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ABSTRACT

A laboratory spacecraft simulator testbed is first introduced to examine the
problem of multiple spacecraft interacting in close proximity. This testbed enables
validation of guidance, navigation arwbntrol (GNC) algorithms by combining 6-
Degrees of Freedom (DoF) computer dation with 3-DoF Hardware-In-the-Loop
(HIL) experimentation. The presentedD8&F spacecraft simulator employs a novel
control actuator configuration consistingf a Miniature Single Gimbaled Control
Moment Gyroscope (MSGCMG) and dual on/offdcgas in-plane vectorable thrusters.
The dual vectorable thruster design enablesiltaneous translaticend attitude control
allowing it to act both in conjunction with the MSGCMG as well as provide sole actuator
control throughout @ommanded closed-path maneuv8mall-time localkontrollability
(STLC) of this uniquely actuated systema Lie Algebra mthods is formally
demonstrated and results of experimeptsdeicted on the described testbed are included.
From this study in 3-DoF, a 6-DoF miniltyacontrol actuated asymmetric spacecraft
design is proposed. Six-DoF control of this erattuated mechanicgystem is achieved
via two oppositely mounted hemispherically veatwe thrusters. lorder to capitalize
on the unique nature of this system withyotwo control torques, a quaternion feedback
regulator is developed to yeelthree-axis stabilization of its attitude. This regulator
capitalizes on recent advancems in generalized inveom and perturbed feedback
linearizing control tostabilize the dynamics of an umedetuated asymmetric spacecraft
and extends this to include stabilizationtbé kinematics of the system. Two control
design methodologies are derived. The fgdtyapunov based, yieldg a globally stable
system, while the second yields local stigpilvithin a domainof attraction through
perturbed feedback linearizati. Results of several numearicsimulations are presented
for an asymmetric spacecraft with two bounded body-fixed control torques. The
proposed attitude control method is not inethdo provide attitude maintenance for
attitude tracking or in the presence of tekly large disturbance torques; however, it
may prove widely applicable for detumblimgnd reorientation maneuvers of spacecraft

with only two available control torques.
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INTRODUCTION

The traditional spacecraft system is amulithic structure with a single mission
focused design and lengthy production agdalification schedules coupled with
enormous cost. Additiongll there rarely, if ever, ar any designed preventive
maintenance plans or re-fueling capability.efidnhas been much research in recent years
into alternative options. One option invoheagonomous on-orbit saoing of current or
future monolithic spacecraft systems. Th&. Department of Defense (DoD) embarked
on a highly successful ventute prove such a conceptithv the Defense Advanced
Research Projects Agency’s (DARPA) bdal Express program. Orbital Express
demonstrated all of the enabling technologegsuired for autonomous on-orbit servicing
to include refueling, component transfertawmous satellite gppling and berthing,
rendezvous, inspection, proximity operatiodscking and undocking, and autonomous
fault recognition and anomaly handling (Kennedy 2008). Another potential option
involves a paradigm shift from the monblg¢ spacecraft system to one involving
multiple interacting spacecraft that can autonomously assemble and reconfigure.
Numerous benefits are associated wittbaomous spacecraft assemblies, ranging from a
removal of significant intra-modular refiee that provides for parallel design,
fabrication, assembly and validation proses to the inherent smaller nature of
fractionated systems that allows for each nedo be placed into orbit separately on
more affordable launch platfosfMathieu and Weigel 2005).

