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Abstract 
Nuclear Magnetic Resonance (NMR) is a convenient and noninvasive means for studying 
the internal structure of diamagnetic substances. The extraction of length scale infor- 
mation in liquid NMR spectroscopy is largely limited to sizes below the diffusion length 
(-50 microns). Breaking translational symmetry using the nuclear dipolar field imparts 
a scale dependence, and provides a means of measuring length scales above this limit. 

The use of the dipolar field in liquid NMR to make structural measurements is a 
relatively novel concept in the field, and previous techniques have been largely limited to 
test cases. This thesis examines the extraction of length-scale information from a rela- 
tively complex two-phase liquid system, specifically a poly-disperse oil/water emulsion. 
Theory is developed and then compared to experimental results, with good agreement. 
Simple scaling laws are identified which provide a simple means of using the technique for 
length scale measurements. The thesis then focuses on developing the theory and feasi- 
bility of using the developed dipolar NMR technique to study flowing systems, in order 
to extract average length scale and interfacial properties, including interfacial velocity 
and interfacial area. 
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Chapter 1 

Introduction 

Nuclear Magnetic Resonance (NMR) is a convenient and noninvasive method of observing 

physical phenomena on both macroscopic and microscopic scales. It is a growing field 

that continues to expand its influence in the medical, industrial and scientific communi- 

ties. The specific use of nuclear magnetic resonance for studying two-phase static systems 

is well developed for length scales on the order of several microns (^ 50 fim). However, 

the present NMR techniques are not well-suited for measuring length scales above this 

limit. In addition, NMR has been investigated for measuring velocity distributions and 

void fractions in single and two-phase flowing systems1. These techniques use simple 

pulse gradient spin echo (PGSE) experiments, but are not suited for extracting length 

scales and studying interfacial properties, such as interfacial area and shear. This thesis 

will attack these difficult problems in order to provide a means to better characterize 

two-phase systems. Specifically, a relatively new concept in liquid NMR, the dipolar 

demagnetizing field (DDF), will be applied to the establishment of an electromagnetic 

connection, or correlation, between phases. The interaction provides a novel means of 

probing interfacial features of these systems. 

1S. Javelot, "Creation of an NMR device to Characterize Multi-phase Flows", Doctorate Thesis, 
Pierre and Marie Curie University, 1994. 
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1.1    Basics of NMR 

When an nucleus with spin-1/2 is placed in an external magnetic field (B 0, or Zeeman 

field, aligned along the ^-direction), the energy levels of the system separate into two 

distinct levels corresponding to the z-component of angular momentum (or spin states) 

of the system. The higher level energy state aligns in the opposite direction of the 

external field, and the lower energy state is aligned with the field. At equilibrium, the 

number of spins in the lower energy state is greater than the number in the higher energy 

state, giving the sample a net macroscopic magnetization, M, along the direction of the 

main field.   The net magnetization obeys the following equation of motion, 

^ = 7Ä?x£f (1.1) 
dt 

where 7 is the gyromagnetic ratio. At equilibrium, the only field that is present is the 

static main field, and there is no torque placed on the magnetization. When the net 

magnetization vector is aligned along a different direction than the main magnetic field, 

~B*0 (defined to be along the ^-direction), the magnetization vector obeys Eqn. (1.1) and 

precesses around the main field at a given frequency known as the Larmor frequency, 

UJ0. NMR net magnetization can be manipulated by applying external field pulses at the 

Larmor frequency transverse to the direction of the main field. A pulse rotates M, and 

the amount of rotation is directly under experimental control. After the pulse duration, 

Ä? rotates at u0 around ~B*0. However, the rotation does not continue forever. There are 

additional factors included in Eqn. (1.1) that cause the magnetization to relax. Spin- 

lattice relaxation, modeled using a 7\ relaxation constant, drives the magnetization back 

to the equilibrium state. Spin-spin relaxation, modeled using a T2 relaxation constant, 

is caused by the dephasing of separate spins within the sample, and is responsible to the 

decay of the transverse magnetization. In addition, a modulated form of magnetization 

is attenuated by diffusion. 

The basic NMR experiment is conducted in a frame of reference that is rotating close 
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to the Larmor frequency. As the spins relax back to the equilibrium state, they carry 

information in the form of the Larmor frequency, which is a function of the particular 

nucleus and the local field surrounding that nucleus. A simple Fourier transform of the 

signal in this rotating frame of reference reveals the frequency spectrum, and thus the 

type and number of nuclei in the sample, plus information regarding the sample character 

in the form of local fields. 

