers can use to start coding.

This chapter will discuss requirements in the context of software requirements;

however, SLAs can assist and play a role in system engineering as well. It is important to

keep in mind that software is but one portion of a greater system. The quality standards

that are determined through the systems engineering process will flow down to the

software requirements. Software quality must be considered in the context of the entire

system, not just the software.

B. REQUIREMENTS ELICITATION

Once the system requirements are understood, the requirements engineer can then

determine the software’s function, its interfaces, its behavior, constraints, data elements,

 101

and relation to the overall system. The process for gathering that type of data is called

requirements elicitation. There are a number of methods for gathering data from users

and developers.

Requirements can be broken into four overlapping categories. Business

requirements represent the rationale for the system and its vision and scope. User

requirements represent the goals of the user and the tasks that a user must perform.

Functional requirements are the behavioral characteristics of the software. The last

category is non-functional requirements such as quality factors, security, performance

goals and constraints. (Heldman, Wiegers) The challenge is to capture all four categories

of requirements from as many perspectives as possible.

Requirements elicitation can be a challenging task. The software engineer tries to

develop precise, specific requirements from the stakeholder’s (users, program managers,

process owners) initial problem statement. In the beginning of the process, the

stakeholders may not know exactly what he or she needs or wants. It is not unusual for

stakeholders to make broad, vague statements, such as, the “system must be user

friendly.” It is also common that stakeholders present inconsistent requirements that are

driven by a specific individual’s wants, needs, or bias. Requirement elicitation involves

intensive interaction with stakeholders to drill down into the problem to determine what

the stakeholder wants the system to do. Once the requirements are identified, they can be

analyzed and checked for such things as internal consistency and consistency with respect

to policy and business rules.

This dissertation will use the term requirements engineer to describe the person

responsible for the requirements engineering process. In many cases this individual is a

software engineer and is part of the software-development effort, in other cases the

individual specializes in only requirements gathering. This dissertation assumes that the

requirements engineer is a contactor. This individual may or may not be involved in the

development of the SLAs. In many cases outside contractors may be necessary to

develop the SLAs to ensure objectivity, as most ESPs do not want SLAs. While

requirements engineering and SLA development may be handled separately, good

cooperation and information sharing is absolutely necessary to obtain maximum benefits.

 102

The software-development organization may want membership in the SLA development

team to ensure knowledge sharing is occurring. It is important to keep in mind that the

quality requirements developed in the SLAs must be fed into the overall requirements

engineering process.

Requirements elicitation requires a great deal of interpersonal skills. It is not

always easy to get people to clearly articulate their ideas. Everyone has his or her own

societal beliefs, biases, values, parochial interests, agendas, educational backgrounds, and

perspectives. The requirements engineer needs to understand the beliefs of the

stakeholders (epistemology), what is observable in the world (phenomenology) and what

can be agreed upon as being objectively true (ontology). (Nuseibeh)

Given the different viewpoints, social and political issues, and the stakeholder’s

various perspectives, requirements elicitation utilizes a number of techniques to obtain

complete, and accurate requirements. Traditional requirements elicitation methods

involve meetings, interviews and group meetings with the various stakeholders to

determine requirements. Some techniques include the use of collaborative software,

group support systems and various scenarios or use cases. (Hickey) Others include

ethnomethodological approaches (Sommerville, 1993), socio-technical modeling,

stakeholder analysis methods, and artifact based elicitation. (Sutcliffe) In determining a

methodology to use in requirements elicitation, the requirements engineer needs to

understand an organization’s perception of society and plan the approach accordingly.

(Bickerton) All techniques have their advantages and disadvantages, and most software

engineers utilize a combination of approaches.

One of the first steps in the requirements elicitation process to identify all of the

stakeholders and external forces that provide inputs and or constraints to the system.

Obviously everyone cannot be consulted for their input, so the requirement engineer must

determine those stakeholders that can provide meaningful input. Then representatives

from each of the major stakeholder groups need to be determined so they can be

consulted, or included in the elicitation process.

Once stakeholders have been identified, the stakeholders need to determine the

overall project or system mission or goal. Everyone needs to understand the problem that

 103

the system is attempting to solve, as well as the means in which the intended system will

solve that problem. The requirements engineer needs to gain consensus among all of the

stakeholders on the problem to be solved and the approach that will be used to resolve

that problem. “The primary measure of success of a software system is the degree to

which it meets the purpose for which it was intended.” (Nuseibeh) Requirements

elicitation is concerned with discovering that purpose, and determining the functional,

non-functional, and behavioral characteristics of a system that will meet that purpose.

The requirements that are generated as a result of interviews, market and

environmental analysis, and interoperability constraints should be evaluated against the

system’s mission or goal to ensure that the requirements support and add value to the

mission. Requirements that are ‘must haves’ need to be separated from those that are

‘nice to have.’ The task of determining the scope of the project becomes easier when the

system and software engineers can tie the requirements back to the goals of the system.

Another important task during requirements elicitation is to document as much

information as possible about each requirement. The documentation should describe the

requirement, assign it with a unique identifier, list the stakeholders, classify the

requirement by type, group the requirements into a parent/child relationship if necessary,

and eventually assign a priority to the requirements.

As requirements are generated, the process of categorizing the requirements helps

in the analysis process. There are numerous ways of categorization, and the methodology

and detail used by the requirements engineer varies based on experience and the

elicitation process being used. In many of the techniques utilized, the requirements are

categorized according to whether the system requirement is part of the core system

business process, whether it provides primary support to the process, or whether it

provides secondary support. The core requirements describe the functional

processes/actions that the system must perform to meet the system’s mission. The

primary supporting requirements are usually derived from the higher-level core

requirements, from system constraints or interoperability requirements (other systems or

data). The secondary support generally lists the quality or non-functional requirements, or

requirements that are necessary to support the primary supporting requirements.

 104

Requirements classification should also include whether the requirement is for the system

itself (product) or for the process (standards, constraints, analysis model, etc…). Good

requirements classification will help the requirements engineer assess the requirements to

ensure that they support the system’s goals.

Some common problems in requirements elicitation are managing the information

from multiple sources (representing distinct viewpoints), tracing requirements back to

their source and rationale, determining when the elicitation process has completed, and

realizing that requirements are not always there to be elicited (there may not be a

stakeholder). (Sommeville 1998, Sawyer)

SLAs assist requirements elicitation in four major areas. The development or

modification of template SLAs provide an excellent starting point for group meetings,

use cases based on those SLAs, or other techniques. The SLAs not only generate

meaningful discussion, but they focus that discussion on non-functional attributes that are

often overlooked. SLAs also tend to involve more management interaction in the

requirements engineering process due to the contractual implications associated with

SLAs. Template SLAs may address quality issues that the stakeholders did not consider.

This dissertation is making the assumption that the SLA development process is a

part of the overall software requirements elicitation process. The SLA development

effort can provide valuable feedback to the overall elicitation process. The team

approach to the SLA development tries to ensure that all stakeholders are identified and

that they are represented in the discussions. The SLA development/tailoring effort is

usually a facilitated meeting with the stakeholders. The meetings allow brainstorming,

debate, consensus, and can be a great way to identify conflicting requirements at the very

beginning of the elicitation process. Group elicitation techniques aim to improve

communication, foster stakeholder agreement and buy-in, while exploiting team

dynamics to generate a richer understanding of needs.

In addition to identifying stakeholder requirements and needs, the formulation of

SLAs helps the requirements engineer better understand the business domain,

organizational culture, and operational environment. The process of developing SLAs is

similar to the elicitation techniques of use cases and scenarios. Use cases describe the

 105

interaction required between the users and the system necessary to meet the business

objectives of the system. Use cases help to determine what users need to accomplish, as

opposed to what they want the system to do or how it is expected to behave. The

objective of the use case approach is to describe all of the tasks that users will need to

perform with the system. (Weigers) It is important to keep in mind that use cases are

from the perspective of the end user only, and should be used in conjunction with other

requirement elicitation techniques to ensure all perspectives are accurately represented.

The process of developing the SLAs highlights and fosters discussion on the goals

of the system, the processes and tasks that the system must perform to meet those goals,

as well as identifying operational and organizational needs, policies, and constraints.

Discussions necessary to develop the SLAs will generate information about the

application domain, business and organization processes/culture, and the intended

operating environment that the system will be placed in. The discussions will help the

requirements engineer capture tacit knowledge, identify constraints, and justify how

quality factors support business needs.

SLAs focus everyone’s attention on quality factors at the beginning of the

development cycle. Once the quality factors are included in the requirements, they will

be incorporated into the design, and tracked throughout the product’s lifecycle. The

quality requirements will also be incorporated into the test plan at the beginning of

development. SLAs also support the software quality metrics methodology

recommended by IEEE. (IEEE Std. 1061-1998)

Quality factors can be affected by functional and non-functional requirements

generated from sources other than the stakeholders. Requirements can also be generated

from the operating environment, the application domain, regulatory or policy constraints,

as well as interoperability constraints. Requirements can also be derived from the service

needs of other systems in the environment. The formulation of the SLAs help to make

some of these requirements explicit in that quality is affected by all of these

requirements.

Additionally, SLAs are concerned with how quality factors or performance

attributes will be measured. As such, requirements that cannot be measured,

 106

requirements that do not provide value to the underlying business process, and

requirements that are not realistic will not be proposed or accepted. The goal of

requirements elicitation is to gather all of the requirements in a concise document with

good objective outcomes that can be measured. (Heldman)

SLAs also focus attention on those requirements that directly support the system’s

goals. SLAs are difficult to write and they require time and resources. As a result,

superfluous requirements and “gold plating” are less common. Additionally those

requirements that do not directly contribute to the goals of the system are generally

eliminated as they create additional work that cannot be justified to management.

In many organizations, managements involvement in and commitment to

requirements engineering is low. As a result, requirements are not normally related to

business visions and objectives. (Bubenko) SLAs help mitigate this problem to some

extent, because the format of the SLAs requires that the development group tie the

quality requirements to the business plan. The contractual penalties and incentives

involved with SLAs tend to capture more managerial attention than requirements

gathering alone. If an organization is not willing to devote the time and effort necessary

to tailor or develop SLAs, it is a good indicator to the requirements engineer that

management will probably not be devoting as much resource support as is desired.

Use of a template SLAs can be useful when management or market forces do not

allow sufficient time for requirements engineering. It is much easier to take the template

and modify the SLAs than it is to develop the SLAs from scratch. Instead of spending

time on determining a SLA format, writing the SLAs, and deciding how to measure a

quality factor, effort can be spend on determining which SLAs best support a particular

business process, and determining the specific quality thresholds to utilize. The template

SLAs are also helpful to illustrate to stakeholders and management what SLAs are, how

they are developed, how they are utilized, and how they support business needs.

The SLAs in appendix (A) are an example of how SLAs can assist. Appendix (A)

contains services and accompanying SLAs for hosting services. The SLAs are based on

industry standards, common practices, and thresholds that the author felt were essential to

provide support for the hosted applications. SLAs in appendix (A) are intended to be

 107

used as a template. These template SLAs provide good building blocks to guide

discussion and focus thought on non-functional requirements and quality; and they are

intended to be modified to suit the system being developed. The fact that services and

SLAs are already defined greatly assists both users and program managers in establishing

their requirements with respect to hosting services. Instead of every program developing

their own services and SLA requirements from scratch, they can utilize the template,

which already represents good business practices. The SLAs in the template can be

continually updated to reflect better/best business practices and lessons learned from

other program’s contracting efforts. The SLAs in Appendix (A) are specific to hosting

services, but SLAs and the template concept can be applied to any stage of software

development or lifecycle management.

When the requirements engineer feel comfortable that requirements from the

representative stakeholder groups have been identified, the process of analyzing the

requirements begins. There is conflicting guidance as to whether the process of

validating requirements is part of the elicitation process or the analysis process, but in

this dissertation the process of determining which requirements support the system’s

goals will be in the analysis section.

C. REQUIREMENTS ANALYSIS

The goal of requirements analysis is to identify the goals of the system and

develop an acceptable set of requirements that will meet those needs. The requirements

should be necessary and sufficient; there should be nothing left out, and nothing

superfluous added. (Sawyer) The requirements engineer wants to ensure that the analysis

verifies the goals and scope of the system, identifies the requirements necessary to meet

the goals of the system, ensures there is sufficient documentation to evaluate the

requirement, resolves conflicting requirements, assesses risk, identifies constraints, and

assigns requirement functionality to the various software components.

This dissertation is also assuming that SLAs will be analyzed in the same manner

as the requirements captured in the elicitation process. The requirements engineer will

want to ensure the SLA thresholds support other functional requirements, that they are

 108

technical and fiscally feasible, that the functional and non-functional requirements do not

conflict, and that the SLAs support the overall system goals and quality requirements.

It is important to note that the requirements analysis phase overlaps with the

beginning of the software-development phase. Software developers will start to become

more involved towards the latter stages of the requirements analysis when requirements

are allocated to software components, models and/or prototypes are developed, and the

software architecture development is started.

Before the analysis process starts, the team that will conduct the analysis of the

requirements should be selected. The team is generally composed of the requirements

engineer, designer representatives, representatives from the stakeholders, and in some

cases system engineering representatives will want to be on the team to ensure better

integration between hardware and software. It is important that the users participate in

the analysis process, as this will influence user acceptance and help to establish user

expectations.

One of their first tasks of the analysis process is to review the documentation

gathered on the requirements collected in the elicitation phase. Requirements should be

as descriptive as possible to eliminate ambiguity and allow those analyzing the

requirements the opportunity to assess the requirements in terms of support to the

underlying business process, whether the requirement is excessive, or not sufficient

enough to meet its goals, whether it is technically feasible, and how it will be verified.

If additional information is needed, the stakeholders will be asked to comment on

the missing information. The requirements engineering process is not a linear-sequential

model, various parts of the process acts concurrently, and often feedback or additional

information will be needed from a prior phase.

 Once a baseline level of information is collected on each requirement, the

requirements engineer can start the process of analyzing the requirements. The

requirements engineer needs to understand the domain environment, mission needs,

underlying business processes, and the organizational culture in order to analyze the

requirements. Once the requisite information is obtained, the requirements engineer must

evaluate the requirements in the context of the stakeholder needs, business needs, and

 109

environmental conditions in order to determine the requirement’s implications, conflicts,

interaction, scope, and feasibility. Part of the assessment is to ensure that the

requirements either directly or indirectly support the system’s goals. The requirements

are also evaluated for costs, risks, organizational acceptance, and whether they can be

verified. Requirements analysis must not only address functionality, it must also take

into account non-functional attributes such as quality factors, as well as programmatic

constraints (budget and schedule).

It is not uncommon for stakeholders to have conflicting requirements, differing

solutions to the problem being solved, or to demand differing levels of quality. The

requirements engineer is responsible for negotiating a resolution these conflicts. It is

important that the solution be worked with the various stakeholders so as not to alienate

one party for the sake of another. This is not an easy task as there are multiple political

and social agendas at work. An important step in the requirements analysis process is to

document the priority of the requirements. This is essential in order to analyze the

priorities against the budget, and it may help alleviate some of the conflicts, or at least

identify them up front. In some cases, the primary customers (those in charge of the most

business critical processes) will have to make the final decision. In other cases, if a

consensus cannot be reached, it will be necessary to have management dictate a solution

in decisions that affect multiple stakeholders. Boehm’s win-win model (In) was

developed in an effort to resolve this type of requirement conflict.

The requirements engineer also needs to perform a risk assessment of the

requirements in context of defined constraints on the system and development effort. The

budget and time constraints may have a dramatic impact on the system development.

Additionally, environmental, technical, interface, and implementation considerations also

affect the development effort. Requirements also need to be evaluated against the project

timetable to determine if certain requirements with new or complex technology will

present a risk to the project schedule.

Another step in the requirements analysis process is to determine the scope of the

system and how it interacts with its organizational and operational environment. This is

best shown through the use of conceptual models. There are numerous models that can

 110

be used to model the problem and proposed solution set. These models include OOA,

formal models, data and control flows, state models, event traces, state transition

diagrams, entity-relationship diagrams and user interactions. (Sawyer) There is no best

type of model as the use of a particular type of model depends upon the skill set of the

software engineering and design team, the type of problem to be solved, availability of

certain tools, interface requirements, and user/customer input.

Once the requirements have been analyzed and accepted by the stakeholders, the

process of requirements allocation, or assigning/partitioning the requirements to the

various subsystems, software components and sub-components can begin. This process is

part of the architectural design. The functionality assigned to the components and their

interaction ultimately determines the extent to which the system will exhibit the desired

properties. (Sawyer)

It is important to note that many of the non-functional quality attributes can only

be satisfied by more than one component. The various components of the system must

act together or interoperate with other components to achieve the specified quality

requirements. Two examples are reliability, which depends upon the mean time to failure

for each of the components involved in a particular function, and built in redundancy.

Another is response time, which depends upon the speeds at which the servers,

application, firewalls, and supporting LAN/BAN/WAN operates.

Once requirements have been allocated to components it is often necessary to

conduct further analysis to start the process of translating the high level requirements into

technical specifications that the programmers can use to code. Details of the application

domain, interfaces, protocols, types of data to be used, legacy components, and additional

technical requirements will be derived from each system requirement. It is often

necessary to begin another round of requirements analysis as new questions are raised.

Some of the issues associated with capacity management should be addressed in

the requirements analysis portion of software design. Issues as simple as the anticipated

number of users can have a large effect on resource requirements. Servers will have

 111

excess capacity if the estimated users are too small. On the other hand if the users are

underestimated, the server and application may not be capable of handling that amount of

concurrent users.

The process of developing SLAs helps the requirements engineer in the analysis

phase as well. SLAs assist in the collection of documentation, risk analysis, and conflict

resolution.

A dynamic and rapidly changing business environment has forced end-users to

demand more and better services from IT service providers. Businesses are demanding

faster speed, more flexible systems, and near real-time computing. SLAs are an essential

part of measuring and making explicit those needs. Part of requirements analysis is

determining both functional needs as well as user expectations.

SLAs help the analysis process by ensuring that the quality factors and

requirements are quantifiable and verifiable. The process of generating the SLAs focuses

the effort on determining quantifiable attributes of the quality factors being considered.

In some cases proxy attributes that are quantifiable will have to be used. The SLA

process specifies the metrics that will be used to verify if the requirement is satisfied, the

method of measurement, and the acceptable threshold value.

Requirements must be verifiable; otherwise they are just wishes that can consume

and inordinate amount of time and resources. In order to verify a requirement,

quantifiable attributes must be assigned to the requirement. Quality attributes can be

difficult to express in quantifiable terms, however, this is a necessity to determine if the

desired quality attribute was ever attained, or can be attained.

SLAs assist with the determination of technical feasibility and risk assessment by

forcing the stakeholders to quantify requirements and then determine how they will be

measured. The specified thresholds also assist in determining technical feasibility.

During the SLA development, each requirement should be justified by a business case,

which defines the benefits that the requirement provides to the overall business plan. The

quantifiable requirements allow the developers and designers the opportunity to assess

whether the system can be designed to meet those requirements given schedule and fiscal

constraints.

 112

SLAs also help in assessing the risks associated with the requirements included in

the SLAs. The software engineer and developers can assess the various thresholds

specified in the SLAs and determine whether they are technically feasible with respect to

other requirements, proposed architectures, external forces outside of the system, whether

the organization has end-to-end control, whether the thresholds are realistic, and to what

extent the threshold levels indicated in the SLAs will support the system’s goals.

In some cases SLA development will address and solve some of problems

associated with conflicting requirements before the requirements engineer has to

intercede. SLAs should always be tied back to the business process that the system is

supporting. A business case should be made for each SLA, and a prioritization of the

SLAs should occur during the development process. The SLA development process

should begin by discussing and agreeing on the system’s goals, goal hierarchies and

priorities, and project scope. Requirements supporting a particular stakeholder’s agenda

(social, political, or organizational) will not be supported unless that stakeholder can

make the case that the requirement supports the system’s goals and is worth the

investment (SLAs will drive up the cost of the contract as it imposes additional risk on

the developer).

The group effort to develop the SLAs also helps stakeholders understand other

stakeholder’s perceptions, politics, and desires. A group decision forces everyone to

justify their requirements in terms all other stakeholders understand, disputes can then be

based more on logic than emotion.

D. REQUIREMENTS SPECIFICATION

Requirements specification is the process of documenting the requirements. This

generally takes the form of three documents. The first document defines the system

vision and scope. This document is known by many names such as user requirements

document, concept of operations, or scope and vision document, but it typically includes

four parts. (Wiegers, Sawyers)

 113

1. Vision and Scope Document

The first part of the vision and scope document outlines the business rationale for

the new system. This section lists the reasons the system is being developed and its

intended benefits. The intended benefits or business objectives of the system need to be

defined in quantifiable terms so the success of the system can be measured. This section

provides information on the customer base, target environment, and the risks associated

with the project.

The second part is the vision statement. This section details the long-term

purpose for the system or product. It describes why the system is needed, its intended

customers, and how it is different/better than other systems already in the market place.

This section also details the major functionality or features of the system as well as

describing dependencies and constraints.

The third section describes the scope of the project. This includes a summary of

the features that will be included as well as those that will not be included. This section

is intended to focus the development effort and establish user expectations. Without a

good scope document, there is a good chance of requirements creep. This document will

also discuss release strategies. In some cases certain functionality is needed before

others, so a base release with the main functionality may be planned, followed by

upgrades introducing additional functionality.

The last section describes management issues associated with the project. This

section lists the stakeholders, system functionality that concerns them, how they will

benefit from the system, and their concerns. Project priorities are also outlined in terms

of cost, schedule, features, and quality. Additionally this section describes the operating

environment and the non-functional quality factors that will be necessary to achieve the

business objectives. The document may also include a conceptual model that further

illustrates the boundaries of the system, interfaces, data flows, and control.

The scope and vision document outlines the business case for the system allowing

the requirements engineer to tie requirements back to the original business case. This is

an important part of requirements tracing. As requirements change it is important to

constantly evaluate them against the original business case to ensure that the

 114

requirements support the vision and scope. If they do not, it may be necessary to update

the vision and scope or disregard the requirement modification request.

2. Business Rules

The next document describes the business rules that apply to the system. The

business rules incorporate internal business policies and procedures, regulations,

formulas or algorithms that will be incorporated/impact the system, and external

forces/market conditions that will influence or constrain the system. Generally each

business rule has a unique identifier, a description, taxonomy or classification, and the

reference.

3. Software Requirements Specification

The third document is the software requirements specification (SRS). The SRS

states the functional and non-functional requirements of the system. This establishes the

contractual basis of the agreement between the customer and the developer of the system.

Since the SRS provides the foundation for project management, requirements

verification, test and evaluation, design, cost estimation, and development it is essential

that it describe as accurately as possible the behavior of the system under expected

conditions. (Weigers)

There are several recommended standards for developing a SRS, including IEEE

p123/D3 guide, IEEE std. 1233, IEEE std. 830-1998, ISO/IEC 12119-1994 and IEEE std.

1362-1998. (Sawyer). IEEE std. 830-1998 suggests a template composed of six sections

and three appendixes. The first section discusses the purpose and scope of the system

(readers can be referred to the vision and scope document if applicable), document

conventions, and references. The next section is a high-level overview of the system, its

intended operating environment, constraints, assumptions, and dependencies. The third

section lists in detail the system features, the priorities attached to those features, and all

requirements that are associated with that feature. The fourth section lists all external

interface requirements, including user interfaces. The fifth section lists all non-functional

requirements such as performance criteria, quality factors, safety, and security. The sixth

 115

section lists requirements that were not listed elsewhere. The appendixes of the SRS

included a glossary, any of the analysis models used, and a list of all outstanding issues.

(Weigers)

SLAs can assist in the formulation of the specifications in three important areas. If

a format similar to that used in appendix (A) is utilized, the sections discussing why the

measurements are necessary, scope of the measurements, assumptions, and

responsibilities, provides good information to incorporate into the specifications. During

formulation of the SLAs, the format of the SLAs will drive communication and

discussion among the stakeholders with respect to the scope of the system, ensuring that

the requirements levied are necessary and support the business objective of the system,

and that they are quantifiable and measurable.

The SLAs must be written to withstand legal scrutiny. The SLAs must be

verifiable, concise, unambiguous, and understandable. The requirements that are

included in the SRS should contain those same attributes. The examples included in a

template SLA provide a good starting point that stakeholders can use for generating other

requirements. If new SLAs need to be generated, the team will quickly discover the

difficulty of writing clear requirements that can withstand the rigor of analysis by other

team members, project managers, legal staff, developers, and/or the contractor. Either

way, the lessons learned during the SLA development effort can be applied to the other

requirements outlined in the SRS.

The SLAs can be written to ensure quality in the specification documents

themselves. SLAs can specify quality factors such as adherence to specified formats, text

structure, requirements labeling and tracing, completeness of the requirements (not all

requirements must have all the needed information, but those that do not should be

annotated, and tracked for resolution), and a consistent level of detail in the requirements.

Davis has outline 24 quality factors that he feels are essential in a SRS. (Davis)

E. REQUIREMENTS VALIDATION

Once the specifications are written they need to be formally reviewed to ensure

they are accurately represent stakeholder’s requirements, and that the specifications

 116

reflect the desired quality. The intent of the verification is to find any errors before they

are incorporated into the design as the costs, as the cost to correct defects once

incorporated into design is approximately 100 times more that it costs to correct them in

the requirement engineering phase. (Cross) Poor requirements engineering will result in

poor product quality, cost and schedule overruns, and poor customer satisfaction.

The validation is generally a formal inspection consisting of a team comprised of

the software engineer’s staff, stakeholder representatives, and developers. The group is

looking for errors, omissions, assumptions, as well as implicit constraints and

assumptions. Stringent quality factors may generate implicit validation requirements.

For example, the requirement for an exceptionally high degree of reliability or safety may

implicitly drive the need for formal specifications and analysis to determine if the quality

requirements can be met. (Sawyer)

The verification of the quality of the requirements documentation is an essential

part of the requirements validation process. The documentation should be validated to

ensure that it conforms to established standards, is understandable, modifiable, consistent,

traceable and complete. Validation also ensures that proper documentation or knowledge

management is applied to the models. A documented history of the rationale, reasons,

and trade-off discussions is extremely valuable as the project progresses and tacit

knowledge is lost.

The requirement documents are also checked to ensure they contain the requisite

amount of information necessary to validate requirement feasibility and necessity. The

documents are reviewed to ensure that the requirements do not contain any significant

conflicts, the specifications contain enough information to start design (concise with no

ambiguity), the requirements are within the project scope, the software requirements

support/do not conflict with system requirements, and that business rules were correctly

applied.

Requirements validation also refers to the models that are used in the analysis

phase of the requirements engineering process. Any modeling technique biases the

perceptions or views of the stakeholder as they offer only a limited number of primitive

concepts for modeling its intended subject matter. (Mylopoulous) Validation, through

 117

formal walkthroughs or inspections will help to identify errors, emissions, or identify

assumptions. Validation can also help to ensure that the modeling used is sufficiently

robust to capture the problem and proposed solution.

The models also need to be validated to determine whether the analysis models

accurately reflect stakeholder’s requirements. One problem encountered when gathering

requirements is the fact that a requirement engineer’s perception and description of

problems can be influenced by the tools and methods that they utilize to capture

requirements. If stakeholders do not agree with that perception or frame of reference,

then they are not likely to agree on the representation of the requirements.

The approach utilized to capture requirements can be broken into two

philosophies. The first is a positivist approach where the requirements are founded and

verified by empirical observation. This approach has been criticized because it tends to

force stakeholders to model reality into neat empirical terms, where others argue that

reality is not that simple. The other approach is an ethnomethodological approach that

stresses value-free observations by not imposing modeling constructs. However, the

synthesis of the information gathered must still be presented and communicated in some

form. It is possible for the requirements engineer to taint the requirements with their own

biases and social values. (Nuseibeh) The validation process checks the requirements to

ensure the stakeholders, developers and management agree on the frame of reference and

the resultant models.

Prototyping can also be used to validate both the models, and requirements.

Prototypes are advantageous in that they can quickly demonstrate the requirement

engineer’s assumptions and allow stakeholders to provide feedback. However,

prototypes can distract users from the core functionality by shifting attention to cosmetic

user interface issues and any problems that may arise with the prototype. (Sawyer)

The validation process is also another check to ensure that requirements do not

conflict. The conflict can be caused by numerous reasons, including problems describing

the requirements in the specifications, new knowledge, problems missed in the analysis

phase, new requirements as a result of prototypes or changing environments, missing

requirements, and any aforementioned bias interjected during the requirements

 118

engineering process. Disputes are not unusual given the diverse backgrounds, cultural

differences, inter-organizational politics, and different approaches to solving the

perceived problem. Disputes can be resolved through goal hierarchies, prioritizing

requirements, utilizing Boehm’s win-win model (In), and negotiating compromises.

SLAs can also be used to specify quality factors for the specifications and the

models. SLAs can specify specific procedures and processes to utilize and it can specify

the accuracy of the documentation. A designer or developer of the system can then know

the level of quality that is contained in the specifications and models. Otherwise they

would have to evaluate the models to ensure accurate notions such as events, states, cause

and effect relationships, compatibility, and mutual exclusion.

A common problem found in software projects is that they did not quantify the

benefits or risks of different designs and requirements. In many cases intangible benefits

are not mentioned. (Bubenko) The SLAs are quantifiable which allows the requirements

to be measured to determine how well a design solution satisfies the requirement. One of

the most important traits of a requirement is that it is verifiable. If there is no way to

determine whether the requirement has been met, it should not be included in the

specifications. Part of the requirements verification effort is to determine whether a

requirement as it is specified in the SRS can be verified, so an acceptance test can be

developed to determine whether the system meets the requirement.

Template SLAs are also helpful in that many of the methods used to measure the

non-functional or quality aspects of a system are already defined, and used in other

projects. Verification of the SLAs is generally quicker that other requirements in that

template SLAs have already withstood the scrutiny of verification. However, that does

not mean that SLAs should not be verified, they must be reviewed in relation to the

systems they support.

F. REQUIREMENTS MANAGEMENT

Requirements management is the process of documenting new requirements and

ensuring that any changes to the system that affect the requirements or their supporting

information are accurately documented. System and software requirements are not static;

 119

they are constantly evolving as users gain more knowledge by analyzing models or

prototypes, as designers discover omissions or need additional clarification, and as

business environments are changed. As change occurs, it is important that the

documentation on any requirements affected by that change be updated to reflect any new

information. Requirements management occurs throughout a product’s lifecycle.

Requirements management can be broken into three separate but related tasks.

The first task is updating the requirement’s documentation to reflect change. The second

task is requirement’s tracing, which is concerned with identifying sources and rational for

a requirement, as well as identifying where that requirement is reflected in the

architecture. The third function is an impact analysis of the proposed change.

Requirements engineers have to be very organized to ensure that all of the

information on a requirement is captured accurately. The quality of the documentation is

essential to the development effort as well as the life-cycle support of the system. Every

requirement needs to have a unique identifier, a classification, dependencies on other

requirements should be noted, hierarchical relationships and the requirement’s rationale

(why the requirement is justified and how it supports the business process) needs to be

recorded, as well as the source of the requirements and the software component(s) it was

assigned to.

Since change is inevitable it is necessary to have a management system in place to

ensure that when the system or requirements are changed, that there is a mechanism in

place to capture that information. The requirements engineer also needs to ensure that

when change does occur that the documentation is updated. It is important to note that

the documentation does not just include the specification in the SRS, it also includes all

ancillary information that is used to interpret and manage that requirement. (Sawyer) In

addition any context models that were used should also be updated to reflect that change.

In many cases system characteristics and user perceptions of need change faster

than the requirements engineering process. (Bubenko) Changes in the design stage still

need to be documented by updating the original specifications. When updating the

documentation, it is extremely important to utilize version control of the individual

requirements, as well as the vision and mission documents, SRS, and context models.

 120

(Weigers) Automated tools are making the process of updating documents and version

control easier, but multiple data formats (including conceptual models), distributed

working environments, and extremely large and complex systems still limit the

effectiveness of these tools. (Bubenko)

Requirements tracing is concerned with establishing links with the requisition

(request for the requirement), its source, its specification documentation, other

requisitions that would be affected by any change, higher-level system requisitions, and

the business plan/process it supports. In addition the requirements should also be

traceable to the design element that satisfies it.

It is very important that a requirement be traceable back to its source and/or

rationale (business objectives, business rules, system requirements, dependencies, etc…).

If there are no links between the business plan and the specifications, then it becomes

very difficult to determine the impact that a change in the business plan/process will have

on the system. It is also difficult to determine the impact that a requirement change will

have on business processes. In addition it makes risk management difficult when

changes in the business environment cannot be evaluated in terms of which requisitions

are affected.

The third function of requirements management is performing impact studies on

the effect of any proposed change. Changing requirements need to be assessed to

determine the affect of the change on the system’s cost, schedule, and performance. As

requirements are changed a cascading effect can occur in which dependent requirements

are affected, conflicts can be introduced, the architecture can be affected, and

performance and quality requirements can be impacted. When the impact analysis is

completed the software engineer, program managers, and stakeholders will have to

determine if the change is necessary.

Another consideration when conducting impact studies of proposed changes is

user expectation. Management and stakeholders need to understand the effect that

requirements will have on the costs and schedule associated with the program. In some

cases change is needed and should be embraced, but in other cases the change is a result

of requirements creep. Impact studies may also inform stakeholders and management of

 121

proposed changes that they may not have been aware of. Stakeholders spend a great deal

of effort and time during the elicitation and analysis of requirements, and they will not be

pleased if the system is modified without them being informed.

Requirements management is often a neglected part of the requirements

engineering process. It can be very time consuming, it is difficult to manage, it is not

glamorous, and it is often neglected in the rush to market a product. Additionally,

programmers are notoriously poor at documenting anything.

SLAs can be are extremely useful in the area of requirements management

because it institutionalizes a change management review board that is responsible for

impact analysis and change approval. SLAs are contractual documents that generally

have incentives or penalties associated with levels of performance or quality goals. Any

changes to the system that affects those specified quality or performance goals must be

negotiated as part of the contract. For example the new requirement for a content

screening program on the e-mail system may affect performance thresholds. This new

requirement may necessitate a renegotiation of the SLA.

As stated earlier, SLAs can be written to apply to the quality of the requirements

documentation. Audits of the system and the corresponding requirements documents will

determine compliance with threshold levels (probably a percentage such as 98%

accuracy).

Requirements management continues throughout the system’s lifecycle. A

common problem with documentation is that once the system is fielded, it is turned over

to another team to manage in its operational phase. The more accurate the

documentation, the easier the transition to the new team, and the system will be easier to

maintain. Unfortunately, there is generally little incentive to keep the documentation up

to date, or accurate. This is where SLAs enforce some rigger.

G. SUMMARY

The central theme of this dissertation is that SLAs can help program managers

and software engineers produce higher quality software. One of the ways that SLAs help

is that they focus attention on the non-functional requirements of a system. Specifically

 122

the quality factors (including performance requirements) that users, program managers,

and software engineers feel are essential in a system to support the underlying business

process. They also help make explicit many of the quality factors that users may

implicitly assume. SLAs also specify the quality metrics by which the software quality

factors are measured. Measuring and monitoring quality allows an organization to

determine whether quality requirement have been met. Measurements also support early

detection and resolution of quality problems.

The process of developing SLAs improves the requirements engineering process

by involving all stakeholders in discussions that result in a common understanding of the

business factors that drive the need for certain quality factors. Ends users and program

managers collaborate to determine quality factors and performance characteristics as well

as functional requirements. Those quality factors are taken into consideration when the

system is designed, and that design is verified. In addition to specifying quality

characteristics SLAs can be used to specify and enforce standards and processes that also

lead to quality software development. The quality thresholds incorporated into the SLAs

will also be represented in the testing scenarios to ensure compliancy. SLAs not only

assist in the requirements engineering, but they are one of the first steps towards

establishing a quality control process.

 123

VI. DESIGN

The intent of this chapter is to demonstrate how SLAs can influence software

design to achieve a higher quality product. The section will discuss how specific quality

factors can drive design, it will discuss quality metrics that can be incorporated into SLAs

that are specific to the design phase, and it will discuss how SLAs can help in the

development of the test plan. This chapter will not however provide an in depth

discussion on how software is developed, as that is outside of the scope of this

dissertation.

SLAs can be used to specify quality factors specifically related to the design

process, but SLAs real contribution to generating quality software is in the fact that the

quality factors that are addressed in the SLAs drive the design. When customer

requirements have been collected and specified, design is the process that translates those

requirements into a blueprint that programmers can use to build the product. The design

can then be assessed for quality, as it is a representation of the final product. (Pressman)

The design model can be reviewed to ensure that the quality factors were adequately

addressed. In this way quality is designed in the beginning phases of the lifecycle.

Waiting until the testing phase of development to determine whether quality factors have

been met is too late. It is much easier and less expensive to achieve specified quality

factors if they are addressed at the beginning of the application lifecycle. Discovering

problems during testing requires significant time in evaluating the symptoms and

working backwards to discover a root cause. (Cross)

The quality factors identified in the requirement specifications enables the

application developers to employ the pertinent technologies and products, in order to

achieve a design that meets the desired level of quality. (ITIL) “From a technical

perspective, quality attributes drive significant architectural and design decisions.”

(Weigers) If developers know which of the characteristics are most critical to project

success they can select the architecture, design, and programming approaches that best

achieve the specified quality goals.

 124

The quality factors specified in the SLAs have penalties or incentives associated

with them, as a result, the development team will focus more attention on ensuring those

attributes are incorporated into the design. Program managers and developers tend to

concentrate more on functional requirements than non-functional requirements. This is

especially true when the program is experiencing significant schedule and/or monetary

pressure. The SLAs help to ensure non-functional requirements are not overlooked in the

design process.

A. ARCHITECTURE ANALYSIS

Where the requirements define what a system is supposed to do, the design

represents how the system will do it. The architecture of a software system models or

defines the system in terms of the structure, behavior, organization of computational

components, and interactions among those components. (Shaw, Pressman, Bass)

Architecture also shows the correspondence between the system requirements and the

elements of the constructed system, thus providing some rationale for the design decision.

Software architecture is a compilation of design models representing the various

aspects of the software system at different levels of abstraction. Although there can be

numerous levels of abstraction, depending upon how far the designers want to decompose

the system, there are three general levels of abstraction. The first level represents

topographical arrangement of components (a unit of computation or data storage) and

connectors (an entity that facilitates communication). (Dias) This level maps system

requirements with components and describes the interactions among the components.

The next level involves design issues involving algorithms, data structures, primitive

operators, primitive language operators, and threads of control. The bottom level consists

of design issues involving memory maps, call stacks, and register allocations. (Shaw)

The architecture also represents multiple views or perspectives of the system

depending upon the information to be modeled. These different architectural structures

or models are interrelated and provide a holistic view of the system. Some common

structures are module structure, logical structures, process structures, physical structures,

uses structures, call structures, data flows, control flows and class structures. (Bass)

 125

These structures can also be broken into architectural design, data design, interface

design, and component design. (Pressman) They can also be broken into functional areas

such as presentation services, information services, communications, interface design,

transaction services, environmental services, and base services. (Goodyear).

The different types of structures guide design with their own sets of components,

notations, analysis techniques, and issues. In addition each structure may have multiple

levels of abstraction, which also have components, rules of composition, and rules of

behavior. Each structure and level of abstraction provides a unique perspective and can

be considered a separate software blueprint. (Bass) The structures are not necessarily

independent, as they will often overlap. As such, each structure and the interface with

other structures need to be evaluated in terms of the quality factors defined in the SLAs.

As more business essential processes and functionality rely on IT intensive

systems, it is not realistic to expect that organizations will take a vendor’s word that the

system under development will meet all of their quality requirements. The organization

should be able to independently evaluate the vendor’s architectural decisions and design

as early in the software-development cycle as possible to ensure their requirements are

being addressed. (Clements)

Software architecture analysis is used to predict the quality of a product before it

has been built. The analysis provides information that can be used for architectural trade-

offs, risk analysis, and to ensure quality factors have been addressed. Architectural

analysis cannot be utilized to obtain qualitative measures (precise estimates) of the

effectiveness of a particular design on a certain quality attribute. (Dobrica) As a result,

architecture analysis provides support for SLAs by ensuring the design addresses quality

requirements, but caution should be used when utilizing analysis results as threshold

measurements. Although there are a number of methods to analyze architectures (Hulse,

Dobrica, Garlan, Clements, Land, Bass), further work is needed before these models can

produce qualitative or quantitative quality measurements needed for incorporation into

SLAs. (Dobrica) They can however provide an estimate of how well the design will

satisfy a particular quality factor.

 126

SLAs also help to ensure that once the software architecture has been analyzed

and accepted the architecture is not modified during the code phase. Although an explicit

software architecture is one of the most important software engineering artifacts to create,

analyze, and maintain, it is difficult for developers to remain faithful to an intended

architecture as design and implementation proceed. (Cross) SLA penalties help to focus

management attention on satisfying mission essential quality factors.

B. SOFTWARE QUALITY FACTORS EFFECT ON DESIGN

This section is intended to illustrate how quality factors can influence design. The

designer must choose an architecture that not only meets functional requirements, but it

must also meet quality requirements. In making that decision the designer needs to

ensure requirements are met, risk are evaluated, trade-offs studies are performed,

alternative designs are evaluated, and potential quality conflicts are resolved. This

section will briefly discuss some of the design considerations in meeting three quality

requirements, but it is not intended to be a detailed study on design approaches and their

effect on quality.

1. Maintainability

System maintainability is important to the availability of the system and lifecycle

support. Although the costs of developing a system increase as maintainability is

improved, the end result is improved product performance and lower life-cycle costs.

(Markeset) Although it is difficult to quantify an overall measurement of system

maintainability, proxy attributes and scenario-based measures can be utilized in SLAs.

The attributes generally assess commonly accepted software engineering practices and

processes. Specific scenario based measures, such as the time it takes to recover the

system from a power failure, can also be utilized.

There are numerous design considerations that will affect maintainability. Many

of these properties can be measured utilizing automated tools once the code is

constructed, but the designer must consider these properties before programmers begin to

code. The software needs to be designed with maintenance in mind. There are a couple

 127

of key design considerations that will help a design meet maintainability quality

requirements, including modularity, testability, documentation, and complexity.

Modularity is the decomposition of the system into specific components that

satisfy assigned requirements. These components are developed as part of the software

architecture process. Modules should be highly cohesive (perform only one task) with

low coupling (simple interfaces between modules). Other module characteristics that

must be considered when designing for maintainability are intra-module control

complexity, intra-module data complexity, and inter-module connectivity. Intra-module

control complexity is concerned with the flow of decisions within a module. (Callis) This

quality factor can be measured by the number of decision statements and nesting levels

within statements (function calls shall not be nested more than 2 levels deep (Weigers)).

(Callis) Intra-module data complexity measures the average number of live variables per

statement, the span of variables, and the number of operators and operands in the average

statement. (Callis) Inter-module connectivity measures information flow, including the

number of information flows into a module, the number of data structures from which

information is received, the amount of data produced from a module, the number of data

structures that use that data, and the complexity of the information flow (Kitchenham)

Maintainable software is also designed for testability. Testability and

maintainability have many of the same proxy attributes, as many of the characteristics

that would make a program testable would also make it more maintainable. Some of

these characteristics include operability, observability, controllability, decomposability,

simplicity, stability, and understandability. (Pressman) Some of the design

considerations for meeting these proxy attributes would include adopting common coding

standards, managing change volatility, ensuring field verification so incorrect input and

output are easily identifiable, functional separation, internal instrumentation, and error

handling.

As discussed previously, documentation is essential to good maintainability.

Documentation needs to be well organized, accurate, accessible, and it must contain the

appropriate level of detail necessary. Requirement changes and modification during

design is normal. If those changes are not documented properly maintainability suffers.

 128

Trouble shooting becomes more difficult if requirements are not mapped or recorded

properly, models and the architecture were not updated, new interfaces are not recorded,

and design rationale is not explained.

The development team needs to have established procedures to ensure that once a

change has been approved that all necessary documentation has been updated. An audit

of the processes used to implement an approved change can indicate whether the new

requirement was properly documented, requirements models were updated, whether the

change was properly approved and recorded, whether the change was communicated to

others, and whether the architecture was updated. SLAs can help ensure documentation is

accurate.

Programmers must also document their code, so it can be easily audited. The

comment lines in the code capture the programmer’s tacit knowledge, and allows others

to understand the programmer’s decision making rationale. Once coding starts, another

method to improve maintainability is to specify in the SLA an acceptable ratio of

comment lines.

Complexity is another measure of maintainability. The less complex a program,

the easier it is to maintain. There are numerous metrics that can be used to measure

complexity. Two common models are McCabe’s cyclomatic complexity and Halstead’s

theory of software science. Both models can be utilized throughout the development

process to ensure that the system in not overly complex. Specific design considerations

to reduce complexity include reducing lines of code and keeping operators and

independent paths as small as possible.

There are many other design considerations and models that impact and measure

maintainability (Pearse, Basili). Although maintainability of a system is difficult to

measure holistically, specific metrics can be utilized in SLAs to influence design

considerations. The SLA development team in coordination with the developers can

select the metrics or models that will be used to measure maintainability.

2. Security

There is a fundamental tension between designing for functionality and designing

for security. There are several reasons for poor security in today’s software, including

 129

lack of training on defensive programming techniques, programmers relying on

compilers to identify errors, and the demand for novelty means that much software

development is on the ‘bleeding edge’ and is thus less reliable. (Gilliam) Another reason

for poor security is the lack of a code analyzer that can parse through code, identifying

common software vulnerabilities such as buffer overflows.

The intent of a security SLA is to ensure that software security is incorporated

into the design effort at the beginning of design efforts. If designers concentrate all of

their efforts on functionality and wait until testing discovers security vulnerabilities, the

result will be schedule delays, less than optimal security, and greatly increased costs.

The security of the system needs to be evaluated from a number of perspectives.

The application, operating system, network (including firewall), data bases, PC, and the

physical security of the host environment need to be evaluated for security, and all

contain security metrics that can be utilized in SLAs. An end-to-end SLA for security is

difficult unless all parts of the system are managed and controlled by one entity, however

pieces of the system can be analyzed and designed with security in mind.

It is difficult to measure security as a holistic measure, however there are specific

security metrics that can be utilized in an SLA to influence design. One way an SLA can

be utilized to address security concerns is to write the SLA such that an independent

auditor will evaluate the security of the software design and in coordination with the

software developers, they can develop a plan to correct deficiencies. The SLA can

stipulate the time necessary to perform the security corrections, or the SLA can mandate

a percentage of the problems that must be corrected by a given date.

Some of the most common security vulnerabilities include buffer overflows,

script injections, changing environmental variables, numeric overflows, race conditions,

information exposure, default settings, and programmer backdoors. (Gilliam) Designers

must also consider security vulnerabilities resulting from interfacing with other programs

or systems.

To combat these types of security problems, designers need to concentrate their

efforts on four security requirements: identification and authentication, access control,

audit, and system integrity. (Goodyear) Identification and authentication ensures that the

 130

system can uniquely identify an entity in a transaction. Each entity must have a unique

identifier, and there must be a way to bind the identifier to the entity. (Goodyear)

Designers should utilize strong authentication where at least two authentication methods

(what the user knows, what the user has, and what the user is) are used. An example of a

strong authentication is a smart card along with a biometric verification.

Some examples of design considerations that address authentication include

ensuring strong passwords (at least 8 characters that incorporate capitals, numbers, and

special characters), establish an authentication period where the system times out after a

period of inactivity, (Kabay) utilizing encryption protocols such as kerberos, ensuring

passwords are strongly encrypted, and support for tokens or smart cards. Controls also

need to be established if the application is accessed via a portal where a single log on is

utilized for all applications on the portal.

Access controls determine what resources an entity can utilize. Access controls

will determine whether an entity has been granted permission to access a program or a

file. The access controls also determine the rights that the entity has with respect to the

resource (i.e., the entity can only read the file and not modify, or the entity has full rights

and can read, write, save, delete). Access controls are usually implemented by access

control lists (ACLs) which specify the entity or a group that the entity is associated with,

and the types of access that the entity has been granted with respect to specific files,

systems, databases, application functions, or other resources. Another way to implement

access control is through role based access control (RBAC), which associates a job

function to a set of resources, then assigns an entity to a job function. (Goodyear) It is

also important to track those people that have root authority, and to keep root access to a

minimum.

Design considerations include ensuring essential files, operating system ports and

files, database files, and application functions are restricted by access controls. This also

includes the ability to copy files. The designer also needs to evaluate any interfaces with

other systems to ensure that those programs are only given the access that they need.

Auditing is the process of monitoring the system to record who accessed a

specific resource and when. Designers can ensure logs capture the resources that were

 131

accessed, the identification of the entity, times, what functions were performed, and the

success of those actions. The logs should contain enough detail to allow security

personnel to reconstruct events in the case of a security breach. It should also be

powerful enough to be used as an analytic tool for determining the root cause of poorly

behaving systems. (Goodyear)

System integrity is the assurance that a system’s implementation (or component)

conforms to its design. Virus and worm attacks are probably the best example of system

integrity attacks. Other examples are faulty parameters (setting that can be exploited),

operational misuse, and data leakage. (Goodyear, Kabay) Designers need to keep system

integrity in mind when designing the system. Identifying all points where the program

receives input from users and other programs and implementing procedures to

authenticate, restrict, and validate input parameters will help to improve a system’s

integrity. In addition data integrity can be protected utilizing programs such as Tripwire.

Security also includes the communication between the PC, servers, and database

as well as network security. Encryption, intrusion detection software, restrictive firewall

policies, and security policies (remote access, placement of web servers) should also be

addressed in the system design.

Test personnel need to evaluate the project in all phases of its lifecycle to ensure

that all security requirements were considered and incorporated. They should also

incorporate security requirements into their test plan to ensure security is evaluated in the

development and testing phases.

3. Performance

Performance is another quality factor that is often ignored in the design process.

Unless performance requirements are explicitly stated, developers will concentrate on

ensuring the design meet functional needs. Performance is often not considered until the

testing phase, assuming it is incorporated into the test plan. Unfortunately, if you design

poor performance into a system, correcting the problems can be extremely difficult,

resulting in cost and schedule overruns. (Loosley)

Performance must be measured throughout the software’s lifecycle. To manage

performance, SLAs need to quantitatively define performance goals, so systems can be

 132

designed to meet those objectives. Performance models can be utilized to verify that the

design incorporates the specified goals and test plans can be developed to ensure the

performance requirements have been met. Once the system has been fielded, the system

must be monitored and tuned to ensure actual performance meets requirements.

Software performance engineering (SPE) is a method for constructing software

systems to meet performance objectives. (C. Smith, 1996) It is designed to augment other

software engineering processes. There are 10 fundamental activities of SPE including

identify key business factors, specify performance objectives and priorities, evaluate

design alternatives, summarize application workload mix, predict performance, monitor

ongoing software performance, analyze observed performance data, verify performance

expectations, tune application or system, and manage ongoing system performance.

(Loosley) SLAs drive many of the steps in SPE.

Part of the SLA development effort is determining the performance qualities that

are necessary to support critical business processes. The development effort also needs to

identify key business factors that will affect the processing load placed on the system.

Information processing needs depend on statistics like the number of customers, number

of customer inquiries a day, peak hours, orders per hour, service hours, anticipated rate of

growth, scheduled business events (monthly close-out), and use of remote sites. (Loosley)

Performance is dependent on a given workload; therefore an anticipated workload

should be included in any SLA with specific performance targets. It is important to

establish a baseline workload for the SLA, so that performance issues caused by

excessive throughput that is outside the scope of the SLA may be identified. Most of the

components in the IT infrastructure have limitations on the level to which they should be

utilized. Beyond this level of utilization, the resource will be stressed and the

performance of the application will be impaired. (ITIL) For example, if the SLA is based

on an average usage of 1,000 employees, and the application is actually being used by

10,000 employees, the service provider may not be able to meet agreed upon SLAs. In

this case the service provider should not be held accountable due to revised user numbers.

A system’s performance can be described in terms of workload (instruction sets or

transactions), response time (the time to process a single unit of work), throughput (a

 133

measure of the amount of work that can be done in a certain amount of time), resource

utilization (the level of use of a particular system component), and resource service time

(latency and queuing time for resources). (Loosley) Some qualitative performance

metrics that can be incorporated into a SLA include speed (processing time, retrieval

time, response time), throughput (transactions per second), and timing (soft and hard real

time demands). Strict performance requirements significantly affect software design

strategies and hardware choices.

Once performance quality factors have been determined, the next step is to

develop models to assess the performance qualities of proposed designs, and select a

design that best meets the performance requirements. The performance of a system must

be evaluated in terms of the structure of the software program (instruction length, data

accesses, instruction mix), and characteristics of the target system (CPU speed, bus

width, operating system, I/O characteristics, memory). The performance should also be

analyzed at a number of different abstractions. There are numerous models that can be

utilized to predict performance qualities. (C. Smith 1998, Menasce, Lazarescu) These

models tend to focus on the essential processes of the system, resource usage and speed,

and queuing theory. The models used depends on where in the lifecycle the model is

being applied, the skill level of the design team, the size of the system being developed,

the time, resources and funds available, and the level of abstraction being modeled.

The models are usually grouped into analytic models and simulation models.

Analytic models utilize queuing theory and mathematical analysis to evaluate the impact

of all processes on each resource, then computing the delays each process experiences

waiting for service. Simulation involves running a simulated process through a software

model of the system, which includes modeling each resource, models of the queue for

each resource, models of processes within the resource, a model of the clock, and running

a simulated process. (Loosely) Depending upon the size of the application, its

architecture and its distributed nature, multiple models may be necessary. In a

client/server architecture, it may be necessary to model message communication between

 134

the client and the server, as well as model application procedures at the client and server

side to capture the application logic and the pattern of access to the system resources.

(Menasce)

The results of analytic or simulation models can be used to validate performance

quality factors specified in SLAs. However, the models should be independently

verified, and the quality factors should be rather general, (i.e., a specific procedure should

process in less than 5 seconds) as the models are estimates and are not intended to be

highly accurate (formal real-time models are an exception). As the system progresses in

its lifecycle more accurate testing can be performed against actual code. Performance

models are used more as a method of evaluating different designs than providing accurate

quantitative values.

Modeling performance is not without difficulty. Estimations at the source level

have problems taking into account compiler optimations such as loop optimizations,

copying global variables into machine registries, dead-code elimination and constant

propagation. (Lazarescu) It is also difficult to account for constructs using dynamic data

structures, recursive procedures, and unbounded looping. (Suzuki) In addition, as the

level of abstraction rises, the structure of the software becomes more difficult to take into

account as it becomes further removed from the abstract representation. (Suzuki)

Approaches for dealing with these problems include modeling a program in terms of a

pre-calculated instruction code size and execution time, or where execution time is a

function of the number of instructions and the MIPS rating of the target system. (Suzuki)

The intent of including performance quality factors in SLAs is to ensure

performance is considered in the design of the system. There are numerous design

alternatives that can improve performance at the system architecture level through to the

software components. Some design considerations include load balancing (managing

how processes are input into the server), thread architecture (taking advantage of

parallelism and multiprocessor systems), balancing disk traffic (storing data on disks

efficiently and strategically), locking strategies (identifying where locks are necessary,

and when), resource management (identify resource intensive processes and potential

 135

bottlenecks), and optimizing code for space as smaller code fits in fewer pages, leading to

a smaller working set, fewer page faults, and it fits in fewer cache lines. (Reilly)

High performing systems also demand efficient use of memory (strategic use of

cache). Modern processors are so much faster than RAM that they need at least two

levels of memory cache. Memory cache consists of the fast L1 cache and the slower, but

much larger L2 cache. A reference to L1 may cost 1 CPU cycle, L2 may cost 4-7 cycles

while reference to main memory may cost 12-100 cycles. (Reilly) If data that is used

together (temporal locality) is not stored together (spatial locality), it can lead to poor

performance. Arrays have excellent spatial locality, while linked lists and pointer based

data structures do not. Packing data into the same cache line usually helps performance,

but not necessarily on multiprocessor systems, as cache sloshing (different processors

updating the same cache line with their data) may be a problem. Caching must be done

carefully. If the wrong data is cached, it is wasted memory. If too much is cached, less

memory will be available for other operations. Not enough cache will result in wasted

processor cycles, as the information missed in the cache will have to be retrieved. (Reilly)

To meet the performance quality factors specified in SLAs designers will have to

increase their attention on performance issues such as memory allocations, cache lines,

caching data, thread proliferation, locking strategies, resources available in the host

environment, blocking calls, efficient algorithms, and resource utilization. Performance

models will help the designers to analyze tradeoffs and independent evaluation can verify

that a particular design will or will not come close to meeting performance thresholds in

an actual system.

C. DEVELOPMENT QUALITY

This section will briefly discuss how SLAs can be used to influence project and

process quality. Chapter 1 mentioned a number of project and process metrics and

models. This section will discuss a few of the project and process metrics, and whether

they can be incorporated into SLAs to help improve software quality. The metrics

chosen to measure project and process quality will depend upon the size of the project,

the skill of the developers and program managers, time to market, funds and resources

 136

available, the return gained from the measurement effort, and the ability of the metric to

accurately measure the quality objective.

1. Schedule

It is very important to choose the correct metric to measure a quality factor. For

example, cost, schedule and function are the most important metrics to a program

manager. However, cost and schedule may not be the best metrics to utilize in a SLA.

There are numerous models that attempt to estimate cost and schedule (COCOMO II,

Function Points), but these models are not accurate enough to utilize in a SLA. Another

difficulty is that establishing a software project’s true duration schedule can be one of the

trickiest measurement tasks in the entire software domain. (C. Jones, 1995) Determining

when a project starts and is truly complete is difficult and must be precisely defined in the

contract. In addition the pressure to meet those thresholds may result in the developers

skipping important development steps that will ultimately result in large maintenance

costs later in the lifecycle. It is difficult to develop a contract that is so all encompassing

that the developers will not be able to “cut corners.” Cost and schedule are metrics that

are best included in the development contract, but not in a SLA.

2. Process Quality

One use of SLAs is to ensure that processes and standards are being adhered to.

There are numerous standards that can be incorporated into SLAs. The SLA will specify

the standards that must be adhered to and it will define the method to verify compliance.

A third party can easily be utilized to verify compliance. Incorporating standards in

SLAs provides a number of benefits. Standards provide a common methodology that

makes management easier as they provide the basis against which activities can be

measured and evaluated. (Horch) Standards are also useful in that they generally reflect

industry best practices. Standards can be applied to development, coding, naming

conventions, documentation, user interfaces, interoperability, architecture, and operating

procedures. However, just because standards exist does not mean that they will be

utilized. Incorporating standards in an SLA ensures that developers are aware of the

standards, and that the standards will be incorporated into the development effort.

 137

Some standards include ISO/IEC 12207and IEEE 1074, which specify processes,

activities and tasks for software acquisition, development, operation, and maintenance

that should be accomplished throughout an application’s lifecycle. NIST 4909 (Wallace)

and IEEE/EIA 1498 provide standards on documentation. IEEE 1059 provides standards

on testing, as does ISO 9126. IEEE, ANSI, ISO and the Electronic Industries Association

(EIA) have numerous other standards that can be incorporated. Although standards are

useful, the SLA development team needs to be careful when selecting the standards to

utilize. Some standards are very general and are open to much interpretation, and others

may not be applicable to the project being developed.

Development processes can also be specified in a SLA. Specifying specific

processes has many of the same advantages of specifying standards. Applying well

defined, standardized software-development processes increases software quality and

makes the development effort more cost effective and predictable. (Gnatz) Specifying

the processes in the SLA helps to ensure that they are recognized and adhered to. Unless

processes are contractually mandated, cost and schedule pressures quickly become more

important, and necessary procedures are skipped.

One example of a commonly utilized development process standard is the CMMI

model. The CMMI model defines specific key performance indicators (KPI) that must be

established to obtain a specific level. A SLA can easily state that a development agency

must abide by CMMI level 3 or higher. The Software Engineering Institute can be used

to validate compliance. Many of the KPIs cover procedures that need to be performed to

ensure a quality product. However, it must be noted that just because an organization has

a process in place, it does not mean that they are utilized on a specific project. The SLA

needs to be specific that all procedures at a particular CMMI level are in fact applied to

the project, and that they are applied correctly.

3. Defects

Another common metric used to measure the effectiveness of a development

effort is the amounts of errors found at a particular milestone. Some common metrics

include defect density per software product, defect density per lifecycle phase, defects

found by review, defects found by testing, user detected defects, cost of defect detection,

 138

cost of defect correction, requirement errors as a percentage of total errors, defects

incorrectly corrected, mean time to correct a defect, trouble tickets outstanding, and

anticipated defects based on statistical analysis. (Horch)

Incorporating defect rates in SLAs is intended to encourage developers to

implement their own software quality control procedures. Most development plans will

contain formal quality control procedures such as audits, code walkthroughs, and testing.

These plans should detail the quality control procedures, when they will be applied, and

by whom. The quality control procedures are intended to measure product quality and

provide feedback on the development process. Any errors found during the reviews or

tests can be corrected and analyzed to determine their cause. Unfortunately, there are

some developers that rely almost entirely on testing to discover any defects. This

approach will ultimately result in more maintenance and costs. SLAs can be utilized to

ensure reviews and audits are performed by third party inspectors at significant

milestones. SLAs can also be utilized to ensure that the errors identified in the reviews

are corrected.

