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ABSTRACT 

The use of composite materials in both civil and military applications has been 

increasing as composites potentially offer many advantages over traditional structural 

materials. Composites typically provide superior strength to weight ratio, better resistance 

to corrosion, and especially for military applications, greater ballistic protection. Wide 

use of composites is found in aircraft, armored vehicles, ships and civil structures. 

This present research demonstrates the ability to numerically detect damage in a 

composite sandwich structure using a robust non-linear finite element method (FEM). 

The FEM is used to directly represent damage in a structure and the structure's response 

is investigated. Changes in elemental strains and strain frequencies, through a Fast 

Fourier Transform (FFT), are evaluated. Both a cantilevered beam and a simply 

supported plate are studied. 
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I.       INTRODUCTION 

A.  BACKGROUND 

Approximately ten percent of America's Gross Domestic Product is consumed in 

the construction and maintenance of the civil infrastructure, as estimated by Helmicki, et 

al. (1997). Systems are designed to have service lives that span over several decades, and 

as such, a considerable effort is expended in structural maintenance. 

Presently, damage detection methods are either visual or localized experimental 

methods such as radiographs, magnetic field methods, acoustic or ultra-sonic methods, 

eddy-current methods and thermal field methods. All of these experimental techniques 

require that the general vicinity of the damage is known a priori and that the portion of 

the structure being inspected is readily accessible. The time and expense of such 

inspections has resulted many bridges and similar structures being subject to some form 

of visual inspection on a biennial basis. 

To address these shortcomings, Structural Health Monitoring (SHM) has become, 

in the last decade, a growing area of research in an attempt to more efficiently and safely 

address the life-cycle maintenance of such structures. SHM is also being actively 

investigated, tested, and used by civil and military aircraft fleets around the world to 

improve the expenditure of maintenance resources. 

Chang (1999) estimated that the use of mature SHM systems could reduce by 40 

percent the time spent performing fighter aircraft inspections, which for the F-18 series 

aircraft translates to over 35 million dollars per year. Foote (1999) reported that the 

consortium designing and building the Eurofighter was intent on including an expansive, 
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fiber-optic strain gauge based SHM system to provide for real-time aircraft structural 

fatigue monitoring. 

The ability to have real time knowledge of the health of an in-service structure is 

a major objective for structural engineers, maintenance crews, and manufacturers. This 

ability will allow better scheduling of routine and corrective maintenance, failure 

prevention, and cheaper, more efficient manufacturing. 

All of this potentially leads to a more productive use of the structure and a 

reduced life-cycle cost. A fundamental requirement of such a passive system would be a 

detailed knowledge of the actual in service loading conditions of the structure. In much 

broader terms, Chang (1999) went on to outline the future requirements and potential 

beneficiaries of such a system, that would include, but by no means be limited to: 

Aerospace - aircraft are a zero failure industry and as such are subject to extensive 

inspections 

Military - Missile systems, aircraft, ground vehicles, and ships, for routine and 

damage assessments 
■*■&'- 

Automobile - engine, tires, suspension and braking components 

Civil Infrastructure - lifecycle monitoring of bridges, dams, roads, and buildings; 

for routine and post earthquake damage monitoring 

The basic concept of SHM research envisions sensors that are designed for and 

built into a structure, such as a building, a rocket motor, or an aircraft wing. The resulting 

SHM system is then calibrated for its particular application,  which provides the 



benchmark for a healthy damage free structure, and placed into service. Then over the life 

of the structure, structural engineers and maintenance crews could remotely and 

continuously monitor the structure for damage. This would allow for real time inspection 

and damage evaluation. As part of his summary of the 1st International Workshop on 

Structural Health Monitoring, Chang (1999) detailed the potential benefits of such a 

passive system to include real time monitoring and reporting of structural health which 

would result in lower maintenance costs. Such a system would also require less direct 

human involvement reducing labor expenses, downtime, and human error. Another cited 

advantage is the automation of structural health, which improves safety and reliability. 

B.       CURRENT SHM PROJECTS AND USERS 

Several major areas of SHM require continued research and greater development. 

In particular these include, sensing technology, diagnostic signal generation, signal 

processing, damage interpretation and identification analysis, and finally, SHM system 

integration. 

These fundamental challenges are being addressed in many current design 

projects both in the US, Asia, and Europe. Designers of new structures are hampered 

however by the limitations of the current state of SHM systems. Not only have SHM 

systems typically not been optimized, many of the fundamental inputs, or sensor 

measuring points, have not yet been fully defined. This is often a case of not having a full 

knowledge, with a great deal of certainty, of just what exactly needs to be measured in a 

particular structure. In addition, for new designs, the added up front expenses associated 

with an unproven SHM system, with an uncertain payback, are often prohibitive. 
3 



While SHM systems are being included in some new designs, such as the 

previously mentioned Eurofighter, most current research is focused on modeling existing 

structures. The reasons for this are numerous. The need, especially with civil structures, 

is most pressing on older structures that are already in service and showing signs of age 

and deterioration. Additionally, civil structures are primarily static and can be 

investigated and instrumented easier, and with less risk than aircraft. Long term testing 

situations are more readily developed and modifications to the structure are either very 

small or non-existent. A separate challenge for researchers is locating in-service 

structures that they would be permitted to impose real damage on, without placing the 

safety of the general public in jeopardy. 

