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ABSTRACT 

We propose new nonparametric statistical tests to identify whether each element 

in a sequence of independent multivariate observations is drawn from a common 

probability distribution or if some distributional change has occurred over the course of 

the sequence.  Each test is formulated using matching techniques based on distances 

between observations.  These tests are capable of detecting changes of quite general 

nature, and, unlike most similar tests, they require no distribution assumptions or any 

prior separation of the data into hypothetical pre- and post-change subsets.  We derive a 

central limit theorem for one of the tests and an exact distribution for another.  A third 

culminating test, which is a cumulative sum of statistics on a collection of orthogonal 

matchings associated with the observation sequence, exhibits noteworthy power to detect 

whether a distributional change has occurred.  We examine the performance of the tests 

by computer simulation and compare results to a state-of-the-art parametric competitor. 
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EXECUTIVE SUMMARY 

Given a sequence of observations, has a change occurred in the underlying 

probability distribution with respect to observation order?  This question arises in a 

variety of applications, including quality control, machinery health diagnosis, 

biosurveillance, and image analysis.  This problem is encountered throughout statistical 

literature and is often referred to as “the change-point problem,” where “change point” 

refers to the index of the first observation for which the underlying probability 

distribution is different from that of previous observations.  Detecting change points in 

high-dimensional settings is challenging, and most change-point methods for multi-

dimensional problems rely heavily upon distributional assumptions such as multivariate 

normality or the use of observation history to model probability distributions.  In practice, 

such strong distributional assumptions are often invalid and can lead to poor detection 

performance, and useful observation histories are often unavailable.  Also, most change-

point methods are applicable only to changes of a specific type (for example, an abrupt 

change in distribution mean) when in many cases one is interested in detecting more 

general types of change as well (for example, changes in scale or gradual changes). 

We propose new nonparametric statistical tests to detect the presence of a change 

point in a sequence of multivariate data based on the graph-theoretic concept of 

matching.  Each test requires only the assumption of some reasonable function to 

measure dissimilarity between observations.  We state the change-point problem by 

representing the observation set as a complete graph in which each observation is a vertex 

and each pair of vertices is connected by an edge whose weight is the dissimilarity 

between the two vertices.  Then we pair observations together in such a way as to 

minimize the total cost of the collection of pairs; this collection of pairs is called a 

matching.  Our statistical tests for a change point use the fact that if a change has 

occurred with respect to order in the underlying distribution of a sequence of 

observations then the sequence labels of the pairs in the matching are closer together on 
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average than if no distributional change has occurred.  By considering not just the lowest-

cost matching but rather several low-cost matchings, we achieve considerable power to 

detect whether there is a change point in a sequence of observations. 

We examine the performance of these tests by simulation in various change-point 

settings considering different underlying probability distribution family, dimensionality, 

change point location, change parameter (distribution location or scale), type of change 

(abrupt or gradual), and magnitude of change.  Each test demonstrates power to detect a 

change point at fixed false alarm rate in every case examined.  The most powerful of 

these tests is the Ensemble Sum of Pair-Maxima (ESPM) test, which computes the 

cumulative sum of the larger sequence labels among all pairs in a collection of low-cost 

matchings and measures the deviation of this sum from its expected value.  The ESPM 

test has change detection power comparable to a state-of-the-art parametric competitor, 

the maximum likelihood ratio test of James, James, and Siegmund (JJS), even when the 

parametric assumptions for that test are met.  When those assumptions are not met, the 

ESPM test retains noteworthy power to detect a change point, while the false alarm rate 

of the JJS test increases. 
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I. INTRODUCTION 

The problem of identifying a change in a stochastic process is often referred to as 

“the change-point problem” and has been a subject of enduring interest in statistical 

literature.  A simple statement of this problem is, “Given a sequence of observations, has 

a change occurred in the underlying probability distribution with respect to observation 

order?”  This problem arises in a variety of applications, such as: 

• Quality control.  Samples are taken from a particular manufacturing process, 

perhaps over time or across different stages in the process, that carry information 

regarding the quality of the end product.  Change-point methods are used to indicate if, 

where, or when the process departs from an “in-control” condition. 

• Machinery diagnostics and fault detection.  Consider a complex machine for 

which various measurements are taken during its operation that provide an indication of 

machine health.  A change in the distribution of these measurements with respect to time 

might indicate some form of health degradation. 

• Biosurveillance.  Suppose occurrences of a particular disease are cataloged by 

geographic location and monitored over time.  Change point methods may be used to 

detect whether a disease outbreak has occurred.  

• Image analysis. Consider a sequence of images of the same scene taken at 

different times: for example, satellite images of some geographic area or magnetic 

resonance imaging scans on an individual.  Evidence that the scene is changing in some 

significant way may be found by means of change point analysis. 

This research is about detecting whether change has occurred.  Specifically, we 

investigate nonparametric tests to detect change points of very general nature in 

multivariate data.  Cases of “very general nature” include those of abrupt or gradual 

changes in the mean of a distribution, or changes in its scale.  While many real-life 

processes exhibit gradual change, fairly little investigation has been done in the area of 
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detecting gradual changes in multivariate data.  Furthermore, a relatively small body of 

work exists proposing nonparametric solutions to multivariate change detection 

problems, although interest in this area appears to be growing. 

We examine nonparametric methods that rely on matching, which involves the 

pairing together of observations based on some measure of dissimilarity.  Existing 

statistical applications of matching techniques include:  

• assessing sensor accuracy in test and evaluation of radar and joint-tracking 

systems by pairing detected objects with truth objects, 

• comparing the accuracy of different methods for estimating the locations of 

impact points in munitions testing by pairing estimated locations to “ground truth,” and 

• pairing subjects based on similarity measures for clinical trials and observational 

studies, 

to name a few.  In this paper, we introduce new methods of this type that prove to be 

powerful to detect change over a wide range of alternative hypotheses. 

Our work is organized as follows:  In Chapter II we classify the field of change-

point problems into its two main categories, sequential and non-sequential techniques, 

with a formal discussion of how problems in each category are framed.  We then 

summarize our review of the literature in this field, with particular emphasis on 

nonparametric approaches, followed by a graph-theoretic overview of matching.  The 

chapter concludes with a review of the most recent work on this problem based on non-

bipartite matching (defined in the next chapter), which is our primary area of interest 

here.  In Chapter III, we propose new statistical tests based on non-bipartite matching.  

First, we introduce the Sum of Pair-Maxima (SPM) test and the Non-Bipartite 

Accumulated Pairs (NAP) test, and develop the supporting theory for these tests in some 

detail.  Of primary importance are the proof of a central limit theorem for the SPM test 

and the derivation of the exact distribution for the NAP test.  Then we introduce the 

dominant test of this paper, the Ensemble Sum of Pair-Maxima (ESPM) test, which is an 

extension of the SPM test that involves extracting additional change-point information 

from orthogonal matchings.  Finally, we present the Bipartite Accumulated Pairs (BAP) 
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test as an application of bipartite matching techniques to change-point problems where 

some observation history is available.  Chapter IV demonstrates the performance of the 

SPM, NAP, and ESPM tests by means of a simulation study.  The power of these tests is 

compared to a state-of-the-art parametric competitor, the maximum likelihood ratio test 

of James, James, and Siegmund (1992), for various cases including different underlying 

distributions, different types and magnitudes of change, and different dissimilarity 

measures.  Chapter V summarizes our findings and outlines opportunities for further 

research in this field.   
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II. PROBLEM BACKGROUND AND LITERATURE REVIEW 

A. PROBLEM FORMULATION 

This research addresses the following specific question:  Given a sequence of 

independent multivariate observations, is the sample statistically homogeneous?  In other 

words, has the underlying probability distribution from which the observations were 

drawn remained constant or has it changed?  As discussed in the previous chapter, this 

problem emerges in a wide variety of applications and is traditionally referred to as “the 

change-point problem.” 

1. Change Points 

We define the term change point as follows: Given a sequence of independent 

random variables ( )1 2, , , NX X XK , let iF  denote the probability distribution of iX .  

Then an integer { }2, , Nτ ∈ …  is a change point with respect to measure δ  if 

1 2 1F F Fτ−= = = , 1F Fτ τ− ≠  and ( ) { } ( )1 , ,, max ,j k jjkF F F Fτδ δ∈− …  is strictly positive 

over { }, ,j Nτ∈ … , where δ  is a measure of distance between two probability 

distributions.  The jF  ( j τ≥ ) are not necessarily distinct from one another; for example, 

the distribution change at τ  may be associated with an abrupt mean change, or “mean 

jump.”  Or jF  may some simple function of j τ≥ ; for example, the distribution change 

beginning at τ  may be associated with a gradual mean change, or “mean drift.”  More 

complicated forms for jF  are allowed as well.  A formulation of the general change-point 

problem in a hypothesis-testing framework with respect to observations 1 2, , , NX X XK  

consists of defining null hypothesis 

(2.1) 0 1 2: NH F F F= = =  

and corresponding alternative hypothesis  
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(2.2) 

( ) { } ( ) { }

1 0 1

1 2 1 1

1 , ,

: There exists an integer ,  2 ,  such that
, ,  and 

, max ,  is strictly positive over  , , .j k jjk

H N
F F F F F

F F F F j N
τ τ τ

τ

τ τ τ τ

δ δ τ
− −

∈

≤ ≤ ≤ ≤

= = = ≠

− ∈… …

 

Usually we take 0 2τ =  and 1 Nτ =  but in some cases may wish to restrict the change 

point to a narrower interval. 

An important taxonomy exists within the family of change-point problems; we 

present a particular classification scheme here, similar to Brodsky and Darkhovsky 

(1993) and Basseville and Nikiforov (1993), to serve as a concept map of sorts, to 

provide a framework for review of the literature in this field, and to make clear the 

classification of the problem for which we offer solutions. 

2. Taxonomy of Change-Point Problems 

Change-point problems can be classified into the two broad categories of 

sequential and non-sequential analysis.  Sequential analysis involves detecting the 

occurrence of a change while monitoring a system “on-line;” that is, data collection is 

ongoing in time and analysis is performed sequentially as the data set is updated.  For 

such cases, the null hypothesis is tested over and over again as new data are added to the 

set of observations as follows: 

1)  With observations 1 1, , tX X −…  on hand, add tX . 

2)  Test for a change point in { }2, , t… . 

a)  If a change point is detected, perform some predetermined action. 

b)  If not, go back to step (1) with 1, , tX X…  on hand. 

A classic application of sequential analysis is in the arena of quality control, where some 

particular process is ongoing in time and process outputs are sampled and tested in 

sequence to identify if some undesirable change in the process has occurred. 
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In contrast, non-sequential analysis involves the examination of a finite sequence 

of data “off-line” with the purpose of identifying whether or not some change has 

occurred during the observation period.  Non-sequential analysis can be divided further 

into the cases of a single test or simultaneous tests.  For a single test, one considers a 

sequence of multivariate observations ( )1 2, , , NX X XK  and a known or assumed time 

{ }2, , Nτ ∈ …  and then tests the null hypothesis 0 1 2: NH F F F= = =  against the 

alternative 1 1 2 1 1: NH F F F F F Fτ τ τ− += = = ≠ = = =  (or perhaps a one-sided 

alternative).  One example of this type of problem is the clinical trial scenario, where two 

groups of subjects are drawn from some common population, one group is administered a 

treatment and the other a placebo, and the problem is to test whether the treatment has 

some particular effect.  In the single test framework, N specimens are split into a control 

and a test group with { }1 1, ,X X τ−…  and { }, , NX Xτ …  being the two associated sets of 

observations (the order of observations within groups does not matter for this case), and a 

single hypothesis test is performed regarding τ  (hence the name “single test”). 

For simultaneous tests, no specific candidate for change point τ  is assumed; the 

null hypothesis (2.1) is tested against alternative (2.2) as stated.  Such tests are 

simultaneous in the sense that they involve testing all possible change points 

simultaneously.  An example of such a test relates to machinery health management:  

Consider a military aircraft with an on-board device that records various measurements 

on the aircraft with respect to time during flight; these measurements are known or 

believed to be indicators of aircraft health.  Assume for the sake of this example that the 

observations are independent with respect to time.  Let ( )1 2, , , NX X XK  be the sequence 

of these observations.  When the aircraft returns from its mission, these observations are 

analyzed for evidence of health degradation.  That is, do the observations provide 

evidence of a change from some “healthy” distribution to a “less healthy” one?  If so, 

may one infer when the degradation occurred (or began to occur)? 

Machinery health diagnosis and prognosis problems are strong motivations for 

our research effort; consequently, the focus of this research is non-sequential 

simultaneous testing.  Our literature survey finds that powerful nonparametric tests for 



 8

multivariate change-point problems are not abundantly available, particularly in the non-

sequential simultaneous testing case.  We now proceed to review several parametric and 

nonparametric approaches to univariate and multivariate change-point problems, 

concluding with a discussion of the graph-theoretic concept of matching and its 

application to such problems.  This will set the stage for our introduction in the next 

chapter of new matching-based solutions to the change-point problem. 

B. PARAMETRIC APPROACHES 

1. Univariate Case 

The two-sample t-test, described in Tanis and Hogg (2008), is perhaps the most 

widely known test for heterogeneity, though it generally is not presented in change-point 

terms.  It is one of the first tests introduced in an undergraduate statistics course, and it 

usually is framed as a test for a difference in the mean of two samples.  While it is widely 

applicable, it has the obvious limitations that 1) it applies only the univariate case, 2) it 

assumes the underlying distributions are normal, and 3) it only tests for differences in 

distribution means. 

In quality assurance, the classic univariate sequential test for a change point is the 

cumulative sum (CUSUM) test introduced by Page (1954).  Others include the sequential 

t-test (Rushton, 1950), Geometric Moving Average (GMA) or Exponentially Weighted 

Moving Average (EWMA) procedures (Roberts, 1959), and Bayes-type procedures 

(Girshick and Rubin, 1952; Shirayev, 1963).  These procedures are powerful in many 

settings and can be applied as non-sequential or sequential change-point tests.  Of course 

these tests are also limited to univariate cases, although some multivariate extensions 

exist.  Additionally, they require assumptions about the underlying data distribution 

(normality is usually assumed). 

2. Multivariate Case 

The multivariate analog of the two-sample t-test is Hotelling's two-sample 2T  test 

(Hotelling, 1931), which detects differences in the mean vectors of two multivariate 
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normal samples.  Hotelling’s 2T  statistic is a non-sequential single test.  Sequential 

multivariate parametric tests include multivariate extensions of CUSUM procedures 

(Basseville and Nikiforov, 1993; Runger and Testik, 2004) and EWMA procedures 

(Lowry et al., 1992; Prabhu and Runger, 1997). 

A change-point test by James, James, and Siegmund (hereafter, “JJS”) (1992) 

associated with an abrupt change in the mean of a multivariate normal distribution 

interests us particularly.  JJS is a non-sequential simultaneous test—the area of our 

interest in this work—and it serves as a powerful competitor to methods we present later.  

Given multivariate observations 1 2, , , NX X XK , JJS uses the modified likelihood ratio 

test statistic  

(2.3) 
( )

1

JJS
0 1

1max k N N N N k Nk k k

N k kT S S U S S S S
k N k N N N

−

≤ ≤

′⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜′= − − −⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠−
 

where 
1

k

k i
i

S X
=

=∑ , 
1

k

k i i
i

U X X
=

′=∑ , and 0k  and 1k  are the lower and upper limits, 

respectively, of the interval possibly containing a change point.  The actual likelihood test 

is based on the case 0 1k =  and  1 1k N= −  (that is, the change point could be anywhere 

in the observation sequence), but the test provides the flexibility to limit the search for a 

change point to a subinterval of ( )1, 1N − .  JJS show that the tail probabilities for this test 

can be well-approximated by 

(2.4) 

( )

( )
( )( )

( ) ( )( )

JJS

1/2   /2
3 /2

1

0

1 11 ,
/ 2 2 1 1 1

p
N p

t

t

P T x

Nx xx dt
p t t t t x

ν− −

≥ ≅

⎛ ⎞⎛ ⎞ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟⎜⎟⎜ ⎟ ⎟− ⎜⎟ ⎜⎜ ⎟ ⎟⎜⎟⎜ ⎜ ⎟ ⎟⎟⎝ ⎠ ⎜Γ − − −⎝ ⎠⎜ ⎟⎝ ⎠
∫

 

where 0 0/k N t→  and 1 1/  k N t→ as N →∞ , 0 10 1t t< ≤ < , and  

(2.5) ( )
1/2

2
1

2 1exp 2 ,
2k

tkt
t k

ν
∞

=

⎧ ⎫⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜ ⎟= − Φ −⎜⎨ ⎬⎟⎜ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭
∑  

with Φ  being the standard normal cumulative distribution function.  The integral term in 

(2.4) is computed satisfactorily by numerical methods.  JJS present a heuristic 
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modification to improve their tail probability approximation; we do not describe those 

details here, but we do utilize the modification of the JJS test for comparison purposes 

later. 

A drawback to all these parametric approaches to change-point detection is that 

they are not necessarily robust across different underlying data distributions.  In 

particular, the assumption of multivariate normality in many cases proves to be difficult 

to justify.  We proceed to review some existing nonparametric approaches to the change-

point problem. 

C. NONPARAMETRIC APPROACHES 

1. Univariate Case 

A classic nonparametric test to determine whether two univariate random samples 

come from the same population is the Mann-Whitney test (Mann and Whitney, 1947), 

also known as the Wilcoxon rank sum test (Conover, 1999).  Let { }1 1, , mX X= …A  and 

{ }2 1, ,m m nX X+ += …A  be two sets of observations with all iX  being members of some 

ordered set.  Assign ranks (or midranks in the case of ties) to the observations with 

respect to set ordering and let ( )iR X  denote the rank of observation iX .  Intuitively, one 

would expect that if the observations in 1A  tend to be smaller than those in 2A  then the 

ranks of the observations in 1A  would be smaller on average than the ranks of those in 

2A .  To determine whether 1A  and 2A  are drawn from the same population one 

computes the Mann-Whitney test statistic, which is simply 

(2.6) ( )MW
1

.
m

i
i

T R X
=

=∑  

Let 1F  and 2F  be the distribution functions corresponding to the observations in 1A  and 

2A , respectively, and let 1Y F∼  and 2Z F∼ .  Then the hypotheses associated with the 

Mann-Whitney test may be stated as follows. 
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(2.7) 
( )
( )

0

1

: 0.5;

: 0.5.

H P Y Z

H P Y Z

> =

> ≠
 

For small samples, quantiles of MWT  are found in tables or by using standard functions in 

statistical software (such the “qwilcox” function in R (2005)).  For large samples MWT  is 

asymptotically normal.  While the Mann-Whitney test is consistent against mean 

difference alternatives, it is not sensitive to other types of differences (for example, 

differences in scale). 

Another rank-based non-sequential single test, which is consistent against a 

broader range of alternatives but is less powerful than the Mann-Whitney test (Conover, 

1999), is the Wald-Wolfowitz runs test (Wald and Wolfowitz, 1940).  Observation ranks 

are computed as above, but this time the ranks are collected into runs of consecutive 

ranks that come from the same group (either  1A  or 2A ).  The test statistic is simply the 

number of runs in the collection; a relatively small number of runs indicates that the two 

samples are from different distributions.  Like the Mann-Whitney test, the Wald-

Wolfowitz test is asymptotically normal.  

Two other tests that are consistent against any type of difference that might exist 

between underlying distributions are the Kolmogorov-Smirnov test and the Cramér-von 

Mises test.  If 1S  and 2S  are the empirical distribution functions for the observations in 

1A  and 2A , respectively, then the Kolmogorov-Smirnov test statistic is given by  

(2.8) ( ) ( )KS 1 2sup
x

T S x S x= −  

and the Cramér-von Mises test statistic is given by 

(2.9) 
( )

( ) ( )
1 2

2
CvM 1 22

x

mnT S x S x
m n ∈ ∪

⎡ ⎤= −⎣ ⎦+
∑
A A

. 

In other words, these tests statistics evaluate the supremum norm and 2L  norm, 

respectively, of the difference between two empirical distribution functions.  Large 

values of these statistics are evidence that  1A  and 2A  are drawn from different 

probability distributions. 
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These four particular tests broadly represent the two primary techniques used for 

nonparametric change-point detection both in univariate and multivariate cases: 

techniques based on rank permutations (such as Mann-Whitney and Wald-Wolfowitz) 

and tests based on distribution function estimation (such as Kolmogorov-Smirnov and 

Cramér-von Mises).  The new methods we present in the next chapter are grounded in 

rank permutation arguments. 

Nonparametric sequential tests include generalizations of CUSUM procedures 

such as those introduced by Bhattacharya and Frierson (1981) and Gordon and Pollock 

(1995).  These procedures apply to the univariate case only; no extensions of these tests 

to the multivariate case have yet been proposed (Fricker and Chang, 2009). 

2. Multivariate Case 

a. General Approaches 

Multivariate extensions do exist for both the Kolmogorov-Smirnov and 

Cramér-von Mises tests.  For example, Bickel (1969) extends the Kolmogorov-Smirnov 

test to dR  by defining multivariate rank vectors, computing empirical distribution 

functions with respect to within-group multivariate ranks, and then evaluating the 

supremum norm on the difference of the two empirical distribution functions as a test 

statistic.  Præstgaard (1995) extends Bickel’s result to more general sample spaces.  

Baringhaus and Franz (2004) propose a Cramér-von Mises-like statistic on dR  by 

comparing the average Euclidean distance between points in different groups to the 

average distance between points in the same group.  Hall and Tajvidi (2002) propose a 

permutation test using a nearest-neighbors approach that generalizes both the 

Kolmogorov-Smirnov and Cramér-von Mises tests to the multivariate case.  These tests 

all rely on simulation to compute estimated quantiles for the test statistic null distribution.  

Li and Liu (2004) apply the notion of data depth to nonparametric tests for 

changes in multivariate location or scale.  Data depth is a way of measuring how “deep” 

or “central” a point is with respect to a particular distribution or sample (Liu et al., 1999).  

Well-known examples of such measures in the data depth literature include half-space 
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depth (Hodges (1955) , Tukey (1975), sometimes referred to as Tukey depth), convex 

hull peeling depth (Barnett, 1976), and  simplicial depth (Liu, 1990).  Data depths 

provide a natural center-outward ordering of points in a multivariate sample; once 

ordered, various univariate tests for change may be applied with respect to the ordering. 

Fricker and Chang (2009) propose a sequential change-point test which 

uses an available history of multivariate observations combined with the k most recent  

observations (where k is an adjustable window parameter) to generate a nonparametric 

running estimate of the underlying density distribution.  The history is assumed to be in 

control; that is, the historical observations are all drawn from the null distribution with no 

change point.  With each new observation they compute a new density estimate and then 

perform a Kolmogorov-Smirnov test to identify whether the density heights of the data of 

interest are uniformly distributed among the density heights of the historical data.  

b. Graph-Theoretic Approaches and Matching 

An intriguing approach to the change-point problem involves applying 

graph-theoretic ideas.  In particular, methods based on the graph-theoretic concept of 

matching have gained interest in recent years, in no small part due to increases in 

computational capacity.  The test statistics we propose in this work are all matching-

based; therefore, we conclude this chapter by providing necessary graph theory 

definitions and background to develop our ideas and reviewing graph-theoretic 

approaches introduced by Friedman and Rafsky (1979) and Rosenbaum (2005) which 

have inspired our work. 

(1) Definitions.  The definitions in this section are from Chartrand 

and Zhang (2005).  A graph G consists of a finite nonempty set V of elements called 

vertices and a set E of two-element (unordered) subsets of V called edges, in which case 

we write ( ),G V E= .  A graph ( )1 1 1,G V E=  is called a subgraph of ( ),G V E=  if 

1V V⊆  and 1E E⊆ ; if 1V V=  then 1G  is called a spanning subgraph of G .  We denote 

the edge joining vertices u  and v  by { },u v .  Two distinct vertices are adjacent vertices 

if they are joined by an edge, and two distinct edges are adjacent edges if they share a 
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vertex.  Vertex u and edge { },u v  are said to be incident with each other, and the degree 

of vertex u is the number of edges incident with u . 

A u v−  walk in graph G  is a sequence of vertices in G  beginning 

with u  and ending with v  such that consecutive vertices in the sequence are adjacent; if 

u v=  then the walk is closed.  A u v−  trail is a walk in which no edge is traversed more 

than once; a circuit is a closed trail including at least three distinct vertices.  A circuit 

that repeats no vertex except for the first and last is a cycle.  If there exists a u v−  walk 

for every pair of vertices u  and v  in graph G  then G  is said to be connected. 

A graph G  is called acyclic if it has no cycles, a tree is an acyclic 

connected graph, and a spanning tree of G  is a spanning subgraph of G  that is a tree.  