A common metric that can be utilized in a SLA is defect density per KLOC (no

more than 6 defects per 1000 lines of code). When dealing with defects it may be a better

strategy to offer an incentive rather than a penalty. The goal is to encourage the

developers to do their own internal reviews before the formal reviews to ensure they are

using proper standards, procedures, and quality control procedures to analyze and correct

defects.

If defects are used in an SLA, it is important that all stakeholders, including any

third party auditors understand the definition of a defect, what constitutes a significant

defect and what does not, and the methods that will be used to audit the project or

product. A defect can be defined in terms of documentation errors, code errors, standards

violations, requirements that were not met, improper output, model errors, module

attributes (cohesion, coupling, complexity), or scheduling errors.

The SLA should also establish thresholds based upon the severity of the defects

discovered. Stakeholders need to determine the various categories of defects and rate

them based upon their impact to the mission and quality of the system. All errors do not

 139

need to be fixed immediately, as some errors will not affect the functions or performance

of the system. Those errors should be identified and fixed at a later time, as more effort

can be expended working on more significant problems.

Defect audits have the potential to anger or demoralize the development team.

Nobody likes to have their work scrutinized by personnel outside of their organization.

The fact that audits are designed to improve the overall quality of the product needs to be

stressed. The program manager will have to work hard to ensure that everyone views the

audits and reviews in a positive light. This is one reason to utilize incentives rather than

the more negative connotations of a penalty. Another approach is to write the SLA such

that a percentage (95%) of all identified defect must be accurately resolved based on

results from a follow-up inspection.

D. TESTING

This section will demonstrate how SLA development can assist the test

community in the development of their test strategy. The main goals of testing are to

challenge the software implementation of the requirements and the early detection of

problems. Testing needs to be performed throughout a system’s lifecycle to predict and

evaluate the quality of the proposed design and implementation. SLAs can assist the

testing and evaluation process in a number of ways, including identifying business

critical processes, defining quantitative metrics to measure quality factors, identifying

testing procedures, and ensuring testing is conducted throughout the system’s lifecycle.

Much like the development effort, testing must be carefully planned, designed,

executed, and reported. The test strategy outlines how the software system will be tested

throughout its lifecycle and at the end of each development phase. It specifies what will

be tested, when it will be tested, how it will be tested, the type of test needed, who will

perform the testing, who will witness or verify the testing, what resources are needed

(hardware, software, tools), calibration requirements for equipment, and acceptance or

exit criteria. Part of the SLA development process is determining how quality factors

will be verified. The SLA development process facilitates communication between the

developers and the testing community at the beginning of the development effort.

 140

Developers and testers need to have procedures and processes in place to identify and

remove errors during requirements engineering and design before they are translated into

code. (GSAM) Developing the SLAs will encourage both communities to develop a

mutually agreed upon test strategy for the quality factors. Hopefully, this communication

will encourage the developers and testers to also collaborate on a test strategy to address

the functional requirements.

The software-development plan should detail all of the processes to be performed

at each phase in the lifecycle. Each process should have deliverables, which will be

validated and verified. Verification ensures the deliverable is complete, correct,

conforms to standards, and was developed using proper procedures. Validation checks

that the deliverables satisfy specified requirements (requirements tracing), and ensures

that the deliverable does not have unintended consequences. Once the deliverables have

been validated and verified, testing will be conducted to ensure that each specification

has been properly implemented or satisfied. (Goodyear) These phase end reviews

include the software requirement review, the preliminary design review, the critical

design review, test readiness review (against product baseline) and the formal acceptance

audits. (Horch) SLA can be used to ensure that phase end audits are incorporated into the

test strategy and that they are performed.

SLAs can also ensure that other audits are performed. Some other audits include

documentation reviews, requirements reviews, design reviews, test plan reviews, user

documentation reviews, and implementation reviews. (Horch) SLAs can also ensure that

certain tests are performed to ensure quality factors are being addressed. Some of the

tests include unit testing, module testing, integration testing, coexistence testing, system

testing, user acceptance testing, performance testing (stress tests), implementation testing,

regression testing, and pilot implementation testing. (Philcox)

The amount of time, effort, and money that needs to be devoted to the testing

effort is often underestimated. It is not uncommon for standard systems to spend

between 50 and 80 percent of the development budget on test related activities (test

execution, analysis, and error resolution). It is impossible to fully test a program. (Kaner)

Traditional testing approaches only cover approximately 40 percent of the application

 141

code. (Goodyear) SLAs help the test effort by focusing attention on the business critical

processes that were identified in the SLA development process. As a result testing can be

prioritized and focused on those processes that present the greatest business risk.

SLAs specify quantifiable quality metrics. These metrics should be incorporated

into the test plan to assess the system’s quality. This helps to guide the testing strategy

and it prevent situations where the test program is aimed at showing that the software, as

produced, runs as it is written, instead of challenging requirement compliance. (Horch)

 To the extent that SLA encourages testing and the involvement of developers and

the test community, it also drives testability in the design. Several key drivers for

testability include fault tolerance (log data errors rather than allowing a crash), controls

(input validation, access control, database balancing), error handling (identify and log

errors), multiple operating modes (the system should have a production and test mode),

and self-testing (validation of entry criteria). (Goodyear)

E. SUMMARY

SLAs improve the quality of software by incorporating quality factors into the

development effort. The product quality factors specified in the SLAs drive design in

much the same way as functional requirements. SLAs force quality to be addressed at the

beginning of development and SLAs ensure quality is monitored throughout

development. Once quality requirements are identified, the developers can select an

architecture and design a system to best meet those goals. The test strategy will measure

and evaluate those quality factors throughout the lifecycle to identify any areas that may

not meet quality requirements.

Process quality and development quality can also be addressed by SLAs to

improve the overall quality of the software. Although adherence to standards and

processes does not guarantee a quality product, their use will greatly improve the

possibility of obtaining higher quality. Monitoring the quality factors associated with

process and project quality will also help to quickly identify problem areas and risks so

they can be addressed early in the lifecycle.

 142

THIS PAGE INTENTIONALLY LEFT BLANK

 143

VII. SOFTWARE QUALITY FACTORS

This section on software quality factors provides additional information on how

quality factors are determined. It is expected that the processes discussed in this section

were performed during the SLA development and/or requirements elicitation. The intent

of this section is to demonstrate some of the difficulties associated with determining

which software quality factors to utilize, and how the template SLAs can provide some

help in making that determination.

Determining software quality factors that contribute to the success of the system

or project can be difficult. It is easy to state that a system must be maintainable,

available, dependable, portable, usable, or secure, but determining the correct level of

abstraction to apply those factors, and quantifying them is more difficult. This difficulty

is one of the reasons that non-functional quality factors are not always incorporated into

the requirement specifications.

There are numerous quality schemes. Chapter II outlined some of the models.

Papers from Charette, McCall, Boehm, and ISO 9126 discuss quality factors and their

applicability to various situations. However, a detailed discussion of quality factors and

quality metrics is beyond the scope of this dissertation. Instead, the purpose of this

section is to discuss a methodology for selecting quality factors, highlight some of the

difficulties associated with some of the quality factors, and propose how template SLAs

can assist in the selection of quality factors.

A. DETERMINING QUALITY FACTORS

Chapter I outlined four areas where quality factors can be applied. This section

will illustrate an approach to determining product quality, although this approach and

discussion has applicability to project, process, and post-production quality factors. IEEE

standard 1061-1998 presents a good framework for determining what product quality

factors are needed and what metrics will determine whether those goals have been

achieved.

 144

The first step is to determine the quality factors for the system. The quality

factors specified for the system requirements also need to be incorporated into the

software components of the system. In addition to system quality factors, the software

will need quality factors to ensure the software supports the underlying business process.

Each of these quality factors should have direct metrics that specify quantitative

measurements. In some cases it will not be possible to directly measure a quality factor.

It may be necessary to specify surrogate or proxy attributes during each of the

development stages. For example, code complexity can be a surrogate for reliability,

testability or verifiability. (Schneidewind 1997, Weigers)

Part of this step is to determine those qualities that contribute to project success.

The quality attributes may be prioritized based upon criticality to achieving a project

goal, or it may be based upon a return on investment. Regardless of the methodology

used to prioritize the quality factors, the fact that they are prioritized makes conflict

resolution easier. The requirements engineer and the stakeholders can then evaluate the

alternative design options and determine a solution that will satisfy the requirements.

The next step is to assign quality sub-factors to the software quality factors. This

is essentially decomposing the quality factors into measurable software attributes.

Building goal trees can assist in finding sub-factors. An example is the quality factor

‘usability’ which may be further decomposed into flexibility and sharing of information.

Flexibility may be further decomposed into future growth and flexible work processes.

Future growth can be further decomposed into design for extra personnel and design for

modularity. (Mylopoulos) The quality sub-factors are usually more tangible and have

greater meaning to programmers and analysts.

This step also focuses on the object of the measurement. Different parts of the

same project may require different quality factors. In a N-tiered architecture, the front-

end piece may need the quality factor of ‘usability’, whereas the back-end database may

need the quality factor ‘security’ or ‘integrity’. Differentiate the quality attributes that

apply to the whole system from those that apply to specific components. (Weigers)

The final step is determining the specific metrics to assign to the sub-factors. This

phase will also assign threshold values to the metrics and identify the means to measure

 145

the metrics. This decomposition of quality attributes or factors helps the requirement

engineers and software architects better understand the application domain, as well as

highlights potential conflicts between the software goals.

This process should be evaluated at each stage of the software’s lifecycle, and as

changes are made to requirements. It is important to note that measurements obtained

early in the development lifecycle will not be as quantifiable as those in the later stages of

development. As development progresses, requirements and processes will evolve; those

artifacts measured during requirements analysis will generally not be the same as those

measured in the testing phase. In the early stages measurements will be taken on static

objects such as architecture design, or specifications. In the later stages the

measurements will be taken on dynamic objects such as the code itself. (Schneidewind

2002)

Template SLAs are SLAs that have already been developed for specific services.

Template SLAs represent the best of breed or industry standard. Although there is

currently not an industry standard, appendix (A) represents an attempt at establishing a

template SLA for host services. Template SLAs that can be used to help in the quality

factor selection. In many cases the user and program manager do not know what quality

factors to utilize, nor do they know how to prioritize the attributes. Questions such as

how reliable does the system have to be can be difficult to quantify. In the elicitation and

validation process, requirements engineers are able to use methods to extract this type of

information from users, but template SLAs are a good place to start in that they provide

good examples of the types of software factors and goals that other organizations felt

were important to their projects. Template SLAs also provide good examples of the level

of abstraction to apply specific quality factors as well as presenting a scenario that

illustrates the number of software factors and thresholds that should be used. It is not

unusual for organizations to collect too many measurements. Excessive information is

difficult to manage, and often leads to casual analysis or frustration. (Baker) Finally,

template SLAs help the program manager by defining the quality metrics, specifying

thresholds, and identifying their method of measurement. Some quality factors can be

 146

difficult to define. For example the quality factor of usability can only be used in the

context of the target user population, but it is often developed from the program

manager’s perspective. (Nuseibeh)

B. CONFLICT RESOLUTION

“Excellent software products reflect an optimum balance of competing quality

characteristics.” (Weigers) Determining the optimal balance is difficult in that the users,

program managers, and developers all have different perspectives, and their respective

quality factors will be determined from that perspective. Each stakeholder will have

different priorities supporting the qualities that they feel best meet their needs.

The requirements engineer must first collect all of the quality attributes that the

stakeholders feel are important. The next step is to work with the stakeholders to

prioritize the quality factors. The goal of prioritizing the quality attributes is to focus on

those attributes that best support the mission or goal of the project. Prioritizing the

quality factors is important because some quality factors conflict with one another. The

prioritization helps in the resolution of any possible conflicts.

Resolving requirements conflict is not easy as some combinations of quality

attributes conflict with one another. It is important to understand the interrelationships

that exist between the various quality attributes. Some attributes complement each other

such as reliability and availability or flexibility and portability. Other attributes do not

work well together. The attributes of flexibility and security often conflict as the

measures to make an application secure also make it less flexible.

Attributes, such as efficiency, conflict with numerous other quality attributes.

Tight precise code often conflicts with maintainability, portability, interoperability and

flexibility. Additionally, attributes such as flexibility, usability and portability often

conflict with performance goals. (Weigers) It is important to understand the trade-offs

associated with each quality attribute as the choice of attributes will drive the

architecture, coding, and testing. Understanding the attribute trade-offs also helps to

form or manage user expectations.

 147

Template SLAs can assist in the determination of what quality factors were

important to other projects. The template SLAs can be used as a case study to see how

other organizations weighed the benefits of the various quality factors against the mission

or goals of their project. The template SLAs can be used as a starting point to determine

which attributes are important to the stakeholders. The requirements engineer can then

work on prioritizing the attributes, weighing the trade-offs, and resolving conflicts.

C. RESPONSE TIME

This intent of the next two sections is to discuss two quality attributes in depth

and illustrate how they can be incorporated into SLAs. The focus of these two sections

will be on the post-production phase of the lifecycle. Many of the issues discussed in this

section were debated and the end result was incorporated into the SLAs in appendix (A).

This section will discuss response time as a quality attribute, and the next section will

discuss availability.

Response rates are extremely difficult to measure, and may in some cases, be too

difficult to utilize in SLAs. The quality metric response time is a good indicator of

customer satisfaction. Many quality metrics are technical in nature, but response time

maps well to end-user’s needs. If an application does not respond within a certain time

parameter, the user becomes frustrated and their perception may be that the IT

department or the service provider is not doing their job, or that the application does not

meet quality requirements. Response rates are most useful from the perspective of the

end-user. When a user enters a command, that individual is only concerned with how

fast an answer or response is provided. Therefore, an end-to-end measurement of

response time best satisfies the end user.

Response time is generally described as a measure of how long it takes from the

time a transaction is initiated until all of the results are received. However, this definition

needs additional clarification for use in a SLA. The definition must state at what point

measurements begin and when they terminate. Additionally the SLA must state how

response time will be measured. The definition above assumes an end-to-end response

time from the client to the server and back, but the service provider may not own the

 148

entire infrastructure. Many organizations have included response time SLAs in their

contracts, but most of these SLAs do not adequately define the parameters of the

measurements, nor do they define how measurements will be conducted. The measuring

of response times is a complex process even if the service is an in-house application

running on an intranet. (ITIL) It is very important that the SLA defines response time in

sufficient detail that all stakeholders understand its meaning and how it will be measured.

End-to-end response times are possible when working within an intranet structure,

where the PC, server, and infrastructure are all owned and operated by one provider.

Unfortunately, this architecture is rarely the case. In the case of the Navy/Marine Corps

Intranet (NMCI), the PC is owned and operated by Electronic Data Systems (EDS), the

infrastructure to the outbound firewall is owned by EDS, the NIPRNET connectivity for

the DoD intranet is managed by the Defense Information System Agency (DISA),

external connectivity to the Internet is either managed by DISA, or contracted with local

service providers such as SMARTLINK (AT&T), an application’s server and host

environment may be owned and managed by another service provider, and finally the

application itself can be run by a Navy activity, DoD, or a commercial service provider.

In this scenario it is extremely difficult to guarantee any level of service, since no one

provider owns all of the pieces between the PC and the application.

The distributed nature of today’s environment further complicates response time

SLAs. Applications may have to query back-end databases over the Internet to gain the

information necessary to satisfy a request. In this case, Internet latency can significantly

affect response time. Issues such as bandwidth and control over the database are also

issues. If the same service provider did not manage all of the servers in the tiers it may

be necessary to specify response times for the various tiers at the server level. For

example, when a front-end application receives a HTTP request, it may be necessary to

measure the time from receipt of the request until the web server sends a request to the

mid-tier server.

It is possible to study the service level contracts that have been negotiated with

each of the component service providers and develop an overarching response time. For

example, in a scenario where there are three service providers covering services from the

 149

PC to the firewall, Internet access, and a host service provider, the response time for each

can be added to determine a threshold. If the service providers agree that 1-second is an

acceptable response time for their portion of the transaction, then an end-to-end SLA can

be written for 3 seconds. In this scenario, a separate SLA will have to be negotiated with

each service provider, or if there is one overarching organization responsible for the

compute environment, then the third party agreements with other service providers will

be tallied to arrive at an overall figure.

In reality this scenario is still difficult to manage and enforce. The application

may have to be reengineered to incorporate certain APIs, time stamps, or exceptions to

gain the response time information or monitoring devices would have to be established

along the route from the PC to the server and back. All of the monitoring devices must

be synchronized to identify and track a specific transaction. This would require that the

service providers allow agents or monitoring software to be installed within their portion

of the transaction. This may pose too much of a management challenge and security risk

for most ESPs, as they do not want every client insisting on installing their own

monitoring devises.

One problem with specifying response times with an application is that certain

application functions may take longer than others. Some financial applications can take

hours to calculate end-of-month returns. The question is whether it is possible to identify

specific transactions and track and record their response time. If this is the case, then the

application owner will have to identify those functions that are business essential,

determine a response time threshold, and then tie a response time SLA to the specific

functions. For example a web server should load a page within 2 seconds, while a

database may take 30 seconds to a minute to execute a complex report. It is best to

survey users to determine what response time is adequate for a given transaction.

Typically the minimum and average measurements of response time are of interest.

Benchmark studies of similar types of transactions can help determine acceptable

thresholds for different types of queries.

It is also difficult to measure and aggregate the response times for multiple

threads within the same program. If a session on the server consists of numerous threads

 150

that in turn produce additional threads, some of which may execute distributed or

sequential tasks, can the agents or measuring devices aggregate the total output? This

becomes even more difficult if processing occurs on both the servers and the PC.

Especially if some of the events are sequential.

Determining the cause of a delay may be difficult. If the operating system (OS) is

the cause of the delay, how is that information being captured? Network and firewall

delays, Internet latency, application errors, and user errors can all contribute to slow

response times. To effectively isolate the cause of delays, monitoring devises will have

to be installed at the various pieces of the infrastructure.

Another difficulty in accurately measuring response time is that the software

performing the monitoring must be able to identify inputs, and the corresponding outputs.

This means that whatever software is performing the packet sniffing operation must be

able to not only identify the header addresses, but it must also be capable of determining

packet content and determining whether the packets are inputs to a transaction, or are

simply communication protocols. They must also be capable of determining whether the

application is responding to the input in sequential order. If the server receives input 1

and input 2, before responding, can the software determine if the server is responding to

input 2 before input 1?

If an end-to-end measurement appears to be too difficult, another approach is to

monitor response time on the server itself. This approach does have some drawbacks.

From an end user perspective, this is not a satisfactory solution as the application

response time is the only part that is measured. It is not representative of the end users

needs. Coordination problems with tracking individual inputs and their associated

outputs still occur in the server. Additionally, the overhead associated with recording

response time for applications with hundreds of concurrent users may actually slow down

response time.

Rather than attempt to monitor the response time for every session, it is much

easier to utilize the windows consoles on the server to run a program on the server itself

that will measure response times to specific inputs. This type of a program is essentially

 151

a synthetic transaction. In essence this is an end-to-end measurement from the server

console through the operating system, to the application, and back.

In this approach, the program manager needs to determine the most important

application functions to monitor. A program can then be developed to send input

representing the various functions to the server to monitor response time. The program

can execute at various times, testing all of the functions, or selecting individual functions

randomly. This approach measures response times using statistical analysis, and is not

concerned with attempting to measure response times for each concurrent user.

This program could also be run remotely using active X, although this will not be

allowed under NMCI, and will probably not be allowed through the server environment’s

firewall. To ensure that the service provider does not tamper with the results, the server

can e-mail the results to both the program manager and the service provider. A read only

file will not work as the service provider has root authority, and can change permissions.

One disadvantage with this approach is that a program has to be written to

perform the synthetic transactions. A third party solution would be preferable, and some

do exist for testing web sites, but application specific transactions will have to be

developed. Benchmark tests can help determine response times for each function

executed. The response times for specific synthetic transactions can be incorporated into

a SLA. Although this may not satisfy the end-user, it will ensure the server is operating

effectively, and it will help to trouble shoot problems.

If response time SLAs are used, automated tools are essential in measuring

compliance with the threshold requirements. SLAs that require help desk calls to

determine whether response times have or have not been met should be discouraged.

Automated tools are a necessity to remove the subjectivity associated with determining if

the service is responsive or not. Help desk metrics put all of the reporting responsibility

on the end users and the help desk approach also does not scale well. How many people

have to report the incident before it is considered a violation of the SLA? What if there

are thousands of potential users?

The SLAs in Appendix (A) do not contain response time as a quality metric. It

was too difficult to develop a SLA given thousands of different applications, multiple

 152

service providers, and security concerns. Synthetic transactions can be used, but each

program will have to determine whether they want to use that approach or not.

D. AVAILABILITY

Availability can be defined as the ability of an IT service or component to

perform its required function at a stated instant or over a stated period of time. (ITIL)

Availability indicates the percentage of time that a system or service is expected to

operate satisfactorily. (Wang) The formula for computing availability is composed of

reliability and maintainability data. Reliability is the probability that a system will not

fail. Reliability is generally defined in terms of the mean time between failures (MTBF)

or mean time to failure (MTTF). Maintainability is defined as the time it takes to repair

the system and restore it to operating condition. Maintainability is often expressed as a

mean time to repair (MTTR). A common formula for availability (a) is a =

MTBF/MTBF + MTTR. Another formula is uptime/uptime + downtime, where uptime

consists of operating time and standby time, and downtime consists of unscheduled and

scheduled downtime. (Hurst) Although the formulas appear to be straightforward,

availability is difficult to incorporate into a SLA.

Overall availability is a function of the availability of the components (hardware,

network, application software), the speed at which failures can be identified and repaired,

the skill sets of the support personnel, the complexity of the infrastructure and

application, the security of the system, logistical support, built in redundancy, and the

application of tested procedures and processes.

Availability directly influences business and user satisfaction. However, unlike

response time, availability is more technical in nature and does not map as well to an end-

user. Many argue that response time is a better indicator of customer satisfaction. Some

even argue that an availability quality metric is not necessary, as problems with

availability will be reflected in response time measurements. For example, a server may

be available, but the application may not be usable due to delays as a result of too many

concurrent users. Response times would indicate situations where on-line shoppers

disconnected due to slow processing times, where availability may not.

 153

There has been much discussion on whether SLAs should concentrate on the

technical side which concentrates on metrics associated with server, OS, infrastructure

and application performance, or should be SLAs really be concerned with the perceptions

of the end-user and the business processes owners. If the end-user inputs a transaction

and receives a result within an acceptable time, are any other SLAs really needed? Is it

necessary to specify server performance thresholds (CPU utilization, available table

space) if the application is responding to input requests within specified time frames?

The author believes that, if possible, both response time and availability should be

included in SLAs. Availability metrics require that the network, servers, and operating

system be monitored for performance compliancy. This monitoring activity is essential

in performing trend analysis, capacity management, troubleshooting, and measuring the

effects of configuration changes. Availability monitoring is a proactive measure that will

help to alleviate problems before they occur. Response time monitoring is reactive in

that it will only report a problem once it has occurred.

Before SLAs can be determined for availability it is necessary to determine the

level of availability that is needed by the application. Availability thresholds must be

realistic. The higher the availability needed, the more costs will be incurred. If a system

has an availability of 99.9 percent, the cost of improving the system’s availability to

99.99 increases from 5 to 10 times for every additional 9. (Factor) A cost benefit analysis

is highly recommended to determine the business losses or opportunity losses resulting

from application downtime as compared to the price of maintaining a certain level of

availability.

Availability is another area that is difficult to manage if the entire supporting

infrastructure is not owned by a single entity. Unless the contractor has control over the

PC, the entire infrastructure and the server, end-to-end SLAs will be difficult. Before any

end-to-end agreements are made, the program manager needs to review the proposed

SLAs with the service provider and all other third party service providers. It may be

necessary to review the agreements with each infrastructure service provider to ensure

 154

that the appropriate conditions and controls necessary to comply with the SLA are met.

However, this assumes the contractors and third party providers are willing and capable

of meeting proposed SLAs.

To properly determine an end-to-end SLA for availability, it is necessary to map

and monitor all of the components necessary to provide full functionality. The reliability

of each component must then be determined. Components can include server and

network hardware, operating system software, as well as application software. It is

important to remember that in order to achieve an aggregate reliability figure for a

system, the reliability of each component is multiplied. If three items (PC, network,

server) have 99 percent reliability, their aggregate reliability figure is .993 or 97.03

percent. The reliability of all of the component pieces in the system will determine the

end-to-end SLA.

If reliability is the probability that a system will not fail, then it is essential that

the SLA define what a failure consists of. That definition will also drive how the

application, server, and infrastructure are measured and monitored. Is a failure defined in

terms of server crashes (e.g., no input processing or output processing), poor response

time, inability to handle multiple threads, or incorrect results? If the application is

performing poorly because of limited server resources does that poor performance count

against reliability metrics? How is reliability measured if the application is working in a

degraded mode, but the server appears to be functioning? Without an explicit definition

of a failure, organizations will have difficulty legally enforcing availability SLAs.

Maintainability is another important part of the overall availability of a system.

Maintainability consists of the time it takes to identify that a failure has occurred, the

time to isolate the cause of the failure, administrative and logistics lead times if parts or

root access is required, the time to restore the system to operational capability, and the

time to test the system to verify operational capability. In hardware maintainability can

be improved through its design and documentation. The same is true for software.

An important part of the maintainability is the documentation. Accurate, timely

documentation can mean the difference between meeting SLA and not. This

documentation can include configuration data, documentation from the CRB, operating

 155

procedures, recovery instructions, incident reports, monitoring information and trend

analysis. It may be as simple as correct recall numbers of staff members.

Another very important part of maintainability is how well the backup tapes are

documented and controlled. If the application is being backed-up correctly, and one

week supply is kept on hand, the ability to restore a file or entire program is much

quicker. The ability to quickly locate the correct tape and restore the necessary file

depends upon proper documentation.

Maintainability is also dependent upon the skills and training of the staff. A well-

trained staff will be able to isolate problems and repair them quickly. Additionally, good

staff will be able to predict problems through trend analysis and good monitoring

procedures before a failure occurs. A service provider may have the most reliable

hardware and software available, but may not be able to meet availability SLA thresholds

if their ability to correct problems is poor.

It is important that the program manager and the contractor define the concept of

‘restored to operational condition.’ The SLA should specify whether testing is required

to validate restoration, or whether the contractor can make repairs and immediately return

the system to its operational state. The SLA should also specify if someone from the

program manager’s staff needs to verify that the system was restored. The SLA needs to

state the metrics that will be used to determine if the program is restored to operational

condition. A method of determining the time the system went down and was considered

restored also needs to be negotiated.

The SLA should also specify how planned maintenance will be addressed.

Scheduled maintenance is predictable in that the time to perform the maintenance and

restore the system to an operational state is known. Scheduled maintenance contributes

to the downtime of the system, but some are reluctant to include scheduled maintenance

in availability figures. Others feel that scheduled maintenance should be added into

availability figures, as they are not able to utilize the system during the maintenance.

Those that advocate not using scheduled maintenance are fearful that if they included

scheduled maintenance time in availability figures, that the contractor will rush or skip

 156

procedures to ensure that overall downtime was minimized. Either approach is

acceptable so long as the SLA addresses the issue.

One of the problems with utilizing availability in SLAs is that the mean time to

failure and the mean time to repair are estimates based collected data. In some cases

enough historical data is available to calculate reliability and maintainability figures. In

other cases, formal analysis such as a failure modes, effects and criticality analysis

(FMECA) can be conducted by reliability engineers to estimate availability. In the case

of new software, historical data may not exist. In other cases, estimates are suspect

because of the small data sample size. In some cases it may be more appropriate to

utilize confidence limits instead of a specific figure for determining availability in the

SLA. (Wang) Another problem is that most estimates are based on ideal conditions, not

on actual operational performance. Additionally, anytime new patches or versions of

software are introduced, past historical performance may no longer be relevant. The

same is true when software is operated in a new environment, or interfaces with new

software.

The SLA needs to determine how availability measurements will be collected and

applied. The program manager and the contractor will have to determine whether the

measurements will be end-to-end, or whether specific components or pieces of the system

will be measured. They will need to decide how many samples will constitute an

accurate estimate of reliability and maintainability. The SLA will also have to define the

time period over which the data is collected. A one-month period may be too small to

collect enough data, and six months may be too long given the dynamic nature of most IT

systems.

The SLA that pertains to host environment availability in appendix (A) takes a

different approach. Because of the difficulty in determining a legally enforceable

definition of a failure, and the difficulty in obtaining enough samples to evaluate whether

availability thresholds were met, the author felt another approach was needed. If

availability was defined in terms of an ‘opportunity to compute,’ then key server and

infrastructure performance parameters can be identified, quantified, and measured. The

SLAs can identify key performance thresholds that must be maintained for an application

 157

to properly function. If the thresholds are violated, the application is considered

impacted, and the service provider will be penalized accordingly. The SLA will also

specify expected recovery times based on the severity of the impact. If the server,

operating system, and infrastructure are operating within parameters, then the application

should be able to perform all of its functionality. If the application is programmed

properly, then by guaranteeing the appropriate resources and latency, the application

should always be able to meet operational needs.

This approach alleviates many of the problems found with defining and

measuring availability. This approach is more straightforward, and there are numerous

tools that can monitor the key performance metrics. It is not however, without its own set

of problems.

Utilizing an ‘opportunity to compute’ approach makes the assumption that server

and network performance is a good indicator of whether an application will perform as

expected. In the SLAs in appendix (A), the application was developed and is maintained

by the government. In this case, it is a reasonable expectation that the application will

perform given adequate resources and bandwidth. Although it is possible to have a

poorly designed application fail even if it has all required resources and bandwidth.

Unfortunately, specifying the appropriate resource requirements to meet

operational requirements can be difficult and will vary depending upon the type of server,

the operating system, and the architecture being used. Network parameters are relatively

straight forward, but server resources are more difficult to equate to application

performance. Most system administrators have their own set of key indicators and

thresholds to monitor, based on experience, skill levels, and the equipment they are

utilizing. The metrics in appendix (A) are commonly utilized by the system

administrators interviewed.

Approaching availability as an opportunity to compute also makes the SLA more

adaptive to changes. Historical data on reliability and maintainability is not needed. In

terms of availability, the Configuration Review Board (CRB) only has to evaluate any

hardware or software changes or modifications in terms of the key performance

indicators, capacity management, and documentation.

 158

E. SUMMARY

The choice of quality factors depends upon the mission of the system, quality

requirements from stakeholders, and the external environment. Part of the SLA

development process is to identify mission critical business processes and determine

those quality factors necessary to support those processes. Once the stakeholders have

identified all of the quality factors, they must be prioritized and any conflicts must be

resolved. The quality factors are also broken down into sub-factors, if possible, and

assigned quality metrics that will measure the quality factors. The use of template SLAs

can help identify various quality factors, but they must still be modified to meet the needs

of each system.

Quality factors are not always easy to measure. The quality factor ‘response time’

is a good indicator of performance from the end-user’s perspective, but it is difficult to

obtain end-to-end measurements, especially if the host provider does not own the

infrastructure. Response time can be measured at the server level using synthetic

transactions, but this measurement has limited value to the end-user. Availability is also

difficult to measure, as the contract must explicitly define downtime, statistical

measurements are suspect because of the small sample size, and restore to operational

condition must be defined. Measuring availability as an ‘opportunity to compute’ makes

the measurements easier, and it accomplishes the same goal.

 159

VIII. CONFIGURATION MANAGEMENT

This section will discuss configuration management in some detail. The detail is

necessary to show the difficulty of managing software configuration, but it also

demonstrates the areas where SLAs can be utilized. Quality factors can be established in

the SLAs to ensure that proper procedures are followed, that the documentation is

correct, that changes are being tracked, and that releases are managed properly.

Configuration management is an integral part of both development and

maintenance of software. In its simplest form configuration management is how an

organization manages change. However, a better definition is that configuration

management is the discipline that ensures that the state of the software at any given time

is known and reconstuctable. (Horch) Another more complex definition is that

configuration management is the disciplined approach to managing the evolution of the

software’s development and maintenance practices, the resultant products and artifacts

(data, tests, web content) and the processes involved in creating and changing them.

(Dart) Configuration management can apply to software, hardware, and firmware, but

this section will only discuss configuration management in the context of software.

The business environment is constantly changing as organizations attempt to gain

competitive advantage. All projects will have changing requirements whether they are a

result of external environmental pressures, new ideas, more efficient processes, changing

technology, or corrections to problems encountered. Change is the one constant in any

project. For example, from the time that the initial conceptual design was frozen to when

the first production 767 rolled off the production line, 12,000 changes were made to the

design. (Simpson) Good software engineering practices, as reflected in the CMM and

IEEE standards, require a strong configuration management process to manage change.

(Estublier, 2002) Organizations that cannot manage change will quickly have chaos.

Configuration management is incorporated throughout the software development

and maintenance lifecycles. Configuration management captures information on every

artifact (requirements, design, models, code), every action (edit, pass code to the QA

department for testing, notify), and every person working on the system (developer,

 160

tester, software engineer, program manager). (Dart) Some of the benefits of

configuration management include better quality, dramatic productivity improvements,

cost reductions, error/defect reductions, easier maintenance, and better technical support.

(Leon) Other benefits include easier auditing, visibility into all work status, knowledge

management, better forecasting and planning, and better adaptability to changes in

business processes. (Dart) Unfortunately, despite the benefits, some developers feel that

configuration management is just additional documentation and is not worth the extra

work. Some developers are also willing to sacrifice configuration management in their

rush to bring the software to market. SLAs can help to ensure that the contractor has an

accurate and effective configuration management system.

Configuration management consists of four basic areas: configuration

identification, configuration control, configuration accounting, and configuration audits.

Another area of configuration management that is discussed in Appendix (A) deals with

asset management, which is very important when dealing with recovery, maintenance

support, trouble shooting, and disaster recovery. This section will also discuss the effects

of configuration management on post-production maintenance activities.

A. CONFIGURATION IDENTIFICATION

IEEE Standard 828-1998 defines configuration identification as a process of

selecting the configuration items for a system, and recording their functional and physical

characteristics in technical documentation. Configuration identification also includes the

process of uniquely identifying the version or instance of every configuration item

(documentation, models, files, tests, specifications) that makes up or supports a software

product. These items can also include the tools that were used to create or modify the

software such as the HTML editor, Java interpreter, modeling tools, and code generator.

(Dart) These configuration items can refer to versions of the entire system, modules, or

they can refer to the smallest units of code that can be compiled. Each item needs to be

identified and described so the organization has knowledge of its existence, its status, its

interrelationships, its dependencies, and the effect that changing it will have on other

items and the system.

 161

One of the first steps in managing software configuration is determining what

constitutes a configuration item. If every grouping of code that is capable of being

compiled is included in the configuration management process the administrative efforts

to document the code, report and analyze changes, and track status can overwhelm the

developers and management. One the other hand if the level of abstraction is at the

module level, it may not provide management with enough documentation of the

subroutines contained within the module. At the module level, any changes within the

module will require testing of the entire module instead of the individual subroutine that

was changed. Selecting the level of decomposition at which to apply configuration

management is important and can depend upon many factors such as size of the project,

importance of tracking changes at the lowest levels (safety or timing issues), whether the

item is standalone, new technologies, interfaces, requirements volatility, complexity, and

risk aversion.

Another important decision is what information needs to be collected on each

configuration item. Ideally all characteristics of the configuration item is collected to

include its content, the documents that describe its function, the requirement that it is

satisfying, data needed for operation of the software, the different versions as the

software is changed, interface information, dependencies, and any other information that

makes the software what it is. (Leon) However, the type of project will dictate the data

that needs to be collected on each configuration item.

As each artifact or documentation is developed, reviewed, and approved, it must

be included in the configuration management repository where it is assigned a unique

identifier. When the configuration item is first entered into the repository, it is considered

baselined. A baseline is a configuration item that is frozen in time to represent a specific

state of a product. (Dart) Items that are in the process of development can be changed

quickly and easily, but once they are baselined in the repository it must go through a

formal process before it is modified. Once modified, it is assigned a unique identifier, so

it can be distinguished from its earlier version.

The task of assigning a unique identifier has been made easier by a number of

good automated configuration management tools. These tools ensure that a standardized

 162

methodology is applied to assigning the identifier. Simple identification codes will

include information on the parent or next higher component, when the item was created,

and the version number of the item. More complex identifications include the project

number, project type, item type (document, program, data, test), relationships,

dependencies, release, version, and edition. (Horch).

The final step is to store the configuration item, documentation, and execution

software (operating system, compilers, tools) in a secure repository where the item can be

retrieved and reproduced when required. This is especially important when software

needs to be rolled back to a previous version, or when software needs to be reinstalled to

correct problems.

SLAs can be written to specify quality factors that deal specifically with the

accuracy of the configuration identification and the information collected on each

configuration item. SLAs can also be written to verify the accuracy of the repository to

ensure configuration items can be recovered if needed.

B. CONFIGURATION CONTROL

Configuration control consists of those processes necessary to ensure that every

change to a configuration item is reviewed, authorized, tracked, and documented. Once

an item has been baselined, more formal procedures need to be instituted to ensure that

only approved changes are made to an item. Changes need to be reviewed to determine

their relevance, their impact on other configuration items, and their impact on cost,

schedule, and performance.

A software change order may be needed for a number of reasons including the

need to rework a component with poor quality, the need to rework a component to

achieve better quality, or because of a user directed change in requirements. The first

two types of change need to be closely tracked as they are indicators of the quality of the

product, and they provide a solid basis for estimating maintainability. (Royce)

Configuration control also provides a documented evolution of how and why the

file or module evolved to its present form, and the changes that were made along the way.

The history of changes on a configuration item helps personnel understand why changes

 163

were made, it helps with trouble shooting, and it helps maintenance personnel determine

why specific changes were made.

The goal of configuration control is to prevent ‘guerrilla programming,’ where

developers are making changes to software without considering the effects that those

changes will have on overall functionality, quality, or other configuration items.

Configuration control ensures that changes are documented, analyzed, incorporated into

the schedule, tracked, tested, and incorporated into user documentation. Configuration

control also ensures that only known and approved changes are being worked on which

helps focus the work effort on those areas that provide the most utility. Configuration

control also helps to avoid situations where developers are working on ‘nice to have’ or

unspecified functionality that they think the user might need.

Configuration control can be broken down into four slightly overlapping areas.

The change review board reviews proposed changes to evaluate their need and their

impact. Change management is concerned with tracking the status of the change.

Notification is the process of keeping programmers informed about changes that impact

their area of responsibility, and release management is concerned with releasing and

tracking updates and patches to a baseline configuration. Quality factors can be specified

for each area, and they can be incorporated into SLAs so their respective quality metrics

can be monitored.

1. Change Review Board

Configuration control starts with a change request form. In most cases this form

is now automated and is a part of the configuration management software package. The

change request form identifies the configuration item to be changed, it describes why the

change is necessary, it describes the type of change, it describes the priority of the change

it describes what changes will take place, and it provides an impact analysis. The impact

analysis evaluates whether any other configuration items will be affected by the change

and what actions will have to be taken in those configuration items. The impact analysis

can also look at how long it will take to effect the changes, their costs, and the benefits.

The change request form is often initiated from a software trouble report. Once the

 164

configuration item is baselined, a change request form should be utilized, as it has to be

approved by the change review board.

 Once a change request has been submitted, it is passed to the change review board

for approval. The change review board (CRB) is tasked with evaluating the change

requests and determining whether they will be approved, delayed, or denied. The change

review board also monitors the progress of every approved change. The change review

board also determines which reported defects to correct, and when they should be

corrected (what release).

 The change review board should consist of the configuration manager, the

program manager and members of that team (especially contracting personnel),

developers, the test community and quality assurance, marketing, and essential

stakeholders. The head of the change review board should be the configuration manager

as that person best understands the need for configuration control, and that individual is

typically impartial, and does not have an agenda other than enforcing configuration

mandates. (Harris) The CRB is designed to make informed business decisions regarding

all proposed changes, which will provide the greatest business and customer value while

controlling the system’s lifecycle costs. (Wiegers)

 Depending upon how the configuration management process is implemented,

change requests may include impact statements, or they may be ordered after the CRB

makes an initial determination as to whether the change is warranted. Before approving a

change request the CRB needs to analyze the change with respect to the effect the change

will have on functionality, the impact on other configuration items, and how it will

impact cost and schedule.

 The CRB must first determine whether the change is necessary. The change

request form should contain the information necessary to make a determination. If not,

the form will be returned for further information. The CRB needs to evaluate the

criticality of the change and determine whether it should be implemented in the current

release (which will probably impact schedule), whether it is delayed (the change is

incorporated into another release), or whether it should be rejected (the change was a

result of an unauthorized request, the impact to the system was negligible). Changes that

 165

are submitted to fix errors or improve quality need to be weighed against the benefits that

those changes provide. If the package meets requirements, but can be made better, the

CRB must decide whether the change is warranted given other considerations such as

time, money, goodwill, and lifecycle costs. New requests must also be evaluated in terms

of when they will be incorporated into the release. Many projects have failed as a result

of being unable to maintain a release baseline. At some point changes need to be

deferred to future releases or the baseline release will never be fielded.

 It is important that the CRB determine what types of changes need to be

reviewed, and which can be automatically authorized (automated) or referred to a lower

level manager. Minor changes still need to be logged into the configuration management

system, but they do not need the attention of the CRB. If the change approval process is

too stringent, programmers will discover ways to circumvent the procedures.

 The CRB also needs to review the changes to ensure that they do not adversely

impact any requirements. All proposed changes should be linked to the requirements that

the configuration item satisfies. The CRB needs to ensure the test community

incorporates the revised configuration item into the test plan to ensure performance and

functional requirements are met. The CRB must also take a holistic look at the impact

the change will have on SLA mandated non-functional quality requirements. New

requirements must be reviewed to ensure they do not conflict with functional or non-

functional requirements. Any conflicts will have to be resolved by the program manager,

stakeholders, and the contractor.

 A good configuration management system will specify the other configuration

items that interact with the file or module that is being changed. The impact analysis will

determine the amount of work necessary to modify those configuration items that are

affected by the change. A small change in one file or folder may cause a great deal of

change in other areas. The changes must also be reviewed to determine their impacts on

the software architecture and supporting models that will need to be updated.

 The CRB must also evaluate the changes with respect to costs and schedule. New

requirements may require revisions to both costs and schedule. A contracting person

from the program management office and the contractor should be part of the CRB to

 166

ensure that contract modifications are drafted and approved before any changes are

approved that will affect price. Depending upon the requirements, SLAs may need to be

revised.

 If SLAs are utilized in a contract, a CRB must be established to ensure that any

proposed changes do not impact the quality factors specified in the SLAs. Since the

SLAs are contractually binding any unauthorized change that impacts that contractor’s

ability to satisfy a quality threshold can, in a worst case scenario, result in legal

proceedings. In most cases, the change will have to be reengineered so it will not impact

the quality threshold. If the change still impacts the SLA, then contractor will not be held

accountable for meeting the SLA requirements, and new SLAs will have to developed

and negotiated. The lack of a CRB or a similar process will quickly undermine all of the

efforts to establish the SLAs and will make them worthless.

2. Change Management

 A good configuration management system is capable of tracking every phase that

a change request goes through (the change request form, the impact analysis, results and

comments from the CRB, task assignment, the new or modified code, test, acceptance,

and assignment of a new configuration identification). (Dart) The CRB is responsible for

tracking and maintaining status on the configuration items that have been approved.

Although most of those tasks are automated, the information still needs to be entered into

the system. Each time a change goes through a phase, that information needs to be

captured in the configuration repository.

 Another function of change management is coordinating the work on a

configuration item. The configuration manager or software librarian generally controls

this function. One of the main functions of configuration control is to coordinate the

access to and modification of configuration items when multiple people could be working

with the same configuration items. (Sarma) One approach to avoiding having multiple

people modifying the same file or folder is when authorized changes are approved, the

developer copies the file or module to be modified, and sets a lock on that file (check-

out) so another programmer does not make concurrent changes to the same file. Only the

authorized programmer is allowed to create a new version of the file (check-in). (Mei,

 167

Estublier, 2000) Part of the control process is defining who has authority to perform a

specific change, when that change can be performed, and what changes can that

individual make. Controlling concurrent programming or distributed programming can

be difficult, but lack of control can be disastrous.

 Change management also includes risk analysis. The CRB and the program

manager need to assess the risks associated with introducing new requirements at either

the system level or the software level. At NASA they use several factors to assess that

risk, including the size of the change, the location of the change, its criticality, the

number of modifications, and resources needed to make the change. (Schneidewind

2001) The program manager needs to carefully monitor the amount of new requirements

that are generated during development. It is very difficult to limit changes to a baseline

version (political factors, changing business environment, new ideas), but there has to be

a cutoff point where additional changes are moved to later versions. High requirements

or change volatility throughout the initial stages of development indicates that the

stakeholders do not really know what they want, or the development effort was more

difficult than anticipated. In either case the risk to the success of the project increases

with change volatility.

3. Notification

 The Lantau Airport Railway project was a complex system of systems project to

build a railway from the airport to the urban areas in Hong Kong. It was a seven year

project that consisted of over 40 contracts. The command and control system and the

billing system accounted for the majority of the software. One of the major problems that

they encountered was a failure to communicate changes among all of the contractors. As

the lifecycle of the project matured they discovered that the contractors would make

small changes to the interface specifications. These changes were not always

communicated to other contractors that may have to interface with that system. This was

due in some cases to time differences in development schedules, and the lack of a central

repository for all contractors. (Wong)

 To coordinate access to a common set of configuration items by multiple

programmers working on the same project, most configuration control systems utilize

 168

workspaces (part of a file system where the file of interest is located) where the developer

can work isolated from the outside world and other developers. The workspaces support

concurrent engineering in two ways. The first is controlling who has access to the

workspace, and the second is resynchronizing (merging concurrent changes to the same

file) where algorithms can identify changes to the file and blend them into one file.

(Estublier,2000) Control can be accomplished by locking files (which forces serial

development) or concurrent changes and resynchronizing can be utilized. Unfortunately,

the workspace does not allow developers to know what changes are being made in

parallel to their efforts as they cannot see into other workspaces. Configuration

management systems are still struggling with concurrent development issues and

notification, although there is some good research in this area. (Sarma, Estublier, 2000)

 Despite the notification problems at the working level, configuration management

systems are able to identify at a higher level, those configuration items that will be

changed, and what the changes will consist of. The difficulty is determining how to

convey that information to the developers and the stakeholders. Notifying all of the

people that need to know about an approved change is a process that needs to be planned,

controlled, and monitored. It is also important to note that the software CRB has

representation on the system CRB, so as system changes are made, the appropriate people

are notified, and the system changes are incorporated into change requests at the software

level.

 The configuration management system also needs a method to notify users of the

status of their change request. Users need to know whether their request has been review,

whether it was accepted, who was assigned the work, and when the change will be

incorporated (what release). Some management systems have an e-mail notification that

lets them know when their request was reviewed.

4. Release Management

Large organizations also have a representative release committee, which controls

the content and timing of releases. The release committee is responsible for coordinating

releases with the stakeholders. All projects have stakeholders with different agendas,

priorities, and beliefs concerning how the project should be run. The release committee

 169

works with the stakeholders to achieve some form of consensus concerning the

functionality that will be incorporated into the baseline and future releases. The release

committee also tries to ensure that all stakeholders have consistent information regarding

what functionality will be included in the various releases. (Dikel)

Another part of configuration control is monitoring which release stakeholders are

using. While this appears to be straightforward, it is not. It is not uncommon for multiple

versions of the same software to be deployed by various stakeholders due to beta

versions, unique functionality integrated into a specific version for a particular

stakeholder, failure of the system administrators to load the new version, lack of

resources to run the new version, or failure to receive/download the new version. It is

also important to know what version of environmental software (the operating system or

database management system (DBMS)) stakeholders are using. Changing environmental

software can be extremely time consuming as all applications and tools residing on the

current operating system will have to undergo regression testing before migrating to the

new operating system. The Navy and EDS discovered how difficult that was when they

migrated applications into the NMCI system.

Coordinating version releases can be very difficult, especially when they interface

with legacy applications. The move to Oracle 9I may have a huge effect on some of the

older systems. In addition, the applications will have to be thoroughly tested to ensure

that they are compatible with the new DBMS. Some applications will have to be

reengineered. This will require time, money and manpower, all of which are in scarce

supply. This gets even more difficult with distributed systems that reach back into old

databases that may not be under the control of the program management team.

C. CONFIGURATION ACCOUNTING

Configuration accounting is process of tracking and reporting the status of all

versions of the software (from the configuration items to the entire software system),

models, architectures, documentation, and change requests. Configuration accounting

starts with determining the baseline of the software system. This is normally done during

the major reviews that mark the end of a lifecycle phase such as the software

 170

requirements review (SRR) or the CDR (critical design review). The baseline can also be

established once a package of configuration items has been tested and approved.

Configuration accounting ensures information regarding the baseline (date, who

approved it, how it was established) and any subsequent changes is captured.

Configuration accounting maintains records regarding the change request, actions of the

CRB, status of the change request, status of the change, the expected completion date,

and the assigned release number. Another purpose of configuration accounting is to

ensure that the name, release, version, and edition of each configuration item, and each of

its subordinate items are recorded, monitored, and when necessary updated. When

changes are made, the configuration identification of all affected configuration items

must be updated. (Horch)

Configuration accounting should support queries such as how many change

requests are pending CRB review, how many changes have been rejected, the number of

change requests in a particular module, as well as a breakdown of the type of requests.

The configuration management system should also be a useful management tool in that it

should be able to track all change requests that are in progress (being developed, awaiting

testing, in testing, awaiting approval, completed and assigned new configuration

identification) completion dates for those changes, how many changes are pending for a

future release, the priority of the change, and which changes are not meeting schedule.

D. CONFIGURATION AUDIT

Configuration audit is the area that SLAs have the most utility. Configuration

auditing is the process of keeping an audit trail of all actions, events, notifications, and

testing that happened to a configuration item. Configuration audit also constantly

monitors the configuration management system to ensure that at any time configuration

items are accurately identified and that the configuration management process is working

correctly. (Dart)

Establishing a good configuration management system can be very time

consuming and the tools are expensive. Unfortunately, the system is only as good as the

people running it and the information that is being fed into the system. If the information

 171

in the configuration repository is not accurate or lacks the necessary information, then the

systems usefulness as a quality control tool can be questioned. The system must be

audited to identify areas that may need more attention or training. Additionally, auditing

can also determine if the right changes were made to the configuration item by comparing

the change request form to the documentation that was provided as part of the item’s

modification. A quality software product is dependent upon an accurate configuration

management system and process.

SLAs help the program manager audit the configuration management system

through the use of quality metrics and the monitoring process implemented by the SLAs.

SLAs can specify that configuration identification accuracy on weekly spot checks must

be 98 percent and the accuracy of the accompanying documentation must be 95 percent.

Spot checks can also determine the effectiveness of the CRB in controlling changes.

SLAs can specify that of the changes that need to be reviewed by the CRB, 99 percent of

the changes must have been reviewed by the CRB. Similar quality thresholds can be

applied to documentation requirements, notification procedures, configuration accounting

accuracy, change management procedures, and audit trails.

E. ASSET MANAGEMENT

Program managers also need to maintain tight configuration control in the host

environment once the application or system has been fielded. Appendix (A) includes

threshold values on the accuracy of the configuration management system in the host

environment. Accurate configuration data is essential for troubleshooting, disaster

recovery, and it is an important element in capacity management.

Accurate information regarding the hardware and environmental software that is

hosting the software system will help evaluate the effect that changes to the software or

environmental software will have on the system. If developers are writing the program

using the fastest available PCs, their users may experience performance problems

because they are using PCs that are two or three generations old. If distributed sites are

using different firewalls and have different restrictions regarding port utilizations,

 172

problems may occur. Troubleshooting and planning will be easier if there is enough

information concerning all hardware and software assets in the host environment.

Asset management is critical during disaster recovery, especially is a cold site is

used. If new equipment needs to be procured and installed, knowing the type of

equipment being used, the infrastructure and network configuration, environmental

software, and system software is critical. Small errors in the versions of software being

utilized can take hours of troubleshooting to resolve. Good configuration control will

also help to ensure the proper files are restored in case of problems. Installing the wrong

file can have disastrous effects.

Capacity management ensures that the IT infrastructure is capable of supporting

the computing demands of the systems being supported. In the post-production phase the

change management process should also identify the performance requirements

associated with each change. Any changes (modification or new requirements) to the

software may also affect the infrastructure in terms of throughput, performance, port

utilization, security, CPU utilization, memory usage, response time, and availability. For

example a new requirement to encrypt any e-mail notifications that the system generates

may impact the performance of user’s PCs, internal network performance, or it may

require modifications to the firewall. The configuration repository should be updated to

include the technical specification for each change item (e.g., disk space, speed of

processor, expected workload, demands on IT services). New requirements may

necessitate negotiating new SLAs. (ITIL)

The CRB does not go away after a product is fielded. Maintenance of the

software needs the same configuration controls as development, or the fielded system

will quickly develop problems. Program managers need to understand the implications

that maintenance actions are going to have on their systems. They also need to assess

how changes in the system requirements or architecture will affect their entire system.

F. SUMMARY

Configuration management gets little attention if it is done correctly, but if it is

done poorly, the entire development and subsequent or maintenance process suffers, cost

 173

and schedule predictions will be underestimated, and the defect rates will increase as

programmers make changes that affect other artifacts. Program managers can utilize

SLAs to monitor the contractor’s configuration management procedures and accuracy.

SLAs reduce the risks associated with poor configuration, and they promote quality

throughout the configuration process.

 174

THIS PAGE INTENTIONALLY LEFT BLANK

 175

IX. PROGRAM MANAGEMENT

Organizations are increasingly relying upon information technology to enable

their critical business processes. Despite the increasing complexity of today’s systems,

organizations are demanding extremely high levels of quality in the IT systems that they

are acquiring or producing. In many industries the efficiency and effectiveness of an

organization’s IT systems is what gives them a competitive advantage in the market

place. Poorly performing IT systems can result in lost market share, lost customers, and

lost opportunities. As a result, upper management is placing great pressure on program

managers to deliver quality products.

It requires a great deal of management to produce quality software. Program

managers have to ensure that quality considerations are addressed early in the lifecycle

and they must provide the proper amount of oversight to ensure those quality factors are

incorporated into the final product. One of the major difference between a software

project manager and other areas of management is that the software project manager must

not only understand the intricacies of management (requirements, planning, budgeting,

contracting, oversight, tracking), but they must also understand all aspects of the

software-development process, as well as understanding the application domain for

which the software is being developed. Unfortunately, there are not many program

managers that have the software experience necessary to effectively manage a large

software intensive project.

Service level agreements can assist program managers in many of the tasks

necessary to ensure quality is delivered in the final product. SLAs are particularly useful

in the areas of risk management, financial management, contract management, quality

management, and customer satisfaction.

A. RISK MANAGEMENT

A risk in the context of program management is a potential event that can

adversely affect the project. Risk management is the proactive process of identifying and

mitigating potential risks throughout the lifecycle of a system. When developing

 176

software there are many types of risk that have the potential to affect the project such as

product risk (the system may not meet expectations), project risk (cost and schedule),

financial risk (another investment may provide more benefit), business risk (the system

will not generate expected competitive advantage), and technical risk (design, interfaces,

compatibility). The program manager is responsible for developing a risk management

plan to deal with each type of risk. SLAs can help to identify risks in the requirements

engineering phase, they can mitigate risks through the use of standards and performance

monitoring, they provide valuable input to the test plan, and they help manage risks in the

post-production phase.

Another categorization of risk proposes that there are three types of risk, known

risk (can be discovered after careful evaluation), predictable risk (based on past

performance and lessons learned), and unpredictable risk, which are very difficult to

identify in advance. (Pressman) Senior management and stockholders of the organization

expect that the program managers will take all necessary steps to address the first two

risks. In the government, program managers have to submit their risk management plan

to the director of the Office of Management and Budget (OMB), as OMB has been tasked

with analyzing, tracking and evaluating risks and results of all major capital investments

in information systems. (Clinton) The government and industry realizes that failure to

address risks can have serious ramifications. The result of project failure can result in

fiscal loss, a loss of reputation, loss of market share, damage to the brand name, and a

loss of competitive advantage. (Frost)

Although the program manager is generally tasked with risk management, it is a

team effort that involves the input of all stakeholders. Risk is a subjective notion, and it

is important that risk, from the perspective of all stakeholders is examined. It is also very

important that the program management team understand the level of risk that upper

management is willing to take regarding the program. Factors such as the maturity of the

company, its financial stability, its portfolio of other programs, and the expected return

on investment all influence the level of risk management is willing to accept.

The program manager needs to take a holistic look at risk management. Risks

need to be identified to the greatest extent possible at each stage of development and at

 177

multiple levels of abstraction from the system level to component design. It is also

important to realize that risk management involves uncertainty and the intent of risk

management is to take actions that reduce risk to levels that management is willing to

accept. It is not possible to eliminate all risk.

The risk management process generally consists of five steps. The first is to

properly scope the project and determine the risks associated with the project. The next

step is to analyze the risks to determine their impact, identify factors that will affect those

risk areas, and evaluate the likelihood of occurrence. The third step is to prioritize the

risks. The next step is to determine a course of action that will mitigate the risk if

possible. The final step is to monitor the effectiveness of the risk mitigation plans.

(Peltier, P. Smith) Each phase of the development cycle will contain risks unique to

those phases, but the impact of those risks has the potential to affect the entire project.

In the requirements phase, risks are evaluated in terms of the extent to which

stakeholders can define what they want the system to do, project size, technical

feasibility, interoperability concerns, project cost and schedule, and the effects the system

will have on the business processes it supports. In the development phase, the

architecture, design, code, requirements churn, and processes are evaluated to determine

whether the system will be delivered with the required functionality and quality within

budget and schedule. Once the system is deployed risks are analyzed in terms of

customer satisfaction, resource availability, maintenance actions, disaster recovery, and

configuration management.

1. Risk Management in Requirements Phase

The first step in the development of a risk management plan is to scope the

project and identify the risk drivers. Most organizations utilize a risk identification

checklist that is developed from industry standards, benchmarking other organizations, or

they are internally developed to incorporate a specific organizational culture. The

checklists consist of primarily predictable risks, but they also include some known risks.

The risks are then ranked based upon the probability of occurrence. Then next step is to

analyze the impact that the risk, if it occurs, will have on the project. The risks can then

be assessed to determine impacts on cost, schedule and performance. A risk management

 178

plan can then be developed to mitigate the occurrence of risk, monitor risk areas, and

reduce the impact if the risk occurs. Although risk management occurs throughout the

lifecycle of a system, much of the plan is developed during the requirements engineering

phase. The SLA development process contributes to the development of the risk

management plan by improving communication between stakeholders, challenging

assumptions, prioritizing risks, identifying risks, and proposing steps to mitigate risks.

Before the project is even started management must determine whether they

should invest the time, resources, and capital in the system. Management must evaluate

their customers, employees, competitors, available resources, and the environment to

determine where they should invest their capital to obtain the greatest return or position

themselves in the market to obtain a competitive advantage given a dynamic business

environment. Some of the risks in the concept phase of the project are whether the

system will return the benefits expected, whether other projects could return more

benefits, whether the project can be completed in time to leverage its capabilities for

financial gain, whether new technology will quickly make the investment obsolete,

whether new partners will be able to interface with the system, and whether the end users

will embrace the system.

If the concept is approved, the program manager must first determine the proper

scope and of the system. When defining the scope of the project, the program manager

must determine what functions the system will and will not perform.

Some systems are inherently more risky than others. Systems that utilize existing

technology to support low value business processes are not as risky as systems that utilize

complex or emerging technology to support a critical business process.

Before specific requirements are gathered, the program manager should already

be considering general risks associated with interoperability considerations, the operating

environment that the system will be deployed in, whether emerging technology will be

utilized, the skills of the management team, the experience of the contractor or in-house

developers, schedule and cost constraints, the size and complexity of the projected

system, and the affects of a dynamic market place.

 179

During the requirements engineering phase, the scope of the system will be

refined, and a better understanding of the requirements will lead to more risk

identification. In addition to risks associated with the system, there are also risks

associated with the requirements engineering process itself. Some of the common

program risks associated with requirements is whether customers were involved in the

requirements engineering process, whether stakeholders have realistic expectations,

whether requirements are stable, and whether the requirements are complete. (Pressman)

The SLA development process addresses many of the requirement risks.

Risk management tries to reduce the amount of uncertainty as much as possible.

The SLA development process in beneficial in bringing stakeholders and the contractor

together to discuss project scope, assumptions, functional requirements, as well as non-

functional quality requirements. Risks can be reduced by gathered as much information

as possible concerning stakeholder and management’s expectations in terms of system

functionality, performance, costs, schedule, and budget. The process of developing SLAs

fosters communication among stakeholders and will serve to identify many assumptions

and make explicit many implicit requirements. The development team can provide the

program management team with a great deal of information to reduce some of the

uncertainty.

The development team consisting of individuals with different backgrounds and

perspectives can also help the program management team in identifying risk areas that

the program management team did not consider. Many risk identification checklists do

not include non-functional requirements, despite the fact that there are many risks

associated with those requirements. Template SLAs can also help to identify risks.