A large focus of SHM research is currently concentrated on data collection and 

modeling of existing structures. Instrumentation of various highway and railroad bridges 

is building a database for future designers of just what the real loads are. Experience is 

also gained with various sensor types along with the toughness and reliability of these 

sensors in actual operating conditions. A few FEM's have been developed to serve as 

prediction tools and to replicate this data. It is important to note that FEM's do not exist, 

in any form, for a majority of structures in current use. It is equally important to bear in 

mind that one of the intentions of SHM is the development of such FEM's. What is 

intended is the modeling of basic structures and using that insight to improve SHM 

system integration. 

The federal and several state departments of transportation, together with at least 

two national laboratories and other universities have ongoing projects that include 

various schemes of real-time monitoring of highway bridges. This approach utilizes 
4 



existing structures in an attempt to quantify both the current health of the structure and as 

a means to develop a database of the actual loading conditions. This data base is, as 

previously mentioned, a fundamental requirement for a useful SHM. Typically, these 

projects use empirical data to develop and refine basic finite element models. Most of 

these current projects are subsets of SHM, namely Non-destructive Damage Evaluation 

(NDE) methods, which have been categorized by Rytter (1993), are one of four types: 

Level I: methods that only identify if damage has occurred; 

Level II: same as Level I and simultaneously determine the location of the 

damage; 

Level HI: same as level II and provides an estimate of the damage 

severity; 

Level IV: same as Level IH and evaluates the impact of the damage on the 

structure. 

The focus of this current research is to develop a finite element model damage 

predictor to support Level II NDE efforts. 

C.       FOCUS OF THIS RESEARCH 

Historically, work in the area of global damage detection techniques has involved 

the use of relative shifts or changes in the modal parameters. Modal parameters such as 

modal frequency, modal damping, and mode shapes are a function of the mass-inertia and 

elastic properties of the structure. Therefore, the dynamic response of a system can be a 

sensitive indicator of change in the integrity of the system's elastic structure. Damage in 
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any form reduces the local flexural stiffness near the damage. Reduced stiffness leads to a 

decrease in modal frequencies and an increase modal damping coefficients as well as 

changes in the corresponding mode shapes. Unfortunately, as reported by Doebling 

(1996) most researchers have found little success in this approach to damage detection. 

This is because of the massive reductions in the local modulus of elasticity, required to 

simulate damage, provide only slight changes in the response mode shapes. 

Therefore, this research has focused on an alternate approach that incorporates the 

robust FEM to properly model and predicts changes in the elemental strain and strain 

frequency of a sandwich composite structure with an interfacial crack. 

The strain a structure is subjected to is directly a function of the applied load and 

the duration of that load. This load can have various forms, such as impact, thermal 

shock, or vibration. However, in the frequency domain, the shift of the response 

frequency is independent of both the magnitude and the duration of the applied load. As 

such, the FFT analysis allows for direct comparison of different loading cases. 

Additionally, the FFT is not dependent on a linear input and can be used to analyze 

nonlinear data sets. 

Damage can affect the dynamic response of a structure either linearly or 

nonlinearly. Changes in the dynamic response of a structure subject to linear damage can 

be related to uniform changes in the geometry or the material properties of the structure. 

However, typical structural damage is predominately in the form of cracks. Such cracks 

behave nonlinearly under dynamic excitation as in the case where the embedded crack 

surfaces slide or rub against one another. The nonlinearly is due to the friction and 



contact between the interfacial crack surfaces. In some nonlinear cases, the global effect 

of damage on the dynamic response of the structure can be considered small and local in 

nature. In such cases, the damage can be modeled linearly. However, in the case where 

the nonlinear local behavior significantly affects the global structural response, the 

damage can no longer be modeled linearly. This research addresses the non-linearity of 

the interfacial crack. 