If a real number is assigned to each edge of a graph, then the graph is a weighted graph 

and the sum of the all the edge weights is called the weight of the graph.  A spanning tree 

of weighted graph G  whose weight is smallest among all spanning trees of G  is called a 

minimum spanning tree (MST). 

Friedman and Rafsky (1979) consider various statistics based upon 

MSTs in order to test whether two samples are drawn from the same distribution.  Given 

sets of observations 1A  and 2A  as above, they construct a MST with respect to some cost 

function on the sample space.  One change-point detection method they consider consists 

of removing each edge of the MST that connects a point in 1A  to a point in 2A , and then 

defining a test statistic that counts the number of disjoint subtrees that result from the 

edge removal.  The resulting test is effectively a multivariate runs test, which corresponds 

exactly to the Wald-Wolfowitz runs test for the univariate case.  The Wald-Wolfowitz 

runs test is known to be not particularly powerful (Connover, 1999, p. 3).  Friedman and 

Rafsky (1999) demonstrate that their multivariate runs test has high power in higher 

dimensions, and they enhance test power by computing their test statistic on a collection 

of orthogonal MSTs, where two MSTs are orthogonal if they have no edges in common.  

We will use a similar idea to extend our main results for improved power. 
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We require a few final definitions to develop our main results.  A 

subset of edges E E′ ⊆  is independent if no two edges in E′  are adjacent.  A matching 

in a graph ( ),G V E=  is an independent set of edges in G.  A maximum matching in G 

is a matching that consists of at least as many edges as any other possible matching in G.  

For the remainder of this paper, all matchings under consideration are maximum 

matchings (that is, we are interested only in matchings that pair together as many vertices 

as possible).  Finally, a perfect matching in G is a matching that includes every vertex of 

G.  A perfect matching is necessarily a maximum matching; furthermore, a perfect 

matching is possible only on graphs with an even number of vertices.  

(2) Bipartite and Non-Bipartite Matching.  A variety of problems 

can be framed as matching problems, where a matching is sought that minimizes some 

cost (Ahuja et al., 1993, p. 9).  Two specific cases are bipartite matching problems, 

where graph vertices are divided into two distinct subsets 1A  and 2A   and each edge 

consists of one vertex each from 1A  and 2A , and non-bipartite matching problems, 

where the matching does not depend on a partition of the vertices (that is, any two 

vertices may be paired in the matching). 

In our case, we are interested in matchings of minimum cost, 

where a cost function is defined as follows:  Given sample space S , [ ): 0,c × → ∞S S  

is a cost function if it satisfies 

(2.10) ( ), 0  c x x x= ∀ ∈S  

and 

(2.11) ( ) ( ), ,  ,c x y c y x x y= ∀ ∈S , 

We use i jc  to denote the cost ( ),i jc X X  and also sometimes use the common 

terminology that i jc  is the weight of the edge joining iX  and jX .  We will call cost 

function c  a distance function if it satisfies the triangle inequality 

(2.12) ( ) ( ) ( ), , + ,  , ,c x z c x y c y z x y z≤ ∀ ∈S  
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in addition to (2.10) and (2.11) .  In general, this framework allows broad flexibility to 

accommodate all types of data (discrete or continuous, numeric or categorical, etc.).  In 

the change-point setting, a cost function should be tailored in some sensible way to the 

data types of interest and its selection ultimately does matter in detecting departures from 

the null hypothesis. 

We formulate the minimum-weight bipartite matching problem in 

the following manner.  Given sample space S , two distinct sets of observations 

{ }1 1, , mX X= ⊆…A S  and { }2 1, ,m m nX X+ += ⊆…A S , N m n= + , and cost function 

c, a minimum-weight bipartite matching is a solution to the problem 

(2.13) 

{ }

{ }

( )

1 1

1

1

1 1

minimize            

subject to          1 1, , ,

                          1 1, , ,

                          min , ,

                         

m N

i j i jx i j m

N

i j
j m

m

i j
i

m N

i j
i j m

c x

x i m

x j m N

x m n

= = +

= +

=

= = +

≤ ∀ ∈

≤ ∀ ∈ +

=

∑ ∑

∑

∑

∑ ∑

K

K

{ } { } {0,1} 1, , , 1, , ,i jx i m j m N∈ ∀ ∈ ∀ ∈ +K K

 

where 1i jx =  indicates that edge { },i jX X  is in the matching and 0i jx =  otherwise.  In 

the graph underlying this problem, each element of 1A  is joined by an edge to each 

element of 2A ; no edges join elements within 1A  or within 2A .  The solution to this 

problem is not necessarily unique.  In operations research literature, this problem is a 

particular instance of the “general assignment problem” (Ahuja et al., 1993, pp. 639-

640).  Software algorithms to solve this problem include that of Jonker and Volgenant 

(1987) and are widely available. 

Alternatively, we formulate the minimum-weight non-bipartite 

matching problem as follows.  Given sample space S , a single set of observations 

{ }1, , NX X= ⊆…A S , and cost function c , a minimum weight non-bipartite matching 

is a solution to the problem 
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(2.14) 
{ }

{ }

1

1 1

1

1 1

1

1 1

minimize           

subject to          1 1, , 1 ,

                          / 2 ,

                          {0,1} 1, , , 1, ,

N N

i j i jx i j i

k N

ik k j
i j k

N N

i j
i j i

i j

c x

x x k N

x N

x j i N i N

−

= = +

−

= = +

−

= = +

+ ≤ ∀ ∈ −

= ⎢ ⎥⎣ ⎦

∈ ∀ ∈ + ∀ ∈ −

∑ ∑

∑ ∑

∑ ∑

K

K K{ }1 .

 

where y⎢ ⎥⎣ ⎦  is the smallest integer less than or equal to y and i jx  indicates whether 

{ }, , ,i jX X i j<  is in the matching as in the bipartite matching case.  In this case, every 

pair of elements in A  is joined by an edge and the underlying graph is referred to as a 

complete graph.  The solution to this problem is a matching that consists of / 2N  edges 

with every vertex included in the matching if N  is even, or ( )1 / 2N −  edges with every 

vertex but one included in the matching if N  is odd.  As in the bipartite matching case, 

the solution to the non-bipartite matching problem is not necessarily unique.  Algorithms 

by Edmonds (1965) and Derigs (1988) solve the minimum-weight non-bipartite matching 

problem on a complete graph in ( )3O N  time.  Several improvements to Edmond’s 

algorithm have been developed over the years (Gabow, 1973; Galil et al., 1986; Gabow 

et al., 1989; Cook and Rohe, 1999; Mehlhorn and Schäfer, 2002; Kolmogorov, 2009).  

While these improvements do not improve theoretical runtime on a complete graph, they 

have been shown to improve realized runtimes in many practical instances.  Edmond’s 

original algorithm to solve the non-bipartite weighted matching problem is sometimes 

called Edmond’s “blossom” algorithm, where the term “blossom” refers to subgraphs 

with particular properties that emerge during execution of the algorithm.  Subsequent 

improvements often carry the “blossom” moniker; the latest is Kolmogorov’s “Blossom 

V” (2009).  In Chapter IV, we elaborate on computational details specific to our 

implementation of non-bipartite matching algorithms for this study. 

(3) Cost Functions.  In both the bipartite and non-bipartite cases, 

the assignment of pairs in a matching depends upon the choice of a cost function.  For the 

problem of testing for data homogeneity with respect to some ordering, we will use cost 
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functions that are reasonable dissimilarity measures.  Some applications will invite a 

natural choice of dissimilarity measure; for other applications this choice may require 

some deliberation.  In our simulation study we consider four different distance functions 

on the sample space d=S R .  The first is Euclidean distance (ED), which yields 

(2.15) ( ) ( )
1/2

ED .i j i j i jc X X X X⎡ ⎤′= − −⎢ ⎥⎣ ⎦
 

One disadvantage of ED is that it does not take into account 

measurement scale or correlation among data components.  To address these issues, 

Mahalanobis distance (MD) is often used as an alternative, which is scale-invariant and 

accounts for data correlation.  The resulting cost function is 

(2.16) ( ) ( )
1/2

MD 1 ,i j i j i jc X X V X X−⎡ ⎤′= − −⎢ ⎥⎣ ⎦
 

where V is an estimate of the covariance matrix associated with the data of interest.  

Estimating V by the sample covariance matrix is sensitive to outliers, however, so we are 

also interested in distance measures that are robust to such outliers.  Wang and Raferty 

(2002) provide a useful method to downweight outliers, called nearest-neighbor variance 

estimation (NNVE) that measures how outlying a data point is by the standardized 

distance between the point and its kth nearest neighbor (where k is an adjustable 

parameter).  Therefore, we consider a third distance function, which we will refer to as 

“Mahalanobis distance, robust” (MD-R), which is simply the MD computed with 

reference to the NNVE covariance estimate NNVEV  (we omit any k subscript to simplify 

notation here): 

(2.17) ( ) ( )
1/2

MD 1
NNVE .i j i j i jc X X V X X−⎡ ⎤′= − −⎢ ⎥⎣ ⎦

 

Another way to reduce sensitivity to outliers is to consider a 

distance measure based on the idea of multivariate ranks.  We adopt a useful extension of 

rank to higher dimension given by Barnett (1976) and Chaudhuri (1996), described as 

follows by Choi and Marden (1997).  Consider a d -dimensional inner product space S  
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and observations 1, , NX X ∈… S .  For 1d = ,  denote the rank of observation iX  by ( )ir , 

assigning midranks in the case of ties.  Center and scale these ranks by the transformation 

(2.18) ( )
( )2 1i

i
r nR X

n
− −

= , 

which maps ( ) ( ){ }1 , , Nr r…  into the open interval ( )1,1− .  Then (2.18) can be written 

(2.19) ( ) ( )
1

1 sgn ,
n

i i j
j

R X X X
n =

= −∑  

where sgn is the signum function 

(2.20) ( )
0 if 0;

sgn otherwise.

x
x x

x

⎧ =⎪⎪⎪⎪=⎨⎪⎪⎪⎪⎩
 

Now for i jX X≠ , the summand in (2.19) can be expressed as 

(2.21) ( )sgn .i j
i j

i j

X X
X X

X X
−

− =
−

 

Then a very natural extension of this centered and scaled ranking transformation to the 

case 1d >  is obtained by defining 

(2.22) ( ) 1 ,i j
i

j i i j

X X
R X

n X X≠

−
=

−
∑  

where ⋅  may be any norm in general; unless otherwise specified we will use 

X X X X′= ∀ ∈S.   We will use the term “multivariate rank distance” (RD) to refer 

to the Euclidean distance between multivariate ranks as our fourth and final distance 

option: 

(2.23) ( ) ( )( ) ( ) ( )( )
1/2

RD .i j i j i jc R X R X R X R X⎡ ⎤′= − −⎢ ⎥
⎣ ⎦

 

In Chapter IV, we examine the impact these different distance 

functions have on our ability to detect change with the new change-point detection 

methods presented in the next chapter. 
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(4) Matching Examples.  We now illustrate these matching 

concepts with a few simple examples.  Figures 1, 2, and 3 show the same 20 

observations, each drawn from a bivariate normal distribution, with Euclidean distance as 

the cost function.  The coordinates for these data are listed in Appendix D.  In Figure 1, 

the observations are randomly partitioned into two subsets containing 8 and 12 

observations indicated by group labels ‘ ’ and ‘*’, respectively; the resulting minimum-

weight bipartite matching consists of 8 pairs, with 4 observations from the larger set 

remaining unmatched.  A quite different matching results when the observations are 

partitioned in a different way, as shown in Figure 2 with two subsets of equal size.  

Finally, Figure 3 demonstrates the minimum-weight non-bipartite matching on these 

same 20 points with no prior partitioning.  These examples reiterate two fundamental 

differences between bipartite and non-bipartite matchings.  First, the non-bipartite 

matching is not associated with any prior partitioning of the observation set, while the 

bipartite matching depends greatly on how the observation set is partitioned.  Indeed, for 

an even number of observations one may think of the minimum-weight non-bipartite 

matching as the lowest cost matching among all minimum-weight bipartite matchings 

computed for all possible partitions of equal size.  Second, in the case of non-bipartite 

matching for an even number of observations, all observations are paired with another 

(all but one are paired if the number of observations is odd), while in the bipartite 

matching case some observations are necessarily left unmatched in the larger of the 

partition sets. 
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Figure 1.   Minimum-weight bipartite matching on 20 points; m=8, n=12. 

 

 

Figure 2.   Minimum-weight bipartite matching on 20 points; m=10, n=10. 
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Figure 3.   Minimum-weight non-bipartite matching on 20 points. 

(5) The Cross-Match Statistic.  With these ideas in place, we 

conclude this chapter by reviewing a recent non-bipartite matching-based approach to 

change-point detection by Rosenbaum (2005).  Rosenbaum presents an exact 

distribution-free test to detect change in multivariate data using non-bipartite matching.  

We explain his test in a bit more detail than the previous tests, as his ideas have 

substantially motivated our thinking on this problem.  In fact, one of our results extends 

his single non-sequential test to a simultaneous test. 

Consider the case where { }1 1, , mX X= …A  is the set of the first m  

observations and { }2 1, ,m m nX X+ += …A  is the set of the last n N m= −  observations.  

The goal is to test for equality of distributions for the populations associated with 1A  and 

2A .  Compute an optimal non-bipartite matching on 1 2∪A A  and let CM  denote the 

number of pairs cross-matched between 1A  and 2A .  Rosenbaum (2005) calls CM  

(which he denotes “ 1A ”) the cross-match statistic and derives its exact null distribution.  

For the case where N  is even, this distribution is given by 
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(2.24) ( ) ( )2 / 2 !
,

! ! !
2 2

k
C N

P M k
N m k n kk
m

= =
⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎟⎜ ⎟ ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

where k takes even values from 0 to ( )min ,m n  if m and n are both even, k takes odd 

values from 1 to ( )min ,m n  if m and n are both odd, and ( ) 0CP M k= =  for all other k.  

The case where N is odd may be accommodated by introducing a pseudo-observation 

1NX +  such that ( )1, 0i Nc X X i+ = ∀ , computing a non-bipartite matching on the pooled 

sample { }1 1, , NX X +… , and discarding the pair that includes the pseudo-observation.  

Equation (2.24) is then adjusted to refer to the remaining 1N −  observations and 

( )1 / 2N −  pairs, conditioned on the set membership of the observation with which the 

pseudo-observation is paired.  The distribution for odd N  becomes 

(2.25)

( )
( )

{ }

( )
{ }
( )( )

1 1

1 1

1 2

1 2

 is paired with an element of 

 is paired with an element of 

 is paired with an element of 

 is paired with an element of 

2 1 / 2 !

C
NC

N

C
N

N

k

P M k X
P M k

P X

P M k X

P X

N
N

+

+

+

+

⎡ ⎤=⎢ ⎥
= = ⎢ ⎥

⎢ ⎥×⎢ ⎥⎣ ⎦
⎡ ⎤=⎢ ⎥

+ ⎢ ⎥
⎢ ⎥×⎢ ⎥⎣ ⎦

−
=

−

A

A

A

A

{ }( )

( )( )
{ }( )

( )( ) { }( )

1mod 2
1 1 ! ! !
1 2 2

2 1 / 2 !
0mod 2

1 1! ! !
2 2

2 1 / 2 ! 1mod 2
1 !! 2 2

k

k

m I m k
Nm k n kk

m

N n I m k
N Nm k n kk

m

N I m k
N m k n k

k
m

⋅ ⋅ − ≡
⎛ ⎞⎛ ⎞ ⎛ ⎞− − −⎟⎜ ⎟ ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠−⎝ ⎠

−
+ ⋅ ⋅ − ≡
⎛ ⎞− ⎛ ⎞ ⎛ ⎞− − −⎟⎜ ⎟ ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− − ≡
=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎜⎟⎟ ⎜ ⎜⎜ ⎝ ⎠ ⎝ ⎠⎟⎜⎝ ⎠

{ }( )0mod 2
,

1! ! !
2 2

I m k
m k n k

⎛ ⎞⎟⎜ ⎟⎜ ⎟− ≡⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞− − −⎜ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎟⎜ ⎟ ⎟ ⎟⎜ ⎜ ⎟⎜ ⎟ ⎟ ⎟⎜ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

where ( )I ⋅  is the indicator function and the factorial terms that depend on m or n are 

only computed when the factorial argument is an integer (since otherwise the indicator 

function in the numerator is zero).  In this case, k  takes values from 0 to ( )min ,m n .  In 
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any case, the null hypothesis that the distributions underlying 1A  and 2A  are equal is 

rejected for small values of CM , since different underlying distributions lead to a 

preference for within-group matching over cross-group matching. 

While (2.24) and (2.25) are exact probabilities, in practice these 

values can be difficult to compute for large N.  Rosenbaum proves that under the null 

hypothesis, the conditional distribution of CM  given m converges in distribution to the 

normal distribution for /  (constant)m N p→ ; that is, 

(2.26) ( )
D

0,1 ,C

C

C
M

M

M
N

μ

σ

−
→  

where 

(2.27) 
( ) ( )

( )( )
2

2

2 1 1
   and   Var

1 3 1
C C

C C
M M

m m n nmnE M M
N N N

μ σ
− −⎡ ⎤ ⎡ ⎤= = = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− − −

 

for even N.  This enables application of the cross-match test to cases where N is large. 

We provide a small example to illustrate this test:  Figure 4 shows 

the familiar data cloud from previous figures; in this case the data are associated with two 

subgroups of equal size.  Group labels ‘ ’ and ‘*’ are assigned at random to model two 

groups of 8 and 12 points, respectively, that are drawn from a common distribution.  

Cross-matches are circled; for this case Rosenbaum’s cross-match statistic takes the value 

4CM =  and has an associated p-value of ( )4 0.48CP M ≤ = .  Clearly no significant 

evidence exists to infer that the distributions underlying the two groups are different. 
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Figure 4.   Rosenbaum’s cross-match statistic with no change point. 

 

Figure 5.   Rosenbaum’s cross-match statistic with change point. 

 

2CM =  

4CM =  
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On the other hand, Figure 5 shows the same scatter plot, where this 

time one group consists of the lower-left hand observations  (‘*’) and the other group 

consists of  the upper-right hand observations (‘ ’) .  Again, cross-matches are circled, 

and in this case 2CM =  with an associated p-value of ( )2 0.08CP M ≤ = .  This p-value 

is certainly stronger evidence that the two groups have different underlying distributions; 

for this small sample size the smallest achievable  p-value is ( )0 0.0014CP M = = . 

Other examples of optimal non-bipartite matching techniques 

applied to statistical problems are found in Lu et al. (2001), Lu and Rosenbaum (2004), 

and Greevy et al. (2004).  In an observational study of a media campaign against drug 

abuse, Lu et al. (2001) use optimal non-bipartite matching to pair teen subjects in such a 

way that each pair is demographically similar but has markedly different exposure to the 

media campaign.  The evaluation compares stated intentions related to illegal drugs 

among comparable teens to assess the effectiveness of the campaign.  Lu and Rosenbaum 

(2004) transform a tripartite problem of comparing one test group to two control groups 

into a non-bipartite matching problem in order to evaluate whether or not a localized 

minimum wage increase could be associated with depressed low-wage employment in 

that area.  Greevy et al. (2004) demonstrate that optimal non-bipartite matching leads to 

improved covariate balance over randomized block design in a study of a cardiac 

function treatment for child cancer survivors. 

The tests we propose belong to the small but growing category of 

graph-theoretic tests for homogeneity that involve minimizing sums of interpoint costs on 

graphs; this category includes Friedman and Rafsky’s (1979) MST test and Rosenbaum’s 

(2005) cross-match test.     The null hypothesis of homogeneity implies that the structure 

of these graphs is indifferent to group labeling, which permits the derivation of null 

distributions by straightforward arguments.  We will apply this principle to derive null 

distribution results for our tests. 
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In summary, much room remains for innovative work in the field 

of multivariate, nonparametric change-point detection.  Particularly, very few change-

point tests exist with the properties of being multivariate, simultaneous, and distribution-

free.  We proceed now to present tests with exactly these properties. 
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III. THEORETICAL RESULTS 

Suppose that we have an even number 2 4N n= ≥  observations { }1, , NX XK  

ordered with respect to time (or any other variable) and we want to test whether the 

observations are changing with respect to this ordering.  For example, we might want to 

test for a jump or a drift beginning at some unknown point in the sequence.  The 

observations may be multivariate, but are assumed to be independent.  The requirement 

that N  be even is not strictly necessary, but it does simplify the exposition (we explain 

later how our results extend to odd sample sizes) . 

For a non-sequential simultaneous test where iF  denotes the distribution of the 

thi  sample value, the null hypothesis of homogeneity asserts that 1 2 NF F F= = =L  

without specifying the common distribution.  The alternative hypothesis asserts that there 

exists an integer τ , 0 11 1Nτ τ τ≤ ≤ ≤ ≤ − , such that 1 2 1F F Fτ−= = = , 1F Fτ τ− ≠ , 

and ( ) { } ( )1 , ,, max ,j k jjkF F F Fτδ δ∈− …  is strictly positive over { }, ,j Nτ∈ … , usually with 

0 1τ =  and 1 1Nτ = −  as discussed previously.  With respect to a given cost function we 

compute an optimal non-bipartite matching { } { }{ }1 2 2 1 2
, , , ,

n nj j j jX X X X
−

= KM .  Let 

1 2 2, , , nR R RK  denote the sequence labels associated with each observation such that if 

{ }2 1 2
,

i ij jX X
−

 is the thi  listed pair, then 2 1 2 1i iR j− −=  and 2 2i iR j= .  Finally, order each 

individual pair as ( ),i iU Y , where iU  and iY  are the minimum and maximum ranks of the 

ordering variable respectively: 

(3.1) { } { } { }2 1 2 2 1 2min , and max , , 1, ,i i i i i iU R R Y R R i n− −= = ∈ K . 

With this setup in place, we are now ready to propose new change-point tests based on 

the ordered rank pairs associated with an optimal non-bipartite matching. 
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A. THE SUM OF PAIR-MAXIMA TEST  

1. The NT  Statistic 

Under the alternative hypothesis that some distribution change has occurred 

within a sequence of observations, one expects an optimal non-bipartite matching to pair 

observations that are closer together in sequence than would be the case under the null 

hypothesis.  This suggests summing the differences i iY U−  across all pairs and rejecting 

the null hypothesis if the sum is less than some critical value.   We consider an equivalent 

test statistic NT  based on its relationship to this sum: 

(3.2) ( ) ( )
1 1

1 12 1
2 2

n n

N i i i
i i

T Y n n Y U
= =

= = + + −∑ ∑ . 

We call NT  the Sum of Pair-Maxima (SPM) test statistic, with rejection of the null 

hypothesis indicated by small values of this sum.   We proceed to derive the mean and 

variance of NT , and show that NT  has a limiting normal distribution by invoking a central 

limit theorem result attributed to Stein (1986). 

2. Expected Value and Variance 

A sequence ( )1, , kZ Z…  of random variables is said to be exchangeable if for any 

permutation π  of indices { }1, , k… , the joint probability distributions of ( )1, , kZ Z…  and 

( ) ( )( )1 , , kZ Zπ π…  are identical (Fristedt and Gray, 2004).  Under the null hypothesis, each 

of the !N  possible assignments of sequence labels is equally likely and the random 

variables 1( , , )nY YK  are exchangeable.  To obtain expressions for the expected value and 

variance of NT  we apply equations (3.3)-(3.5), which are derived in Appendix A: 

(3.3) ( ) ( )1
1 , 2, , 2

2 1
tP Y t t n

n n
−

= = =
−

K , 
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(3.4) ( )

( )( )
( )( )( )

( )( )

2 1

1 3
, 2, , 1 ,

1 1 2 3
|

3 , 1, , 2 ,
1 2 3

t s
t s

s n n
P Y t Y s

t t s n
n n

− −⎧
= −⎪ − − −⎪= = = ⎨

−⎪ = +⎪ − −⎩

K

K

 

and 

(3.5) 

[ ] ( )

( )( )

[ ] ( )( )

( ) ( )( )

( ) ( )

1

2
1

2 1

1

1 2

2 2 1
,

3
2 1 3 1

,
3

8 2 1 5 2
,

45
2 1 1

Var ,
9

4 2 1
Cov , .

45

n
E Y

n n
E Y

n n
E Y Y

n n
Y

n
Y Y

+
=

+ +
⎡ ⎤ =⎣ ⎦

+ +
=

+ −
=

+
= −

 

The following are now immediate: 

(3.6) 

[ ] [ ] ( )

[ ] [ ] ( ) [ ]
( )( )

1

2
1 1 2

2 2 1
,

3
Var Var 1 Cov ,

1 2 1
.