A. GROUND-BASED HARDWARE-IN- THE-LOOP EXPERIMENTAL
VALIDATION

With respect specifically to the valiilan process, the significantly reduced
dimensions and mass of aggregated spafteavhen compared to the traditional
monolithic spacecraft allow for not only mponent but even full-scale on-the-ground
Hardware-In-the-Loop (HIL) experimenian. Likewise, much of the HIL
experimentation required for on-orbit sermigiof traditional spacedtasystems can also
be accomplished in ground-based laborasori€reamer 2007). This type of HIL

experimentation complements analyticatethods and numerical simulations by
1



providing a low-risk, relatively low-costand potentially high-return method for
validating the technolgg navigation techniques and camitapproaches associated with
spacecraft systems. Several approaches ®xighe actual HIL testing in a laboratory
environment with respect to spacecraftdauice, navigation and control. One such
method involves reproduction of the kindrmoa and vehicle dynamics for 3-DoF (two
horizontal translationalegrees and one rotational degabeut the vertial axis) through
the use of robotic spacecraft simulators tfaat via planar air bearings on a flat
horizontal floor. This particular methoddsrrently being employkby several research
institutions and is the validation methodabfoice for our researdnto GNC algorithms
for proximity operations at the Naval Pgsiduate School (Machag Toda, and Iwata
1992; Ullman 1993; Corrazzini and How 1998; Marchesi, Angrilli and Venezia 2000;
Ledebuhr et al. 2001; Nolet, Kong, arMiller 2005; LeMaster, Schaechter, and
Carrington 2006; Romano, Friedman, and Shay 2007).

For spacecraft involved in proximity operations, the in-plane and cross-track
dynamics are decoupled, as modeled by the Hill-Clohessy-Wiltshire (HCW) equations,
thus the reduction to 3-Degree of Freedom (Dadgs not appear to laecritical limiter.

One consideration involves the reductiontié vehicle dynamicso one of a double
integrator. However, the orbital dynamics dam considered to be a disturbance that
needs to be compensated for by the spadecsaigation and control system during the
proximity navigation and assembly phase of multiple systems. Thus, the flat floor
testbed can be used to capture many ofctiitecal aspects of an actual autonomous
proximity maneuver that can then be uded validation of numerical simulations.
Portions of the here-in dedloed testbed, combined witthe first generation robotic
spacecraft simulator of the SpacecrafobBtics Laboratory (SRL) at the Naval
Postgraduate School (NPS), have been emglbygropose and experimentally validate
control algorithms. The intested reader is referred to Romano et al. (2007) for a full
description of this robotic spacecraft siator and the associated HIL experiments
involving its demonstration of successaltonomous spacecraft approach and docking
maneuvers to a collaborative target witlptotype docking interface of the Orbital

Express program.



A unique control problem exists, givenmequirement for spacecraft aggregates to
rendezvous and dock during thieal phases of assembly and a desire to maximize the
useable surface area of the spacecraft for power generation, sensor packages, docking
mechanisms and payloads while minimizinguter impingement. In fact, control of
such systems using the standard control &mtw@nfiguration of fixed thrusters on each
face coupled with momentum exchange dewvican be challenging, if not impossible.

For such systems, a new and unique configauras proposed coisding of vectorable
thrusters that may capitalizir instance, on the recently\adoped carpal robotic joint
invented by Canfield and Reinholtz (1998) withhemispherical vect@pace. It is here
demonstrated through Lie algebra analyticedthods and experimetresults that two
vectorable in-plane thrusters in an oppgsconfiguration can yield a minimum set of
actuators for a controllable reduced order (3-DoF) system. It will be shown that by
coupling the proposed set of vectorable in-plane thrusters with a single degree of freedom
torquer such as a Control Moment Gyroscapeadditional degree of redundancy can be
gained for the reduced order system. Expental results are included using SRL’s
second-generation, reduced-order spacecraft simulator with a state feedback linearized
controller to demonstrate its abyl to navigate a closed citar path with the proposed
actuator configuration. A general overviewtlois spacecraft simulator is presented with
additional details on the sifators being found in: Hall (06), Eikenberry (2006), Price
(2006), Romano and Hall (2006), Hall ambmano (2007a), and Hall and Romano
(2007b).