The objective of this study is to evaluate elemental strain changes near damage 

and whether this change could be exploited, potentially by in-situ strain gages, to detect 

the presence of damage in a sandwich composite structure. To this end, the present study 

includes an embedded crack modeled directly in the FEM instead of simulating the crack 

through reduced material or geometric properties. Nonlinear analysis was performed for 

this model to compare simple structures with and without damage. The impact of contact 

elements and friction were introduced in order to maximize the reality of the FEM. This 

thesis research focuses on the computational aspects of structural damage identification. 
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II.     LITERATURE REVIEW 
There is quite a large amount of literature generated on global damage detection 

and localization by use of changes in modal parameters. The majority of literature 

reviewed for this research has focused on recent developments in Structural Health 

Monitoring (SHM). A recent and detailed summary of SHM and vibration based analysis 

is presented by Doebling (1996). A lot of current research continues in almost all aspects 

of SHM, including numerical damage predictive models, which are typically Level I and 

II systems. Many projects mesh empirical data into existing FEM's in an attempt to 

improve the FEM results and to refine the FEM's usefulness as a modeling aid and 

damage predictor. Both civil and military applications are expanding their use and 

development of SHM systems as means to improve safety, reliability, and reduce both 

manufacturing and maintenance costs. A brief summary of some recent selected works is 

outlined below. 

Currently, the aerospace industry is very involved in various forms of SHM. 

Dcegami (1999) outlines the Boeing Company's and the U. S. Air Force's long uses of 

SHM systems for aging aircraft like the B-52 bomber and the KC-135 tanker. 

Additionally, some of Boeing's current SHM projects include the Joint Strike Fighter and 

the C-17 transport programs. Searle, et al (1997), outlined the use of a Broadband 

Acoustic Emission (BAE) system which has moved beyond the development phase for 

structural crack detection in the F-16 fighter. This system expected to be incorporated in 

the U. S. Air Force's long running Aircraft Structural Integrity Program (ASIP). 

Valdiver (1997), reports on the importance and state of the U.S. Army's Missile 

systems health monitoring programs, especially in light of the of the recent defense draw 

9 



down with its associated reduction in the fielding new systems. This has called for 

improved analysis of missile components with the intent to increase service lives and 

reduce the need for live firing confidence checks. He also addresses the necessity to 

incorporate health monitoring systems in any future designs. 

Other work has focused on roadway bridges. Farrar and Jauregui (1996a), Farrar 

et al (1996b), and Farrar and Doebling (1997) detailed how Los Alamos and Sandia 

National Laboratories, along with the New Mexico State University, collaborated on a 

project to investigate the effects of purposely installed damage in an abandoned section 

of Interstate 40 bridge, over the Rio Grande in Albuquerque, New Mexico. Since the 

bridge was earmarked for demolition, the researchers where actually permitted to impose 

real damage, in the form of cuts in the supporting trusses. The damage ranged in length 

from two and one-half to six feet. A linear, Level II, FEM was used concurrently to 

support this work. Additionally, the following modal based damage predictor algorithms 

were employed for the investigation of the health of the structure: 

1. Damage Index Method 

2. Mode Shape Curvature Method 

3. Change in Flexibility Method 

4. Change in Uniform Flexibility Shape Curvature Method 

5. Change in Stiffness Method 

The ability of each method to predict and evaluate damage is addressed. 
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Some interesting observations of these works illustrate some of the potential 

pitfalls of SHM systems, loading analysis, and system integration issues. More advanced 

plans concerning roadway issues in particular were laid out by Sikorsky (1999), who 

stressed the need for rapid development of Level IV systems in both aerospace and the 

civil infrastructure. 

As the recent earthquake in Seattle, WA clearly illustrates, the need for rapid post 

damage evaluation of civil structures is very important of for not only public safety 

issues, but also economic concerns. The populace is entitled to know that the buildings 

that they work and live in are safe in the wake of an earthquake. For this to be a reality 

will require extensive Level m and Level IV SHM systems. These requirements pose 

very difficult problems, but the payoff is immense. For the earthquake scenario, as 

outlined by Mita (1999), current practice dictates the performance of very time 

consuming and skilled labor intensive inspections of all possible damage sites, including 

the possibility of non-visible damage. An effective SHM system would record the event, 

compare against the structures historical database, pinpoint the damage locations, and 

provide an evaluation of the impact of the damage on the health of the structure. This 

would allow structural engineers to concentrate recovery and repair efforts on buildings 

that have the most damage and the greatest likelihood of salvage. As would be imagined, 

this skilled labor force will be in very short supply following an earthquake, so the ability 

to efficiently maximize this asset cannot be overstated. 

Lipsey (1999), in work that laid the foundation for the present study, observed 

that mode shape curvature was a more sensitive indicator of damage and a better locator 

of damage than modal frequency or mode shape displacement. Additionally, he addressed 
11 



the non-linear impact of interfacial crack surface friction, and the opening and closing of 

a crack in response to beam bending. 

SHM is still a developing science and the literature clearly illustrates that a great 

deal of fundamental work remains. The focus of this research is to develop and evaluate 

the numerical approach to damage prediction. The offshoot of this current work, if 

validated by actual experimentation, would be to provide designers and operators with a 

valid method of damage prediction. 