45

N N

N N

n n
E T n E Y

T n Y n n Y Y

n n n

μ

σ

+
= = =

= = + −

− +
=

 

3. Using Stein’s Method to Establish Asymptotic Normality 

One important result of our research is the establishment of a central limit 

theorem for NT , namely that  

(3.7) ( )  as N N

N

TP t t Nμ
σ

⎛ ⎞−
≤ → Φ → ∞⎜ ⎟

⎝ ⎠
 

for every t−∞ < < ∞ , where Φ  is the standard normal cumulative distribution function.  

While the iY ’s in the sum 
1

n

N i
i

T Y
=

= ∑  do have identical marginal distributions, they are 
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not independent so the classical central limit theorem is not applicable here.  Instead, we 

prove (3.7) by a technique referred to as Stein’s method.  Stein’s method (Stein, 1972, 

1986) is based on a simple differential equation that characterizes the normal distribution, 

and an idea called “coupling,” which involves the construction of auxiliary random 

variables that are “close” to the variables under investigation.  This method establishes 

bounds on the distance from normality for certain cases of dependence, including our 

case. 

We exploit the combinatorial structure of NT  to construct an exchangeable 

coupling that allows us to invoke Stein’s results.  Let ( ) / .N N N NW T μ σ= −   On the same 

probability space on which NT  is defined we construct a random variable “close” to NT , 

which we denote NT% , by selecting distinct integers u  and v , u v< , at random from 

1,2, ,nK  (with 3n ≥ ), switching 2uR and 2vR , and taking the sum of the modified pair 

maxima.  For ( ),N NT T%  to be an exchangeable pair simply means that 

( ) ( ), ,n n n nP T t T t P T t T t= = = = =  for all t  and t .  This symmetry may be shown as 

follows.  Let 

(3.8) ( )
1 1

0
1 1 1

,
u v n

i i i
i i u i v

T u v Y Y Y
− −

= = + = +

= + +∑ ∑ ∑  

be the sum of pair-maxima for all pairs in a matching except for the uth and vth pair, 

where iY  denotes the pair-maxima of the ith pair as before.  Therefore, 

(3.9) 
( ) ( ) ( )
( ) ( ) ( )

0 2 1 2 2 1 2

0 2 1 2 2 1 2

, max , max , ,

, max , max , ,
N u u v v

N u v v u

T T u v R R R R

T T u v R R R R
− −

− −

= + +

= + +%
 

for any choice of u  and v .  Conditioning on ( )0 ,T u v  gives 

(3.10)

 ( ) ( ) ( )( ) ( ) ( )( )
( )( ) 0

1

0 0 0 0
, ,

, , , , , ,
2n n n n

u v t u v

n
P T t T t P T t T t T u v t u v P T u v t u v

−⎛ ⎞⎟⎜= = = = = = = ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑  
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Now let ( ) ( ) ( ) ( )1 2 3 4, , , ,a u v a u v a u v a u v< < <  be the ordered values of 2 1uR − , 2uR , 

2 1vR − , and 2vR .  Then, conditional on ( )0 ,T u v , the only values NT  and NT%  can assume are 

( ) ( ) ( ) ( )1 0 2 4, , , ,b u v T u v a u v a u v= + +  and ( ) ( ) ( ) ( )2 0 3 4, , , ,b u v T u v a u v a u v= + + .  It 

follows directly that 

(3.11) 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 0

2 1 0

1 2 0

2 2 0

, , , , 0;

1, , , , ;
3
1, , , , ;
3
1, , , , ;
3

N N

N N

N N

N N

P T b u v T b u v T u v

P T b u v T b u v T u v

P T b u v T b u v T u v

P T b u v T b u v T u v

= = =

= = =

= = =

= = =

 

so the joint conditional probability distribution ( )( )0, ,N NP T T T u v  is symmetric.  

Therefore, by (3.10), ( ) ( ), ,n n n nP T t T t P T t T t= = = = =  and so ( ),N NT T%  is an 

exchangeable pair.  Now define ( ) / .N N N NW T μ σ= −% %   In the same manner ( ),N NW W%  is 

an exchangeable pair. 

Moreover, ; ,N N N u vT T= + Δ% , where ; ,N u v u v u vY Y Y YΔ = + − −% %  with 

( )2 1 2max ,u u vY R R−=%  and ( )2 2 1max ,v u vY R R −=% .  Then for any { }1, ,i n∈ K , 

[ ] 1|i N NE Y W n T−=  and  

(3.12) 
( )

( )( )
( ) ( )

2 1 2 1
|

2 1 3 1 2 1
N N

i N

n nQ TE Y W
n n n n n

+ −
⎡ ⎤ = = −⎣ ⎦ − − −
%  

where  

(3.13) 

( ) ( )

( )

( )( )

2

1 2

2 1

1 11 1 2

2 2
0 0 2 1 2 1

2

2

max , max ,

1

2 2 1 2 1
.

3

j jn n

N j k j N
k j j j i

n

N
j

N

Q R R i j T

j j T

n n n
T

− −

− −
= = = = = =

=

= = −

= − −

+ −
= −

∑∑ ∑ ∑ ∑∑

∑

l
l

 



 34

Combining these expressions gives 

(3.14) ( )| 1N N N NE W W Wλ⎡ ⎤ = −⎣ ⎦
% , 

where  

(3.15) 
( )
2 1

1N
n

n n
λ −

=
−

. 

From Theorem 2.5 of Rinott and Rotar (2000) we have  

(3.16) 
( ) ( ) { }

{ }

2

3

6 Var ( ) |

6 ,

N N N N
N

N N
N

P W t t E W W W

E W W

λ

λ

⎡ ⎤≤ − Φ ≤ −⎣ ⎦

+ −

%

%
  

which in the present case reduces to  

(3.17) 
( ) ( ) { }

{ }

2
; ,2

3/4
3

; ,7/4

90 Var |

6 45 .

N N u v N

N u v

P W t t E W
n

E
n

⎡ ⎤≤ − Φ ≤ Δ⎣ ⎦

⋅
+ Δ

 

We now show that { }4 2
; ,Var | 0N u v Nn E W− ⎡ ⎤Δ →⎣ ⎦  and { }37/2

; , 0N u vn E− Δ →  from which 

( ) ( ) 0NP W t t≤ − Φ →  will follow.  Because the second condition easily follows from 

the fact that ; ,| | 2 3N u v nΔ ≤ − , we focus on the first condition.  We cite two results that 

will be useful: 

Lemma 3-1:  Suppose that 1ℑ  and 2ℑ  are fieldsσ − with 1 2ℑ ⊆ ℑ .  Then for any 

random variable U that is measurable with respect to both 1ℑ  and 2ℑ  

(3.18) [ ]{ } [ ]{ }1 2Var | Var | .E U E Uℑ ≤ ℑ  

Proof of Lemma 3-1:  See Theorem 34.4 of Billingsley (1986), p. 470.  Let 

[ ]2|V E U= ℑ , giving [ ] [ ]1 1| |E V E Uℑ = ℑ  and [ ]{ }2Var |E U ℑ =   

Var( )V = [ ]{ }1Var |E V ℑ +  [ ]{ }1Var |E V ℑ  [ ]{ }1Var |E V≥ ℑ  [ ]{ }1Var |E U= ℑ .  ■  
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Lemma 3-2:  Let m and N be positive integers with 2m N≤ , and let ( )1 2,π π  

denote the first and last m elements of a random permutation of size 2m  taken from the 

integers {1,2, , }NK .  Then for any real-valued function g satisfying 2
1( )E g π⎡ ⎤ < ∞⎣ ⎦ , 

(3.19) ( ) ( ) ( ) ( ) ( )1
1 2 1 1 2 ,Cov , Cov , 1N mg g g g pπ π π π −= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , 

where ( ) ( )1 1 2Cov ,g gπ π⎡ ⎤⎣ ⎦ refers to the covariance taken over randomly selected pairs 

of -permutationsm  with at least one common element, and ( ) ( )
( ),

! !
! 2 !N m

N m N m
p

N N m
− −

=
−

  is 

the probability that two randomly selected pairs of -permutationsm  have no element in 

common. 

Proof of Lemma 3-2:  Let ( ) ( ) 2
0 1 2 gE g gπ π μ=⎡ ⎤⎣ ⎦  denote the expected value of 

the product ( ) ( )1 2g gπ π  where the permutations 1π  and 2π  are chosen independently 

from { }1, 2, , NK , and ( )1 gE g π μ=⎡ ⎤⎣ ⎦ .  Then 

(3.20) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 , 1 2 , 1 1 21N m N mE g g p E g g p E g gπ π π π π π= + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , 

where ( )1E ⋅  refers to expectation taken over pairs of permutations that have at least one 

element in common, so 

(3.21) 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1
1 2 , 0 1 2 , 1 1 2

1 2
, , 1 1 2

1

1 .

N m N m

N m g N m

E g g p E g g p E g g

p p E g g

π π π π π π

μ π π

−

−

= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − − ⎡ ⎤⎣ ⎦
 

Therefore, 

(3.22) 

( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )( )( )
( ) ( ) ( )

2
1 2 1 2

1 2 2
, , 1 1 2

2 1
1 1 2 ,

1
1 1 2 ,

Cov ,

1

1

Cov , 1

g

N m g N m g

g N m

N m

g g E g g

p p E g g

E g g p

g g p

π π π π μ

μ π π μ

π π μ

π π

−

−

−

= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − − −⎡ ⎤⎣ ⎦

= − −⎡ ⎤⎣ ⎦

= − −⎡ ⎤⎣ ⎦

 

as asserted.   ■ 
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By Lemma 3-1 it is sufficient to show that { }4 2
; ,Var | 0N u v Nn E− ⎡ ⎤Δ ℑ →⎣ ⎦  for Nℑ =  

( )1, , NR Rσ K , where 

(3.23) 
( )

1
2

; ,
2 2 1

; , | 2 .
1

n r

N r s
r s

N u v NE
n n

−

= =

Δ
⎡ ⎤Δ ℑ =⎣ ⎦ −

∑∑
 

Taking the variance yields  

(3.24) 
{ } ( ) ( ) ( )

( )

( )( ) ( )
( )

2 22
;1,2 ;1,3;1,22

; ,

2 2
;1,2 ;3,4

Cov ,Var
Var | 2 4 2

1 1

Cov ,
                                        2 3 .

1

N NN
N u v N

N N

E n
n n n n

n n
n n

⎡ ⎤ Δ ΔΔ⎣ ⎦⎡ ⎤Δ ℑ = + −⎣ ⎦ − −

Δ Δ
+ − −

−

 

Now use the fact that ; ,| | 2 3n u v nΔ ≤ −  to show that the first two terms on the right in 

(3.24) go to zero when multiplied by 4n− .  By Lemma 3-2, 

( ) ( )42 2 1
;1,2 ;3,4 ,4Cov , 2 3 1N N Nn p−⎡ ⎤Δ Δ ≤ − −⎣ ⎦ , where 

(3.25) 

( )( )( )( )
( )( )( )

( )( )
( )( )( )

( )

1
,4

1

2

4 5 6 7
1 1

8 2 7 7 15
1 2 3

1 2 3

.

N

N

N N N N
p

N N N N

N
N N N

n

N
N

Ο

−

−

− − +
−

− − −

− − − −
− = −

− − −

=

=

 

It follows that ( ) ( ) 0NP W t t≤ − Φ →  as claimed.  ■ 

4. An Improvement to the Normal Approximation by Edgeworth 
Expansion 

For small or moderate n, the error associated with the normal approximation may 

be unsatisfactorily large.  This error can be reduced slightly by an Edgeworth expansion, 

which approximates the distribution of interest using the normal distribution plus higher 

order corrections that adjust for non-zero moments of third order and above.  We derive 
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an Edgeworth expansion to include the skewness of NT , ( )3
3 N NE Tκ μ⎡ ⎤= −⎣ ⎦ , as follows:  

Using conditioning arguments as before, we have 

(3.26) 

( )( )

( )( )

[ ]
( )( )

2
3

1

2
2

1 2

2

1 2 3

2 1 24 15 1
,

15
4 2 1 15 10 1

= ,
45

16 2 1 70 49 6
. 

945

n n n
E Y

n n n
E Y Y

n n n
E Y Y Y

+ + +
⎡ ⎤ =⎣ ⎦

+ + +
⎡ ⎤⎣ ⎦

+ + +
=

 

See Appendix A for details.  Now write 

(3.27) 3 3 2

1
+3 +

n

N i i j i j k
i i j i j k

T Y Y Y Y Y Y
= ≠ ≠ ≠

= ∑ ∑ ∑  

and apply exchangeability to obtain 

(3.28) 

( ) ( )( ) [ ]
( )( ) ( )

( )( )

( )( )
( )( )

( ) ( )

3 3 2
1 1 2 1 2 3

2 2

2

4 3 2

3 1 + 1 2

2 1 24 15 1 4 2 1 15 10 1
3 1

15 45
16 2 1 70 49 6

1 2
945

2 1
1120 1204 236 43 3 .

945

NE T nE Y n n E Y Y n n n E Y Y Y

n n n n n n
n n n

n n n
n n n

n n
n n n n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ + + + + +
= + −

+ + +
+ − −

+
= + + − +

 

Therefore, 

(3.29) 
( )

( )( )( )

3 3 2 3

3

3

1 2 1 2 3
.

945

N N N N N NE T E T

n n n n

μ μ σ μ

κ

⎡ ⎤ ⎡ ⎤− = − −⎣ ⎦⎣ ⎦
− − + +

= =
 

Note that 3 0  1nκ < ∀ > , so NT  is negatively skewed for all cases (since by assumption 

we consider cases with at least two pairs).  

Now let NF  be the distribution function for the standardized random variable 

( ) /N N N NZ T μ σ= − , and let r
r NE Zλ ⎡ ⎤= ⎣ ⎦  denote the thr  cumulant of NZ .  In particular, 
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(3.30) ( )
( )( )

3 3
3 3

45 2 3

21 1 2 1
N

N

n
E Z

n n n
κλ
σ

− +
⎡ ⎤= = =⎣ ⎦ − +

. 

Then the Edgeworth expansion for NF   with respect to the standard normal distribution 

function Φ  may be written  

(3.31) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )( )

( ) ( )

2

2

3 1

2 /2 13

2 /2 1

6

1
6 2

2 345 1
126 2 1 2 1

N

x

x

x
F x x O n

n

x x e O n
n

n
x x e O n

n n n

λ

λ
π

π

−

− −

− −

′′′Φ
= Φ − +

= Φ − − +

+
= Φ + ⋅ − +

− +

 

(Wallace, 1958).  It is evident that the Edgeworth expansion (3.31) makes a positive 

correction to the normal distribution outside one standard deviation from the mean, and a 

negative correction inside one standard deviation.  Table 1 shows the critical values for 

200N =  obtained by Edgeworth expansion compared to estimates obtained by 

simulation and normal approximation. 

 

α Simulation Edgeworth Normal 

0.001 12746 12749 12750 

0.005 12854 12857 12858 

0.01 12908 12910 12911 

0.05 13050 13054 13054 

0.1 13128 13130 13131 

Table 1.   Critical values of the NT  statistic for N=200 estimated by 10,000 
simulations, Edgeworth expansion, and normal approximation. 
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The improvement appears rather small, but taking the skewness of NT  into account in an 

Edgeworth expansion provides improvement nonetheless and reduces SPM test false 

alarm rates slightly relative to the normal approximation.  Appendix B lists approximate 

critical values for various significance levels and sample sizes using (3.31). 

5. Treatment of Odd Sample Sizes 

If the sample size is odd, non-bipartite matching will leave one data point 

unassigned.  Conceptually, it poses no difficulty to extend our results to this case as we 

now proceed to do.  Let N denote the total sample size as before.  For clarity we let 0NT  

and 1NT  denote the sum of n  matched-pair maxima in the even ( 2N n= ) and odd  

( 2 1N n= + ) cases respectively.  Define a stochastic replica of 1NT  as follows: 

 1)  Select integer u at random from the set {1,2, , 2 1}n +K ; 

 2)  If 2u n≤  take 1 0 ( 1)/22 1N N uT T n Y +⎢ ⎥⎣ ⎦
= + + −% ; 

 3)  Otherwise take 1 0N NT T=% . 

Equivalently, ( )1 0 ( 1)/22 1N N n uT T n Yδ +⎢ ⎥⎣ ⎦
= + + −%  where nδ  is an independent Bernoulli 

random variable with success probability ( )2 / 2 1n n + .  Using this expression, the 

expected value and variance are obtained: 

(3.32) 

[ ] [ ] ( )

( ) ( )

1 1 1 0

0

2 2 12 2 1
2 1 3

2 2 1 4 12
3 3 3

2 2 ;
2 1

N N N N

N

nnE T E T E T n
n

n n n nn

n
n

μ

μ

+⎡ ⎤
⎡ ⎤= = = + + −⎢ ⎥⎣ ⎦ + ⎣ ⎦

+ +
= + =

+⎛ ⎞= ⎜ ⎟+⎝ ⎠

%
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(3.33) ( )( ) ( )( )

( )( )
( )( )

2
,1 1 1 1

2
0

Var Var | Var |

1 2 7 1 2 32
45 9 45

1 2 3
.

1 2 1

N N N n N n

N

T E T E T

n n n n n nn

n n
n n

σ δ δ

σ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
− + + +

= + =

+ +
= ⋅

− +

% % %

 

In standardized terms, the correction made by adding an observation to the even case 

becomes negligible as the sample size increases and does not affect the asymptotic 

normality argument of the previous section. 

6. On the Consistency of NT  

Henze and Penrose (1999) establish that Friedman and Rafsky’s minimum 

spanning tree test is consistent against all alternatives for the two sample case 

1, , ~mX X F… , 1, ,m m nX X G+ +… ∼ , 0 :H F G= , 1 :H F G≠ ,  F  and G  unknown.  

Rosenbaum (2005) argues for the consistency of his cross-match statistic CM  distributed 

as in (2.24) and (2.25) against alternatives of the form 

1 1, , ~ ~ , ,m m m nX X F G X X+ +≠… …  by showing that it is a consistent test for comparing 

two discrete distributions with finitely many mass points.  He heuristically extends that 

consistency argument to the general case by the fact that any two distributions may be 

approximated arbitrarily closely by two discrete distributions with finitely many mass 

points.  We do not try to formalize that argument here; rather we theoretically motivate 

the use of the SPM test under alternative hypotheses by proving a consistency result for 

NT  that depends on the consistency of CM : 

Proposition 3-1:  NT  is consistent against all alternatives of the form 

(3.34) { }1 1, , ~ ~ , ,  2, ,m m NX X F G X X m N− ≠ ∃ ∈… … …  

against which CM  is consistent, where CM  is Rosenbaum’s cross-match statistic as 

defined in (2.24). 

We prove the case for even N and a change point that divides the observations 

into two subsets each containing an even number of elements; the same reasoning 
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extends to odd cases.  Let 2N n= , suppose 1 1M +  is a change point, 1M  and 

2 1M N M= −  are both even, and 1 1/M N π→  constant as N →∞ .  Adopt the subscript 

notation “0” or “1” to denote probabilities (or expectations or variances) taken under the 

null or alternative hypothesis, respectively.  We will show that 

1 1 as N N

N

TP z Nα

μ
σ

⎛ ⎞− ⎟⎜ ⎟< → →∞⎜ ⎟⎜ ⎟⎜⎝ ⎠
 for any significance level α , where zα  denotes that α -

quantile of the standard normal distribution.  We build our proof on the following fact:  

Lemma 3-3:  Let N kT  denote the random variable obtained by matching among 

the first 1M  points alone (call that set of pairs 1P ), matching among the last 2M  points 

alone (call that set of pairs 2P ), randomly choosing k pairs in 1P   and k pairs in 2P  ( k  is 

even for this case since 1 2, ,M M  and N  are all even), and randomly swapping one 

element from each selected pair in 1P   with one element from each selected pair in 2P  

(each pair gets one swap), and finally computing the pair-maxima sum on the new pairs.  

Let iΔ be the change in the pair-maxima sum due to the ith swap, 1, ,i k= … .  Then 

under null or alternative hypotheses, 

(3.35) N kT  is distributed the same as NT  conditional on 2CM k=  

and  

(3.36) 
1 2

1 2

1

~ ,
2

k

M M iN k
i

M MT T T
=

+ + + Δ∑  

where ( ){ }1 20, , min , / 2k M M∈ … , the iΔ  are exchangeable, and each iΔ  is 

independent of CM . 

Proof of Lemma 3-3:  That N kT  is distributed the same as NT  conditional on 

2CM k=  is a consequence of all within group matchings being equally likely and all 

cross-group matchings being equally likely.  Each swap constitutes two cross-matches.  

1 2

1 2

1

~
2

k

M M iN k
i

M MT T T
=

+ + + Δ∑  results from the fact that by the construction of N kT , 
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before any swaps occur the total pair-maxima sum is 
1 2

2
1 2M M

MT T M+ + , where 
1MT  is 

the pair-maxima sum over 1P  and 
2

2
1 2M

MT M+  is the pair-maxima sum over 2P .  After 

the swaps the final pair-maxima sum increases by a total 
1

k

i
i=

Δ∑  relative to the pre-swap 

sum.  Exchangeability and independence are by construction of N kT .    ■ 

Proof of Proposition 3-1:  By (3.36), 

(3.37) 
[ ]

[ ]

1 2

1 2

2
0 0 0 0 0 1

1

01 2
0 0 0 1

2
2

.
2 2

k
C C

N N M M i
i

C

M M

ME T E E T M E E T T M M k

E MM ME T E T E

=

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥= = + + + Δ =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤= + + + Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑
 

Now solve for [ ]0 1E Δ  directly by substitution using (2.27) and (3.6): 

(3.38)

[ ]
[ ]( )

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )( ) ( )
( )

( )

1 20 0 0 1 2
0 1

0

1 1 2 2 1 2

1 2

2
1 1 1 1 1 1

2
1 1

2

2 1 1 1 3
1

3

2 1 1 1 1 1 3 1
1

3 1
1.

3

N M M

C

E T E T E T M M
E

E M

N N M M M M M M
N

M M

N N N N N N N
N

N
N

π π π π π π

π π

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦Δ =
⎡ ⎤⎢ ⎥⎣ ⎦

+ − + − + −
= −

+ − + − − − + − −
= −

−

−
=

 

Alternately, [ ]0 1E Δ  can be found more directly by noting that with every swap the pair-

maxima value from 1P  gets replaced by the pair-minima value from 2P .  Denoting the 

pair minima of the first swapped pair in 2P  as 1;2U  and the pair maxima of the first 

swapped pair in 1P  as 1;1Y , we have 

(3.39) [ ]
( ) ( )2 1

0 1 0 1;2 1;1 1

1 2 1 1
3 3 3

M M NE E U Y M
⎛ ⎞+ + −⎟⎜⎡ ⎤ ⎟Δ = − = + − =⎜ ⎟⎣ ⎦ ⎜ ⎟⎜⎝ ⎠

. 
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Since equation (3.36) holds under both null and alternative hypotheses, we 

proceed as above to find an expression for [ ]1 NE T : 

(3.40) 

[ ]

[ ]

1 2

1 2

1 2

2
1 1 1 1 0 1

1

11 2
0 0 0 1

1 2
0 0 1

2
2

2 2
1 ,

2 6

k
C C

N N M M i
i

C

M M

C
M M

ME T E E T M E E T T M M k

E MM ME T E T E

M M NE T E T E M

=

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ′⎢ ⎥= = + + + Δ =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤= + + + Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞− ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜= + + + ⎟⎜ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎟⎣ ⎦ ⎣ ⎦ ⎜⎝ ⎠

∑

 

so 

(3.41) [ ] [ ] ( ) 1 0
1 0 1 0

1 1 .
6 6

C C
C C

N N

E M E MN NE T E T E M E M N
N

⎡ ⎤ ⎡ ⎤−⎛ ⎞ ⎛ ⎞− − ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎟ ⎟⎡ ⎤′⎜ ⎜− = − =⎟ ⎟⎢ ⎥⎜ ⎜⎢ ⎥⎣ ⎦⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎣ ⎦
 

Rosenbaum argues that 1 0 0
C CE M E M

N
δ

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ → <  as N →∞ ; therefore, for 

sufficiently large N 

(3.42)
[ ] [ ] ( )( ) ( )

( )( )
1 0 1 / 2 5 1

as 
6 2 1

N N

N N

E T E T N N N N
N

N N N

δ δ
σ σ
− − −

< = →−∞ →∞
− +

, 

again using (3.6).  Now we need one final lemma to complete our proof: 

Lemma 3-4:   

(3.43) 
[ ]
[ ]

( )1

0

Var
1 ,

Var
N

N

T
O

T
=  

where ( )O ⋅  is the standard Landau notation. 