The program manager must also evaluate the assumptions associated with the

system. Some of the assumptions include the amount of support management is willing

to give the project in terms of talented workers, resources, facilities, and power. Other

assumptions include the degree to which requirements are known, whether all

stakeholders have been identified, whether new technology will be mature by the

implementation date, whether COTS packages should be incorporated into the system

(Schneidewind 1998) and whether internal and external business trends will continue.

 180

Assumptions should be evaluated in terms of the degree of uncertainty, possible impacts,

whether they are valid, and how they will be addressed.

The SLA development process is also helpful in defining and prioritizing those

business critical processes that must be supported in the new system. Identifying critical

processes allows the program manager to concentrate risk management efforts in those

areas. In a large project it is very difficult to manage the all of the risks that have been

identified. Efforts need to be focused on those areas that have the largest potential to

cause damage, or that have the highest probability of occurring. Resources are too scarce

to waste effort on low risk areas.

Identifying critical processes also helps in assessing the security requirements and

risks to the information used, processed, and sent from the system. The efforts spent

protecting the information in the various pieces of the system has to be weighed against

the business criticality of that information and the processes they support. Stringent

security requirements provide more protection for the information, but they also make the

system less flexible. SLAs that deal with security focus on those critical information

areas.

SLAs can be utilized to mitigate and monitor product and process risk.

Depending upon the risk identified, SLAs can be developed to establish quality

thresholds for that area. For example if one of the risks identified is in the schedule

planned for the project, then measurements can focus on total project effort, aggregated

schedule slippage, project staffing, requirements churn, critical path analysis, size (i.e.,

COCOMO II), and complexity. The monitoring process and reports generated as a result

of SLAs focus management and the contractor’s attention on the areas covered by the

SLAs.

SLAs can also be used to encourage the contractor to devote additional attention

to risky areas through the use of incentives or penalties. If schedule risk is a high priority,

then incentives can be offered if the actual schedule is better than the estimated schedule.

In determining what to measure it is helpful to determine the behavior you want from the

contractor, and determine what measurements will most likely encourage that behavior.

(Kendrick) The SLAs mandate monitoring of the quality factors associated with process

 181

and project quality. If quality thresholds are not met, program managers and the

contractor are informed of the violation, and the program manager is at least aware of the

increased risks associated with that particular quality factor. That knowledge may lead to

closer monitoring or corrective action to reduce the risk and improve the quality.

Project managers should review risks identified in prior projects for lessons

learned. Evaluating risks identified in prior projects, remediation actions taken, and their

effectiveness can offer valuable insights. Risk management is easier when common

processes and procedures (i.e. standards) are utilized. Historical data can be gathered and

statistical analysis can be applied to new projects. Applying historical data on projects

that differ in processes and methodologies is more difficult and less accurate.

SLAs can be utilized to ensure management and contractors understand the

standards to be used in the project. As discussed earlier standards SLAs will also ensure

that the project is monitored to ensure that the specified standards are being implemented

correctly. Deviations from prescribed standards are an indication that the software-

development process is veering away from the production of quality software. (Horch)

Test plans can also incorporate audits of processes to measure contractor compliance.

2. Performance Monitoring

Performance management reduces overall program risks by ensuring that mission

critical services, processes and procedures are being followed. A good performance

management plan will help the contractor identify potential problems throughout the

system’s lifecycle before they result in loss of business functionality. SLAs support

performance management through performance data collection, real-time monitoring,

problem detection and diagnosis, and trend analysis. (Simitchi)

To reduce and manage risk, program managers need to measure or monitor

contractor and system performance throughout the project’s lifecycle to ensure

requirements, standards, and quality factors are being met. Monitoring performance,

whether through progress reports, milestone reviews, real time software monitoring,

audits, or formal inspections, serves to inform the program manager of potential problems

 182

(risks), it allows the program manager time to take corrective action, it influences

contractor performance, it provides information for future projects, and it helps to achieve

a higher quality product.

The program manager must develop a plan or methodology to determine whether

the contractor is performing in an effective (requirements are being met) and efficient

(economical utilization of resources and time) manner. Program managers cannot simply

place requirements in a contract, award the contract, and test the final product to

determine compliancy. The risks and potential for failure are too great using that

approach. The plan must also cover system performance to ensure that it is operating

within specifications.

Performance management is a process whereby the contractor is given concise

quantitative requirements, feedback mechanisms are put in place to evaluate compliance

with the requirements, consequences for noncompliance are discussed, contractor

behavior and subsequent performance is monitored, and actions are taken by both parties

if problems persist. (Richman, De Waal) Part of the SLA development process is

identifying those functions, quality factors, standards, and processes that are critical to

ensuring the delivery of a high quality product. The SLAs not only specify the quality

factors and thresholds that need to be adhered to, but they also specify the means and

timeframes to measure compliance with those quality thresholds, they establish resolution

procedures, and they contain penalties for noncompliance. The program manager can

utilize the information contained in the SLA as part of the overall performance

monitoring plan.

Analyzing the data collected from monitoring can identify trends that can also

reduce risks. Most SLAs require periodic as well as real time reports that provide

performance information on the system. By regular monitoring and comparison against

SLA thresholds, exception conditions can be defined, and near misses of SLAs can be

reported upon. For example, analysis of monitoring data may identify issues such as

contention (data, file, memory, processor), inappropriate locking policies, inefficiencies

in the application design, unexpected increased in transaction rates, and inefficient use of

memory. (ITIL) The data can also be used to modify the SLAs if necessary, predict

 183

future resource usage, or evaluate the SLAs in terms of their effectiveness in reducing

risk, improving software quality, and driving contractor behavior.

Template SLAs specify quality requirements in many of the common critical

success areas (e.g., if the results obtained in those areas are satisfactory, the project will

be successful). Although template SLAs have to be tailored to each project, they are

useful in that they may highlight areas that other development teams felt were important

to the success of their system. Contractors are more likely to devote effort to areas that

they know will be inspected. As such, SLAs are useful in focusing the contractor on

processes, procedures, and designs that will reduce risk and improve quality.

Performance monitoring should also apply to the host environment. In addition to

monitoring system performance (throughput, resource utilization, response time) the

program manager should monitor infrastructure performance (jitter, latency), security,

problem response, end-to-end quality metrics, and availability. Risks are reduced by

monitoring the entire spectrum of the system because problems can be quickly identified

and resolved, trend analysis can identify potential problems, and a holistic view of the

system may identify end-to-end risks that were not seen by monitoring system

performance only.

3. Test Plan

A good test plan helps to reduce product risk. Managing risk attempts to reduce

the amount of uncertainty as much as possible. A well-developed and executed test plan

can assist the program manager in reducing some uncertainty. The purpose of testing is

to validate that requirements have been met and to discover problems or defects.

Reviews, inspections, and testing can create a great deal of information on the

performance of the system and the contractor. Testing provides confidence in the system,

it provides an additional perspective on risk, and it reduces overall product risk.

The additional personnel that conduct the testing also help to reduce risk by

bringing additional skill sets and perspectives to the analysis of the module, architecture,

system, or processes. Additional input from the test community can be helpful in

identifying problems and developing solutions or better processes.

 184

Testing gives the program manager a certain amount of confidence in the product,

and in the contractor’s ability to deliver a quality product. Much like performance

management, testing allows the program manager to measure the level of success in

achieving specific critical success areas. If a contractor is not performing well in unit or

module testing, then the overall risks to the project being completed on budget and on

time increase. Testing in the early phases of a project allows the program manager to

take action to resolve the risks.

Testing also reduces risks by discovering defects before the project transitions to

operational status. Risks to schedule and budget increase the longer a defect remains

undetected in the system, as it is much easier to correct deficiencies in the beginning

phases of a project. (Horch) A rigorous test plan reduces risk that is passed on to the

customer in terms of functional problems, software safety and security, and user

dissatisfaction.

The previous chapter discussed how SLAs can help program managers in the

development of the test plan by helping to identify critical quality factors, increasing

communication with the test community, quantifying quality thresholds, and defining

how the requirements would be verified.

4. Post-Production Risk

The program manager is also responsible for managing the risks associated with

post-production support. In post-production support the program manager is not only

concerned with the performance of the system (meets functional and non-functional

requirements), but they must also be concerned with the risks associated with the host

environment (facilities, servers and infrastructure), the communications channels, and

follow on maintenance actions. SLAs can be written to address many of the post-

production risks including physical security, problem resolution, disaster recovery, and

security.

One of the risks that the program manager must address is the physical security of

the host environment. Physical security is not only concerned with employee access, but

it also deals with issues such as whether the data center has fire detection and suppression

 185

systems, the condition of the electrical grid, whether water pipes run through the data

center, the condition of the heating and air condition system, and the amount of dirt or

dust in the air.

The system can be designed with great application security, but if unauthorized

employees or maintenance personnel have access the data center or tape storage area,

then those application security measures can be easily bypassed. The data center should

be restricted to only those personnel that must have access to perform their daily work,

access to secure areas must be protected by an electronic access control system, and

security must be monitored 24 x 7. The security system must also have a log of when

employees accessed those secure areas for auditing purposes. Appendix (A) lists a

number of physical security requirements in the facilities requirements section. When

security procedures and processes have been agreed to, SLAs can be used to ensure those

processes and procedures are adhered to.

The availability of a system depends in part on the speed at which the system can

be restored once a crash has occurred. If files or programs need to be restored from

backup tapes, then those tapes need to be quickly accessed, and they must be accurate.

The risk that the system will not meet availability goals increases if the host provider

does not have good backup and tape management procedures in place to ensure that all

system software and related storage configuration can be recovered if an operational or

hardware failure occurs. Appendix (A) contains a number of backup and recovery

requirements. SLAs can be utilized to ensure agreed upon procedures and documentation

requirements are being implemented correctly.

The program manager must also evaluate risks in terms of a natural disaster or

terrorist attack. The host provider must have a disaster recovery plan to cover the

possibility that a hurricane, tornado, flood, or blizzard damages its ability to operate for

an extended period of time. Disaster recovery, or business continuity involves the

planning and implementation of procedures to ensure critical business operations resume

following a disaster and that they return to normal operations as soon as possible. Part of

the process is determining which applications are critical and which are not, then

deciding upon the time frames for recovery and site recovery necessary to meet the

 186

recovery needs. In most cases organizations are too dependent upon their IT systems for

their core business functions to loose that functionality for more than a couple of days.

Some organizations cannot afford to loose their systems for more than a couple of hours.

Good disaster recovery plans utilize backup sites that are not in the same

geographical proximity to the data center. Appendix (A) describes three types of backup

sites that are commonly used, shell sites, warm sites and hot sites. A shell site just

provides the necessary facilities for computing, it does not provide any equipment. A

warm site provides facilities and equipment, but all system software would have to be

installed on the equipment. A hot site provides facilities, equipment, and system

software, which receive backup data from the host site at least daily or depending upon

the criticality of the system in a near real time. The hot site should mirror the system in

the host environment to the greatest extent possible.

Good recovery plans should have a disaster recovery team listed with cell phone

numbers, a blueprint of where equipment and infrastructure are located, a list of vendors

to call to replace equipment and software, a complete inventory of the hardware (model

numbers, purchase date, associated software with version numbers), a complete inventory

of the software (version numbers, licenses, license keys, date purchased), maintenance

contracts, all relevant phone numbers (especially the recovery site), installation and

operating procedures for the hardware and software, and personnel requirements to

recover the existing site and run the remote site. (Philcox) The recovery plan must be

exercised periodically to ensure the host service provider can provide recovery in the

time frames stipulated in the contract or the SLAs.

SLAs help to reduce risks by identifying risk areas and proactively monitoring

development processes and procedures and system performance to identify problems

before they become serious. The SLAs also encourage the adoption of standards, which

reduce risk, increase effectiveness, and standardize operations throughout the

organization. The SLA provide quality metric verification methods which can be used to

test product risk, and it can be used to decrease post-production risks.

 187

B. FINANCIAL MANAGEMENT

One of the most important tasks that a program manager performs is obtaining

and retaining funding for the project. Before a project is started a mission need statement

(MNS) or a project overview statement (POS) must be approved. The MNS and POS

essentially define a problem that needs to be addressed, it describes how the problem will

be solved or what the project will consist of, it states why the project is needed, and it

details what specific business value or operational advantage it will provide. (Wysocki)

This section makes the assumption that management has already approved a MNS or

POS, and funding necessary for a detailed project plan has already been received.

The development of SLAs provides valuable information that will assist the

program manager in managing the projects finances. SLAs specifically help financial

management in determining the scope of the project, identifying business critical

processes and functions, they help to allocate costs, they provide justification for service

related expenditures, and they coordinate the IT strategy with business strategies.

In the requirements engineering phase of development, stakeholders must

determine the scope of the system. Stakeholders need to determine what they need and

do not need in the system. As was discussed in Chapter III, the SLA development process

provided an additional venue and methodology to explore requirements, it concentrated

on business essential non-quality factors that support critical success criteria, and it looks

at long term requirements that will affect lifecycle costs.

Once the system has been scoped, and requirements have been generated, it is

possible to estimate the costs, schedule and resource requirements to development the

system based on function points, KLOC analysis, COCOMO II, or other software

estimation techniques. The program manager can then take these more concise estimates

back to management to give them a rough idea of the costs associated with the project

(estimates early in the project are not as accurate as those made later in the development

process). Those costs can then be compared to the expected benefits to determine

whether to proceed with the project.

Program managers are typically fighting for funding with other competing

interests. Management will fund those projects that it believes will return the greatest

 188

return for the least amount of risk. Management also expects that they are purchasing a

quality product. If management is confident that the program manager has conducted a

comprehensive analysis of the requirements, has identified critical success areas or

factors, has developed a risk management plan, has formulated a plan to closely monitor

development and has developed a comprehensive test plan, they are more likely to fund

that project over another project that is not as well organized. SLAs provide management

with that confidence.

Chapter X outlines research that demonstrates that IT professionals believe that

the use of SLAs will improve software quality. Research has shown that quality

improvement, although expensive in the short run can produce cost savings over the

lifecycle of the product. The same research also demonstrated that quality improvements

were most cost effective at the beginning of the project. (Slaughter) However, the

marginal return on quality improvement decreases as more effort in that area is applied.

As such, program managers need to determine how much to invest in quality

improvement. The SLA development process attempts to make a business case

(demonstrate how the IT investment supports and advances business practices) for every

SLA. As such, many requirements that are ‘nice to have’ are eliminated or are deferred

to another release. The business case allows management to see the effect of funding

cuts on specific SLAs, or their return on investment. It also allows the program manager

and management to prioritize the SLAs based on business needs. The SLA development

process helps to ensure funding is only spent on mission critical requirements.

To gather the information necessary to negotiate or develop SLA thresholds, it is

often important to gather measurements on existing systems. It is important to measure

actual performance against that which is expected. In many cases stakeholders have

unrealistic expectations such as wanting 100 percent reliability. The SLA development

process and template SLAs will help to identify those requirements that deviate from

industry standards or benchmarked measurements. Program managers cannot waste

funds on unrealistic or unsupported requirements. SLAs can be expensive and it is very

 189

important that the quality thresholds specified can be justified (what are the upper and

lower threshold boundaries and what affect will they have on the supported business

process).

SLAs are also useful in reducing overall lifecycle costs by concentrating on

quality at the beginning of development. Quality factors such as maintainability and

security can have long term financial implications if either are not incorporated in the

requirements or the design. Quantifiable software metrics assist in making good design

tradeoffs between development costs and operational costs. This is important when tight

development schedules and limited funding could cause contractors to skimp on quality

factors such as maintainability, portability or usability. (Boehm 1991) It is also important

to remember that in large software systems, the majority of costs occur after the

development phase. Unfortunately, few organizations make conscious tradeoffs between

development and maintenance costs. (Vigder)

SLAs are also useful in supporting IT accounting where costs are allocated to

specific budget centers or stakeholders. Since SLAs are justified based on business case

analysis, the services or benefits that the SLA supports can be traced back to the program

management effort, the development effort, or to a specific stakeholder requirement (e.g.,

finance department). The fundamental benefit of IT accounting is that it provides

management information on the costs of providing IT services that support the

organization’s business needs. This information is needed to enable IT and business

managers to make decisions that ensure the IT services organization run in a cost-

effective manner. (ITIL)

C. QUALITY CONTROL

Program managers are expected to produce high quality products. Unfortunately,

there are numerous examples of failed software projects because program managers did

not or could not exercise proper quality control. Quality control consists of the actions

necessary to certify that desired standards and quality requirements are adhered to during

design, implementation and production. (Tricker) In addition quality control consists of

 190

those activities necessary to detect, document, analyze, and correct defects. (Horch)

SLAs are a quality control mechanism.

SLAs help the program manager institute a quality control program by identifying

business essential quality factors throughout the system’s lifecycle, quantifying those

factors in measurable terms, defining how and when the quality requirement was going to

be verified, and encouraging the contractor to meet quality goals through penalties or

incentives.

The development of SLAs helps make those involved with the process more

aware of how quality considerations influence design, lifecycle costs, and performance.

SLAs also make management and the contractor more aware of quality in general. The

penalties/incentives will help to focus stakeholder’s attention on quality issues.

D. MAINTENANCE

Software maintenance is the modification of a product after delivery to correct

errors, improve performance, or adapt the product to a modified environment. The

modification relates to the code as well as the underlying documentation. The object of

software maintenance is to modify the product, while preserving its integrity. (Bennett)

The program manager must still maintain quality control over the software even after it

has been deployed. Configuration control processes and performance monitoring are

essential elements in post-production IT management.

Maintaining IT systems is every bit as challenging as developing new systems,

however post-production support does not receive the same resources as a system in

development. New systems generally receive the funding, support and oversight

necessary to develop the system. Once a system is developed, program management is

typically turned over to a functional specialist who deploys and maintains the system.

Deployed systems do not generally receive the same funding and personnel resource

considerations that they deserve. Businesses are constantly trying to divert more funding

from support expenditures to new production.

Maintaining systems is especially difficult with older legacy systems. Older

systems are often plagued by inconsistent, inadequate, or missing documentation. These

 191

systems also tend to be fragile when it comes to software migration or modifications.

These legacy systems are constantly being pressured to adopt the latest technology,

architectural mandate, or respond to new customer or market driven enhancements.

Additionally, contractors or junior programmers, who may not understand the “big

picture” view of the system, often because of their junior status, are assigned to

implement the changes to these older systems. (Prouten)

Ensuring the integrity of the original requirements is extremely difficult as a

system ages. As personnel with the tacit knowledge of the original system leave the

program office and the contractor’s team, the need for accurate documentation becomes

more important. To maintain the integrity of the original system, all modifications and

maintenance actions must be entered into the configuration management system, where

they will be submitted to a CRB with the appropriate documentation, the changes will be

tracked and controlled, new identification will be issued, and the change release will be

carefully managed. Unfortunately, as systems age, it is not uncommon to discover that

programmers have violated standards, architectures and procedures in order to make a

system operational.

Software maintenance is extremely important because some studies indicate that

maintenance costs can account for up to 70 percent of a system’s lifecycle costs, (Hulse)

and other place the figure at three to four times the initial cost of the system. (Vigder)

Additionally, the maintenance philosophies incorporated into the system design

influences programmers’ ability to quickly and reliably change software. Slow change

equates to lost business opportunities. (Bennett) An example of a systems designed for

software maintenance is one that contains architecture that are well defined, clearly

documented, and promotes design consistency through guidelines and design patterns.

(Hulse) The maintenance philosophy can also have a tremendous influence on the total

lifecycle costs of a program. Unfortunately, few organizations make conscious tradeoffs

between development and maintenance costs. Many systems are delivered without

proper documentation and are given to the maintenance centers without the necessary

knowledge. This increases the cost of maintenance and reduces the quality of the work.

(Vigder)

 192

In the post-production phase, any proposed maintenance changes or changes to

requirements still needs to be reviewed by the CRB. Although the composition of the

members of the CRB may change as maintenance contractors or personnel replace those

that were involved in the development (an ideal situation is when the people performing

the development work are also involved in the long term maintenance of the system) the

functions that the CRB perform are still essential.

The CRB review the proposed maintenance action and the effects it will have on

the operating system, architecture, functionality, service level agreements, documentation

and training. The board also discusses the time frames to implement, security of the

source code, methods of issuing the update, effect on interfaces, and scheduling server

down time to implement changes. The board also reviews the effect that the maintenance

action will have on the underlying processes and business logic built into the system.

It is still important to include stakeholders in the CRB as it is difficult to fully

understand and analyze such process issues as information flow, division of work, and

coordination without including organizational context in the analysis. Organizational

context refers to characteristics of relationships between process participants. (Briand)

The CRB also helps to ensure that the test community is involved in the change

management process. The changes need to meet specific performance requirements that

need to be specified as part of the maintenance package. The changes need to be

incorporated into the testing package so when changes are made, the test community will

verify that the changes actually meet the specified requirements. In some cases it is

difficult to determine the actual status of a program. Many organizations that do not

include the test community in the CRB are forced to declare a task complete when the

person responsible for the task declares it to be complete. (Vigder) The test community

will have processes and metrics in place to determine if a maintenance effort was

completed correctly.

The CRB can also be helpful in evaluating the effects that new technologies will

have on the system. As business needs change and new technology is introduced, the

system may have to undergo dramatic change to incorporate proposed modifications.

Often, management proposes the adoption of new technologies without consideration of

 193

what happens when the software has to be changed. For example, object oriented

languages were supposed to make maintenance much easier, however, these languages

must be designed with care (e.g., controlling inheritance and threads) or their

maintenance can be more difficult that traditional languages. (Bennett) The CRB along

with contractors can help the program manager scope the maintenance project and what it

will take to accomplish in terms of cost and schedule.

Quality control is stressed during the development of software, but it is rarely

evaluated after the application goes to production, unless there are major problems. The

program manager must constantly monitor the program throughout its lifecycle to

measure the effectiveness of the program, quality, and to detect early signs of problems

that may require maintenance action. The SEI quality framework lists attributes that may

help program managers track and categorize problems. This information can improve

overall knowledge about problems within the program, and can be used to determine if

maintenance action is warranted. (Kajko-Mattsson)

SLAs can be utilized for the maintenance actions in much the same manner as

development efforts. Software quality can be improved in the maintenance phase by

utilizing SLAs to ensure the contractor adheres to SLA mandated documentation

requirements, specific standards and processes (configuration management process),

quality requirements (defects, complexity, security), and performance requirements

(throughput, availability, response rate). As most of the program managers in the post-

production phase do not have a technical background, template SLAs can help them

understand the metrics that should be collected when maintenance action is performed.

Although the program manager may need assistance modifying the template SLAs to

meet the unique maintenance needs of the system, the major quality areas will be

addressed, and the program managers will be more informed.

E. CONTRACT MANAGEMENT

Organizations are becoming more reliant upon IT as a tactical and strategic

business tool. IT has provided organizations with the increased computational powers

and communications to rapidly process and act on data. The advent of e-business

 194

(business utilizing the Internet) has introduced a new distribution channels for goods and

services, increased corporate partnerships, introduced new markets, and has lead to

innovations such as just-in-time inventories. IT has also enabled organizations to become

flatter, allowing them to respond and adjust to external forces quicker and more

effectively. Organizations that can leverage IT better than their competitors will gain a

significant competitive advantage.

As technology rapidly advances, these mission essential IT systems are becoming

more complex and more difficult to manage internally. Many organizations have

discovered that they do not have the necessary IT skills within their organization to

develop and/or manage these systems. Rather than hire IT specialists, or invest in

training for their staff, they are considering outsourcing their IT work as a strategy. This

is especially true for smaller businesses that cannot afford to keep the in-house IT staff

necessary to develop, maintain, and monitor IT intensive systems.

Outsourcing is the process of contracting with a service provider to perform a

function or functions that used to be performed by the organizations own (in-house) staff.

Outsourcing has been a business strategy for a number of years. Organizations are

generally more comfortable assigning functionality to in-house staff as it gives them

more flexibility, they do not need to contract for the services, in-house staff already

knows the organization’s policies and procedures, they have greater trust in their own

staff, and in many cases they were cheaper than contractors. However, as more

specialized skills are needed to develop and maintain IT intensive systems, outsourcing is

becoming more advantageous.

The emergence of companies specializing in providing IT services (external

service providers (ESP)) have provided a source of IT specialists that can in many cases

provide high quality service for lower prices than internal IT organizations can. IT

outsourcing is gaining popularity and is increasing in volume worldwide. In many cases

IT managers have little choice but to outsource as ESPs provide access to cutting edge

technology and skilled staff, they share the project risk, and they allow organizations to

concentrate on core competencies, and they can be cheaper. (King, Goth, Greaver,

Nelson)

 195

However, outsourcing efforts require additional discipline and management

oversight that may not be necessary with in-house development and maintenance.

Program managers not only need to be involved in requirements determination, risk

assessment, quality management, change management, and test and evaluation, but they

must also be involved contract preparation, contractor evaluation, proposal evaluation,

contract tracking and oversight, and contractor performance management. The program

manager must be an informed buyer. (Feeny) Program managers must develop strategy

to deal with ESPs that includes how the program manager will manage the contract

relationship, access to proprietary information, chains of command, monitoring policies,

dispute resolution procedures, and early termination.

Contract management is one of the program manager’s most important tasks. The

purpose of contract management is to obtain the services that are defined in the contract

and achieve a return (business value) on the investment. (Lewis) A poorly developed and

managed contract can quickly lead to performance and fiscal problems. Contractors are

profit driven, nothing that they do is altruistic; their stockholders will not allow it. As a

result, contractors are looking for every cost cutting measure that they can employ to

maximize their profits. While not the majority, there are contractors that will not fully

meet requirements (e.g., cutting corners) if they believe they can get away with it. Other

contractors will take advantage of vague requirements to deliver a cheaper product that

may not meet user expectations. The program manager needs to develop a contract that

accurately specifies the requirements (terms and conditions for acceptance of the

deliverable); while at the same time holds the contractor accountable. The program

manager must also balance the desire to constantly monitor and control the contractor

with the reality that a partnering relationship works better than an adversarial one.

1. Contact Preparation

This section will discuss contracting as it applies to outsourcing of IT services,

but the same concepts can be used internally between a business entity and the IT

department. Contracting for IT services can be very complex, especially when dealing

with the government where the Federal Acquisition Regulations (FAR) and Defense

Federal Acquisition Regulations (DFAR) must be followed. A detailed discussion on

 196

contracting is outside of the scope of this dissertation; therefore this section will

oversimplify the contracting process to emphasize the positive affects that SLAs have on

the process.

When contracting for IT services, the organization requesting the services needs

to first determine their requirements. Those requirements (including the SLAs) are

incorporated into a document called a request for proposal (RFP). The RFP is sent to

organizations that the contracting officer believes can perform the work requested. In the

government, the RFP is advertised in the Federal Business Operations, (formerly the

Commerce Business Daily). Those organizations responding to the RFP or to the Federal

Business Operations submit a statement of work (SOW) that describes how they will

meet the requirements requested in the RFP. The SOW also includes the organization’s

estimate on how much it will cost to provide the service, and a schedule that defines how

long it will take to start or provide the service. When the contracting officer has received

SOWs from the organizations interested in performing the work, proposal evaluation

begins. The contracting officer evaluates the SOW for competency (demonstrating an

understanding of the domain and contracting procedures), professionalism

(responsiveness to RFP), risk, costs, schedule, past performance, and technical

proficiency. When a contractor is selected to perform the work, a contract is written,

which specifies the requirements, and contract type (e.g., firm fixed price, cost-plus, cost-

plus incentive). At this point the contracting officer and the organization negotiate a price

and timeline for the service, as well as other terms such as control of intellectual property

rights and whether equipment or material will be furnished to the contractor to perform

the requested service. When a price is agreed to, the contract is awarded, a contracting

officer representative is assigned to manage the contract performance, and work begins.

Throughout the contracting process (i.e., before contract award), the contractors

and the organization’s contracting officer are meeting and exchanging questions to ensure

that the contractor understand the requirements, and in some cases to educate the

contracting officer and the program manager about conflicting requirements or technical

feasibility. The vendors bidding on the contract want to ensure they perform due

diligence so they understand the scope, the work to be accomplished, performance and

 197

quality criteria, the operating environment, what deliverables are expected, schedule

constraints, and acceptance criteria. When the vendors feel they understand all of the

requirements, they can begin to prepare their SOW that will detail how they will

accomplish the work.

The foundations of contract management are laid in the contract itself. The

contract should specify agreed levels of service, quantifiable functional and non-

functional attributes, incentives, timetables (milestones), measures of performance,

communication channels, escalation procedures, change control procedures, and price.

(Lewis) Well written contracts also define the authority that each party has to assign,

remove or supervise personnel from the contractor’s team, intellectual property rights,

ownership of the source code, terms and conditions to terminate or modify the contract,

use of third party contractors, transfer or purchase of equipment, migration plans, and

acceptance critieria. (Chorafas)

SLAs help to form the foundations of the contract because many of the elements

of the contract such as escalation procedures, quality thresholds, points of contact, and

roles and responsibilities are already incorporated if a template SLA similar to those

found in appendix (A) is used. Strong formalized requirements along with performance

monitoring can help to improve the working relationship between the vendor and the

contractor. Poor contracts lead to friction, which in turn leads to distrust and ultimately

results in poor performance. (Chorafas)

A common understanding of the goals of the project and a monitoring system that

identifies and resolves problem issues before they affect contract performance creates an

environment that is more conducive to forming a good partnership. A good working

relationship requires continuous meaningful two-way dialog between the organization

and the contractor. SLAs help establish communication by identifying the chain of

command, escalation procedures, and identifying the individual(s) that will be monitoring

the SLA. In addition, the very process of monitoring the SLA will in many cases open

dialog between the monitor and the contractor that may identify problems, or signal that

the contractor is meeting or exceeding all requirements.

 198

Contracting for services requires that all stakeholders and the contractor have a

clear understanding of the requirements. It requires a great deal of time and effort to craft

a contract that accurately describes the deliverables and acceptance criteria. There is a

tendency to write ambiguous language into the contract in the hope that as the contract

progresses details can be worked out. This is common when there are time pressures

forcing the program manager to get the contract signed and get the work started.

Unfortunately, unless there is a great working relationship between the organization and

the contractor, there will be conflicts when it comes to defining the small details. In

many cases contract modifications are needed to better define the requirements, and extra

funds will be needed before the contractor will execute those new requirements.

Organizations will have little contractual recourse if they disagree with the contractor’s

interpretation of their ambiguous requirements.

The SLAs development process and template SLAs show organizations the value

of writing very detailed requirement specifications for the product. Detailed

specifications make it much easier for any organization (in-house or outsourced) to

deliver a quality product on time. (McLaughton) Detailed specifications also make it

much easier for contractors to put together a bid on the RFP. Precise requirements allow

the contractor to make better estimates of the resources (manpower, skills, funding) and

time that it will take to complete the project. (Lewis) The more effort that the contractor

can put into the bid, the easier it is for the organization to evaluate.

It is not unusual for organizations to bid low (i.e., low ball or buying in) on a RFP

to get the contract. Once they get the contract, they send in a team to perform true due

diligence to determine what it will cost to actually perform the services specified in the

contract. If they underbid the contract, they look for additional work that was assumed,

but not implied in the contract, and they look to recoup funds by overcharging on

additional requirements that are generated during the development or support effort.

Either approach tends to strain the contract relationship. It is important to note that any

additional work must be accomplished through a contract modification, where the

contractor must demonstrate that there were deficiencies in the RFP, or that new

requirements have been generated. When SLAs are included in the contract, contractors

 199

are more likely to take the time to develop good estimates and determine what steps are

necessary to accomplish the tasks while reducing their risks, because the financial risks

(penalties or incentives) of not doing so can be severe.

SLAs are useful in contracts not only because they concentrate on quality factors,

but they also have the ability to penalize the contractor for non-performance without

having to resort to termination clauses (In government contracting the term ‘penalty’ is

used to represent the withholding of any incentive payments or bonuses associated with

the SLA, the FAR does not allow a fine for nonperformance). Most contracts include

termination provisions where a contract can be terminated if the contractor is not abiding

by the terms and conditions of the contract (requirements, processes, cost or schedule

constraints, personnel turnover). Unfortunately, while it may be advantageous to

terminate a contractor for fiscal reasons, it achieves little in terms of fielding the system.

As a result some contractors will work at the minimum accepted levels of performance in

an effort to gain more profits. To motivate contractors to perform better many contracts

include incentives, which are normally based on cost and schedule thresholds. Incentives

are normally based on passing milestone reviews, with the assumption that the reviews

will determine whether functional requirements have been met or not.

SLAs support standard contracts by providing incentives or penalties for

achieving or not achieving quality thresholds throughout the lifecycle, not just at the

milestones (In government contracting the SLAs provide the quality threshold and the

associated penalties or incentives, but the contract itself, which will refer to the SLAs,

provides the incentives). This gives the program manager more options. In most

contracts, if a contractor has met functional requirements on time and on budget, but its

configuration management system is poorly maintained, there are few options that the

program manager has other than writing a poor evaluation/recommendation to resolve the

problem. Termination clauses generally do not address quality issues, which have a lower

priority than functional requirements, cost, and schedule. If SLAs are used, incentive pay

can be withheld for the reporting period agreed to in the SLA (monthly or quarterly) or

the contractor can be fined until the configuration system meets the quality threshold. If

the problem persists, the program manager has the option of terminating the contract

 200

(write termination clauses into the SLAs for persistent failure to achieve thresholds), or if

the program manager sees improvement, the incentive pay can continue to be withheld

until thresholds are met.

In outsourcing contracts, quality is best achieved by comprehensive and detailed

requirements specifications coupled with well defined SLAs with built-in penalties

should service levels go awry. (Chorafas, Baron) The SLAs help to reduce overall

contract risk by monitoring quality throughout the lifecycle. Most SLAs measurement

periods are over a monthly or quarterly time period. Accordingly, problems with meeting

quality thresholds are identified long before a milestone review. This contract

monitoring allows the program manager to quickly take action to resolve the problem,

and if necessary to terminate the contract before too much time and money is spent.

2. Proposal Evaluation

Once SOWs are received from contractors interested in performing the requested

services the organization must develop a methodology to select the contractor that can

best meet their requirements. The criteria used to evaluate proposals should be

determined before the RFP is completed to ensure that the RFP effectively communicates

all of the areas that need to be evaluated. The evaluation criteria must be included in the

RFP. In most cases the evaluation consists of a balance scorecard type of approach

where weights are attached to specific attributes such as reputation, price, schedule, risk,

and processes.

The process of selecting a business partner should be well thought out. A good

partnership can provide benefits to both organizations; however, a poor relationship can

jeopardize the project, alienate customers, anger stockholders, and damage both

organizations’ reputation.

In some cases a pre-qualification can be accomplished to limit the amount of

applicants. Pre-qualification audits or screens are done to ensure that the organization is

not wasting its time evaluating a contractor that does not have the capability to satisfy the

conditions of the contract. (Roberts) Pre-qualification audits review the SOWs to

evaluate the number of staff and their skill sets, the financial condition of the contractor,

 201

pending lawsuits, the reputation of the contractor (check references), CMM ratings if

applicable, the type of work (technical level and complexity) the contractor has done in

the past.

SLAs aid organizations in the pre-qualification of applications. SLAs contain

quantifiable quality requirements along with a methodology to confirm whether the

requirements have been met. The detail of the requirements along with non-performance

penalties will generally discourage all but the most serious contractors. The SLAs tend to

limit the proposal to only those that are capable of providing a quality product or service.

When the pre-qualification has been completed the remaining proposals are

reviewed. A more detailed analysis is conducted of the proposals and the contractors.

Although many factors are scored (balance scorecard), the selection criteria can be

grouped into seven main categories. The categories and the way they are scored should

be aligned to the underlying business processes that the IT system supports, and the

overall business goals of the organization. The first category evaluates a contractor’s

quality control and quality management processes. The second category looks at the

technical competency of the contractor in terms of employee skills, tools, training

programs, innovation, and past performance. The third category analyzes the contractor

resource management practices in terms of employee management (employee turn-over,

pay, training opportunities) and knowledge management (how is tacit knowledge

captured, how is information collected and shared). Determining the financial strength of

the contractor is the forth category. The fifth category determines whether there is a good

cultural fit between the organization and the contractor (e.g., a contractor may operate in

an environment that has to rapidly respond to the business environment, the contractor

will have to be have quick, flexible processes to accommodate that need). The sixth

category evaluates the contractor’s program management processes, such as

configuration control and change management. The last category is the costs of the

project and projected costs over the lifecycle of the project. (Roberts)

SLAs are also helpful when scoring the proposals. The quality factors

represented in the SLAs represent those areas that stakeholders felt were essential to

achieving a quality deliverable. As a result, the quality factors identified in the SLAs

 202

should be scored higher than other non-essential factors such as the contractor’s

administrative support. In addition SLAs make it easier to focus part of the assessment

on the contractor’s ability to meet the quality thresholds specified in the SLAs. If

maintainability is a major concern to the organization, the assessment can evaluate the

configuration control system that the contractor used on past projects. The SLAs allow

the assessment team to focus on specific areas rather than conducting a general overview

of the contractor’s processes and past work.

3. Contract Oversight

After the proposal evaluation is completed and a contractor is selected the details

of the contract are negotiated. When both parties sign the contract, the process of

contract oversight starts. The main purpose of contract oversight is to ensure that both

parties are fulfilling their contractual obligations. (Hill) SLAs were developed in part to

provide contract oversight by monitoring the quality factors specified in the contract. In

this dissertation contract oversight is broken into maintaining a good relationship

between the parties, and ensuring the contractor is adhering to the terms and conditions of

the contract.

There are a couple of different types of contractor-organization relationships. A

partnership is a formal business relationship that is established to achieve common

business objectives. Partnerships are usually long term and are characterized by a close

working relationship where the contractor is an active team member. In partnerships the

organization and the contractor have a vested interest in the success of the project. (Hill)

An affiliation is also a formal business relationship where pre-qualified contractors are

engaged, as their services are needed. Examples of an affiliation are buyer purchase

agreements (BPAs), where the service and price have already been negotiated, and a

contract is executed only when the service is needed. Another formal relationship is the

project specific relationships where the contractor is needed on a specific project. This

type of relationship is very common and it includes RFPs, SOWs and a selection process.

The last type of relationship is a service provider relationship where the contract may be

formal or informal. An example of this type of relationship is the local server hardware

maintenance professional who has been pre-approved to do preventive maintenance work

 203

(i.e., run diagnostics, vacuum dust) for the organization. When the maintenance man’s

services are needed, he is called. The maintenance man provides a quick estimate of the

cost of the job, and if the price is acceptable, the organization will contract for the

services (in many cases an account already exists). (Hill) In each case a good working

relationship is beneficial to both parties.

There is a common misconception that SLAs can cause an adversarial relationship

between an organization and a contractor as a result of penalties for noncompliance.

However, many contractors like SLAs because they define the services that must be

performed in detail, they provide the quality thresholds that must be met, and they state

the means by which those services will be measured. The detail provided in the SLAs

helps to prevent much of the ambiguity that causes disagreements. Both parties agree to

SLAs; and if a contractor does not meet requirements, then they understand the

repercussions, because they also understand the effect that not meeting those

requirements has on the organization. Contractors expect to be penalized for poor

performance; problems arise when there are differing interpretations as to the services

being provided, and their associated performance requirements. Specifying the

methodology to verify compliancy also eliminates many of the arguments that may occur.

As was discussed previously, depending upon the organization-contractor relationship,

the maturity of the technology, or how well requirements are understood, it may be better

to structure the SLAs as incentives instead of penalties.

Managing the relationship between a vendor and an organization is a difficult but

extremely important task. Both parties need to understand the motivations of the other

party to be successful. Contractors are motivated by profit, but they must price their

services to be competitive with other contractors and the internal IT shop within the

organization. Contractors try to not only win the contract, but they want to establish a

good long term working relationships to gain more work and generate additional profits.

Organizations want a system that performs to specifications, so the system can enable

business processes that will allow them to generate profit. The solicitation process is the

means that the organization uses to ensure they are not paying too much for the service

(competition will lower the price of the service), and the contract is the process that they

 204

use to ensure they will receive the functionality and quality that they desire.

Organizations must also understand that if the contractor is not making profits, the risk of

default or non-performance on the contract increases significantly. SLAs tie the vendor’s

most important concern, profits, with the program manager’s most important concerns,

performance and quality. (Agarwal)

The program management office needs to develop procedures and processes to

manage the contractors. The program manager needs to determine the type of

information that the contractor needs access to, whether the contractor is included in daily

meetings, whether they are managed at a distance, how information will be shared (e-

mail, meeting minutes, central repository), the chain of command, security clearances,

and the degree of freedom that the contractor has to develop solutions or to resolve

situations. If the SLAs include end-to-end components or if the system is a part of a

system or systems, the program manager may have to manage multiple development and

maintenance contracts with many different contractors. The program manager will have

to determine how to manage the various contractors and their interactions (i.e., are

contractors allowed to communicate among themselves, or do they have to communicate

through the program management office).

SLAs provide information that helps both parties manage their relationship better.

SLAs identify the individual who is responsible for managing the SLA. Depending upon

the complexity of the system, manpower availability, and the criticality of the system the

SLA will assign an individual to act as a contract monitor who is responsible for

verifying that quality thresholds have been met, but an addition individual may be needed

to act as a contract facilitator who would be responsible for working with the contractor

to resolve day-to-day issues relating to the SLA. (Currie) In smaller projects, the same

individual will perform both functions. Although one individual may be responsible for

multiple SLAs, it is helpful to specify the specific point of contact for each SLA as it

helps to build and maintain the organization-contractor partnership.

Conflict is a normal part of the development process, requirements are not always

known well enough to specify in exacting detail, systems are complex, and the business

environment is dynamic. The ability of both parties to resolve these disputes amicably

 205

will determine the strength of the working relationship. SLAs help to provide some

structure by designating responsibilities for various tasks as they relate to the SLA. This

definition of roles and responsibilities provides greater clarity and better defines the

working relationship. The SLAs also state assumptions that were used to build the SLAs,

which may also resolve possible disputes before they occur.

4. Contractor Performance Management

SLAs help to manage the contractor by defining the quality factors and metrics

that must be met, they define how the metrics will be collected, they increase

communication between the contractor and the program management team, and they

define roles and responsibilities of both parties.

The key to contractor performance management is oversight. The program

manager is responsible for ensuring that the contractor is complying with the terms and

conditions of the contract. The program manager must also verify that any deliverables

meet stated requirements. It is very important that quality control measures are in place

to inspect and verify the contractor’s product at each milestone. (Hill) SLAs explicitly

state the quality factors that an organization expects in the end product. SLAs also

explicitly state the metrics and the collection mechanisms that will be utilized to verify

that the quality requirements have been met. SLAs also establish a monitoring process to

verify compliance with quality requirements. As such, any deviations from the

organization’s expectations can be quickly resolved before they become major problems.

Additionally, monitoring provides information to utilize in forecast analysis.

When the contractor was preparing the solicitation in response to the RFP, the

contractor had an opportunity to challenge or question any of the SLAs. If the contractor

decided to bid on the contract, then they agreed to abide by the SLA. SLAs establish a

clear understanding of the product quality, process quality, production quality and post-

production quality expectations. Although SLAs place constraints on the behavior of

contractors, numerous contractors interviewed have indicated that they favor contracts

that clearly articulate expectations as it resolves may of the conflicts that normally occur

over interpretation of requirements.

 206

 During the solicitation process, or in some cases if the contractor participated or

lead the requirements engineering process, the SLAs generated meaningful

communication between the contractor and the organization. The SLAs not only

introduce quality requirements at the beginning of the development cycle, they also

generate discussion on standards, testing, monitoring, design, critical business processes,

change management, quality models, and quality control. These discussions hopefully,

improved the SLAs, established common frames of reference, and established a good

working relationship between the parties. The reports generated as a result of the SLAs

also help establish communication between the contractor, program manager, end users,

and upper management.

Many contracts drafted by lawyers include long, tortuous statements full of

legalese and cross references that are difficult to understand. (Nellore) Lawyers do not

draft SLAs, they are written by end users, management, IT personnel, and business

process owners. Lawyers should review SLAs to protect the organization, but they need

to be understandable by all parties involved. The ease of reading makes SLAs more

effective in communicating requirements than some contracts.

Contractor performance management is more than monitoring quality metrics and

assigning blame if they are not met. Contractor performance management also needs to

monitor the relationships between all parties. Blaming the contractor for quality problems

does not solve the problem. If relations between the organization and the contractor

reach a point where both sides are blaming the other for problems, then both parties

loose.

Although both parties may not have the same objectives or policies, and both have

constraints (internal and external) that influence their behavior, SLAs can be used to

influence both parties to take appropriate actions to come to the mutually accepted

behavior as agreed upon in the contract. (Milosevic) SLAs specify the roles and

responsibilities of both parties, they specify the assumptions, they specify quality

expectations, and both parties agree them upon. SLAs also specify procedures for

dispute resolution, so issues can be resolved quickly.

 207

F. CUSTOMER SATISFACTION

Another important task that the program manager has is ensuring that all major

stakeholders are pleased with the delivered product. A program can meet cost, schedule

and performance parameters, but if the stakeholders are not pleased with the product, the

perception will be that the project failed. Customer satisfaction is an important role for

the program manager. The program manager must ensure that the delivered product is

acceptable to the stakeholders; however, the program manager must also ensure that once

the product is delivered, that it is properly supported through the use of SLAs.

The process of developing the SLAs helps the program manager by establishing

buy-in from the major stakeholders. Representatives from the major stakeholders are

able to participate in the development process, and they determined the quality

requirements and quality metrics that they felt best support the business critical

processes. They also have the ability to state their own expectations and make a case for

quality factors that they feel are important. When those stakeholders return to the

positions they left, they are generally advocates for the program manager and the SLAs

because they helped develop them.

The program manager can utilize the SLAs to set customer expectations. The

SLAs define the quality factors and the quality thresholds that the user can expect. The

SLAs also demonstrate that the program manager has an aggressive plan in place to

monitor performance and penalize the contractor if quality thresholds are not met. SLAs

also help institutionalize the change review board, which helps to inform users of

approved changes to the system. The SLAs help to prevent expectation creep, a situation

where users constantly want better and faster performance. The program manager can

easily point to the SLAs and declare that despite the user’s concerns, the stakeholders

have determined that the current quality levels are sufficient to support the critical

business processes.

Program managers need to monitor customer satisfaction to ensure that the

services are meeting end user needs. A survey is one method of measuring whether end

users are satisfied with the services that a contractor is providing. SLAs can be written

such that the contractor needs to achieve a certain score (90% satisfactory or above) to

 208

meet a quality threshold. Before SLAs are developed for surveys, the program manager

should assess the environment to ensure that the contractor will have a chance of meeting

the quality thresholds. If the internal IT department lost jobs because of work outsourced

to the contractor, end users may have a hostile attitude toward the contractor. In that

case, the program manager may want to wait until attitudes towards the contractor have

softened.

An important part of customer service is monitoring the performance of the

system to ensure that it is supporting the critical business processes in a manner

acceptable to the customer. In the deployment or post-production phase of a system’s

lifecycle the host provider (whether those functions are outsourced or kept in-house) must

perform certain services to keep the system operational. Service-level management

(SLM) is the proactive methodology used to ensure that adequate levels of service are

provided to all users in accordance with business priorities. (Sturm) SLM involves

monitoring, reporting, modifying, and improving the quality of the services being

provided to an organization. SLAs are a part of SLM in that they define the services to

be performed, and the levels of service expected.

Some of the areas of SLM include availability management, quality of service,

and resource management. An integral part of maintaining an availability threshold is the

constant monitoring of each of the hardware and software components that comprise the

system’s infrastructure. Components that are not performing as expected, should be

examined and action should be taken to resolve any problems. This may require

additional monitoring, trend analysis, or changing to another component from another

vendor.

When measuring the network infrastructure performance, traffic behavior needs to

be evaluated with respect to four characteristics: importance, time sensitivity, size, and

jitter. For applications that are critical to the success of the organization, efforts need to

be taken to protect its performance. This may mean allocating bandwidth specifically for

the application, or prioritizing those packets in a QOS scenario. Application traffic that is

time sensitive, interactive, or subject to latency problems will also need prioritization

(e.g., telnet or Oracle). Applications that have network traffic that expand to meet the

 209

amount of bandwidth available, or produce large surges of packets (e.g., FTP, streaming

video, *.jpg files) can have a negative impact on other applications. Bandwidth hungry

applications can deprive higher priority traffic of necessary bandwidth. Streaming

applications need a minimum bits-per-second rate to deliver acceptable performance.

The bandwidth needed to support these types of applications (e.g., VoIP, Real Audio)

need to be balanced against available bandwidth, the business value of the application,

and the needs of other applications. (Packeteer, May 2002)

Capacity management provides the necessary information on current and planned

resource utilization of individual components to enable organizations to determine which

components to upgrade, when to upgrade and how much the upgrade will cost. (ITIL)

Service capacity management needs to monitor, analyze, tune, and report on

service performance, establish baselines and profiles of use of services, and manage

demand for services. (ITIL) It is important that a good baseline be established so the

service provider understands the resources and capability requirements of the application.

Capacity management helps mitigate risks associated with resource requirements.

Proper planning ensures that an application will have the resources necessary to execute

all functionality to specifications. Capacity management is also involved in analyzing the

resource needs resulting from any application modifications approved by the change

review board. In the host environment, new applications, or modifications to existing

applications can affect the resources (e.g., infrastructure) used by other applications.

Accurately predicting resource needs of the new application, in addition to information

collected on the usage of other applications will ensure that there are enough resources

for all of the application, or identify the need for additional resources. (ITIL)

G. SUMMARY

The use of SLAs helps the program manager with many of the tasks necessary to

managing complex IT systems. The development of SLAs improves the communication

between the stakeholders, management, and the contractor. Increased communications

helps to improve relationships, identify risk areas, better understand the requirements,

and it leads to better problem resolution. The monitoring processes resulting from the

 210

SLAs help the program manager monitor performance and contractor compliancy. SLAs

need to define the quality requirements in great detail to ensure that all parties understand

the quality expectations for the system. Well defined quality requirements reduce the

possibility of conflict due to misinterpretations of requirements, and helps to set user

expectations regarding performance. SLAs can also be utilized to entice the contractor to

take the necessary measures to ensure that their quality control measures are in place and

are accurate.

 211

X. RESEARCH METHODOLOGY

A. PHILOSOPHICAL APPROACHES

The objective of the questionnaire is to gather evidence to support the hypothesis

that service level agreements can increase software quality and management of IT

intensive systems. If the hypothesis is supported, the results of the questionnaire can be

predicted. If the outcome of the questionnaire is similar to predictions, then the

hypothesis is supported. The questionnaire is designed to demonstrate the causality

between the hypothesis and expected results. (Xia)

There has been a great deal of debate on research methodology within software

engineering field. Much of the debate centers on the various philosophical approaches to

ontology (the nature of being) and epistemology (the theory of knowledge). Those

beliefs drive the methodology in conducting research and engaging in problem solving.

The various philosophical approaches can be grouped into four distinct groups. (Reeves)

The first group is the analytic-empirical-positivist-quantitative group. This group

is most often identified with mathematicians and physicists. This group believes that the

world is deterministic, or it is operated by the laws of cause and effect. Research

methodology associated with this group is generally highly structured and is centered on

laboratory experiments. This group believes in empiricism, or the idea that observations

and measurements are the core of the scientific endeavor. (Trochim) Problems are

decomposed into elements, variables, covariants, attributes, and values. Tests are

conducted under controlled conditions to not only establish a repeatable test, but also to

systematically alter the variables, observe the phenomena, and measure outcomes against

predictions. This group only tests what they can measure and observe.

The second group is the constructivist-hermeneutic-interpretivist-qualitative

group. This group does not subscribe to the detached, objective, nomothetic approach to

research. This group views the nature of reality differently. This group believes that

reality can only be defined by multiple perspectives, and that factors such as culture, sex,

context, and emotion influence individual perspective. They believe that laboratory

experiments are a poor substitute for testing ideas in organizational contexts using real

 212

practitioners. (Moody). They view information technology as an applied science instead

of a pure science. Scientific rigor does not apply well to applied science. This group

tends to borrow many of the research methods used in anthropology and sociology.

(Travis) This group utilizes focus groups, interviews, and case studies. These are the

same techniques used in requirements elicitation. (Pressman, Nuseibeh, Galliers)

The third group is not as representative as the other two, but they bear

mentioning. They are the critical theory-neomarxist-postmodern-praxis group. This

group believes that all assumptions must be challenged. This group is essentially anti-

establishment, believing that there are hidden agendas and contradictions in most

research. They are critical of our ability to know reality with certainty. (Trochim) They

challenge the underlying cultural, legal, scientific assumptions that form the basis of

reality. (Reeves) For example, Einstein postulated that light (c) has a constant speed

regardless of the frame of reference. Numerous experiments have confirmed his

postulation, however recent work by Montgomery and Dolphin are challenging that

postulation. Their research has indicated that the speed of light decreased over time, thus

the atomic clock is decreasing with respect to dynamic time. (Montgomery)

The last group is the eclectic-mixed methods-pragmatic group. This group is not

averse to using techniques of the other three groups to collect data and solve problems.

The approach used depends upon the problem to be solved (i.e., hypothesis), the context

in which it resides, and the purpose of the research. (Travis, Moody) This group tends to

be more practical and they are not as philosophically driven as the other groups. They

recognize the weaknesses of the various methodologies and try to construct an approach

that maximizes the value of the information gained in relation to the objectives of the

research.

B. APPLYING VARIOUS METHODOLOGIES

Developing a pure positivist approach to supporting the hypothesis in this

dissertation is difficult. In scientific rigor, all variables that affect the end result (i.e.,

quality software and post-production support) must be identified. To ascertain that

results are only caused by the hypothesis, and not other conditions, other irrelevant

 213

factors must be controlled and kept constant to eliminate their influence. (Xia) It is

therefore necessary to identify all of the factors that lead to quality software and support.

This approach makes the assumption that the concepts of quality and support and their

associated properties can be defined in measurable terms. It is possible to use the quality

measures derived by McCall, Hewlett-Packard, and ISO 9126, but these measures are

indirect measurements of quality, and are often subjective.

It is possible to rephrase the hypothesis in terms that are more quantitative, but

that does not make defining the terminology any easier. For example, if the hypothesis

stated that SLAs could reduce coding errors, the end result is still not clearly defined, and

it does not address the underlying theory. The hypothesis does not state whether the

errors that will be reduced are in the development, coding, or maintenance stage of the

application’s lifecycle. The hypothesis also fails to explain how coding errors are

reduced. To properly test the hypothesis, all of the factors contributing to coding errors

would have to be explicitly defined. Establishing a control group to test the hypothesis

will be difficult, when variable factors such as education, experience, code complexity,

fatigue, and time pressures contribute to coding errors. Researchers ascribing to the

positivist beliefs need to be careful to avoid the pitfall of focusing only on problems that

can be researched (using scientific rigor) rather than those problems that should be

researched (i.e., provide practical knowledge). (Moody)

Interpretivists claim that software cannot function in isolation from the system in

which it is embedded, and a systems view necessitates evaluation of human factors. They

believe that many software methodologies, heuristics, and guidelines are dependent not

upon pure scientific research (i.e., positivist approach), but upon human cognition (Xia),

social action, and even the human body (Mingers). An interpretivist approach to testing

the hypothesis would consist of group discussions or individual interviews to determine

people opinions regarding the hypothesis. The core of interpretivist research is the need

to understand the relationship between an individual’s behavior and that individual’s

mental state of preparedness to act in a predetermined way. (Smith) The researcher starts

with an existing (theoretical) knowledge of the topic under investigation. Through a

 214

process of interviews, the researcher gathers new evidence and compares the results

against what is already known about the phenomenon under investigation. (Smith)

It is possible to test portions of this hypothesis using an interpretivist approach,

but testing the entire hypothesis will be extremely time consuming and will also be very

difficult. Interpretivist studies are designed more towards the development of concepts,

generation of new theory, examining relations between attitudes and behavior, mapping

an individual’s overall range of behavior and attitudes, and collecting a rich amount of

insight into an issue. (Smith) In qualitative research, the goal is to establish a match

between an aggregation of subject’s view of reality and the reality that the researcher has.

Results obtained from qualitative data are generally not used to support theoretical

propositions. This is due in part to the argument that social sciences (e.g., anthropology,

sociology) cannot explain events by cause and effect, because they cannot capture all of

the contributing factors.

If the hypothesis was that software developers would be more likely to spent the

requisite time and effort to reducing coding errors if SLAs with strong incentive or

penalties were utilized, then individual interviews or focus groups could discuss SLAs,

and whether the incentives or disincentives motivated them to produce faster and better

code. Researchers could ask questions such as, “If you were fined for each error you

produced, would you concentrate more on reducing errors?’ Another question might be

“In your company are you evaluated by quality or quantity of code produced?” By

comparing the results of the research against predicted outcomes, the researcher could

determine if the evidence collected supported their view of reality.

The eclectic group believed that it was possible to combine positivist and

interpretivist methodologies to derive a richer solution set. Limiting research to one type

of methodology offers a limited perspective. The best hope of achieving objectivity in

research is to triangulate across many different perspectives and approaches. (Trochim)

Software engineering is not computer science; it involves a great deal of human

interaction and subjectivity. As such neither positivist nor interpretivist approaches can

provide an overall solution. Rather than concentrate on a specific methodology to use, it

 215

is more important to determine what critically, theoretical, and practically informed mix

of methodologies best deals with the problem to be solved. (Clarke)

C. DISSERTATION METHODOLOGY

The research conducted in this dissertation will combine both the interpretivist

and positivist approach. When this approach is used, researchers gather information,

opinions, and attitudes concerning a particular topic by which to form propositions.

When the interviews reach a point of sampling saturation (i.e., the point where new

interviews fail to reveal any new insights), the information is compared to predictions.

New insights are collected and the original proposition is supported, or amended to

reflect the new information. At this point the positivists can start gathering statistical

data such as determining the frequency at which the issues, ideas, or insights occur. The

statistical data will offer additional data to apply towards a new or already existing

hypothesis. Utilizing positivist approaches towards information obtained through

interpretivist research in not unique (Sarker, Kumar, Smith) and can be used very

effectively.

At the beginning of a study it is helpful to utilize qualitatitive research

methodology to establish an aggregate of people’s ‘frame of reference’ toward a given

topic. When issues involve subjective interpretation, it is recommended that researchers

only go directly to quantitative methodology if they fully understand their subject’s view

of reality. Otherwise obtaining qualitative data first is the preferred methodology.

Determining the proper mix of qualitative and quantitative research is dependent upon the

problem to be solved, and it is likely that one methodology will have more weight than

the other. (Smith)

The research conducted in this dissertation will utilize both positivist and

interpretivist approaches. The research will appear to be more quantitative than

qualitative, but only because much of the qualitative information was distilled into the

information presented in the questionnaire.

The qualitative portion of the research consists of a combination of top-down and

bottom up approaches. In a top-down approach to qualitative research, the interviewer

 216

begins the research with a particular view of reality and the research is gathered to

support this view. This approach has merit if the researcher’s theory is formulated in

solid normative evidence. It also adds a form of structure and discipline to the subsequent

analysis. (Smith) At the other end of the spectrum is the bottom-up approach. The

bottom-up approach is where the researcher has no preconceived notions and during the

course of interviews and analysis, the formulation of a proposition is created. Most

qualitative research uses a combination of both approaches. The researcher generally has

a rough concept of reality, and uses the information collected from the research to

compare against that view.

The questionnaire in this dissertation started with an informal qualitative analysis

among a number of colleagues. In a series of meetings on server consolidation the issue

of post-production support was discussed. After reviewing numerous government and

commercial contracts for host support, it was determined that none of the contracts

reviewed provided the support required. A new contract needed to be developed. While

writing the SOW for post-production support, and the accompanying SLAs, interviews

were conducted with system administrators, information assurance professionals,

program managers, software developers, database administrators, and commercial

external service providers (ESP). In addition to the interviews over 100 articles and

books were reviewed. The results of these informal interviews and the literary search

formulated the bottom-up approach that generated the starting view of reality.

Once the central theme was developed, an article written by Charles Mann

initiated the top-down analysis portion of the research. His article detailed a number of

reasons that software quality was lacking, and he proposed legislating software quality as

a solution to the situation. His solution was to hold software developers accountable for

faulty code. On the magazine’s web site, readers were able to post comments concerning

the article on a bulletin board. Over 100 people responded to his article. The information

from that sample group in addition to those of Mann and other articles detailing poor

software quality provided additional information to support the starting view of reality.

 217

To take advantage of the information gained in the previous qualitative research,

the questionnaire was designed to both validate the information previously collected

(qualitative part), and provide a measurement of the strength of the aggregate opinion

(quantitative part).

D. QUESTIONNAIRE

Interviews traditionally have a moderator that guides the discussion in order to

obtain the information being sought. When the issues are complex, it is often necessary

to provide the appropriate amount of education to ensure that the subjects are

knowledgeable enough about the topic to make informed decisions. The moderator must

ensure that every group or individual is given the appropriate amount of information, and

that all relevant topics are discussed. Additionally, any bias needs to be presented to all

participants in the same manner. This is extremely difficult when more than one

moderator is used. It is even difficult when multiple sessions are conducted with the

same moderator. The approach used in this research is to provide all of the information

needed to form opinions explicitly in the questionnaire. This ensures that all participants

are presented with the same information, and that any bias that is introduced is presented

to all participants.