12 



in.    FINITE ELEMENT MODELS 

The Finite Element Method has become one of the most important and useful 

engineering tools for engineers and scientists. This is because the FEM allows for a 

relatively rapid solution to very complex linear and non-linear problems. In the particular 

case of this research, various models of increasing mesh density were modeled in order to 

determine the effect of contact elements, mesh density, material properties, and friction. 

A.        CANTILEVER COMPOSITE BEAM MODEL 

A finite element mesh representation of a sandwich composite, 0.48m long x 

0.008m high x 0.04m wide, is developed as the model for the cantilever beam. The beam 

is subjected to a transient load at its tip and the material properties are as in Table 1. 

Table 1.       Material Properties of the Composite Beam and Plate 

Material 

Svntac 350C Foam 

Glass Reinforced 
Plastic (GRP) 

Young's Modulus, N/m 

2.21 x 109 

2.07 x 10 10 

Density, kg/m 

96.1 

3060 

Poisson's Ratio 

0.35 

0.342 

In the model, Syntac 350C foam of 0.006m thickness is the core material. This is 

reinforced, on the top and bottom, by 0.001m thick layers of Glass Reinforced Plastic 

(GRP). The GRP is assumed to be a balanced and symmetric laminate, which permits 

modeling of the material as quasi-isotropic. The finite element model of the composite 

beam is as illustrated in Figures 1 through 4. An isometric view of the composite 

sandwich beam is presented as Figure 1. Figure 2 illustrates Case 1 where the beam has 

an interfacial crack located from 0.24m to 0.25m. Figure 3 and Figure 4 show Cases 2 
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and 3 where the interfacial cracks location as 0.0m to 0.01m and 0.02m to 0.03m, 

respectively. In all cases the damage, or crack, is modeled as extending through the beam 

width. A uniform mesh is employed to allow direct comparisons between the three crack 

cases. A total of 1920 nodes and 717 thick shell elements make up the model. Thick shell 

elements have displacements, as degrees of freedom but not rotation, like three- 

dimensional solid elements. The output of the FEM solves for the elemental strain at the 

exterior surface of the top GRP section. The laminae are modeled as perfectly joined at 

the interface of material types, except in the damaged section where additional nodes and 

contact elements are used. Three different crack location cases are presented, in each case 

the crack was 0.01m in length. The entire beam is modeled using DYNA3D, assuming 

quasi-isotropic elastic material properties. It was also assumed that no other damage was 

present in the beam except that which was purposely installed. In each case, the beam is 

subjected to a transient, uniformly distributed tip load of 50 N/m. The load is applied for 

0.01 seconds and the problem analysis time is 0.24 seconds. The FEM calculates 

elemental strain along with tip displacement and acceleration and these results match 

analytical solutions. Elemental strain is plotted, using MATLAB®, versus a beam without 

damage where the change in elemental strain and the frequency shift, using a FFT, of 

elemental strain, is investigated. Note that for the beam cases, the figures show a 

generalized mesh. The actual mesh is too fine to clearly display the details. The bolded 

line represents the general location of the damage. In each case, the crack is located at the 

interface of the foam core and the upper GRP skin. 
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Figure 1. Isometric presentation of the Sandwich Beam 
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Figure 2. Case 1: Cantilever Composite Beam with Interface Crack between 0.24 
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Case 2: Cantilever Composite beam with Interface Crack between 0.00 - 
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Figure 4. Case 3: Cantilever Composite Beam with Interface Crack between 0.02 - 
0.03m 

B.       SIMPLY SUPPORTED COMPOSITE PLATE MODEL 

In a similar fashion as with the cantilevered beam, a finite element mesh 

representation of a simply supported sandwich composite plate is developed. The same 

sandwich materials are used as with the beam, except now the plate measures 0.48m x 

0.008m x 0.48m. Again, the plate is subjected to a transient load, which is applied away 

from the center of the plate. The finite element model of the composite beam is as 

illustrated in Figure 5. A non-uniform mesh is employed due to a hardware limitation. A 

total of 4900 nodes and 3464 thick shell elements make up the model. Two cases are 

modeled, the first has a 0.01m x 0.01m crack and the second has a 0.03m x 0.03m crack. 

The analysis proceeds in the same manner as the cantilever beam. An impact load of 1 

Newton is applied at x = 0.27 m and z = 0.17 m. The duration of the load is 0.00125 

seconds, with a problem run time of 0.025 seconds. The plate is simply supported along 

the edges and the dimensions and geometery of the interfacial crack is illustrated in Table 

2. 
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Table 2. Crack Coordinates for the Composite Plate 

Damage Upper Left Pt. Upper Right Pt. Lower Left Pt. Lower Right Pt. 