Proof of Lemma 3-4:  We rely on two facts that follow directly from 

Rosenbaum’s argument for the consistency for his cross-match statistic; namely, 

( )1
CE M O N⎡ ⎤ =⎢ ⎥⎣ ⎦  and ( )1Var CM O N⎡ ⎤ =⎢ ⎥⎣ ⎦ .  First, expand [ ]1Var NT  by conditioning: 

(3.44) [ ]1 1 1 1 1Var Var Var .C C
N N NT E T M E T M⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  

Now express each term on the right hand side using (3.36).  The first term is simply 
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(3.45) ( )

( )
( )

1 2

1 2

2
1 1 1 0 1

1

1 2
1 0 0

2
1

3

Var Var 2
2

Var
2 2

= Var

.

k
C C

N M M i
i

C

M M

C

ME T M E T T M M k

M M ME T E T O N

O N M

O N

=

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥= + + + Δ =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤⎢ ⎥⎣ ⎦

=

∑

 

For the second term, we first note that 
1MT  and 

2MT  are independent by construction, so 

(3.46) 

1 2

1 2

1 2

2
1 1 1 0 1

1

1 0 0 0
1

0
1

Var Var 2
2

Var Var Var 2

Cov , 2 .

k
C C

N M M i
i

k
C

M M i
i

k
C

M M i
i

ME T M E T T M M k

E T T M k

T T M k

=

=

=

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ′⎢ ⎥= + + + Δ =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
⎧ ⎡ ⎤⎪⎪ ⎡ ⎤ ⎡ ⎤ ′⎢ ⎥= + + Δ =⎨ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎪⎪ ⎣ ⎦⎩

⎫⎡ ⎤⎪⎪′⎢ ⎥+ + Δ = ⎬⎢ ⎥⎪⎪⎣ ⎦⎭

∑

∑

∑

 

It is clear that the exchangeable iΔ s are negatively correlated, since ;2 ;1i i iU YΔ = −  with 

the ;2iU  negatively correlated, the ;1iY  negatively correlated, and the ;2iU  independent of 

the ;1iY ’s.  Therefore, 

(3.47) [ ]
( )

[ ]

( )

0 0 0
1 1

0 1 0 1 2

2
0 1;2 1;1

Var 2 Var 2 Cov , 2

1
Var Cov ,

2 4

Var .
2

k k k
C C C

i i i j
i i i j

C C
C

C
C

M k M k M k

M MM

M U Y M O N

= = ≠

⎡ ⎤ ⎡ ⎤⎡ ⎤ ′⎢ ⎥Δ = = Δ = + Δ Δ =⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

′ ′⎛ ⎞ −′ ⎟⎜ ⎟⎜= Δ + Δ Δ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎡ ⎤⎟≤ − =⎜ ⎟ ⎣ ⎦⎜ ⎟⎜⎝ ⎠

∑ ∑ ∑

 

Furthermore, the iΔ s can be seen to be negatively correlated with 
1MT  and 

2MT , since 

larger 
1MT  values are associated with larger ;1iY  values and larger 

2MT  values are 

associated with smaller ;2iU  values.  So, 
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(3.48) ( ) ( )
( )
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E T M E T T M k
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O N

=

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤ ′⎢ ⎥≤ + + Δ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

=

∑

 

Combining (3.45) and (3.48) results in ( )3Var NT O N⎡ ⎤′ =⎣ ⎦ , and so 

[ ] [ ] ( )1 0Var / Var 1N NT T O=  as claimed. 

Finally, to conclude the proof of our consistency proposition, we apply 

Chebyshev's inequality.  Choose any real number 0s>  and any significance level α .  

Then  

(3.49) 

[ ] [ ]( ) [ ] [ ]( )
[ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ]
[ ]

1 1 1 1 12

1 1 00
1

0 0

0
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0

1 Var Var

Var

Var Var
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Var

N N N N N N

N N NN N

N N

N N

N

P T E T s T P T E T s T
s

s T E T E TT E T
P

T T

T E T
P z N

T
α

≥ − ≥ ≥ − ≥

⎛ ⎞+ − ⎟−⎜ ⎟⎜= ≥ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟−⎜ ⎟⎜≥ ≥ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 

since [ ] [ ] ( )1 1Var / Var 1N NT T O=  by Lemma 3-4 and [ ] [ ]( )1 0 /N N NE T E T σ− →−∞  as 

N →∞  by (3.42).  The inequality (3.49) is true for any 0s> , so 

1 1 as N N

N

TP z Nα

μ
σ

⎛ ⎞− ⎟⎜ ⎟< → →∞⎜ ⎟⎜ ⎟⎜⎝ ⎠
 and the proposition holds.    ■ 

7. A Graphical Example 

We give a graphical example to illustrate how the Sum of Pair-Maxima test 

works.  Consider the same set of 20 points drawn from a bivariate normal distribution 

used for illustration in Chapter II (see Appendix D for data values).  Now suppose that 

associated with each observation is some sequence label, for example, the time order of 

the observation.  Figures 6 and 7 show two such cases, where the plot symbol for each 

data point is its sequence label, and the data are paired with respect to the optimal non-

bipartite matching on the set (compare to Figure 3 in the previous chapter, which is the 



 46

same plot except without sequence labels).  To represent a sample whose underlying 

distribution has not changed with respect to sequence label, the sequence labels are 

assigned at random in Figure 6.  To represent a sample whose underlying distribution has 

changed with respect to sequence label, the sequence labels are assigned from lower-left 

to upper-right in Figure 7. 

 

Figure 6.   Minimum weight non-bipartite matching on 20 points with no 
change in underlying distribution with respect to observation order. 

Now we compute the SPM test statistic, 20T , for each case and consider whether 

or not this test rejects the null hypothesis at significance level 0.05α= .  For 20N = , 

the quantile table in Appendix B gives crit
20 129T = .  In the case of Figure 6, one readily 

computes crit
20 2015 19 18 11 20 17 8 5 14 16 143 129T T= + + + + + + + + + = ≥ = , and so 

the null hypothesis is not rejected.  In the case of Figure 7, 
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crit
20 202 4 6 10 11 13 17 16 18 20 117 129T T= + + + + + + + + + = < = , so the null 

hypothesis is rejected and we conclude that the underlying distribution is changing with 

respect to observation order.  The nature of change in this example is perhaps extreme, 

but it serves to illustrate the sense of the NT  statistic as a change-point test. 

 

Figure 7.   Minimum weight non-bipartite matching on 20 points with a 
change in underlying distribution with respect to observation order. 

We more thoroughly examine the performance of the SPM test by simulation 

study in Chapter IV.  As one might expect, while this nonparametric test has a fixed false 

alarm rate regardless of underlying distribution, its power is somewhat low.  We find that 

we can dramatically increase the power of this test by considering a particular ensemble 

of such matching statistics, and still retain a fixed false alarm rate.  Before we present the 

theory for such an ensemble statistic (in Section C of this chapter), we first introduce an 

alternative to the SPM test that is also based on non-bipartite matching. 
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B. THE NON-BIPARTITE ACCUMULATED PAIRS TEST  

1. The NM  Statistic 

The cross-match test statistic proposed by Rosenbaum (2005) is used when there 

is a clear delineation between two groups in a sample (for example, treatment and 

control) and the objective is to test whether the two groups come from the same 

probability distribution.  After performing an optimal non-bipartite matching, one counts 

the number of pairs that link across the two predetermined groups.  Under the null 

hypothesis of homogeneity this test statistic has a simple, exact distribution (see (2.24) 

and (2.25)) that can be approximated by a normal distribution in large samples.  We now 

consider an extension of Rosenbaum’s test to the situation where a sample is ordered 

sequentially but no prior subdivision of the observation set exists. 

As before, suppose we have 2N n=  observations and an associated optimal non-

bipartite matching ( ) ( ){ }1 1, , , ,n nU Y U Y= KM .  Let ( ){ }, , ; 1, ,k N i i iM U Y Y k i n= ≤ = K  

denote the number of pairings in a non-bipartite matching that occur within the first k  

observations, 2 1k N≤ ≤ − .  The cross-match statistic CM  is equivalent to ,k NM , and so 

an exact expression for the probability mass function of ,k NM  under the null hypothesis 

follows directly from (2.24): 

(3.50) ( ) ( )2
, 2 , 0 , , / 2 ,k r

k N

n k r
k r r

P M r r k n k
N
k

−

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = = ∨ − ⎢ ⎥⎣ ⎦⎛ ⎞

⎜ ⎟
⎝ ⎠

K   

where ( ) ( ), 2C
k NP M r P M k r= = = −  for observation subsets of size k  and N k− .  

Observe that ,k NM  can be expressed in terms of the matched-pair maxima jY  by noting 

that the event ,k NM r>  is identical to the event { }jj Y k r≤ > , which in turn is identical  
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to the event ( )1rY k+ ≤  where ( )jY  is the thj  largest among the matched-pair maxima 

(taking ( )1 1rY N+ ≡ +  for r n≥ ).  Thus, large values ,k NM  are associated with small values 

of ,n jY  and vice-versa. 

Rosenbaum uses the number of cross-matches as a test statistic, rejecting the null 

hypothesis of homogeneity for small values.  The number of within-group matches in any 

one of the two groups, ,k NM , is an equivalent test statistic, with large values indicating 

evidence against the null hypothesis.  We call the vector ( )2, 1,, ,N N N NM M −
′=M …  the 

Non-Bipartite Accumulated Pairs (NAP) test statistic.  Like NT , a test based on NM  

rejects the null hypothesis for small values of jY . 

2. Critical Envelope 

It is possible to develop an exact simultaneous test based on NM  for cases where 

the change point k  is not pre-specified.  To do this we seek a vector of non-negative 

integers ( )0 1, , ,, ,N k N k Nq qq α
′= K  (where we omit the test level subscript on the right-hand 

side for ease of notation below) so that the following is true for a given test level α : 

(3.51) ( ), , 0 1, 1 .k N k NP M q k k k α≤ ≤ ≤ ≥ −  

We choose ,k Nq  to be the 1 α− %  quantile of the distribution of ,k NM  so that the non-

simultaneous test at stage k  has level α% ; that is, 

( ), , 0 1 for some k N k NP M q k k k α> ≤ ≤ ≤ % .  The problem, then, is how to select α%  so that 

the simultaneous test level comes as close to α  as possible without exceeding this value. 

To find ( ), , 0 1,k N k NP M q k k k≤ ≤ ≤ , we develop a recursive computational 

scheme based on the fact that  

(3.52) ( ) ( ) ( )
,1

, , 0 1 1 ,
0

1
, ; , ,

k N

k N k N k N
r

q

P M q k k k r k N P M rπ
=

≤ ≤ ≤ = ⋅ =∑  
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where ( ) ( ), , 0 ,; , , 1|j N j N k Nr k N P M q k j k M rπ = ≤ ≤ ≤ − = , and that ( ); ,r k Nπ  has a 

recursive form stated in the following lemma. 

Lemma 3-5:   

(3.53) 

( ) ( ) ( )

( ) ( )
( )

1,

1,

0 1 ,

2; , 1; 1, 1

2 ; 1, ,

1, , ; 0 , , ,

k N

k N

k N

rr k N r k N I r q
k

k r r k N I r q
k

k k k r k n q

π π

π

−

−

= − − − ≤

−
+ − ≤

= + = ∨ −K K

 

where ( )I ⋅  is the indicator function. 

Proof of Lemma 3-5:  Expand ( ; , )r k Nπ  as follows: 

(3.54)
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Finally, we note that  

(3.55)
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( ) ( )
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1
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1|
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11 2
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k N k N

N

k N k N
s

k N

k

k N
s

k N

k N

k N

P M r M r

P M r M r k s P k s

P M r

P M r k s P k s

P M r

P M rk r
N kP M r
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−
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−

−
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− −

= − =
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= −−
= ⋅ =

− =

∑

∑  

to complete the proof.  ■ 

To start the recursion take ( )0; , 1,r k N rπ ≡ ∀ . Let 

(3.56) ( ) ( ) ( ),; , ; , k Nb r k N r k N I r qπ= ≤  

and 

(3.57) ( ) ( ) ( ); , ; , 1; ,b r k N b r k N b r k NΔ = − −  

From (3.53) we then have  

(3.58) ( ) ( ) ( )2; , ; 1, ; 1,b
rr k N b r k N r k N

k
π = − − Δ −  

which is suitable for efficient implementation in S-PLUS® (2005), R (2005), 

MATLAB® (2008), or other interpreted languages.  There is no need for asymptotic 

approximations;  finding an exact critical region can be done quickly at any practical 

sample size using trial and error.  An implementation for R is included in Appendix C.  

We use the fact here that all information carried through conditioning to the joint events 

1, ,,k N k NM s M r− = =  is carried through the single event 1,k NM s− = , and that the event 

,k NM r= implies either 1,k NM r− =  or 1, 1k NM r− = − . 
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Using the exact method presented here is far less conservative than the Bonferroni 

method.  At sample size 20N =  a nominal .05α = simultaneous test achieves test level 

.046 using .021α =%  while the Bonferroni test achieves level .0044 using .0028α =%  (.05 

divided by 18 based on 0 2k =  and 1 19k = ).  Sample size 100N =  achieves level .048 

using .0046α =%  while the Bonferroni test achieves level .006 using .0005α =%  (.05 

divided by 98 based on 0 2k =  and 1 99k = ). 

As an illustration, Figure 8 shows two cases for 100N =  at significance level 

0.05α= .  The solid line is the critical envelope ,Nq α  obtained by recursion using (3.51)-

(3.58).  The null hypothesis case (homogeneity) is modeled by drawing all 100 points 

from a bivariate normal distribution ( )0BVN ,Σμ  where ( )0 0,0 ′=μ  and Σ  is the 

identity matrix.  The alternate hypothesis case (heterogeneity) is modeled by drawing the 

first 50 points from ( )0BVN ,Σμ  and the last 50 points from ( )1BVN ,Σμ  where 

( )1 3,0 ′=μ .  We choose a large mean jump for this example to emphasize the response of 

NM  to a change point.  Applying the NAP test, we reject the null hypothesis for any case 

where , ,k N k NM q> .  In this example, NM  for the case of homogeneity never exceeds 

,Nq α  and so we do not reject the null hypothesis.  In contrast, NM  for the case of 

heterogeneity exceeds ,Nq α  not just once but for numerous values of k, so ample 

evidence exists to reject the null hypothesis. 
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Figure 8.   Critical envelope for the NAP test and two cases of NM  with 
200N =  and 0.05α= .  Reject the null hypothesis if NM  exceeds Nqα  

for some k . 

3. A Graphical Example 

As we did for the SPM test, we illustrate the mechanics of the NAP test with the 

data presented in Figures 6 and 7.  We compute the NAP test statistic 20M  for 

2, ,19k = …  and consider whether or not this test rejects the null hypothesis at 

significance level 0.05α= .  Figure 9 shows critical envelope 20,q α  and 20M  for the data 

from Figure 6.  We find the ,20kM  values easily by visual inspection: there are no pairings 

that occur within the first 2 observations, none in the first 3 observations, none in the first 

4 observations, 1 pairing within the first 5 observations, and so on. 
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Figure 9.   NAP test statistic for Figure 6 data, no change point detected. 

Since ,20 ,20k kM q k≤ ∀  in this case, we do not reject the null hypothesis.  In 

contrast, Figure 10 shows 20,q α  and test statistic 20M  for the data from Figure 7.  Here 

we see that ,20 ,20k kM q>  for 4,6,  and 11k = .  A single exceedance alone is sufficient to 

reject the null hypothesis, so in this case there is more than enough evidence to do so. 

 

no exceedances 
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Figure 10.   NAP test statistic for Figure 7 data, change point detected. 

We note here at least two potential advantages of the NAP test over the SPM test.  

First, by design, the NAP test allows one to narrow the window of the test for possible 

change points, which the SPM test does not allow.  In other words, if there is prior 

information that allows a possible change point to be restricted to a subinterval [ ]0 1,k k  

with 0 2k >  and 1k N< , then the critical envelope calculation is adjusted accordingly.  A 

second advantage is that the NAP test gives information regarding not only if  a change 

point exists, but also when it occurred.  For any case where at least one exceedance 

exists, let { }*
, ,min : k N k Nk k M q= > .  We expect that earlier change points would be 

identified by smaller values of *.k   We examine the performance of the NAP test in the 

simulation study presented in Chapter IV. 

 

 

exceedances 
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C. THE ENSEMBLE SUM OF PAIR-MAXIMA TEST 

The minimum cost assignment obtained by optimal non-bipartite weighted 

matching is associated with a random sample; therefore, the assignment is optimal only to 

the specific data at hand.  Another sample with the same underlying distribution(s) would 

almost certainly result in a different matching with respect to sequence labels.  It is 

natural then to examine sub-optimal (but good) matchings for additional information 

regarding homogeneity, and evaluate whether the information in this ensemble of 

matchings yields greater power to detect whether a distribution change has occurred.    In 

particular, we consider collections of matchings that are orthogonal, meaning they share 

no common pair (this is similar to the approach of Friedman and Rafsky (1979) where 

they examine orthogonal minimal spanning trees).  We discuss a few properties of such 

collections as background and then introduce a test statistic based on collections of 

orthogonal matchings. 

1. Orthogonal Successive Optimal Matchings 

We use the term orthogonal successive optimal matchings to refer to matchings 

constructed by the following process: compute an optimal non-bipartite matching on the 

original data, then the next best matching that is orthogonal to the first, then the next best 

matching that is orthogonal to the first and second, and so on.  Given 2N n=  

observations (we assume N even as before to simplify exposition) and some associated 

cost function, orthogonal successive optimal matchings have the following properties. 

Property 1:  At least / 2N  matchings may be obtained by orthogonal successive 

optimal matching. 

Proof of Property 1:  The following lemma follows directly from Theorem 6.6 of 

Chartrand and Zhang (2005): “If a graph G has 2N n=  vertices and each vertex has 

degree at least n, then G has a perfect matching.”  Let ( )0 0,G V E=  be the original graph 

on N vertices and ( )1 / 2N N −  edges and let ( ),i iG V E=  denote the subgraph whose 

edge set 0iE E⊆  consists of those edges that have not been utilized in matchings 1, , i… .  
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At the beginning of the matching process, each vertex in 0G  has degree 1N − .  After the 

first matching / 2N  edges are removed from 0G  with each vertex incident  to exactly 

one such edge, so each vertex in 1G  has degree 2N −  and a perfect matching exists on 

1G  by the lemma.  After / 2 1N −  orthogonal successive optimal matchings have been 

computed, /2 1NG −  has degree ( ) ( )1 / 2 1 / 2N N N n− − − = = , so at least one more 

matching exists by the lemma.   ■ 

Property 2:  At most 1N −  matchings may be obtained by orthogonal successive 

optimal matching. 

Proof of Property 2:  From the discussion in Property 1, each vertex in graph iG  

has degree 1N i− − .  Therefore, 1NG −  has no edges, and no more successive matchings 

exist.   ■ 

The bounds associated with Properties 1 and 2 are both strong bounds in the sense 

that there exist cases where no more than / 2N  matchings may be obtained by 

orthogonal successive optimal matching, and also cases where exactly 1N −  orthogonal 

matchings may be obtained.  The following examples demonstrate each case.   

Example for which no more than N / 2 matchings may be obtained:  Let 6N = , 

and consider a regular hexahedron under a Euclidean cost function in three dimensions 

(that is, a polyhedron with 6 triangular faces and all edges of equal length).  Label its five 

vertices as shown in Figure 11. 

 

Figure 11.   Example for which no more than N / 2 matchings may be obtained. 

2 
3 

4 

5 

1 
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Without loss of generality, assume each edge length of this shape equals 1.  Now insert a 

sixth point in the center of this shape (that is, at the midpoint of the segment connecting 

the vertices 1 and 5) and edges to connect it to all other five vertices.  The resulting cost 

matrix is given in Table 2: 

 

i jc  1 2 3 4 5 6 

1 0 1 1 1 2 2 / 3 2 / 3  
2 1 0 1 1 1 1/ 3  
3 1 1 0 1 1 1/ 3  
4 1 1 1 0 1 1/ 3  
5 2 2 / 3  1 1 1 0 2 / 3  
6 2 / 3  1/ 3 1/ 3 1/ 3 2 / 3 0 

Table 2.   Cost matrix for the regular hexahedron in Figure 11. 

It is quickly verified that an optimal matching in this case pairs vertices 1, 5, and 

6 with any one of vertices 2, 3, and 4 so as to make a matching.  Regardless of 

tiebreaking procedure, the first three successive matchings exhaust all pairings of 1, 5, 

and 6 with 2, 3, and 4.  To obtain a fourth matching, vertices 2, 3, and 4 may only be 

paired among each other, in which case no partner exists for the third.  Therefore, no 

more than the / 2N  orthogonal successive optimal matchings guaranteed by Property 1 

can be constructed. 

Example for which exactly N – 1 matchings may be obtained:  Let 4N = , and 

consider a square under a Euclidean cost function with its vertices labeled as shown in 

Figure 12: 

 

Figure 12.   Example for which exactly N – 1 matchings may be obtained. 

1 

2 

4 
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By inspection it is clear that, in order, { } { }{ }1, 2 , 3, 4 , { } { }{ }1, 4 , 2,3 , { } { }{ }1,3 , 2, 4  is 

an example of 1 3N − =  orthogonal successive optimal matchings. 

In fact, the set of all possible collections of 1N −  orthogonal successive optimal 

matchings is isomorphic to the set of all symmetric Latin squares of order N  with the 

property that the integer N  is on the diagonal.  Recall that a Latin square of order N  is 

an array consisting of the integers { }1, , N…  such that each integer occurs exactly once in 

each row and once in each column.  The isomorphism may be described as follows.  

Denote the 1N −  orthogonal successive optimal matchings by { }1 1, , N−…M M , where 

( ) ( ){ }1 1, , , ,j j j n j n ju y u y= …M  is the jth matching and i ju  and i jy  are the minimum and 

maximum sequence labels, respectively, of the ith pair listed in the jth matching.  Enter the 

integer j  in an N N×  array at entries ( ),i j i ju y  and ( ),i j i jy u  for all { }1, ,i n∈ …  and all 

{ }1, , 1j N∈ −… , and enter N on the array diagonal.  The resulting Latin square carries 

the information indicating the stage in the succession of matchings at which the 

observation whose sequence number corresponds to row (column) a is paired with the 

observation whose sequence number corresponds to column (row) b, a b≠ .  We 

illustrate the isomorphism with a very simple example on 6N =  observations in 

Figure 13. 

   5 successive matchings   6×6 Latin square 

 

{ } { } { }{ }
{ } { } { }{ }
{ } { } { }{ }
{ } { } { }{ }
{ } { } { }{ }

1

2

3

4

5

1, 2 , 3,5 , 4,6

1,3 , 2,6 , 4,5

1,4 , 2,3 , 5,6

1,5 , 2,4 , 3,6

1,6 , 2,5 , 3,4

=

=

=

=

=

M

M

M

M

M

 

Figure 13.   Five orthogonal successive optimal matchings on 6N =  
observations with associated Latin square.  Cost function does not 
necessarily satisfy the triangle inequality. 

6 1 2 3 4 5 
1 6 3 4 5 2 
2 3 6 5 1 4 
3 4 5 6 2 1 
4 5 1 2 6 3 
5 2 4 1 3 6 
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In our research, most random samples we observed of size N admitted 1N −  

orthogonal successive optimal matchings.  However, the fact that this is not always the 

case requires that our theory accommodate cases where less than 1N −  orthogonal 

successive optimal matchings are admitted. 

2. The NK  Statistic 

We proceed to formulate a test statistic based on orthogonal successive optimal 

matchings.  Let ,N iT  denote the sum of pair-maxima statistic associated with the ith best 

orthogonal matching.  It is straightforward to show that ,N iT  is marginally distributed as 

NT .  We prove this for the case of continuous random variables.  

Proof:  Let ( ) ( )( )1 , , NX X…  be some standard ordering of observations 

( )1, , NX X…  based solely on data content (e.g., an ordering based on observation norm) 

and let C be the cost matrix with respect to this standard ordering.  Let V  denote the set 

of all N N×  0-1 matrices associated with perfect matchings on N observations; that is, 

V  is the set of all symmetric matrices that have a “1” entry for pairings in a matching 

and “0” otherwise.  Two matchings ,U V ∈V  are orthogonal if and only if U V = 0 , 

where “ ” is the Hadamard (coordinate-wise) product of U  and V .  Then the optimal 

non-bipartite matching problem can be expressed as 

(3.59) 
( )min tr

subject to 

CV

V ∈V ,
 

where ( )tr A  denotes the trace of matrix A.  Now let *
1V  be the solution to (3.59), and 

define nested sets 1 2 i≡ ⊃ ⊃ ⊃V V V V , orthogonal solutions * * *
2 3, , , iV V V… , and 

objective values * * *
1 2, , , iz z z…  for { }1, , / 2i N∈ …  recursively as follows: 
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(3.60) 

( )

( )

{ }

( )

* *
1 1

1
* *

2 2

*
2 1

* *

 solves min tr

                        subject to ,

 solves min tr

                        subject to : ,

                     
 solves min tr ,

                   
i i

V z CV

V

V z CV

V V V V

V z CV

=

∈

=

∈ = ∈ =

=

0

V

V V

{ }{ }*     subject to : 1, 2, , 1 .i jV V V V j i∈ = ∈ = ∀ ∈ −0 …V V

 

For continuous random variables, * * *
1 2 iz z z< < <  with probability 1. 