B. ROTO-TRANSLATION OF AN UND ERACTUATED SPACECRAFT

With respect to the full order (6-DoFystem of roto-translation, it will be
demonstrated that a set of two vectdgalbemispherical thrusters in an opposing
configuration can yield a minimum set oftaators for a controllable relative motion
spacecraft system. The proposed actuatorigunaition can readily be seen to yield an

underactuated mechanical system, thdb say the nuber of controlsN, is fewer than

the degrees of freedom. It will be showhat by adding a singldegree of freedom

torque, the system can become fully actdaed a state-feedback linearizing controller
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can be designed to drive the system todésired position and ongation. Without the
single-degree of freedom torque, this coh&rctuator configuration equates to only two
of the three body-fixed axes being directbyrque controlled while the third can be
indirectly controlled by catalizing on the coupling of # terms of the moments of
inertia for the system that appear in the Eelguations. Furthermore, given the cascaded
nature of the angular motion equations whegréie angular rates ide the orientation,
there has been much research to date to develop control algorithms to provide three-axis
stabilization for an underactigal spacecraft with only two control torques. However, to
date, there has not been a smooth time-iamarcontrol algorithm to provide attitude
stabilization of such a spacecraft with &y inertia. By considering the attitude
stabilization for the underacted spacecraft system of afegumotion equations in the
general case, it may prove to be widely aggtlle to not only proximity operations but
also de-tumbling and reorientation maneuwdrsnderactuated spacecraft that may either
be designed with onlywo directly actuated control ag or be experiencing control

actuator failure about one of iterdrol axes during their mission life.

C. STATE-OF-THE-ART IN UND ERACTUATED RIGID BODY
STABILIZATION

The problem of stabilization of a riji spacecraft’'s atude dynamics and
kinematics has been studied over the yeammany papers and articles. However, the
vast majority of the proposed control lawssame that the spacecraft is fully actuated.
Wie and Barba (1985), Wie, Weiss and Araptss (1989), Vadal{1989), and Bajodah
(2009a) address several nonlinear control iegres that providéime-invariant global
asymptotic stability of the fully actuateppacecraft system ofjeations. Although these
control laws provide for the necessargntrol of a nominally designed three-axis
stabilized spacecraft in whictihree control torques exist, the question of control of
underactuated spacecraft naturally entererwiliscussing actuator failures or when
proposing minimally designed spacecraft systeths well understood that full order (3-
DoF) control of the kinematics of such unaletuated systems presents a challenging
control problem; however, it shouldso be recognized that it has the distinct potential to

provide several key benefits. Specificallypder the present thrust of Operationally
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Responsive Space, where one focus is orsittaning from the typical large monolithic
spacecraft design to one that embraces thespacecraft paradigm of smaller, faster to
manufacture and cheaper to produce angleyn underactuated control could provide a
key enabling technology. Furthermore,light of many currentraditional spacecraft
systems remaining in operation well paseithintended design life despite actuator
failures that degrade their cplities, underactuated conkroould enable these aging

systems to satisfy their original missions.

The investigation of stabilization afinderactuated spacecraft kinematics and
attitude dynamics began withetltheoretical establishment of the necessary and sufficient
conditions for the controllability of a rigibody’s attitude with either gas thrusters or
momentum exchange devices by Crouch (198#.concluded that, for a spacecraft with
momentum exchange devices, controllabilityngossible with fewer than three, while
for a spacecraft with independent paired jetsitradlability is possible with two. It was
later demonstrated by Kerai (1995), by usgepmetric control theory, that small-time
local controllability of the gid body equations assuming alrgas jets can indeed be
achieved with only two control torques. Bgmand Isidori (1991) proved that the full
angular motion equations for a rigid spaedicrwith only two controls cannot be
asymptotically stabilized bgmooth pure state feedback because they violate Brockett’s
(1983) theorem on non-holonomic underactuaggdtems. With this in mind, they
proposed a smooth feedback cofier to affect partial stalzation of the rigid body
model resulting in a revolumnstant-rate motion about tbhacontrolled axis of rotation.
Later, Krishnan, McClamroch and Reyhano{l995) proposed a hybrid control design
combining continuous time features with digerevent features to affect a discontinuous
feedback control strategy to stabilize aaguilibrium attitudeof an underactuated
spacecraft with two momentum wheel actuaiarsinite time under the restriction that
the total angular momentum vector of thgstem is zero. This control methodology
translates directly to a study of an undawatéd axi-symmetric spacecraft. Tsiotras,
Corless, and Longuski (1995) and Tsiotrasl &mio (2000) also dealt with control of
underactuated axi-symmetric spacecraft byppsing a time-invariant feedback control

law to asymptotically stabi#e the orientation of two of ¢hthree body-fixed axes. In