To generate thought on the subject, opinions generated from the earlier ad hoc

qualitative analysis in addition to information derived from literature review is presented

in the first section of the questionnaire. The section discusses Charles Mann’s article,

along with numerous opinions on the issue of software quality. The opinions were from

multiple sources and represent many different perspectives. Also in this section is a

discussion on the merits of SLAs.

To further illustrate the concepts in a real-world scenario, the second section of

the questionnaire is a case study on how SLAs are developed, along with an example of a

SLA for availability. The case study provides additional information and allows the

subject to apply the lessons learned in the first section to a case study. The second

section presents a different perspective from the first section, and also generates thoughts,

opinions, and emotions on the subject.

 218

The last section consists of the questionnaire itself. Many of the statements were

based on the opinions already gathered with the prior qualitative analysis. The statements

were designed to provide a more formalistic validation of information previously

collected. Although this approach does not incorporate a mediator, the subject is guided

through the discussions by the first two parts of the questionnaire, and the last part allows

the subject to express opinions concerning the topic. In addition, the questionnaire

includes some open-ended questions in which the subjects are free to express their

opinion in their own words, from their own perspective.

The three parts of the questionnaire were formulated from the information

obtained during the previous qualitative analysis. The subsequent quantitative analysis

will concentrate on how strongly subjects feel about various aspects of SLAs and their

ability to improve the quality and management of software intensive systems.

The quantitative phase of the research consists of a number of statements

(representing the common themes from the qualitative analysis) and an accompanying 5-

point Likert scale. The questionnaire begins with demographic data to provide some

possible insight to the analysis. Statements 4 through 29 utilized a bipolar Likert scale

that ranged from strongly disagree (1) to strongly agree (5). The Likert scale also

incorporates a neutral response (3).

The sample was not random in that IT professionals from both the government

and industry were asked to fill out the survey. The topic was considered too complex for

a random sample of individuals. The IT professionals were also sought for their practical

experience in dealing with SLAs, ESPs, software development, program management,

and post-production support.

A great deal of effort was expended trying to balance information presentation

with the amount of time a respondent would spend on the questionnaire. If the

questionnaire is too long, few people will be willing to exert the time or effort to

complete the questionnaire. If the questionnaire is too small, the respondent does not

have enough information to form an educated opinion.

Good surveys will contain some catch questions or statements. These statements

are closely related to as a previous question. The respondent should answer the same

 219

way to both questions. If the respondent answers differently to both questions it may be

an indication that the respondent was simply completing the questionnaire without much

thought. This survey contains two such questions.

The questionnaire was loaded on a web page, and the URL was e-mailed to

numerous IT professionals soliciting their responses. The questionnaire consisted of four

web pages. The first page explained the purpose of the questionnaire, and instructions.

The second and third pages correspond to the sections on software quality and the case

study. The fourth page was the questionnaire itself. When the respondent accessed the

fourth page to provide input to the statements, they give their permission to utilize the

information they provided in the research. Appendix (B) contains the actual

questionnaire.

E. RESULTS

Results from the questionnaire were captured in an access database. The results

were then converted to an excel spreadsheet and statistical information was generated and

the results are displayed in appendix (C). A Likert scale was used on the questionnaire to

determine the degree to which a respondent agreed, disagreed or was neutral on a

statement. Using standard statistical analysis on Likert scale responses can be

problematic.

In the questionnaire, responses ranged from 1 to 5. All responses were discrete

vice continuous. As such using measures such as a mean (average of all values in the

sample) and standard deviation (variability of observed values from the mean) can lead to

inference problems. For example, what does a mean of 2.5 infer? Is the difference

between strongly agree and agree the same as neutral and agree? Additional information

was needed to reinforce the results of the mean and standard deviation. As such

measures such as median (the middle value when observations are ordered from smallest

to largest) and mode (the value that occurs most frequently in the sample) have also been

calculated.

 220

Appendix (C) lists the individual questions, the mean, mode, median, standard

deviation as well as a bar chart to visually display the results in percentages. Appendix

(C) also lists the T-value and the P-value to determine if the results were significantly

significant.

The null hypothesis (Ho) was that µ = 3, or a neutral response. The alternative

hypothesis (Ha) was that µ ≠ 3. Since the values above and below the mean both have

meaning (agree and disagree), a two-tailed test was conducted. Given a sample of 43

responses, a Z value could be used (central limit theorem states that a normal distribution

curve can be used with a population over 30), but a T-value would give better results

given that the population was not much greater than 30. The significance level (α) is .05.

So the null hypothesis would be rejected if t ≥ tα/2,n-1 or t ≤ - tα/2,n-1. The value of tα/2,n-1 is

2.021 using a population of 41. The extrapolated value for a population of 43 was 2.023.

This means that the probability of a type I error (Ho is rejected when it is true) is α or 5

percent.

P-values were also calculated to give a better understanding of where the Ha value

would be rejected. Simply comparing the calculated t value against 2.023 forces the

reader to accept the significance value of .05. The P-value is the smallest level of

significance at which Ho would be rejected. Once the P-value has been determined it can

be compared against whatever specified level of significance an individual desires. If P ≤

α the Ho should be rejected at level α. (Devore)

F. INTERPRETATION OF RESULTS

The first analysis was to evaluate the responses on the catch questions. These are

questions that are closely associated with one another. Questions 18 and 22 both

concerned program management. There were only three responses where there was a 2

Likert scale difference. Overall the means of the two questions were the same.

Questions 9 and 23 dealt with the affect of SLAs on software quality in the development

stage. There were two responses where there was a difference of 2 Likert scales. The

difference in the means of the two questions was .0148. A t-test on the means of the two

groups of samples showed that the differences between the means were not significant.

 221

Additionally some of the questions that the author predicted a response of agree

or strongly agree were intentionally worded to be negative, so the respondent would be

expected to answer with a response of strongly disagree, or disagree. The respondents

did actually respond with a mean towards 2 on those statements with negative wording.

This meant that the respondents were actually reading the questions and were not

randomly selecting answers.

Statistics on the respondents indicated that the majority had over 6 years of

experience in IT. The respondents were well represented in management (58.1 percent)

and IT implementers (41.9 percent), and almost half had more than 1 year of experience

working with SLAs.

Questions 4 through 29 only had 3 questions that were not statistically different

from a mean of 3 or a response of neutral using the T-value test. The Ho could not be

rejected on the questions of whether respondents were satisfied with the quality of

software they use, and whether a lack of in-house skills would prevent the development

of SLAs. Similarly the question of whether it was too difficult to enforce penalty clauses

was too difficult also could not be rejected.

Respondents agreed that SLAs would improve software quality throughout its

lifecycle. Results strongly indicated that respondents felt that SLAs could improve

software quality in the development and post-production phase. However, in the

comments column some of the respondents felt that SLAs must be backed up my

managerial commitment to be affective. They also felt that SLAs were not a silver bullet,

and must be used in conjunction with other quality initiatives. Along this same vain

respondents felt that SLAs could not resolve the quality issue associated with

management rushing software to market. The results also indicated that there was neutral

to mild agreement that software quality in the software they were currently utilizing was

acceptable.

Overall, respondents felt that SLAs would improve software program

management. Results indicated significant agreement that SLAs would improve program

management through configuration management, change management, managing user

expectations, focusing on key performance issues, source selection, and ensuring

 222

underlying business processes were supported. Comments indicated that respondents felt

that SLAs could contribute to software lifecycle management, but the level of success

depended upon management’s commitment to those SLAs.

Respondents also felt that SLAs assisted in the development of requirements.

Results indicated that subjects felt that the SLA development process not only facilitates

the involvement of end users, but in doing so it also helps to manage the end user’s

expectations. Respondents indicated that they believed that the team development

concept helps to identify those quantitative metrics that are critical to the success of the

underlying business process. The survey also indicated that subjects felt SLAs could help

inject quality and security into the early parts of the development process.

The respondents approved of the format of the SLA presented in the survey.

Results indicated that they felt that the format was easy to understand and clearly defined

the services and the methodology to measure whether a requirement met the specified

threshold levels.

People taking the survey believed that the work required to generate the SLAs

were worth the effort. They also felt that developing SLAs were not too difficult for their

organization. The two of the questions that had no significant deviation from a neutral

response were on whether the skill sets to develop SLAs existed in their organization and

whether penalty clauses were too difficult to enforce.

G. RESEARCH USING HOSTING SLAS

The SOW and SLAs in Appendix (A) were developed to determine in a practical

business environment whether SLAs could assist program managers maintain quality in

their post-production applications. Appendix (A) contains SLAs that have been

developed for hosting services for the NAVSUP claimancy. The intent of the SLAs were

to demonstrate the potential to utilize SLAs to manage information-intensive systems and

inject software quality in the post-production environment.

The NAVSUP claimancy, like most, has been hit by fiscal cuts, IT manpower

shortages, and a lack of strong centralized policy. To combat these problems NAVSUP

has been aggressively pursuing a policy to consolidating their servers. During the

 223

inventory of servers it became obvious that there was no standard for how servers or

applications were maintained or hosted. Additionally, many of the program managers

that were interviewed did not know enough about hosting services to be able to contract

for those services. The contracts that did exist did not provide a good definition of the

services to be provided, nor were there any SLAs mandating performance levels.

The SLAs in appendix (A) were developed for the program managers to assist

them in the management of their post-production applications. The SLAs outline the

standard hosting services that should be used across the claimancy. The intent was that

these services would provide the necessary functions to properly monitor and host an

application. The levels of service are broken into three levels of support: essential,

enhanced and premium. The levels of service would depend upon the type of application,

its criticality and fiscal constraints on the program.

The SLAs were designed to be used as a template. Each program will have to

select those services and service levels that best meet the needs of their respective

applications and the underlying business process. The use of a template alleviates the

necessity for each program manager to research and develop hosting requirements. The

template also offers services that will provide the appropriate quality and performance

standard that can be used by all program managers in the claimancy. The performance

thresholds were based on industry standards, or current NAVSUP standards. Program

managers are expected to use benchmarking of their current services, forecasting future

needs, and consulting with stakeholders to gather information to determine whether the

thresholds specified in appendix (A) will meet their needs. Based on preliminary reviews

most of the applications in the NAVSUP claimancy will use the standard services as

outlined in the three levels of service, although some of the thresholds will have to be

modified.

The SLAs are grouped in thirteen service areas that cover many of the services

that were outlined in the previous chapter. Each SLA contains 17 data elements that

define the service, specify the quantitative metrics that will be used to measure

performance, outline roles and responsibilities, methods for collecting measurements, the

threshold levels that must be met, and associated penalties or incentives.

 224

The original intent of the dissertation was to utilize the SLAs in appendix (A) in

an actual contract, and gather information from the program managers and the contractors

to determine their reaction to the SLAs, their thoughts on the process of developing

SLAs, and whether they felt that the SLAs were effective in delivering quality services.

Unfortunately, the contract negotiations were stalled numerous times for various political,

fiscal, and technical reasons. As a result, negotiations were still ongoing at the writing of

this dissertation. The answers to the questions posed above would make a good follow

on thesis or dissertation.

The SLAs and SOW in appendix (A) were however, used by NAVSUP in

contract negotiation to compete hosting services between two organizations. Before the

source-selection board met, Gartner and MetaGroup (both IT consultants) reviewed the

SOW and SLAs. Both groups felt that the documents were excellent, but that the price to

achieve that level of service may be too expensive. The NAVSUP source-selection board

for the contract stated that the SOW and SLAs made it easy to compare the bids, as the

two organizations had to address the specific services and service levels outlined in the

documents. It allowed the selection board to make more of an apples-to-apples

comparison. Many of the extraneous service claims from the service providers were

discarded, as they did not apply to the services specified in the SOW or SLAs. Based on

the estimates from the two organizations, the source-selection board applied a balanced

scorecard approach and selected a winner. Unfortunately, comments and results from the

source-selection board are considered proprietary, so they could not be used in this

dissertation.

NAVSUP is in the process of negotiating hosting service with the winner of the

source-selection board using the SOW and SLAs in appendix (A). The SLAs and SOW

in appendix (A) are also being reviewed at NAVAIR, NAVFAC, SPAWAR, and

NAVNETWARCOM for inclusion into a Navy-wide contract for hosting services under

CLIN 0029 of the NMCI contract. To date the SLAs have received very favorable

review.

 225

H. WEAKNESSES

After evaluating the data, there were a couple weaknesses in the research used for

this dissertation. The first weakness was that the questionnaire was biased toward

supporting the hypothesis. The questionnaire did not go into the disadvantages of SLAs,

nor did it mention case studies where SLAs were not effective. Although some negative

aspects of managing SLAs were addressed in the questions in the questionnaire, all of the

arguments were designed to show the user that SLAs could be used to help improve

software quality and manage IT intensive systems. As the survey was targeted to IT

professionals, the questionnaire was designed to present an argument that the respondents

could provide comments on. The questionnaire was not intended to convince an

uninformed individual of the benefits of SLAs. However, the fact that 9 percent of the

respondents had less than 4 years of IT experience and over 30 percent had not dealt with

SLAs before, could lead one to believe that some respondents were biased in support of

the hypothesis.

In the bottom-up analysis the qualitative analysis did not consist of formal

interviews with predetermined questions and documented results. Additionally

information obtained from the interviews often concentrated on specific problems, and as

such, the sample size contributing information on a specific topic would not be

representative.

The top-down analysis also had some weaknesses. In qualitative analysis, the

researcher must to some degree interact with the subject. In the top-down analysis, the

researcher did not interact at all with the subjects. As such, the subjects were free to

comment on the article in whatever direction they chose, and at whatever depth they

determined. Although a great deal of information was obtained, this approach lacked

regiment.

The survey had 43 responses. A greater number of responses would have

provided more statistically meaningful data with respect to how the different groups

answered the same questions. Unfortunately the size of the survey coupled with the busy

schedule of most IT professionals made gathering more responses a difficult task. It

 226

would have also been useful to add a question on whether the respondent represented

public or private industry. That information may have lead to some additional insight.

Finally, the respondents were only allowed to see one example of a SLA.

Respondents may have made more informed decisions if they could see a SLA for

development work, maintenance, and hosting services. Unfortunately, that was not

possible as the length of the survey was overly burdensome for some respondents. The

amount of information presented in the questionnaire had to be weighed against the fact

that fewer people would fill out the questionnaire if it became too large.

I. SUMMARY

The research utilized a pragmatic approach where both postitivist and

interpretivist approaches were utilized. The survey results indicated that the respondents

felt strongly that SLAs could be used to increase software quality. They also felt that

SLAs helped in the management of IT intensive systems. However, comments collected

from the survey indicated that SLAs, while helpful, would not be successful without

upper management support.

 227

XI. CONCLUSION

A. REASON FOR STUDY

To maintain a competitive advantage, organizations have to rely more on

software-intensive information systems to support or enable their critical business

processes. As a result, organizations are starting to look upon software quality

management as a critical, strategic aspect of the product-development process. Despite

advances in the principles and mechanics of software engineering, the quality of software

is still lacking. This can be attributed in part to poor practice, including but not limited to

marketing pressure, improper training, and lack of managerial oversight.

Another reason for poor quality is that contracts for outsourcing are not as explicit

as they need to be. As software-intensive information systems become ever more

complex and large, organizations are increasingly tempted to outsource IT development

and support to companies specializing in providing IT services. While organizations are

now able to take advantage of external expertise, they must write good outsourcing

contracts to take the maximum advantage of that expertise. However, there are many

real-world examples in which outsourcing contracts do not contain a good specification

of requirements. In some cases, principle stakeholders, such as the end user, are not

involved in the requirements specification activity; quality requirements are not

incorporated into the requirements; and quantifiable, measurable, meaningful metrics are

not identified.

Another problem leading to poor quality is that many program managers do not

have the technical expertise to manage IT systems. Program managers not only need to

understand the technology associated with architectures, standards, software-

development processes, and software-systems engineering, but also need a firm

grounding in contract management, project scheduling and tracking, risk assessment, and

budgeting.

This study was conducted in an effort to determine whether SLAs could be

utilized to improve software quality, and in turn, the overall quality of software-intensive

information systems. This is a foundational study with the aim of determining feasibility

 228

and collecting feedback from IT professionals on whether they believed that SLAs would

improve the management and quality of IT systems. Follow on studies can evaluate the

effectiveness of SLAs in providing software quality in actual projects. The SLAs in

Appendix (A) have not been incorporated into the NMCI contract at this time.

B. KEY POINTS

This dissertation has explored the concept of utilizing SLAs as a tool to improve

the management and quality of software-intensive systems throughout its lifecycle. We

demonstrated how SLAs could be used in the requirements, development and post-

production phase of software development to improve software quality. We also showed

how SLAs could aid the program manager by improving configuration management,

contract management, risk management, quality control, and customer satisfaction.

This dissertation demonstrated how many of the problems with software

acquisition could be addressed from a software acquisition perspective. Program

managers need to do more than add quality requirements to their software development

contracts. In many cases requirements are not measured until the end of a major

milestone, and if there are any problems with the requirements, the program managers

have little recourse short of canceling the program. Although SLAs are also

requirements, their format makes them a more effective contracting tool. SLAs provide a

detail description of the services, service levels, and the method to measure and monitor

the service level. SLAs are also more effective because the measurement period is short

enough to resolve problems and the penalties in the SLAs give the program manager

recourse if quality levels are not met.

SLAs can help to improve quality in the various phases of the software lifecycle.

In the requirements engineering phase of software development SLAs help to bring all

stakeholders together to focus on identifying quantifiable quality factors that they feel are

essential in a system to support the underlying business process. SLAs specify the

quality metrics and quality thresholds that allow an organization to determine whether

quality requirement have been met. As such, SLAs make explicit many of the quality

factors that users may implicitly assume. Measurements and monitoring resulting from

 229

SLAs also support early detection and resolution of quality problems. SLAs help

reinforce the notion that quality management is a strategic, critical aspect of the quality

control process throughout a system’s lifecycle.

In the development phase, the quality factors that are addressed in the SLAs drive

architectural and design decisions. If developers know which of the characteristics are

most critical to project success they can select the architecture, design, and programming

approaches that best achieve the specified quality goals. SLAs help ensure that quality is

designed in at the beginning phases of the lifecycle. SLAs can also improve software

quality in the development phase by contractually mandating that certain quality control

measures (e.g., adhering to specified standards and processes) be performed.

In the post-production phase of software development SLAs can be used to

specify the quality requirements for application performance, software maintenance

efforts and hosting services throughout its lifecycle. Monitoring the performance of the

application and its supporting infrastructure once it is deployed is essential in

implementing process and quality control, as well as maintaining customer satisfaction.

It requires a great deal of management to produce quality software. Program

managers have to ensure that quality considerations are addressed early in the lifecycle

and they must provide the proper amount of oversight to ensure those quality factors are

incorporated into the final product. SLAs provide quality control measures that can assist

program managers in many of the managerial tasks necessary to ensure quality is

delivered in the final product.

Program managers need to measure and monitor contractor, project, and system

performance throughout the project’s lifecycle to ensure requirements, standards,

processes, and quality requirements are being met. SLAs mandate monitoring of the

quality requirements associated with process, product, and project quality. If quality

levels are not met, program managers and the contractor are informed of the violation and

potential risks, allowing them to take the action necessary to correct the situation.

The thirteen SLAs in appendix (A) illustrate how SLAs could be used in the post-

production phase of software lifecycle to assist the program manager by establishing

process and quality control measures necessary to support a software-intensive system.

 230

The SLAs in appendix (A) introduced a new format that was useful in coupling the

quality requirements back to the business processes they supported. If used properly, the

new SLA format improved on standard SLA formats by provided greater detail with

respect to the services required, the means of measuring the services and the

responsibilities of all parties.

The survey of IT professionals indicates agreement that SLAs can play an

important role in addressing software quality. SLAs can drive product, process, project,

and deployment quality solutions. SLAs can help ensure that quality requirements are

established early in the development cycle in order to be incorporated into preliminary

designs. SLAs help program managers with the oversight of the various aspects of the

projects. SLAs also carry sufficient weight through penalties and incentives to focus

management and contractor attention on the quality issues that will impact business

critical areas.

C. FUTURE WORK

Although SLAs are not uncommon in application-hosting services, they are not

usually found in software-development contracts. There are a number of areas that can

build upon the work conducted in this dissertation.

1. Evaluation in Actual Contracting

Future study is necessary to determine the magnitude and direction of effects of

utilizing SLAs in actual contracts for host services, as well as application development.

Studies can evaluate how well the SLAs helped in requirements engineering, design,

post-production support and program-management tasks. This research can also evaluate

whether SLAs helped in the negotiation and source-selection process, or whether they

complicated the contracting process. These studies should also focus on the reactions of

program managers, end users, and contractors, as well evaluating upper level

management’s support of the SLAs, and whether they believe SLAs are effective tools

for quality control.

SLAs in theory should lead to higher levels of software quality, but additional

research utilizing actual contracts is needed to test the hypothesis proposed in this

 231

dissertation. If quality is defined as the extent to which a system, process or component

meets specified requirements and meets user needs, studies can be conducted to compare

similar software projects with SLAs against those without SLAs to determine if the SLAs

improved quality. Future studies can also evaluate the success or adoption of the concept

of SLAs within public and private organizations. Studies can also focus on the

effectiveness of SLAs on large and small software-development projects.

Template SLAs, such as those found in Appendix (A), are designed to assist

program managers that may not have the technical skills necessary to lead the SLA

development effort on their own. Program managers can modify the existing template

SLAs to suit their application requirements. Additional research can focus on the

effectiveness of template SLAs. Studies can evaluate whether template SLAs helped the

program manager, contractor, or end users incorporate quality requirements into the

software specifications.

2. Quality Factors

Although there has been a great deal of research on software metrics, few models

have been widely adopted in the commercial sector. There are no industry-accepted

standards that define quality factors, quality metrics, and their associated quality

thresholds. In many cases quality models are not used because automated tools do not

exist to make measurements easy to gather, or because the measurements are too

subjective to be of value outside of a particular organization.

Research is needed to determine the quality factors, their associated quality

metrics, and meaningful quality thresholds that can best measure product, process, and

project and post-production quality. Studies are needed to determine which quality

models and quality attributes are best suited for different types of IT systems (e.g.,

missile systems should have high reliability and response rates, whereas logistics systems

should have high interoperability, portability, reliability and usability). These studies

should concentrate on quality models and metrics that can support commercial software

development. A measurement of cyclic complexity of X means little to commercial

developers unless there is a cause and effect associated with a measurement of X. For

example, organizations with project complexity between X and Y have a sixty-five

 232

percent failure rate (cost and schedule overrun) as demonstrated in over 500 software

projects analyzed for cyclic complexity.

Follow-on research can also concentrate on writing template SLAs for product,

process and project quality. This research can evaluate various quality models and

determine which can be utilized in SLAs to encourage the adoption of processes leading

to a quality product. The research would not only identify potential quality factors, but it

would also have to identify quality metrics and thresholds that could be utilized in SLAs.

Research can also improve the template SLAs in Appendix (A) that were written for

hosting services.

3. Availability

In Appendix (A), we discussed availability in the context of ability to compute.

Current monitoring tools such as Tivoli and HP Open View can provide a wealth of

information concerning server and network performance, but it is difficult to determine

which metrics warrant the most attention, and what quality thresholds are acceptable.

There is an ongoing debate among system and network administrators as to which

metrics are most important. For example, if CPU utilization in a server is important,

should the system administrator take action when the utilization is eighty percent, ninety

percent, ninety-five percent, or higher? Appendix (A) lists some common quality metrics

and thresholds, but further research is needed to determine an industry-accepted list of

quality factors that represent an ability to compute.

4. End-to-End SLAs

SLAs are most meaningful when the measurements come from the end user’s

perspective; however, end-to-end SLAs are difficult to achieve. More research is needed

to generate tools or processes that will easily allow end-to-end measurements for

response time, availability, and other quality metrics across an infrastructure that is

owned by different entities.

There are currently tools that can account for end-to-end response times, but

agents are needed within the client and server side of the application to properly account

for where delays occur. Research can concentrate on other approaches such as coding the

application to send timestamps for certain test inquires.

 233

APPENDIX A: NAVSUP HOSTING REQUIREMENTS AND
SERVICE LEVEL AGREEMENTS

Abstract

This paper consists of a statement of work (SOW) and its related service level
agreements (SLAs) for hosting services. The paper will be used as part of contract
negotiations to outsource the hosting functions for NAVSUP owned applications. The
SOW contains the hosting requirements that NAVSUP believes are necessary to support
the application.

NAVSUP will maintain control and responsibility of the application software, but
all server and infrastructure hardware as well as system software support (operating
system, monitoring software, utilities, and infrastructure software), is the responsibility of
the service provider. The SOW details hosting requirements at three levels to allow
program managers to select the levels and the corresponding services that best meet their
needs.

A service level agreement (SLA) is an agreement between a provider of services
and a customer that defines a level of performance. This agreement defines in measurable
terms the service to be performed, the level of service that is acceptable, and the means to
determine if the service is being provided at the agreed upon levels. SLAs define the
quality of service, and how it is measured. There are fourteen SLAs defined that support
the SOW.

This paper provides a starting point for negotiating host services. The intent of
this paper is to give the program managers a document that listed hosting services that
will provide a high level of support for their application. The SOW and SLA were
designed to meet the needs of most applications, but each program manager will have the
flexibility to select and modify the services and service levels required to support their
specific applications.

NAVSUP Hosting Statement of Work

The scope of this document is to define the requirements for hosting Navy
midrange application systems. Midrange systems are defined as those systems that fall
between stand-alone applications residing on a personal computer (PC), and those that
reside on a mainframe computer. The scope assumes the Supplier maintains ownership
of the servers, networking hardware, and associated systems software that is necessary to
provide the hosting environment. It is not the responsibility of the Supplier to purchase
or maintain application software unless otherwise negotiated between the Navy’s
Application Program Manager and the Supplier. The scope does not include hosting
hardware that is owned by the Navy, which is referred to as co-location services.
Although many of the requirements in this document apply to co-located hardware, co-
location services are not part of this document and will be negotiated separately between
the Navy and the Supplier. The government is contracting for a hosting service. The
government does not intend to procure or maintain any of the hardware in the host

 234

environment. The Supplier is responsible for the hardware hosting the application. That
allows the Supplier the flexibility to maximize efficiencies within their organization,
resulting in a lower cost to the government.

This document is intended for production applications. It does not apply to test
platforms, although this document can be easily modified to support that need. Test
platforms will be negotiated under another contract vehicle with appropriate service level
agreements (SLAs).

This document attempts to draw a clear line between application support, which is
the responsibility of the program manager, and system software support (operating
system, monitoring software, utilities, and infrastructure software), which is the
responsibility of the Supplier. Any application support, other than monitoring, is outside
the scope of this contract.

A. ESSENTIAL PACKAGE SYSTEM SUPPORT AREAS

This statement of work (SOW) outlines three levels of support, the essential

package, enhanced package and the premier package. The application’s support
requirements will dictate which package should be selected. If the enhanced package is
selected, all of the services included in the essential package will also be included in the
enhanced package. The premier service will also include services outlined in the
enhanced package.

In addition to the services offered by each package, specified services can be
added or deleted from the package. Adjusted services are outlined at the end of each
package description.

The essential package is designed for stable, non-critical applications with
minimal requirements for change, and predictable growth. As such, the services will
reflect predictable capacity utilization, a consistent user base, and reliable application
software.

1. Application Migration Service

Application Migration Services are the tasks necessary to transfer an application

from one host environment to another. This seemingly simple task can be extremely
complicated and difficult. A well-defined process needs to be implemented to ensure a
successful migration. Migration services include information collection, platform and
environment design, execution planning, testing, and ultimate deployment of the
application.

a. Midrange Site Transition Services

Midrange site transition services must be available for moving Navy

applications into the host environment. These services must include the use of a proven
project management methodology and proven experience with transitioning similar
applications.

 235

Midrange Site Transition Services Requirements are:
• The Supplier will gather information on the application, develop a design plan for

hosting the application, perform testing in accordance with the test plan, redesign if
needed, prepare for ongoing production support services and deploy the application in
a production environment.

• The Supplier must obtain, assemble, install, customize deploy, and tune network
and server hardware, operating systems, and associated applications.

• The Supplier must coordinate with Navy Program Managers and technical staff to
perform requirements determination and obtain a site survey of the application system
being transitioned.

• The Supplier must develop a risk assessment plan. The Supplier must work with
Navy Program Managers to identify and mitigate the risks associated with the
transition of the application into the hosted environment.

• The Supplier must provide a project manager to oversee transition execution.
• The Supplier must provide a project plan with extensive detail, a work breakdown

structure, and timelines to enable the execution to be managed and executed
effectively within the Navy’s operational constraints and business requirements.

• The Supplier must test the project plan execution in a test environment to validate
the documented process and to confirm the defined production infrastructure supports
the application and integrates into the host environment.

• The Supplier will work with the Navy application development team in
developing a test plan to ensure the application performs as expected in the host
environment. The Navy must approve the Supplier’s test plan. The plan must outline
the various tests to be performed, and establish thresholds for success. The Navy
Program Manager must be responsible for functional testing, or for developing test
scripts.

• The Supplier must ensure that the application’s performance in the new
production environment is equal to or greater than the performance the application
demonstrated before the transition. Benchmark tests will be performed in both
environments for comparison.

• The Supplier must test the application in a test environment before moving the
application into production. The test of the application must follow the processes
defined in the test plan. The test plan must ensure the testing environment emulates
the application’s production environment.

• The Supplier must provide project status or updates (at least weekly) of the plan
from development through to implementation and post-migration.

• The Supplier must be able to execute the transition using a proven and repeatable
set of processes that include multiple implementation options based on Navy
requirements.

• The Supplier must provide a design solution for the hosted applications and be
able to implement the solution.

• The Supplier must review implementation requests and the platform solution
design with Navy Program Managers to verify the requirements, educate developers
or maintainers on the technology being employed, and ensure they understand the
new architecture.

 236

• The Supplier must interact with the identified network provider to help confirm
that the platform configuration integrates the network requirements and connectivity
is established to the Navy’s LAN/BAN/WAN.

• The Supplier must ensure that applications that print to network printers have the
necessary connectivity to the network and that the printer is properly set up on the
server.

• The Supplier must verify that the appropriate hardware and system-level software
products, for example, the operating system and non-application software, are
obtained and ready to implement before the transition begins.

• The Supplier must work with the Navy technical staff to obtain, install and
configure the application being transitioned.

• The Supplier must communicate migration support issues or implementation
concerns through the site-specific communication process. The Supplier must
provide progress reports to the Navy Program Manager as required.

• The Supplier must install and configure system-level software according to
requirements defined in the platform solution design.

• The Supplier must work with the Navy Program Manager to define the backup
and recovery needs for the application being transitioned.

• The Supplier must obtain signoff from the Navy Program Manager before going
live with the application in the new environment.

• The Supplier must provide a final review of the implementation to determine
whether the requirements have been met. Based on the final review, a production
implementation live date is agreed to, at which point Transition Services end.

• The Supplier must incorporate the new application and associated hardware and
software into all necessary documentation (e.g., hardware and software configuration
documents, the backup plan, the disaster recovery plan, operation procedures,
network diagram, etc…)

• The Supplier must complete a vulnerability assessment of the host environment
(hardware, software and supporting infrastructure) that will be used to host the
application. The information will be incorporated into the Supplier’s System Security
Authorization Agreement (SSAA) in accordance with the DoD Information
Technology Security Certification and Accreditation Process (DITSCAP) program
outlined in DoD Instruction 5200.40 to cover the host environment. This requirement
is also included under the security section in more detail.

• The Supplier must provide the following documentation to the Navy Program
Manager upon request: Project Plan, Risk Assessment Plan, Initial Configuration
Audit, Design Solution, Results from initial audit of the application and the
requirements determination, Backup Plan, Disaster Recovery Plan, the Test Plan, and
SSAA documentation.

2. Systems Management

Systems Management is the process of monitoring, evaluating, and reviewing the

compute operation to determine whether operational requirements are met. The system

 237

management services included in the Essential Package are host system and network
monitoring, performance monitoring, intrusion detection, automating compute
operations, and system backup and recovery.

a. System and Network Monitoring

The System and Network Monitoring Services provide the operational

support processes and procedures required for monitoring midrange compute
environments for delivery of a stable, reliable functional environment.

System and Network Monitoring Services Requirements are:
• Monitoring of all network hardware (including firewall) must comply with

NMCI, DoN, and DoD guidance and regulations.
• The Supplier should monitor application software status to determine if the

application is responding.
• The Supplier must monitor all systems hardware and systems software that are

used to support the application systems being hosted. Exclusions are listed below,
however, monitoring for services on the list of excluded services must be available as
a separate offering where indicated.
Exclusions are:

• The Supplier should monitor application databases for space utilization
and database performance and other specific database criteria such as dead
locks (available under enhanced services).

• The Supplier should monitor applications database to ensure the database
is responding to requests (available under enhanced services).

• The Supplier must monitor all system consoles and logs. Console
monitoring must be done using industry standard procedures and industry standard
software. Some examples of industry standard monitoring software are: HP
Openview, Cisco Works, CA-TNG, and NetScout.
Console Monitoring Includes:

• The Supplier must implement Event Detection Monitoring on the servers to
detect any message sent to the system log and then cause an automated event
to occur.

• The Supplier must implement Network Monitoring on network assets within
the host environment. Some of the monitoring functions include quality of
service analysis, pinging an IP address or collecting data from an SNMP
device on the network resulting in an automated event.

• The Supplier must implement automated notification for console event alerts
(e.g., e-mail, alarms, automatic trouble ticket generation).

• The Supplier must monitor network bandwidth for each application.
• The Supplier must monitor network bandwidth for the host environment network.
• The Supplier must monitor IP availability for each machine. Furthermore,

selected sites on the Internet must be periodically (hourly) pinged to alert the staff to
potential Internet problems.

• The Supplier must monitor web sites for hosted applications.

 238

Web Site Monitoring includes:
• The Supplier must monitor polling of the Web site index (main) page.
• The Supplier must implement automated notification for console event alerts

if the site does not respond.
• The Supplier must provide reports using a standard reporting tool on web site

activities of the hosted applications (popularity documents, SLA compliance,
report of the sites that access the user's Web server most often, etc).

• The Supplier must provide monthly URL availability reports, if applicable, for
the hosted application.

• The Supplier must monitor URL availability to check the correct function of
HTTP processes at timed intervals as specified by the Navy Program
Manager.

• The Supplier must monitor HTTP response times. A threshold will be set on a
site-by-site basis; the party responsible for support is notified if the threshold
is exceeded.

• The Supplier must monitor HTTP Process Availability to ensure processes
operating on the Web server do not have “out-of-bounds” conditions that may
indicate an immediate or potential problem.

b. Performance Management

Performance Management processes include defining reasonable and

measurable performance metrics, documenting and executing performance monitoring
methods, maintaining contingency plans with corrective actions for exception
performance, maintaining a support plan that incorporates the appropriate performance
monitoring of documented requirements, reporting, implementing the monitoring
activities, and measuring ongoing results.

Performance Management Services include the support processes to collect,
monitor, and analyze system performance information, including, but not limited to:
• Processor(s) usage
• Input/output (I/O) throughput activity (e.g., operating system response time, disk

access times, transfer times to disk, backplane speed, paging)
• Disk usage
• Memory usage

As needed, performance changes are implemented according to a change
management process to modify the configuration and tune the system to optimize the
effectiveness and efficiency of the midrange environment.

Performance Management Requirements are:
• The Supplier must maintain operating system parameters to manage performance

and workload throughput. This includes tuning the system in the attempt to optimize
the application’s performance.

• The Supplier must monitor CPU, memory, I/O, and disk utilization against
predetermined thresholds.

 239

• The Supplier must monitor predetermined exception thresholds for Network
bandwidth to assist in establishing monitoring alerts.

• The Supplier must provide monthly reports on CPU, Disk, and Memory
utilization.

• The Supplier must provide monthly reports on network bandwidth and utilization.
• The Supplier must manage predefined exception thresholds for the operating

system and major components to assist in establishing monitoring alerts.
• The Supplier must monitor real-time performance using system management tools

to resolve system resource and performance problems.
• The Supplier must collect performance data dynamically to assist in problem

determination.
• The Supplier must analyze historical performance data to isolate or identify

potential performance issues.
• The Supplier must be able to recommend and implement workload allocation

changes as they relate to applications use of server and network resources to assist the
Navy Program Managers in resolving performance problems.

• Historical performance data will be retained for 1 year for trend analysis.

c. Capacity Management

Capacity Management Services include planning and monitoring system

usage and capacity, both short-term and long-term, forecasting resource requirements,
and analyzing and reporting resource trends. The Supplier’s capacity processes should
use metrics and reports that enable a clear understanding of overall performance and
trends.

The Capacity Management Services Requirements are:
• The Supplier must perform resource usage analysis, including tracking, trending,

and graphically illustrating resource usage by CPU, memory, I/O, storage, and tape
consumption.

• The Supplier must provide reports, at least monthly, to the Navy Program
Manager that show standard resource usage, trending and analysis. The Supplier
must assist the Navy Program Manager in understanding the hosted applications
current resource usage and future resource needs.

• The Supplier must use capacity planning to project the effects of new business
and workload changes as needed. For example, the Supplier will perform capacity
modeling when new business or application growth is anticipated, when substantial
changes to existing business are anticipated, or when substantial configuration
(hardware/software) changes are performed within the systems.

• The Supplier must take appropriate action to mitigate resource problems,
including increasing the necessary resources. Additional resources needed to directly
support the application as a result of an application change must be addressed at the
Change Review Board. The Supplier will provide cost information associated with

 240

resource changes resulting from an approved application change. If the application
change is approved, the program will be charged for the additional resources
identified.

d. System Operations Automation

System Operations Automation Services include the use of Industry

Standard automation software that provides for the automatic monitoring and remote
reconfiguration of system environment resources or files to achieve operational
efficiencies. Examples of Industry Standard automation tools are CA-TNG and HP
OpenView.

System Operations Automation Services Requirements are:
• The Supplier must perform problem determination, day-to-day maintenance, and

support for automation products and operational processes.
• The Supplier must be able to customize the automation requirements based on

contracted services.
• The Supplier will continuously identify opportunities to remove manual

interventions for ongoing support services.
• The Supplier will review automation software to ensure that they reflect the most

recent policies and procedures.

3. Software Management

Software Configuration Management Services provide and maintain software for

the operating environment, including operating system software and related system
software. As part of these services the Supplier must perform the basic operating system
software tuning that is required to maintain day-to-day operations.

a. Configuration Management

Configuration management involves the steps necessary to review and

document changes to both the system software and the application, so that program
manager and the Supplier are aware of maintenance or upgrades that may affect their
application, or support processes. Accurate software configuration is essential when
troubleshooting errors, performing software maintenance, and developing software (test
beds should emulate production environment). Changes to the hardware or system
software that impact the operations of the network, the servers, or the application must be
reported to the Change Review Board (e.g. router configuration changes to close specific
ports, or adding monitoring tools that impact server resources.)

The Change Review Board is chaired by the program manager for the application.
The Change Review Board consists of the program manager, design personnel, functional
experts (if necessary), a representative from the Supplier’s organization, government
Information System Security Manager (ISSM) to address information assurance issues,
and other personnel deemed necessary by the program manager or their chain of

 241

command. The intent of the Change Review Board is to approve any hardware or
software configuration changes. The program manager and designers need to know if the
Supplier’s proposed changes will impact the application, or architecture. The Supplier
must know if proposed application changes will affect resources, monitoring software,
and network bandwidth. Additionally all approved changes are documented, improving
communication channels, and ensuring only approved changes are implemented.

Configuration data will be held in a central repository that is web accessible. The
repository will be populated using industry standard COTS packages, such as PVCS.
The same configuration software should be used for all Navy applications.

Software Configuration Service requirements are:
• The Supplier must maintain documentation of server and network software

configurations including OS release levels, configurations, patches, etc.
• The Supplier must, in coordination with Navy Program Managers, maintain

documentation of application configurations including application software release
levels, configurations, patches, etc.

• The Supplier must maintain documentation of all changes approved by the
Change Review Board including date approved, change summary and date change
applied.

• The Supplier must make all documentation available to the Navy upon request.
The Navy program manager’s staff will have web access to view configuration data
held in the central repository.

b. System Product Integration and Problem Resolution

The Supplier must integrate the software components of the operating

system and various third-party software products. System Product Integration and
Problem Resolution provide the operational processes necessary to maintain a stable
operation environment to meet the Navy’s application specific operational requirements.

System Product Integration and Problem Resolution Services Requirements
are:
• The Supplier must perform the planning, installation, testing, and upgrading of

system-level software, such as operating system and other non-application software,
or application software requiring super user access.

• The Supplier must perform problem resolution including problem determination,
interface, and escalation with third-party suppliers, if necessary, to correct system
component problems.

• The Supplier must participate in identifying system product problems including
connectivity and associated network problems.

c. System Software Maintenance

System Software Maintenance Services provide ongoing maintenance and

support for the software supporting the application. These services also provide

 242

preventive software maintenance services when required. System software also includes
maintenance to the infrastructure (e.g., routers, firewalls).

System Software Maintenance Services Requirements are:
• The Supplier must assist the Navy technical support staff with installing

applications software when root/Administrator access is needed and when loading the
application software media into the hosted server.

• The Supplier must review product status and maintenance information for system
patches to identify current version information and potential problems. All patches
should be installed, unless there are mitigating circumstances. The program’s Change
Review Board must be notified of patches to be installed, and those patches that will
not be installed.

• The Supplier must install preventive maintenance (e.g. software updates, software
releases, and virus and anti-spam updates) to supported system software products to
prevent known problems from impacting the operating environment.

• The Supplier must implement a permanent corrective action with appropriate
monitoring procedures to ensure software faults are eliminated from the operating
environment.

• The Supplier must communicate changes that require system down time to the
Change Review Board. In the case of emergent changes that effect system
availability the Supplier must notify the Navy Program Manager. If the change
cannot wait for approval, the Supplier should notify the Navy Program Manager and
the Change Review Board as soon as possible.

• The Supplier must ensure that the application has proper licenses for COTS
products that are incorporated into the application. This includes accounting for
usage-charged types of software agreements.

• The Supplier must review the Navy Program Manager’s software service and
licensing agreements and provide recommendations. Application consolidation may
allow program manager’s to reduce or eliminate some third party software
requirements.

d. Software Refresh

Software refresh (system software, not application software) ensures that

the software supporting the application does not become obsolescent. Technology is
evolving at a rapid pace, and software must be updated to take advantage of new
technology.

Software Refresh Services Requirements are:
• The Supplier must plan for, install, and support new operating system,

infrastructure and related system software. The plan must include the steps necessary
for a successful migration of the application systems software.

• The Supplier must maintain a test system for systems software.
• The Supplier must work with the Navy Program Managers and Navy Technical

Staff to research and resolve software compatibility issues allowing migration from
the current suite of products to upgraded products and releases.

 243

• The Supplier must have a documented software refresh plan. Some legacy
applications currently in production have dependencies that do not allow for systems
software upgrades and therefore should be exempt from this requirement. The
application systems that should be exempt and their dependencies will be provided by
the Navy Program Manager on an application-by-application basis. The refresh plan
will have to be agreed upon with the Navy Program Manager and will have to take
NMCI desktop systems into consideration.

• The Supplier must work with the Navy Program Managers to identify software
changes that may impact applications. The Supplier will then work with the Program
Manager to create a test plan, if necessary, to confirm that changes in software
functionality do not adversely impact an application. The Supplier must address
these changes with the Navy Program Managers at a meeting of the Change Review
Board.

• The Supplier must design the necessary back-off processes to restore to the
former operating environment if unforeseen problems occur.

4. Hardware Management

Hardware Configuration Management provides services for installing and

maintaining the compute configurations to meet changing requirements for compute
resources and maintains the configuration plan to meet application specific requirements.

a. Hardware Configuration Management

Configuration management involves the steps necessary to review and

document changes to hardware used to support the application, so that program
manager’s staff is aware of changes that may affect their application.
• The Supplier must present hardware changes to the Change Review Board (CRB).

Hardware changes resulting from hardware vendor requirements will still have to be
briefed to the CRB.

• The Supplier must maintain documentation of hardware configurations, including
equipment placement, network diagrams, cabling, connectivity details, application
mapping, disk partition information, peripherals, etc.

• The Supplier must address new hardware installations or modification at a
meeting of the Change Review Board.

b. Hardware Support and Maintenance

Hardware Support and Maintenance Services provide the support services

necessary to ensure compute equipment is maintained, and operational.
Hardware Support and Maintenance Requirements are:

• The Supplier must monitor midrange compute hardware, including processors,
storage, and peripherals for malfunction.

 244

• The Supplier must coordinate trouble-shooting, repair and, if necessary, escalation
of hardware-related malfunctions with the hardware support vendor.

• The Supplier must manage hardware maintenance requirements based on the
manufacturer’s recommended schedule.

• The Supplier must coordinate and provide installation support hardware
corrective maintenance requirements with hardware vendors.

• The Supplier must maintain documentation of all hardware changes approved by
the Change Review Board including date approved, change summary and date change
applied.

• The Supplier must make all hardware configuration documentation available to
the Navy upon request.

• The Supplier must include a schedule for maintenance downtime. The downtime
will abide by timeframes and duration specified in the service level agreements.

• The Supplier will have a documented preventative maintenance program for
hardware support.

c. Hardware Refresh Services

The Supplier is responsible for replacing existing hardware components to

include firewall, network, servers, etc. The Supplier will determine the hardware refresh
rate, based upon their ability to meet requirements outlined in the service level
agreements.

Hardware Refresh Services Requirements are:
• The Supplier must have a documented hardware refresh policy that includes

migration strategies, timelines, accessibility, etc.
• The Supplier must coordinate planning, installation and testing, including

shipping and receiving, of midrange compute hardware and environmental
equipment.

• The Supplier must create a complete migration project plan and timeline and
present the plan to the Change Review Board for approval.

• The Supplier must coordinate testing activities for the hosted applications with the
effected Navy Program Managers.

• The Supplier must manage data migration and data movement processes, where
possible, based on current hardware and software configuration to enable storage
asset replacement.

• The Supplier must update documentation of hardware configurations, including
equipment placement, cabling, and connectivity details as hardware configurations
are refreshed.

5. Security Management

The Supplier must provide Security Management Services to protect the

confidentiality, integrity, and availability of the Navy’s information assets. The Services
must adhere to all DoD, DoN policies and procedures (appendix (c) provides a list of

 245

relevant information assurance policies). Services include supporting data integrity
protection software, user identification maintenance (authentication services), and
password issuance. Server security must be monitored 24x7x365 unless an adjustment is
made to the business hours of operational support coverage. Network security must be
monitored 24x7x365 regardless of any adjustments. Physical security requirements for
the hosting facility are defined as part of the Facilities requirements in the Enterprise
Foundation section.

Security Management Services only address those areas that deal directly with the
network, servers and associated hardware that support the Navy’s application systems
and do not address access to the application systems themselves. For instance, the
Supplier must provide an identification and authentication mechanism for access to the
application, but will not address or control identification and authentication mechanisms
that allow access into the application itself.

The scope of these services includes the entire server farm from the firewall to the
actual server. The firewall protecting the server farm is inside the scope of this SOW.
The network from the end-user to the host environment firewall is not within scope for
this SOW.

a. Security Management Services

• The Supplier must implement the appropriate INFOCON conditions when

dictated by designated Navy personnel. The end users within NMCI must be able to
maintain connectivity with the application during all INFOCON conditions.

• The Supplier must ensure that all personnel with access to government
information have received the proper clearance from the government. Personnel
without proper clearance will not be authorized access to any government data, nor
will they be allowed to monitor any government applications.

• The Supplier must implement Root/Administrator Access Restriction/Verification
– Access is restricted to a known set of Supplier support personnel.

• The Supplier must provide Vulnerability Scanning that identifies vulnerable
configurations settings on network/system components, as well as identifying
unauthorized ports/protocols and their associated applications. The scans must be
periodically reviewed to provide a secure environment.

• The Supplier must run periodic (once a shift) scans against systems comparing
current file permissions against an approved baseline.

• Security logs (server, firewall and network) will be reviewed once a shift at
random hours. Although log entries can be sent to a central monitor it is necessary to
physically review logs to discern patterns that may not be automatically detected.

• The Supplier must ensure that access to system-level files and services be
restricted by use of operating system-level file permissions. The Supplier must
maintain a database listing users, their access and permissions, their roles and security
level.

 246

• The Supplier must ensure that access through routers and firewalls adhere to the
NMCI, DoD, and DoN Network requirements as they relate to protocols and specific
IP address or ranges.

• The Supplier must ensure that security changes are processed, reviewed, tested
and approved by Supplier and Navy Change Review Board before implementation.

• The Supplier will use base DoD and DoN configurations for server and network
installations when they are available.

• The Supplier will configure each system platform based on a government
supplied secure configuration guide. IAVA/B/TA will be implemented as required by
DoN. Attachment (b) provides the listing of Secure Configuration Guides.

• DoD System Administrators will be properly trained and certified in accordance
with the Office of the Secretary of Defense (DoD Memorandum dated 29 June 1998).
This is a requirement for government agencies only.

• The Supplier is responsible for revoking all access rights and privileges of the
Supplier’s employees that were transferred, are retiring, or have been terminated.
The Supplier must notify the Navy Program Manager that those individuals are no
longer working on the project.

• The Supplier will provide a security point of contact or contacts to interface with
the government on matters relating to information assurance issues.

• The Supplier will provide government access (customer, Naval audit) to the
applicable information assurance documentation (logs, procedures) in accordance
with the Government Information Security Reform Act (GISRA) with is part of
section 811 of the Defense Authorization Act.

• The applicable System Administrator for each platform/system will maintain a
repository of access request forms and user agreement forms for administrator
accounts for their platform/system. The application administrator will maintain a
repository of access request forms and user agreement forms for user accounts.

• The applicable platform/system systems administrator will ensure all non-public
web sites implement identification and authentication mechanisms (e.g., user
id/password, DoD PKI certificate, CAC card with hardware certificate), and are SSL
enabled with a DoD PKI server certificate. The systems administrator will ensure the
server certificate is renewed prior to expiration date.

b. Intrusion Detection Services

The Supplier must incorporate Intrusion Detection Services using an

Intrusion Detection System (IDS) that is designed to monitor the network for known
security threats.

Intrusion Detection Services Requirements are:
• The Supplier must implement an industry standard (NSA approved) IDS that

enables real-time notification of potential security problems, such as denial-of-service
attacks or other security breaches.

• The Supplier must implement an industry standard (NSA approved) IDS that
monitors inbound network traffic for numerous attack signatures. In the event of an

 247

intrusion alert, the Supplier must be automatically notified and appropriate action
must be taken based on the alert’s nature.

• The Supplier must implement the most current versions of software that recognize
activity patterns of known attack signatures.

• The Supplier must provide monthly reports of security incidents to the
government.

• The Supplier must notify the affected government Program Managers if an
intrusion is successful and provide an assessment of the damage.

• The Supplier must have sensors in place that monitor network traffic and search
for known attack signatures.

• The Supplier must use agents that monitor the network and analyze audit logs and
search for attack signatures and policy violations.

• The Supplier must have a console to remotely manage the sensors through
authenticated and encrypted communications.

• The Supplier must use an automated incident response capability that may
reconfigure firewall rule sets to repel an attack.

• The Supplier must use automated notification to administrators in the event of an
attack.

• The Supplier must utilize authenticated and encrypted (128-bit) communications
between sensors/agents and consoles.

• The Supplier must ensure that sensors/agents are hardened from attack. This is
usually done by ensuring the integrity of the software through products that create an
encrypted hash of the file.

• The Supplier must notify the affected government ISSM and program manager
within 30 minutes if an incident causes service degradation/disruption or if a
successful intrusion occurs. The Supplier will complete the Navy Incident Report
(see appendix c) with assessment of the damage, and provide a copy to the ISSM in
accordance with the timelines outlined in instruction OPNAVINST 2201.2.

• If an intrusion is successful, the Supplier will notify the appropriate government
personnel and activities within the timeframes established in the SLA.

c. Vulnerability Assessment

The Supplier will have a developed perimeter vulnerability assessment

methodology specifically designed to determine an organization’s overall vulnerability to
Internet-based attacks, along with identifying exposures and risks associated with any of
the organization’s firewalls, FTP servers, Web servers, DNS servers, and e-mail servers
residing on their Internet perimeter.

This assessment will run remotely, probing the Internet/Intranet perimeter for all
hosted applications in the same way a “hacker” would. The process will identify
weaknesses in the hosted network and system configurations, thus providing the
capability to immediately address and correct any identified deficiencies or shortcomings.

This vulnerability assessment is separate from the “red team” assessment, which
is a government-funded assessment. Service Level Agreements will dictate the metrics

 248

used to determine compliance with regard to the “red team” assessment. The assessments
discussed in this section will be undertaken by the Supplier to prepare for the government
assessments.

Vulnerability scanning will assess system vulnerabilities from two perspectives:
network vulnerabilities and host-based vulnerabilities. Network vulnerabilities are those
weaknesses in systems and network components that could be exploited by an attack
originating outside the system, including IP spoofing, TCP/UDP port attacks, SYN
floods, and other denial-of-service attacks. Host (operating system) vulnerabilities are
weaknesses in systems that could be exploited at the system itself, including poor
authentication, easily guessed passwords, and poor access control lists. System
vulnerability detection also investigates system vulnerabilities on primary service entities
such as servers, routers, and firewalls.

• The results of all Vulnerability Assessments are classified in accordance with the

appropriate classification guide. The Supplier must provide personnel with the
appropriate security clearance to conduct and review the assessments and produce a
corrective action plan based on the results of the Assessments.

• Port Scanning runs an in-depth port scan of the platform on the host
environment’s Internet perimeter to identify “high-risk” services found running on the
hosts visible to the Internet. The Supplier will take action to mitigate the risks
associated with those ports.

• Vulnerability Assessment Scanning uses a variety of automated and commercially
available tools to remotely probe the specified networks for security vulnerabilities,
known software bugs, configuration problems, and unnecessary services, uncovering
security weaknesses.

• The Supplier should also provide a periodic review of systems and administrative
security controls to make sure that they meet or exceed NMCI, DoD, and DoN
standards. The review is required to make sure that all changes made to security
control mechanisms can be traced to a duly authorized security change request.

• Server Vulnerability Assessment is a service designed to determine
vulnerabilities, exposures, and risks associated with the Navy’s specific server(s).
This will include completing a System Security Authorization Agreement (SSAA) in
accordance with the DoD Information Technology Security Certification and
Accreditation Process (DITSCAP) program outlined in DoD Instruction 5200.40 to
cover the host environment. The SSAA will be made available to the Navy Program
Manager for incorporation into their systems’ SSAA. The application specific
information required by the SSAA is the program manager’s responsibility. The
application specific information will be shared with the Supplier to ensure that the
Supplier is aware of possible security problems that may affect the host network,
systems, or other applications. If an application evaluation is necessary to complete
the application’s SSAA, that task will be negotiated separately.

• The Supplier must ensure that vulnerability scanning adheres to all DoD and DoN
security policies and procedures as they pertain to Networks and Servers.

• The Supplier must run the vulnerability assessment directly on the Web and
application server(s), scanning the configuration for known security weaknesses.

 249

• Supplier personnel must review the results of the server scan and provide a
summary of findings to the Navy.

• The Supplier must provide one annual vulnerability scan run on the Navy’s server
– occurs just before the site goes online (LIVE URL); all other scans must occur at a
minimum of annually.

• Real time Terminal in-state Residency (TSR) antivirus software protection will be
implemented on each system to protect against malicious code as a result of file
uploads/downloads.

• For DoD owned co-located servers, the DoD antivirus protection software may be
used (DoD has already paid for an enterprise license).

• The Supplier must implement and maintain industry standard anti-spam software
on servers running SMTP or E-Mail gateways.

• Upon report of an incident affecting the government application, the Supplier will
allow FIWC to perform an Online survey (OLS) on the applicable network where the
incident occurred. The OLS is an external probe that attempts to recreate the
incident, or test to ensure the vulnerability that was exploited is corrected.

d. Data Protection Software Services

The Supplier will use Data Protection Software Service to ensure the

integrity of essential data files. Data integrity processes and procedures will be in
accordance with DoD, DoN policies.

Data Protection Software Service Requirements are:
• The Supplier must install, maintain, and administer security system software that

controls user access to information on a midrange server platform, such as access
control lists.

• Files containing passwords must be protected at the same level of protection as
the most sensitive asset it protects or as “sensitive but unclassified data”, whichever
security level is higher.

• The Supplier must have processes, procedures and tools to maintain essential
operating system and related system software data integrity.

e. User Identification (ID) Maintenance and Password Issuance

These services ensure only authorized users have access to their requested

files and unauthorized access is denied without hindering business practices.
User ID Maintenance and Password Issuance Services Requirements are:

• The Supplier must use unique user identification (IDs) and passwords to control
access.

• Identification and authentication mechanisms stored in the system must be
encrypted in accordance with FIPS standards.

• The Supplier must execute DoN and DoD policies regarding password expiration
times and minimum password lengths.

 250

• The Supplier must be able to support Secured Network Communications. (i.e.
SSL, PKI).

• The Supplier must provide the processes, procedures, and a security administrator
to maintain unique user identification and password control access into midrange
environments, not specific DBMS or applications.

• The Supplier must implement a system where the user is responsible for
maintaining and changing their password on a server in accordance with the security
policy.

• The Supplier must process authorized requests to create, delete, or change a user
ID from an authorized submitter.

• The Supplier must provide the avenue to receive and respond to user problems in
the areas of sign-on difficulties, password resets, and Logon/Login/Sign-On
assistance. Response times are outlined in the service level agreements.

• The Supplier must maintain control of all Administrator/root access to all network
and server hardware including applicable disk storage devices such as EMC RAID
arrays.

6. Customer Support Services

The Supplier must have Customer Support Services that provide request

management through a Supplier liaison. The Supplier liaison must provide a
communication focal point to facilitate all systems support and professional services.
Client Service Management for the Essential Services also includes business hours
operational support coverage, problem management, and change management processes.

a. Request Management

The Supplier must have Request Management Services that provide a

communications liaison to facilitate rapid response to the Navy’s requests. These services
must include coordination to receive and process the Navy’s requests for services.
Examples include Platform Solution Design Services, Site Migration Services, Software
Refresh Services, and Shared Services to accommodate ongoing Navy business needs or
growth requirements. Requests may also address a temporary service requirement, a
temporary service level requirement, or the implementation of a long-term requirement in
which the Service Level Agreement must be revised.

Request Management Services Requirements are:
• The Supplier must have a process to receive and execute requests.
• The Supplier must provide oversight and coordination to understand request

requirements to ensure deliverables and timeframes are met for the execution of the
requests.

• The Supplier must mediate scheduling conflicts between program managers that
have applications residing on the same server.

 251

• The Supplier must provide regular communication of issues, concerns, and
request schedules and attend application systems meetings when requested by the
Navy Application Program Manager.

b. Continuous Hours Operational Support Coverage

The Supplier must be able to provide continuous hours of coverage by

skilled staff to support all selected compute management packaged services. The Supplier
must provide all systems management functions from the Supplier’s monitoring location
24x7x365 and all other Supplier personnel required to provide the selected packaged
solution services must be readily available 24x7 as necessary. If continuous support is
not necessary, services can be adjusted based upon application requirements.

Continuous Hours of Operation Support requirements are:
• The Supplier will have skilled staff to support the midrange environment and all

Enhanced Services.
• The Supplier must provide a monitoring location with on-site leveraged staff to

monitor 24x7x365.

c. Change Management

The Supplier must have a Change Management process that controls

changes to the midrange compute environment. The Supplier’s Change Management
process will allow for the proper planning, analyzing, testing, communicating, and
scheduling of hardware, system software, and environmental changes. Any changes
made to the application, server software and hardware, or the infrastructure must be
briefed at the Navy Program Manager’s Change Review Board (CRB).

Change Management Requirements are:
• The Supplier must participate in the program’s CRB as they are scheduled.
• The Supplier must document and track scheduled changes and status.

Configuration documentation is available upon request.
• The Supplier must manage dependency requirements for all change scheduling.
• The Supplier must assist Navy Program Managers in assessing the risk of

proposed changes, including review of change complexity, dependencies, duration of
the change, ease of recovery, potential impact, and feasibility of the proposed
implementation date.

• The Supplier must evaluate application changes to ensure that there is adequate
resources and capacity to support the application.

• The Supplier must research and test all proposed system software upgrades and
patches.

• The Supplier must manage and brief the status of proposed changes according to
established CRB processes.

• The Supplier must assist Navy Program Managers in coordinating required testing
to enable the successful implementation of changes.

 252

• The Supplier must have a process in place that addresses the severity of change
requests. The Supplier and the Navy Program Manager will determine the criticality
of the change to ensure it is addressed in a timely manner as defined in the SLA’s.

• The Supplier and the Navy must establish a mediation process to address changes
that affect the contract, service level agreements or resource requirements.

• The Supplier must coordinate with the CRB in scheduling maintenance downtime
and testing.

• The Supplier should document any tuning actions. If OS files are modified, that
action should be documented. Routine tuning does not need to be presented to the
Change Review Board.

d. Problem Management

The Supplier must have a developed Problem Management process that

details the actions to be taken in response to operational issues. This process should
enable timely communication of the status and corrective actions. Problem resolution
must be prioritized based on the severity of the problem. As part of the Problem
Management process it may be necessary to bring the critical application back on-line
before the root cause of a problem is determined. If a problem persists, then the Supplier
must coordinate a time with the Navy Program Manager to determine the root cause of
the problem while allowing the application to be off-line for a longer period of time. For
non-critical applications more time can be taken to determine the root cause of a problem.