Now, for any permutation π  applied to the integers { }1, , N… , let Aπ  denote the 

associated N N×  permutation matrix.  If the order of ( ) ( )( )1 , , NX X…  is permuted by π , 

then the cost matrix for the permuted observations is A CAπ π′ .  Define nested sets 

,1 ,2 ,iπ π π≡ ⊃ ⊃ ⊃V V V V , orthogonal solutions * * *
,2 ,3 ,, , , iV V Vπ π π… , and objective values 

* * *
,1 ,2 ,, , , iz z zπ π π…  for { }1, , / 2i N∈ …  recursively like before: 

(3.61)

( )

( )

{ }{ }

* *
,1 ,1

,1

* *
, ,

*
, ,

 solves min tr

                           subject to ,
                     

 solves min tr ,

                           subject to : 1, 2, , 1 .
i i

i j

V z C V

V

V z C V

V V V V j i

π π π

π

π π π

π π

=

∈

=

∈ = ∈ = ∀ ∈ −0 …

V

V V

 

Note that ( ) ( ) ( )tr tr trC V A CA V CA VAπ π π π π′ ′= =  for all V ∈V  by the permutation 

invariance of the trace operator. 

We now show by induction that for any i, * *
, =i iV A V Aπ π π′ .  The assertion is true for 

1i = , since *
1 ,1A V Aπ π π′ ∈ =V V , 

(3.62) ( ) ( ) ( )
,1

* *
,1 1min tr min tr min tr ,

V V U
z C V CA VA CU z

π
π π π π∈ ∈ ∈

′= = = =
V V V

 

and 

(3.63) ( )( ) ( )* * *
1 1 1tr tr .C A V A CV zπ π π′ = =  
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Now suppose * *
, =j jV A V Aπ π π′  for all { }1, ,j k∈ … , / 2k N< .  Then 

(3.64) 

{ }{ }
( ) { }{ }

( ) ( ) { }{ }
{ }{ }

*
, 1 ,

*
,

*
,

*

: 1, 2, ,

: 1, 2, ,

: 1, 2, ,

: 1, 2, , .

k j

j

j

j

V V V j k

V A V V A j k

V A VA A V A j k

V A VA V j k

π π

π π π

π π π π π

π π

+ = ∈ = ∀ ∈

′= ∈ = ∀ ∈

′ ′= ∈ = ∀ ∈

′= ∈ = ∀ ∈

0

0

0

0

…

…

…

…

V V

V

V

V

 

Therefore, the problem 

(3.65) 
( )

, 1

min tr

subject to k

C V

V
π

π +∈V
 

has the same solution as 

(3.66) 
( )

1

min tr

subject to ,k

CA VA

A VA
π π

π π +

′

′ ∈V
 

and the solution to (3.66) is *
1kV A V Aπ π+ ′= .  Therefore, * *

, 1 1k kV A V Aπ π π+ + ′= , and thus by 

induction * *
, =i iV A V Aπ π π′  for any i. 

Finally, let ρ  be the antirank vector for the ordered observations so that 

( ) ( )j jX X ρ= .  Then for any i, if *
iV  solves the thi  orthogonal matching problem with 

respect to the standard ordering, then *
,iVρ  is the solution with respect to the original 

ordering.  Conditional on ( ) ( )( )1 , , NX X… , ρ  is uniformly distributed over all !N  possible 

permutations applied to the integers { }1, , N…  under the null hypothesis.  So, each 

element of V  is equally likely to be the thi  orthogonal successive optimal matching, and 

thus each possible labeling of vertices in that matching is equally likely.  Therefore, ,N iT  

is marginally distributed as NT .   ■ 

By Property 1 above, ,N iT  is well-defined for all / 2i N≤ .  We define ,N kS  to be 

the cumulative sum of pair-maxima over the first k   matchings: 

(3.67) , ,
1

.
k

N k N i
i

S T
=

=∑  
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Likewise, ,N kS  is well-defined for all / 2k N≤ .  The mean of ,N kS  under the null 

hypothesis is computed directly: 

(3.68) 
( )

, , ,
1

1
.

3

k

N k N k N i N
i

N N
E S E T k kμ μ

=

+⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦∑  

Just as NT  takes on smaller values under alternative hypotheses than under the 

null hypothesis, we expect that under alternative hypotheses ,N kS  will tend to deviate 

below its mean value.  Therefore, we define  

(3.69) 
{ }

, ,

1,2, , /2
max N k N k

N k N
N

S
K

c
μ

∈

⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠…
, 

to be our Ensemble Sum of Pair-Maxima (ESPM) test statistic, where 

(3.70) ( )
( )1

1
180N

N N
c N

+
= −  

is a scaling constant whose choice is motivated in the following section.  So, NK  

measures the maximum cumulative deviation of the ,N iT  from their mean over / 2N  

orthogonal successive optimal matchings.  For convenience we choose NK  to be the 

negative of the typical centered random variable so that smaller values of ,N kS  (which are 

evidence of an underlying distribution change) correspond to larger values of NK . 

3. Brownian Bridge Motivation for NK  

The formulation of the NK  statistic is based in part on structural similarities of 

the sequence ( ),1 , /2, ,N N NS S…  to a Brownian bridge.  Recall that a stochastic process 

( ){ }, 0W t t ≥  is called a Gaussian process if ( ) ( )( )1 , , jW t W t…  has a multivariate 

normal distribution for all ( )1, , jt t…  and for all { }1, 2,j ∈ … , and that a Gaussian process 

( ){ }, 0 1B t t≤ ≤  with ( ) 0, 0 1E B t t⎡ ⎤ = ≤ ≤⎣ ⎦ , and ( ) ( )( ) ( )Cov , 1B s B t s t= − , 

0 1s t≤ ≤ ≤ , is called a Brownian bridge (Ross, 2003, pp. 622-623). 
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We desire an expression for the variance of ,N kS  to compare the sequence 

( ),1 , /2, ,N N NS S…  to a Brownian bridge.  Such an expression depends on the covariance 

between the ,N iT , which is difficult to determine analytically.  However, simulation 

suggests that ( ) ( ), , ,1 ,2Cov , Cov ,N i N j N NT T T T=  for all  i j≠ ,  so for the remainder of this 

section we assume this to be true for the sake of comparison to a Brownian bridge only. 

Under the assumption that ( ) ( ), , ,1 ,2Cov , Cov ,N i N j N NT T T T=  for all   i j≠ ,  it 

follows that 

(3.71) 
( )

( ) ( )

1
2 2

, , , ,
2 1

2
,1 ,2

2 Cov ,

1 Cov ,   ,

k i

N k N k N N i N j
i j

N N N

Var S k T T

k k k T T k

σ σ

σ

−

= =

⎡ ⎤= = +⎣ ⎦

= + − ∀

∑∑
 

where the underscore-tilde notation “ 2
,N kσ ” indicates that equality depends on our 

covariance assumption.  It is straightforward to solve for ( ),1 ,2Cov ,N NT T  under this 

assumption by observing that in any case for which 1N −  orthogonal successive optimal 

matchings can be constructed, every possible pairing of observations has been 

considered.  For this case then, 

(3.72) ( ), 1 , 11N N N NS N μ− −= − , 

which is constant for fixed N.  Therefore , 1 0.N NVar S −
⎡ ⎤ =⎣ ⎦   Applying this boundary-value 

condition to (3.71) gives 

(3.73) ( ) ( )( ) ( )2
, 1 ,1 ,20 1 1 2 Cov ,   ,N N N N NVar S N N N T T Nσ−

⎡ ⎤= = − + − − ∀⎣ ⎦  

so 

(3.74) ( )
( )

( )( )
( )

( )2

,1 ,2

2 1 1
Cov ,  .

2 2 2 90 180
N

N N

N N N N N
T T N

N N
σ − + +

=− =− =− ∀
− −

 

Therefore, we obtain the desired result 
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(3.75) 

( ) ( )

( )
( )

( )( )

2 2
, ,1 ,2

2

1 Cov ,

1
1

180
1 1

.
180

N k N N N

N

k k k T T

N N
k k k

k N N N k

σ σ

σ

= + −

+
= − −

+ − −
=

 

Finally, define ,0 0NS ≡  and ,0 0Nμ ≡ , let ( )/ 1t k N= −  for { }1, , / 2k N∈ … , and 

define stochastic process ( )NB t  by 

(3.76) ( ) ( ) ( )

( )
, 1 , 1 1 2 / 2,  0, , , , ,   .

1 1 1
N t N N t N

N
N

S NB t t N
c N N N

μ − −
⎧ ⎫− ⎪ ⎪⎪ ⎪≡ ∈ ∀⎨ ⎬⎪ ⎪− − −⎪ ⎪⎩ ⎭

…  

Then for all  and s t  such that s t≤  and ( ) ( ){ }, 0,1/ 1 , , / 2 2s t N N N∈ − −…  and for all 

even N we have 

(3.77) ( )0 0,NB =  

(3.78) ( ) 0,NE B t⎡ ⎤ =⎣ ⎦  

and  
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(3.79) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( )

( ) ( )

( )

( )

( )

, 1 , 1 , 1 , 1

2
, 1 , 1

1
2

,, 1 , 1
1 1

1 1
2

, ,, 1
1 1 1

Cov , Cov ,

1/ Cov ,

1/ Cov ,

1/ Var Cov ,

N s N N s N N t N N t N
N N

N N

N N s N N t N

t N

N N jN s N N s N
j s N

s N t N

N N i N jN s N
i j s N

S S
B s B t

c c

c S S

c S S T

c S T T

μ μ− − − −

− −

−

− −
= − +

− −

−
= = − +

⎡ ⎤− −
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

∑

∑

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( ) ( )( )( )
( )

1 1
2

, ,, 1
1 1 1

1 1
2 2

,1 ,2, 1
1 1 1

2

1/ Var Cov ,

1/ Cov ,

1
1 1/ 1 1

180

s N t N

N N i N jN s N
i j s N

s N t N

N N NN s N
i j s N

N

c S T T

c T T

N N
s s c s N t s N

σ

− −

−
= = − +

− −

−
= = − +

⎛ ⎞⎡ ⎤⎟⎜ ⎢ ⎥⎟⎜ ⎟⎜ ⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
⎛ ⎞⎟⎜ ⎡ ⎤ ⎡ ⎤⎟⎜= + ⎟⎢ ⎥⎜ ⎢ ⎥ ⎣ ⎦⎟⎣ ⎦ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎡ ⎤⎟⎜= + ⎟⎜ ⎣ ⎦⎟⎟⎜⎝ ⎠

⎛ +⎜= − + − − − −⎜⎜⎝

∑

∑ ∑

∑ ∑

( ) ( )
( )
1

1 .

s s s t s

s t

⎞⎟⎟⎟⎟⎜ ⎠

= − − −

= −  

This structure of ( ) ( ) ( ){ }{ }, 0,1/ 1 , , / 2 2NB t t N N N∈ − −…  for our choice of Nc  and 

equal covariance assumption suggests a connection to the Brownian bridge. 

Shorack and Wellner (1986) present several useful results pertaining to the 

Brownian bridge, including the following: 

If ( ){ }, 0 1B t t≤ ≤  is a Brownian bridge, then for all , 0a b>  

(3.80) 
( ) ( ) ( ) ( )( )

( ) ( ) ( ){ }
1  for 0 1  and =  

1 exp 2 1 1 / .

P B t a t bt s t u B s x B u y

a s bs x a u bu y u s

≤ − + ≤ ≤ ≤ ≤ =

⎡ ⎤ ⎡ ⎤= − − − + − − + − −⎣ ⎦ ⎣ ⎦
 

Setting 0a b λ= = >  and 0xγ = = , 

(3.81) 
( ) ( )( )

( ){ } ( ) ( )( )
 for 0 1 =  

1 exp 2 / , where 0, 1 .

P B t t u B u y

y u B u N u u

λ

λ λ

≤ ≤ ≤ ≤

= − − − −∼
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Taking the expected value over ( )B u  yields the identity 

(3.82)

( )( )

( )
( )

( )

( )( )( )

( )

2

1 2

 for 0 1, 0

21 1 exp exp
2 12 1

2 11 1 exp exp
22

1

u u

P B t t u

y y dy
u u uu u

x u u x dx
u

u u

λ

λ

λ λ

λ λ

π

λ λ

π

λ

−∞

−

−∞

≤ ≤ ≤ ≤ >

⎛ ⎞ ⎧ ⎫⎧ ⎫ ⎪ ⎪−⎪ ⎪⎟⎜ ⎪ ⎪ ⎪ ⎪⎟⎜= − − −⎨ ⎬ ⎨ ⎬⎟⎜ ⎟⎪ ⎪ ⎪ ⎪⎟⎜ −− ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎛ ⎞⎧ ⎫⎪ ⎪⎟⎜ − −⎪ ⎪ ⎧ ⎫⎟ ⎪ ⎪⎜ ⎪ ⎪⎟⎪ ⎪ ⎪ ⎪⎜ ⎟= − − −⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎪ ⎪ ⎪ ⎪⎟⎜ ⎟ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎟⎜ ⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

⎛
=Φ

−⎝

∫

∫

( )( )

{ }

( )
{ } ( )

( )

21
2

2

2 11 1exp exp 2
22

2 1
exp 2 ,

1 1

u u u u
x dx

u

u

u u u u

λ

λ
λ

π

λλ
λ

−

−∞

⎧ ⎫⎪ ⎪⎞ ⎛ ⎞⎪ ⎪−⎟ ⎟⎜ ⎜⎪ ⎪⎟ ⎟⎜ ⎜− − − −⎟ ⎟⎨ ⎬⎜ ⎜⎟ ⎟⎜ ⎜⎪ ⎪⎟ ⎟⎟ ⎟⎜ ⎜⎪ ⎪⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
⎛ ⎞ ⎛ ⎞⎟ ⎟−⎜ ⎜⎟ ⎟⎜ ⎜=Φ − − Φ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− −⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

∫

 

where Φ  is the standard normal cumulative distribution function.  For 1/ 2u = , equation 

(3.82) reduces to 

(3.83) ( )( ) ( ) { }21 for 0 1/ 2, 0 2 exp 2 .
2

P B t tλ λ λ λ≤ ≤ ≤ > =Φ − −  

Now define [ ] ( )0,1/2suptK B t∈=  for Brownian bridge ( ){ }, 0 1B t t≤ ≤ .  It follows 

directly from (3.83) that the critical value Kα  corresponding to ( )P K Kα α> =  is a 

solution to 

(3.84) ( ) { }211 2 exp 2 0
2

x xα− −Φ + − = , 

which can be well-approximated using standard computing software.  In other words, the 

null distribution of K is known and so K is an obvious choice for a test statistic if a 

process of interest is a Brownian  bridge.  The question at this point then is, “Does the 

process ( ) ( ) ( ){ }{ }, 0,1/ 1 , , / 2 2NB t t N N N∈ − −…  asymptotically approach a Brownian 

bridge?”  Under our covariance assumption, this process has the same mean and 

covariance structure as a Brownian bridge for all N.  Furthermore ( )NB t  is by 
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construction a shifted, scaled sum of random variables whose marginal distributions are 

asymptotically normal.  Nevertheless, we are somewhat surprised to observe that ( )NB t  

is not normal even for fairly large N.  Figures 14-18 show normal quantile-quantile plots 

of ( )NB t  for 10,000 simulations associated with the null hypothesis, using a standard 

bivariate normal distribution, 300N = , and ( )/ 1t k N= −  for 

1, 10, 30, 100, and 150k = .  Figure 14 shows 1k = , which of course is simply 

( ) /N N NT cμ− .  We have proven already that NT  is asymptotically normal, and indeed 

Figure 14 is confirming evidence. 

 

 

Figure 14.   Quantile-Quantile plot of ( )( )/ 1NB k N −  for 10,000 simulations of 
N  observations from a standard bivariate normal distribution; 

300N = , 1k = . 

As k varies from 1 to / 2N , ( )NB t  exhibits markedly non-normal behavior as 

demonstrated in panels Figures 15-18.  In Figure 15, for 10k =  (corresponding to 

0.033t ≈ ) ( )NB t  shows signs of slight positive skewness.  This skewness is much more 

apparent as k approaches the middle of the interval as seen in Figures 16-18 for 30k =  
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( 0.10t ≈ ), 100k =  ( 0.33t ≈ ), and 150k =  ( 0.50t ≈ ).  In other words, ( )NB t  

constitutes an unusual “natural” example of a case where the distribution of the sum of a 

large number of asymptotically normal random variables does not appear to approach a 

normal distribution. 

 

 

Figure 15.   Quantile-Quantile plot of ( )( )/ 1NB k N −  for 10,000 simulations of 
N  observations from a standard bivariate normal distribution; 

300N = , 10k = . 
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Figure 16.   Quantile-Quantile plot of ( )( )/ 1NB k N −  for 10,000 simulations of 
N  observations from a standard bivariate normal distribution; 

300N = , 30k = . 

 

Figure 17.   Quantile-Quantile plot of ( )( )/ 1NB k N −  for 10,000 simulations of 
N  observations from a standard bivariate normal distribution; 

300N = , 100k = . 
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Figure 18.   Quantile-Quantile plot of ( )( )/ 1NB k N −  for 10,000 simulations of 
N  observations from a standard bivariate normal distribution; 

300N = , 150k = . 

Of course, this evidence alone does not prove that ( )NB t  fails to approach a 

Brownian bridge in the limit; however, it does establish that even for fairly large N a 

Brownian bridge approximation may not be a good one.  Indeed, simulation shows that 

for fairly large N (from 100 to 300) a Brownian bridge approximation for ( )NB t  gives 

reasonable tail probability estimates for α  near .10, but less so for smaller values of α .  

Table 3 shows tail probability results based on 10,000 simulations of N  observations 

from a standard bivariate normal distribution for 0.10α= , 0.05, 0.025, and 0.01 where 

the achieved test level for each combination of N and α  is the fraction of simulations for 

which { } ( )( )0,1, , /2max / 1N Nk NK B k N ακ∈= − >… , where ακ  is a root of (3.84). 
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Achieved test level 
α  ακ  

100N =  200N =  300N =  

0.10 0.9757 0.0877 0.0980 0.0984 

0.05 1.1334 0.0586 0.0649 0.0635 

0.025 1.2731 0.0385 0.0432 0.0419 

0.01 1.4382 0.0248 0.0278 0.0266 

Table 3.   Achieved test levels for { } ( )( )0,1, , /2max / 1Nk N B k N∈ −…  using Brownian 
bridge critical values for 10,000 simulations of N  observations from a 
standard bivariate normal distribution.  Achieved test level for each 

combination of N  and α  is the fraction of simulations for which 

{ } ( )( )0,1, , /2max / 1Nk N B k N ακ∈ − >… . 

Because the null distribution for NK  is difficult to obtain exactly, we obtain 

useful tail probability approximations by simulation.  These tail probability 

approximations depend on both sample size N  and dimensionality d .  Approximate 

critical values for NK  based on simulation are provided in Appendix B for various values 

of N , d , and α .  As indicated in the SPM test discussion, the ESPM test proves to be 

significantly more powerful than a single SPM test.  We show performance results in the 

next chapter. 

We close this discussion of an SPM-based ensemble statistic with the comment 

that it is less clear exactly how to formulate an analogous ensemble extension for the 

NAP statistic.  In that case, it seems natural to find the sequence of orthogonal best 

matchings as in the ESPM case and then compute NM  for each matching.  Letting ,N iM  

denote the NM  statistic associated with the ith best orthogonal matching, one would 

expect to be able to extract more change-point information out of the collection of vectors 

{ },1 ,2 , 1, , ,N N N N−M M M…  than out of the NAP test using ,1NM  alone.  For now, we leave 

study of an ensemble NAP statistic for future work. 
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D. THE BIPARTITE ACCUMULATED PAIRS TEST  

The tests introduced thus far are based on non-bipartite weighted matchings, and 

they test for a change point over an entire set of observations for which there is no control 

set.  That is, no prior information exists regarding the in-control distribution.  In many 

cases, however, some history of observations which are known (or assumed) to be in-

control is available, and the problem is to determine whether a change point exists in a set 

of future observations.  Therefore, we propose the Bipartite Accumulated Pairs (BAP) 

test for cases where in-control observation history is available.  As the name indicates, 

the BAP test is constructed using bipartite matchings (as opposed to non-bipartite 

matchings as in all our previous tests).  Recall that a bipartite matching pairs observations 

from one pre-designated group with observations from another, and is a solution to the 

integer program (2.13). 

1. The Z  Statistic 

Assume we have some history { }1, , mX X…  of m control observations, and we 

desire to test whether a change point exists in a sequence  ( )1, ,m m nX X+ +…   of n new test 

observations.  One approach to this problem is to estimate the in-control distribution 

based on the observation history and then test whether it is likely that the new 

observations are drawn from the estimated distribution.  An alternative matching-based 

approach is to compute an optimal bipartite matching between the control and test  

observations and use the information in the matching to test whether a change point exists 

in the test data. 

We employ the following approach for the case m n<  (more test data than 

control data; we discuss the m n≥  case later):   Compute a minimum-weight bipartite 

matching which pairs each control observation with some test observation, based on 

some predetermined cost function.  We emphasize here that some test observations will 

necessarily remain unpaired, unlike the non-bipartite matching case where at most one 

observation is left unpaired.  Define random variables 1 1, , nZ Z −K  where kZ  is the 
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number of test observations among { }1, ,m m kX X+ +…  which are paired with control 

observations.  Notice that this test has very much the same flavor as the NAP test, as it 

counts the accumulation of pairs in the optimal matching with respect to the order of the 

test data.  By construction the kZ  are dependent random variables each of which is 

marginally distributed as hypergeometric.  In fact, 1k k kZ Z δ−= + , where 1kδ =  if test 

observation m kZ +  is paired with a control observation and 0kδ = otherwise.  So,  

(3.85) ( ) ( ) ( ), max 0, , ,min , .k

m n m
r k r

P Z r r m k n m k
n
k

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = = + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

K  

This test is designed to test null hypothesis 0 :H F G=  against alternative 

1 :H F G≠  where 1, , ~mX X F… , 1, ,m m nX X G+ +… ∼ , and F and G  are unknown.  If a 

change point is present in the sequence of test observations, one expects that more pairs 

will be formed between the first k test observations and the control observations than if 

no change point is present, so the existence of a change point should be seen in pairings 

being “front-loaded” in the kZ  sequence.  We call the vector ( )1 1, , nZ Z −
′=Z …  the 

Bipartite Accumulated Pairs (BAP) test statistic. 

2. Critical Envelope 

We develop an exact simultaneous test for Z  in a manner closely following that 

for NM  of the Non-Bipartite Accumulated Pairs (NAP) test.  Specifically, we seek a 

vector of non-negative integers { }1 1, , nq qqα −= K  so that the following is true for a given 

test level α : 

(3.86) ( ), 1 1 1 .k kP Z q k n α≤ ≤ ≤ − ≥ −  

This allows us to construct a simultaneous level α  test.  As for the NAP case, we take kq  

to be the 1 α− %  quantile of the distribution of kZ  (hypergeometric) so that the non-
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simultaneous test at stage k  has level α% ; that is, ( )k kP Z q α> ≤ %  for each  

{ }1, , 1k n∈ −K .  Then we use a recursive computational scheme to select α%  that gives a 

simultaneous test level as close to α  as possible without exceeding this value.  To 

develop the recursion, first note that the α% -quantiles satisfy the properties 

min{ : ( ) }k kq r P Z r α= ≤ > %  and 1 2 1nq q q −≤ ≤ ≤L .  Now using the same conditioning 

approach as in (3.52)-(3.58), we have  

(3.87) ( ) ( ) ( )
0

,1 ,
kq

j j k
r

P Z q j k r k P Z rπ
=

≤ ≤ ≤ = ⋅ =∑  

where ( ) ( )1 1 1 1, , , |k k kr k P Z q Z q Z rπ − −= ≤ ≤ =K  and ( )kP Z r=  is given by (3.85).  