Large Crack 0.205, 0.205 0.235, 0.205 0.205, 0.235 0.235, 0.235 

Small Crack 0.205, 0.225 0.215, 0.225 0.205, 0.235 0.215, 0.235 

In all cases, the model results are sampled and filtered to eliminate higher 

frequency components and to provide for smooth plots. 
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Figure 5. Plane View of Composite Plate Illustrating Mesh Configuration 
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IV.    RESULTS AND DISCUSSION 

A.       CANTILEVER SANDWICH COMPOSITE BEAM 

1. Effects of Contact Elements 

Contact elements dampen the magnitude of the strain in damaged beams 

compared to models without contact elements, as illustrated in Figures 6 and 7. This is 

because contact elements are critical to prevent the nodes that represent the crack from 

overlapping each other. In other words, contact elements accurately model the opening 

and closing of a crack while ensuring that the nodes that constitute the crack do not slide 

past one another. Figures 6 and 7 show that the non-linear analyses with contact elements 

are important to properly represent the crack behavior. 

2. Effects of Friction 

The use of contact elements, in DYNA3D, also allows the modeling of friction 

along the crack surfaces. Actual coefficients of static and dynamic friction inside a crack 

are not clearly known. Values similar to ground-against-ground rubbing were modeled 

and the effects are detailed in Figures 8 and 9. The effect of friction was not significant. 

This is primarily because the crack surfaces in this case to not slide against one another, 

instead the crack opens and closes. 
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Figure 6. Comparison of Strain Plots with and without Contact Elements, First 
Element Left of the Left Crack Tip 
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Figure 8. Comparison of Strain Plots with and without Friction, First Element Left 
of the Left Crack Tip 
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Figure 9. Comparison of Strain Plots with and without Friction Inside the Crack 
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3. Mesh Density 

One of the underlying principles of the FEM is the ability to model structures and 

complex shapes using small number of large elements and obtains accurate results. 

However, there is a point where the model must closely match the true structure in order 

for each discrete element to provide accurate and correct results. This is because large 

numerical models are necessary to reduce discretization error in the FEM. 

To have a truly robust and accurate model that is repeatable and can be used to 

detect and predict damage over the entire structure, this research has demonstrated the 

importance of having a uniform mesh density. There are several important ramifications 

of this requirement. Firstly, have a large number of elements, and hence a large number 

of nodes, in any FEM are computationally expensive. Naturally, the actual run time of the 

model is greatly increased; but also, the model construction time is a consideration. 

Secondly, in this case, a uniform mesh allows the damage to be easily "moved" within 

the model without the necessity of developing a new model. 

4. Numerical Growth 

Conversely, a fine mesh does not prevent numerical growth, which is independent 

of element size. Gross approximations of elemental strain may be determined by using 

larger elements away from the damaged section of the beam. The application of a 

uniform mesh of 2mm throughout the beam did not eliminate the presence of numerical 

growth. 

Additionally, numerical growth is not a function of the Computed Scale Factor for 

Time step (SCFT). Reducing SOFT by half merely doubled the number of data points and 

did nothing to reduce the amount or presence of numerical growth. 
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In this particular case, the foam core appears to be a source of numerical growth. 

The homogeneous GRP beam model did not show instances of numerical growth. 

Actually, the foam core illustrates the non-linearity of the problem. 

5.        Crack Detection and Prediction 

The intent and focus of this research was to develop a FEM that could be used to 

predict and localize damage in basic composite structures. To that end, a few essential 

observations are made. 

The boundary conditions of the cantilever beam have a major impact on the 

FEM's ability to detect damage near the support. Regardless of the location of the 

damage, the beam support tends to masks the presence of damage and the effect of 

damage near clamped end is minimized. The dampening effect of the clamped end is seen 

in all cases and so large elements are useful as the first approximation of elemental strain. 

The important advantage of using large elements is that the resulting run time is greatly 

reduced. While this may seem at first like a major concern, in reality, the highest area of 

strain is near the structures supports and so this area is already the focus of intense 

scrutiny. In other words, a global SHM method is nor required demonstrating the 

necessity of performing NDE near the structural supports. 

Three cases of composite cantilevered beams with interfacial cracks were 

investigated; the results of which are outlined below. Two additional examples of Case 1 

were modeled to demonstrate the effect of contact elements and friction in the FEM. As 

noted before, the FEM solution is for the elemental strain at the top surface of the upper 

GRP laminate. 
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a.        Case 1: Interfacial Crack between 0.24 - 0.25 meters 

This beam is subject to a 1-cm crack originating at the center of the beam. 

The results of the FEM's ability to detect and localize the presence of the interfacial 

crack are summarized in Table 1, along with Figures 10 through 17. 

Table 3. Case 1 FEM Interface Crack Detection Results 

Element Location 

0.218-0.220m 

0.234-0.236m 

0.238 - 0.240m 

0.240-0.242m 

0.244-0.246m 

0.248-0.250m 

0.250-0.252m 

0.270-0.272m 

Damage Location 

0.24-0.25 m 

0.24-0.25 m 

0.24-0.25 m 

0.24-0.25 m 

0.24-0.25 m 

0.24-0.25 m 

0.24-0.25 m 

0.24-0.25 m 

Figure/Element 

10/588 

11/596 

12/598 

13/599 

14/601 

15/603 

16/604 

17/614 

Detection Probability 

Low 

High. 