Problem Management Requirements are:
• The Supplier must maintain a Help Desk with a centralized phone number for

reporting and resolving problems. The Supplier’s Help Desk must interface with the
NMCI Help Desk because the Navy has designated that trouble calls be reported to
the NMCI Help Desk first.

• The Supplier must prepare and communicate with the Navy Program Manager
impact statements documenting the cause of the problem, the efforts required to
temporarily correct the problem, a root cause analysis, and any follow-up steps. In
addition to notifying the Navy Program Manager of a problem, updated status of the
problem resolution, and estimated completion times must be provided as well.

• The Supplier must escalate any problems exceeding a response threshold based on
severity of the problem. Thresholds are outlined in the service level agreements
(SLAs).

• The Supplier must assist the Navy technical support staff if problem resolution
points to the Navy application instead of the operating system or infrastructure.

• The Supplier response times will be determined by the negotiated SLA’s.
• The Supplier must provide a monthly report to the Navy Program Manager with

the appropriate help desk statistics, trend analysis, and a brief summary of the
problems experienced, the means in which they were resolved, and the time necessary
to fix the problem.

 253

• The Supplier must coordinate with the Navy Program Manager to determine if
they need to test the application to evaluate corrective action. All configuration
changes resulting from the problem resolution must be documented and relayed to the
CRB.

7. Service-Level Management

The Supplier must provide Service Level Management Services through a

communications liaison. The liaison must provide the avenue to understand and address
the Navy’s issues and concerns as well as be aware of the Navy’s future plans, which
would impact midrange services. The liaison will be the Navy’s contact for reports and
SLA issues and will work with the Navy’s Program Managers to develop strategic and
tactical plans for the hosted systems.

Service-Level Management Requirements are:
• The Supplier must provide oversight of Service Level requirements and monitor

and escalate any issues as necessary to help meet required Service Level standards.
• The Supplier must provide regular communications (weekly) and participate in

joint planning processes (if necessary) with the Navy Program Managers and
application teams to integrate service level management issues with directions on
tactical and strategic planning; and near-term and long-term initiatives.

• The Supplier must work with the Navy Program Managers to develop a yearly IT
plan that addresses Navy Program Manager requirements and the needs of the
systems being hosted. The plan should include the expected growth rate of the
application’s user base, storage requirements, software releases, resource needs,
future application releases, etc.

a. Standard Service-Level Management Reviews and Reporting

This service provides quarterly Service Level Management Reporting and

Reviews. The Supplier must provide reporting with data to measure conformance to the
service levels on a quarterly basis. Additionally, the Supplier must provide application
specific weekly change reports and quarterly trends reporting for all change metrics.

Standard Service-Level Management Reviews/Reporting Requirements are:
• The Supplier must provide standard quarterly reports that outline the Supplier’s

services against those delineated in the Service Level Agreements.
• The Supplier must conduct quarterly review meetings to discuss service level

reporting information.
• The Supplier will provide at least one weekly report that describes change activity

for the midrange systems to include description of change, system affected, date and
time of change, duration of change, and status of change for approved changes.

• The Supplier will provide a quarterly report of change activity metrics that
includes the number of changes, number of successful changes, missed change
windows, and number of changes not meeting lead-time requirements.

 254

8. Business Continuity

Business Continuity involves the planning and implementation of procedures that

ensure critical business operations resume following a disaster and that they return to
normal operations as soon as possible. Part of the process is determining which
applications are critical and which are not, then deciding upon the time frames for
recovery and site recovery necessary to meet the recovery needs. Site recovery options
are discussed in the Recovery Site Requirements section of the Enterprise Foundation
Services of this document. Business Continuity is also referred to as contingency
planning, recovery planning, business resumption planning, or disaster recovery
planning.

a. Documented Recovery Action Plan

The Supplier must maintain a plan for recovering the midrange operating

system and related system software. The Supplier must work with the Navy Application
Program Managers to define the appropriate software recovery plans. The plans can be
tailored to the solution defining the backup schemas, critical components, and test plans
based on the specific workload. The recovery plan provides the processes, and
documentation covering tape backups, recovery, and disaster recovery.

Documented Recovery Action Plan Services Requirements are:
• The Supplier must maintain documented recovery procedures for restoring the

operating system and related system if a disaster occurs.
• The Supplier must conduct an annual review of the midrange environment to

determine whether the operating system data backup and off-site storage rotation
schedules meet recoverability objectives.

• The Supplier must have documented hardware and software configuration data to
ensure the system is recovered to the most current environment.

b. System Backup and Recovery

The Navy needs to have operational support and management processes

that meet operating system and related application requirements for data availability,
accessibility, and retention. This service allows all system software and related storage
configuration to be recovered if an operational or hardware failure occurs. This service
supplements the Business Continuity Services that allow recovery if a disaster occurs. All
backup media and the information on the media relating to the application or application
database is the property of the Navy.

System Backup and Recovery Requirements are:
• The Supplier must implement backup software that monitors the backups via log

files and reports any files that were not successfully backed-up.
• The Supplier must adhere to the documented backup plan to ensure that a

minimum of one backup copy is maintained for each critical file. The normal backup
schedule is where backups are performed daily 6 times a week and a full backup is

 255

performed on Saturday or Sunday. Additionally a full monthly and end of year
backup are performed. Unless increased by the Navy Program Manger the minimum
retention requirements for backups are:

• Daily incremental backups
• Weekly full backups must be stored for 2 months
• Monthly full backups must be stored for 12 months
• Annual full backups must be stored for 5 years.

• The Supplier must implement backup software that verifies backed-up files by
reading what was written.

• The Supplier must implement backup software that is able to perform unattended
automatic backups of all systems.

• The Supplier must test full system restoration of the systems, including hardware,
software and processes annually at a minimum or as specified by the Navy Program
Manager. Results and lessons learned must be provided to the Navy Program
Manager.

• The Supplier must have a process in place to facilitate requests for recovery of
application specific files. The restoration times for each hosted application will be
addressed in the application’s SLA.

• The Supplier must monitor, verify, and escalate issues as necessary for operating
systems and related application software backups and authorized restores.

• The Supplier must manage operational support processes for performing
operating system and related application software recoveries as required in resolving
software and hardware problems.

• The Supplier must adjust data backup and restore plans as new components are
added to the system or availability requirements change.

• The Supplier must maintain the tape library to ensure the availability of the media
and storage location to include scratch and foreign tapes.

• The Supplier must provide and maintain media including media reliability
evaluation and aging and replacement processes.

• The Supplier must dispose of old backup medium in accordance with DoD and
DoN policies.

• The Supplier must store the on-site backup medium in a separate space as the
systems that are being backed up to ensure the safety of the medium in case of a
disaster.

• The Supplier must transfer magnetically stored media to a new medium every
three years to prevent degradation.

• At the conclusion of the contract, or if the contract is terminated for cause, the
Supplier must deliver all application specific backup media and corresponding
documentation to the Navy Program Manager.

• The Supplier must monitor and manage the SAN or NAS network if used.
• The SAN or NAS network can only be used to backup military/government

applications. No civilian applications can utilize the same network to perform
backups. The entire SAN or NAS network and system will be protected at the same
level as the highest security classification of the information that it is backing up.

 256

• Each tape must be protected in accordance with the highest security classification
of any information on the tape. For example, if a tape contains information that is
sensitive, but unclassified (SBU), and the tape also contains information from another
application that is unclassified, the tape must be treated as SBU. Any confidential
information on a tape makes the entire tape confidential.

c. Off-Site Tape Services

The Supplier must provide the processes necessary to ensure a copy of the

operating environment (operating system, system software and application software) is
stored in a secure, off-site location.

Off-Site Tape Services Requirements are:
• The Supplier must prepare tapes for shipment to the off-site tape vault.
• The Supplier must provide off-site vault storage for backup and recovery media.
• The Supplier must provide transportation of backup and recovery media to and

from the vault.
• The Supplier must provide a mechanism for specifying which tapes are to be

returned from the vault.
• The Supplier must audit the off-site storage location at least annually.
• The Supplier must ensure that each tape is properly documented and labeled.
• The Supplier must ensure that at a minimum the full weekly backups are stored

offsite.

d. Disaster Recovery Test Service

The Supplier must be able to provide full testing for the documented

recovery action plan. Testing verifies that the Disaster Recovery Plan meets the Navy’s
Application Program Manager’s requirements. It also can be used to evaluate how well
the recovery plan integrates with the Supplier’s other service providers to provide timely
recovery from a disaster. At the Navy’s discretion, network personnel, the application
team, and some set of the user base can be involved to test the recovered environment
along with the Supplier’s staff. After each test is complete, the Supplier must identify
any deficiencies encountered and enhance the plan if required to meet the Application
Program Manager’s recovery objectives.

Disaster Recovery Test Service Requirements are:
• The Supplier must conduct annual recovery testing based on the recovery option

chosen by the Navy’s Program Manager for the specific application.
• The Supplier must be able to restore the operating environment from the data

backups.
• The Supplier must verify and test operating environment functionality.
• The Supplier must coordinate with the application team and user base for testing

time, as required.

 257

• The Supplier must provide annual drill reports to include recommendations on
procedural changes that can make data restoration time frames more cost-effective
while meeting realistic recovery requirements.

e. Recovery Site Requirements

Recovery sites are necessary to meet the Navy’s business continuity

needs. The Supplier must offer three levels of recovery facilities – shell-site, warm-site,
and hot-site. These options are linked to the Business Continuity Services described in
the Essential, Enhanced, and Premier Packages. The shell-site option is mainly targeted
for the Essential Package, which provides only off-site tape storage. The warm-site
option most closely matches the Enhanced Package and the hot-site option aligns with the
high availability services provided in the Premier Package.

This section is an extension of the Business Continuity Service requirements and
is not meant as a replacement for any other requirements in this document. All other
requirements for the hosted applications are implied in this section.

Hosted application systems will be designated as requiring one of three levels of
recovery facilities. These are defined as shell-site, warm-site, and hot-site recovery sites.
The Supplier must be able to provide each of these facilities. The Supplier must also be
able to accommodate changes to an application system’s recovery facility needs.

To reiterate the requirement is that the Supplier be able to provide these sites
(through contracts, existing partnership arrangements, etc…), not that the Supplier has to
actually has to own, staff, or manage these sites on a full time basis. Service level
agreements will determine if a hot site is needed, and whether it will have to be staffed
for contingency purposes.

Shell-Site Recovery Facility requirements:
• Must meet all the General Facility requirements excluding the Structural

Requirements.
• No hardware is available to support the applications that are running.
• The facility used must not be in the same physical location as the production

facility.
• Shell-Site recovery testing for critical applications must be done at least annually.
• A third party may provide the facility and hardware.
• Documented procedures for redirecting applications to the Shell-Site Recovery

Facility must be developed and maintained by the Supplier.
• Warm-Site Recovery Facility requirements:
• Must meet all the General Facility requirements.
• The facility used must not be in the same physical location as the production

facility.
• A third party may provide the facility and hardware.
• For designated applications and systems the hardware equivalent to the

production environment is available in the warm-site facility.
• Warm-Site recovery testing for critical applications must be done at least

annually.

 258

• Documented procedures for redirecting applications to the Warm-Site Recovery
Facility must be developed and maintained by the Supplier.

• Hot-Site Recovery Facility requirements:
• Must meet all the General Facility requirements.
• The facility used must not be in the same physical location as the production

facility.
• The facility and hardware must be maintained in a standby operating environment

or as part of a high-availability server implementation located in two physical
locations.

• Hot-Site recovery testing must be done at least annually.
• Documented procedures for redirecting applications to the Hot-Site Recovery

Facility must be developed and maintained by the Supplier.

9. Facilities - General Requirements

Facilities are defined in this section as the physical locations of the hardware.

The services addressed in this section include but are not limited to electrical power,
HVAC controls, structural characteristics of the areas where the hardware is located and
security as it concerns the physical access to the areas where the hardware is located.

All Facilities must comply with DoN and DoD requirements.

a. Electrical Power

• The facility must have a clean energy source. Power fluctuations must not affect

the equipment.
• In data centers, emergency power-off switches that shut off all power supplies

must be installed and be readily accessible with posted notices showing their location.
The Supplier must monitor the emergency power-off switches continuously.

• Backup electrical facilities (e.g., generators) are needed to ensure long term
uninterrupted power. The facility must have n + 1 generators.

• Backup electrical facilities must be tested annually at a minimum.
• Each server must have access to a secondary power source.
• In the event of a power failure, Uninterruptible Power Supply (UPS) systems

must be configured and tested to ensure safe operations of critical hardware for a
minimum of 30 minutes and to carry the load until automatic switching to the backup
power supply takes place.

b. HVAC and Climate Controls

• Facilities must be climate controlled and have environmental conditions

conducive to multiple computer systems.
• The air conditioning unit must be included in the fire suppression system, so in

case of a fire the A/C shuts off.

 259

• Sensors and alarms must be installed in data centers to monitor the environment
surrounding the equipment to ensure that climate controls remain within the levels
specified by equipment design.

• The Supplier must monitor environmental controls and take actions based on
detected problems or issues.

• Reports of the climate control systems must be generated monthly at a minimum.
• The computer room should have positive air pressure.
• Fire Suppression
• The data center must have its own alarm systems.
• Fire Suppression must be a pre-action / dry pipe sprinkle system and a gaseous

system such as the replacement agent to Halon 1301, called FM-200. These systems
must meet the National Fire Protect Act 75 as well as comply with most NAVFAC
requirements to ensure the overall system adheres to commercially acceptable
standards.

• The facility must ensure that it has working smoke and heat detectors.
• Computer supplies (for example paper) must be stored in a separate location away

from the computer equipment to minimize risk of fire damage.

c. Structural

• Drop ceilings must include smoke, heat and water sensors.
• The facility must have a raised floor to support connections and airflow.
• The facility must have a loading ramp or easy access for loading equipment.
• Raised floor loading capacities must be a minimum of 150 lbs. / sq. ft.
• Raised floor must support a minimum-rolling load of 600 lbs (272 kg.) over the

entire floor.
• The minimum floor loading capacities for the mechanical, electrical and battery

room must be 400 lbs / sq. ft.
• Exterior walls should be able to withstand wind loads of 115 mph (185 kph). This

is equivalent to a ‘class 3’ hurricane.
• Exterior envelope wall and roof deck composites should include a vapor barrier.
• No windows or curtain walls will abut the area where servers are located.
• Servers must not be housed in areas subject to flooding or water infiltration

through walls, floors or ceiling.
• Walls separating critical mechanical and electrical equipment rooms must extend

from the floor slab to the bottom of the roof or floor deck above and must be
constructed with a minimum of a 2-hour fire rated assembly.

• Walls surrounding mission critical equipment in the data center areas must be
constructed with a minimum of a 1-hour fire rated assembly.

• Walls surrounding magnetic tape and other media storage must extend from the
floor slab to the bottom of the roof or floor deck above.

• Walls surrounding magnetic tape and other media storage must be constructed
with a minimum of a 2-hour fire rated assembly.

 260

• Blueprints must be available with markings for the following:
• Power Supply
• Fire Suppression
• Access Points
• Point of Presence to outside networks (PoP)

• The Supplier must comply with all Uniform Federal Accessibility Standards
(UFAS) and must incorporate the American Disabilities Act (ADA) in its structural
designs.

d. WAN/BAN/LAN Connectivity

• The Supplier must provide the service to connect geographically separated Navy

and Marine Corps users/devices/printers. The Supplier must provide connection to
external networks, for example:

• Non-Secure IP Router Network (NIPRNET)
• Secure IP Router Network (SIPRNET)
• FTS-2001
• Defense Research Engineering Network (DREN)
• Defense Switched Network (DSN)
• Public Switched Telephone Network (PSTN)
• NMCI provided wide area transport services (commercial/DISA)
• The Internet

• The Supplier must provide service to interconnect geographically co-located
Navy and Marine Corps LANs and BAN attached devices.

• The data center’s network must conform to DoD and DoN Internet and Intranet
security policies.

e. Facility Physical Security

• Data center personnel are required to have picture identification badges.
• The Supplier must adhere to the personnel guidelines outlined in section 1.1.4

Contractor Specific Internal Information Guidelines of the N/MCI Contract N00024-
00-D-6000 Attachment 4 Security Requirements document. Section 1.1.4 of the
N/MCI Contract N00024-00-D-6000 can be found in Appendix A.

• Visitors must sign in and be escorted into and out of the facility to provide an
audit log.

• A log of physical access to controlled areas must be kept.
• A list of individuals authorized to grant physical access to controlled areas must

be maintained.
• A list of individuals granted physical access to controlled areas must be

maintained.
• Access to secure areas must be protected by an electronic access control system.

 261

• Access to data center equipment must be physically restricted to authorized
personnel by locating the equipment in a closed area.

• The facility must have surveillance covering the entire server area 24x7x365.
• Detection devices or true floor to ceiling data center perimeter walls must be

installed to prevent unauthorized access attempts.
• Physical security must implement multiple access control points with access

controls to restrict access to authorized parties only (i.e. Tape Librarians should only
have access to the tape library.)

• Attempts to gain unauthorized access to secured areas must be reported on a
monthly basis.

10. Shared Services

Shared services are described as the use of shared servers and disk arrays that are
utilized by multiple application systems. The Supplier must be able to use a strategy of
leveraging its infrastructure to support the Navy’s current and future business needs.
Shared services should be used to help the Navy reduce its overall operations costs by
making efficient use of available resources. Shared services should be available on a
case-by-case basis determined by the supported applications requirements.

The application requirements are defined in the review of the application that is
performed as part of the Midrange Site Transition Services for the application. As part of
the review the Supplier and the Navy Program Manager will determine if shared services
are appropriate for the application and if the use of shared services will enhance the
performance, price and availability of the application in the hosted environment.

a. Shared Services – Disk

Shared Disk options include the use of current technology providing state-
of-the-art speed of access to midrange disk components. The advantages of using Shared
Disks are the availability of capacity on demand, application availability and economies
of scale for large applications and databases.

b. Shared Services – Platform

Shared Platform Services are the use of state-of-the-art midrange servers

that are able to support multiple application environments with the ability to reconfigure
and reallocate server resources on the fly. These platforms may be implemented by the
Supplier as a means of providing on-demand processing capacity and flexibility for the
hosted application systems. Shared platform usage should be based on specific Navy
application systems resource requirements as defined in the application requirements,
selected SLA’s and audit results.

 262

11. Essential Services – Optional Service Upgrades

The Supplier must provide for service upgrades described in this section. The

upgrades can be selected at an additional charge to expand the range of services provided
in the Essential Package based on application-specific requirements.
Upgrade – No Upgrades defined for the Essential Services

a. Essential Services –Optional Service Adjustments

The Supplier must be able to adjust the service offerings for the Essential

Services. These service adjustments can be selected to reduce the range of services
provided in the Essential Services Package based on application-specific requirements.

Adjustment – No Documented Recovery Action Plan
This adjustment removes the Documented Recovery Action Plan Services from

the Essential Services Package.

Adjustment – No Disaster Recovery Test Service
This adjustment removes the Disaster Recovery Test Services from the Essential

Services Package.

Adjustment – Business Hours Operational Support Coverage
The Supplier should be able to adjust the 24X7 coverage provided in the Essential

Services Package and reduce the level of coverage to support the times users are
accessing the system. The support hours needed may be 8 or 16 consecutive hours per
day across five consecutive business days (Monday – Friday) or seven business days
(Monday – Sunday) depending on the location of the user base of the application.

 263

B. ENHANCED BASE PACKAGE SYSTEM SUPPORT AREAS

The systems support services described in this section encompass the Enhanced

Packaged Systems Support Services. These services can be expanded with the selection
of upgrades for an additional fee or reduced with the selection of adjustments that reduce
pricing.

The services provided in the Enhanced Package are designed for dynamic,
growing applications that are critical to the Navy’s business enterprise.

1. Systems Management

The Supplier must provide Systems Management Services that include all

services defined in the Essential Package plus system DBMS monitoring and printer
definition and queue management.

a. System DBMS Monitoring

Administration and support of a DBMS is divided into two separate areas

of responsibility: System Database Support and Application Database Support. System
Database Support and Application Database Support functions are differentiated as
follows:
• System Database Administration is responsible for managing global DBMS

resources that perform functions that require DBMS owner userid authority or
functions required to provide overall system integrity for the database (e.g.,
installation of the DBMS Server software, runtime procedures and parameters for the
database instance, creating users and access rights, creating DBMS tablespaces,
creating and maintaining rollback and redo logs, etc).

• Application Database Administration is responsible for managing objects within
the database (e.g., the Table definitions, indexes, views, procedures etc).

Throughout this document, anytime DBMS requirements are discussed they are
directed toward System Database Support and not Application Database Support, which
is the responsibility of the program manager.

The Supplier must be able to support Database Management System (DBMS)
Monitoring Services that provide the required operational support to monitor the Navy’s
DBMS environments.

System DBMS Monitoring requirements are:
• The Supplier must monitor DBMS throughput and performance.
• The Supplier must monitor DBMS availability.
• The Supplier must provide a monthly report for DBMS availability as part of the

service-level management services.
• The Supplier must monitor to detect potential DBMS problems.
• The Supplier must monitor databases for space utilization, database performance,

and other specific database criteria such as dead locks.

 264

Note: These support services do not include the services of an application
database administrator, but rather the services to maintain the system level components
of the DBMS system.

b. Printer Definition and Queue Management

The Supplier must provide Printer Definition and Queue Management

Services that provide the support and processes required to define printers to a midrange
system and to manage print queues on a midrange system to resolve problems in the
queues through purging and resetting print jobs and queues. Problems are reviewed and
actions taken as required in accordance with the problem management procedure. Manual
manipulation of print jobs within the queue is not included.

Printer Definition and Queue Management requirements are:
• The Supplier must have a defined printer definition process.
• The Supplier must manage throughput of print queues.
• The Supplier must install and test the printers that are located in the hosted

environment.
• The Supplier must resolve problems, including resetting or purging jobs, as

needed.
• The Supplier must ensure that applications that print to network printers have the

necessary connectivity to the network and that the printer is properly set up on the
server. The Supplier must work with NMCI and program management staff to
resolve connectivity and reach back problems.

2. Software Management

The Supplier must provide Software Configuration Management Services that

include all services defined in the Essential Services Package plus system DBMS support
services.

a. System Database (DBMS) Support Services

The Supplier must provide System DBMS Support Services that include

the processes to plan, install and maintain the required DBMS operating environment to
support DBMS software. These support services do not include the services of an
application database administrator, but rather includes those services required to maintain
the system level components of the DBMS system.

System DBMS Support Service requirements are:
• The Supplier must configure, install, and test DBMS system environment.
• The Supplier must maintain, install, and test DBMS upgrades and patches. All

DBMS changes must be presented to the Change Review Board.

 265

• The Supplier must, in coordination with Navy Program Managers, maintain
documentation of DBMS configurations including application software release levels,
configurations, patches, etc.

• The Supplier must maintain documentation of all changes approved by the
Change Review Board including date approved, change summary and date change
applied.

• The Supplier must make all documentation available to the Navy upon request.
• The Supplier must create, maintain, and execute DBMS system start-up/shutdown

scripts and processes.
• The Supplier must maintain and configure DBMS system disk including slicing

and placing.
• The Supplier must create and maintain DBMS files, DBMS tablespace, and

application tablespaces.
• The Supplier must verify effectiveness of changes on DBMS files and tablespaces

utilizing an approved test plan.
• The Supplier must perform backup and recovery of DBMS system files and

tablespaces, as well as the database application itself. Backup schedules and storage
requirements are outlined in backup section of the Essential services.

• The Supplier must maintain DBMS Backup/Recovery and Disaster Recovery
Procedures and Documentation.

• The Supplier must manage and if necessary modify DBMS file and DBMS
tablespace characteristics.

• The Supplier must participate in design reviews and project meetings to provide
technical guidance for DBMS related issues.

• The Supplier must work with the Navy Application Program Managers and Navy
Technical Application Support Staff to resolve DBMS performance related issues.

• The Supplier must maintain security and access to the DBMS and its associated
files.

• DBMS software refresh provides the same services outlined in the software
refresh portion of the Essential package.

• The Supplier must work with the Navy’s DBA to install application updates or
patches.

3. Workload Management

The Supplier must be able to provide Workload Management Services that

include support for Batch Scheduling and Batch Monitoring to determine whether
production batch cycles are completed in required time frames.

a. Batch Scheduling Services

 The Supplier must be able to provide Batch Scheduling Services that
involve activities associated with defining and maintaining the execution requirements of
an application’s batch processing that is scheduled under the system’s automated

 266

scheduling product. The objective of production batch scheduling is that all pre-defined
application cycles execute in the proper sequence with cycle completion scheduled
realistically within the defined processing windows.

Batch Scheduling Services requirements are:
• The Supplier must maintain the job-scheduling database for the automated

scheduling product.
• The Supplier must perform day-to-day maintenance and operational support of the

scheduling system.
• The Supplier must perform additions, changes, or deletions to the scheduled batch

workload as requested by authorized personnel.
• The Supplier must assist the Navy Application Program Managers and Navy

Technical Support Staff in performing batch scheduling or cycle flow problem
determination.

b. Batch Monitoring Services

The Supplier must provide Batch Monitoring services to support processes

necessary to monitor the application batch cycle. If abnormal termination or a restart
occurs, the scheduled batch processing will be executed based on pre-defined instructions
or the issue will be escalated to the Navy’s Application Team as necessary.

Batch Monitoring Services requirements are:
• The Supplier must monitor resource availability, abnormal termination, and cycle

start and end times for scheduled batch processing. The Supplier must provide
monthly of reports of batch processing statistics to the Navy Program Manager.

• The Supplier must perform and/or assist the application team in performing
production batch restarts and reruns.

• The Supplier must assist the Navy Technical Support Staff in resolving abnormal
termination because of system abnormalities.

Note: The Batch Monitoring Services do not include monitoring of the execution

of user-submitted jobs.

4. Application Security and Resource Controls

The Supplier must be able to install any required software tools and set up access

parameters and ongoing support required to create and maintain application resource
controls for the midrange environment in accordance with the Navy’s Application Team
requirements.

Application Security and Resource Controls requirements are:
• The Supplier must provide processes to secure application files according to DoN,

DoD, and NMCI security requirements.
• The Supplier must manage user access to the applications including the processes

and procedures necessary for Adding, Updating and Deleting user access.

 267

• The Supplier must have a process in place to receive and respond to user
problems in the areas of file access difficulties and security violations.

5. Production Promotion

Production Promotion Services include change control services and software for

managing the promotion of source and object code for developed programs or
applications from test to production environments. This service is designed to make the
Supplier responsible for migrating changes into production alleviating the need for Navy
Program Managers to perform such tasks. As such the program manager will not need to
gain the assistance of the Supplier to gain root access to install an update. The program
manager will give the update to the Supplier and the Supplier take all of the steps
necessary to install the application update.

The Supplier must provide Production Promotion Services for ongoing
maintenance of the hosted applications. These services incorporate procedures for
promoting application software changes and application file changes made by the Navy’s
technical staff into the hosted application’s production environment.

Production Promotion Support Services Requirements:
• The Supplier must provide a change control process for source and object code

promotion.
• The Supplier should provide version control for source and object code.
• The Supplier must manage the promotion of source and object code from test to

model office to production files or server environments.

6. Customer Support Services

The Supplier must provide Customer Support Services that include request

management, change management, problem management, and service-level management
as they affect the midrange environment. Besides the services provided in the Essential
Services Package, the Enhanced Package provides regional coordination of requests.

a. Request Management – Multi-Site Coordination Services

The Supplier must be able to provide Enhanced Request Management

Services that include the coordination of receiving and processing Navy requests for
services in a single location as provided in the Essential Services Package, but also
regional request coordination. The Supplier must be able to provide request coordination
via a single client liaison across multiple regional processing environments that are under
the Supplier’s control.

 This service should integrate software and hardware refresh requests,
coordinate scheduling, and provide regional consistency while meeting the Navy’s
application-specific business requirements. Regional coordination in this context is across
multiple sites. When requests requiring this level of coordination are received, the

 268

Supplier’s request management processes should provide regional communications to
coordinate and execute the request among all required locations.

Request Management – Multi-Site Coordination Services requirements are:

• The Supplier will review all requests to determine and understand potential
regional requirements and present the findings to the Change Review Board.

• The Supplier will monitor request status across all impacted regional sites to
determine whether deliverables and time frames are met among all environments
throughout the region as required. The Supplier will brief the request status to the
program manager on a weekly basis.

• The Supplier will coordinate the scheduling of actions resulting from the request
across affected sites.

7. Enhanced Service – Optional Service Upgrades

The service upgrades can be selected to expand the range of services provided in

the Enhanced Services Package based on client-specific requirements.

a. Upgrade – Custom Product Support

The Supplier will integrate and support a completely customized set of

products as defined by the Navy Application Program Managers and the Supplier’s
Technology Advocate. This set of products should be fully integrated into the operating
platform package for installation. Please see the Premier Services Package definition for
a detailed list of services.

b. Upgrade – Local High-Availability Support

The Supplier will support High-Availability Services that provide

processes and support for redundant server and storage environments that are clustered
together in the same physical site. Please see the Premier Services Package for a detailed
list of services included.

c. Upgrade – Custom Service Level Reviews and Reporting

The Supplier will to provide customized service level reviews and

reporting. Please see the Premier Services Package for a detailed list of services included.

d. Enhanced Services – Optional Service Adjustments

These service adjustments can be selected to reduce the range of services

provided in the Enhanced Services Package based on application-specific requirements.

 269

Adjustment – No Printer Definition and Queue Management
The Supplier will remove the Printer Definition and Queue Management Service

of Systems Management Services from the Enhanced Services Package.

Adjustment – No Workload Management
The Supplier will remove all Workload Management Services from the Enhanced

Services Package. This includes removing support for batch job and cycle scheduling as
well as monitoring scheduled batch processing.

Adjustment – No Batch Scheduling
The Supplier will remove the Batch Scheduling Service of Workload

Management Services from the Enhanced Services Package. The Operational Monitoring
Service for scheduled Batch Processing is not affected.

Adjustment – No System Database (DBMS) Support
The Supplier will remove the System Database (DBMS) Support Service for

Software Configuration Management and all monitoring of DBMS from the Enhanced
Services Package.

Adjustment – No Production Promotion
This adjustment removes the Production Promotion Service of Workload

Management Services from the Enhanced Services Package.

 270

C. PREMIER BASE PACKAGE SYSTEM SUPPORT AREAS

The Premier Services Package is designed for Navy’s most mission-critical
systems that require a customized infrastructure design, build, and operation because of
the business application complexity, diversity, and variety. In addition to the services
provided in the Enhanced Services Package, the Premier Services Package provides
support for more complex software and hardware configurations to provide high
availability for business critical processing requirements.

1. Systems Management

Systems Management is the process of analyzing, evaluating, and reviewing the

compute operation to verify that operational requirements are met. The range of services
includes all services defined in the Enhanced Services Package plus Application
Monitoring and advanced web site monitoring.

a. Application Monitoring

The Application Monitoring Service provides the Navy with proactive

automation and monitoring that result in more stable, functional applications that meet
Navy and operational requirements. Application monitoring involves more than the
monitoring of application resources. Application monitoring can involve monitoring
distinct functions within the application for input/output speed, checking for
looping/hung processes, analyzing application usage patterns (which options or branches
are used most often), and reviewing exception logs.

This service is designed for monitoring purposes only. Program manager
cooperation may be required to interface monitoring agents with the application code.

Application Monitoring Services Requirements are:
• The Supplier must develop, install, and test specific application automation agents

for use in application monitoring.
• The Supplier must configure, install, and test custom product automation agents.
• The Supplier must manage and monitor the application and/or custom product

operational environment.
• The Supplier should monitor the application database to ensure the database is

responding to requests if applicable.

b. Web Site Monitoring

The Web Site Monitoring Service provides the Navy with automated

monitoring of web sites to ensure there are no broken links in the Web Site. A broken
link is defined as a hyperlink from one web page to another that is no longer available.

 271

Web Site Monitoring Services Requirements are:
• The Supplier should monitor identified web pages for broken links on a periodic

basis as defined by the Navy Program Manager.
• The Supplier should provide results of broken links to the Navy Program

Manager.

2. Software Management

Software Configuration Management Services provides for the installation,
maintenance, documentation and upgrading of midrange environments. The range of
services includes all services defined in the Essential and Enhanced Services Packages
plus Custom Product Support and Local High-Availability Support Services.

a. Custom Product Support

The Supplier must integrate and support a completely customized set of

products (operating systems, network devices, server hardware, etc.) as agreed upon by
the Navy and the Supplier. Custom products in this context refer to support for
nonstandard software or hardware that is utilized by the application. Operating systems
such as Linux or BSD UNIX are nonstandard, and the contractor may have to hire
additional personnel to support the software. Custom support does not refer to the
application itself.

Custom Product Support Services Requirements are:
• The Supplier must support a custom-designed solution of system-related vendor

products selected by the Navy and the Supplier.
• The Supplier must plan, install, integrate, and upgrade the custom product set.
• The Supplier must resolve problems, including problem determination, interface,

and escalation with third-party suppliers, for the custom product set.
• The Supplier must install corrective and preventive maintenance to custom

product sets.
• The Supplier must conduct inventory, track, and document the custom product set

components and changes.
• The Supplier must provide software refreshes to allow early adoption or to

maintain currency to current software versions of the custom product. Software
refresh may not be applicable in some cases where the custom product is being used
because of hard coded dependencies specific to a particular version.

b. Local High-Availability Software Support

Local High-Availability Software Support Services provide the processes
and support staff to support system software required to provide redundant server and
storage configurations clustered together in the same physical site.

 272

Local High-Availability Support Services Requirements are:
• The Supplier must install and maintain the system software and related tools

required to provide a midrange compute environment that meets availability
requirements and removes single points of failure from the compute configuration.

• The Supplier must provide high-availability software expertise to manage and
monitor the operational environment.

• The platform will support non-disruptive software maintenance to both the system
software and the application.

3. Hardware Configuration Management

The Hardware Configuration Management of the Premier Services Package
includes the processes and procedures for the installation, upgrade, coordination and
oversight of midrange high-availability environments. The range of services includes all
services defined in the Enhanced Package plus hardware refreshes as required to maintain
state-of-the-art high availability configurations.

a. Local High-Availability Hardware Support

Local High-Availability Hardware Support services provide the processes

and support for redundant server and storage configurations that are clustered together in
the same physical site to support continuous availability requirements.

Local High-Availability Hardware Support Services Requirements are:
• The Supplier must manage platform solution configuration requirements to meet

availability requirements and remove single points of failure from the compute
configuration.

• The Supplier must provide subject-matter expertise to manage and monitor the
operational environment.

• The Supplier must coordinate with vendors to provide non-disruptive
maintenance processes.

• The Supplier must provide the capability to dynamically reconfigure resources to
support applications experiencing high demand.

4. Customer Support Service

The Supplier must be able to provide Customer Support Services that include a

more extensive range of Change and Problem Management Services. The complete set of
services that are provided encompass all services defined in the Enhanced Package and
additional client-specific change and service reviews.

 273

a. Request Management – Global Coordination

Premier Request Management Services include not only the coordination

of receiving and processing Navy requests for services within geographic regions as
provided in the Enhanced Services Package, but also global request coordination. The
Premier Services Package must provide request coordination via a single Supplier client
liaison across all global processing environments. This service integrates such services as
software and hardware refresh requests, coordinates scheduling, and provides global
consistency while still meeting client-specific business requirements. When requests
requiring this level of coordination are received, Supplier request management processes
provide the global communication to coordinate and execute the request among all
required locations.

Request Management – Global Coordination Services Requirements are:
• The Supplier must review all hardware and system software requests to determine

and understand potential global requirements.
• The Supplier must communicate and monitor the status of the request across all

impacted global sites to ensure deliverables and time frames are met among all global
environments as required.

b. Custom Service Reviews and Reporting

Custom Service Reviews and Reporting includes additions to Standard

Service-Level Management Reviews and Reporting. Navy-specific service level
reporting must be available and customized to address unique reporting requirements.
The review and reporting services for change and problem management can be
customized to meet application specific requirements. More frequent problem and change
management review services that encompass weekly Navy-specific problem review
meetings and daily service review meetings for all problem metrics are also provided.

5. Premier Services – Optional Service Upgrades

The service upgrades can be selected to expand the range of services provided in

the Premier Package based on program-specific requirements. There is an additional
charge associated with each service upgrade.

a. Upgrade – Remote High-Availability Support Services

The Supplier must have Remote High-Availability Support Services that

provide the processes and support for redundant server and storage configurations that are
located in geographically distributed physical sites either via hardware and/or software
tools to support specified availability requirements. Besides the protection provided by a
local high-availability solution, a remote high-availability configuration provides
business continuity if the local operating site is incapacitated.

 274

The components of a remote high-availability configuration include remotely
clustered platform configurations and remote mirrored disk storage configurations. When
redundant sites are requested, the Supplier and the solution vendors
perform a risk/cost/benefit analysis for Navy approval. Eliminating single points of
failure helps prevent interruptions in service because of discrete hardware and software
failures.

Remote High-Availability Support Services Requirements are:
• The Supplier must design and implement a configuration to meet availability

requirements and remove single points of failure from the compute configuration.
• The Supplier must provide subject-matter expertise to manage and monitor the

environment as defined by the services selected for the application.
• The Supplier must coordinate vendors to provide non-disruptive maintenance

processes to ensure the availability of the hardware components of the compute
configuration.

• The platform configuration must allow non-disruptive system and application
software maintenance to ensure the availability of the software components of the
compute configuration.

b. Premier Services – Optional Service Adjustments

These service adjustments can be selected to reduce the range of services

provided in the Premier Package based on client-specific requirements. There is a price
reduction associated with each service adjustment.

Adjustment – No High-Availability Support
This adjustment removes local High-Availability Services from the Premier

Package. This includes removal of local High-Availability Services that provide the
processes and support staff to support redundant server and storage configurations that
are clustered together in the same physical site either via hardware and/or software tools
to support continuous availability requirements.

Adjustment – No Request Management – Global Coordination Support
This adjustment removes Request Management – Global Coordination Services

from the Premier Package.

6. Contract Termination

At the conclusion of the contract, the Supplier must assist the Navy Program

Manager and any third party contractor in migrating the application to a new
environment. This includes allowing a third party contractor access to the servers to
evaluate the applications. The Supplier must perform the following actions upon the
completion of the contract:
• Transfer the application or groups of applications to a suitable media for transport

to the new environment.

 275

• Provide software and hardware configuration information.
• The Supplier must provide audit information to assist any third party organization

in gathering data necessary to migrate the application.
• The Supplier must turn over all application related backup disks.
• The Supplier must purge all application data from their systems in accordance

with DoD and DoN regulations.
• The Supplier must provide all required end-of-month reports and documentation.

7. Acknowledgements

The author would like to acknowledge the assistance of Scott Price and Joseph

Vickery from EDS. Their contributions throughout this paper, especially in the facilities
portion of this paper, were invaluable.

 276

D. NMCI CONTRACT (APPENDIX A):

N/MCI Contract N00024-00-D-6000 Attachment 4 Security Requirements Section
1.1.4

1.1.4 Contractor Specific Internal Information Guidelines

1.1.4.1 Classified (DoD) Information Support

The highest classification level of information required in connection with this
procurement is TOP SECRET.

In accordance with the National Industrial Security Program Operating Manual,
DoD 5220.M, the contractor shall possess or be able to possess a Facility Security
Clearance equal to the highest level of classified information necessary to perform the
tasks or services required on this contract.

Contractor personnel, whose duties require access to systems processing classified
information, shall possess a security clearance at least equal to the highest degree of
classification involved and shall have a validated need-to-know prior to beginning work
on the classified system.

The sponsoring agency security requirements for classified systems shall be met
by all contractor personnel accessing classified information, or contractor systems
processing classified information.

The contractor shall perform internal assessments to determine position sensitivity
and management controls necessary to prevent individuals from bypassing controls and
processes, such as individual accountability requirements, separation of duties, access
controls, and limitations on processing privileges at contractor facilities. These position
sensitivity assessments will be forwarded to the Government for a determination of
personnel suitability and requirements for individuals assigned to these positions in
accordance with DRD3. Periodic re-evaluations of positions and suitability requirements
will be necessary during the life of the contract as positions and assignments change.

The contractor shall conduct risk assessments, document the results, develop and
maintain internal security plans. These plans shall describe how the contractor ensures
the integrity, availability, and confidentiality of the information that it is operationally
responsible to protect within the vendor’s facilities.

1.1.4.2 Sensitive Information Support (Non-classified)

Under current Federal guidelines, all officially held information is considered
sensitive to some degree, and shall be appropriately protected by the contractor as
specified in applicable IT Security Plans.

 277

Types of sensitive information that will be found on DoN systems that the
contractor shall have access to include, but are not limited to: Privacy Act information;
proprietary information of other companies or contractors; resources protected by
International Traffic in Arms Regulation (ITAR); technology restricted from foreign
dissemination for competitive reasons; DoN administrative communications, including
those of senior government officials; procurement or budget data; information on pending
Equal employment Opportunity (EEO) cases; labor relations; legal actions; disciplinary
actions; complaints; IT security pending cases; civil and criminal investigations;
information not releasable under the Freedom of Information Act (FOIA) (e.g. payroll,
personnel, and medical data).

The contractor shall perform internal assessments to determine position sensitivity
and management controls necessary to prevent individuals from bypassing controls and
processes, such as individual accountability requirements, separation of duties, access
controls, and limitations on processing privileges at contractor facilities. These position
sensitivity assessments will be forwarded to the Government for a determination of
personnel suitability and requirements for individuals assigned to these positions.
Periodic re-evaluations of positions and suitability requirements will be necessary during
the life of the contract as positions and assignments change.

The contractor shall conduct risk assessments, document the results, develop and
maintain internal security plans. These plans shall describe how the contractor will ensure
the integrity, availability, and confidentiality of the information that is operationally
responsible to protect within the vendor’s facilities and at government facilities. For
example the contractor shall ensure that foreign nationals within their corporate staff will
not have access to NMCI data that is not releasable. A decision to accept any residual risk
will be the responsibility of the DoN system owner and the DoN information owners. The
contractors risk assessments and IT Security Plans shall be updated at least every three
years or upon significant change to the functionality of the assets, network connectivity,
or mission of the system, whichever comes first. If new or unanticipated threats or
hazards are discovered by the contractor, or if existing safeguards have ceased to function
effectively, the contractor shall update the risk assessments and IT Security Plans (within
30 working days) and shall make appropriate risk reduction Recommendations to the
DoN system owner and the DoN information owners (within 5 working days).

1.1.4.3 Privacy And Security Safeguards

The contractor shall not publish or disclose in any manner, without written
consent of the government, the details of any security safeguards designed, developed, or
implemented by the contractor under this contract or existing at any DoN Center.

The contractor shall develop procedures and implementation plans to ensure that
IT resources leaving the control of the assigned user (such as being reassigned, removed
for repair, replaced, or upgraded) is cleared of all DoN data and sensitive application
software by a technique approved by the government. For IT resources leaving DoN use,

 278

applications acquired with a "site license" or "server license" shall be removed. Damaged
IT storage media will be degaussed and destroyed.

To the extent required to carry out a program of inspection and audit to safeguard
against threats and hazards to the confidentiality, integrity, and availability of
government data, the contractor shall afford DoN access to contractor facilities,
installations, technical capabilities, operations, documentation, records, databases, and
personnel.

 279

E. NAVSUP SERVICE LEVEL AGREEMENTS

Service level agreements have many formats depending upon how they are used.

Internal SLAs between management and the IT department can be more informal because
many of the procedural issues are stated elsewhere. SLAs involving external service
providers need to be more formal.

SLAs serve as a mechanism to notify all parties of services that will be
performed, performance expectations, responsibilities of all parties, penalties for non-
performance, and SLA resolution procedures. SLAs also define the oversight and
interaction between the program managers and the service provider.

SLAs are often used in conjunction with a Statement of Work (SOW), which
provides the actual requirements. The SLAs provide the metrics to measure whether the
requirements are being met. Most activities find it easier to keep the two documents
separate, as many requirements will not have SLAs associated with them.

The following is the SLA template that NAVSUP will be utilizing:
Service Name: This is the name of the service category that is being measured (e.g., help
desk support).
Service Description: This is a detailed discussion of the service that is to be performed.
This represents the business function, process, or procedure that is to be measured.
Reason for Measuring: This section should provide the rational for this SLA. A valid
justification prevents measuring for measurement sake. The results of the measurement
should result in problem determination, lead to corrective action, and maintain the
performance achieved by the corrective action. The SLAs should be linked to a strategic
or tactical business concern.
Time Frame: This is the time period during which measurements are taken (e.g.,
24x7x365, or from 0700-1900 Monday through Friday)
Scope: This section defines where the services apply (e.g., this applies to the system
software only). This section also provides amplifying information such as categorization
of problem calls (i.e., priority 1 equates to an emergency), and information necessary to
ensure all parties understand the areas that are covered by the SLA. The scope also
details areas not covered by the SLAs.

Performance Category: This section names sub-services that must be measured
to determine the over-all efficacy of the service. There can be numerous
performance categories associated with one SLA. The following subsections are
associated with every performance category:
Performance Metric: This section describes the metric to measure performance.
Threshold Levels: This section describes the performance thresholds that must
be met at the various service levels. There are generally more than one level of
service. In the example that will be presented, three service levels will be used.
Obviously as the thresholds become more difficult to meet, the costs of providing
the service will rise.
Formula: The formula describes how the metric will be computed.
Assumptions: All assumptions should be stated in this section.
Contractor Responsibility: This section details the contractor’s responsibilities
in meeting the service level requirements.

 280

Customer Responsibility: The program manager or the end-user’s
responsibilities are outlined in this section (e.g., a trouble call must be initiated
before metrics covering the help desk can apply).
Frequency: This is the period of time over which measurements will be taken to
determine SLA compliancy (e.g., monthly, quarterly). This usually equates to the
periodicity of the reporting requirements.
Measurement Techniques: How will the metrics be gathered? This describes
the procedures that will be used to collect the performance measurements.
Reports Required: This section details the reports required from the service
provider to verify actual performance against SLA thresholds. It also details the
periodicity requirements of the reports (e.g., Trouble Tickets – Monthly). The
person reviewing the SLAs may have access to the report generating tool, and can
manipulate the reports as needed. An example is if the reviewer has online access
to the trouble tickets, that individual can do daily, weekly or monthly reports, at
whatever level of abstraction is needed.
The specific reports required will be outlined in the Contractor Data
Requirements List (CDRL), which is separate from this SLA. The CDRL will
detail the format and content required, the frequency, distribution, and means of
dissemination. The reports required will vary depending upon the type of
application, the criticality of the application, monitoring tools used, funds
available, and management needs. Typically daily reports are more technically
oriented and are used by the CTR for verification; weekly or monthly reports are
generally aggregate reports that provide service level summaries to management.
Person Responsible for Verification: This section details who will be reviewing
the SLA measurements and determining compliancy. In the government, this
person is usually the Contracting Technical Representative (CTR).

Escalation Procedures: This section describes actions to be taken when thresholds are
exceeded, and who should be notified. For example if help desk response time is 15
minutes for a critical application, and 30 minutes have passed, who should be notified?
This also includes situations where thresholds are violated on numerous occasions
throughout the reporting period. This section also describes escalation procedures if the
CTR and service provider cannot agree that a threshold violation has occurred.
Contractual Exceptions: This section describes the exceptions to the SLA. For example
an emergency situation may require the service provider to violate a SLA threshold.
Penalties/Rewards: An SLA without penalties or rewards is nothing more than an
agreement. SLAs must have a mechanism to enforce compliancy. This section describes
what action will be taken if thresholds are violated, or if SLAs are met. It is important to
identify minor and major thresholds to ensure that the service provider is taking action to
correct the problems.

 281

Service Name SLA 1.0: Compute Service Availability
Service Description Availability measures the capability of an end-user to

access and fully utilize an application (according to
specifications) over a period of time. Availability is
usually expressed as a percentage of time that the system
was available for use divided by the agreed upon hours of
operation. The time period that an end-user cannot utilize
the application is considered ‘downtime’.

Availability metrics are generally intended to be end-to-
end, reflecting availability from the end users perspective.
However, these SLAs only cover the host environment, so
availability metrics will be restricted to the host
environment only, and will not apply to the client piece or
the connectivity from the client to the host environment
firewall.

Downtime can also be difficult to define. This SLA will
concentrate on an application’s opportunity to compute.
The thresholds will contain metrics to ensure that the
application has sufficient resources to operate to
specifications. If the compute environment is not
operating at a certain level of efficiency, the application
performance suffers. As a result, if certain resource
thresholds are not met, the period of time the resources do
not meet the thresholds will count as downtime.

Response time is another element of availability that must
be addressed. The SLA is limited to the host
environment, so application response time will be
calculated from the time a server receives application
input until it provides the correct output. It is necessary to
develop a program that resides on the server in order to
generate the information necessary to measure response
time (this is often referred to as synthetic transactions).
The program will test key application functionality at
random times and measure the response time from when
the input is initiated until the desired output is correctly
received. Response times will apply to enhanced and
premier services only. It is assumed that the government
will develop the synthetic transaction software.
Development of the program will be negotiated as a
separate line item if the program wants the service

 282

provider to perform that function.

Reason for Measuring Availability is a measure of quality. The program
manager and the contractor need to constantly monitor the
infrastructure, hardware and system software to measure
the effectiveness of the hardware and software in
supporting the application. Diligent monitoring will
detect early signs of problems that may require
maintenance action.

The efficacy of the application support has direct business
impacts. When the application is not available any
business related to that application stops; opportunities are
missed, business processes are impacted, and deadlines
can be missed.

The program manager must identify a target availability
threshold and be able to justify expenses associated with
it. This will involve determining the business impact of
lost service. The contractor must evaluate the
infrastructure to determine if it is possible to support the
availability, or if redesign or additional redundant or high
availability equipment is needed.

The host environment cannot be designed, implemented,
or managed unless an availability threshold is established.

Time Frame Derived by the contracted number of support hours.
The Default is 24x7x365. Scheduled maintenance time
that is within the maintenance window, and does not
exceed the agreed upon maintenance time frames will not
be included in availability computations.

Additionally, scheduled maintenance involving the
application (i.e., granting root access to maintenance
personnel to perform an upgrade) will not be considered
down time.

The Maximum "Available" time will be determined from
the hours of support that were contracted.
Example (1): Hours of Support = 24 x 7. The maximum
"available" time in a 30 day month is 30 x 24 x 60 =
43,200 minutes.

Example (2): Hours of Support = 9 x 5. The maximum
"available" time in a month with 21 work days is:

 283

21 x 9 x 60 = 11,340 minutes.
Scope This is an end-to-end metric from the host environment

firewall to the application. It includes the hardware and
the software for the firewall and server farm network, in
addition to the hardware and software necessary to support
the application. It does not apply to the application itself.

Performance Category 1.0 Host Environment Availability
Performance Metric Availability is expressed as a percentage of the time that

an application is fully functional divided by the total time
encompassed in the support hours.

Threshold Levels Availability thresholds are as follows:
 Essential Services: 99.50%
 Enhanced Services: 99.90%
 Premier Services: 99.95%

In this SLA, availability is not only dependent upon the
individual components that comprise the infrastructure
(servers, network and firewall); it also addresses
application and data availability from a security
perspective.

The following thresholds apply to resource utilization and
network efficiency. If these thresholds are violated, then
the application is considered ‘down’, and will count
against availability:

Server Measures:
CPU Utilization: 75% sustained for over 1 hour. Not to
exceed 90% for more than 2 polling cycles (5 minute
intervals).
Frequency of Failure: More than 3 service interruption in
one day.
Disk Utilization: 90%
Disk Response Time: .25 second
Disk Average Queue Length: 3
Disk I/O rate: 100 ms average
Swap space availability: 90% of defined space
Memory paging: 5 per second

Network Measures:
Data Delivery Rate: 99.95%
LAN Latency (one way): 70 ms
LAN Packet Collisions: More than 7% of packets
transmitted (average based on a 1 hour interval).
Bandwidth Availability: 85% of defined bandwidth

 284

Ethernet Segment Utilization: Less than 30%

Security Related Measures:
If application performance is degraded due to an intruder
attack, virus, worm, or security breaches previously
identified, the application is considered “down”. This
includes the time that the application is affected during
efforts to correct the violation. New attacks that have no
previous history or signature will not be counted as “down
time” against availability as long as the attacks did not
exploit vulnerabilities that were corrected by security
patches that should have been installed.

Application Response Time: Will be dependent upon the
types of transactions that are being performed. If all
transactions are similar, one threshold value can be
determined (e.g., query requests must be generated and
returned within 1 second). If the transaction response
times vary considerably, the response thresholds should be
specific to the transaction. In this SLA, response times are
generated from synthetic transactions and are measured
from the server only.

All hardware errors affecting the application are
considered ‘downtime’, and will be counted against
availability.

Formula Availability = (total uptime minutes) / (total uptime
minutes + total downtime minutes) * 100

Assumptions Downtime starts with the generation of a trouble ticket, or
when the monitoring tools capture a threshold violation.
Problems relating to the firewall, network, server or
system software will count towards downtime. A review
of the trouble tickets and monitoring software reports will
verify that the downtime is properly assigned.

Downtime attributed to application errors will not be
included in the computation. Downtime that is a direct
result of government actions will not be included in the
computation. An example would be rebooting the system
following an application update.

Errors attributed to the client side portion of the compute
environment will not be charged against reliability
calculations.

 285

Contractor Responsibility Adopt and implement an industry-standard software

solution for automatically polling and calculating compute
service availability.

Monitor compute services for earliest identification of
outages.

Take appropriate actions to correct deficiencies.

Customer Responsibility The customer is responsible for prompt notification of any
suspected compute service outages.

Frequency Monitoring is conducted during scheduled support hours.
Report frequency is monthly. Assigned government
representatives will have real-time or near real-time access
to monitoring software (read-only mode is acceptable).

Measurement Techniques The server will be ’Pinged‘ from a management server
every 5 minutes. Failure by the server to respond will start
the service outage time. The time between the first
’Failed‘ Ping and the first successful Ping after repair will
be reported as Downtime.

Example: Server A polled at 10:40, 10:45 and 10:50 and
does not respond to the 10:45 poll but does respond at
10:40 and the 10:50. This would be calculated as 5
minutes of downtime.

Approved industry standard monitoring tools such as
Tivoli® and Open View® will be used to monitor the
server and network. Operating system logs will also be
used to determine compliance. Threshold violations will
be considered downtime.

Each threshold specified will have to be evaluated to
determine the period over which the measurement is
determined. Unless otherwise specified, thresholds that
specify averages will be computed over a 1-hour period.
Other thresholds will normally be monitored in real-time,
or near real time. “Down time” is considered when a
threshold is violated for more than 5 minutes.

The downtime will be reviewed and adjusted by a
contractor representative to exclude all outages from
maintenance windows or outside the scope of service:
All planned outages

 286

All outages due to application failures

Adjusted Compute Service Availability is then
recalculated. The new formula would be as follows:

Availability = (total uptime minutes – downtime outside
of scope) / (total uptime minutes – downtime outside of
scope + total downtime minutes) * 100

Example Calculation:
Server contracted for 7 x 24 hour support. Two outages
occurred during a month with 30 days: (1) 100 minute
application outage and (2) a 360 minute system failure
occurred for a total downtime of 460 minutes. Availability
is reported as:

Reliability = (43,200 – 100) / ((43,200 – 100) + 360) *
100 = 99.17%

Reports 1. Monitoring reports: Weekly, in addition to real-
time/near real time viewing of the monitoring tools
that will allow visibility to raw data.

2. Trouble tickets: Weekly
Person Responsible for
Verification

The Contractor Technical Representative (CTR) will be
responsible for reviewing the monitoring reports and
trouble tickets to determine compliance with the SLAs.

Escalation Procedures The CTR will be notified if the application is not
accessible or functioning by the following time frames:
 Essential Service – after 30 minutes
 Enhanced Service – after 15 minutes
 Premier Service – after 10 minutes

If there are any disagreements concerning whether
downtime should be charged to the application, or the host
environment, the CTR will make the decision.
Disagreements can be escalated to the Contracting Officer
Representative (COR).

Contractual Exceptions Availability does not include scheduled maintenance
downtime within the maintenance window.

Penalties/Rewards Minor penalty: 10% of monthly rate
• Threshold values exceed agreed upon rates.
 Major violation: 25% monthly rate
• More than 3 minor penalties during the year
• Any availability less than the following:

Essential Services: 98.0% available
Enhanced Services: 99.0% available

 287

Premier Services: 99.5% available
• More than 2 major violations will force escalation

procedures between the COR and the contractor.
Following escalation procedures additional missed
targets may be cause for termination.

 288

Service Name SLA 2.0: Restoration of Service
Service Description Restoration of Service involves the implementation of

procedures that ensure critical business operations resume
following a disaster and that they return to normal as soon
as possible. Service restoration is part of an organization’s
COOP plan.

Reason for Measuring Restoration of Service is measured to ensure that systems
can meet the recovery times and resume full operations
within acceptable time limits based on the criticality of the
application.

Time Frame The time frame of measurement is from the time that the
application is no longer available until the application is
fully restored (operating in accordance with SLA defined
performance criteria).

Scope Restoration of Services applies to all of the components
(hardware and software) that are required to access and
run the application.

Performance Category 2.0 Restoration Time
Performance Metric The metric used to measure compliance with restoration

services is the amount of time from when services were
terminated to when the end user can access and fully
utilize an application.

Threshold Levels The thresholds are as follows:
 Enhanced: Less than 5 days
 Essential: Less than 48 hours
 Premier: Less than 4 hours

Premier with Remote High Availability: Less than 15
minutes

Formula The amount of time from the initial disaster report until
the application can be accessed and utilized to its full
functionality by an end-user.

Assumptions The contractor will notify the CTR and program manager
as soon as possible after a disaster occurs. Help desk
personnel should also be notified so they can inform users
reporting problems with the application.

Contractor Responsibility The Contractor must work with the Program Manager’s
staff to help define the recovery requirements and then to
document the procedures for the Resumption of Service
for the system in a Disaster Recovery Plan.

The Contractor must test the Disaster Recovery Plan for
the systems annually and provide a summary of the test to
the CTR.

 289

The contractor must have accurate, timely hardware and
software configuration data as well as application and
system software implementation procedures.

Customer Responsibility The Program Manager must define the level of criticality
of the application being hosted and work with the
Contractor to define the Disaster Recovery Requirements.

The Program Manager must ensure that any government
employees needed to restore an application be available in
the event a disaster occurs and that they participate in the
annual testing.

In the event that government personnel are not able to
assist in the application recovery efforts, the program
manager is responsible for providing loading instructions
and test scripts to ensure that the application is functioning
correctly after the application is installed in the new
environment.

Frequency Disaster recovery will be tested annually. This SLA will
apply when a disaster occurs.

Measurement Techniques The Resumption of Service is measured by adding the
total minutes that it takes from the time a disaster is
recognized as having occurred (defined as the time that
service was no longer available) to the time the system has
resumed business operations (defined as services are
resumed to full SLAs).

The CTR will check with the help desk to determine if a
trouble ticket has been opened for the applications
affected by the disaster. If a trouble ticket has been
opened, the CTR will use that trouble ticket as a start time
for measuring the time of disaster. If a trouble ticket has
not been opened, the CTR will initiate the trouble ticket
for the application(s).

The Service Provider will notify the CTR when the
applications are ready for operation (this assumes the
application was tested using the test scripts). If test scripts
were not available, any time between when the application
is available for testing and the time that the program
management staff performs a functional test of the
application will not be held against the Service Provider
unless the tests fail. The trouble ticket should be closed
after resumption of operations.

 290

Reports 1. Disaster recovery test results
2. Disaster recovery plan
3. Trouble tickets

Person Responsible for
Verification

The CTR will be responsible for determining a time when
the application was not available due to a disaster, and
when services were resumed to SLA defined standards.

Escalation Procedures If services exceed thresholds, the CTR will be notified.
Contractual Exceptions None
Penalties/Rewards Minor penalty: 5% of monthly rate

• Threshold values exceed agreed upon rates.

Major Penalties: 25% of monthly rate
• Restoring services violated thresholds by more than

20%.
• 5% of monthly rate will be penalized for each day

after a major penalty is assessed.

The CTR and program manager have the discretion on
whether to apply any penalties.

291

Service Name SLA 3.0: Help Desk Service Reporting
Service Description The help desk is the central point of contact for problem

resolution. If a customer is experiencing any problems, or
needs to request services, they must contact the central
help desk for assistance. The help desk will either resolve
the problem while they are on the phone, or they will
generate trouble call tickets to assign the problem or task
to the appropriate point of contact.

Under the Navy/Marine Corps Intranet (NMCI), the Navy
has outsourced personal computers and infrastructure to
EDS. As a result any end-user problems will start with
the NMCI help desk. If the problem appears to reside
within the host environment, the NMCI help desk will
pass the trouble ticket to the contractor’s help desk.

Reason for Measuring The help desk is the central point of contact for problem
resolution. They are the direct interface to the end-user.
The help desk collects metrics needed to identify problem
areas, and to provide the quality assurance that is needed
to ensure that customers are supported.