Observe that ( ),r kπ observes a simple recursive relationship expressed by the following 

lemma: 

 Lemma 3-6: 

(3.88) 
( ) ( ) ( ) ( ) ( )

( ){ }
1 1, 1, 1 1 , 1 ,

2, ,max : min , ; 0, , .

k k

i k

r k rr k r k I r q r k I r q
k k

k i q i m r q

π π π− −
−

= − − − ≤ + − ≤

= < =K K

 

 Proof of Lemma 3-6: 

(3.89) 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1 1

1 1

1 1

, ,1 2 ,

,1 2

, 1

1, 1 1 1

, 1

j j k k k k

j j k k k

k k k

k k k

k k k

r k P Z q j k Z s Z r P Z s Z r

P Z q j k Z s P Z s Z r

s k P Z s Z r I s q

r k P Z r Z r I r q

r k P Z r Z r I r q

π

π

π

π

− −

− −

− −

− −

− −

= ≤ ≤ ≤ − = = ⋅ ≤ =

= ≤ ≤ ≤ − = ⋅ ≤ =

= − ⋅ ≤ = ⋅ ≤

= − − ⋅ = − = ⋅ − ≤

+ − ⋅ = = ⋅ ≤

∑

∑

∑  

Under the null hypothesis, kZ r=  implies that each of the k observations 1, ,m m kX X+ +…  

is equally likely to be among r pairs in the bipartite matching; therefore 

( )1 1k k
rP Z r Z r
k− = − = =  and ( )1k k

k rP Z r Z r
k−

−
= = = .  ■ 
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The recursion starts at 2k =  and continues to ( ){ }max : min ,ik i q i m= < .  For 

2k =  we have 

(3.90) ( ) ( )1 2

2

1 1 , 0 ;
, 2 2

0, .

rq r q
r

r q
π

⎧ − − ≤ ≤⎪= ⎨
⎪ >⎩

 

This recursion scheme is quite readily implemented in S-PLUS®, R, MATLAB®, or 

other interpreted languages; an implementation for R is included in Appendix C.   

The simultaneous test presented here is clearly an improvement over the 

Bonferroni method.  For example, with 25m =  control points and 50n =  test points a 

nominal 0.05α=  simultaneous test achieves test level .047 using uses .011α =% .  By 

contrast the Bonferroni method achieves test level .006 using .05 / 49 .001α = =% .  The 

improvement is even more dramatic in larger samples.  For 500, 1000m n= = , the BAP 

test achieves level .049 using .00203α =%  compared to an achieved level of .0018 using 

.05 / 999 .00005α = =%  by Bonferroni. 

3. A Graphical Example 

Figure 19 shows 20 observations all drawn from a standard bivariate normal 

distribution.  The plot marker for each point is its sequence label.  The first 4m =  points 

are the control set and are circled for emphasis; the last 16n =  points are the test set.  

Since all the test data are from the same distribution as the control data, there is no 

change point.  We use a MATLAB® implementation of the Jonker-Volgenant 

assignment algorithm (1987) provided by Levedahl (2000) to compute an optimal 

bipartite match with respect to Euclidean distance for these data; the resulting pairs are 

shown connected by line segments.  Table 4 shows the critical envelope ( )1 15, ,q qqα
′= K  

and the test statistic ( )1 15, ,Z Z ′=Z …  for the data in Figure 19.  Recall that 1k =  

corresponds to 1 5mX X+ = , 2k =  corresponds to 2 6mX X+ = , and so on, and kZ  is equal 

to the number of pairings of between the sets { }1 4, ,X X…  and { }5 5 1, , kX X + −… .  For this 

small data set we can determine the kZ  values by inspection from Figure 19.  Since 
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5 7 10 15, , , and X X X X  are the test set elements paired with elements in the control set, 

1 2 1Z Z= = , 3 4 5 2Z Z Z= = = , 6 10 3Z Z= = = , and 11 15 4Z Z= = = .  None of 

these values exceeds the critical envelope, so we do not reject the null hypothesis that all 

the test data share the same distribution as the control data. 

 

Figure 19.   Minimum weight bipartite matching on 20 points; 4m =  and 
16n =  with no change point.  The control set is circled; line segments 

connect observations that are paired in the optimal bipartite 
matching. 

 

k  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

kq  1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 

kZ  1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 

Table 4.   Critical envelope qα  and BAP test statistic Z  for Figure 19 data.  kZ  
never exceeds kq , so the null hypothesis of no change is not rejected. 
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In contrast, Figure 20 shows the same control data, but the test data are different 

in that a change point exists at 13τ = , where the index τ  is in reference to the pooled 

data set { }1 20, ,X X… .  Specifically, observations { }5 12, ,X X…  are the same as in the no-

change case, but { }13 20, ,X X…  are translated by 2 units in both dimensions from the no-

change case.  The control data are circled as before, and the data affected by the change 

point are circumscribed by a box to clearly show the mean shift.   

 

Figure 20.   Minimum weight bipartite matching on 20 points; 4m =  and 
16n =  with a change point 13τ = .  The control set is circled; post-

change point observations are boxed.  Line segments connect 
observations that are paired in the optimal bipartite matching. 
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k  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

kq  1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 

kZ  1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 

Table 5.   Critical envelope qα  and BAP test statistic Z  for Figure 20 data.  

6 6Z q> , so the null hypothesis of no change is rejected. 

Table 5 shows qα  and test statistic Z  for Figure 20.  Since 6 6Z q> , we reject the null 

hypothesis in favor of the alternative that a change point exists in the test data. 

An alternative to the BAP test, as we have formulated it here, is required for the 

case m n≥ , where there exist at least as many control points as test points, since the BAP 

test would pair every test point to a control point in such cases.  A matching-based 

possibility appeals to previous results:  First, assign to each point in the control set some 

measure of centralness or depth relative to that set; call this measure the observation 

“quality.”  Then compute an optimal bipartite matching and let jQ  denote the quality of 

the control observation that is paired in the matching with test observation m jX + .  Since 

m n≥ , every observation in the test set is paired with some observation in the control set, 

resulting in the sequence ( )1, , nQ QK .  Now assign ranks to this sequence and perform a 

change-point test on it based on ranks.  The existence of a change-point in the rank 

sequence corresponds to the existence of a change-point in the test set. 

The BAP test invites consideration of an ensemble extension similar to the 

ensemble extension of the NAP test.  That is, compute the BAP statistic for each optimal 

matching in an orthogonal sequence of optimal matchings, and evaluate the collection 

{ }1 2 1, , , N−Z Z Z…  for additional change-point information.  We do not explore this 

concept here; rather, the proposed BAP test and associated discussion only begin to 

examine what appear to be rich opportunities to apply bipartite matching ideas to the 

change-point problem, and we mention them here to inspire further research.  In the next 
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chapter, we will examine the performance of our proposed non-bipartite matching 

methods only, and leave an in-depth study of bipartite methods for future work. 
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IV. SIMULATION STUDY 

A. METHODOLOGY 

The usefulness of the tests presented in this paper lies in their power to identify 

change points under a wide range of alternative hypotheses.  In this chapter, we present 

the results of computer simulations that compare the power of the Sum of Pair Maxima 

(SPM), Non-Bipartite Accumulated Pairs (NAP), and Ensemble Sum of Pair Maxima 

(ESPM) tests for a variety of scenarios.  We compare these tests to the James, James, and 

Siegmund (JJS) (1992) test discussed in Section II.B.2.  In every case the sample space is 
dR  (where d is observation dimension), sample size is 200N = , and test significance 

level is 0.05α= .  The choice 200N =  is based on a desire to investigate test behavior 

for a moderately large sample size while avoiding excessive computation times for large 

simulations.  Detection power is the performance metric, where power is defined as the 

probability of rejecting the null hypothesis when it is false.  Each power estimate in the 

tables of this chapter is the fraction of times that a particular test indicates that a change 

point has occurred under the given conditions, based on 1000 simulations.  We use the 

Mahalanobis distance function given by (2.16) (estimating V by the sample covariance 

matrix) as a natural choice to determine interpoint costs in dR  unless otherwise specified.  

Section C.4 of this chapter shows performance results for cases where different cost 

functions are considered.  In all other cases, the scenarios vary according to the following 

factors: 

1)  Underlying distribution family.  We consider the following probability 

distribution families: 

a)  multivariate normal, denoted MVNF ,  

b)  a multivariate normal mixture, denoted mixF , as a heavy-tailed case, 

and   

c)   a multivariate Weibull distribution, denoted WeibF , as a skewed case. 
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2) Dimension.  We evaluate two dimensions: 5d =  and 20d = . 

3) Change-point location.  We examine cases where the change point occurs in 

the middle and toward the end of the observation sequence. 

 4) Change parameter.  We consider changes in distribution mean and scale. 

 5) Type of change.  At a change point, we consider cases where the parameter 

undergoing change does so in an abrupt (jump) or gradual (drift) manner. 

 6) Magnitude of change.  We examine changes of various magnitudes. 

Specifically, MVNF  is the cumulative distribution associated with density function 

(4.1) ( )
( )

( ) ( )1
MVN /2 1/2

1 1; , exp
22

d
Nf

π
−⎧ ⎫⎪ ⎪⎪ ⎪′Σ = − − Σ − ∀ ∈⎨ ⎬⎪ ⎪Σ ⎪ ⎪⎩ ⎭

x μ x μ x μ x R , 

where d∈μ R  and d d×Σ∈R  are the distribution mean and covariance matrix, 

respectively.  The in-control data for the multivariate normal case have =μ 0  and 

dIΣ= , where dI  is the d d×  identity matrix.  The post-change-point data have a 

different mean or scale as specified in the next section.  

mixF is constructed as follows:  Let MVN~U F , let Z  be a Bernoulli random 

variable with success probability mixp , and let mixσ  be some scalar larger than 1.  Then 

the random variable 

(4.2) ( ) mix1 1mixX Z U Fσ⎡ ⎤= + −⎣ ⎦ ∼ , 

and mixp  and mixσ  are the proportion and scale of the mixing, respectively.  For this 

study, we set  mix 0.1p =  and mix 4σ = . 

WeibF is defined to be the distribution on dR  associated with d independent 

identically distributed univariate Weibull random variables; that is, 

(4.3) ( )
( )1

1Weib

1 exp , , , ,
; ,

0 otherwise ,

d
di

d
i i

x x x
F

η

η β +
=

⎧ ⎡ ⎤⎧ ⎫⎪ ⎪ ⎪⎛ ⎞⎪ ⎪ ⎪⎢ ⎥⎟⎪ ⎪⎜⎪ ⎟− − = ∈⎜⎨ ⎬⎪ ⎢ ⎥⎟⎪ ⎜ ⎟⎪ ⎜ ⎪=⎨ ⎝ ⎠⎢ ⎥⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎣ ⎦⎪⎪⎪⎪⎩

∏ x
x β

… R
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where η  and iβ  are the univariate Weibull shape and scale parameters, respectively, and 

d
+R  denotes the closed upper half-space of dR .  For this study we set  1.5η= .  For the 

in-control data, =β 1 ;  β  varies for the post-change-point data as specified in the next 

section. 

We consider a change point at 101τ =  (for a 50-50 percent split of pre- and post-

change data) and 161τ =  (for an 80-20 percent split of pre- and post-change data).  We 

examine change magnitudes, denoted by Δ , ranging from 0 to 1.0 by increments of 0.25.  

For the case 0Δ=  the null hypothesis is true and the tabulated power at 0Δ=  is an 

estimate of the test’s false alarm rate, which is the likelihood that a test rejects the null 

hypothesis when it is in fact true.  False alarm rate ideally is 0.05 at significance level 

0.05α= .  For the case 0Δ> , Δ  indicates the total magnitude of the change from the 

first to last observation.  So, for a jump change  Δ  is magnitude of the abrupt change that 

occurs at change point τ .  For a drift change, the parameter undergoing change varies 

linearly from its reference level so that the total change magnitude between the first and 

last observation is Δ .  For changes in distribution mean, we simulate the change in the 

first component of each observation only.  For changes in distribution scale, we simulate 

the change in all components.  Figures 21-28 shows cases of mean and scale changes of 

jump and drift variety for change points at 101τ =  or 161τ =  associated with the 

multivariate normal case for illustration purposes.  The x-axis is sequence label i; the y-

axis is the value of the first component of the thi  observation. 
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Figure 21.   Typical change scenario: mean jump at 101τ = .  The mean jumps 
in the first dimension only and remains fixed in all other dimensions. 

 

 

Figure 22.   Typical change scenario: mean drift at 101τ = .  The mean drifts 
in the first dimension only and remains fixed in all other dimensions. 
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Figure 23.   Typical change scenario: mean jump at 161τ = .  The mean jumps 
in the first dimension only and remains fixed in all other dimensions. 

 

 

Figure 24.   Typical change scenario: mean drift at 161τ = .  The mean drifts 
in the first dimension only and remains fixed in all other dimensions. 
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Figure 25.   Typical change scenario: scale jump at 101τ = .  The scale jumps 
in all dimensions. 

 

 

Figure 26.   Typical change scenario: scale drift at 101τ = .  The scale jumps in 
all dimensions. 
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Figure 27.   Typical change scenario: scale jump at 161τ = .  The scale jumps 
in all dimensions. 

 

 

Figure 28.   Typical change scenario: scale drift at 161τ = .  The scale jumps in 
all dimensions. 



 88

B. PERFORMANCE RESULTS 

Tables 6-13 show power estimates for the Sum of Pair-Maxima (SPM), Non-

Bipartite Accumulated Pairs (NAP), Ensemble Sum of Pair-Maxima (ESPM) and James, 

James, and Siegmund (JJS) tests for a variety of scenarios at test level 0.05α= .  

Attained significance levels for the SPM and NAP tests with 200N =  are 

SPM 0.04962α =  and  NAP 0.04957α = .  ESPM critical values are obtained via simulation 

(see Appendix B).  JJS critical values are analytically based on the assumption that the 

underlying distribution is multivariate normal with a common but unknown covariance 

matrix.  While the JJS test is analytically designed to detect abrupt mean changes only, 

we observe in our simulations that it is also sensitive to gradual mean changes and scale 

changes while maintaining a false alarm rate consistent with test significance level.  

Therefore, we consider the JJS test for comparison in those cases as well. 

Each table specifies the distribution, dimensionality, change parameter (mean or 

scale), and change type (jump or drift) along the top.  The left-most column shows the 

total magnitude of the change for the varying parameter in that case.  The change 

magnitude at i is iΔ =Δ  for jump changes and ( ) ( )1 / 1i i Nτ τΔ = − + Δ − +  for drift 

changes.  For a mean change at change point τ , observation i is distributed as follows: 

(4.4) 
( )

( )

MVN

MVN

mix

mix

~ ,
for the MVN case;

,0,0, ,0 ~ ,

~ ,
for the mixture case.

,0,0, ,0 ~ ,

i

i i

i

i i

X F i
X F i

X F i
X F i

τ

τ

τ

τ

⎫< ⎪⎪⎬⎪− Δ ≥ ⎪⎭

⎫< ⎪⎪⎬⎪− Δ ≥ ⎪⎭

…

…

 

We model changes in the mean vector by changing only its first component because of 

the rotational invariance of MVNF  and mixF .  For a scale change at change point τ , 

observation i is distributed as follows: 
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(4.5) 

MVN

MVN

mix

mix

~ ,
for the MVN case;

~ ,
1

~ ,
for the mixture case.

~ ,
1

i

i

i

i

i

i

X F i
X F i

X F i
X F i

τ

τ

τ

τ

⎫< ⎪⎪⎪⎪⎬⎪≥ ⎪+Δ ⎪⎪⎭

⎫< ⎪⎪⎪⎪⎬⎪≥ ⎪+Δ ⎪⎪⎭

 

For fixed η , a change in β  results in a mean and scale change for the Weibull 

distribution.  We change only the first component of β  to be consistent with the other 

two distribution family cases, so observation i is distributed as follows: 

(4.6) 
( )

Weib

Weib

~ with  ,
for the MV Weibull case.

~ with  1 ,1, ,1 ,
i

i i

X F i
X F i

τ

τ

⎫= < ⎪⎪⎬⎪= +Δ ≥ ⎪⎭

β 1
β …

 

1. Multivariate Normal Case 

a. Changes in Location 

Tables 6-10 present power estimates for the multivariate normal scenarios 

under different alternatives.  Tables 6-8 are associated with a mean change.  One would 

expect the JJS test to be superior to nonparametric tests for the mean jump cases, as JJS is 

a parametric test based on the assumptions of multivariate normality and a single abrupt 

change in distribution mean.  Our simulation results suggest that the JJS test is superior 

overall in both the jump and drift cases.  However, both the SPM and NAP tests show 

appreciable power in each case, and even more noteworthy that the power of the ESPM 

test is comparable to JJS in some cases.  In particular, when the change point occurs in 

the middle of the observation sequence (Tables 6 and 7), the JJS test and ESPM test 

perform comparably.  When the change point is away from the middle of the observation 

sequence (Table 8) all the tests suffer somewhat, since fewer post-change data are present 

to indicate a change.  However, the nonparametric tests seem to suffer more power loss 

than the JJS test.  Furthermore, the power of all four tests is reduced in higher dimension 

for changes of fixed magnitude (compare Table 6 with 5d =  to Table 7 with 20d = ), 
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since the magnitude of the change becomes a smaller fraction of the average distance 

between points as dimensionality increases.  This effect appears to impact the ESPM and 

JJS tests comparably. 

 

MVN; 5;
mean change
F d =  Jump; 101τ =   Drift; 101τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.06 0.05 0.04 0.05 0.04 0.05 0.06 0.07 
0.25 0.07 0.05 0.18 0.14 0.06 0.05 0.10 0.09 
0.50 0.10 0.09 0.60 0.52 0.07 0.05 0.27 0.22 
0.75 0.23 0.18 0.93 0.93 0.11 0.09 0.55 0.53 
1.00 0.41 0.33 1.00 1.00 0.20 0.16 0.84 0.85 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 6.   Test power to detect a mean change of magnitude Δ  for MVN case 
with dimension 5d =  and change point 101τ =  based on 200N = , 
0.05α= , and 1000 simulations.  Jump case is to the left; drift case is to the 

right. 

 

MVN; 20;
mean change
F d = Jump; 101τ =   Drift; 101τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.05 0.05 0.05 0.03 0.05 0.05 0.05 0.04 
0.25 0.07 0.06 0.11 0.07 0.05 0.05 0.07 0.04 
0.50 0.09 0.07 0.33 0.20 0.07 0.05 0.13 0.09 
0.75 0.11 0.09 0.71 0.63 0.08 0.07 0.31 0.23 
1.00 0.22 0.16 0.95 0.95 0.11 0.09 0.56 0.49 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 7.   Test power to detect a mean change of magnitude Δ  for MVN case 
with dimension 20d =  and change point 101τ =  based on 200N = , 

0.05α= , and 1000 simulations.  Jump case is to the left; drift case is to the 
right. 
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MVN; 5;
mean change
F d =  Jump; 161τ =   Drift; 161τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.05 0.06 0.06 0.06 0.05 0.06 0.05 0.05 
0.25 0.06 0.05 0.08 0.08 0.05 0.05 0.06 0.07 
0.50 0.07 0.08 0.22 0.30 0.06 0.06 0.10 0.12 
0.75 0.12 0.10 0.52 0.72 0.06 0.08 0.15 0.27 
1.00 0.19 0.20 0.81 0.96 0.05 0.08 0.28 0.51 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 8.   Test power to detect a mean change of magnitude Δ  for MVN case 
with dimension 5d =  and change point 161τ =  based on 200N = , 
0.05α= , and 1000 simulations.  Jump case is to the left; drift case is to the 

right. 

b. Changes in Scale 

Tables 9 and 10 show power estimates for multivariate normal scale 

changes.  Note that the case in Table 9 ( 5d = , 101τ = ) varies from the case in Table 10 

( 20d = , 161τ = ) in both dimensionality and change point.  We observe that the SPM 

and NAP tests demonstrate reasonable power to detect scale changes, while the ESPM 

test shows impressive power to do so.  Recall that the JJS test is not specifically designed 

to detect scale changes; however, it does.  Interestingly, JJS exhibits its worst power 

among these scenarios in lower dimension with a 50-50 split and mean jump, and its best 

power in higher dimension with an 80-20 split and mean drift. 
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MVN; 5;
scale change
F d =  Jump; 101τ =   Drift; 101τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.06 0.05 0.05 0.04 0.05 0.05 0.05 0.05 
0.25 0.16 0.11 0.32 0.09 0.08 0.08 0.15 0.14 
0.50 0.51 0.42 0.97 0.15 0.27 0.20 0.52 0.27 
0.75 0.88 0.88 1.00 0.19 0.52 0.46 0.92 0.42 
1.00 0.99 0.99 1.00 0.24 0.79 0.77 1.00 0.54 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 9.   Test power to detect a scale change of magnitude Δ  for MVN case 
with dimension 5d =  and change point 101τ =  based on 200N = , 
0.05α= , and 1000 simulations.  Jump case is to the left; drift case is to the 

right. 

 

MVN; 20;
scale change
F d = Jump; 161τ =   Drift; 161τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.05 0.06 0.05 0.04 0.05 0.05 0.06 0.04 
0.25 0.08 0.08 0.24 0.26 0.06 0.07 0.10 0.23 
0.50 0.25 0.28 0.83 0.66 0.09 0.11 0.25 0.70 
0.75 0.56 0.75 1.00 0.90 0.17 0.25 0.55 0.93 
1.00 0.85 0.99 1.00 0.98 0.28 0.49 0.86 0.99 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 10.   Test power to detect a scale change of magnitude Δ  for MVN case 
with dimension 5d =  and change point 161τ =  based on 200N = , 
0.05α= , and 1000 simulations.  Jump case is to the left; drift case is to the 

right. 

 

 

 



 93

2. Multivariate Normal Mixture Case 

a. Changes in Location 

Table 11 shows power results for the case of an underlying multivariate 

normal mixture with mix 0.10p =  and mix 4σ =  as an example of a heavy-tailed 

case: 

 

mix ; 5;
mean change
F d =  Jump; 101τ =   Drift; 101τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.05 0.05 0.04 0.27  0.04 0.04 0.06 0.28 
0.25 0.07 0.05 0.14 0.28  0.07 0.06 0.09 0.26 
0.50 0.09 0.08 0.56 0.38  0.07 0.07 0.21 0.33 
0.75 0.20 0.15 0.88 0.61  0.10 0.09 0.47 0.39 
1.00 0.36 0.25 0.99 0.85  0.15 0.12 0.76 0.55 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 11.   Test power to detect a mean change of magnitude Δ  for MVN 
mixture case with dimension 5d =  and change point 101τ =  based on 

200N = , 0.05α= , and 1000 simulations.  Jump case is to the left; drift case 
is to the right.  Shading indicates excessive false alarm rate. 

The matching-based tests demonstrate results comparable to their 

respective powers in the similar multivariate normal case (compare to Table 6) and they 

retain a false alarm rate consistent with test significance level.  However, the false alarm 

rate for the JJS test far exceeds 5% and therefore disqualifies it for comparison at the 0.05 

test level.  We explore this phenomenon in a separate study using 10,000 simulations 

( 200N = , 50-50 split) and find that the JJS false alarm rates exceed test level even for 

small mixing probabilities.  The problem gets worse as dimensionality increases, as 

shown in Figure 29. 
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Figure 29.   Effect of mixing proportion on JJS false alarm rate for MVN 
mixture cases with dimension 2, 5,  and 20d =  based on 200N = , 

0.05α= , and 10,000 simulations.  Scale of mixing 4mixσ = ; 
proportion of mixing mixp  varies along the x-axis. 

b. Changes in Scale 

As in the multivariate normal case, Table 12 shows that the SPM and NAP 

tests have fair power to detect scale changes and the ESPM test has noteworthy power to 

do so.  Again, excessive false alarm rate makes JJS an unacceptable test for these 

scenarios.  These multivariate normal mixture cases of changing location and scale 

highlight the utility of nonparametric change-point approaches such as the SPM, NAP, 

and ESPM tests in that they are not limited by strict distributional assumptions. 
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mix ; 5;
scale change
F d =  Jump; 101τ =   Drift; 101τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.05 0.05 0.05 0.25  0.06 0.06 0.05 0.29 
0.25 0.12 0.09 0.31 0.29  0.08 0.08 0.13 0.32 
0.50 0.38 0.28 0.92 0.31  0.16 0.13 0.48 0.39 
0.75 0.75 0.69 1.00 0.32  0.35 0.27 0.85 0.45 
1.00 0.93 0.92 1.00 0.32  0.54 0.45 0.99 0.50 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 12.   Test power to detect a scale change of magnitude Δ  for MVN mixture 
case with dimension 5d =  and change point 101τ =  based on 200N = , 

0.05α= , and 1000 simulations.  Jump case is to the left; drift case is to the 
right.  Shading indicates excessive false alarm rate. 