5



addition to only providing for partial attitudgabilization of axi-symmetric spacecraft,
their discussion was limited to cases whereatigular velocity about the unactuated axis

is zero at the start of the maneuver. a® and Schleicher (2000), and Tsiotras and
Doumtchenko (2000) relaxed the restriction om sifmmetry of the secraft slightly to
consider a nearly axi-symmetric spacectaft a small parameter and a set of time-
invariant control laws are proposed to stabilize the angular velocity and attitude of a

spacecraft about a certain axis by virtual oaribputs of the two aoated angular rates.

The global asymptotic rate stabilizai problem without concern for kinematics
of a fully asymmetric underactuated dgspacecraft was addsed by Coverstone-
Carroll (1996) through the use of a Varial¢ructure Controller (VSC). Bajodah
(2009b) also addressed the rate-only staiibn problem for detumbling maneuvers
through the use of singularly perturbeddieack linearization and generalized inverse
control methodologies. Although both of thesmntrollers prove to be robust to large
initial angular velocities aund all three axes in the gaence of actuator torque
limitations, they both require an additionabntroller to provide desired kinematic
alignment after the detumbling maneuverOne such controller, as proposed by
Coverstone-Carroll (1996), is a simple linear colter that is used to perform a series of

eigenaxis rotations which precludes smooth attitude tracking.

The problem of stabilization of Bwotthe kinematics and dynamics of an
underactuated asymmetric spacecraft wasstnrecently addressed by Casagrande,
Astolfi, and Parisini (2008) who proposadime-variant switching control law to effect
global asymptotic stabilizatioof the closed-loop systemAlthough novel, the proposed
law lacks detailed simulation results bgnsidering only the case where the initial
angular rates about two of the axes to udel the unactuated axis are initially zero.
Furthermore, real-world spaceftr with flexible parts, antennas, fuel slosh, etc., may
preclude the use of time-variant control lawsdese they have the distinct potential of
producing unacceptable transient response amght therefore lead to instability
(Tsiotras and Doumtchenko, 2000). Behahlket(2002) address ¢hnonlinear tracking
control of an axi-symmetric spacecraft bywe®ping a kinematic controller to determine
the desired actuated angular rates which atermused as control inputs to the dynamic
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system through the use of standard backggsig techniques. This method yields only
asymptotic dynamic and kinematic stabilizati@sults for an axi-symmetric rigid body
given the restriction thahe angular rate about the unatdgbaxis is close to zero but it

does yield bounded results otherwise.

The goal of this work is to extend the research into control algorithms for
underactuated rigid spacecraft attitudentcol by proposing a novel, time-invariant
smooth quaternion feedback regulator basedyemeralized inversenethods to affect
three-axis attitude stabilization of the error quaternion kinematics for an underactuated
rigid spacecraft with arbitrary inertia miates and two realistically bounded body-fixed
torques for required reorieni@a maneuvers. The problem thfree-axis stabilization of
the attitude of an underacted spacecraft with direcontrol about only two of the body-
fixed control axes will be addressed in thegral case where the spacecraft’s attitude is
referenced to an inertially fixed framel-rom this, the proposeduaternion feedback
regulator can be shown to be seamlessly firemtlito account for attitude control with
respect to a relative motion frame of meigce as is the case for a chaser-target
rendezvous maneuver. After affecting tatle error stabilizabin, a spacecraft can be
propelled towards another spacecrafta vwarious navigation schemes such as

conventional waypoint navigation.