High 

High 

High, 

High 

Low 

Low 

The effects of the damage first appear in Element 596, Figure 11 (0.234 - 0.236m, 

outside the crack) as large compressive strains. This effect is seen 3 elements (0.004 m) 

to the left of the actual damage. The elemental strain changes from all compressive in 

Element 596 to a combination of compressive and tensile strains in Element 598, Figure 

12. Element 599, Figure 13, (0.24 - 0.242m, which contains the left crack tip) initially 

shows a large compressive strain, which may be the result of the applied load, then 

mostly large tensile strains. This is the opposite result of the element 603, Figure 15 

(right crack tip). The magnitude of element 598 (0.238-0.240m, just outside crack) is 

greater than any of the damaged sections. This is because of the higher bending stress the 

element experiences since it is closer to the clamped end and near the crack tip. 
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The damage is readily detectable by a sudden and dramatic increase in 

compressive strain in element 603, Figure 15 (0.248 - 0.250m, contains the right crack 

tip). Additionally, there is a noticeable increase in the magnitude of the elemental power 

spectral density. 

The FEM does show a difference in elemental strains between the 

damaged and undamaged cases. Away from the damage, the effects of the damage are 

slight. However, when the elements near the damage are examined, the differences are 

dramatic. The damaged section is readily detected/predicted using a FEM. In this 

particular case, the FEM does an excellent job of detecting the exact range of the damage. 

This is because the damage is not being masked by the clamped support. The exact range 

of the damage would be determined by conventional means (i.e., x-ray, ultrasound, etc.). 

This validates the use of this method as a global predictor of damage. 
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Figure 10a.      Strain 0.02m Left of the Left Crack Tip, Element 588 (0.218 - 0.220m), 
Case 1 (0.24 - 0.25) 
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Figure 10b.     PSD 0.02 m Left of the Left Crack Tip, Element 588 (0.218 - 0.220m), 
Case 1 (0.24 - 0.25) 
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Figure 11 a.     Strain 0.004m Left of the Left Crack Tip, Element 596 (0.234 - 0.236), 
Case 1 (0.24 - 0.25) 
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Figure 1 lb.     PSD 0.004m Left of the Left Crack Tip, Element 596 (0.234 - 0.236), 
Case 1 (0.24 - 0.25) 
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Figure 12a.     Strain First Element Left of the Left Crack Tip, Element 598 (0.238 
0.240m), Case 1 (0.24 - 0.25m) 
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Figure 12b.     PSD First Element Left of the Left Crack Tip, Element 598 (0.238 - 
0.240m), Case 1 (0.24 - 0.25m) 
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Figure 13 a. 
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Figure 13b. 
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PSD at Left Crack Tip, Element 599 (0.240 - 0.242m), Case 1 (0.24 - 
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Figure 14a.      Strain Inside the Crack, Element 601 (0.244 - 0.246m), Case 1 (0.24 ■ 
0.25m) 
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Figure 14b. 
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PSD Inside the Crack, Element 601 (0.244 - 0.246m), Case 1 (0.24 - 
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Figure 15a. 
-0.25m) 

Strain at the Right Crack Tip, Element 603 (0.248 - 0.250m), Case 1 (0.24 
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PSD at the Right Crack Tip, Element 603 (0.248 - 0.250m), Case 1 (0.24 

31 



12 

10 

x10 Element 604 

1 

No Damage 
With Damage 

0.05 0.1 0.15 
Time (seconds) 

0.2 

Figure 16a.     Strain First Element Right of the Right Crack Tip, Element 604 (0.250 
0.252m), Case 1 (0.24-0.25m) 
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Figure 16b.     PSD Strain First Element Right of the Right Crack Tip, Element 604 
(0.250 - 0.252m), Case 1 (0.24 - 0.25m) 
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Figure 17a.     Strain 0.02m Right of the Right Crack Tip, Element 614 (0.270 - 0.272m), 
Case 1(0.24-0.25m) 
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Figure 17b.     PSD 0.02m Right of the Right Crack Tip, Element 614 (0.270 - 0.272m), 
Case 1(0.24-0.25m) 
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b. Case 2: Interfacial Crack between 0.0- 0.01 meters 

As previously discussed, the effect of the clamped support overshadows 

the effect of the damage and the crack is undetectable. As summarized in Table 4, along 

with Figures 18 through 22, the strain and FFT plots do not show any effects of the 

damage. This implies that there exists an optimum crack detection range in relation to the 

support. Conversely, the expected location of damage in any structure is near the 

supports, so traditional methods of NDE are already in use in those locations. It is 

interesting to note that well away from the damaged section, as illustrated by Figures 21 

and 22, the FEM does detect the presence of damage somewhere in the model, which is 

useful information. 