3. Multivariate Weibull Case 

Table 13 presents power results associated with the multivariate Weibull 

distribution as an example of a skewed case.  For these simulations shape parameter 

1.5η=  remains fixed while scale parameter β  varies from 1 to 2 in the first dimension 

only; this corresponds to coincident changes in both location and scale.  While false 

alarm rates for the JJS test are not as excessive for this case as for the multivariate 

mixture case, they still clearly violate the specified 0.05 test level.  As before, the 

matching-based tests appear to respect test level. 
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Weib ; 5;
 change

F d
β

=  Jump; 101τ =   Drift; 101τ =  

Δ  SPM NAP ESPM JJS  SPM NAP ESPM JJS 

0.00 0.05 0.05 0.06 0.09  0.06 0.05 0.05 0.09 
0.25 0.08 0.06 0.25 0.22  0.06 0.07 0.12 0.17 
0.50 0.13 0.10 0.70 0.70  0.08 0.07 0.35 0.46 
0.75 0.25 0.20 0.95 0.96  0.15 0.12 0.70 0.81 
1.00 0.34 0.27 0.99 1.00  0.23 0.20 0.86 0.94 

 

SPM: Sum of Pair-Maxima         NAP: Non-Bipartite Accumulated Pairs 
ESPM: Ensemble Sum of Pair-Maxima    JJS: James, James, and Siegmund test 

Table 13.   Test power to detect a change in the scale parameter β  of magnitude 
Δ  for MV Weibull case with dimension 5d =  and change point 101τ =  

based on 200N = , 0.05α= , and 1000 simulations.  Jump case is to the left; 
drift case is to the right.  Shading indicates excessive false alarm rate. 

In summary, the Sum of Pair-Maxima (SPM), Non-Bipartite Accumulated Pairs 

(NAP), and Ensemble Sum of Pair-Maxima (ESPM) tests all demonstrate power to detect 

a change point in every examined case for different underlying different distributions, 

dimensionality, change-point location, change parameter, and type of change while 

achieving a significance level consistent with nominal test level.  The power of each test 

is reduced as dimension increases or as change-point location moves away from the 

middle of the observation sequence. 

The ESPM test outperforms the SPM and NAP tests in every case and is 

preferable among the three tests for use.  The ESPM test has power comparable to the 

parametric JJS test in the case of a mean change when the underlying distribution is 

multivariate normal, except perhaps when the change-point is far away from the center of 

the sequence.  The ESPM test is preferable to the JJS test in non-normal cases due to 

excessive JJS false alarm rates, and is superior in detecting scale changes when the 

underlying distribution is normal.  The NAP test should be considered for use if one 

desires information about the location of a change point in addition to detecting whether 

or not a change-point exists. 
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C. DIFFERENT COST FUNCTIONS 

To gain insight regarding the  impact of cost function selection we compare the 

performance of the ESPM test using Mahalanobis distance (MD), Euclidean distance 

(ED), Mahalanobis distance, robust (MD-R), and multivariate rank distance (RD) as 

defined in (2.15)-(2.23) for a few representative cases.  We list MD in the first column as 

the reference cost measure which was used for all previous cases in the simulation study.   

For MD-R we set the nearest-neighbor parameter k (as identified in the discussion 

preceding equation (2.17) ) equal to 8, which is in the range of recommended values for 

that parameter given by Wang and Raferty (2002). 

In every case, MD and MD-R performance are nearly identical, and ED and RD 

performance are nearly identical.  ED and RD perform as well or better than MD and 

MD-R; this performance difference is more evident in higher dimension and is most 

evident in for the multivariate Weibull case.  These differences seem attributable to the 

fact that MD and MD-R must estimate the covariance of the underlying distribution, 

while for the cases we examine the underlying covariance is very close to the identity 

covariance assumed by ED and RD.   

 

MVN; ESPM;
mean change
F  5d = ; jump; 101τ =   20d = ; jump; 101τ =  

Δ  MD ED MD-R RD  MD ED MD-R RD 

0.00 0.06 0.06 0.05 0.06  0.05 0.05 0.05 0.05 
0.25 0.16 0.16 0.16 0.16  0.11 0.12 0.11 0.12 
0.50 0.56 0.58 0.56 0.57  0.31 0.36 0.30 0.36 
0.75 0.93 0.94 0.93 0.95  0.72 0.80 0.71 0.79 
1.00 1.00 1.00 1.00 1.00  0.96 0.99 0.96 0.99 

 

MD: Mahalanobis distance      ED: Euclidean distance 
MD-R: Mahalanobis distance, robust     RD: Multivariate rank distance 

Table 14.   Ensemble Sum of Pair-Maxima (ESPM) test power to detect a mean 
change of magnitude Δ  for MVN case with dimension 5d =  and change 

point 101τ =  under different cost functions, based on 200N = , 0.05α= , 
and 1000 simulations.  Jump case is to the left; drift case is to the right. 
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mix ; ESPM;
mean change
F  5d = ; jump; 101τ =   20d = ; jump; 101τ =  

Δ  MD ED MD-R RD  MD ED MD-R RD 

0.00 0.05 0.05 0.05 0.05  0.06 0.05 0.06 0.06 
0.25 0.16 0.15 0.15 0.16  0.10 0.09 0.10 0.09 
0.50 0.46 0.50 0.49 0.52  0.26 0.34 0.28 0.33 
0.75 0.89 0.91 0.90 0.90  0.57 0.69 0.62 0.69 
1.00 0.99 0.99 0.99 0.99  0.86 0.95 0.91 0.95 

 

MD: Mahalanobis distance      ED: Euclidean distance 
MD-R: Mahalanobis distance, robust     RD: Multivariate rank distance 

Table 15.   Ensemble Sum of Pair-Maxima (ESPM) test power to detect a mean 
change of magnitude Δ  for MVN mixture case with dimension 5d =  and 
change point 101τ =  under different cost functions, based on 200N = , 

0.05α= , and 1000 simulations.  Jump case is to the left; drift case is to the 
right. 

 

Weib ; ESPM;
 change

F
β

5d = ; jump; 101τ =   20d = ; jump; 101τ =  

Δ  MD ED MD-R RD  MD ED MD-R RD 

0.00 0.05 0.06 0.05 0.05  0.05 0.04 0.05 0.04 
0.25 0.24 0.28 0.25 0.28  0.14 0.19 0.15 0.18 
0.50 0.70 0.77 0.71 0.76  0.46 0.66 0.47 0.67 
0.75 0.93 0.97 0.95 0.97  0.73 0.95 0.77 0.95 
1.00 0.99 1.00 1.00 1.00  0.93 1.00 0.95 1.00 

 

MD: Mahalanobis distance      ED: Euclidean distance 
MD-R: Mahalanobis distance, robust     RD: Multivariate rank distance 

Table 16.   Ensemble Sum of Pair-Maxima (ESPM) test power to detect a change 
in the scale parameter β  of magnitude Δ  for MV Weibull case with 

dimension 5d =  and change point 101τ =  under different cost functions, 
based on 200N = , 0.05α= , and 1000 simulations.  Jump case is to the left; 

drift case is to the right. 
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D. COMPUTATIONAL DETAILS 

Simulations in Section B of this chapter were performed using R version 2.9.0  on 

the Hamming cluster of the Naval Postgraduate School’s High Performance Computing 

Center (HPC), which is a Sun Microsystems 6048 Blade modular system with 1152 

processing cores.  We computed non-bipartite weighted matchings using Kolmogorov’s 

(2009) Blossom V algorithm.  In its published form, Kolmogorov’s algorithm computes a 

single optimal non-bipartite matching on a set of N  observations.  We modified this 

routine slightly in the source language so that it computes a full sequence of orthogonal 

successive optimal matchings that rather than just a single matching.  Table 17 shows 

typical realized runtimes to compute / 2N  orthogonal successive optimal matchings 

calling Kolmogorov’s routine in R for various sample sizes. 

 

N  Run time (sec) 

20 <0.01 

50 0.01 

100 0.05 

200 0.60 

300 2.9 

400 11 

500 48 

Table 17.   Typical time to compute / 2N  orthogonal successive optimal 
matchings calling Kolmogorov’s algorithm (modified to compute orthogonal 

successive optimal matchings) in R. 

We realized significant reductions (at least two orders of magnitude) in total simulation 

time by taking advantage of the HPC’s batch job scheduling capability. 

Simulations in Section C were performed using R version 2.9.0 on a Windows XP 

machine with an Intel ® Pentium ® 4 3.4 GHz processor.  We computed non-bipartite 

weighted matchings using Derigs’s (1988) algorithm.  The algorithm itself is in the 

FORTRAN programming language; compiled code is embedded in a dynamic link 
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library file that can be called directly in R, provided by Professor Bo Lu at the Ohio State 

University.  In its current form this algorithm requires that edge weights be integer-

valued.  For our purposes, we accommodated this requirement by rounding non-integer 

costs to four decimal places and then scaling each cost by 410 .  Additionally, this routine 

requires the assignment of a prohibitive cost to the diagonal of any cost matrix to block 

the pairing of an observation with itself.  For this study we set this prohibitive cost to be 

/ 2N  times the maximum of all interpoint costs.  We used this same prohibitive cost for 

blocking to compute orthogonal successive optimal matchings.    Table 18 shows typical 

realized runtimes to compute / 2N  orthogonal successive optimal matchings using 

Derigs’s algorithm in R for various sample sizes. 

 

N  Run time (sec) 

20 <0.01 

50 0.02 

100 0.2 

200 2.9 

300 16 

400 56 

500 143 

Table 18.   Typical time to compute / 2N  orthogonal successive optimal 
matchings using Derigs’s algorithm in R. 

As mentioned previously, the theoretical runtime for existing algorithms to find a 

single optimal non-bipartite matching on a complete graph is ( )3O N .  Our ESPM 

statistic involves computing / 2N  successive optimal matchings on a graph, which can 

lead to lengthy run times for large sample sizes.  Long runtimes for cases of very large 

sample size pose a practical limitation to the matching methods we propose.  We discuss 

related research opportunities in the next chapter. 
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V. CONCLUSIONS AND OPPORTUNITIES FOR FURTHER 
RESEARCH 

In this dissertation, we introduce new nonparametric matching-based approaches 

to the multidimensional change-point problem.  These approaches lead to effective 

change-point detection procedures and highlight the potential value of matching 

techniques to more general statistical applications.  Our review of the broad field of 

change-point detection reveals that this continues to be an area of active research and that 

robust multivariate approaches to this problem remain few.  Most existing approaches 

make restrictive distributional assumptions (such as multivariate normality) or are limited 

to the single-test case where the potential change point is pre-determined and the problem 

is the classical one of testing whether two samples of observations are from the same 

distribution. 

We propose four new change-point tests: the Sum of Pair-Maxima (SPM) test, the 

Non-Bipartite Accumulated Pairs (NAP) test, the Ensemble Sum of Pair-Maxima 

(ESPM) test, and the Bipartite Accumulated Pairs (BAP) test.  The first three tests, 

designed to test for homogeneity among multivariate data when no observation history is 

available, all demonstrate power to detect a change point under a variety of alternative 

hypotheses at fixed false alarm rates.  The ESPM test utilizes additional change-point 

information available from many good (that is, low-weight) orthogonal matchings, and is 

superior among these nonparametric tests to detect a change point.  Additionally, the 

ESPM test has power comparable to a parametric competitor, the JJS test, even when its 

parametric assumptions are met.  The power of the ESPM test not only establishes itself 

as an effective change-point test, but also validates matching as a useful approach to the 

change-point problem. 

This research invites several possibilities for extension.  One obvious question is 

whether or not any of these tests might be reasonably extended as sequential change-

point tests.  While it is difficult in general to sequentialize hypothesis tests, sequential 

change-point detection techniques would have valuable application.  One requirement for 

such an extension would be to extend the theory presented here as necessary for 
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sequentialization.  Another practical problem associated with such an extension is the 

question of how to efficiently update an existing optimal matching on N observations 

with the addition of one or more data points to the observation set. 

Other opportunities include finding ensemble extensions for the NAP and BAP 

tests.  The fact that the exact distributions of these individual tests are known might make 

the task of finding exact associated ensemble distributions (or good approximations) 

more tractable.  Additionally, the performance of the BAP test remains to be evaluated. 

One challenge to research in this area is the scarcity of non-bipartite weighted 

matching software modules for typical statistical software applications.  The simulation 

study for this research relies heavily on interfaces between C, C++, or FORTRAN; and 

S-PLUS®, R, or MATLAB® that we or others have built manually.  The mainstreaming 

of any such interface would greatly enable broader related research.  Research 

opportunities exist to improve the efficiency of non-bipartite matching algorithms.  Even 

using existing algorithms, time improvements would be gained by reducing the number 

of orthogonal successive optimal matchings computed for the ESPM test.  As presented 

here, the ESPM statistic is formed by summing over / 2N  orthogonal successive optimal 

matchings where N  is the sample size.  Additional research is necessary to determine 

whether fewer (perhaps far fewer) orthogonal successive optimal matchings are adequate 

to achieve good detection power against alternate hypotheses.  Also, it would be 

worthwhile to investigate the usefulness of “greedy” algorithms in this context.  A greedy 

matching algorithm finds a good matching on N observations by pairing the two closest 

points, then the next two closest, and so on until a maximal matching has been 

constructed.  This faster algorithm ( ( )2O N ) does not in general provide an optimal non-

bipartite matching.  However, a greedy matching may still be good enough to provide 

valuable change-point information; we believe this would be a worthwhile area for study. 

Rosenbaum’s (2005) case for the consistency of the cross-match statistic seems 

quite reasonable, but as he states it is “admittedly informal.”  His argument is also 

constrained to less general alternative hypotheses than we have considered in our work.  

Because our argument for the consistency of the SPM test (and therefore for the ESPM 
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test by direct extension) requires the consistency of the cross-match statistic, work needs 

to be done to establish the consistency of the cross-match statistic more formally and 

against alternative hypotheses of a more general nature. 

We alluded previously to the fact that machine health diagnosis and prognosis 

problems were an initial motivation for this research, and we are interested in ways to 

apply this work to that area.  Such problems are often characterized by high 

dimensionality and serial correlation.  In addition to detecting the presence of a change 

point in a sequence of observations, it would be useful also to estimate where in the 

sequence the change point occurred.  Furthermore, it would be helpful in the event that a 

change point is detected to characterize the nature of the change (for example, abrupt or 

gradual) and the severity of the change for prognostic purposes such as estimating 

remaining useful life.  

An idea that seems worthy of consideration is a generalization of our matching 

approach to vertex groupings of cardinality greater than two.  The tests we propose here 

are all matching-based, where we mean matching in the strict graph-theoretical sense as 

defined in Chapter II.  Each matching is a collection of single edges, and each edge is in 

turn is a two-element subset of vertices.  Algorithms to find optimal non-bipartite 

weighted matchings already exist, and we have demonstrated that matchings can be used 

for effective statistical inference.  However, it might be worth examining whether 

collections of more than one edge (that is, collections of more that two vertices) might 

provide useful (or even better) information to the change-point problem.  For example, 

instead of computing an optimal non-bipartite matching on a set of observations one 

might compute an optimal “three-grouping,” where the objective function for optimality 

might be to minimize the collective cycle cost or collective minimum spanning tree cost 

across subgroups of size three.  Similar to the SPM test, one might consider the sum of 

group-maxima (or -minima, or -median, or some other unary set operator).  Even more 

general “k-groupings” might be considered.  Unlike the well-known method of k-means 

clustering, which partitions N observations into k groups (perhaps of different sizes) 

based on an objective criterion such as minimizing the sum if within-cluster differences, a 

“k-groupings” approach would specify group size k first and then collect vertices into 
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groups so as to minimize some particular criterion.  We are not aware of any specialized 

algorithms to find such groupings and the associated statistical properties of such 

groupings are likely quite complicated, but these ideas might constitute fertile ground for 

research. 

Another interesting idea involves retaining some of the original observation 

information for the computation of a test statistic.  The methods we propose use the 

observed data in two distinct steps:  First we compute an optimal non-bipartite matching 

based on observation content excluding data sequence labels, then we compute a 

nonparametric test statistic based only on sequence labels with respect to that matching.  

However, it might be useful to carry over additional information from the data into the 

computation of a test statistic.  For example, one might associate with each pair in the 

matching some measure of pair “quality” based on the cost of the pair.  These quality 

values might then be used as weightings in the computation of a sum of pair-maxima-

type statistic, and perhaps improve the detection power of such a test. 

Finally, an area upon which we have only touched briefly involves the choice of 

cost function.  In research such as ours the existence of some appropriate dissimilarity 

measure associated with the sample space of interest is often assumed and from there the 

desired analysis proceeds.  While our theoretical results regarding non-ensemble null 

distributions depend only on the exchangeability of sequence labels and not on choice of 

cost function, we expect detection power against alternative hypotheses to depend on that 

choice.  While Mahalanobis distance (or some robust modification of Mahalanobis 

distance) is a natural choice of cost function for continuous random variables, cases of 

interest may include a mixture of categorical, ordinal, and continuous random variables.  

Even for continuous cases, the ability to detect change points with respect to a 

Mahalanobis distance function might be improved.  For example, shifting observations 

by a component-wise smoothed mean can lead to better covariance matrix estimation in 

cases where a change point exists.  In any case, further study of the effects of cost 

function choice on the power of tests presented here would be of useful, especially for 
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cases that include categorical or ordinal dimensions.  In particular, for real-world 

application of these methods it would be worth investigating which cost functions lead to 

the most attractive power characteristics for the specific case at hand. 
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APPENDIX A: HIGHER MOMENT DERIVATIONS 

In this appendix, we derive various moments associated with the Sum of Pair-

Maxima (SPM) statistic. 

A. MEAN AND VARIANCE OF 1Y  

For a non-bipartite match on 2N n=  observations, each of the (2 )!n  possible 

assignments of ranks is equally likely under the null hypothesis, and the random variables 

1, , nY YK  are exchangeable.  Therefore, 1Y  takes on the value t when observation t is 

paired with some observation s of lesser sequence label and ( ),s t  is indexed as the first 

among the n pairs.  But 
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B. COVARIANCE OF 1Y  AND 2Y  

First we find ( )2 1|P Y t Y s= =  by observing that for the case t s< , 
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and for the case t s> , 
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Now condition on 1Y  to compute [ ]2 1E Y Y : 
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Therefore,  

(E.9) 

[ ] [ ] [ ] [ ]

( )( ) ( )

( )

1 2 2 1 2 1

2

Cov ,

8 2 1 5 2 2 2 1
45 3

4 2 1
.

45

Y Y E Y Y E Y E Y

n n n

n

= −

⎛ ⎞+ + + ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠

+
=−

 

 

C. THIRD MOMENTS OF 1Y , 2Y , AND 3Y  

As in the first and second moment calculations, compute 3
1E Y⎡ ⎤⎢ ⎥⎣ ⎦  directly: 
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Now compute 2
1 2E Y Y⎡ ⎤⎣ ⎦  by conditioning on 1Y  using (E.7): 
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In a similar fashion, we apply a series of conditioning arguments to compute 

[ ]1 2 3E Y Y Y .  First, let ( ) ( ) ( )1 2 3, ,  and Z Z Z  take on the values of 1 2 3, ,  and Y Y Y  such that 

( ) ( ) ( )1 2 3Z Z Z< <  (these ( )iZ  are unrelated to the iZ  of the BAP test).  Then 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 3 2 1 2 3 3,E Y Y Y E Z Z Z E Z E Z E Z Z Z Z⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦
.  A direct 

combinatorial argument gives  

(E.12) ( ) ( ) ( )( ) ( )( )( )1 2 3
1 2 3 1 2 31 2 3

6 1 3 5
, , ,    2 2 ,

2 2 2 2 4
2 2 2

t t t
P Z t Z t Z t t t t n

n n n
− − −

= = = = ≤ < < ≤
− −⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠
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so 

(E.13) 

( ) ( )( ) ( ) ( ) ( )( )
( )( )( )( )

1

2 2

2 3 1 2 32 3 1 2 3
2

2 2 2 3
2 3

, , ,

3 1 2 3 5
,  4 2 ,

2 2 2 2 4
2 2 2

n

t

P Z t Z t P Z t Z t Z t

t t t t
t t n

n n n

−

=

= = = = = =

− − − −
= ≤ < ≤

− −⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

∑
 

and 

(E.14) 

( )( ) ( ) ( )( )
( )( )( )( )( )

2

2 1

3 2 33 2 3
4

3 3 3 3 3
3

,

3 1 2 3 4 5
,    6 2 .

2 2 2 2 4
4

2 2 2

n

t

P Z t P Z t Z t

t t t t t
t n

n n n

−

=

= = = =

− − − − −
= ≤ ≤

− −⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

∑
 

Therefore, 

(E.15) 
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )
( )

( )( )

1 2 31 2 3
1 2 31 2 3

2 32 3

1
1 2 3

2 2

, ,
,

,

2 1
,    2 2 ,

1 2

P Z t Z t Z t
P Z t Z t Z t

P Z t Z t

t
t t t n

t t

= = =
= = = =

= =

−
= ≤ < < ≤

− −

 

and 

(E.16) 
( ) ( )( ) ( ) ( )( )

( )( )
( )( )( )

( )( )( )( )

2 32 3
2 32 3

33

2 2 2
2 3

3 3 3 3

,

4 1 2 3
,    4 2 .

1 2 3 4

P Z t Z t
P Z t Z t

P Z t

t t t
t t n

t t t t

= =
= = =

=

− − −
= ≤ < ≤

− − − −

 

Now compute conditional expected values 

(E.17) 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( )( )

2

1

2

1

1

2 3 1 1 2 31 2 3 1 2 3
2

1
1 1

2 2 2

2

, ,

2 1
1 2

2 ,
3

t

t

t

t

E Z Z t Z t t P Z t Z t Z t

t t
t t

t

−

=

−

=

⎡ ⎤= = = = = =⎣ ⎦

−
=

− −

=

∑

∑  
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and 

(E.18) 

( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( )( )
( )( )( )( )

( )

3

2

2
2

3 32 1 2 3 3 3

1 2
2 2 22

4 3 3 3 3

3 3

2
,

3

4 1 2 32
3 1 2 3 4

4 5 1
.

45
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Z
E Z E Z Z Z Z t E Z t

t t tt
t t t t

t t

−

=

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥= = =⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
− − −

=
− − − −

−
=

∑  

Finally, 

(E.19) 

[ ] ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )( )( )( )( )

( )( )

3

2
3 3

1 2 3 3 2 1 2 3 3

22
3 3 3 3 3 3 3
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2

4 5 1
,
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4 5 1 3 1 2 3 4 5
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4
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t t t t t t t
n n n

n n n

=

⎡ ⎤−⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤= =⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
⎣ ⎦

− − − − − −
=
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⎝ ⎠⎝ ⎠⎝ ⎠
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=
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APPENDIX B: QUANTILE TABLES  

A. APPROXIMATE CRITICAL VALUES FOR NT  

α  N = 6 8 10 12 14 16 18 20 22 
0.001 - - - 43 58 76 97 120 145 
0.005 - - 31 44 60 79 99 123 149 
0.01 - - 31 45 61 80 101 125 151 

0.025 - 21 32 46 63 81 103 127 154 
0.05 - 21 33 47 64 83 105 129 156 
0.1 13 22 34 48 65 85 107 132 159 

          
α  24 26 28 30 32 34 36 38 40 

0.001 173 204 237 272 310 351 394 440 489 
0.005 178 209 242 279 317 359 403 449 498 
0.01 180 211 245 282 321 363 407 454 503 

0.025 183 215 249 286 326 368 413 460 510 
0.05 186 218 253 290 330 373 418 466 516 
0.1 189 222 257 295 335 378 424 472 523 

          
α  60 80 100 120 140 160 180 200 220 

0.001 1113 1995 3137 4537 6199 8121 10304 12749 15455 
0.005 1131 2023 3175 4588 6262 8199 10397 12857 15581 
0.01 1140 2036 3194 4612 6293 8236 10442 12910 15641 

0.025 1152 2056 3221 4648 6338 8292 10508 12987 15731 
0.05 1163 2073 3244 4679 6377 8339 10564 13054 15807 
0.1 1176 2092 3272 4715 6422 8394 10630 13130 15896 

          
α  240 260 280 300 320 340 360 380 400 

0.001 18424 21655 25148 28903 32922 37203 41747 46554 51624 
0.005 18567 21816 25328 29103 33142 37444 42009 46838 51931 
0.01 18636 21894 25415 29200 33248 37560 42136 46976 52080 

0.025 18737 22008 25543 29342 33404 37732 42323 47179 52299 
0.05 18825 22107 25653 29464 33539 37879 42483 47353 52487 
0.1 18925 22220 25780 29604 33694 38049 42668 47553 52703 

Table 19.   Estimated critical values for NT . 

Critical regions correspond to values of NT  strictly less than the appropriate 

quantile; N  is sample size and α  is significance level.  Values for N = 6, 8, and 10 are 
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exact; values for 10N >  are approximations by Edgeworth expansion using (3.31).  A 

dash entry (“-”) means that the significance level of interest cannot be attained for that 

sample size. 