D. SCOPE OF THE DISSERTATION

This dissertation advancdle body of knowledge withiespect to control of

underactuated spacecraftthree key areas:

1. Laboratory experimentation of a rexhd-order underactuated spacecraft
simulator with vectorable thruskerand a miniaturecontrol moment
gyroscope. Using feedback lineang control methodology coupled with
Schmitt Trigger and Pulse Width Modulati logic, experimental results are
presented which validate the capabilitytims novel control actuator design to

propel the spacecraft simulator around a tightly constrained path.

2. Analytical determination of the smdlme local controllability of a generic
full-order spacecraft under variations on tmatrol inputs. This study is able
7



to provide the interested spacecrafsteyns engineer with the ability to
determine the minimum number of control actuators necessary to maintain
controllability. Furthermore, this analgscan be used to aid in dealing with
both control actuator failures on exigdi spacecraft systems or planning for

minimally designed spacecraft.

3. A smooth time-invariant state feedbackntrol logic based on quaternion
feedback regulation is derived to yiedthbilization of the error kinematics of
a spacecraft with only two control torqueesd arbitrary inertia. Two separate
control designs are presented, thet frsing Lyapunov function based and the
other being perturbed feedback linearizingnature. Results of the numerical

results considering both of these desi are presented for various maneuvers.



[I.  LABORATORY EXPERIMENTAT ION OF GUIDANCE AND
CONTROL OF SPACECRAFT DURING PROXIMITY
MANEUVERS

While presenting an overview of a rdlmotestbed for HIL experimentation of
guidance and control algorithms for on-orbit proximity maneuvers, this chapter
specifically focuses on exploring the fdmlty, design and ealuation in a 3-DoF
environment of a vectorable thruster dgofation combined with optional miniature
single gimbaled control moment gyro (MEGIG) for an agile small spacecraft.
Specifically, the main aims are to present prattically confirm the theoretical basis of
small-time local controllabity for this unique actuatoconfiguration through both
analytical and numerical simulations perfead in previous works (Romano and Hall
2006; Hall and Romano 2007a; Hall and Romaa07b) and to validate the viability of
using this minimal control actuator configtica on a small spacecraft a practical way.
Furthermore, the experimental work is used to confirm the controllability of this
configuration along a fully constrained ®&ajory through the employment of a smooth
feedback controller based on state feeddawdarization and linear quadratic regulator
techniques and proper state estimation methobise chapter is structured as follows:
First the design of the experimental testlacluding the floating surface and the second
generation 3-DoF spacecraft simulator is introduced. Then the dynamics model for the
spacecraft simulator with vectorable thiers and momentum exchange device are
formulated. The controllability associatedttwthis uniquely configured system is then
addressed with a presentation of the minimmoumber of control inputs to ensure small
time local controllability. Next, a formal dede@ment is presented for the state feedback
linearized controller, state estimatiomethods, Schmitt trigger and Pulse Width
Modulation scheme. Finally, experimentasults are presented that demonstrate a
closed-path circular trajectory about an admitr reference that isepresentative of a

possible inspection of a targetaggcraft by a given chaser.



A. THE NPS ROBOTIC SPACECRAFT SIMULATOR TESTBED

Three generations of robotic spacecrafhidators have been developed at the
NPS Spacecraft Robotics Laboratory, in ortterprovide for relatively low-cost HIL
experimentation of GNC algorithms for spacécmoximity maneuvers (see Figure 1).
In particular, the second gema#on robotic spacecraft simuta testbed is used for the
here-in presented researci.he whole spacecraft simulattestbed consists of three
components. The two components specificdligicated to HIL experimentation in 3-
DoF are a floating surface with an indooepdo-GPS (iGPS) measurement system and
one 3-DoF autonomous spacecraft simulatdihe third component of the spacecraft
simulator testbed is a 6-DoF simulator stand-alone computer based spacecraft simulator
and is separated from the HIL components. Additionally, an off-board desktop computer
is used to support the 3-DoF spacecraft fou by providing the capability to upload
software, initiate experimentédsting, receive logged dadaring testing and process the
iIGPS position coordinates. dtire 2 depicts the robotic apecraft simulator in the
Proximity Operations Simulator Facility (BB) at NPS with key ecoponents identified.
The main testbed systems are briefly describethe next sections with further details
given in Hall (2006), Price (2006), Eikenbe (2006), Romano and Hall (2006), Hall and
Romano (2007a), and Hall and Romano (2007b).
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Figure 1. Three Generations of SpaeéicBimulators at the NPS Spacecraft
Robotics Laboratory (firsgecond and third generatigrisom left to right)