Table 4.          Case 2 FEM Interface Crack Detection Results 

Element location Damage Location Figure/Element Detection Probability 

0.000-0.002m 0.00 - 0.01m 18/479 Low 

0.004-0.006m 0.00-0.01m 19/481 Low 

0.010-0.012m 0.00-0.01m 20/484 Low 

0.034-0.036m 0.00-0.01m 21/496 High 

0.042-0.044m 0.00-0.01m 22/500 High 
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Figure 18a.     Strain at the Left Crack Tip (and Clamped Support), Element 479 (0.0 ■ 
0.002m) Case 2 (0.0 - 0.01m) 
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Figure 18b.     PSD at Left Crack Tip (and Clamped Support), Element 479 (0.0 - 
0.002m) Case 2 (0.0 - 0.01m) 
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Figure 19a.     Strain Inside the Crack, Element 481 (0.004 - 0.006m), Case 2 (0.0 ■ 
0.01m) 
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Figure 19b.     PSD Inside the Crack, Element 481 (0.004 - 0.006m), Case 2 (0.0 -0.01m 

36 



6 
X10'S Element 484 

  No Damage 
  With Damage 

4 - 

2 - 

?■ 
? 
C 

S 0 /          \          / " (0 

-2 - 

-4 - 

1                                            r 

- 

0.05 0.1 0.15 
Time (seconds) 

0.2 

Figure 20a.     Strain First Element Right of the Right Crack Tip, Element 484 (0.01 
0.012m) Case 2 (0.0 - 0.01m) 
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Figure 20b.     PSD Strain First Element Right of the Right Crack Tip, Element 484 (0.01 
- 0.012m) Case 2 (0.0 - 0.01m) 
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Figure 21 a.      Strain 0.024m Right of the Right Crack Tip, Element 496 (0.034 
0.036m), Case 2 (0.0 - 0.01m) 

FFT Element 496 

Figure 21b.     PSD 0.024 m Right of the Right Crack Tip, Element 496 (0.034 
0.036m), Case 2 (0.0 - 0.01m) 

38 



.X10 

0.05 

Element 500 

  No Damage 
With Damage 

0.1 0.15 
Time (seconds) 

0.2 0.25 

Figure 22a.     Strain 0.032 m Right of the Right Crack Tip, Element 500 (0.042 ■ 
0.044m), Case 2 (0.0 - 0.01m) 
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Figure 22b.     PSD 0.032 m Right of the Right Crack Tip, Element 500 (0.042 
0.044m), Case 2 (0.0 - 0.01m) 
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c.        Case 3: Interfacial Crack between 0.01 - 0.02 meters 

Unlike Case 2, a short distance from the clamped support, the effects of 

the interfacial crack are readily detectable. However, analysis of the elements between 

the clamped support and the interfacial crack, does not indicate the presence of damage, 

which is masked by the nearness of the clamped support. The effects of damage are not 

seen by the model until very close to the actual damage, which supports, the notion of 

using the FEM as a damage location predictor device. Table 5, along with Figures 23 

through 27, summarizes the probability of damage detection. 

At Element 489, Figure 24 (Left Crack Tip) there is actually a decrease in 

elemental strain compared to the undamaged beam, although there is a slight frequency 

increase. Once inside the crack itself, the damage manifests itself as generally 

compressive strains that are actually less than the undamaged case. Conversely, the 

tensile strains are typically higher in magnitude. Element 493, Figure 26 (Right Crack 

Tip) shows a dramatic increase in compressive elemental strains compared to Element 

491, Figure 25. Conversely, Element 491 has higher tensile strains than Element 493. The 

effect of the crack is very clear when compared to neighboring elements and this effect is 

limited to the area of the crack. The crack effect does not grow or spill over to 

neighboring elements as seen in Case 1. Again, this implies that there exists an optimum 

crack detection range in relation to the support. 
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Table 5.    Case 3 FEM Interface Crack Detection Results 

Element Location Damage Location Figure/Element Detection Probability 

0.018-0.020m 0.020 -0.030m 23/488 High 

0.020 -0.022m 0.020 -0.030m 24/489 High 

0.024-0.026m 0.020 -0.030m 25/491 High 

0.028 - 0.030m 0.020-0.030m 26/493 High 

0.234 - 0.236m 0.020 -0.030m 27/596 Low 
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Figure 23a.     Strain First Element Left of the Left Crack Tip, Element 488 (0.018 
0.02m), Case 3 (0.02 - 0.03m) 
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Figure 23b.     PSD First Element Left of the Left Crack Tip, Element 488 (0.018 - 
0.02m), Case 3 (0.02 - 0.03m) 
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Figure 26a. 
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Figure 26b. 
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PSD at the Right Crack Tip, Element 493 (0.028 - 0.03m), Case 3 (0.02 
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Figure 27a.     Strain 0.004m Right of the Right Crack Tip, Element 596 (0.234 
0.236m), Case 3 (0.02 - 0.03m) 
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Figure 27b.     PSD 0.004 m Right of the Right Crack Tip, Element 596 (0.234 
0.236m), Case 3 (0.02 - 0.03m) 
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B.       SIMPLY SUPPORTED SANDWICH COMPOSITE PLATE 

1.        Effects of Contact Elements 

Two different sized interfacial cracks were modeled in the simply supported plate. 