The trouble tickets that are generated indicate problems
that may extend beyond a single caller. Prompt response
by the help desk may avert more problems.

The help desk not only collects information on problems
through the generation of trouble tickets, but they also
provide an initial resolution to problems by answering
questions, or guiding users through procedures. Help desk
performance must be measured to ensure the end-users are
receiving the support they require, trouble tickets are
being accurately generated, and action is being taken to let
users know the status of their trouble tickets.

Trouble tickets are one way to measure availability. It is
possible that a server and application are operating within
established performance thresholds, but the aggregate of
the various components are affecting the performance of
the application. The end-user can contact the help desk to
report the application’s poor performance.

Time Frame Help Desk service will be measured during support hours.
The default is 24 x 7.

Scope Under NMCI, the help desk will take the initial call, and
will pass a trouble ticket to the contractor help desk if the

292

problem does not involve the client piece of the
application, or the client side of the infrastructure. The
help desk at the host environment will take the appropriate
action to resolve the problem.

This SLA applies to the contractor’s help desk, and does
not include any actions taken by the NMCI help desk.
Thresholds will be based on direct phone calls or e-mails,
and trouble tickets (or similar measures) passed from the
NMCI help desk.

The contractor’s help desk is responsible for contacting
the individual submitting the trouble call if additional
information is needed. The help desk is also responsible
for providing feedback on efforts to fix the problem, and
to provide an estimated problem resolution time. When
the problem is resolved, the help desk will close out the
trouble ticket.

In some cases the contractor’s help desk will service
requests directly from the CTR, ISSM, program manger’s
staff, and software developers/maintainers. The vast
majority of telephone calls will be for services, instead of
reporting problems. Most problem calls are initiated by
the end-user, and they should initially be routed through
the NMCI help desk.

Software exists that can monitor every incoming call to
determine an average time to respond, dropped call rate,
time on hold, and average length on time responding to
callers. Unfortunately this software is very expensive. If
the contractor already has this software, then metrics can
be revised to take advantage of that monitoring capability.
However since the NMCI help desk will field most calls,
the cost to collect these metrics is not justified. Instead
the help desk metrics in this SLA will concentrate on the
response to the passed trouble tickets and the response to
phone calls will be based on surveys taken from end-users.

Performance Category 3.0 Help Desk Availability
Performance Metric This is a measurement of the availability of the help desk

to respond to requests or problems. The metric used will
be the probability expressed as a percentage that the help
desk will answer a call, or receive and process a trouble
ticket passed from the NMCI help desk.

Threshold Levels The following are the thresholds for help desk availability:

293

 Essential - Premier: 99%

Automatic answers to voice mail are not acceptable for
contractor help desk operations.

Formula The formula will consist of dividing all phone calls, e-
mails or passed trouble tickets that the contractor’s help
desk has taken action on divided by the total calls, e-mail
or trouble tickets sent to the contractor’s help desk.

Assumptions The NMCI help desk will be able to pass trouble tickets to
the contractor’s help desk. The NMCI help desk software
is Remedy. The contractor’s help desk must be able to
interface with Remedy©, or another method of passing the
trouble tickets will have to be developed and approved by
the government.

Contractor Responsibility The contractor should have a system to ensure that trouble
tickets passed from the NMCI help desk are received by
the contractor’s help desk.

Customer Responsibility If the end-user is experiencing problems with an
application, the problem needs to be routed through the
NMCI help desk. The contractor’s help desk will
primarily respond to trouble tickets from the NMCI help
desk and phone calls requesting hosting specific services.

Frequency Monthly
Measurement Techniques The total trouble tickets sent from the NMCI help desk to

the contractor’s help desk will be gathered from the NMCI
help desk software. Tickets received will be gathered
from the contractor’s help desk software.

The measurement of phone calls answered will be
gathered from interviews and spot checks by the CTR.

Reports 1. Trouble tickets from the NMCI help desk
2. Trouble tickets from the contractor’s help desk

Person Responsible for
Verification

The CTR will verify the contractor’s help desk
availability.

Performance Category 3.1 Initial Feedback
Performance Metric This is the period of time from submission of the trouble

call until the caller is notified that a trouble ticket has been
filled out, and an estimated completion time is given.

Feedback is generally provided in the form of an e-mail
with the information that is contained on the trouble ticket.
This allows the caller to verify that the information on the
trouble ticket is correct, and it provides the caller with an
anticipated resolution time. The feedback must also
categorize the problem and provide the agreed upon

294

resolution time frames.
Threshold Levels The following are the thresholds for initial feedback:

 Essential - Premier: Less than 15 minutes
Formula Time trouble ticket is completed minus the time the e-mail

is sent. Measurements are in whole minutes. For
example, if the trouble ticket was finished at 10:20am and
the e-mail was sent at 10:29, then the time period was 9
minutes.

Assumptions The help desk software program must have the capability
to e-mail the caller the trouble ticket, or the e-mail of the
end-user reporting the problem must be contained in the
trouble ticket passed from the NMCI help desk.

Contractor Responsibility When feedback is provided to the caller, a copy of the e-
mail should be sent to the CTR.

Customer Responsibility If there are problems with the trouble ticket as it was
passed, or if the end-user disagrees with the categorization
of the problem, the end-user needs to respond to the e-
mail outlining the issues. A copy will be sent to the CTR.
If the CTR disagrees with a categorization of the problem,
the CTR needs to contact the contractor and resolve the
issue.

Frequency The data will be gathered over the period of 1 month.
Measurement Techniques The CTR will utilize the feedback e-mails to determine

the time periods of the feedback.
Reports 1. Trouble tickets

2. E-mails received from the contractor’s help desk
Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 3.2 Repeat Problems
Performance Metric This is a measurement of the accuracy with which

problems are resolved. When a trouble ticket is closed
out, the problem should be investigated and corrected.
Repeat problems are those problems that have been
reported via a trouble ticket that have occurred again
within 30 days from the close out of the trouble ticket.

Threshold Levels The following are the thresholds for repeat problems:
 Essential - Premier: 05%

Problems that reoccur within a 30-day window will be
counted against the month in which the problem
reoccurred.

Formula Number of repeat trouble calls divided by total trouble
calls. For example if 5 trouble calls had to be reworked,
out of a total of 100 trouble calls, the formula would be as
follows: (5/100)*100 = 05%

295

Assumptions In some cases the problem will require in-depth problem
analysis. Rebooting the system will not allow a root
determination of the problem.

The program manager and the contractor will determine
when in-depth analysis should be performed. If the
program manager is reluctant to perform in-depth analysis,
and is comfortable with rebooting the system to solve the
problem, then the CTR after receiving concurrence from
both parties will not count those faults towards this SLA.

Contractor Responsibility The contractor needs to notify the program manager when
there appears to be a recurring problem that cannot be
solved without in depth trouble shooting.

Customer Responsibility When recurring problems are occurring, the program
manager needs to make the determination on whether they
need to conduct in-depth root cause analysis when the
next fault occurs.

Frequency Every quarter.
Measurement Techniques The CTR will receive copies of the trouble call feedback

e-mails, which can be used to determine reoccurring
problems. In addition interviews with program
management staff and end-users will be conducted to
determine if the root cause for different problems are the
same.

Reports 1. Trouble ticket feedback e-mails
2. Monitoring tools

Person Responsible for
Verification

The CTR is responsible for verification.

Escalation Procedures Issues will be brought to the attention of the CTR. The
CTR can escalate the issue to the COR if it cannot be
resolved at the CTR level.

Contractual Exceptions Problems that require in-depth analysis will be excluded
from the total of reworked trouble tickets. This exclusion
will require concurrence from the contractor and program
manager.

Penalties/Rewards Minor penalty: 5% of monthly rate
• Threshold values exceed agreed upon rates.

Major Penalty: 15% monthly rate
• 3.0 Help Desk Reliability

Essential - Premier: Less than 95%
• 3.1 Initial Feedback

Essential - Premier: Less than 45 minutes
• 3.2 Repeat Problems

296

 Essential - Premier: 10%
 Penalties will be levied at the discretion of the CTR.

297

Service Name SLA 4.0: Problem Resolution
Service Description Problem resolution measures of the contractor’s ability to

identify, respond, and correct problems or issues that
affect compute services.

Reason for Measuring Problem resolution is a portion of the mean time to repair
(MTTR), which factors into overall availability. This has
a direct impact on the end-user’s ability to utilize the
application. If the occurrence of problems remains
constant, a lower MTTR will increase the operational
availability of the application.

Problem resolution is an important metric in measuring
customer support. It measures the contractor’s response
time to resolving issues, as well as the skill at which they
apply long-term solutions.

Time Frame Derived by the selected hours of support. The default is
24 X 7.

Scope This SLA measures the resolution time frames for
problems reported to the contractor’s help desk, or
detected by monitoring software. The SLA applies to
problems within the host environment. Problems are
defined as a change of state in the software, hardware, or
infrastructure within the host environment that adversely
affects the performance of the application. Hardware or
software errors that do not affect the application’s
performance or functionality will not be included in this
SLA.

The contractor will be held responsible for the resolution
time on any third party hardware or software that is
residing in the host environment.

Problem resolution does not include problems that can be
corrected by the contractor’s help desk during the initial
trouble report. Problems associated with the client side
computer or infrastructure will be passed to the NMCI
help desk, and the NMCI SLA will pertain.

Problem resolution applies to the firewall, infrastructure,
hardware, and software in the host environment, except
the application software. Problems relating specifically to
the application will be passed to the appropriate
application point of contact and will not be within the
scope of problem resolution.

298

Priority 1 issues: Mission Critical Impact: Priority 1
issues involve critical component failure resulting in loss
of application access or functionality. Examples of
priority 1 issues include: faulty routers, server failure, or
disk failure on a non-replicated disk.

Priority 2 issues: Significant Impact: Priority 2 issues
involve critical components that are degraded, or
important functionality is not available. Examples
include: moderate server faults where users may notice
degraded system performance, failure to a replicated web
server, or disk failure in a mirrored raid environment..

Priority 3 issues: Minor Impact: Priority 3 issues involve
non-critical components that are inoperative, or are
degraded. These are minor faults that the end-user may
not noticed and cause little disruption in service.
Examples of priority 3 issues include rebooting of a
replicated router, restarting aborted processes, or memory
short-runs.

Priority 4 issues: No immediate impact. Priority 4 issues
are generally non-outage situations involving requests for
information. An example of priority 4 issues would be a
request for the version of software on a server, or filling
out a questionnaire.

Performance Category 4.0 Problem Resolution Rate
Performance Metric The resolution rate measures the percentage of problems

that are resolved within the established timeframes.
Maximum response times are established to ensure all
problems are resolved expeditiously.

Threshold Levels Problem resolution rate:
Priority 1 Critical: 95% Compliance with the following
timeframes, no problem will exceed 12 hours.
 Essential - Premier: Less than 4 hours

Priority 2 Major Impact: 95% Compliance with the
following timeframes, no problem will exceed 24 hours.
 Essential: Less than 8 hours
 Enhanced: Less than 8 hours
 Premier: Less than 4 hours

Priority 3 Moderate Impact: 95% Compliance with the
following timeframes, no problem will exceed 4 days.

299

 Essential - Premier: Less than 2 days

Priority 4 Minor Impact: 95% Compliance with the
following timeframes, no problem will exceed 48 hours.
 Essential - Premier: Less than 8 hours

Password Resets: 95% Compliance with the following
timeframes, no problem will exceed 2 hours.
 Essential - Premier: Less than 30 minutes

Formula Total number of problems resolved within the defined
time frames divided by the total number of problems that
have occurred.

For example, 20 trouble tickets at priority 3 were received
by the contractor help desk, 18 were resolved within the
timeframes, 1 was resolved in 3 days, and 1 was resolved
in 5 days. The formula would be 18/20 = .90. 90 percent
is not in compliance, nor is the 1 trouble ticket that took 5
days to resolve.

Assumptions The contractor’s monitoring software should detect the
vast majority of the problems that will affect an
application’s performance. The start of the problem
resolutions begins when the monitoring software detects
events that affect the application’s performance. Another
way of reporting a problem is through trouble tickets.
Under NMCI the end-user will notify the NMCI help desk
if there are problems with the application. If the NMCI
help desk believe that the problem originates at the host
environment, they will pass the trouble ticket to the
contractor’s help desk. The time that the contractor’s help
desk receives the trouble ticket from the NMCI help desk
is when the time starts for problem resolution within the
contractor’s host environment.

The contractor’s help desk will categorize the problem and
assign responsibilities for resolution appropriately.

The contractor will be able to accept trouble tickets
generated from the NMCI help desk. The contractor does
not have to have the same software as NMCI, but they
must have a process for receiving and responding to
trouble tickets generated by the NMCI help desk.

When the contractor’s help desk provides feedback on a
problem, they must provide a categorization of the

300

problem, and the agreed upon timeframes for resolution.
If the end-user does not agree with the categorization of
the problem, the issue can be escalated to the CTR for
resolution.

Contractor Responsibility The contractor must have a process in place to monitor
and document problems in the host environment.
Documenting problems identified by the monitoring
software is essential in trend analysis and long-term
problem resolution. The contractor must also have a
system in place to accurately categorize problems into
their respective category.

The contractor must have procedures in place to
communicate responses and resolutions back to the NMCI
help desk. In addition the contractor must provide
feedback to the end-user detailing estimated resolution
timeframes, based on problem severity

Customer Responsibility The CTR must review the trouble tickets and monitoring
logs to ensure that the appropriate categorization was
assigned to the trouble ticket.
Navy personnel or their associated contractors will assist
in problem resolution with issues that may point to the
application software as the cause of the problem.

Frequency Monthly
Measurement Techniques Response times are based on the hours of support and are

calculated by subtracting the time the trouble ticket was
received by the contractor’s help desk to the time the
trouble ticket was closed out, indicating that the problem
was successfully resolved. Response times associated
with problems identified by monitoring tools will start
when resource thresholds are violated, or the tools indicate
that application performance is degraded.

Example (1) Hours of Support 24 X 7

A Priority 2 problem was reported to the NMCI help desk.
NMCI staff determined that the problem was at the host
environment. They passed the trouble ticket to the
contractor’s help desk. The contractor received the
trouble ticket from NMCI at 16:55.
The contractor responds at 17:05
Response time = 10 minutes
The response time is calculated by subtracting the time the
trouble ticket was received from NMCI from the time the
contractor responded to the problem.

301

17:05 – 16:55 = 10 minutes

Example (2): Hours of Support = 5 X 9 (08:00 – 17:00)

Priority 2 problem reported in a monitoring toolat 16:55.
Contractor Responds at 08:05 the next day.
Response time is 10 minutes
The response time is calculated by subtracting the time of
threshold violation 16:55 from the end of the hours of
support for that day 17:00, and then adding the difference
between the start of the hours of support for the following
day and the time the response was made.
(17:00 – 16:55) + (08:05 - 08:00) = 5 + 5 = or 10 minutes.

The CTR will review monitoring logs and trouble tickets
received from the NMCI help desk, as well as those that
may have been called directly into the contractor’s help
desk to determine resolution timeframes. In some cases
developers will notice problems with the servers, and they
should interface directly with the contractor help desk.

Reports 1. NMCI Trouble tickets
2. Contractor’s trouble tickets
3. Monitoring tool reports

Person Responsible for
Verification

The CTR is responsible for verification.

Escalation Procedures The CTR must be contacted if the maximum time frames
for problem resolution are exceeded. If there are disputes
concerning the categorization of problems, the CTR will
resolve the issue. It is important that all parties
understand how to categorize the severity of the problems
before application support begins.

Contractual Exceptions Response times are only applicable during support hours.
Penalties/Rewards Minor penalty: 5% of monthly rate

• Threshold values exceed agreed upon rates.

Major penalty: 20% monthly rate
• Threshold values fall below 85% compliance for any

of the timeframes.
• Problem resolution is more than twice the agreed

upon maximum response time.

302

Service Name SLA 5.0: Request Management
Service Description Request management measures the contractor’s ability to

respond to service requests from the government. The
contractor must have a process in place to receive
requests, perform requirements review to ensure they
understand the request, execute the request, track
execution status, , and report request completion.

Reason for Measuring The government expects quality service. One type of
service is request management, which measures the speed
with which a contractor reacts to and completes a service
request.

Consistent time frames for implementing service requests,
such as complex configuration changes are needed to
accurately forecast completion times. Request metrics can
be used in project scheduling, budgeting, and planning.

Time Frame Derived by the selected hours of support. The default is
24 X 7.

Scope Request services apply to requests that effect host
environment hardware and software, and do not apply to
application software.
Examples of request services include: Platform design
services, hardware configuration changes, large-scale
software maintenance (e.g., upgrading to a new operating
system), or software maintenance that involves
coordination between client and server software releases
(such as changing to a new version of a DBMS).

Request services do not cover requests associated with
problem resolution nor does it cover requests for normal
software maintenance. Those areas are covered under
separate SLAs.

Level 1 High Application Impact: Examples of level 1
requests are changes that have a significant impact on the
majority of end-users, , are difficult to reverse once they
are applied, are highly complex such as designing
platform solutions, or require a great deal of coordination.

Level 2 Moderate Application Impact: Level 2 requests
affect the application, but not the end-users. Examples of
level 2 requests are modifications to peripheral hardware,
adding additional agents to monitor resources, adding

303

additional server resources, or installing shared services.

Level 3 Minor Application Impact: Level 3 changes have
little, if any, impact on the application itself. Examples
are modifications to the infrastructure such as modifying
the access control list in the firewall, requests for facility
access, adding user identification/passwords for access to
the server, and routine requests that do not fall anywhere
else.

Performance Category 5.0 Response Time
Performance Metric The metric measures the compliance with adhering to the

time frames established for responding to requests.
Threshold Levels Level 1 Major Application Impact:

Essential - Premier: 15 Days to develop and propose a
project plan. Resolution time frames will be negotiated
between the government and the contractor.

Level 2 Moderate Application Impact:

Essential - Premier: 5 Days to develop implementation
plan, 10 Days to complete request.

Level 3 Minor Application Impact:
 Essential - Premier: 2 Days to complete request.

Formula Calculate the time that the trouble ticket was initiated until
the trouble ticket was closed out, indicating that the
request was performed to the customer’s satisfaction.

Assumptions Funding for any requests that are not covered within the
scope of the contract will be negotiated separately. The
timeframes in this SLA will not be impacted by the time it
takes to successfully negotiate for additional services.
This includes the time it takes the contractor to develop an
estimate of the costs associated with executing the request.

The government and the contractor agree on the level of
the request and the Change Review Board approves any
proposed configuration changes.

Level 1 request completion times will have to be
negotiated separately. Estimated completion times will
have to consider complexity, operational schedules, and
coordination concerns. Both the government and the
contractor will agree to the estimated project completion
times.

304

Contractor Responsibility The contractor must provide the documented policies and
procedures for submitting changes and requests. The
procedures will include the use of the contractor’s help
desk to record the initial request for service on a trouble
ticket. Trouble tickets will be used to measure the time
the request was submitted until the request was completed.
The contractor must also provide a coordinator to manage
the requests.

Customer Responsibility The government will submit requests in compliance with
the documented policies and procedures. The CTR will
determine the request level. If the distinction is not clear,
the CTR, contractor and program manager can negotiate a
response time that is acceptable to all parties.

Frequency Monthly
Measurement Techniques Times are calculated by subtracting the time the trouble

call is submitted until a project plan is delivered, and/or
the request is completed.

The total number of requests will be categorized into those
that met the threshold levels and those that did not. The
numbers will then be utilized in the formula to determine
compliance.

Reports 1. Trouble tickets
Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 5.1 Project Completion
Performance Metric The metric used is a percentage of time that the actual

project completion date deviated from the estimate in the
project plan.

Threshold Levels The thresholds apply to the timeframes established by
SLA 5.0, or to the timeframes presented in the approved
project plan. The following thresholds represent an
acceptable percentage deviation from the promised
completion date:
 Essential: 15 percent
 Enhanced: 15 percent
 Premier: 10 percent

Formula The difference between the actual time to complete the
request (AT) minus the estimated time to complete the
request as outlined in the project plan (ET) divided by the
estimated time.

Formula = (AT – ET)/ET * 100

305

Actual time = 17 days
Estimated time = 14 days

Formula = (17-14)/14 * 100 = 21.43 percent

Assumptions The government and the contractor agree on the project
completion estimates before the contractor agrees to
perform the request.

Additional requirement or scheduling changes by the
government will require a renegotiation of the estimated
completion times.

Level 1 tasks that can be performed in less than 10 days
will default to level 2, and the thresholds for level 2 will
apply.

The time of request completion will be entered on the
trouble ticket and the job will be closed out.

Contractor Responsibility The contractor will provide an estimate of the time it will
take to complete the request. The estimate will be part of
the project or implementation plan.

Customer Responsibility Review the estimated completion time to determine if the
time frames meet operational commitments. Agree on
time frames for completion before any work is actually
performed.

Allow the contractor adequate time to properly scope and
research the request. What may appear to be a simple
request may in fact be very complex.

Frequency This SLA will apply to every request on a case-by-case
basis. The CTR will apply any penalties at the end of the
month in which thresholds were violated.

Measurement Techniques The actual completion times for a level 1 request (taken
from the trouble ticket) will be compared to the project
completion estimate in the project plan. If the time
actually completed exceeds the estimate, then the
percentage of time difference needs to be computed.

Reports 1. Trouble tickets
2. Implementation plans: As they are developed

Person Responsible for
Verification

The CTR will be responsible for verification.

Escalation Procedures Any disputes will be resolved by the CTR. If there are
still conflicts, the COR will make the final determination.

306

Contractual Exceptions None
Penalties/Rewards Minor penalty: 5% monthly rate

• Threshold values exceed agreed upon rates.

Major penalty: 15% monthly rate.
• 5.0 Response Time Level 1 through level 3:

compliance rate less than 85%.
• 5.1 Project Completion Level 1: Project completion

time exceeds 25% for Essential and Enhanced, and
20% for premium.

• 5.1 Project Completion Level 2 and level 3: Time to
complete the request exceeds 25% of the threshold.

307

Service Name SLA 6.0: Security Management
Service Description Security Management Services are those services required

to protect the confidentiality, integrity and availability of
the compute environment. The services include
vulnerability assessments, intrusion detection, virus
protection and compliance with DoD, and DoN policies
and procedures.

Reason for Measuring The Internet is an inherently untrustworthy medium. Any
system that has connectivity to the Internet must have
defensive systems, policies, and procedures in place to
protect against attack.

Many applications in the government contain information
that is business sensitive. The sensitive but unclassified
classification assigned to that information requires that the
government take aggressive steps to ensure the
confidentiality and integrity of the information.

Information warfare or cyber-terrorism seeks to exploit
security vulnerabilities to gather information, insert
erroneous information, destroy information, and disable
systems. A successful attack against a system or
application can result in compromised information and
hours or days of down time, depending upon the severity
of the attack. Determining the extent of the damage can
take days or weeks. An attacker may have penetrated the
system months before; so corrupted files would be
incorporated into the backup tapes. Without strong
security measures it can be very difficult to determine
when an attack occurred, and the extent of the damage.

Time Frame Derived by the selected hours of support. The default is
24 X 7. Security monitoring is 24 X 7 regardless of the
selected hours of support.

Scope Security management includes the firewall, network and
server hardware and software within the host environment,
and does not apply to application software.

Performance Category 6.0 DoD Information Technology Security Certification
and Accreditation Process (DITSCAP) Certification

Performance Metric The DITSCAP documentation outlined in DoD Instruction
5200.40 states that the environment and all applications
residing in that environment must be certified. This
metric measures compliancy with the DITSCAP program.
The metric is a percentage expressed as the number of
applications certified in accordance with the DITSCAP
program divided by the total number of applications in the

308

host environment.
Threshold Levels The DITSCAP documentation includes a security risk

assessment of the host environment (firewall, network,
servers, and all supporting software) and each of the
applications that reside in that environment. The
thresholds are split between the host environment
assessment and the individual application’s risk
assessments.

The following thresholds apply to the certification of the
host environment:
 Enhanced – Premier: 100 percent

The following thresholds apply to the certification of
applications within the host environment:
 Enhanced – Premier: 95 percent

Formula The number of applications certified in accordance with
the DITSCAP regulations divided by the total number of
applications in the host environment.

Assumptions The information in the DITSCAP documentation will be
classified in accordance with the appropriate classification
guide.

The DITSCAP program refers to systems and not
individual applications. However, the intent of the
program is to gather enough information on the
application to accurately determine the application’s
security risk.

The DITSCAP documentation for the host environment
will consist of the assessment of the security risks
associated with the environment, and the appropriate
documentation assessing the risk for each application.
The contractor is responsible for the host environment
assessment, and the government is responsible for the
application specific documentation.

At a minimum, the government activity will provide a
type or system accreditation document approved by the
developmental Designated Approving Authority (DAA) to
be included in the contractor's host environment
accreditation document. See NIST Special Pub 800-37,
Guidelines for Security Certification and Accreditation of
Federal Information Technology Systems for definitions.

309

The government developmental (DAA) will evaluate the
DITSCAP documentation, review the security risks, and
determine if the system or application will be hosted in the
contractor’s host environment.

Contractor Responsibility The contractor if responsible for certifying the host
environment, as well as obtaining documentation from the
government identifying the risks associated with the
applications to be hosted in the host environment.

The will be present the DITSCAP documentation to the
appropriate government developmental DAA for review.

Customer Responsibility Provide the contractor with the type or system
accreditation documentation identifying security risks
associated with the application. If a System Security
Authorization Agreement (SSAA) already exists, provide
the document to the contractor for incorporation into the
contractor’s accreditation documentation. If the customer
needs assistance in documenting the appropriate risk
information, the contractor can perform that function,
however that task will be negotiated separately.

Frequency This review will be conducted on a quarterly basis.
Measurement Techniques The software configuration documentation will contain an

inventory of all software in the host environment. The
Information System Security Manager (ISSM) will spot
check the configuration document against the SSAA to
ensure that the proper information has been collected on
the application.

The ISSM will also have a listing of all applications that
are hosted in the contractor’s environment. Every
application should have the appropriate DITSCAP
documentation.

The ISSM will check the periodicity of the host
environment SSAA to ensure that it is renewed every
three years.

Reports 1. A listing of all applications hosted with the contractor
2. The contractor’s software configuration database.
3. The contractor’s DITSCAP documentation that will

include the host environment documentation as well
as the documentation for every application.

Person Responsible for
Verification

The appropriate government ISSM.

310

Performance Category 6.1 Adherence to Security Policies and Procedures
Performance Metric The metric applied to security policies is based on spot

checks performed by the government to validate that the
contractor is abiding by DoD, DoN and contractor
mandated security policies and procedures. The metric
will be expressed as a percentage of spot checks showing
adherence to policies divided by the total number of spot
checks.

Threshold Levels This performance category will evaluate how well the
daily operations at the host environment abide by
mandated security policies and procedures. Areas that
will be evaluated include ensuring security changes can be
traced back to approved change requests, users have the
appropriate permission and access levels, passwords are
the appropriate length, personnel with root access match
the personnel approved to have root access, and physical
security.

DoD and DoN security policy states that successful
intrusions must be reported. The incident report will be
used as one of the spot checks for the quarter. If it is
determined that the intrusion was a result of a failure to
execute security procedures, then that spot check will
count as a failed spot check.

This review is separate from red team vulnerability
assessments.

The following thresholds apply to adherence to security
policies and procedures:
 Enhanced – Premier: 95 percent

Formula The number of spot checks indicating adherence with the
mandated security policies and procedures divided by the
total number of spot checks that were conducted.

Assumptions The government will provide audit results to the
contractor for comment. The contractor will take action to
correct noted deficiencies.

The audit results will be classified in accordance with the
appropriate classification guide.

Contractor Responsibility The government representative will have full access to all
documentation, hardware, and software necessary to
conduct the spot checks. The government expects full
cooperation from the contractor.

Customer Responsibility The government will provide the contractor with a

311

checklist of the possible spot checks that will be
performed. If discrepancies are discovered, the
government will provide any necessary instructions or
documentation to assist the contractor in correcting the
problem.

The appropriate ISSM will forward any modifications to
the checklist, or any new DoD or DoN security guidance
to the contractor.

Frequency Quarterly
Measurement Techniques The government representative will use an extensive

checklist and personal knowledge to conduct the spot
checks.

Reports 1. The security checklist.
2. The appropriate logs and reports to validate security

procedures and policies are being adhered to
3. Configuration data to ensure security patches were

installed.
Person Responsible for
Verification

The appropriate government ISSM.

Performance Category 6.2 Access Revocation
Performance Metric The metric to measure this category is the amount of time

taken to remove an individual’s access rights and
privileges to the server.

Threshold Levels As personnel rotate jobs, retire, or are terminated, their
ability to access and/or authenticate to a server (password,
PKI certificate) must be removed. This prevents hostile
activity from a disgruntled worker, and it ensures that only
authorized personnel have access to the server. Revoking
access rights ensures that the authorized personnel are not
held accountable for actions that may have been
accomplished by someone no longer working with the
server.

This threshold applies to government personnel as well as
the contractor’s employees.

The ISSM will notify the contractor when access rights for
government employees need to be removed. Notification
will be initiated through a trouble call to the server farm
help desk.

If contractor employees are terminated, transfer to another
position that does not necessitate access to an
application’s server, or retire the ISSM will be notified

312

within 8 working hours.

The following thresholds apply to removing an
individual’s access rights:
 Enhanced – Premier: Less than 8 hours

Formula For revocation of a government employees access rights,
the time will be measured from the issuance of the trouble
ticket to the completion time on the trouble ticket. If the
revocation concerned a contractor employee, the time will
be measured from the time the employee was removed
from the project (as reported to the ISSM) until the time
the employee’s rights were removed. Log entries will
detail the time the employee’s rights were removed.

Assumptions If a contractor employee is transferred to another position
that does not need access to a server, the contractor will
revoke that individual’s access. The contractor will have
to determine whether an internal employee needs access
rights. In some cases, the contractor may want multiple
employees to have access rights for redundancy purposes.

Contractor Responsibility The contractor must notify the appropriate ISSM of
contractor personnel terminated, retiring, or transferred off
of the project. Notification must occur within 8 working
hours after the individual has been terminated or
reassigned.

Customer Responsibility The customer is responsible for notifying the contractor of
personnel that no longer need access to the server.
Notification will be through a trouble ticket.

The ISSM will notify the appropriate government
personnel of contractor employee terminations or
reassignments.

Frequency Monthly
Measurement Techniques The ISSM will use the trouble tickets, notification

received from the contractor, and server logs to compute
the formula.

Reports 1. Database of users and corresponding access rights.
2. Trouble tickets
3. Server logs

Person Responsible for
Verification

The appropriate government ISSM.

Performance Category 6.3 Red Team Vulnerability Assessment
Performance Metric The red team is a government security team that will

evaluate the host environment for vulnerabilities. The
metric used will be the success rate at preventing an
attacker from affecting the integrity, confidentiality, or

313

availability of data or systems hosted in the contractor’s
environment.

The metric will be a percentage representing the amount
of unsuccessful attempts to breach security in the area
being assessed divided by the total attempts to breach
security in the area assessed (for example, blocking denial
of service attacks).

Threshold Levels The red teams will test all aspects of the host environment
security. They will evaluate a number of areas including,
but not limited to: physical security, personnel security,
firewall compliance, system penetration, planting (e.g.,
Trojan horse), data integrity, denial of service, virus
protection, media security, communication monitoring,
communication tampering, administrative security
procedures, authorization violation, and authentication.

Successful red team attacks against components that are in
full compliance with DoD/DoN guidance and industry
standards will not count against threshold figures.

Threshold levels are as follows:
 Enhanced – Premier: 99.00 percent

Formula The number of unsuccessful attacks divided by the
number of total attacks. An attack is defined as an attempt
to exploit a vulnerability by utilizing one form of attack.
For example using a war dialer to determine the phone
numbers of the modem bank constitutes one attack, even if
10,000 phone numbers were dialed. Denial of service
attacks against one port constitutes one attack even if
numerous messages were sent to that port.

Assumptions The first red team assessment will be used as a training
mechanism, and will incur no penalties for identified
vulnerabilities.

The red team will provide a brief to the contractor’s
management to explain the purpose of the assessment and
to get their authorization to conduct the test. The red team
will also provide a debrief explaining the results of the
assessment. Government personnel will also be invited to
the briefs.

The results of the red team assessment will be classified in
accordance with the appropriate classification guide.

314

The red team assessment will have minimal impact on the
applications residing in the host environment. If SLAs are
affected as a result of the red team assessment, the
contractor will not be penalized.

Contractor Responsibility The contractor will provide full cooperation with the red
team, including granting full access to the host
environment (it is assumed that they will be escorted).

Customer Responsibility The customer will provide the contractor with the
vulnerability assessment results so appropriate action can
be taken to correct or reduce the vulnerabilities identified.

Frequency If a host environment has not received a red team
assessment within 1 year, then the assessment should be
done before the application becomes operational.
Otherwise the periodicity is annual.

Measurement Techniques The red team results will contain the information to apply
to the formula. The red team will determine if an attack
was successful.

Reports 1. Red Team vulnerability assessment
Person Responsible for
Verification

The red team will perform the assessment, and the ISSM
will verify the results against thresholds. If the ISSM does
not have the appropriate security clearance to view the
results of the assessment, then the verification will be
conducted by a member of the Chief Information Officer’s
(CIO) staff with the appropriate clearance.

Performance Category 6.4 Correction of Red Team Identified Vulnerabilities
Performance Metric The metric is the number of days to correct a deficiency or

vulnerability identified in the red team attack.
Threshold Levels The time to correct deficiencies should be prioritized by

the criticality of the vulnerability, and the risk it presents
to the application.

Critical Vulnerability: The application is at risk from an
attack that is commonly utilized (hackers have used the
vulnerability to attack organizations more than 30 times).
This categorization is subjective and will depend upon the
red teams assessment of the vulnerability and the
criticality of the application. The red team will make this
determination.

Moderate Risk: The vulnerability has been exploited in
the past, but its risk is not high. The application would be
affected, but not for any significant time (over 1 day). A
denial of service attack would be an example of this type
of risk. This is also a subjective assessment and the red
team will make this determination.

315

Non-critical Vulnerability: All other vulnerabilities
identified by the red team.

The time thresholds are as follows:
Critical Vulnerability:
 Essential – Premier: 5 days

Moderate Risk:
 Essential – Premier: 14 days

Non-critical Vulnerability:
 Essential – Premier: 21 days

Successful attacks against an application will have a direct
impact on availability computations.

Formula The time, expressed in days, from the red team debrief
until the vulnerabilities are corrected, verified, and
reported to the ISSM.

Assumptions The red team will debrief the contractor on all identified
security vulnerabilities. The red team will be available to
answer questions from the contractor after the debrief.

Contractor Responsibility Trouble tickets should be initiated to record actions
necessary to correct vulnerabilities. The description on
the trouble tickets does not have to detail specific
vulnerabilities (e.g., tasks necessary to correct discrepancy
#5). The contractor will correct the vulnerabilities and
notify the ISSM when each is corrected.

Customer Responsibility The ISSM will verify when the vulnerability has been
corrected. The ISSM should be able to accomplish
verification by physical inspection, working with the red
team to replicate the attack, discussing the issue with the
contractor staff, or talking to the red team personnel and
describing the corrective action.

Frequency Annually
Measurement Techniques The time is measured from the day after the red team

debrief until the CTR has verified that the vulnerability
has been corrected. The trouble tickets will be used to
measure completion times.

Reports 1. Red Team vulnerability assessment
2. Appropriate logs and reports necessary to verify that

vulnerabilities were corrected.
3. Trouble tickets

Person Responsible for
Verification

The appropriate government ISSM.

316

Performance Category 6.5 Incidence Reporting
Performance Metric The period of time from detection of a security breach to

the report of that incident. It is the contractor’s
responsibility to provide security for the application. The
purpose of reporting an incident to the Fleet Information
Warfare Center is to capture information and generate
statistics concerning cyber-attacks on government assets
and data. The information also helps to determine the
extent of the attack or the resultant damage (e.g., worm
attacks).

Threshold Levels Incident definitions and categories are outlined in the
CJCSM 6510.01 of 15 March 2002. The corresponding
timeframes and method of reporting are outlined in table
B-10 of that same document. Reports will be made to the
Fleet Information Warfare Center (FIWC), and the ISSM
assigned to the activity of the application supported. The
CJCSM 6510.01 states the information required for the
report.

The ISSM is notified within 4 hours of the incident:

Essential – Premier: 100%
Formula The time expressed in minutes from the initial detection

until a report is properly filed (in accordance with CJCSM
6510.01).

Assumptions Taking action to mitigate the impact of an incident takes
precedence over reporting criteria.

Contractor Responsibility Upon detection of an incident, the contractor will make an
initial report within the timelines outlined in CJCSM
6510.01. If all information is not available within the
timeframes, submit a partial report, and follow up later
when all of the information is known. The contractor will
notify the appropriate ISSM of the incident as soon as
possible (no more than 4 hours after the incident).

Customer Responsibility The customer will provide the incident reporting
documentation, and all points of contact for incident
reporting. The customer will provide the contractor
training on how to respond to incidents and fill out the
appropriate forms. The customer will provide the
contractor with recall numbers to notify the appropriate
government personnel in the case of an incident.

Frequency As an incident occurs. Each incident will be measured
individually.

Measurement Techniques Security logs from the firewall, network and servers will
be reviewed to determine when an incident has occurred.
The initial report will also indicate the time of discovery.

317

If the security logs do not indicate an incident, the time on
the report can be used.

The ISSM will compare the time the contractor provided
notice, to the time of incident discovery to determine the
threshold for notifying the ISSM.

Reports 1. The appropriate security logs
2. Reports from monitoring tools
3. Reports from FIWC
4. The incident report generated by the contractor

Person Responsible for
Verification

The appropriate government ISSM.

Performance Category 6.6 IAVA, NAVCIRT, and INFOCON Response
Performance Metric The time measured in hours from when the government

notifies the contractor of an Information Assurance
Vulnerability Alert (IAVA), Naval Computer Incident
Response Team (NAVCIRT) advisory or Information
Condition (INFOCON) action, and when the action has
been completed.

Threshold Levels IAVAs, NAVCIRTs and INFOCON advisories are issued
to prevent security incidents from occurring. These
advisories identify newly discovered or recently exploited
vulnerabilities and outline action to correct or mitigate
those vulnerabilities. Each advisory gives a time frame
for complying with and reporting the actions outlined in
the advisory. In the case of INFOCON alerts, compliance
may be required within the hour, but these are rare
occurrences.

The timeframes for complying and reporting compliance
will determine the threshold timeframes. Reports will be
made through the activity ISSM.

Formula The time period from when the advisory was reported as a
trouble call and the time that compliance was reported to
the ISSM.

Assumptions If any of the actions mandated by an advisory adversely
affects the operation of the host environment, (e.g.,
interferes with monitoring agents, system settings, IDS
agents) the ISSM will be notified, and a resolution will be
determined.

Contractor Responsibility The contractor is safeguarding government data. As such
adherence to IAVAs, NAVCIRTS and INFOCON is
required. The contractor will notify the appropriate ISSM
when the actions outlined in the advisories have been
completed.

318

Customer Responsibility The ISSM will initiate a trouble call to the server help
desk notifying the contractor of receipt of an IAVAs,
NAVCIRTS and INFOCON. The ISSM will then deliver
the alert to the contractor (fax, e-mail) as soon as they are
received.

Frequency Each advisory will be tracked individually.
Measurement Techniques The ISSM will initiate a trouble call informing the

contractor that they need to take action on an advisory.
The ISSM will e-mail the advisory (a confirmation of
receipt is required), or fax it to the contractor (a follow up
phone call confirming receipt is required). The advisory
will contain the time frame for compliance. That time
period sets the threshold. The time from when the trouble
ticket was submitted until the contractor reports
compliance will be measured against the time requirement
in the advisory to determine compliance.

Reports 1. IAVA, NAVCIRT or INFOCON messages
2. Trouble tickets

Person Responsible for
Verification

The appropriate government ISSM.

Escalation Procedures The activity DAA and associated ISSMs will be notified
of vulnerability results. The CTR will be notified if any
thresholds are violated.

Any disputes will be resolved by the CTR. If there are
still conflicts, the COR will make the final determination.

Contractual Exceptions The initial red team attack will evaluate vulnerabilities and
adherence to DoD and DoN policies and guidance. The
results from the first vulnerability assessment will not
count against this SLA. The first assessment will not only
identify areas that need improvement, but will also clarify
policy and procedural interpretation.

Penalties/Rewards Minor penalty: 5% monthly rate
• Any threshold values were exceeded.

Major penalty: 15% monthly rate.
• More than 4 minor penalties during the year.
• 6.3 Success rate against red team less than 95%
• 6.4 Correction of security vulnerabilities in the red

team assessment or in an advisory exceeds 20% of
thresholds. If time periods exceed 20% of threshold,
there will be a 5% monthly rate penalty for every
week until compliance.

319

Service Name 7.0 Software Maintenance
Service Description Software maintenance involves installing new files,

updates, or patches to the infrastructure, DBMS, and
system software. For the purposes of this service level
agreement, the terms patches, upgrades, and modifications
are all considered maintenance actions, and the terms will
mean the same.

This SLA is concerned with the time it takes to realize that
an upgrade to software in the host environment has been
released until it is tested and finally installed in the
production environment. This SLA does not cover the
development of the maintenance software, nor does it
cover the quality of the maintenance software. In most
cases the software upgrade is from a third party vendor,
and the quality of the software upgrade is a risk that the
contractor must incur and manage.

Software maintenance also has to be performed on the
application, and its associated software. If the
maintenance action requires root access to install the
changes, then assistance will be required from the
contractor, as only the contractor has full root control.

Reason for Measuring Upgrades are generally released to correct problems with
the software (bugs), update software to prevent new
attacks, or to add/enhance functionality.

The security of the application is dependent upon the
speed at which the contractor installs security related
updates. As a result it is important to place time frames
on the contractor to ensure that security related patches
and updates are installed as soon as possible.

The contractor controls root access to the server.
Application maintenance action requiring root access must
be coordinated with the contractor. The threshold time
frames are designed to give the contractor sufficient time
to have staff available to assist with the installation of the
application update. The government’s maintenance
personnel also have consistent response time frames that
they can use to schedule their maintenance.

Time Frame Derived by the selected hours of support. The default is
24 X 7.

Scope Software maintenance covers all system, DBMS and

320

infrastructure software. The software maintenance is only
concerned with the software that resides in the host
environment, and is not concerned with the client side of
the software.

Software maintenance concerns patches and upgrades to
system and infrastructure software. The upgrades are not
new releases of the software, but are supplements to
existing installed versions. Upgrades to an existing
version, (version 2.0) of application X, would be covered
by this service level agreement, whereas installing a new
version, (version3.0) would fall under the service level
agreement for software refresh.

Maintenance actions initiated by the government will not
be constrained by this SLA. However, government
initiated down time will not count against availability or
contractor initiated maintenance time.

Maintenance action to the application that does not require
root access is not covered under this SLA.

Tuning operating system software is not covered under
this SLA. Tuning is considered a routine operation
necessary to host an application.

Performance Category 7.0 Installation Time Frames
Performance Metric The metric is the amount of time from release of a patch

or update, until it is tested and installed.
Threshold Levels System, DBMS, and infrastructure software installation

priorities are as follows:

Priority 1: Critical Security Related Patches. An example
would be alerts covered under an IAVA or NAVCIRT.
However, government generated alerts are covered under
another SLA. This SLA is concerned with third party
vendors, or the contractor, releasing patches in response to
newly identified vulnerabilities.

Priority 2: Routine Security Patches. Examples are virus
or IDS signature updates.

Priority 3: Upgrades correcting known errors: Examples
are upgrades correcting functional problems, such as
interfacing with new drivers.

321

Priority 4: Routine upgrades or patches: Examples are
upgrades adding new functionality. Thresholds are as
follows:

Priority 1 Maintenance Action:

Essential – Priority: Within 8 hours from release from
third party vendor.

Priority 2 Maintenance Action:

Essential – Priority: Submit to test lab within 1 day
after release. Install within 3 days of release.

Priority 3 Maintenance Action:

Essential – Priority: Submit to test lab within 1 week
after release. Submit the maintenance action to the
configuration review board (CRB) at the first
opportunity. Install within 1 week from CRB approval.

Priority 4 Maintenance Action:

Essential – Priority: Submit to test lab within 2 weeks
of release. Submit the maintenance action to the
configuration review board (CRB) at the first
opportunity. Install within 1 week from CRB approval.

Formula The time from the release of the patch or update to the
time it is tested and installed.

Assumptions Government personnel will notify the contractor of any
priority 1 maintenance actions initiated from the
government. Priority alerts from commercial sources will
be the responsibility of the contractor. It is assumed that
the contractor will subscribe to security alert services.

If a third party’s security patch is included in an IAVA, or
NAVCIRT, the timeframes for installation will default to
the government alert instead of this SLA.

Due to the short timeframes involved with installing
priority 1 maintenance actions, the CRB will be notified
after the installation has been completed. Notification will
be made through the government ISSM.
Priority 2 maintenance actions are considered routine and
part of daily business, and do not require the approval of
the CRB. All maintenance actions must be properly
documented.

322

All maintenance actions will be annotated on the weekly
schedule maintenance plan. Priority 3 and 4 maintenance
actions will be performed during the maintenance
window.

Contractor Responsibility The contractor will develop procedures to ensure that the
time frames are met.

The contractor must annotate the release date of a patch or
upgrade on the scheduled maintenance plan.

All priority 3 and 4 maintenance actions must be
presented and approved by the change review board.

The contractor will notify the ISSM after any priority 1
patches are installed. Notification will be no later than the
day following the installation.

Customer Responsibility Notify the contractor of any government issued security
alerts.

Frequency Monthly
Measurement Techniques The ISSM can check compliance with priority 1

maintenance actions by reviewing the trouble tickets and
monitoring logs, and comparing those entries to the date
the vendor released the update.

The ISSM can check Internet history logs to determine if
the contractor is downloading security patches on a daily
basis. Software configuration documentation will list
when those security patches were installed.

The history logs will also ensure that the contractor is
checking vendor’s web sites, or monitoring security
bulletins on a daily basis for new software patches or
upgrades.

The ISSM can check the software release dates on the
scheduled weekly maintenance report, and compare those
to actual release dates by calling the central design agency
(CDA). The actual software release dates can be
compared to the CRB notes to ensure that the maintenance
action was presented to the CRB at the first opportunity.

The CRB notes will contain approved maintenance action.
The software configuration documentation will contain the
date the software update was installed. The ISSM can
check the dates to ensure the maintenance action was

323

performed within 1 week of CRB approval.
Reports 1. Scheduled Maintenance Report

2. Server Logs
3. CRB Minutes
4. Software Configuration Documentation
5. Internet History Logs

Person Responsible for
Verification

The appropriate ISSM

Performance Category 7.1 Root Access Assistance
Performance Metric Only the contractor has root access to the operating

system. As such, application developers needing access to
files requiring root authority will have to coordinate with
the contractor for access. This metric measures the time
from the request for root access assistance until the
application upgrade installation begins.

This SLA affects application problem resolution because
in some cases root access will be needed to restore
corrupted or missing files.

Threshold Levels Installation of application upgrades requiring root access
is broken into three levels.

Level 1: Installing Critical Application Upgrades:
Examples include repairing security vulnerabilities, or
significant functional errors.

Level 2: Installing Serious Application Upgrades:
Examples include repairing degraded functionality or
performance.

Level 3: Installing Routine Application Upgrades:
Examples include adding new functionality.

Thresholds are as follows:
Level 1: Critical Upgrades

Essential – Premier: Grant root access 4 hours after
notification.

Level 2: Serious Upgrades

Essential – Enhanced: Grant root access 8 hours after
notification
Premier: Grant root access 4 hours after notification.

Level 3: Routine Upgrades

Essential – Premier: Grant root access within 3 working

324

days after notification.
Formula The time of the request for root access assistance minus

the time that the application upgrade installation begins.
Assumptions The government will perform the actual application

upgrade installation. The contractor is only needed to
grant root access to the government personnel.

The CTR will track all government initiated maintenance
actions to ensure that the maintenance down time is not
charged against the contractor.

The software configuration documentation will include
not only the time frames for application upgrade
installation, but also all pertinent information about the
upgrade such as a detailed description, developer, purpose
of the upgrade, and patch/version number.

Contractor Responsibility Ensure that personnel are available and trained to grant
root access during scheduled support hours. After hours
personnel must be accessible by phone or pager to respond
to after support hour level 1 root access requests.

The contractor help desk will be used to generate a trouble
ticket for root access requests. The help desk will
determine the appropriate level. If there are disputes
concerning level 1 requests, the contractor will grant the
request and file a grievance through the CTR for
resolution.

Customer Responsibility The CTR will initiate contractor assistance through a
trouble call to the contractor’s help desk.

The government maintenance personnel must inform the
CTR if the maintenance action affected the application. If
the application was impacted as a result of the
maintenance action, that ‘down time’ will not count
against availability SLAs.

Frequency Monthly
Measurement Techniques The CTR will review the trouble ticket to determine the

time between the request and the time the contractor
granted root access to the server. The trouble tickets will
be grouped into the three levels and the appropriate
thresholds will be applied. The CTR can also review the
maintenance records and configuration documentation to
the times that the software was installed.

Reports 1. Trouble Tickets

325

2. Software Configuration Documentation
3. Maintenance Records

Person Responsible for
Verification

The CTR is responsible for verification.

Escalation Procedures The CTR will attempt to resolve all disputes concerning
the maintenance priorities or request levels. Disputes that
cannot be resolved will be presented to the COR.

Contractual Exceptions Maintenance downtime associated with application
upgrades will not count against the contractor’s
availability or maintenance SLA thresholds.

Penalties/Rewards Minor Penalty: No monetary penalty
• Any threshold values were exceeded.

Major Penalty: 25% of monthly rate.
• More than 3 minor penalties in any maintenance

category in one year.
• Any of the priority 1-4 response thresholds for

upgrades were exceeded by more than 50%.
• If any of the level 1-3 response thresholds for root

access were exceeded by more than 50%.

326

Service Name SLA 8: Maintenance Schedules
Service Description Maintenance in this SLA involves hardware and software

maintenance. Hardware maintenance can involve
changing routers, installing memory, or repartitioning
drives. Software maintenance involves installing new
files, updates, or patches to the infrastructure, DBMS, and
system software.

This service level agreement outlines the day and the
times that will be used to perform maintenance that affects
the application. The SLA also specifies the amount of
time that the application is affected as a result of the
maintenance actions throughout the month.

Reason for Measuring Fixed maintenance windows set a level of user
expectation. Users should not expect full access to an
application during scheduled maintenance windows.

Maintenance down time has direct business repercussions.
When an application is not functioning, users cannot
perform their jobs, schedules are affected, morale
declines, and opportunities are lost. Specifying
maintenance windows, and the total amount of
maintenance down time allows an organization to take the
application down time into consideration. Activities can
be planned around the scheduled maintenance down time.

Time Frame Derived by the selected hours of support. The default is
24 X 7.

Scope Any hardware or software maintenance actions within the
host environment (including the firewall) that affect the
application will apply to this SLA.

Maintenance to the application itself will not be covered
under this SLA.

Performance Category 8.0 Maintenance Window
Performance Metric This is the scheduled time period in which maintenance

actions can occur.
Threshold Levels The following thresholds apply:

Essential: Sunday 0800-1200
Enhanced: Sunday 0800-1200
Premier: No scheduled downtime

Any maintenance action performed outside of the
maintenance window will count as application down time
and will be used in the availability computations.

327

Any deviations from the maintenance window will have to
be approved by the application program manager. The
CTR must be informed of any approved maintenance
activity outside of the maintenance window.

Formula None
Assumptions Installation of security signatures on the IDS, anti-spam

and anti-virus software will not require downtime.
Contractor Responsibility All maintenance action initiated by the contractor will be

performed within the maintenance window. Notify the
CTR of scheduled maintenance action during the week.

Customer Responsibility Inform users of the application that there may be
difficulties in accessing the application during scheduled
maintenance windows.

Frequency Monthly
Measurement Techniques The CTR will review the weekly maintenance schedule

from the contractor. The maintenance should all be
scheduled within the maintenance window. The CTR will
review monitoring logs to ensure that the application was
only “down” for maintenance time within the scheduled
time frames. The CTR must be informed of any
negotiated deviations from the maintenance window.
Application down time not within the scheduled
maintenance window will count against the availability
SLA.

Reports 1. Maintenance schedule
2. Trouble tickets
3. Monitoring logs

Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 8.1 Maintenance Hours
Performance Metric This is the total scheduled maintenance time for the

month.
Threshold Levels The following thresholds apply:

Essential: 4 hours
Enhanced: 4 hours
Premier: No scheduled downtime

Formula Add the maintenance time during which the application
was affected.

Assumptions The change management board must approve all software
maintenance actions, with the exception of emergency
security updates.

All maintenance action is tested before installation. In the
case of emergency security installation, the application is

328

tested after the installation. Tests will be conducted in
accordance with the approved test plan.

Any system or infrastructure down time outside of the
scheduled maintenance time will be considered down time
and will count against availability service level
agreements. For example if the scheduled maintenance
down time is 4 hours, and 5 hours were actually used to
perform maintenance during the month, then 1 hour will
be considered down time in the availability computations.

Contractor Responsibility Notify the CTR of maintenance actions that will be
scheduled during the week.

Customer Responsibility The customer is responsible for notifying end-users if their
access to the application will be affected by scheduled
maintenance.

Frequency Monthly
Measurement Techniques The CTR will verify the scheduled maintenance down

time against the system monitoring logs. The CTR will
then calculate total maintenance time by adding the
maintenance down time during the month.

Reports 1. Maintenance schedule
2. Monitoring logs

Person Responsible for
Verification

The CTR is responsible for verification.

Escalation Procedures The CTR will be notified of any deviations from the
maintenance windows or schedules.

Contractual Exceptions Scheduled maintenance initiated by the government will
not be applied to this SLA.

Penalties/Rewards Maintenance action outside of the schedule maintenance
window, or maintenance down time exceeding thresholds
will be considered down time for availability
computations. Availability penalties will apply.

329

Service Name 9.0 Migration Services
Service Description Migration services are those services required to move,

install, and operate an application in the contractor’s
Application Hosting environment.

Reason for Measuring Transition services are measured to ensure that the project
is completed on time, and that the application’s
performance does not suffer as a result of being hosted in
the contractor host environment.

Time Frame This SLA covers the time period from contract award until
the application is installed in the production environment,
can be accessed by its intended end-users, and is fully
operational. The completion time will be determined
when the government validates that all migration
requirements have been satisfied.

Scope Migration in the context of hosting applications is the
process by which an application is transferred from one
platform to another.

The specific tasks that need to be performed during the
migration phase and the deliverables are specified in the
statement of work (SOW).

The scope covers all activities necessary to migrate the
application to the contractor host facility, including
application audits, designing activities, performing
requisite testing (outlined in the migration plan), placing
the application into the production environment,
establishing connectivity, and operating the application at
full functionality.

Performance Category 9.0 Implementation, Integration, and Test Service (IIT)
Service Window.

Performance Metric The metric establishes the amount of time to perform all
actions required to migrate an application to the
contractor’s host environment.

Threshold Levels The threshold levels are as follows:
Essential Services: 3 months
Enhanced Services: 3 months
Premier Services: 3 months

Formula The time is measured from the date the contract is
awarded and concludes at documented acceptance of
migration services.

Assumptions Actions relating to estimating migration costs will not be
included in the migration time. For example audits must
be conducted on the application to properly scope a bid.

330

The time necessary to conduct a preliminary audit will not
count as migration time. Once the contract is awarded any
subsequent audits will count as migration time.

Contractor Responsibility The contractor must coordinate with the government for
functional testing and access to the application. The
contractor must understand and operate within the
government’s operational constraints.

Customer Responsibility After the contract has been signed, the contractor must
have access to the application and current hosting facilities
to perform a full audit, and to package the application.
The government may have to negotiate with third parties
to obtain access permission.

Frequency The frequency spans the time from contract award until
the government documents acceptance of the migration
action.

Measurement Techniques The date that the government has documented acceptance
of migration services is subtracted from the date the
contract was awarded.

Reports 1. Hosting contract: It will determine threshold start
times.

2. Migration plan: The government will document
acceptance of migration services. This document will
be incorporated into the migration plan for official
acceptance.

Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 9.1 Application Performance
Performance Metric The metric used to test application performance will be an

industry standard benchmark test. Areas measured will
include areas such as input-output times, memory paging,
bandwidth utilization, and processing speeds.

Threshold Levels Threshold levels are based on a comparison of benchmark
tests run in the previous host environment with identical
tests run on the application in the contractor’s host
environment.

The following thresholds apply:

Essential – Premier: Identical or greater performance in
all areas of the benchmark tests.

Formula This will be a direct comparison of the benchmark tests in
the two environments. The tests in the new environment
should be equal to or exceed the results obtained in the
previous host environment.

Assumptions The government and contractor will determine benchmark
tests to execute to test the performance of the application.

331

Contractor Responsibility If the government has not determined which benchmark
tests to utilize, the contractor will recommend industry
standard benchmark tests to the government. Execute the
benchmark tests on the application in both host
environments and provide results to the CTR.

Customer Responsibility The contractor must have full access (root) to the
application and associated servers in the previous host
environment in order to run the benchmark tests. The
government is responsible for obtaining the cooperation of
the staff in the previous host environment.

The government will monitor the testing to understand
any differences in how the benchmark test was applied. In
some cases the differences in the tests occur as a result of
configuration differences in the host environments. The
government representative will ensure the results
accurately measure the application’s performance.

Frequency This measurement is from the time that the contract is
awarded until the government documents that all
migration requirements have been met.

Measurement Techniques The government representative will compare the
application benchmark tests in both environments to
ensure that the application’s performance equals or is
better in the contractor host environment.

Reports 1. Benchmark test results
Person Responsible for
Verification

The CTR is responsible for verification. Verification in
this case may require the assistance of the application
developers to ensure the tests are run correctly.

Escalation Procedures The contractor will notify the CTR if the migration cannot
be accomplished within time frame thresholds.

Designated government representative will approve results
of the benchmark tests. COR will resolve all conflicts.

Contractual Exceptions None
Penalties/Rewards Minor penalty: 5% monthly rate

• Any threshold values were exceeded.

Major: 15% monthly rate
• Migration transition times exceed 50% of the

threshold.
• Application benchmark tests in the new host

environment do not meet or exceed the benchmark
tests in prior host environment. If there are
performance issues, the application will not be placed
in operation until the problems are resolved.

332

Service Name SLA 10 Backups
Service Description Backups refer to the process of copying data, files, disks,

or the entire application to tape. There are two general
types of backups. A full backup contains all of the data in
a file system. An incremental backup contains only those
files that have changed since the last backup.

This service level agreement will measure the accuracy of
the backup, adherence to the back up schedule, accuracy
of tape labeling, accuracy of tape library, and restoration
timeframes.

Reason for Measuring Computers are not 100 percent reliable, disk drives can
fail, files and data can be corrupted, and disasters can
destroy the entire system. If the information stored in the
file system has any value, it must be backed up.

Backups act as a form of redundancy, and are designed to
protect the integrity of a system’s data. If a disk drive
crashes, the information on the backup tapes can be used
to restore the system. Restoration speed, tapes accuracy,
and the accuracy of the tape library affect the MTTR,
which influences overall availability of the application.

There may also legal requirements for the retention of
financial data, audit logs, or other data required for
possible investigations or audits.

Time Frame The time frames is 24 X 7.
Scope Backups refer to application software, system software,

DBMS, database files, and system and monitoring logs
hosted in the contractor’s host environment.

There are numerous DoD and DoN policies and directives
concerning backups, such as on-site storage requirements,
and protecting the security of the data on the tape.
Adherence to those policies will be covered under the
security SLA.

Performance Category 10.0 Backup Schedule
Performance Metric The metric will measure the contractor’s adherence to the

backup schedule. The metric will be expressed as a
percentage of backups performed within the schedule
divided by the total number of backups that should have
been performed.

Adherence to the schedule is vital in protecting the data in

333

the file systems. If an incident occurs where the files are
destroyed, any data received, modified, or deleted from
the time between the incident and the last backup is lost.
This may have serious repercussions for mission critical,
data intensive systems. If the schedule is not followed,
the risk of loosing business essential data increases.

Threshold Levels The normal backup schedule is where incremental
backups are performed daily 6 times a week and a full
backup is performed on Saturday or Sunday. Additionally
a full monthly and end of year backup are performed.
Once the backup tapes are created they must be stored for
a period of time before they can be reused. It is possible
for a file to be corrupted and not noticed for weeks or
months because the file is rarely accessed. As a result, it
is prudent to keep copies of the file systems for a
reasonable period of time. The following is a
recommended backup schedule with storage days:
Daily incremental backups must be stored for 8 days
Weekly full backups must be stored for 2 months
Monthly full backups must be stored for 12 months
Annual full backups must be stored for 5 years.

The thresholds for conforming to the backup schedule are
as follows:

Enhanced – Premier: 99%

The thresholds for conforming to the backup storage
requirements are as follows:

Enhanced – Premier: 99%
Formula The number of backups performed within the backup

schedule divided by the total number of scheduled
backups.

The number of backups stored within the storage
requirements divided by the total number of stored tapes.