B. APPROXIMATE CRITICAL VALUES FOR NK  

20N =          
α d = 1 2 3 4 5 10 20 50 

0.001 2.57 
[.04] 

2.40 
[.03] 

2.27 
[.04] 

2.17 
[.02] 

2.10 
[.02] 

1.93 
[.02] 

1.88 
[.02] 

1.78 
[.02] 

0.005 1.96 
[.02] 

1.88 
[.02] 

1.81 
[.02] 

1.76 
[.01] 

1.72 
[.02] 

1.60 
[.02] 

1.56 
[.01] 

1.52 
[<.01] 

0.01 1.72 
[.02] 

1.66 
[.01] 

1.60 
[.01] 

1.56 
[.01] 

1.53 
[.02] 

1.46 
[.01] 

1.43 
[<.01] 

1.38 
[.01] 

0.025 1.38 
[<.01] 

1.35 
[.01] 

1.33 
[.02] 

1.31 
[.01] 

1.29 
[.02] 

1.24 
[<.01] 

1.22 
[.02] 

1.21 
[<.01] 

0.05 1.13 
[<.01] 

1.12 
[.02] 

1.10 
[.01] 

1.10 
[<.01] 

1.09 
[.01] 

1.07 
[<.01] 

1.07 
[.01] 

1.03 
[.02] 

0.1 0.90 
[<.01] 

0.90 
[<.01] 

0.89 
[<.01] 

0.89 
[.01] 

0.89 
[.01] 

0.88 
[.01] 

0.88 
[.02] 

0.86 
[.01] 

         
40N =          

α d = 1 2 3 4 5 10 20 50 

0.001 2.77 
[.04] 

2.57 
[.04] 

2.42 
[.03] 

2.31 
[.04] 

2.22 
[.03] 

2.02 
[.02] 

1.95 
[.02] 

1.84 
[.02] 

0.005 2.11 
[.02] 

1.99 
[.02] 

1.90 
[.01] 

1.83 
[.02] 

1.78 
[.01] 

1.66 
[.01] 

1.62 
[.01] 

1.56 
[.01] 

0.01 1.83 
[.01] 

1.74 
[.01] 

1.68 
[.01] 

1.63 
[.01] 

1.59 
[.01] 

1.50 
[.01] 

1.47 
[.01] 

1.43 
[.01] 

0.025 1.47 
[.01] 

1.42 
[.01] 

1.38 
[.01] 

1.35 
[.01] 

1.33 
[.01] 

1.28 
[.01] 

1.26 
[.01] 

1.24 
[<.01] 

0.05 1.20 
[.01] 

1.17 
[.01] 

1.15 
[<.01] 

1.14 
[<.01] 

1.13 
[<.01] 

1.10 
[<.01] 

1.09 
[<.01] 

1.08 
[<.01] 

0.1 0.93 
[<.01] 

0.92 
[<.01] 

0.92 
[<.01] 

0.91 
[<.01] 

0.91 
[<.01] 

0.91 
[<.01] 

0.91 
[<.01] 

0.90 
[<.01] 

         
60N =          

α d = 1 2 3 4 5 10 20 50 

0.001 2.80 
[.04] 

2.61 
[.05] 

2.46 
[.04] 

2.35 
[.03] 

2.26 
[.03] 

2.05 
[.02] 

1.97 
[.02] 

1.86 
[.02] 

0.005 2.15 
[.02] 

2.02 
[.02] 

1.93 
[.02] 

1.86 
[.01] 

1.80 
[.01] 

1.68 
[.01] 

1.64 
[.01] 

1.57 
[.01] 

0.01 1.85 
[.01] 

1.76 
[.01] 

1.70 
[.01] 

1.65 
[.01] 

1.62 
[.01] 

1.53 
[.01] 

1.50 
[.01] 

1.44 
[.01] 

0.025 1.47 
[.01] 

1.43 
[.01] 

1.39 
[.01] 

1.37 
[.01] 

1.35 
[.01] 

1.30 
[.01] 

1.28 
[<.01] 

1.25 
[<.01] 
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0.05 1.20 
[.01] 

1.18 
[.01] 

1.16 
[<.01] 

1.15 
[<.01] 

1.14 
[<.01] 

1.11 
[<.01] 

1.10 
[<.01] 

1.09 
[<.01] 

0.1 0.94 
[<.01] 

0.93 
[<.01] 

0.93 
[<.01] 

0.93 
[<.01] 

0.92 
[<.01] 

0.92 
[<.01] 

0.92 
[<.01] 

0.92 
[<.01] 

         
         
         
80N ≥          

α d = 1 2 3 4 5 10 20 50 

0.001 2.88 
[.06] 

2.67 
[.03] 

2.50 
[.03] 

2.38 
[.03] 

2.29 
[.03] 

2.06 
[.02] 

1.98 
[.02] 

1.88 
[.02] 

0.005 2.15 
[.02] 

2.04 
[.02] 

1.96 
[.01] 

1.89 
[.01] 

1.84 
[.01] 

1.70 
[.01] 

1.65 
[.01] 

1.59 
[.01] 

0.01 1.86 
[.01] 

1.78 
[.01] 

1.72 
[.01] 

1.67 
[.01] 

1.63 
[.01] 

1.54 
[.01] 

1.50 
[.01] 

1.45 
[.01] 

0.025 1.49 
[.01] 

1.45 
[.01] 

1.41 
[.01] 

1.38 
[.01] 

1.36 
[.01] 

1.31 
[.01] 

1.29 
[.01] 

1.26 
[<.01] 

0.05 1.21 
[.01] 

1.19 
[.01] 

1.18 
[.01] 

1.16 
[<.01] 

1.15 
[<.01] 

1.13 
[<.01] 

1.11 
[<.01] 

1.10 
[<.01] 

0.1 0.95 
[<.01] 

0.94 
[<.01] 

0.94 
[<.01] 

0.94 
[<.01] 

0.93 
[<.01] 

0.93 
[<.01] 

0.93 
[<.01] 

0.92 
[<.01] 

Table 20.   Approximate critical values for NK . 

N  is sample size, d  is dimension, and α  is significance level.  Critical values 

are listed with associated standard error in square brackets.  Critical regions correspond to 

values of NK  strictly greater than the appropriate quantile.  Critical values are computed 

by 100,000 simulations for each case of sample size and dimension using uniformly 

distributed data and matching with respect to Euclidean distance.  Standard error for 

quantiles is determined by the Maritz-Jarrett method (Maritz and Jarrett, 1978).  

Simulation suggests that these critical value approximations are independent of 

underlying distribution and cost function. 

Interpolate to find critical values for N , d , or α  not provided in the table.  Use 

50d =  to approximate critical values for 50d > .  For sample size or dimension far 

outside the bounds of these tables, critical values ought to be approximated by simulation 

for the case at hand. 
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APPENDIX C: R FUNCTIONS FOR CRITICAL ENVELOPES  

In this appendix, we provide R (2005) language code to compute critical 

envelopes for the Non-Bipartite Accumulated Pairs (NAP) and Bipartite Accumulated 

Pairs (BAP) tests. 

A. CRITICAL ENVELOPE FOR THE NAP TEST 

function(alpha, n){ 
#  alpha = non-simultaneous alpha value (rejection for  
#     exceeding a critical threshold) 
#  n = number of pairs (N = 2*n is total sample size) 
#  Returned is a list of critical boundary values, and the 
#     probability of violating at least one of them.  Boundary 
#     values themselves are not critical (e.g. reject the null  
#     if any value is strictly greater than the boundary value). 
n1 <- n - 1 
N <- 2 * n 
N1 <- N - 1 
qvec <- numeric(N1) 
for(k in 2:N1) { 
 rmin <- max(c(0, k - n)) 
 rvec <- rmin:floor(k/2) 

cvec <- cumsum(choose(n, k - rvec) * choose(k - rvec, rvec) 
* 2^(k-2 * rvec))/choose(N, k) 

 qvec[k] <- which(cvec > (1-alpha - 1e-010))[1] + rmin-1 
} 
qvec[1] <- 1 
kstar <- max(which(qvec < 1:N1)) 
a <- rep(0, n) 
a[1:2] <- 1 
qv <- qvec[2] 
for(k in 3:kstar) { 
 a0 <- a * ((0:n1) <= qv) 
 qv <- qvec[k] 
 qv1 <- qv + 1 

if (qv > 0) a[2:qv1] <- a0[2:qv1] - (2 * (diff(a0[1:qv1]) *    
(1:qv)))/k 

} 
rvec <- max(c(0, kstar - n)):qv 
cvec <- (choose(n, kstar - rvec) * choose(kstar - rvec, rvec) * 

2^(kstar - 2 * rvec))/choose(N, kstar) 
alpha.sim <- 1 - sum(a[rvec + 1] * cvec) 
return(list(kseq <- 2:N1, envelope = qvec[-1], alpha.sim = 

alpha.sim)) 
} 
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B. CRITICAL ENVELOPE FOR THE BAP TEST 

function(alpha, m, n){ 
#  alpha = non-simultaneous alpha value (rejection for  
#     exceeding a critical threshold) 
#  m = number of control points 
#  n = number of test points (must have n > m) 
#  Returned is a list of critical boundary values, and the 
#     probability of violating at least one of them.  Boundary 
#     values themselves are not critical (e.g. reject the null  
#     if any value is strictly greater than the boundary value). 
if(n <= m) { 
 cat("*** Invalid arguments ***", "\n") 
 return() 
} 
qvec <- qhyper(1 - alpha, m, n - m, 1:(n - 1)) 
sq <- which(diff(c(0, qvec)) < 1e-010) 
pvec <- (((m - qvec[sq])/(n - sq + 1)) * dhyper(qvec[sq], m, n - 

m, sq))/phyper(qvec[sq], m, n - m, sq) 
return(list(envelope = qvec, alpha.sim = 1 - prod(1 - pvec))) 
} 
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APPENDIX D: EXAMPLE DATA FOR FIGURES 1–7 

x1 x2 

0.8057 0.2209 

-1.3556 -1.0061 

0.1209 -0.4531 

-0.2222 1.3995 

0.5717 -0.4620 

-0.3001 0.0327 

1.1343 0.7988 

-0.1794 0.8968 

-1.4671 0.1379 

1.3953 -1.6191 

0.4408 -1.6466 

0.5654 0.4287 

-0.6936 -0.7372 

0.8339 0.5649 

-2.2374 -1.3842 

1.0976 0.4603 

-0.0016 0.6294 

-1.6146 0.3798 

-1.2287 -1.0133 

0.2074 -0.3472 

Table 21.   Example data for Figures 1–7 



 120

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 121

LIST OF REFERENCES 

Ahuja, R., Magnanti, T., Orlin, J. (1993). Network Flows, Prentice Hall, Inc., New Jersey. 
 
Bhattacharya, P. and Frierson, D., Jr. (1981). “A Nonparametric Control Chart for 

Detecting Small Disorders,” The Annals of Statistics, Vol. 9, pp. 544–554. 
 
Ball, M. and Derigs, U. (1983).  “An Analysis of Alternative Strategies for Implementing 

Matching Algorithms,” Networks, Vol. 13, No. 4, pp. 517–549. 
 
Baringhaus, L. and Franz, C. (2004). “On a New Multivariate Two-Sample Test,” 

Journal of Multivariate Analysis, Vol. 88, pp. 190–206. 
 
Barnett, V. (1974). “The Ordering of Multivariate Data,”  Journal of the Royal Statistical 

Society Series A (General), Vol. 139, No. 3, 318–355. 
 
Basseville, M. and Nikiforov, I. (1993). Detection of Abrupt Change – Theory and 

Application, PTR Prentice-Hall, Inc., Englewood Cliffs, NJ.  
 
Billingsley, P. (1979). Probability and Measure, John Wiley & Sons, New York. 
 
Bickel. P.  (1969). “A Distribution Free Version of the Smirnov Two Sample Test in the 

p-Variate Case,” The Annals of Mathematical Statistics, Vol. 40, No. 1, pp. 33–
43. 

 
Brodsky, B. and Darkhovsky, B.S. (1993). Nonparametric Methods in Change-Point 

Problems, pp. 11–24, Kluwer Academic Publishers, Norwell, MA. 
 
Chartrand, G. and Zhang, P. (2005). Introduction to Graph Theory, pp. 9, 184, McGraw-

Hill, New York, NY, 2005. 
 
Chaudhuri, P. (June 1996). “On a Geometric Notion of Quantiles for Multivariate Data,” 

Journal of the American Statistical Association, Vol. 91, No. 434, pp. 862–872. 
 
Choi, K. and Marden, J. (December 1997). “An Approach to Multivariate Rank Tests in 

Multivariate Analysis of Variance,” Journal of the American Statistical 
Association, Vol. 92, No. 440, pp. 1581–1590. 

 
Conover, W. (1999). Practical Nonparametric Statistics, Third Edition, pp. 271–288, 

John Wiley & Sons, New York.  
 
Cook, W. and Rohe A. (February 1999). “Computing minimum-weight perfect 

matchings,” INFORMS Journal on Computing, Vol. 11, No. 2, pp. 138–148. 
 



 122

Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis, pp. 7–21, 
John Wiley & Sons, Inc., New York, NY. 

 
Davies, R. (1997). “Hypothesis Testing When a Nuisance Parameter Is Present Only 

Under the Alternatives,” Biometrika, Vol. 74, No. 1, pp. 33–43. 
 
Derigs, U. (1988). “Solving Non-Bipartite Matching Problems via Shortest Path 

Techniques,” Annals of Operations Research, Vol. 13, pp. 225–261. 
 
Deshayes, J. and Picard, D. (1986). “Off-Line Statistical Analysis of Change-Point 

Models Using Nonparametric and Likelihood Methods,” Lecture Notes in Control 
and Information Sciences, Vol. 77, pp. 103–168. 

 
Edmonds, J. (1965). “Maximum Matching and a Polyhedron with 0,1-Vertices,” Journal 

of Research of the National Bureau of Standards, Vol. 69B, pp. 125–130. 
 
Fricker, R. and Chang, J. (2009). “The Repeated Two-Sample Rank (RTR) Procedure: A 

Nonparametric Multivariate Individuals Control Chart,” pre-print dated June 9. 
 
Friedman, J. and Rafsky, L. (1979). “Multivariate Generalizations of the Wald-

Wolfowitz and Smirnov Two-Sample Tests,” The Annals of Statistics, Vol. 7, No. 
4, pp. 697–717. 

 
Fristedt, B. and Gray, L. (1997). A Modern Approach to Probability Theory, Birkhäuser, 

Boston. 
 
Gabow, H. )1973). “Implementation of Algorithms for Maximum Matching on Non-

Bipartite Graphs,” Ph.D. Thesis, Computer Science Department, Stanford 
University. 

 
Gabow, H., Galil, Z., Spencer, T. (1989). “Efficient Implementation of Graph Algorithms 

Using Contraction,” Journal of the Association for Computing Machinery, Vol. 
36, No. 3, pp. 540–572. 

 
Galil, Z., Micali, S., Gabow, H. (1986). “An O(EV log V) Algorithm For Finding A 

Maximal Weighted Matching In General Graphs,” SIAM Journal on Computing, 
Vol. 15, pp. 120–130. 

 
Girshick, M. and Rubin, H. (March 1952). “A Bayes Approach to a Quality Control 

Model,” The Annals of Mathematical Statistics, Vol. 23, No. 1, pp. 114–125. 
 
Gordon, L. and Pollock, M. (1995). “A Robust Surveillance Scheme for Stochastically 

Ordered Alternatives,” The Annals of Statistics, Vol. 23, pp. 1350–1375. 
 



 123

Greevy, R., Lu, B., Silber, J., Rosenbaum, P. (2004). “Optimal Matching before 
Randomization,” Biostatistics, Vol. 5, pp. 263–275. 

 
Hansen, B. (1996). “Inference When a Nuisance Parameter Is Not Identified Under the 

Null Hypothesis,” Econometrica, Vol. 64, No. 2, pp. 413–430. 
 
Hastie, T., Tibshirani, R., Freidman, J. (2009). The Elements of Statistical Learning: 

Data Mining, Inference, and Prediction, pp. 501–520, Springer, New York, NY. 
 
Henze, N. and Penrose, M. (1999). “On the Multivariate Runs Test,” The Annals of 

Statistics, Vol. 27, No. 1, pp. 290–298. 
 
Hinkley, D. (1969). “Inference about the Intersection in Two-Phase Regression,” 

Biometrika, Vol. 56, No. 3, pp. 495–504. 
 
Hodges, J. (1955).“A Bivariate Sign Test,” The Annals of Mathematical Statistics, Vol. 

26, pp. 523–527. 
 
Hotelling, H. (1931). “The Generalization of Student's Ratio,” The Annals of 

Mathematical Statistics, Vol. 2, pp. 360–37. 
 
Jonker, R. and Volgenant, A. (1987). “A shortest augmenting path algorithm for dense 

and sparse linear assignment problems,” Computing, Vol. 39, pp. 325–340. 
 
Kolmogorov, V. (2009). “Blossom V: A New Implementation of a Minimum Cost 

Perfect Matching Algorithm,” Mathematical Programming Computation, Vol. 1, 
No. 1, pp. 43–67, 2009.  Source code in C++ programming language publicly 
available at 
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html#BLOSSOM5 
(Retrieved June 24, 2009). 

 
Levedahl, M. (2000). “Performance Comparison of 2-D Assignment Algorithms for 

Assigning Truth Objects to Measured Tracks,” Proceedings of SPIE – The 
International Society for Optical Engineering, Vol. 4048, pp. 380–389. 

 
Li, J. and Liu, R. (2004). “New Nonparametric Tests of Multivariate Locations and 

Scales Using Data Depth,” Statistical Science, Vol. 19, No. 4, pp. 686–696. 
 
Liu, R., Parelius, J.M., Singh, K. (1999). “Multivariate analysis by data depth: descriptive 

statistics, graphics and inference (with discussion and a rejoinder by Liu and 
Singh),” The Annals of Statistics, Vol. 27, No. 3, pp. 783–840, June. 

 
Lowry, C., Woodall, W., Champ, C., Rigdon, S., (1992). “A Multivariate Exponentially 

Weighted Moving Average Control Chart,” Technometrics, Vol. 34, pp. 46–53. 



 124

Lu, B. and Rosenbaum, P.R. (2004). “An Algorithm for Ranking all the Assignments in 
Order of Increasing Cost,” Journal of Computational and Graphical Statistics, 
Vol. 13, No. 2, pp. 422–434. 

 
Lu, B., Zanutto, E., Hornik, R., Rosenbaum, P. (2001). “Matching with Doses in an 

Observational Study of a Media Campaign against Drug Abuse,” Journal of the 
American Statistical Association, Vol. 96, pp. 1245–1253. 

 
Mann, H. and Whitney, D. (1947). “On A Test of Whether One of Two Random 

Variables Is Stochastically Larger Than the Other,” The Annals of Mathematical 
Statistics, Vol. 18, No. 1, pp. 50–60. 

 
Maple 10.04, (2006). Waterloo Maple Inc., Waterloo, Ontario, Canada. 
 
Maritz, J. and Jarrett, R. (1978). “A Note on Estimating the Variance of the Sample 

Median,” Journal of the American Statistical Association, Vol. 73, No. 361, pp. 
194–196. 

 
MATLAB® 7.6.0.324 (R2008a). (2008). The Mathworks, Natick MA. 
 
McKane, B. and Albert, A. (2008). “Distance Functions for Categorical and Mixed 

Variables,” Pattern Recognition Letters, Vol. 29, No. 7, pp. 986–993, May. 
 
Mehlhorn K. and Schäfer, G. (2002). “Implementation of O(nmlogn) Weighted 

Matchings in General Graphs: The Power of Data Structures,” Journal of 
Experimental Algorithmics, Vol. 7, No. 4. 

 
Möttönen, J. and Oja, H. (1995). “Multivariate Spatial Sign and Rank Methods,” 

Nonparametric Statistics, Vol. 13, No. 5, pp. 201–213. 
 
Murty, K. (1968). “Optimal Pair Matching with Two Control Groups,” Operations 

Research, Vol. 16, No. 3, pp. 682–687. 
 
Osorio, F. and Galea, M. (2005). “Detection of a Change point in Student-t Linear 

Regression Models,” Statistical Papers, Vol. 45, pp. 31–48. 
 
Page, E. (1954). “Continuous Inspection Schemes,” Biometrika, Vol. 41, No. 1/2, pp. 

100–115, March. 
 
Prabhu, S. and Runger, G. (1997). “Designing A Multivariate EWMA Control Chart,” 

Journal of Quality Technology, Vol. 29, No. 1, pp. 8–15. 
 
Præstgaard, J. (1995). “Permutation and Bootstrap Kolmogorov-Smirnov Tests for the 

Equality of Two Distributions,” Scandinavian Journal of Statistics, Vol. 22, pp. 
305–322. 



 125

Qui, P. and Hawkins, D. (2003). “A Nonparametric Multivariate Cumulative Sum 
Procedure for Detecting Shifts in All Directions,” The Statistician, Vol. 52, pp. 
151–164. 

 
R Development Core Team, R: A language and environment for statistical computing, R 

Foundation for Statistical Computing, (2005). Vienna, Austria, ISBN 3-900051-
07-0, Retrieved August 6, 2009, from http://www.R-project.org. 

 
Rinott, Y. and Rotar, V. (2000). “Normal approximations by Stein’s method,” Decisions 

in Economics and Finance, Vol. 23, pp. 15–29. 
 
Roberts, S. (1959). “Control Chart Tests Based on Geometric Moving Averages,” 

Technometrics, Vol. 1, pp. 239–250. 
 
Rosenbaum, P. (2005). “An Exact Distribution-Free Test Comparing Two Multivariate 

Distributions Based on Adjacency,” Journal of the Royal Statistical Society Series 
B, Vol. 67, No. 4, pp. 515–530. 

 
Ross, K. (1981). Elementary Analysis: The Theory of Calculus, p. 80, Springer Science & 

Business, McGraw-Hill, New York, NY. 
 
Runger, G. and Testik, M. (2004). “Multivariate Extensions to Cumulative Sum Control 

Charts,” Quality and Reliability Engineering International, Vol. 20, pp. 587–606. 
 
Rushton, S. (1950). “On a Sequential t-Test,” Biometrika, Vol. 37, No. 3/4, pp. 326–333, 

December. 
 
Shiryaev, A. (1963). “On Optimum Methods in Quickest Detection Problems,” Theory of 

Probability and Its Applications, Vol. 8, No. 1, pp. 22–46. 
 
S-PLUS® Version 7.0. (2005).  Insightful Corporation, Seattle, WA. Retrieved August 6, 

2009, from http://www.insightful.com. 
 
Stein, C. (1972). “A bound for the error in the normal approximation to the distribution of 

a sum of dependent random variables,” Proceedings of the Sixth Berkeley 
Symposium on Mathematical Statistics and Probability, Vol. 2,  pp. 583–602. 

 
Stein, C. (1986). “Approximate Computation of Expectations,” Institute of Mathematical 

Statistics, Hayward, CA. 
 
Stoumbos, Z., Reynolds, M., Jr., Ryan, T., Woodall, W. (2000). “The state of statistical 

process control as we proceed into the 21st century,” Journal of the American 
Statistical Association, Vol. 95, No. 451, pp. 992–998. 

 



 126

Tanis, E. and Hogg, R. (2008). A Brief Course in Mathematical Statistics, pp. 165–168, 
Prentice Hall, Inc., Upper Saddle River, NY, 2008. 

 
Tukey, J. (1975). “Mathematics and Picturing Data,” Proceedings of the 1975 

International Congress of Mathematics, Vol. 2, pp. 523–531. 
 
Wallace, D. (1958). “Approximations to Distributions,” The Annals of Mathematical 

Statistics, Vol. 29, No. 3, pp. 635–654. 
 
Wald, N. and Wolfowitz, J. (1940). “On a Test Whether Two Samples are from the Same 

Population,” The Annals of Mathematical Statistics, Vol. 11, No. 2, pp. 147–162. 
 
Wang, N. and Raftery, A. (2002). “Nearest Neighbor Variance Estimation (NNVE): 

Robust Covariance estimation via Nearest Neighbor Cleaning,” Journal of the 
American Statistical Association, Vol. 97, No. 460, pp. 994–1019, December. 

 



 127

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Associate Professor Robert Koyak 
Naval Postgraduate School 
Monterey, California  
 

4. Associate Professor Kyle Lin 
Naval Postgraduate School 
Monterey, California  
 

5. Associate Professor Craig Rasmussen 
Naval Postgraduate School 
Monterey, California  
 

6. Associate Professor Javier Salmeron 
Naval Postgraduate School 
Monterey, California  
 

7. Associate Professor Lyn Whitaker 
Naval Postgraduate School 
Monterey, California  
 

8. Associate Professor Samuel Buttrey 
Naval Postgraduate School 
Monterey, California  
 

9. Dr. Eric Bechhoefer 
Goodrich Fuels and Utility Systems 
Vergennes, Vermont  
 

10. Commander David Ruth, USN 
Military Professor, Department of Mathematics 
United States Naval Academy  
Annapolis, Maryland 

 