The first case was a 0.01m by 0.01m crack centered about X = 0.21m and Z = 0.23m, and 

the second case was a 0.03m by 0.03m crack centered about X = 0.22m and Z = 0.22m. 

In both cases an impact load of 1 N was applied at X = 0.27m and Z = 0.17m, and a run 

time of 0.025 seconds was used in both instances. 

The first case was modeled without contact elements, and thus without friction, 

but the FEM was unable to differentiate the interfacial crack from the undamaged case. 

This is contrary to the cantilever beam cases. The second case was developed using 

contact elements and an interfacial crack that was three times larger than the Case 1. Two 

versions of Case 2 were modeled, one with friction and the other without. However, both 

cases diverge at approximately 0.006 and 0.003 seconds, respectively. 

Various attempts were made to correct this obvious shortcoming in this analysis 

but to no avail. The best solution for the divergence issue was to eliminate the use of the 

contact elements. That was considered a non-solution since the cantilevered beam 

analysis clearly demonstrated their importance and since the FEM was unable to detect 

the crack. 

Figures 28 and 29 illustrate that the FEM diverges when contact elements are 

used, for the 0.01m by 0.01m interfacial crack. 

47 



,x10 Plate Center Displacement 

_-2 
E 

\ \ \ \ \ \ \ \ \ \ \ 

- 

\ \ \ 
\ \ \ \ \ \ 

  No Damage 
— With Damage 

- 

- 

- 
\ \ 

\     /       x - 

- 

\ \ \ \ \ \ 
X 

I 

/    \ '      \ 
f        \ 

I          \ 

J 
\ \ 

r\    A   / 
'  \  >'   ^ / - 

0.005 0.01 0.015 
Time (seconds) 

0.02 0.025 

Figure 28.       Center Displacement Divergence of the Plate with 0.01m by 0.01m 
Interfacial Crack with Contact Elements and Zero Friction. 
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Figure 29.       Load Point Displacement Divergence of the Plate with 0.01m by 0.01m 
Interfacial Crack with Contact Elements and Zero Friction 
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Likewise for the plate with the larger, 0.03m by 0.03m, damaged section, if 

contact elements are used the FEM also diverges. However, without using contact 

elements in the model, the presence of the crack can not be detected, as illustrated by 

Figure 30. 

.x10 Plate Center Displacement 

0.025 

Figure 30.       Center Displacement of the Plate with 0.03m by 0.03m Interfacial Crack 
but without Contact Elements 
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V.      CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This research has clearly demonstrated that in order to improve the accuracy and 

realism of the FEM, the use of contact elements, and thus non-linear analysis is required. 

The effects and therefore the values employed for the coefficients to friction are less 

significant. The FEM can readily be used to predict and localize the presence of an 

interfacial crack through strain measurements. The existence of damage at the clamped 

support is masked by the clamped support of the cantilever beam. Unfortunately, the 

plate bending problem, with contact elements, at the interface crack exhibited instability. 

The plate-bending problem without the use of contact elements was unable to detect the 

damaged sections. 

B. RECOMMENDATIONS 

1. Correlation 

The FEM must be validated by direct comparison to an experimental 

configuration. Park et al (1999) offers an example of an experimental apparatus using 

fiber-optic strain gages that could be used as a validation tool. The FEM could then be 

optimized to match the experimental results. 

2. FEM Plate and Cylinder geometry 

It is very unfortunate that this research was unable to achieve valid results with 

the simply supported plate FEM. It was hoped that the plate model would have been used 

as a springboard to more complex geometry such as a cylinder or sphere. Obviously, until 

the FEM can solve the two-dimensional plate-bending problem, it cannot be used for 

problems that are more complex. 
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3.        FEM program limitations 

In its current configuration, further research is hampered by the use of DYNA3D 

without a pre or post-processor. A lot of time is required to build simple models and far 

more time is spent in data analysis using MATLAB. Presently, on a SGI Octane 

workstation, the beam models require approximately 130 hours of computation time. 

Clearly, this computation time is excessive such basic geometry. If this work is to 

continue, then either a different program or additional software, in the form of a pre- and 

post-processor, are necessary. 
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