Assumptions The contractor will be responsible for providing the tape
media. The media can be reused, but after a period of
time, the media degrades and must be replaced. The
contractor is responsible for replacing the media.

Contractor Responsibility Brief the application program manager on the backup
schedules and procedures that will be used to backup the
application.

Customer Responsibility Cooperate with the contractor in developing the backup
schedule and associated backup procedures for the
application.

334

Frequency Monthly
Measurement Techniques The government auditor must perform spot checks to

ensure the backups were conducted within the scheduled
time frames, and that they are stored for the appropriate
amount of time. The auditor will check the system logs
and monitoring logs to determine when the backups were
actually performed. The auditor will have to physically
check the tape storage areas to ensure tapes are being
stored for the appropriate amount of time. The tapes must
be labeled with the date of the backup, so determining the
storage time is simply a matter of ensuring all of the tapes
for the required storage period are present. For example,
when checking the daily tapes, there should be 7 days of
backups available (1 day is a weekly update).

Reports 1. Monitoring logs
2. System logs
3. Backup schedule

Person Responsible for
Verification

The CTR will be responsible for verification.

Performance Category 10.1 Tape Backup Accuracy
Performance Metric This category measures the accuracy of the tape backup.

If the system is not backed up correctly, then the system’s
data is not protected, and data critical to the organization
could be lost.

Tapes have a shelf life of approximately 3 years. After 3
years the files on the tape must be transferred to new
medium. The accuracy of the file transfer from the old
medium to the new medium will be included in this
category.

The measurement will be the percentage of files that were
backed up correctly divided by the number of files that
were spot-checked.

Threshold Levels Backup accuracy thresholds are as follows:
Essential: 99.5%
Enhanced: 99.5%
Premier: 99.7%

Formula The number of files that were accurately backed up
divided by the total number of files sampled.

Assumptions Restoration should be performed on a test platform.
Contractor Responsibility The contractor must implement backup software that

verifies backed up files by reading the files after they are
written to the tape. The contractor will assist the
government representative with loading the tapes to

335

conduct the spot checks.
Customer Responsibility Coordinate with the contractor for performing the spot

checks. Access to a test server will be required.
Frequency Quarterly
Measurement Techniques The proof that the files were correctly backed up is to read

and/or restore the contents of the tape. A representative
sample of tapes will be evaluated. Random files will be
accessed to determine if they can be read. Other files will
be restored. Sample files will be evaluated from each
tape.

Reports 1. Tape library
Person Responsible for
Verification

The CTR will be responsible for verification.

Performance Category 10.2 Tape Documentation Accuracy
Performance Metric Tape documentation refers to the labeling on each tape,

and the tape library documentation. It is essential that
each tape be clearly and accurately labeled. The tape
labels will have detailed information to uniquely identify
their contents. Information such as date and time of the
backup along with the format of the files will also be
included.

The tape library records at a minimum, the files stored on
each uniquely numbered tape as well as the dates the files
were backed up.

The metric used will be a percentage of tapes accurately
labeled and recorded in the tape library. If any of the files
on the tape do not match the documentation of either the
tape label or the tape library, then the tape documentation
is considered incorrect.

Tape documentation is essential in rapidly restoring files.

Threshold Levels The following are the thresholds for backup
documentation.

Essential: 97%
Enhanced: 97%
Premier: 98%

Formula The formula is the number of tapes accurately labeled and
recorded in the tape library divided by the total number of
tapes spot checked.

Assumptions The documentation requirements in this SLA also pertain
to backup media other than tapes.

Contractor Responsibility Provide the necessary tape library documentation to
perform the spot check. Assist the government

336

representative with loading the tapes to conduct the spot
check.

Customer Responsibility Coordinate the spot check with the contractor. Allow
enough time for the contractor to have the equipment and
staff on hand to assist with the spot check.

Frequency Quarterly
Measurement Techniques The tapes will be loaded onto a platform for read access.

The files contained in the tapes that are spot-checked will
be evaluated against the tape label and the tape library.

Reports 1. Tape labels
2. Tape library

Person Responsible for
Verification

The CTR will be responsible for verification.

Performance Category 10.3 Restoration Time Frames
Performance Metric Restoration refers to the task of retrieving a file from a

backup tape and installing it on a system. The first step is
to determine which tape has the version of the file needed.
The individual file then has to be found and copied to the
system server. The backup copy of the file then replaces
the missing or corrupted file on the server.

This section refers specifically to restoring application
related files. Restoration time for system software will be
included in the overall timeframes for system availability
or problem resolution. The files being restored are part of
the application; as government personnel may require root
access from the contractor.

The performance metric is the time from the request to
restore a fileuntil the file is installed and operational. The
request will be placed with the contractor’s help desk.

Threshold Levels The restoration time thresholds will depend upon the
severity of the problem necessitating the restore action.

Priority 1 issues: Mission Critical Impact: Priority 1
issues involves loss of application access or functionality.

Priority 2 issues: Significant Impact: Priority 2 issues
involve degraded application functionality.

Priority 3 issues: Minor Impact: Priority 3 issues involve
minor faults that the end-user may not noticed and cause
little disruption in service. Priority 3 issues also involve
restoration of files for inspection or audit purposes.

337

File restoration thresholds are as follows:
Priority 1 Critical: 95% Compliance with the following
time frames, no problem will exceed 12 hours.
 Essential: Less than 4 hours
 Enhanced: Less than 4 hours
 Premier: Less than 4 hours

Priority 2 Major Impact: 95% Compliance with the
following timeframes, no problem will exceed 24 hours.
 Essential: Less than 8 hours
 Enhanced: Less than 8 hours
 Premier: Less than 4 hours

Priority 3 Moderate Impact: 95% Compliance with the
following timeframes, no problem will exceed 4 days.
 Essential - Premier: Less than 2 days

Formula The number of restoration procedures performed within
stated thresholds divided by the total number of
restoration procedures performed.

Assumptions When a problem occurs, the NMCI help desk will field the
trouble call. The trouble ticket will be passed to the
contractor’s help desk. If the problem points to the
application itself, the government personnel will trouble
shoot the application. If a file needs to be restored, the
government personnel will place a trouble call to the
contractor’s help desk to start the restoration trouble
ticket.

The restoration times associated with problems with
DBMS, infrastructure, or system software will count
against availability calculations, and not this SLA.

Contractor Responsibility Cooperate with the government personnel that are
restoring the application files. If root access is required,
that SLA will apply.

The contractor’s help desk will determine the priority
level of the restoration request. The level of the request
will be annotated on the trouble ticket. If there are
disputes covering the priority of the request, grant the
request and file a grievance through the CTR for
resolution.

Customer Responsibility The government will request file restoration using the
contractor’s help desk. The government will work with
the contractor to train the help desk personnel determine
the appropriate priority levels for requests.

338

Frequency Monthly
Measurement Techniques Review the trouble tickets for restoration services and

determine whether any of the requests did not meet the
designated time frames. Check restore times against
server and monitoring logs, if designated time frames
were violated; apply the formula to determine compliance
with the thresholds.

Reports 1. Trouble tickets
2. Server logs
3. Monitoring logs

Person Responsible for
Verification

The CTR is responsible for verification.

Escalation Procedures The CTR will be notified of threshold violations. If there
is disagreement concerning the categorization of priorities,
the CTR will work with both the contractor and the CTR
to resolve the issues. If the problems persist, the issue will
be referred to the COR.

Contractual Exceptions None
Penalties/Rewards Minor penalty: 5% monthly rate

• Any threshold values were exceeded.

Major penalty: 20 % monthly rate
• Three minor penalties within the year
• 10.0 Backup schedule compliance in each service

level (essential – Premier) is below 90%
• 10.1 Backup Accuracy is below 95% in each service

level
• 10.2 Backup documentation accuracy in each service

level is below 90%
• 10.3 Restoration services exceed maximum response

times for the priority assigned to the service.

339

Service Name SLA 11 Batch Services
Service Description Batch processing used to refer to the processing of a batch

of punch cards. Today the term is used more to describe
the sequential processing of data. Typically once a batch
job begins, it continues until it is done or until an error
occurs. The next sequential program is then run, until all
programs have executed fully. Many financial programs
contain batch processing, especially during reconciliation
processes.

Reason for Measuring Batch jobs require additional oversight because they must
be run in sequence, and they usually must be run within
specified time windows. When batch jobs are running,
there is no user input into the program. As a result it is
important that batch jobs are run efficiently, because users
are locked from the program while the batch jobs are
processing. Additionally, if any errors occur while
processing a batch job, it must be run again, and any
information processed must be either backed out, or over
written.

Time Frame The time frames is 24 X 7.
Scope Batch jobs will be identified to the contractor during the

migration audit. The contractor is responsible for
maintaining a batch job schedule, which lists the batch
job, and the time frames allotted for processing. This
service level agreement refers to the batch jobs contained
on the batch schedule.

Maintaining a batch schedule is a systems administrator
function, even though it directly supports an application,
or its associated databases. As such, it is the
responsibility of the contractor to run the batch jobs.

Performance Category 11.0 Batch Accuracy
Performance Metric The batch job should execute as desired. If errors occur in

the process, then the process should be run again. The
contractor is responsible for monitoring batch program
execution. The performance metric is a percentage of the
programs executed within specifications divided by the
total number of programs executed. Each sequential
program is distinct. If the entire batch contains 15
sequential programs, then each program will be counted
individually.

Threshold Levels The thresholds for batch processing accuracy is as
follows:

Essential: N/A
Enhanced: 99.5%

340

Premier: 99.7%
Formula The batch programs executed within specifications

divided by the total number of programs executed.
Assumptions The contractor must perform, or assist the government in

batch program restarts. Detailed execution procedures
will be developed for each batch job. If problems with the
batch job persist, the contractor will notify the designated
government personnel.

Contractor Responsibility Ensure the batch job schedule is accurate, and the staff is
properly trained to execute the batch programs.

Customer Responsibility Ensure that the batch job schedule contains all of the batch
jobs that pertain to an application. Provide the contractor
all pertinent information to execute and monitor the batch
jobs. This includes providing test scripts or a description
of the expected output to ensure the program is executing
to specifications.

Frequency Monthly
Measurement Techniques The CTR will review the batch processing monitoring

reports and evaluate trouble tickets that may pertain to the
batch jobs.

Reports 1. Trouble tickets
2. Monitoring logs
3. Server logs
4. Batch job schedule

Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 11.1 Batch Job Completion
Performance Metric Many batch jobs must be completed within a specific time

window. The metric will be presented as the percentage
of batch jobs executed successfully within the scheduled
time frames.

Recommended time frames are as follows: All daily,
weekly and monthly batch runs must be completed by
0700 AM of the following business day. If a batch job is
not completed by the deadline, the contractor and
government must determine if the batch job should still be
run, or if it should be terminated.

Threshold Levels The thresholds for batch job completion are as follows:
Essential: N/A
Enhanced: 95%
Premier: 95%

Formula The formula will be the number of batch jobs executed
within the scheduled time frames divided by the total
number of batch jobs scheduled to be executed.

341

Assumptions Government requests for batch job execution for jobs not
listed on the schedule will not count against this SLA.

The recommended time frames for batch processing will
be modified to suit the needs of each application.

Contractor Responsibility Notify the government representative if a batch job cannot
be completed within the scheduled time frame.

Customer Responsibility Work with the contractor to determine a course of action if
a batch job is not processed by the deadline.

Frequency Monthly
Measurement Techniques Review the batch job schedule and the batch job

monitoring report to determine any processing outside of
the scheduled time frames. Divided the number of batch
jobs completed within the time frames by the total number
of scheduled batch runs.

Reports 1. Monitoring logs
2. Server logs
3. Batch job schedule

Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 11.2 Batch Job Requests
Performance Metric This category is concerned with the addition, deletion,

modification, or stopping of a batch job. The batch job
schedule may need to be modified for a number of
reasons, including seasonal requirements, new regulations,
changing business processes, new requirements, or errors
were found in the program.

Threshold Levels Response times for request to add to, delete from or
modify the batch job schedule are contingent upon the
impact that the batch job has to the organization’s
business process.

Priority 1 issues: Mission Critical Impact: Priority 1
issues involves a critical impact to business processes.

Priority 2 issues: Significant Impact: Priority 2 issues
have a noticeable impact on business processes.

Priority 3 issues: Minor Impact: Priority 3 issues are
routine adjustments to the batch job schedule.

Stop Action: There are instances where the batch jobs
should not be run as scheduled. The government must
give the contractor proper notification before the
contractor can stop the batch job.

342

Request response thresholds are as follows:
Priority 1 Critical: 95% Compliance with the following
timeframes, no request will exceed 12 hours.
 Essential: N/A
 Enhanced: Less than 4 hours
 Premier: Less than 4 hours

Priority 2 Significant Impact: 95% Compliance with the
following timeframes, no problem will exceed 24 hours.
 Essential: N/A
 Enhanced: Less than 8 hours
 Premier: Less than 8 hours

Priority 3 Moderate Impact: 95% Compliance with the
following timeframes, no problem will exceed 5 days.
 Essential – Premier: Less than 3 days

Stop Action:
Essential – Premier: The batch process will not be run
if notification is given 1 hour before the scheduled run.

Formula The number of requests that were satisfied within the time
frames divided by the total number of requests.

Assumptions Any requests to modify the batch jobs will have to be
requested through the contractor’s help desk.

Contractor Responsibility Work with the program manager in determining criteria
for categorizing the criticality of batch job requests.

Customer Responsibility Give the contractor as much time as possible to make the
modifications to the batch schedule. If adding or
modifying batch jobs, ensure there are government
personnel available to assist the contractor.

Frequency Monthly
Measurement Techniques The CTR will review the trouble tickets for requests and

verify performance against the batch job monitoring
reports.

Reports 1. Trouble tickets
2. Monitoring logs
3. Server logs
4. Batch job schedule

Person Responsible for
Verification

The CTR is responsible for verification.

Escalation Procedures The CTR will be notified of any threshold violations. The
CTR will attempt to resolve all disputes. Disputes that
cannot be resolved will be presented to the COR.

Contractual Exceptions None

343

Penalties/Rewards Minor penalty: 5% monthly rate
• Any threshold values were exceeded.

• Major penalty: 20 % monthly rate
• Three minor penalties within the year
• 11.2 If any of the maximum time frames designated

in the batch job request section were exceeded.

344

Service Name SLA 12.0 Technology Refresh Rates
Service Description Technology is changing at a rapid pace. To take

advantage of new innovations, technology must be
updated. This SLA specifies the time frames for
technology refresh rates.
Technology refresh requires coordination between the
government and the contractor. The coordinator cannot
upgrade to a new version of system software or hardware
without ensuring that the application is not affected.
Conversely the government must ensure that if the
application developers are designing new functionality
that requires an upgraded hardware or a new version of
software that the contractor is willing and able to support
the upgrade.

Reason for Measuring Technology needs to be updated on a consistent basis, not
only to take advantage of the benefits offered by that
technology, but for interoperability purposes as well.
Technology refresh also allows software developers the
opportunity to take advantage of the most recent scientific
advancements.

Time Frame Quarterly
Scope Technology refresh applies to all hardware and software in

the contractor’s host environment that supports the
application, including firewalls.

Performance Category 12.0 Software Refresh
Performance Metric The contractor is responsible for the planning, installation,

and testing of system and infrastructure software
upgrades. New software will not be installed upon
release. The contractor must have time to test the new
version, and develop an installation plan if the upgrade is
extensive. However, the time from release to installation
should be quick enough to allow the government to take
advantage of any benefits, and to ensure interoperability.

This SLA is concerned with the installation timeframes for
new versions of software. Patches or upgrades to existing
versions are covered under another SLA.

The metric used will be the time from the release of the
new software version until it is installed in an operational
environment.

Threshold Levels The following are the thresholds for software refresh:
Essential: 18 months
Enhanced: 12 months
Premier: 6 months

345

No system or infrastructure software will be more than 2
releases behind the most current software release.

Formula None
Assumptions Some legacy application software have dependencies that

do not allow for system software upgrades. In the case of
hard coded dependencies, only non-dependent software
would be upgraded.

Contractor Responsibility Notify the configuration review board of any software
upgrades. This requires that the contractor keep abreast of
latest changes in technology. It also requires that the
contractor determine how the new changes will affect the
hosted application. This will require testing and
coordination with the government developers.

Customer Responsibility Cooperate with the contractor in any functional tests
required to test a new software release. The government
developers should also be aware of and take advantage of
the latest software releases.

Frequency Quarterly
Measurement Techniques The CTR will verify software refresh rates by reviewing

recommendations from the vendor, minutes from the
change review board, scheduled maintenance reports,
configuration documentation, and spot-checking the latest
releases with the applicable vendors.

Reports 1. Minutes from the Change Review Board
2. Scheduled maintenance reports
3. Configuration documentation
4. Software refresh recommendations from contractor

Person Responsible for
Verification

The CTR is responsible for verification.

Escalation Procedures The COR will be notified if there are any disagreements
on interpretation.

Contractual Exceptions None
Penalties/Rewards Minor penalty: 5% monthly rate

• Any threshold values were exceeded.

Major penalty: 25 % monthly rate
• Two minor penalties within the year

346

Service Name SLA 13.0 Administration
Service Description Administration is a general category that is concerned

with ensuring documentation is up to date, accurate and is
delivered in a timely manner. It also addresses attendance
at required meetings and adhering to contractual
procedures.

The delivery of reports address the time frame that the
various report deliverables must be delivered to the
designated government representatives.

Reason for Measuring Since many of the reports produced by the contactor are
used to provide oversight of the contractor’s performance,
it is important that the reports are accurate and timely.
Some reports are also used to perform quality control. If
the information contained in those reports is delayed,
potential corrective actions will also be delayed.

Everyone’s time is valuable. If a contractor is needed at a
meeting, such as the configuration review board, it is
important that a representative, with the appropriate power
making authority attend, not only to represent the interests
of the contractor, but also to ensure that the scheduled
business can proceed.

Time Frame The time frame is 24 X 7.
Scope Delivery of Reports includes all the reports defined and

agreed upon in the deliverables documentation. In
addition to the reports defined in the deliverables
document the contractor must also provide SLA
compliance reports and associated reports that provide
background, detailed information, or the raw information
that may have been consolidated for the SLA reports.
Delivery time frames are outlined in the statement of work
or the corresponding deliverables section of the contract.

Scheduled meetings refer to planned meetings that occur
on a frequent basis, such as the configuration review
board. It does not include short notice meetings that were
not on the agreed upon meeting schedule.

License management covers all software that is utilized in
the contractor’s host environment, including the
application itself. Licenses for GOTS applications are not
in the scope of this SLA.

Change management procedures covers changes made to

347

any software or hardware in the contractor’s host
environment, including the application. The contractor
and the government will promulgate the change
management procedures in a change management
document that will be mutually agreed upon. This plan
will discuss how the change review board will function,
requirements for documenting the change, and testing
requirements.

Performance Category 13.0 Delivery Schedule
Performance Metric The contracted delivery time frames for the document

deliverables will be evaluated against the actual delivery
time.

Threshold Levels The thresholds are as follows:
Essential – Premier: Reports are due within one business
day of their due date.

Formula None
Assumptions Government requests for reports that are not specified in

the contract will go through the CTR for contract scope
determination. If the contractor agrees, the request will be
categorized as a priority 4 problem resolution and will
require a trouble ticket from the contractor’s help desk.
Conflicts, or requests outside of the scope of the contract
will be referred to the COR.

Contractor Responsibility The government will work with the government
representatives to determine the method of delivery. If
there are problems, the contractor will contact the CTR for
resolution.

Customer Responsibility The government representative will work with the
contractor to determine delivery methods and designate a
primary and alternative receipt representative.

Frequency Monthly
Measurement Techniques The CTR will spot check documentation deliverables and

determine when they were delivered. The contract will
specify when the documents are to be delivered. The CTR
will compare the delivery time designated in the contract
with the actual delivery time to determine compliance
with the thresholds. Actual delivery times will be
determined by interviews, or the timestamp on
documentation that has been e-mailed.

Reports 1. Hosting contract
Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 13.1 Documentation Accuracy
Performance Metric This measurement ensures the accuracy of the

348

documentation that is delivered. For example,
configuration data must be accurate and up to date for
disaster recovery, testing, and software development
purposes. It is not enough to simply deliver
documentation; the information contained in that
documentation must be timely and accurate.

Threshold Levels The thresholds apply to all required documentation.
Inaccuracy is a subjective determination made by the
CTR. The document must contain more than three non-
significant errors, or one significant error. The CTR will
determine the criticality of the error with respect to its
affect on the application and the business processes the
application supports.

Non-significant error would be addition errors that do not
significantly affect the computational outcome, missing
serial numbers on hardware configuration documentation,
or fail to update equipment moves within the host
environment.

Significant errors would include failure to update the
backup schedule with new systems, failing to update the
software configuration documentation with new upgrades,
or failing to produce installation procedures for a system.

The thresholds for accurate documentation is as follows:

Essential – Premier: 95%
Formula The number of documents audited with no errors divided

by the number of total document deliverables.
Assumptions The CTR will be able to determine whether a problem is

significant or not. Discussions with the program manager
and the contractor may help to categorize the severity of
the document oversight/error.

Contractor Responsibility The contractor will determine the root cause of any
documentation errors, and attempt to automate as much
reporting as possible.

Customer Responsibility The CTR will inform the contractor of any errors
discovered in the documentation.

Frequency Monthly
Measurement Techniques The CTR will perform spot checks on the documentation.

Most errors in the documentation will be discovered
through problem resolution, red team vulnerability
assessments, and configuration audits.

Reports 1. All required documentation is subject to audit.
2. Red team vulnerability assessments

349

Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 13.2 License Management
Performance Metric It is illegal to operate third party software without proper

licenses. The contractor is responsible for ensuring that
all software that is a part of the host environment is
supported by valid licenses. License management also
includes the application and it’s associated databases.

Threshold Levels All software must have current licenses. Shareware and
freeware can be utilized in accordance with the acceptance
agreements related to the specific software.

The threshold for proper licenses are as follows:

Essential – Premier: 95%
Formula None
Assumptions Government Off the Shelf (GOTS) software will not have

to have a license.
Contractor Responsibility The contractor must have a process in place to ensure that

all software in the host environment, including the
application, has valid licenses. If the license is based on
the number of concurrent users, the contractor will be
responsible for ensuring the users do not exceed the
license agreement. The contractor will notify the
government of licenses about to expire, as well as when
licenses need to be renegotiated to support an expanding
user base.

Customer Responsibility Copies of all license agreements must be turned over to
the contractor before the software can be utilized.

Frequency Quarterly
Measurement Techniques The CTR will conduct spot checks of the licenses against

the software configuration documentation.
Reports 1. Software configuration documentation

2. Software licenses
Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 13.3 Meeting Attendance
Performance Metric The contractor must have a representative at all scheduled

meetings. The contractor would not have been invited to
the meeting if the business did not involve the contractor.
Participation is necessary to ensure that time is not wasted
waiting for contractor input, or decisions from the
contractor. All contractor representatives are expected to
be able to represent the contractor and make decisions.

350

The contractor and the government must develop a
schedule for the meetings that the contractor is expected to
attend. Meetings other than those agreed upon in the
schedule of meetings will not apply to this SLA.

Threshold Levels Thresholds for attending scheduled meetings is as follows:
Essential – Premier: 95%

Formula The number of meetings with a contractor representative
in attendance divided by the total number of scheduled
meetings.

Assumptions The contractor will make every effort to attend meetings
that were not in the official schedule.

If enough warning is given, meetings will be rescheduled.
Rescheduling of meeting should be coordinated with the
program manager’s staff.

Contractor Responsibility Ensure the individual attending the meeting has the ability
to represent the interests of the contractor as a voting
member.

Customer Responsibility The customer must determine which meetings the
contractor needs to attend. Once the meetings have been
identified, then the government must work with the
contractor to develop a schedule that both parties can
agree to.

The government will notify the CTR if the contractor has
failed to attend any scheduled or rescheduled meetings. A
copy of the notification will be sent to the contractor. It is
not necessary to notify the CTR of rescheduled meetings.

Frequency Monthly
Measurement Techniques The government will notify the CTR and the contractor

when the contractor has failed to attend a scheduled
meeting. If there are any challenges from the contractor,
the CTR will compare the schedule of meetings against
the minutes for those meetings. The meeting minutes will
contain the attendees. If no contractor representatives
were in attendance, then the challenge will not be
accepted.

If in the opinion of the CTR and program manager, the
contractor has provided enough warning to reschedule a
meeting, that particular meeting will not be counted in the
SLA computations.

Reports 1. Meeting schedule
2. Meeting minutes
3. Notification from the government of missed meetings

351

Person Responsible for
Verification

The CTR is responsible for verification.

Performance Category 13.4 Change Management Processes
Performance Metric Before a software or hardware change (modification,

upgrade, new version, updated hardware, etc…) is
implemented, it must first be approved by the change
review board. Maintaining control of software and
hardware configuration changes is essential to the
ensuring architectural conformity, disaster recovery,
compatibility with other software, interoperability, and
quality assurance.

The metric will be the percentage of hardware and
software changes that were executed in accordance with
the change management procedures.

Threshold Levels The thresholds for abiding by the change management
procedures is as follows:

Enhanced – Premier: 95%
Formula The number of hardware and software changes that were

executed in accordance with the change management
processes divided by total number of changes executed.

Assumptions All change review board meetings are documented to
capture those changes that have been approved, and
disapproved.

All configuration changes will be documented.

Contractor Responsibility Ensure change management procedures are followed. If
changes are needed before the board can convene, the
contractor will work with the government to gain
approval.

Customer Responsibility The government must hold change review boards often
enough to support change requirements. If changes are
occurring at a rate that is not supported by the change
review boards, the government will appoint a
representative to review and approve urgent changes.

Frequency Monthly
Measurement Techniques The CTR will review the configuration documentation and

the system and monitoring logs to ensure that only
approved changes were installed on the system.

Reports 1. System logs
2. Configuration documentation
3. Change Review Board Meetings
4. Monitoring logs

Person Responsible for The CTR is responsible for verification.

352

Verification
Escalation Procedures The COR will resolve any disputes regarding contractual

interpretations, or categorization of document errors.
Contractual Exceptions None
Penalties/Rewards Minor delivery penalty: No monetary penalty

• Any threshold values were exceeded.

Minor accuracy, attendance, and change management
penalty: 5% monthly rate
• Any threshold values were exceeded.

13.0 Major delivery penalty: 10 % monthly rate
• More than 3 minor penalties within the year
• Daily reports exceeding 3 days
• Weekly reports exceeding 4 days
• Monthly reports exceeding 7 days
• Quarterly reports exceeding 7 days
• Annual reports exceeding 10 days

13.1 Major accuracy penalty: 20 % monthly rate
• More than 3 minor penalties within the year
• More than 1 significant error in one month

13.2 Major license penalty: 25% monthly rate
• Any threshold values were exceeded.

13.3 Major attendance penalty: 10% monthly rate
• More than 3 minor penalties within the year
• Less than 80% attendance in one month

13.4 Major change management penalty: 20%
• More than 3 minor penalties within the year
• Less than 80% adherence to the policy in one month

Any malicious or intentional inaccuracies in required
documentation directly affecting SLAs may result in
termination of the contract.

353

APPENDIX B

A. PURPOSE OF QUESTIONNAIRE

The purpose of this questionnaire is to determine if the readers believe that the use
of service level agreements can improve software quality and post-production support for
applications.

B. INSTRUCTIONS

This questionnaire consists of four sections. The first section is a brief
background discussion on how service level agreements can contribute to software design
and post-production support. The second section discusses the format of an effective
service level agreement. The third section is a case study illustrating a real world
scenario along with a service level agreement for availability. The last section consists of
a questionnaire. Each statement has a corresponding Likert scale from 1 to 5, with a 1
representing strong disagreement and a 5 indicating strong agreement.

C. INTRODUCTION

Information technology has become pervasive in our daily business. The rapid
growth of the Internet has lead to an increased reliance on interconnected computer
systems to provide critical operational services from business processes to coordinating
decentralized command and control systems.

 As advances in technology encourage the adoption of new ways of conducting
business, management and end users have become increasingly reliant on the underlying
technology. Systems that used to be managed by functional experts are now totally
reliant upon information technology to function. These business critical, IT intensive
systems are becoming more complex, and difficult to manage, yet the performance
expectations from management and the end-users continue to increase.

Unfortunately, despite software’s increased importance to organizations the
quality of software is still lacking. There are numerous examples of software errors
leading to major incidents, including the Denver airport baggage handling system, the
Ariane 5 explosion, the Mars Sojourner, and the Mars Climate Orbiter.

D. CHALLENGES IN OBTAINING QUALITY SOFTWARE

In his article “Why Software is so Bad”, Charles Mann offers a number of reasons
why the quality of software tends to be poor. Mann states that software quality is
actually getting worse rather than better, despite the advances in software engineering
theory, processes, methodology and tools. Poor software quality can be attributed to the
following:
• The perceived need to hurriedly develop and market a software-based product to be

the first to market; such an approach can result in software artifacts that contain
software flaws and are difficult to test and maintain.

354

• Software is generally poorly designed. This is due in part to the poor training
programmers have received, and the fact that as programmers bounce code off of the
complier to fix errors, they often deviate from the original designs and end up with
sloppy, poorly documented code.

• Testing software often requires a different skill set that programming. Often the
personnel are not properly trained, or are not given the time to test properly.

• Software is not designed for testing. The designers did not utilize component level
design or software architecture, the software’s modularity and corresponding
interconnectivity was not well defined, and the application was not internally coded
to throw exceptions, or write faults to a log.

• Software fails to meet the customer’s expectations. The software developer must
looks at requirements from the user’s perspective, the business’ perspective, and the
programmer’s perspective. Too often the user is not a part of the requirement
elicitation process.

• Requirements churn contributes to the poor reliability of software, as designs are
altered, interfaces added, unplanned modules are glued together, with little
consideration given to the additional resource constraints.

• Post-production support plays a large role in the success of an application, but the
software developers do not normally address it in their planning.

• The application needs to be hosted in an environment that supports the application’s
functionality. Software quality can be adversely affected by lack of resources within
the server, and by network and bandwidth constraints.

• Maintaining software without proper documentation or configuration information is
very difficult and expensive. Additionally, without proper documentation it is
difficult to compare the original requirement specifications to the product throughout
the software’s lifecycle.

There have been a number of initiatives proposed to improve the quality of

software through its lifecycle. Most approaches believe that quality must be designed
into a product. Approaches such as formalizing specifications, use of development
standards and models, and utilizing architecture for quality analysis support this
approach. Others believe that the answer lies in creating languages that are designed to
prevent common errors such as Ada, or utilizing rigorous testing and third party
debugging tools.

If there are numerous approaches to developing quality software, why are there
still problems? Part of the answer lies with the lack of meaningful dialog between the
developers, end-users and management. Unrealistic completion dates, requirements
churn, poor requirements elicitation, and lack of proper resources all lead to development
problems. Additionally, just because standards exist for developing software does not
mean that they are being used. In many cases adherence to developmental standards
requires additional training, additional development time, and additional funds.

355

E. SLAS: WHAT THEY ARE AND HOW THEY ARE USED

One approach to improving software quality and post-production support is
through the use of service level agreements (SLAs). Service Level Agreements (SLAs)
have long been used as a contractual mechanism to specify the means to measure whether
requirements were performed as desired. SLAs specify the metrics to measure adherence
to specific requirements (usually contained in the Statement of Work). SLAs are
traditionally used with outsourcing contracts, but more organizations are using them
internally to measure the level of service that the IT department is delivering. In his
article Mann advocates the use of litigation to force organizations to develop software in
a more responsible manner. SLAs are contractually binding, and can be used in a similar
fashion, but without the need for excessive legislation.

SLAs are typically written from the end-users perspective and represent what
levels of service or performance are acceptable to the end-user and what is attainable by
the developer or provider. However, the levels of performance identified in the SLA
must also ensure that the underlying business processes are supported. To ensure that all
perspectives are taken into account, teams are normally formed to develop SLAs. The
various stakeholders are represented and the levels of performance are identified,
quantified, and agreed upon. The team must resolve a number of issues such as
determining the business impact of the various level of service need to be identified,
identifying metrics that are meaningful and measurable, assessing technical capability,
identifying costs associated with the various levels of service, determining benefits of the
service, and the team must develop SLAs that are agreeable to all of the stakeholders.
The group development of SLAs help the various stakeholders understand each others
bias, viewpoints, concerns, terminology, and perceptions. That understanding is essential
in requirements determination.

Service level agreements assist in the development of quality software and post-
production support in the following ways:
• Involving the end-users and business process owners in the SLA development process

helps to better define requirements by converting non-functional requirements such as
performance into quantitative metrics.

• Incorporating quality metrics into the SLAs ensures that the developers are focusing
on quality early in the development process, where it can be effective.

• Developing the SLAs forces the team to evaluate the constraints on the project in
terms of personnel, resources, funds, technical capability, and time.

• SLAs define specific performance parameters that are required to support a business
process. As such, every SLA performance requirement must be analyzed, and
validated to ensure that they are meaningful, cost-effective, and that they add to
improving overall performance.

• SLAs help institutionalize a change review board to continually review the SLAs,
evaluate new requirements and ensure maintenance actions do not affect the SLAs.
The change review board not only ensures that changes are tested against
performance thresholds, but they can also be used to ensure the changes conform to
architectural constraints, and that they are properly documented.

356

• SLAs also require monitoring to ensure that quality standards or thresholds are being
adhered to. Monitoring the application and host environment provides feedback on
performance quality and identifies areas that may need improvement.

• Monitoring of the network, hardware, operating system, and the application not only
assist in problem resolution, but trend analysis can indicate potential problems before
they occur. Software quality cannot be measured without proper monitoring.

• By defining meaningful and measurable metrics in the SLAs, the end-users, business
managers and programmers have realistic quantifiable requirements that can be used
to determine architecture and design.

• SLAs set user expectations through defined performance levels. By explicitly stating
acceptable performance levels, SLAs prevent expectation creep.

• SLAs help drive the managerial oversight to ensure that quality processes are adopted
and adhered to.

• SLAs concerning application availability drive numerous quality initiatives in both
the design and post-production support. Reliability constraints may drive code reuse,
application monitoring, complexity analysis, extensive testing, efficient problem
resolution procedures, a good backup plan, and disaster recovery.

• SLAs concerning maintainability could drive a well-defined and documented
architecture that would promote design consistency through guidelines and design
patterns, as well as accurate configuration management.

• SLAs can be drafted to include numerous security issues such as protocols and ports
utilized, interface with third party products, encryption, VPNs, and tunneling.

SLAs can play an important role in addressing software quality. SLA thresholds

drive many of the quality solutions that were discussed previously. SLAs established
early in the development cycle can be incorporated into the overall design and
architecture. SLAs applied to the post-production phase, such as security SLAs ensure the
application is being supported in a quality host environment. SLAs carry sufficient
weight through penalties and incentives to focus management attention on quality issues.

F. SLA FORMAT

Service level agreements have many formats depending upon how they are used.
Internal SLAs between management and the IT department can be more informal because
many of the procedural issues are stated elsewhere. SLAs involving external service
providers need to be more formal.

SLAs serve as a mechanism to notify all parties of services that will be
performed, performance expectations, responsibilities of all parties, penalties for non-
performance, and SLA resolution procedures. SLAs also define the oversight and
interaction between the program managers and the service provider.

SLAs are often used in conjunction with a Statement of Work (SOW), which
provides the actual requirements. The SLAs provide the metrics to measure whether the
requirements are being met. Most activities find it easier to keep the two documents
separate, as many requirements will not have SLAs associated with them. SLAs should
concentrate on the business critical measurements. The costs and managerial oversight

357

needed to track and verify whether SLAs are being met can quickly become
overwhelming if too many SLAs are mandated.

G. CASE STUDY

A Navy activity has just completed a cost-benefit analysis study involving server
consolidation and hosting services. They have decided to consolidate their servers and
have them hosted by an external service provider (ESP). The ESP has state-of-the-art
facilities, a highly knowledgeable staff, and can provide the needed services at a lower
cost than the Navy activity is currently paying.

The same cost-benefit study recommended that the Navy activity retain
responsibility for the application maintenance. It was decided that the current staff would
be more responsive and flexible than a contractor. Additionally due to the complex
reach-back issues with numerous legacy systems it was decided that the company could
not loose the tacit knowledge the Navy employees possessed.

The Navy activity met with their current sysadmin staff, program managers, and
contractors that they hired to advise them on hosting services. After numerous meetings,
they generated the requirements they felt were necessary to support their applications.
They also looked at the standard SLAs that the various External Service Providers (ESP)
used. After review, they decided that the ESP SLAs were too vague, and did not provide
the service levels they felt they needed.

The Navy activity then formed a group to generate SLAs for each application.
The group consisted of various users, the program manager’s staff, the business process
owner, and participants from the various ESPs that were interested in participating. They
decided to develop template SLAs that would provide the foundation that all of the
applications would use, but that were easily tailored to meet the business needs of each
application.

The Navy activity was also aware of the fact that they were soon going to go
under the Navy/Marine Corps Intranet (NMCI). NMCI is a contract that the Department
of the Navy has with EDS for desktop and infrastructure management. The Navy activity
wanted to use end-to-end SLAs (measuring the performance from the client to the
server), but could not, because the ESP did not control the client piece, the BAN/WAN,
or connectivity from the ESP’s Internet Service Provider to the servers. Additionally
some of the applications were distributed and had to use the Internet to access data. As
such, the team scoped the SLAs to include the host environment only.

The team developing the SLAs identified 14 service areas that they felt should be
incorporated into the SLAs. The availability of the compute environment was the first
service area they addressed. The team debated long and hard attempting to define
availability. Since the application itself was the Navy’s responsibility, the host
environment then consisted of the operating system and monitoring software, the server,
the host environment network, and the firewall. Ultimately they decided that availability
should be defined in terms of an application’s ability to compute. Defining the
availability in these terms not only captured hard downtime (i.e., system crashes), but it
also allowed them to determine resource thresholds that would impact the application’s
performance (soft crashes where application performance was degraded enough that it
did not produce the desired utility). This approach was needed since response time

358

measurements from the client to the server were not meaningful, as the service provider
did not control the entire infrastructure.

The team felt that other service areas that should be covered by SLAs are
restoration of service, help desk services, problem resolution, request management,
security management, software maintenance, maintenance schedules, migration service,
backups, batch services, technology refresh rates, administration, and customer
satisfaction. Many of the service areas had sub-sections that dealt with specific areas
within the larger service area. For example, help desk services included sub-sections for
help desk availability, initial feedback (monitoring time when user is informed the
trouble ticket was received and an estimated resolution time was given), accuracy of
problem resolution, customer satisfaction, accuracy of trouble ticket reports, and
occurrence of repeat problems.

The SLA that the team developed for host environment availability is presented
below. The intent was that this SLA would serve as a template for other applications.
The SLA would cover most applications, but the SLAs could be modified if needed.

H. SAMPLE SLA

Service Name SLA 1.0: Compute Service Availability
Service Description Availability measures the capability of an end-user to

access and fully utilize an application (according to
specifications) over a period of time. Availability is
usually expressed as a percentage of time that the system
was available for use divided by the agreed upon hours of
operation. The time period that an end-user cannot utilize
the application is considered ‘downtime’.

Availability metrics are generally intended to be end-to-
end, reflecting availability from the end users perspective.
However, these SLAs only cover the host environment, so
availability metrics will be restricted to the host
environment only, and will not apply to the client piece or
the connectivity from the client to the host environment
firewall.

Downtime can also be difficult to define. This SLA will
concentrate on an application’s opportunity to compute.
The thresholds will contain metrics to ensure that the
application has sufficient resources to operate to
specifications. If the compute environment is not
operating at a certain level of efficiency, the application
performance suffers. As a result, if certain resource
thresholds are not met, the period of time the resources do
not meet the thresholds will count as downtime.

359

Response time is another element of availability that must
be addressed. The SLA is limited to the host
environment, so application response time will be
calculated from the time a server receives application
input until it provides the correct output. It is necessary to
develop a program that resides on the server in order to
generate the information necessary to measure response
time (this is often referred to as synthetic transactions).
The program will test key application functionality at
random times and measure the response time from when
the input is initiated until the desired output is correctly
received. Response times will apply to premier services
only. Development of the program will be negotiated as a
separate line item if the program wants the service
provider to perform that function.

Reason for Measuring Availability is a measure of quality. The program
manager and the contractor need to constantly monitor the
infrastructure, hardware and system software to measure
the effectiveness of the hardware and software in
supporting the application. Diligent monitoring will
detect early signs of problems that may require
maintenance action.

The efficacy of the application support has direct business
impacts. When the application is not available any
business related to that application stops; opportunities are
missed, business processes are impacted, and deadlines
can be missed.

The program manager must identify a target availability
threshold and be able to justify expenses associated with
it. This will involve determining the business impact of
lost service. The contractor must evaluate the
infrastructure to determine if it is possible to support the
availability, or if redesign or additional redundant or high
availability equipment is needed.

The host environment cannot be designed, implemented,
or managed unless an availability threshold is established.

Time Frame Derived by the contracted number of support hours.
The Default is 24x7x365. Scheduled maintenance time
that is within the maintenance window, and does not
exceed the agreed upon maintenance time frames will not
be included in availability computations.

360

Additionally, scheduled maintenance involving the
application (i.e., granting root access to maintenance
personnel to perform an upgrade) will not be considered
down time.

The Maximum "Available" time will be determined from
the hours of support that were contracted.
Example (1): Hours of Support = 24 x 7. The maximum
"available" time in a 30 day month is 30 x 24 x 60 =
43,200 minutes.

Example (2): Hours of Support = 9 x 5. The maximum
"available" time in a month with 21 work days is:
21 x 9 x 60 = 11,340 minutes.

Scope This is an end-to-end metric from the host environment
firewall to the application. It includes the hardware and
the software for the firewall and server farm network, in
addition to the hardware and software necessary to support
the application. It does not apply to the application itself.

Performance Category 1.0 Host Environment Availability
Performance Metric Availability is expressed as a percentage of the time that

an application is fully functional divided by the total time
encompassed in the support hours.

Threshold Levels Availability thresholds are as follows:
Essential Services: 99.50%
Enhanced Services: 99.90%
Premier Services: 99.95%

In this SLA, availability is not only dependent upon the
individual components that comprise the infrastructure
(servers, network and firewall); it also addresses
application and data availability from a security
perspective.

The following thresholds apply to resource utilization and
network efficiency. If these thresholds are violated, then
the application is considered ‘down’, and will count
against availability:

Server Measures:
CPU Utilization: 80% sustained for over 1 hour. Not to
exceed 90% for more than 2 polling cycles (5 minute
intervals).
Frequency of Failure: More than 3 service interruptions in

361

one day.
CPU run queue length: 3
Disk Utilization: 90%
Disk Response Time: .25 second
Disk Average Queue Length: 3
Disk I/O rate: 100 ms avg (Specific to hardware and
configuration).
Swap space availability: 90% of defined space
Memory paging: 5 per second

Network Measures:
Data Delivery Rate: 99.95%
LAN Latency (one way): 70 ms
LAN Packet Collisions: More than 7% of packets
transmitted (average based on 1 hour interval).
Bandwidth Availability: 85% of defined bandwidth
Ethernet Segment Utilization: Less than 30%

Security Related Measures:
If application performance is degraded due to an intruder
attack, virus, worm, or security breaches previously
identified, the application will be considered “down”.
This includes the time that the application is affected
during efforts to correct the violation. New attacks that
have no previous history or signature will not be counted
as “down time” against availability.

Response Time: Will be depended upon the types of
transaction that are being performed. If all transactions
are similar, one threshold value can be determined, if they
are all different, the thresholds should be specific to the
transaction. The time to generate a simple report might be
1 second.

Another area that we may want to include in the
availability SLA is frequency of failure. This represents
service interruption.

All hardware errors affecting the application are
considered ‘downtime’, and will be counted against
availability.

Application response time is dependent upon the type of
functionality that is processed by the application. The
SLA will specify the key functional processes and the

362

corresponding response time expected. The processes and
response times will be negotiated on an application-by-
application basis.

Formula Availability = (total uptime minutes) / (total uptime
minutes + total downtime minutes) * 100

Assumptions Downtime starts with the generation of a trouble ticket, or
when a threshold violation is captured by the monitoring
tools. Problems relating to the firewall, network, server or
system software will count towards downtime. A review
of the trouble tickets will verify that the downtime is
properly assigned.

Downtime attributed to application errors will not be
included in the computation. Downtime that is a direct
result of government actions will not be included in the
computation. An example would be rebooting the system
following an application update.

Errors attributed to the client side portion of the compute
environment will not be charged against the server farm
reliability calculations.

Contractor Responsibility Adopt and implement an industry-standard software
solution for automatically polling and calculating compute
service availability.

Monitor compute services for earliest identification of
outages.

Take appropriate actions to correct deficiencies.

Customer Responsibility The customer is responsible for prompt notification of any
suspected compute service outages.

Frequency Monitoring is conducted during scheduled support hours.
Report frequency is monthly.

Measurement Techniques The server will be ’Pinged‘ from a management server
every 5 minutes. Failure by the server to respond will start
the service outage time. The time between the first
’Failed‘ Ping and the first successful Ping after repair will
be reported as Downtime.

Approved industry standard monitoring tools such as
Tivoli® and Open View® will be used to monitor
resources. Operating system logs will also be used to
determine compliance.

363

Critical threshold violations will be considered downtime.
Violations will be considered when a threshold is violated
for three consecutive monitoring cycles.

Example: Server A polled at 10:40, 10:45 and 10:50 and
does not respond to the 10:45 poll but does respond at
10:40 and the 10:50. This would be calculated as 5
minutes of downtime.

The downtime will be reviewed and adjusted by a
contractor representative to exclude all outages from
maintenance windows or outside the scope of service:
• All planned outages
• All outages due to application failures

Adjusted Compute Service Availability is then
recalculated. The new formula would be as follows:

Availability = (total uptime minutes – downtime outside
of scope) / (total uptime minutes – downtime outside of
scope + total downtime minutes) * 100

Example Calculation:
Server contracted for 7 x 24 hour support. Two outages
occurred during a month with 30 days: (1) 100 minute
application outage and (2) a 360 minute system failure
occurred for a total downtime of 460 minutes. Availability
is reported as:

Reliability = (43,200 – 100) / ((43,200 – 100) + 360) *
100 = 99.17%

Reports 1. Monitoring Reports: Weekly
2. Trouble Tickets: Weekly

Person Responsible for
Verification

The CTR will be responsible for reviewing the monitoring
reports and trouble tickets to determine compliance with
the SLAs.

Escalation Procedures The CTR will be notified if the application is not
accessible or functioning by the following time frames:
Essential Service – after 30 minutes
Enhanced Service – after 15 minutes
Premier Service – after 10 minutes

If there are any disagreements concerning whether
downtime should be charged to the application, or the host

364

environment, the CTR will make the decision.
Disagreements can be escalated to the COR.

Contractual Exceptions Availability does not include scheduled maintenance
downtime within the maintenance window.

Penalties/Rewards Minor penalty: 10% of monthly rate
• Threshold values exceed agreed upon rates.

Major violation: 25% monthly rate
• More than 3 minor penalties during the year
• Any availability less than the following:

Essential Services: 98.0% available
Enhanced Services: Target: 99.0% available
Premier Services: Target: 99.5% available

• More than 2 major violations will force escalation
procedures between the COR and the contractor.
Following escalation procedures additional missed
targets may be cause for termination.

I. QUESTIONNAIRE:

1. How does your job relate to information technology?

CIO Staff
Software Developer
SysAdmin
Project Manager
IT User

2. How many years have you been working in the IT field?
0-2 2-4 4-6 6-10 Greater than 10

The following questions are based on a Likert scale. The scale is as follows:
1 = strongly disagree 2 = mildly disagree 3 = neutral 4 = mildly agree 5 = strongly agree
Annotate the number corresponding to your answer next to the statements.

3. Use of SLAs will improve software quality throughout the application’s lifecycle.
4. Use of SLAs will improve software quality in the development stage.
5. Use of SLAs will improve the quality of hosting services for applications.
6. Use of SLAs will improve the maintenance of software.
7. Service level agreements will improve requirements determination.
8. Use of SLAs will improve software security.
9. Service level agreements will facilitate the development of a change review

board.
10. Service level agreements will ensure rigorous reviews of software changes to

ensure quality is maintained.

365

11. Service level agreements will improve configuration management.
12. Service level agreements will improve the management of IT intensive systems.
13. Service level agreements will help to ensure that the IT system supports its

underlying business process.
14. Service level agreements help manage customer’s expectations.
15. End-users are more willing to accept a system its performance parameters are well

defined within a SLA.
16. Use of SLAs will assist in the source selection of potential service providers.
17. The format of the SLA was easy to understand.
18. The format of the SLA provided enough information to specify the means to

measure whether a requirement was performed as desired.
19. The format of the SLA was detailed enough to determine services to be

performed, performance expectations, and responsibilities of all parties.
20. The format of the SLA provides a template that could be easily modified to

support any application.
21. The SLAs would make source selection of potential service providers easier.
22. The administrative burden of managing the SLAs would outweigh their benefit.
23. The difficulty in developing the SLAs would be too cumbersome for

organizations.
24. SLAs would not be developed because the people with the knowledge base to

develop the SLAs were outsourced, or are not available.
25. Enforcing penalty clauses/withholding incentives is too difficult.
26. Service level agreements will not resolve the quality issues associated with

rushing software to market.
27. Comments: Please group comments into the following categories:

a. Effectiveness of using SLAs in software acquisition.
b. Usefulness of the SLA format.
c. SLAs contribution to software quality.
d. SLAs contribution to post-production support.
e. SLAs contribution to lifecycle management.

366

THIS PAGE INTENTIONALLY LEFT BLANK

367

APPENDIX C

1. How does your primary job function relate to information technology?

CIO Staff 20.9%
Software Developer 9.3%
System Administrator 18.6%
Project Manager 37.2%
IT User 14.0%

2. How many years have you been working in the IT field?

0-2 4.7%
2-4 4.7%
4-6 11.6%
6-10 20.9%
Greater than 10 58.1%

3. Do you have any previous experience working with SLAs?

No 32.6%
Less than 6 months 9.3%
6 Months – 1 Year 11.6%
More than 1 Year 46.5%

The following questions are based on a Likert scale. The scale is as follows:
1 = strongly disagree 2 = mildly disagree 3 = neutral 4 = mildly agree 5 = strongly agree
Annotate the number corresponding to your answer next to the statements.

4. You are satisfied with the software quality in the applications you are familiar

with.

368

Question 4

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.2381 Median: 3
Standard Deviation: 0.8782 Mode: 4
T-Value: 1.7571 P-Value: 0.0864
Statistically Significant: No

5. Management is concerned with post-production support of software.

Question 5

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.5238 Median: 4
Standard Deviation: 1.1096 Mode: 4
T-Value: 3.0595 P-Value: 0.0039

369

Statistically Significant: Yes

6. The format of the SLA was easy to understand.

Question 6

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.5349 Median: 4
Standard Deviation: 0.9089 Mode: 4
T-Value: 3.8589 P-Value: 0.0004
Statistically Significant: Yes

7. The format of the SLA provided enough information to specify the means to

measure whether a requirement was performed as desired.

370

Question 7

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.8140 Median: 4
Standard Deviation: 0.8239 Mode: 4
T-Value: 6.4781 P-Value: <0.0001
Statistically Significant: Yes

8. The format of the SLA was detailed enough to determine services to be

performed, performance expectations, and responsibilities of all parties.

Question 8

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.7907 Median: 4

371

Standard Deviation: 0.7419 Mode: 4
T-Value: 6.9889 P-Value: <0.0001
Statistically Significant: Yes

9. Use of SLAs will improve software quality in the development stage.

Question 9

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.6047 Median: 4
Standard Deviation: 1.0268 Mode: 4
T-Value: 3.8616 P-Value: 0.0004
Statistically Significant: Yes

10. Use of SLAs will improve the quality of hosting services for applications.

372

Question 10

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.9048 Median: 4
Standard Deviation: 0.9055 Mode: 4
T-Value: 6.4753 P-Value: <0.0001
Statistically Significant: Yes

11. Use of SLAs will improve the maintenance of software.

Question 11

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.6977 Median: 4
Standard Deviation: 0.8319 Mode: 4

373

T-Value: 5.4991 P-Value: <0.0001
Statistically Significant: Yes

12. Service level agreements will improve requirements determination.

Question 12

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.6512 Median: 4
Standard Deviation: 1.0439 Mode: 4
T-Value: 4.0904 P-Value: 0.0002
Statistically Significant: Yes

13. Use of SLAs will improve software security.

374

Question 13

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.3488 Median: 4
Standard Deviation: 0.9731 Mode: 4
T-Value: 2.3508 P-Value: 0.0235
Statistically Significant: Yes

14. Service level agreements will facilitate the development of a change review

board.

Question 14

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.6190 Median: 4
Standard Deviation: 0.9615 Mode: 3

375

T-Value: 4.1725 P-Value: 0.0002
Statistically Significant: Yes

15. Service level agreements will ensure rigorous reviews of software changes to

ensure quality is maintained.

Question 15

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.4186 Median: 3
Standard Deviation: 0.9570 Mode: 4
T-Value: 2.8683 P-Value: 0.0064
Statistically Significant: Yes

16. Service level agreements will improve configuration management.

376

Question 16

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.6279 Median: 4
Standard Deviation: 0.8735 Mode: 4
T-Value: 4.7137 P-Value: <0.0001
Statistically Significant: Yes

17. Use of SLAs will improve software quality throughout the application’s lifecycle.

Question 17

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.5714 Median: 4
Standard Deviation: 0.8874 Mode: 4
T-Value: 4.1732 P-Value: 0.0002

377

Statistically Significant: Yes

18. Service level agreements will improve software program management.

Question 18

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.7907 Median: 4
Standard Deviation: 0.8326 Mode: 4
T-Value: 6.2273 P-Value: <0.0001
Statistically Significant: Yes

19. Service level agreements will help to ensure that the IT system supports its

underlying business process.

378

Question 19

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.8605 Median: 4
Standard Deviation: 0.8614 Mode: 4
T-Value: 6.5505 P-Value: <0.0001
Statistically Significant: Yes

20. The use of monitoring tools will improve software quality.

Question 20

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.7442 Median: 4
Standard Deviation: 0.9535 Mode: 4
T-Value: 5.1179 P-Value: <0.0001

379

Statistically Significant: Yes

21. Service level agreements help manage customer’s expectations.

Mean: 4.1395 Median: 4
Standard Deviation: 0.8614 Mode: 4
T-Value: 8.6750 P-Value: <0.0001
Statistically Significant: Yes

22. SLAs will help program managers focus on business critical measurements.

380

Mean: 3.7907 Median: 4
Standard Deviation: 0.7733 Mode: 4
T-Value: 6.7049 P-Value: <0.0001
Statistically Significant: Yes

23. In a contract for application development, a SLA for availability will focus

management attention on software maintainability, reliability and security early in
the design stage, where it can be more easily implemented.

Mean: 3.6190 Median: 4
Standard Deviation: 0.9615 Mode: 3
T-Value: 4.1725 P-Value: 0.0002
Statistically Significant: Yes

24. The SLAs would make source selection of potential service providers easier.

381

Question 24

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.4884 Median: 3
Standard Deviation: 1.0322 Mode: 3
T-Value: 3.1027 P-Value: 0.0034
Statistically Significant: Yes

25. The administrative burden of managing the SLAs would outweigh their benefit.

Question 25

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 2.6279 Median: 2
Standard Deviation: 1.1344 Mode: 2
T-Value: -2.1509 P-Value: 0.0373

382

Statistically Significant: Yes

26. The difficulty in developing the SLAs would be too cumbersome for
organizations.

Question 26

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 2.5476 Median: 2
Standard Deviation: 1.0170 Mode: 2
T-Value: -2.8828 P-Value: 0.0062
Statistically Significant: Yes

27. Service level agreements would not be developed because the people with the

knowledge base to develop the SLAs were outsourced, or are not available.

383

Question 27

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 2.9535 Median: 3
Standard Deviation: 0.9500 Mode: 3
T-Value: -0.3210 P-Value: 0.7498
Statistically Significant: No

28. Enforcing penalty clauses/withholding incentives is too difficult.

Question 28

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 2.8837 Median: 3
Standard Deviation: 1.0737 Mode: 2
T-Value: -0.7102 P-Value: 0.4815

384

Statistically Significant: No

29. Service level agreements will not resolve the quality issues associated with

rushing software to market.

Question 29

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1 2 3 4 5

Responses

Pe
rc

en
ta

ge

Mean: 3.5116 Median: 3
Standard Deviation: 1.0550 Mode: 3
T-Value: 3.1802 P-Value: 0.0028
Statistically Significant: Yes

30. Comments: If you have any comments, please group them into the following

categories:

A. EFFECTIVENESS OF SLAS IN SOFTWARE ACQUISITION

• As you said in the introduction, the presence of standards for developing software
does not mean they are being used. While, theoretically, a SLA would improve upon
this, I believe we see too many instances today where SLAs are in use but fail to make
this improvement, generally, in my opinion due to requirement changes. I do believe,
however, that concerted use of SLAs should be a major aid in all the areas you address
(contribution to software quality, post-production support, etc.)
• SLAs are only as effective as the people and organizations supporting them.
Strong leadership, knowledge of the SW lifecycle and a good working relationship
between the developer and the user can help to ensure quality. SLAs are really nothing
more than contracts, and they are only as good as the enforcement.
• The flaw with the SLA used in the example is it only covers the host environment.
The application is maintained by a separate organization and the network by a third

385

organization. If the SLA covered the entire suite, application, host, network and client,
then one person would be responsible for service to the end user. With responsibility
clearly in the hands of one organization, that organization can then be held accountable
for the performance from the end users perspective.
• Good guide. Referential users better.
• Probably minimal.
• Most of the questions above are accurate only if the two parties involved, enforce
the requirements identified in the SLA and the requirements are identified satisfactorily.
• A well-written RFP is appropriate before the SLA comes into play, but the SLA
can be utilized to manage the on-going process in that it will force the contractor to hire
more qualified programmers or make sure their technicians providing service are more
qualified so that they can meet the SLA/RFP requirements. That will improve the entire
cycle: requirements and demand.
• Software vendors are not held accountable to agreed upon capabilities.
Procurement seems to lean toward buying new and not holding vendors accountable.
• I think that best use, as they will improve expectations.
• Good measure of forcing everyone to document expectations will help.
• Probably the standing.
• SLAs are only as good as it is managed.
• Not sure whether you are referring to custom development or off-the-shelf or
both.
• For custom applications, it is exceptionally effective.
• In my opinion, effective metrics should be applied at the varying levels of a
system (e.g. hardware, transport, OS, application, overall system).
• Software acquisition is always difficult and developing an SLA for software
acquisition is much harder than for hardware and other more tangible items. A
comprehensive SLA will never be able to capture all the minimum requirements needed
and the problem that you face is the lack of flexibility in changing an SLA. At the
various stages in the acquisition reviews of the SLA and how the development of the
software is progressing should be conducted and the flexibility of adjusting the SLA
should be available.

B. USEFULNESS OF THE SLA FORMAT

• The format must be simple, transparent and readable. The example given is clear
and straightforward.
• Anyone with a IT background enjoys them.
• Format usually needs focusing and re-writing.
• Appropriate for the requirements.
• Any template or format will aid in a mutual focus on general topic areas.
However, a mutual understanding of what each area really means would be key to its
usefulness determination. It will only be as good as the data/words actually input for
each area.

386

• Provides a structured framework to ensure all areas are discussed, managed and
evaluated.
• Easy to understand.
• SLAs should be used more often.
• The format presented should be very useful in the creation of SLAs for
operational support. I think SLAs for custom application development require a
somewhat different SLA.
• Very useful.
• I like the clear definition of the SLA's intent; the method of calculation and
definition of roles for the supplier and owner.

C. SLAS CONTRIBUTION TO SOFTWARE QUALITY

• SLAs can contribute to SW quality, but do not necessarily provide a silver bullet.
• Too soon to tell.
• If the company developing the applications is also responsible for the O&M of the
application, then an SLA is a strong motivator for developing a quality system. How
ever if the developer just hands the application over to the O&M provider, the incentive
to the developer is removed.
• Can substantially improve quality from the get go.
• Microsoft themselves have proven that software only needs to be slightly better
than what is out there. Quality software will always be rare despite SLAs.
• Great to prescribe document a set of criteria and/or data elements. However,
quality goes back to the commitment and support by the team. Quality is not just setting
a criteria/goal.
• Am doubtful that it will have a significant impact.
• Just OK, Not great or bad
• Again, if someone is actually monitoring, then SLAs will work.
• At face value an SLA could significantly improve software quality by providing
stakeholders (including the CDA) a means to agree upon requirements and performance
standards. However, complete and accurate requirements gathering is the key to software
quality and having the ability to track software adherence to identified requirements
throughout the development process and production upgrades (cradle to grave) in
addition to the SLA would provide for the best quality in the delivered product.
• I think SLAs that mandate conformance to developmental standards and
architectural guidelines can contribute immeasurably to software quality and usefulness
over time. It is difficult to write an SLA that guarantees efficient coding.
• SLAs are a good tool to monitor operations and control expectations and such. I
believe an SLA is an awkward tool to monitor software quality.
• A clear objective from the beginning will increase the probability of success for
many application software-development activities. However, a changing market,
compressed delivery needs and requirements evolving late in the development cycle will
generally force decisions to move forward at the expense of quality. Furthermore, the
cost of not having software may be greater than benefit of waiting until bugs are resolved.