1. Floating Surface

A 4.9 m by 4.3 m epoxfloor surface provides the base for the floatation of the
spacecraft simulator. The use of planaraarings on the simulator reduces the friction
to a negligible level and with an averagsidual slope angle of approximately 2.6%10
deg for the floating surface, the averagesidual acceleration due to gravity is
approximately 1.8xI®ms?2 This value of accelerationtiwo orders of magnitude lower
than the nominal amplitude of the meeed acceleration differences found during

reduced gravity phases of parabdlights (Romano et al. 2007).
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Figure 2. SRL’s 2nd Generation 3-DoF Spacecraft Simulator

2. Three-DoF Robotic Spacecraft Simulator

SRL’s second generation robotic spacecsaftulator is modularly constructed
with three easily assembled sections dedictdezhch primary subsystem. Prefabricated
6105-T5 Aluminum fractional t-etted extrusions form the cagf the vehicle while one
square foot, 0.25 inch thick static dissipatingid plastic sheetprovide the upper and
lower decks of each module. The use of these materials for the basic structural
requirements provides a high strength to Wweigatio and enable rapid assembly and

reconfiguration. Table 1 reports the keyagraeters of the 3-DoF spacecraft simulator.
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Subsystem Characteristic Parameter
Structure Length and width 0.30 m
Height 0.69m
Mass 26 kg
J, 0.40 kg-nf
Propulsion Propellant Compressed Air
Equiv. storage capacity  0.05 @ 31.03 MPa
Operating pressure 0.41 MPa
Thrust (x2) 0.159 N
ISP 34.3s
Total 'V 31.1 m/s
Flotation Propellant Air
Equiv. storage capacity  0.05 @ 31.03 MPa
Operating pressure .51 MPa
Linear air bearingx4) 32 mm diameter
Continuous operation ~40 min
CMG Attitude Control Max torque 0.668 Nm
Momentum storage 0.098 Nms
Electrical & Electronic Battery type Lithium-lon
Storage capacity 12 Ah @ 28V
Continuous Operation ~6 h

Computer

1 PC104 Pentium IlI

Sensors Fiber optic gyro KVH Model DSP-3000
Position sensor Metris iIGPS
Magnetometer MicroStrain 3DM-GX1
Table 1. Key Parameters of thed?Generation 3-DoF Robotic Spacecraft
Simulator
a. Propulsion and Flotation Subsystems

The lowest module houses the flabatiand propulsion subsystems. The

flotation subsystem is composed of four glaair bearings, an rafilter assembly, dual
4500 PSI (31.03 MPa) carbon-fiber spun air roydéirs and a dual manifold pressure

reducer to provide 75 PSI (0.51 MPa). Thisgzure with a volume flow rate for each air

bearing of 3.33 slfm (3.33 x fom*/min) is sufficient to keep the simulator in a friction-

free state for nearly 40 minutes of domous experimentation time.

The propulsion

subsystem is composed of dual vectoradlpersonic on-off cold-gas thrusters and a

separate dual carbon-ibspun air cylinder and pressueglucer packagesgulated at 60
PSI (0.41 MPa) and has the capapitif providing the system 31.1 m/¥ .
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b. Electronic and Power Distribution Subsystems

The power distributionsubsystem is composed of dual lithium-ion
batteries wired in 