387

• SLA could contribute to SQA but it is not the key contributor.
• I don’t buy the basic thesis that SLAs would improve software quality. There is
too much separation between the worlds. The software developers know nothing about,
and never think about, the server/hosting environment that their applications will run on.
It’s their job to write the code and “throw it over the wall” to the network administrators.
Only one of the items in “why software is so bad” is related to running the application
once it is programmed. If you try to hold programmer’s feet to the fire re: a SLA for
availability, they are only going to point fingers at the network administrators and say,
“it’s their problem”. The only person who cares about both worlds is the contract or
program manager.

D. SLAS CONTRIBUTION TO POST-PRODUCTION SUPPORT

• SLAs can help to ensure that the proper post-production support is put into place,
but they will not ensure success.
• Critical. Must have.
• Contribution will be dependent on the support being provided. For example,
maintenance of a program would depend on the complexity of program, the type of
problem reported, the recommended solution to fix the problem, etc.
• Probably none.
• Better then average.
• If post-production means maintenance and modification/enhancement, it is
important to have an agreement that continues to ensure software quality as above.
• Consider the following items in an SLA for monitoring production. Blackout
periods for servers during backup periods as your CPU utilization will probably be 100
percent for a significant period of time. This is a typical scenario that should not trigger a
review action. Another item would be system availability. Never use ping to see if a
server is available. Always use telnet. You can have a box in single-user mode that ping
will detect but that server is not available for applications.
• Ensures support from multiple ends, from software design to IT implementation.
• SLAs definitely aid in the effective management of systems after delivery to
production. Too often the end of development is considered the end of system
investment.
• Most of the things that cause the application to go down are not application
issues; their operating system and platform issues. Windows 2000 is better than prior
versions, but I still consider it a 6 x 24 operating system in a 7 x 24 world. The things
that cause our system to go offline are: server OS crashes, applying security patches that
require servers to be rebooted, simple configuration tweaks that require rebooting etc…
If the damn OS would stay running, then our applications would only be offline for
scheduled maintenance. UNIX systems are totally different: we ran Oracle on a Sun box
for 5 years with no reboots.

388

E. SLAS CONTRIBUTION TO LIFECYCLE MANAGEMENT

• Big benefit here. SLAs can help to define what the level and requirements for post-
production support are intended to be.
• Serious. Need to have.
• It is a starting point for the project and can be used to verify successfully meeting
customer documented expectations.
• Probably none.
• Just Ok, More monitoring and testing needs to be done.
• Should be a staff that does exclusive SLA management. SLAs are written but no one
seems to really monitor them. There is still "no consequence for actions".
• SLAs theoretically could be used for configuration management and lifecycle
maintenance assuming all parties involved maintain adherence to the SLA (to include
change management of the SLA itself).
• This gets really hard over time, particularly when software acquisition, and
operational support responsibilities are divided between multiple vendors and
government agencies, as in the case study. Not impossible, but hard to keep multiple
SLAs synchronized.
• SLAs contribute to the program lifecycle and should benefit development by having
clearer requirements earlier in the cycle. Effectiveness of their contribution, however, is
typically a derivative of what the author knew at the time of their creation. If a clear
vision was available, SLA's will be effective. If the vision is vague and constantly
evolving, their contribution will be less effective.
• It could be very helpful if it integrated in an automated software process
environment. If not, it could be viewed as extra work only.

389

LIST OF REFERENCES

Abdel-Hamid, T., and Madnick, S., “Lessons Learned From Modeling the Dynamics of
Software Development,” Communications of the ACM, Vol. 32, No. 12, Dec. 1989,
pp.14-26.

Agarwal, A., How to Optimize Outsourcing Relationships. In Info-Tech Research Group
(Ed.), Info-Tech White Papers 2003, Info-Tech, London Ontario, 2003.

Albin, S., The Art of Software Architecture: Design Methods and Techniques, John Wiley
and Sons, Indianapolis, 2003.

Albrecht, A., “Measuring Application Development Productivity,” in GUIDESHARE:
Proceedings of the IBM Application Development Symposium, (Monterey CA. 1979), pp.
83-92.

Alexander, L., and Davis, A., “Criteria for Selecting Software Process Models,” in
Proceedings of the Fifteenth Annual International Conference on Computer Software and
Applications, IEEE (Tokyo, Japan, 11-13 September 1991), pp. 521-528

Anthes, G., “Quality?! What ‘s That?,” Computerworld, Oct. 13, 1997, pp. 75-76.

Archer, B., “The Management of Client-Server Systems,” ICL Systems Journal, Vol. 9
Iss. 1, May 1994.

Aries, J., Banerjee, S., Brittan, M., Dillon, E., Kowalik, J., and Lixvar, J., “Capacity and
Performance Analysis of Distributed Enterprise Systems,” Communications of the ACM,
Vol. 45, Issue 6, pp. 100-105, Jun. 2002.

Armour, P., The Laws of Software Process: A New Model for the Production and
Management of Software, Auerbach Publications, Boca Raton, 2004.

Atre, S., “The Hidden Costs of Client/Server,” DBMS, Jun. 1995.

Aweya, J., Ouellette, M., Montuno, D., Doray, B., and Felske, K., “An Adaptive Load
Balancing Scheme for Web Servers,” International Journal of Network Management,
Vol. 12, 2002, pp. 3-39.

Aweya, J., Ouellette, M., Montuno, D., Doray, B., and Felske, K., “An Adaptive Load
Balancing Scheme for Web Servers,” International Journal of Network Management,
Vol. 12, No. 1, Jan./Feb. 2002, pp. 3-39.

Baker, M., “Implementing An Initial Software Metrics Program,” in Proceedings of the
IEEE Aerospace and Electronics Conference, (Atlanta, 20 May 1991), pp. 1289-1294.

390

Banker, R., et. al., “Software Complexity and Maintenance Costs” Communications of
the ACM, Vol 36. No. 11, Nov. 1993, pp. 347-358.

Baron, R., and Williams, F., Chapter 13: Smart Outsourcing – The Legalities; How to
Negotiate the Best Contract. In Reuvid, J., and Hinks, J. (Ed.), Managing Business
Support Services: Strategies for Outsourcing and Facilities Management, Second
Edition, Kogan Page, London, 2001.

Basil, V., Briand, L., and Melo, W., “A Validation of Object-Oriented Design Metrics as
Quality Indicators,” IEEE Transactions on Software Engineering, Vol. 22, No. 1, Oct.
1996, pp. 751-761.

Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, Addison-
Wesley, Reading, 1998.

Beath, C., and Walker, G., “Outsourcing of Application Software: A Knowledge
Management Perspective,” in Proceedings of the Thirty First Hawaii International
Conference on System Sciences, IEEE (Kohala Coast, Hawaii, Jan. 1998) Vol. 6, pp. 666-
674.

Becker, S., and Jorgensen, A., Chapter 17: A Recursive Approach to Software
Development. In Valenti, S. (Ed.), Successful Software Reengineering, Idea Group
Publishing, Hershey, 2002.

Bennatan, E., On Time Within Budget, Wiley Computer Publishing, New York, 2000.

Bennett, K., and Rajlich, V., “Software Maintenance and Evolution: A Roadmap,” in
Proceedings of the Conference on the Future of Software Engineering, ACM (Limerick,
Ireland, Jun. 2000), 73-87.

Bertoa, M., and Vallecillo, A., “Quality Attributes for COTS Components,” [http://
www.sd-cenidet.com.mx/Revista/Docs/Vol1/No2Art06.pdf], Nov. 2002. Accessed Jul.
2004.

Berzins, V., and Luqi, Software Engineering with Abstractions, Addison-Wesley
Publishing, Reading, 1991.

Bickerton, M., and Siddiqi, J., “The Classification of Requirements Engineering
Methods,” in Proceedings of IEEE International Symposium on Requirements
Engineering, IEEE (San Diego, Jan. 1993), pp. 182-186.

Blacharski, D., “Keeping the Bugs at Bay,” IT World.Com, 23 July 2002.

Boehm, B., “A Spiral Model of Software Development and Enhancement,” Computer,
Vol. 21, No. 5, May 1988, pp. 61-72.

391

Boehm, B., et.al., Software Cost Estimation with COCOMO II, Prentice Hall, Upper
Saddle River, 2000.

Boehm, B., “Software Risk Management: Principles and Practice,” IEEE Software, Vol.
8 No. 1, Jan. 1991, pp. 32-41.

Boehm, B., Brown, J., and Lipow, M., “Quantitative Evaluation of Software Quality,” in
Proceedings of the 2nd International Conference on Software Engineering, ACM (San
Francisco, CA. 1976), 592-605.

Briand, L., Melo, W., Seaman, C., and Basili, V., Characterizing and assessing a large-
scale maintenance organization, in Proceedings of the Seventeenth International
Conference on Software Engineering, ACM (Seattle, Wash., Apr. 1995), 133-143.

Briones, J. Chapter 31: Quality Information Services. In Brown, C. (Ed.) with Topi, H.,
IS Management Handbook, 7th ed., CRC Press LLC Auerbach, Boca Raton, 2000.

Bubenko, J, “Challenges in Requirements Engineering,” in Proceedings of the Second
IEEE Symposium on Requirements Engineering, IEEE (York England, Mar. 1995), pp.
160-162.

Buco, M., Chang, R., Laun, L., Ward, C., Wolf, J., and Yu, P., “Managing eBusiness on
Demand SLA Contracts in Business Terms Using the Cross-SLA Execution Manager
SAM,” in Proceedings of the Sixth International Symposium on Autonomous
Decentralized Systems, IEEE, (Pisa, Italy, 9 Apr. 2003), pp. 157-164.

Byron, D., “Understanding the Costs of Client/Server Computing,” [http://c14055.nkfust.
edu.tw/datapro/33574-1.htm.], Feb. 1996. Accessed Jan. 2002.

Calliss, D., and Callis, F., “Criteria for Selecting a Family of Software Indicators,” in
Proceedings of the Seventeenth Annual International Conference on Computer Software
and Applications, IEEE, (Phoenix, Nov. 1993), pp. 408-413.

Charette, R., “Are We Developers Liars or Just Fools,” IEEE Software, Vol. 12, No. 4,
Jul. 1995, pp. 90-92.

Charette, R., “Large-Scale Project Management is Risk Management,” IEEE Software,
Vol. 13, No. 4, Jul. 1996, pp. 110-117.

Charette, R., “Managing Risk in Software Maintenance,” IEEE Software, Vol. 14, No. 3,
May/Jun. 1997, pp. 43-50.

Charvat, J., Project Management Methodologies: Selecting, Implementing, and
Supporting Methodologies and Processes for Projects, John Wiley and Sons, New York,
2003.

392

Chief of Naval Operations, “Naval Message 251530Z Jul 01,” Jul. 25, 2001.

Chorafas, D., Integrating ERP, CRM, Supply Chain Management, and Smart Materials,
Auerbach, Baca Raton, 2001.

Chulani, S., Boehm, B., and Abts, C., “Software Development Cost Estimation
Approaches – A Survey,” [sunset.usc.edu/publications/TECHRPTS/2000/ usccse2000-
505/usccse2000-505.pdf], 1998. Accessed Jul 2004.

Chutchian-Ferranti, J., “Activity Based Costing,” Computerworld, Aug. 09, 1999.

Clark, D., and Fang, W., “Explicit Allocation of Best-Effort Packet Delivery Service,”
IEEE/ACM Transactions on Networking, Vol. 6, No. 4, Aug. 1998.

Clarke, S., and Lehaney, B. Chapter 140: Human-Centred Methods in Information
Systems: Boundary Setting and Methodological Choice. In M. Khosrowpour (Ed.),
Challenges of Information Technology Management in the 21st Century: 2000
Information Resources Management Association International Conference Hershey: Idea
Group Publishing. 2000

Clements, P., Bass, L., Kazman, R., and Abowd, G., “Predicting Software Quality by
Architecture Evaluation,” in Proceedings of the Fifth International Conference on
Software Quality, (Austin, Texas, Oct. 1995).

Clinton, W., “Executive Order 13011 of Jul. 16, 1996,” Federal Register, Vol. 61, No.
140, 19 Jul. 1996.

Conxion Corp., “10 Critical Issues to Consider if You’re Concerned About Your Hosting
Service,” [http://www.conxion.net], 2001. Accessed May 2003

Cook, M., Building Enterprise Information Architectures Reengineering Information
Systems, Prentice Hall, Upper Saddle River, 1996.

Coppick, C., and Cheatham, T., “Software Metrics for Object-Oriented Systems,” in
Proceedings of the 1992 ACM Annual Conference on Communications, ACM (Kansas
City, MI. 1992), pp. 317-322.

Cross, S., “A Quality Doctrine for Software: Do it Right the First Time,” in Proceedings
of the Ninth Asia-Pacific Software Engineering Conference, IEEE (Gold Coast, Australia,
2002), pp. 187-194.

Cross, S., and Estrada, R., “DART: An Example of Accelerated Evolutionary
Development,” in Proceedings of the Fifth International Conference on Rapid System
Prototyping, IEEE (Grenoble, France, 1994), 177-183.

393

Czegel, B., Running an Effective Help Desk, Wiley, John & Sons, New York, 1998.

Dalal, A., and Jordan, S., “Improving User-Perceived Performance at a World Wide Web
Server, in Proceedings of Globecom 2001, IEEE (San Antonio, TX., Nov. 2001), pp.
2465-2469.

Daniels, A., Bringing Out the Best in People: How to Apply the Astonishing Power of
Positive Reinforcement, McGraw-Hill, New York, 2000.

Dart, S., Configuration Management: The Missing Link in Web Engineering, Artech
House, Norwood, 2000.

Daskalantonakis, M., “Achieving Higher SEI Levels,” IEEE Software, Vol. 11, No., 4,
Jul. 1994, pp. 17-24.

Daskalantonakis, M., “A Practical View of Software Measurement and Implementation
Experiences within Motorola,” IEEE Transactions on Software Engineering, Vol. 18, No.
19, Nov. 1992, pp. 998-1010.

Davis, A., et al., “Identifying and Measuring Quality in a Software Requirements
Specification,” in Proceedings of the First International Symposium on Software Metrics,
IEEE (San Diego, Jan. 1993), pp. 141-152.

De Waal, A., Quest for Balance: The Human Element in Performance Management
Systems, John Wiley & Sons, New York, 2002.

Defense Acquisition Workforce Improvement Act (DAWIA), Public Law 101-510,
Chapter 87 of Title 10, U.S. Code, 1990.

Department of Defense, Office of the Inspector General, “Management of Information
Technology Equipment, Office of the Secretary of Defense,” D-2001-096, Apr. 9, 2001.

Department of Defense, Office of the Inspector General, “Semiannual Reports to
Congress April 1, 2000 to September 30, 2000,” [http://www.dodig.osd.mil/sar/
index.html], 2000. Accessed Jul. 2004.

Department of Defense, Office of the Inspector General, “Summary of Audits of
Acquisition of Information Technology,” D-2000-162, Jul. 13, 2000.

Department of Defense, Office of the Inspector General, “Use of the DoD Joint Technical
Architecture in the Acquisition Process,” D-2001-121, May 14, 2001.

Department of Defense, Under Secretary of Defense (Acquisition, Technology and
Logisitics), “Guidebook for Performanced-Based Services Acquisition (PBSA) in the

394

Department of Defense,” 02 Jan 2001. [http://www.acq.osd.mil/dpap/Docs/
pbsaguide010201.pdf], Accessed Sep 2004.

Department of the Navy, Chief Information Officer, Department of the Navy Information
Management/Information Technology Workforce Strategic Plan Fiscal Years 2001-2006,
Department of the Navy, Washington D.C., May 2001.

Deputy Assistant Secretary of Defense (Deputy Chief Information Officer), Clinger
Cohen Act of 1996 and Related Documents, May 2000.

Devore, J., Probability and Statistics for Engineering and the Sciences 4th ed., Duxbury
Press, Pacific Grove, 1995.

Dias, M., and Vieira, M., “Software Architecture Analysis Based on Statechart
Semantics,” in Proceedings of the 10th International Workshop on Software Specification
and Design, IEEE, (San Diego, Nov. 2000), pp. 133-137.

Dikel, D., Kane, D., and Wilson, J., Software Architecture Organizational Principles and
Patterns, Prentice Hall, Upper Saddle River, 2001.

Dietz, T., “Evaluating Software Suppliers as Part of IBM’s Overall Software Acquisition
Process,” in Proceedings of the Acquisition of Software-Intensive Systems Conference,
SEI, (Washington DC, 28 Jan. 2003).

Dobrica, L., and Niemela, E., “A Survey on Software Architecture Analysis Measures,”
IEEE Transactions on Software Engineering, Vol. 28, No. 7, Jul. 2002, pp. 638-653.

Domberger, S., The Contacting Organization: A Strategic Guide to Outsourcing, Oxford
University Press, Oxford, 1998.

Drummond, J. “Specifying Quality of Service for Distributed Systems based upon
Behavior Models,” Doctoral Dissertation, Naval Postgraduate School, May 2002.

Duncan, N., Beyond opportunism: A resource-based view of outsourcing risk, in
Proceedings of the 31st Annual Hawaii International Conference on System Sciences
IEEE (Kohala Coast, Hawaii, Jan. 1998) Vol. 6, pp. 675-684.

Eager, D., Vernon, M., and Zahorjan, J., “Minimizing Bandwidth Requirements for On-
Demand Data Delivery,” IEEE Transactions on Knowledge and Data Engineering, Vol.
15, No. 5, September/October 2001.

Eisner, H., “Reengineering the Software Acquisition Process Using Developer Off-The-
Shelf Systems (DOTSS),” in Proceedings of the IEEE Systems, Man and Cybernetics,
Vol. 5, 1995, pp. 3971-3976.

395

El Emam, K., and Madhavji, N., “Measuring the Success of Requirements Engineering
Processes,” in Proceedings of the Second IEEE International Symposium on
Requirements Engineering, IEEE (York England, Mar. 1995), pp. 204-211.

Electronic Data Systems, NMCI Information Strike Force, [www.isf-nmci.com]. Jul.
2004.

Eljabiri, O, and Deek, F., “Toward a Comprehensive Framework for Software Process
Modeling Evolution,” in Proceedings of ACS/IEEE International Conference on
Computer Systems and Applications, IEEE (Beirut, Lebanon, 25-29 June 2001), pp. 488-
491.

Ellett, T., “Client/Server Accounting and Chargeback,” [http://www.charge-back.com
/_ARTICLE/article2.htm]. Accessed Jul. 2004.

Estublier, J., Leblang, D., Clemm, G., Conradi, R, Tichy, W., Van der Hoek, A., and
Wilborg-Weber, D., “Impact on the Research Community On The Field of Software
Configuration Management,” Software Engineering Notes, Vol. 27, No. 5, Sep. 2002, pp.
31-39.

Estublier, J., “Software Configuration Management: A Roadmap,” in Proceedings of the
Conference on the Future of Software Engineering, ACM, (Limerick, Ireland, 2000), pp.
279-289.

Ewusi-Mensah, K., Software Development Failures: Anatomy of Abandoned Projects,
The MIT Press, Cambridge, 2003.

Factor, A., Analyzing Application Service Providers, Sun Microsystems Press, Palo Alto,
2002.

Farbey, B., and Finkelstein, A., “Software Acquisition: A Business Strategy Analysis,” in
Proceedings of the fifth IEEE International Symposium on Requirements Engineering,
IEEE (Toronto, Canada, 2001), pp. 76-83

Feeny, D., and Willcocks, L. Chapter 18: Rethinking Capabilities and Skills in the
Information Systems Function. In Currie, W. (Ed.) and Galliers, B. (Ed.), Rethinking
Management Information Systems, Oxford University Press, Oxford, 1999.

Fenton, N., and Neil, M., “A Critique of Software Defect Prediction Models,” IEEE
Transactions of Software Engineering, Vol. 25, No. 5, Sep./Oct. 1999, pp. 675-689.

Fenton, N, Krause, P., and Neil, M., “Software Measurement: Uncertainty and Causal
Modeling,” IEEE Software, Vol. 19, No. 4, Jul./Aug. 2002, pp. 116-122.

396

Ferguson, P., Humphrey, W., Khajenoori, S., Macke, S., and Matvya, A., “Results of
Applying the Personal Software Process,” Computer, Vol. 30, No. 5, May 1997, pp. 24-
31.

Fishman, D., “Application Availability: An Approach to Measurement,” [http://www.
Nextslm.org/fishman.html], 2000. Accessed Jul. 2004.

Florac, W., “Software Quality Measurement: A Framework for Counting Problems and
Defects,” Technical Report CMU/SEI-92-TR-022, Sep. 1992.

Frost, C., Allen, D., Porter, J., and Bloodworth, P., Operational Risk and Resilience,
Butterworth-Heinemann, Oxford, 2001.

Gaines, L., and Michael, B., “Service Level Agreements as Vehicles for Managing
Acquisition in Software-Intensive Systems,” Defense Acquisition Review Journal, Vol.
11, No. 3, Dec. 2004 – Mar. 2005, pp. 284-303.

Galin, D., “Software Quality Metrics – From Theory to Implementation,” Software
Quality Professional, Vol. 5, No. 3, Jun. 2003, pp. 24-31.

Galliers, R., and Swan, J., “Against structured approaches: Information requirements
analysis as a socially mediated process,” in Proceedings of the thirteenth Hawaii
International Conference on System Sciences (Wailea, Hawaii, Jan. 1997), Vol 3.,
179-187.

Gama, G., Meira, W., Carvalho, M., Guedes, D., and Almeida, V., “Resource Placement
in Distributed e-Commerce Servers,” in Proceedings of Globecom 2001, IEEE (San
Antonio, TX., Nov. 2001), pp. 1677-1682.

Garlan, D., “Software Architecture: A Roadmap,” in Proceedings of the conference on
the Future of Software Engineering, ACM (Limerick, Ireland, 2000) pp. 93-101.

Garlan, D., Allen, R., and Ockerbloom, J., “Architectural Mismatch: Why Reuse is so
Hard,” IEEE Software, Vol. 12, No. 6, Nov. 1995, pp. 17-26.

Garvin, D., “What Does ‘Product Quality’ Really Mean?,” Sloan Management Review,
Vol. 26, No. 1, Fall 1984, pp. 25-43.

Gates, B., Business @ The Speed of Thought Using a Digital Nervous System, Warner
Books, New York, 1999.

Gemmer, A., “Risk Management: Moving Beyond Process”, IEEE Computer, May 1997

397

Gibson, R., “Software Process Modeling: Theory, Results and Commentary,” in
Proceedings of the Thirty-First Hawaii International Conference on System Sciences,
IEEE (Kohala Coast, Hawaii, 6-9 Jan 1998), pp. 399-408.

Gilb, T., “Risk Management: A Practical Toolkit for Identifying Analyzing and Coping
with Project Risk,” [http:www.result-planning.com], Jul. 2002. Accessed Jul. 2004.

Gilliam, D., Wolfe, T., Sherif, J., and Bishop, M., “Software Security Checklist for the
Software Life Cycle,” in Proceedings of the Twelfth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE, (Linz
Austria, Jun. 2003), pp. 243-248.

Glass, R., “Defining Quality Intuitively,” IEEE Software, May 1998, pp. 103-107.

Gnatz, M., Marscahll, F., Popp, G. Rausch, A., Schwerin, W., “The Living Software
Development Process,” Software Quality Professional, Vol. 5, No. 3, Jun. 2003, pp. 4-16.

Goldenson, D., and Gibson, D., “Demonstrating the Impacts and Benefits of CMMI: An
Update and Preliminary Results,” [http://www.sei.cmu.edu/pub/documents
/03.reports/pdf/03sr009-revised.pdf], Oct. 2003. Accessed 17 Jul. 2004.

Goodyear, M., et. al., Enterprise System Architecture, CRC Press, Boca Raton, 2000.

Goth, G., “The Ins and Outs of IT Outsourcing,” IT Pro, Jan./Feb. 1999, pp. 11-14.

Greaver, M., Strategic Outsourcing: A Structured Approach to Outsourcing Decisions
and Initiatives, AMACOM, New York, 1999.

Griffith, A., and Curle, D. “Shortage of Skilled Talent Ranks as the No. 1 Challenge for
the Information Content Industry,” SIIA Press Release, 12 Jan. 2004.

Gupta, S., and Sinha, M., “Impact of Software Testability Considerations on Software
Development Life Cycle,” in Proceedings of the First International Conference on
Software Testing, Reliability and Quality Assurance, IEEE (New Dehli, India, 21
December 1994), pp. 105-110.

Hamlet, D., and Voas, J., “Faults on its Sleeve: Amplifying Software Reliability
Testing,” in Proceedings of the 1993 International Symposium on Software Testing and
Analysis, AMC (Cambridge MA. 1993), pp. 89-98.

Hansen, W., “A Generic Process and Terminology for Evaluating COTS Software,”
[http://www.sei.cmu.edu/cbs/tools99/generic/generic.pdf], 07 Sep. 1999. Accessed Jul.
2004.

Harney, J., Application Service Providers, Addison-Wesley, Boston, 2002.

398

Harris, M., “How not to Conduct a Configuration Management Program,” Logistics
Spectrum, Vol. 31, No. 1, Jan./Feb. 1997, pp. 7-10.

Harter, D., and Slaughter, S., “Process Maturity and Software Quality: A Field Study,” in
Proceedings of the Twenty First International Conference on Information Systems, ACM
(Brisbane, Australia, 2000), 407-411.

Heeks, R., Krishna, S., Nicholson, B., and Sahay, S., “Synching or Sinking: Global
Software Outsourcing Relationships,” IEEE Software, Mar./Apr 2001.

Heldman, W., IT Project+ Study Guide, Sybex, Alameda, 2002.

Herrin, W., “Software Maintenance Costs: A Quantitative Evaluation,” in Proceedings of
the 16th SIGCSE technical symposium on computer science education, ACM (New
Orleans, Mar. 1985), pp. 233-237.

Hickey, A., Dean, D., and Nunamaker, J., “Establishing a Foundation for Collaborative
Scenario Elicitation,” ACM SIGMIS Database, Vol. 30 No. 3-4 Summer/Fall 1999.

Hilburn, T., Townhidnejad, M., “Software Quality: A Curriculum Postscript,” in
Proceedings of the 31st SIGCSE Technical Symposium on Computer Science Education,
ACM (Austin TX. 2000), pp. 167-171

Hiles, A., E-Business Service Level Agreements: Strategies for Service Providers, E-
Commerce and Outsourcing, Rothstein Associates, Connecticut, 2002.

Hill, G., The Complete Project Management Office Handbook, Auerback, Boca Raton,
2004.

Hochstetler, S, et. al., Tivoli Netview 6.01 and Friends, IBM Redbook, Austin, 2000.

Horch, J., Practical Guide to Software Quality Management, Artech House Publishers,
Boston, 1996.

Huckle, T., “Collection of Software Bugs,” [http://wwwzenger.informtik.tu-muenchen.de
/persons/huckle/bugse.html], 4 July 2002. Accessed Jan 2003.

Hulse, C., et. al., “Reducing Maintenance Costs Through the Application of Modern
Software Architecture Principles,” in Proceedings of the SIGAda Annual International
Conference, ACM (Redondo Beach, Calif., Oct. 1999), 101-110.

Humphrey, W., “Using a Defined and Measured Personal Software Process,” IEEE
Software, May 1996, pp. 77-88.

399

Hunter, G., Chapter 16: Qualitative Research in Information Systems: An Exploration of
Methods, In Whitman, M, and Woszczynski, A., (Ed.) The Handbook of Information
Systems Research, Idea Group, Hershey, 2004.

Hurst, D., Operational Availability Modeling for Risk and Impact Analysis, in
Proceedings of Reliability and Maintainability Symposium, IEEE (Washington D.C. Jan.
1995), pp. 391-396.

IEEE Std 1061-1998, “IEEE Standard for a Software Quality Metrics Methodology,”
Dec. 31, 1998.

IEEE Std 1062, “IEEE Recommended Practice for Software Acquisition,” Dec. 22, 1998.

In, H., Boehm, B., Rodgers, T., and Deutsch, M., “Applying WinWin to Quality
Requirements: A Case Study,” in Proceedings of the 23rd International Conference on
Software Engineering, ACM (Toronto, Ontario, Canada, 2001) pp. 555-564.

Info-Tech Research Group, Technology and Organizational Performance, Info-Tech
Research Group, London, 2001.

Itbug, “Client/Server Benchmarking, PC KPIs and TCO,” [http://www.itbug.ndirect.
co.uk/services/tco.htm]. Accessed Jul 2004.

Itbug, “Sample Case Study Report For Client/Server Platforms,” [http://www.itbug.
ndirect.co.uk/samples/Caserep.htm]. Accessed Jul 2004.

Johnson, S., Who Moved My Cheese?, G. P. Putnam’s Sons, New York, 1998.

Jones, C., “Determining Software Schedules,” Computer, Vol. 28, No. 2, Feb. 1995,
pp.73-75.

Jones, C., “What are Function Points,” [http://www.spr.com/library/ofuncmet.htm], 1997.
Accessed Feb. 2003.

Joodi, P., and Burklo, J., “DoD Software Acquisition Management Overview,”
[http://www.stsc.hill.af.mil/crosstalk/1997/04/dodacquisition.asp], Apr. 1997. Accessed
Jul. 2004.

Kajko-Mattsson, M., “A Conceptual Model of Software Maintenance,” in Proceedings of
the International Conference on Software Engineering, ACM (Kyoto, Japan, Apr. 1998),
422-425.

Kaner, C., “The Impossibility of Complete Testing,” [http:www.kaner.com/imposs.htm],
Nov. 1997. Accessed July 2004.

400

Kabay, M., The NCSA Guide to Enterprise Security Protecting Information Assets,
McGraw-Hill, New York, 1996.

Kafura, D., “A Survey of Software Metrics,” in Proceedings of the 1985 ACM Annual
Conference on the Range of Computing: Mid-80’s Perspective, ACM (Denver, CO.
1985), pp. 502-506.

Kajko-Mattsson, M., “A Conceptual Model of Software Maintenance,” in Proceedings of
the 20th International Conference on Software Engineering, IEEE (Kyoto, Japan, 19 Apr.
1998), pp. 422-425.

King, W., “Guest Editorial Developing a Sourcing Strategy for IS: A Behavioral
Decision Process and Framework,” IEEE Transactions on Engineering Management,
Vol. 48, No. 1, Feb. 2001, pp. 15-24.

Kirk, D., “A Flexible Software Process Model,” in Proceedings of the 26th International
Conference on Software Engineering, ACM (Edinburgh, Scotland, 23-28 May 2004) pp.
57-59.

Kitchenham, B., and Linkman, S., “Estimates, Uncertainty, and Risk,” IEEE Software,
Vol. 14, No. 3, May/June 1997, pp. 69-75.

Kitchenham, B., Pickard, L., and Linkman, S., “An Evaluation of Some Design Metrics,”
Software Engineering Journal, Vol. 5, No. 1, Jan. 1990, pp. 50-58.

Keil, M., Cule, P., Lyytinen, K., and Schmidt, R., “A Framework for Identifying
Software Project Risk,” Communications of the ACM, Vol. 41, No. 11, Nov. 1998.

Kendrick, T., Identifying and Managing Project Risk: Essential Tools for Failure-
Proofing Your Project, AMACOM, New York, 2003.

Kern., T., and Willcocks, L., Chapter XV: Contract, Control and “Presentation” in IT
Outsourcing – Research in Thirteen UK Organizations. In Tan., F. (Ed.), Advanced
Topics in Global Information Management, Idea Group Publishing, Hershey, 2002.

King, W., “Guest Editorial Developing a Sourcing Strategy for IS: A Behavioral
Decision Process and Framework,” IEEE Transactions on Engineering Management,
Vol. 48, No. 1, Feb. 2001.

Kobitzch, W., Rombach, D., and Feldman, R., “Outsourcing in India,” IEEE Software,
Mar./Apr. 2001.

Krogstie, J., “Using Quality Function Deployment in Software Requirement
Specifications” [http://www.ifi.uib.no/konf/refsq99/papers/krogstie.rtf], Accessed 27 Sep
04.

401

Kumar, A., Kumar, P., and Basu, S. Chapter 10: Student Perceptions of Virtual
Education: An Exploratory Study. In M. Khosrow-Pour (Ed.), Web-Based Instructional
Learning, Idea Group Publishing, Hershey, 2000.

Kuver, P., Chapter 11: SEI CMM or ISO 9000: Which is Right For Your Organization in
Tinnirello, P. (Ed.), New Directions in Project Management, Auerbach Publication, Boca
Raton, 2002.

Lacity, M., and Hirschheim, R. Information technology outsourcing: What problems are
we trying to solve? In Rethinking Management Information Systems, Oxford University
Press, London, 1999.

Land, R., “Improving Quality Attributes of a Complex System Through Architectural
Analysis – A Case Study,” in Proceedings of the Ninth Annual IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems, IEEE, (Lund
Sweden, Apr. 2002), pp. 167-174.

Lazarescu, M., Bammi, J., Harcourt, E., Lavagno, L., and Lajolo, M., “Compilation-
Based Software Performance Estimation for System Level Design,” in Proceedings of
IEEE International Workshop on High-Level Design Validation and Test, IEEE,
(Berkeley, Nov. 2000), pp. 167-172.

Lee, J., and Ben-Natan, R., Integrating Service Level Agreements – Optimizing your OSS
for SLA Delivery, Wiley Publishing, Indianapolis, 2002.

Leon, A., A Guide to Software Configuration Management, Artech House, Norwood,
2000.

Lewis, H., Bids, Tenders and Proposals: Winning Business Through Best Practice,
Kogan Page, London, 2003.

Liebmann, L., “Lessons from the Toy Factory: Treat IT as a Raw Material,”
Computerworld, [http://www.computerworld.com/news/1999/story/
0,11280,34787,00.html], Mar. 08, 1999. Accessed Jul. 2004.

Loeb, V., and Schneider, G., “NSA Picks Information Technology Contractor,”
Washington Post, Aug. 1, 2001.

Loosley, C., and Douglas, F., High-Performance Client/Server, John Wiley & Sons, New
York, 1998.

MacCormack, A., Kemerer, C., Cusumano, M., and Crandall, B., “Trade-offs Between
Productivity and Quality in Selecting Software Development Practices,” IEEE Software,
September/October 2003, pp. 78-85.

402

Machniak, M., “Development of a Quality Management Metric (QMM) Measuring
Software Program Management Quality,” Masters Thesis, Naval Postgraduate School,
December 1999.

Malhotra, Y., “IS Productivity and Outsourcing Policy: A Conceptual Framework and
Empirical Analysis,” in Proceedings of Inaugural Americas Conference on Information
Systems, pp.142-144, Aug. 25, 1995.

Mann, C., “Why Software is so Bad,” MIT’s Magazine of Innovation Technology Review,
Aug. 2002.

Markset, T., and Kumar, U., “R&M and Risk Analysis Tools in Product Design to
Reduce Life-Cycle Cost and Improve Attractiveness,” in Proceedings of the Annual
Reliability and Maintainability Symposium, IEEE, (Piscataway, NJ 2001), pp. 116-122.

Martin, R., and Raffo, D., “A Comparison of Software Process Modeling Techniques,” in
Proceedings of the Portland International Conference on Management and Technology,
IEEE (Portland Oregon, 27 July 1997), pp. 577-580.

Mater, J., Chapter 16: Solving the Software Quality Management Problem. In Tinnirello,
P. (Ed.), New Directions in Project Management, CRC Press LLC, Boca Raton, 2002.

Matloff, N., “Problems and Needed Reform for the H-1B and L-1 Work Visas,”
[http:heather.cs.ucdavis.edu/itaa.others.html], Feb. 9, 2004. Accessed Apr. 2004.

Mayrand, J., and Coallier, F., “System Acquisition Based on Software Product
Assessment”, Proceedings of the 18th International Conference on Software Engineering,
1996, pp. 210-219.

McClure, C., “A Model for Program Complexity Analysis,” in Proceedings of the 3rd
International Conference on Software Engineering, IEEE, (Los Alamitos, CA. May
1978) pp.149-157

McConnell, S., “Less is More,” [http://www.stevemcconnell.com/articles/art06.htm],
October 1997. Accessed Jul. 2004.

McConnell, S., Rapid Development: Taming Wild Software Schedules, Microsoft Press,
Redman, WA., 1996.

McGuire, E., “Factors Affecting the Quality of Software Project Management: An
Empirical Study Based on the Capability Maturity Model,” Software Quality Journal 5,
1996, pp. 305-317.

McLaughlin, L., “An Eye On India: Outsourcing Debate Continues,” IEEE Software,
Vol. 20, No. 3, May-Jun. 2003.

403

Mei, H., Zhang, L., and Yang, F., “A Software Configuration Management Model for
Supporting Component-Based Software Development,” Software Engineering Notes,
Vol. 26, No. 2, Mar. 2001, pp. 53-58.

Menasce, D., and Gomaa, H., “A Method for Design and Performance Modeling of
Client/Server Systems,” IEEE Transactions on Software Engineering, Vol. 26, No. 11,
Nov. 2000, pp. 1066-1085.

Mengel, S., “Software Metrics: Views from Education, Research, and Training,” in
Proceedings of the 12th Conference on Software Education and Training, IEEE, (New
Orleans, LA. 22-24 Mar. 1999.) pp. 1-3.

Microsoft Corporation, Microsoft Windows 2000 Server Resource Kit: Microsoft Internet
Information Services 5.0, Microsoft Corporation, Redland, 2000.

Millard, E., “Probing the IT Skills Shortage,” E-Commerce Times, Jul. 15, 2003.

Milosevic, Z., and Dromey, R., “On Expressing and Monitoring Behaviour in Contracts,”
in Proceedings of the Sixth International Enterprise Distributed Object Computing
Conference, IEEE, (Lausanne, Switzerland, 17 Sep. 2002), pp. 3-14.

Minasi, M., Anderson, C., Smith, B., and Toombs, D., Mastering Windows 2000 Server
Third Edition, Sybex, San Francisco, 2001.

Mingers, J. Chapter 204: Information Systems: The Case of the Missing Body. In M.
Khosrowpour (Ed.), Challenges of Information Technology Management in the 21st
Century: 2000 Information Resources Management Association International
Conference, Idea Group Publishing, Hershey, 2000.

Montgomery, A., and Dolphin, L., “Is the Velocity of Light Constant in Time,” Galilean
Electrodynamics Vol. 4, No. 5, Sep./Oct. 1993.

Moody, D., “Building links between IS research and professional practice: improving the
relevance and impact of IS research,” in Proceedings of the Twenty First International
Conference on Information Systems (Brisbane, Australia, 2000), 351-360.

Musa, J., “More Reliable Software Faster and Cheaper: An Overview of Software
Reliability Engineering,” [http://members.aol.com/JohnDMusa/ARTweb.htm], Mar. 28,
2002. Accessed Jul. 2004.

Mylopoulos, J., Chung, L., and Yu, E., “From Object-Oriented to Goal-Oriented
Requirements Analysis,” Communications of the ACM, Vol. 42, No. 1, Jan. 1999.

Nellore, R., “Validating Specifications: A Contract-Based Approach,” IEEE Transactions
on Engineering Management, Vol. 48, No. 4, Nov. 2001.

404

Nelson, P., et. al., “Two Dimensions of Software Acquisition,” Communications of the
ACM, Vol. 39, N0. 7, Jul. 1996.

Nemeth, E., et. al., Unix System Administration Handbook, 3rd ed., Prentice Hall PTR,
Upper Saddle River, 2001.

Nielsen, S., Performance Considerations for Domino Applications, IBM Redbooks,
Poughkeepsie, 2000.

Nogueira de Leon, J., “A Formal Model for Risk Assessment in Software Projects,”
doctoral dissertation, Naval Postgraduate School, Sep. 2000.

Norris, G., Hurley, J., Hartley, K., Dunleavy, J., and D., J., ERP/E-Business Impact on
Shared Services, John Wiley and Sons, New York, 2000.

Nuseibeh, B., and Easterbrook, S., “Requirements Engineering: A Roadmap,” in
Proceedings of the Conference on the Future of Software Engineering, ACM (Limerick,
Ireland, 2000), 35-46.

Nutt, G., “Software Engineering Process Model – A Case Study,” in Proceedings of
Conference on Organizational Computing Systems, ACM (Milpitas, CA, 1995), pp. 324-
335.

Office of Government Commerce (OGC), Best Practice for Service Delivery: IT
Infrastructure Library (ITIL) The Key to Managing IT Services, The Stationary Officer,
London, 2001.

Ogasawara, H., Yamada, A. and Kojo, M., “Experiences of Software Quality
Management Using Metrics Through the Life-Cycle,” in Proceedings of the 18th
International Conference on Software Engineering, ACM (Berlin, Germany, 1996),
179-188.

Osmundson, J., Michael, J., Machniak, M., and Grossman, M., “Quality Management
Metrics for Software Development,” Information and Management, 2003. pp. 799-812.

Packeteer, Inc., “Gaining Visibility Into Application Performance,” [http://whitepapers.
zdnet.co.uk/0,39025945,60027476p-39000526q,00.htm], 2001. Accessed Jul. 2004.

Packeteer, Inc., “Shaping Application Behavior,” [http://www.kappanetworks.com/
research/bin/ShapingApplicationBehavior.pdf], May 2002. Accessed Jul. 2004.

Padayachee, K., “An Interpretive Study of Software Risk Management Perspectives,” in
Proceedings of the 2002 Annual Research Conference of the South African Institute of
Computer Science and Information Technologists on Enablement Through Technology,
ACM (Port Elizabeth, South Africa, 2002), pp. 118-127.

405

Palmer, J., and Evans, R., “Software Risk Management: Requirements-Based Risk
Metrics,” in Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, IEEE (San Antonio, TX., Oct. 1994), pp. 836-841.

Patton, R., and Ogle, J., Designing SQL Server 2000 Databases for .Net Enterprise
Servers, Syngress Publishing, Rockland Md., 2001.

Paulk, M., “Software Process Improvement Minitrack Introduction 29th Hawaii
International Conference on Systems Science,” in Proceeding of the 29th Hawaii
International Conference on Systems Science, IEEE (Wailea, HI., 3 Jan. 1996), pp. 671-
672.

Pearce, T., and Oman, P., “Maintainability Measurements on Industrial Source Code
Maintenance Activity,” in Proceedings of the International Conference on Software
Maintenance, IEEE, (Opio, France, Oct. 1995), pp. 295-303.

Peckinpaugh, C., “Is Government ‘Computer Chaos’ Over?,” Federal Computer Week,
Oct. 18, 1999.

Peltier, T., Information Security Risk Analysis, Auerbach Publishing, Boca Raton, 2001.

Philcox, J., Solaris System Management, New Riders, Indianapolis, 2001.

Plunkett, P., “Performance-Based Management Eight Steps to Develop and Use
Information Technology Performance Measures Effectively,” [http://www.gsa.gov/gsa/
cm_attachments/GSA_DOCUMENT/eight_steps_R2GX2-u_0Z5RDZ-i34K-pR.doc]
Accessed 17 Jul. 2004.

Portera, “When Does Using a Hosted Application Make Sense,” [http:www.portera.com].
Accessed Jan. 2001.

Pressman, R., Software Engineering A Practitioner’s Approach, 5th ed., McGraw-Hill,
New York, 2001.

Pritchett, W., “An Object-Oriented Metrics Suite for Ada 95,” in Proceedings of the 2001
Annual ACM SIGAda International Conference on Ada,” ACM (Bloomington, MN.
2001), pp. 117-126.

Prouten, K., “Software Understanding and Reengineering Overview,” [http://sunset.usc.
Edu/Activities/workshop5o.html]. Accessed Jul. 2004.

Putnam, L., and Myers, W., Measure for Excellence, Yourdon Press Computing Series,
Englewood Cliffs, NJ., 1992.

406

Raffo, D., Harrison, W., and Vandeville, J., “Software Process Decision Support: Making
Process Tradeoffs Using a Hybrid Metrics, Modeling and Utility Framework,” in
Proceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering, ACM (Ischia, Italy, 2002) pp. 803-809.

Rao, H., Nam, K., and Chaudhury, A., “Information Systems Outsourcing,”
Communications of the ACM, Vol. 39 No. 7, Jul. 1996.

Rakitin, S., Software Verification and Validation: A Practitioner’s Guide, Artech House,
Norwood, MA., 1997.

Reeves, T., “Educational Paradigms,” [http:www.educationau.edu.au/archives/cp/REFS/
Reeves_paradigms.htm], 21 Feb. 1996. Accessed Jul. 2004.

Reilly, G., “Server Performance and Scalability Killers,” [http://msdn.Microsoft.
com/library/en-us/dniis/html/tencom.asp] 22 Feb. 1999. Accessed Jul. 2004.

Richman, L., Project Management Step-by-Step, AMACOM, New York, 2002.

Rico, D., ROI of Software Process Improvement: Metrics for Project Managers and
Software Engineers, J. Ross, Boca Raton, 2004.

Riedel, T., Kaminski, J., Wahl, M, and Ambler, T., “Effective Testability Design for the
Product Life-Cycle,” in Proceedings of the IEEE System Readiness Technology
Conference, IEEE, (San Antonio, August 1999), pp. 607-612.

Ripin, K., and Sayles, L., Insider Strategies for Outsourcing Information Systems, Oxford
University Press, Oxford, 1999.

Robert, P., “Quality Requirements for Software Acquisition,” in Proceedings of the
Third International Software Engineering Standards Symposium and Forum, IEEE
(Walnut Creek, CA, 1997) pp. 136-143.

Roberts, P., Chapter 12: Procurement – Best Value Criteria for Selection. In Reuvid, J.,
and Hinks, J. (Ed.), Managing Business Support Services: Strategies for Outsourcing and
Facilities Management, Second Edition, Kogan Page, London, 2001.

Rocheleau, B., “Governmental Information System Problems and Failures: A Preliminary
Review,” [http:www.psdc.hbg.psu.edu/Faculty/jxr11/roche.html], 1997. Accessed Jan.
2002.

Royce, W., “Managing the Development of Large Software Systems: Concepts and
Techniques,” Proceedings of WESCON, August 1970, reprinted in Proceedings of Ninth
International Conference on Software Engineering, IEEE (Monterey, CA, 1987), pp.
328-338.

407

Royce, W., “Pragmatic Quality Metrics for Evolutionary Software Development,” in
Proceedings of the Conference on TRI-ADA ’90, ACM (Baltimore, MD. 1990) pp. 551-
565.

Rutherford, E., “Hot Market, Cold Facts,” [http://webbusiness.cio.com/archive
/012400_asp.html], Jan. 24, 2000. Accessed Jul. 2004.

Sarker, S., and Lee, A., “Using a Positivist Case Research Methodology to Test a Theory
About IT-Enabled Business Process Redesign,” in Proceedings of the International
Conference on Information Systems (Helsinki, Finland, 1998), 237-252.

Sarma, A., Noroozi, A., Van de Hoek, A., “Palantir: Raising Awareness Among
Configuration Management Workspaces,” in Proceedings of the 25th International
Conference on Software Engineering, ACM, (Portland, 2003), pp. 444-454.

Sawyer, P. and Kotonya, G., Stoneman Version 2.0, [http://www.swebok.org], May 2001.
Accessed May 2003.

Scacchi, W., “Process Models in Software Engineering,” http://www.ics.uci.edu/
~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf., October 2001. Accessed
August 22, 2004.

Schmidt, M., Implementing the IEEE Software Engineering Standards, Sams,
Indianapolis, 2000.

Schmietendorf, A., Dimitrov, E., and Dumke, R., “Process Models for the Software
Development and Performance Engineering Tasks,” in Proceedings of the Third
International Workshop on Software and Performance, ACM (Rome, Italy, 24-26 July
2002), pp. 211-218.

Schneidewind, N., “Body of Knowledge for Software Quality Measurement,” IEEE
Computer, Feb. 2002, pp. 77-83.

Schneidewind, N., “Investigation of the Risk to Software Reliability and Maintainability
of Requirements Changes,” in Proceedings of the International Conference on Software
Maintenance, IEEE, (Florence IT. 6-10 Nov. 2001), pp. 127-136.

Schneidewind, N., “Methods for Assessing COTS Reliability, Maintainability, and
Availability,” in Proceedings of the Fifth International Conference on Software
Maintenance, IEEE (Bethesda, MD., Nov. 1998), pp. 224-225.

Schneidewind, N., “Software Metrics Model for Quality Control,” in Proceedings of the
Fourth International Software Metrics Symposium, IEEE (Albuquerque, NM., 5 Nov.
1997), pp. 127-136.

408

Secretary of Defense, “Memorandum U09344/97,” Jun. 2, 1997.

Shaw, M., Garlan, D., Software Architecture Perspectives on an Emerging Discipline,
Prentice Hall, Upper Saddle River, 1996.

Shekaran, C., Garlan, D, Jackson, M., Mead, N., Potts, C., and Reubenstein, H., “The
Role of Software Architecture in Requirements Engineering,” in Proceedings of the
International Conference on Requirements Engineering, IEEE (Colorado Springs, CO.,
1994), pp. 239-245.

Shepperd, M., “Design Metrics: An Empirical Analysis,” Software Engineering Journal,
Vol. 5, No. 1, Jan. 1990, pp. 3-10.

Simitci, H., Storage Network Performance Analysis, John Wiley & Sons, New York,
2003.

Simpson, J., Field, L., and Garvin, D., The Boeing 767: From Concept to Production (A),
9-688-040, Harvard Business School, Cambridge, Apr. 1, 1991.

Sjouwerman, S., Shilmover, B., and Stewart, J., Windows 2000 System Administrator’s
Black Book, Coriolis, Scottsdale, 2000.

Slabodkin, G., “Software Gliches leave Navy Smart Ship Dead in the Water,”
Government News, Jul. 13, 1998.

Slaughter, S., Harter, D., and Krishnan, M., “Evaluating the Cost of Software Quality,”
Communications of the ACM, Vol. 41, No. 8, Aug. 1998.

Smith, C., “Designing High-Performance Distributed Applications Using Software
Performance Engineering: A Tutorial,” in Proceedings of the Computer Measurement
Group, (San Diego, Dec. 1996), pp. 1-11.

Smith, C., and Williams, L., “Software Performance Engineering for Object-Oriented
Systems: A Use Case Approach,” [http:www.perfeng.com/papers/uspood.pdf], 1998.
Accessed Jul. 2004.

Smith, D., and Fletcher, J., Inside Information: Making sense of Marketing Data, John
Wiley and Sons, New York, 2001.

Smith, M. A., Mitra, S, Narasimhan, S. “Offshore Outsourcing of Software Development
and Maintenance: A Framework for Issues,” Information and Management, Vol 31, No.
3, Dec. 1996, pp. 165-175.

Smith, P., and Merritt, G., Proactive Risk Management, Productivity Press, New York,
2002.

409

Software Engineering Institute, Carnegie Mellon University, “Software Acquisition
Capability Maturity Model (SA-CMM), Version 1.03” [http://www.sei.cmu.edu/pub/
documents/02.reports/pdf/02tr010.pdf], Mar. 2002. Accessed Jul. 2004.

Software Engineering Institute, Carnegie Mellon University, “Capability Maturity Model
Integration (CMMISM), Version 1.1,” Aug. 2002.

Sommerville, I., Rodden, T., Sawyer, P., Bentley, R., and Twidale, M., “Integrating
Ethnography into the Requirements Engineering Process,” in Proceedings of IEEE
International Symposium on Requirements Engineering, IEEE, (San Diego, Jan. 1993),
pp. 165-173.

Sommerville, I., Sawyer, P., and Viller, S., “Viewpoints for Requirements Elicitation: A
Practical Approach,” in Proceedings of the Third International Conference on
Requirements Engineering, IEEE (Colorado Springs, Apr. 1998), pp. 74-81.

Sopko, S., “Speeding up Service Level Agreement Negotiations,” [http://www.nextslm.
org/sopko1.html], 2002. Accessed Jul. 2004.

Sturm, R., Morris, W., and Jander, M., Foundations of Service Level Management, Sams,
Indianapolis, 2000.

Sturm, R., Working with Unicenter TNG, Que, Indianapolis, 1998.

Sumner, M., “Risk Factors in Enterprise Wide Information Management System
Projects,” in Proceedings of the 2000 ACM SIGCPR Conference on Computer Personnel
Research, ACM (Chicago, IL. 2000), pp. 180-187.

Surmacz, J., “Service with a Smile,” [http://http://www.cio.com/outsourcing
/edit/112900_service.html], Nov. 29, 2000. Accessed Jul. 2004.

Susarla, A., Barua, A., and Whinston, A., “Myths about Outsourcing to Application
Service Providers,” IT Professional, Vol. 3, No. 3, May-Jun. 2001.

Susarla, A., Barua, A., and Whinston, A., “Making the Most Out of an ASP
Relationship,” IT Professional, Vol. 3, No. 6, Nov.-Dec. 2001.

Sutcliffe, A., “Requirements Rationales: Integrating Approaches to Requirement
Analysis,” in Proceedings of the Conference on Designing Interactive Systems:
Processes, Practices, Methods and Techniques, ACM (Ann Arbor, 1995), pp. 33-42.

Suzuki, K., and Sangiovani-Vinventelli, “Efficient Software Performance Estimation
Methods for Hardware/Software Codesign,” in Proceedings of the 33rd Automation
Conference, IEEE, (Las Vegas, Jun. 1996), pp. 605-610.

410

Tanenbaum, A., Computer Networks Third Edition, Prentice Hall, Upper Saddle River,
1996.

Tao, L., “Shifting Paradigms with the Application Service Provider Model,” Computer,
Vol. 34 No. 10, October 2001.

Tice, G., “Perspectives on Software Quality Assurance,” in Proceedings addendum of the
1985 ACM Annual Conference on the Range of Computing: Mid-80s Perspective, ACM
(Denver CO. 1985), p. 20.

Tricker, R., and Sherring-Lucas, B., ISO 9001:2000 In Brief, Butterworth Heinemann,
Oxford, 2001.

Trochim, W. “What is Research Methods Knowledge Base?,” [http://www.
socialresearchmethods.net/kb/index.htm], 2002. Accessed Jul. 2004.

Turk, D., and Vaishnavi, V., Chapter 20: Software Process Models are Software Too: A
Domain Class Model for Software Process Models. In Valenti S. (Ed.), Successful
Software Reengineering, Idea Group, Hershey, 2002.

U.S. Air Force, “Guidelines for Successful Acquisition and Management of Software-
Intensive Systems: Weapon Systems, Command and Control, Management Information
Systems Version 4.0,” [http://www.stsc.hill.af.mil/resources/tech%5Fdocs/gsam4.html]
Feb 2003. Accessed Jul. 2004.

U.S. Air Force, “Software Risk Abatement,” AFCS/AFLC Pamphlet 800-45, 30 Sep.
1988.

U.S. General Accounting Office, “Defense Information Superiority: Progress Made, but
Significant Challenges Remain,” GAO/NSIAD/AIMD-98-257, Aug. 1998.

U.S. General Accounting Office, “Critical Infrastructure Protection: Challenges to
Building a Comprehensive Strategy for Information Sharing and Coordination,” GAO/T-
AIMD-00-268, Jul. 26, 2000.

U.S. General Accounting Office, “Defense IRM: Alternatives Should be Considered in
Developing the New Civilian Personnel System,” GAO/AIMD-99-20, Jan. 27, 1999.

U.S. General Accounting Office, “Defense IRM: Critical Risks Facing New Material
Management Strategy,” GAO/AIMD-96-109, Sep. 06, 1996.

U.S. General Accounting Office, “Defense IRM: Strategy Needed for Logistics
Information Technology Improvement Efforts,” GAO/AIMD-97-6, Nov. 14, 1996.

411

U.S. General Accounting Office, “Defense Software: Review of Defense Report on
Software Development Best Practices,” GAO/AIMD-00-209R, Jun. 15, 2000.

U.S. General Accounting Office, “Electronic Government: Federal Initiatives are
Evolving Rapidly But They Face Significant Challenges,” GAO/T-AIMD/GGD-00-179,
May 22, 2000.

U.S. General Accounting Office, “Electronic Government: Government Paperwork
Elimination Act Presents Challenges For Agencies,” GAO/AIMD-00-282, Sep.15, 2000.

U.S. General Accounting Office, “Federal Chief Information Officer: Leadership Needed
to Confront Serious Challenges and Emerging Issues,” GAO/AIMD-00-316, Sep.12,
2000.

U.S. General Accounting Office, “High-Risk Series: An Update,” GAO/HR-99-1, Jan.
1999.

U.S. General Accounting Office, “High-Risk Series: Information Management and
Technology,” GAO/HR-97-9, Feb. 1997.

U.S. General Accounting Office, “Information Security: Serious and Widespread
Weaknesses Persist at Federal Agencies,” GAO/AIMD-00-295, Sep. 06, 2000.

U.S. General Accounting Office, “Information Security: Software Change Controls at the
Department of Defense,” GAO/AIMD-00-188R, Jun. 30, 2000.

U.S. General Accounting Office, “Major Management Challenges and Program Risks:
Department of Defense,” GAO 01-244, 2001.

U.S. General Accounting Office, “Major Management Challenges and Program Risks:
Department of Defense,” GAO/OCG-99-4, Jan. 1999.

Verlage, M., “Towards Software Process Models,” in Proceedings of the Tenth
International Software Process Workshop, IEEE (Dijon, France, 17-19 June, 1996), pp.
112-114.

Vigder, M., and Kark, A., “Software Cost Estimation Study,” National Research Council
Canada, Ottawa, Canada, 1994. [http://wwwsel.itt.nrc.ca/Projects/cp/ NRC37116/
Chap1.html]. Accessed Mar. 2003.

Voas, J., and Agresti, W., “Software Quality From a Behavioral Perspective,” IT Pro,
July-August 2004, pp. 46-50.

412

Wallace, D., Peng, W., and Ippolito, L., “NISTIR 4909 Software Quality Assurance:
Documentation and Reviews,” U.S. Department of Commerce, [http://hissa.ncsl.nist.gov/
publications/nistir4909/], Jan 2001. Accessed Jul. 2004.

Wallin, C., Ekdahl, F., and Larsson, S., “Integrating Business and Software Development
Models, IEEE Software, November/December 2002, pp. 28-33.

Wang, W., and Kececioglu, D., “Confidence Limits on the Inherent Availability of
Equipment,” in Proceedings of Reliability and Maintainability Symposium, IEEE
(Washington DC., Jan. 2000), pp. 162-168.

Ward, W., and Venkataraman, B., “Some Observations on Software Quality,” in
Proceedings of the 37th Annual Conference on Southeast Regional Conference, ACM
(Mobile AL, Apr. 1999) pp. 1-9.

Wheeler, S., and Duggins, S., “Improving Software Quality,” in Proceedings of the 36th
Annual Conference on Southeast Regional Conference, ACM (Marieta, GA., Apr. 1998)
pp. 300-309.

Wiegers, K., Software Requirements Second Edition, Microsoft Press, Redmond, 2002.

Wohl, A., “Pricing for Success in the ASP Market”, [http://www.wohl.com/wa0130.htm],
Jan 2001. Accessed Jul. 2004.

Wong, S., “Software Acquisition Management Experience Learnt in a Multi-Discipline
and Multi-Contract Project Environment,” in Proceedings of the first Asia Pacific
Conference on Software Quality, IEEE (Hong Kong, Oct. 2000) pp. 239-247.

Wysocki, R., Beck, R., and Crane, D., Effective Project Management, 2nd ed., Wiley
Computer Publishing, New York, 2000.

Xia, F., “What’s Wrong with Software Engineering Research Methodology,” ACM
SIGSOFT Software Engineering Notes, Vol. 23, No. 1, pp. 62-65, Jan. 1998.

Yourdon, E., Decline and Fall of the American Programmer, Prentice Hall, Upper Saddle
River, 1993.

Zahniser, R., “Building Software in Groups,” American Programmer, Vol. 3, Nos. 7-8,
Jul-Aug 1990.

Zultner, R., “Quality Function Deployment for Software: Satisfying Customers,”
American Programmer, February 1992, pp. 28-41.

413

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. VADM Keith Lippert
Defense Logistics Agency
Fort Belvoir, Virginia

4. Mr. Douglas Verhagen
Naval Supply Systems Command, CIO Staff
Mechanicsburg, Pennsylvania

5. CAPT Juan Nogueira
Uruguay Navy
Montevideo, Uruguay

6. Ms. Charito Glorioso
Defense Contracting Command
Washington, D.C.

7. CAPT John H. Chase Jr.
Chief of Naval Operations (N781)
Washington, D.C.

8. Ms. Mary T. O’Hara
U.S. Army PEO Enterprise Information Systems
Fort Belvoir, Virginia

9. CDR Dave Hellman
Chief of Operations, Navy
Washington, D.C.

10. Mr. Andrew Christensen
 NAVSUP East Coast NMCI CTR
 Norfolk, Virginia

11. Dr. Beryl Harman
 Defense Acquisition University
 Fort Belvoir, Virginia

414

12. Dr. Bret Michael

Naval Postgraduate School
Monterey, California

13. Dr. Dan Boger

Naval Postgraduate School
Monterey, California

14. Dr. Man-tak Shing

Naval Postgraduate School
Monterey, California

15. Dr. John Osmundson
Naval Postgraduate School
Monterey, California

16. Professor Rex Buddenberg
Naval Postgraduate School
Monterey, California