This section has highlighted the basic NMR experiment. Obviously NMR gets very 

complex, and this thesis will go well beyond these basics to study the behavior of the 

local field produced at one type of nucleus resulting from the presence of another type of 

nucleus in a different phase. Specifically, how does a given macroscopic distribution of 

magnetization in one phase affect the evolution of the magnetization in another phase. 

The technique can be thought of as a scattering experiment, much like neutron scattering. 

The wave-vector of the source phase is effectively transferred to the second phase and 

then decoded. The resulting signal in the receiving phase inherently contains information 

on the system's average length scale, and provides an opportunity for further research 

into the global characteristics and behavior of two-phase systems. 

1.2    Thesis Goals 

The following list summarizes the goals for this thesis: 

1) Develop the underlying physical model used to extract structural information using 

the nuclear dipolar field from a relatively complex heterogeneous system. 

2) Verify the physics and model by comparison to a static NMR experiment (emulsion 

system). 

3) Develop simple scaling laws that can be applied to easily extract length scale in- 

formation. 
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4) Theoretically investigate use of the dipolar technique for studying interfacial veloc- 

ity between two phases. 

5) Investigate the feasibility of using the technique to make length scale measurements 

in two-phase flowing systems. 

Chapter 2 provides background information regarding the dipolar mean field and its 

previous use for simple structural measurements and 2-D NMR. This chapter describes 

the history of the dipolar field technique, and also provides an introduction to an im- 

portant possible application of the technique to two-phase flow modeling. Chapter 3 

will tackle the first and second goals. The theory is developed using real space coordi- 

nates and basic Maxwell equations. The basic static experiment is demonstrated on an 

oil-water emulsion, an important representation of complex, heterogeneous soft matter. 

The full experiment is described and compared to theory with positive results. Chapter 

4 develops the scaling behavior for the third goal and further compares theory to ex- 

periment. The scaling laws provide a simple method for using the technique to extract 

average length scale information. Chapter 4 also develops the theory and feasibility 

studies for the fourth and fifth goals. The basic theory is outlined with recommenda- 

tions for further experiments and research. Finally, Chapter 5 summarizes the thesis 

results and provides additional recommendations for future research. 

The focal point of the theoretical development is on the static experiment, where the 

two phases are fixed in position. After development of the static scaling behavior, the 

analysis uses simple scaling laws to further extrapolate the theory to include relative 

motion between the phases. The first velocity experiment is a simple sliding system in a 

slab geometry where one phase is sliding over the other. The effect of the relative veloc- 

ity on the dipolar signal is examined, with the future goal of mapping out the interfacial 

velocity profile. The second dynamic experiment involves a more complex system, possi- 

bly bubbly two-phase flow where the goal is extraction of length scale information. The 

behavior is examined, and the feasibility of future work using liquid-liquid and gas-liquid 

systems is discussed. 
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Chapter 2 

Background 

This chapter describes the background associated with using the NMR dipolar field to 

study structural characteristics of two-phase systems. First, the basic NMR dipolar field 

is discussed, followed by a discussion of its associated development in the last decade. 

The subsequent sections of this chapter describe possible applications of NMR dipolar 

field technology for studying both static and flowing two-phase systems. Specifically 

for two-phase flow, a description is given regarding NMR applications for improving the 

current state of knowledge in computer code flow modeling. 

2.1    Basics of the Dipolar Field and Motional Nar- 

rowing in Liquids 

The dipolar field effect is very well known in the context of NMR, especially when applied 

to solids. Credit for the first formal quantitative evaluation of the dipolar demagnetizing 

field as currently applied to liquids is typically given to Deville et. al.1 Most articles 

in the literature refer to their 1979 paper in the course of introducing the topic. With 

improvements in magnetic field and NMR technology, along with a better understanding 

Seville G., Bernier M., Delrieux J., "NMR Multiple Spin Echoes Observed in Solid 3He", Physical 
Review B, Volume 19, Number 11,1 June 1979, pp. 5666-5687. 
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of the physics behind dipolar effects in liquids, the examination and use of these effects 

for NMR spectroscopy and imaging techniques has risen dramatically in the last decade. 

The dipolar field applies generally to all materials studied using NMR. After the 

general discussion of dipolar effects, the section explains why the effects are not typically 

observed in liquid state NMR. 

2.1.1    Basic Description of the Dipolar Field 

The spinning nucleus of an atom (assume a hydrogen-1 atom or simply a proton) with 

a given angular momentum gives rise to a magnetic dipole moment as discussed in the 

previous chapter. The classical field associated with this localized dipole has the following 

form2 

B(R) to. 
4n 

3n(n • rrt) — rrt 

R 
(2-1) 

where if is the magnetic flux density, R is the vector from the source point of the dipole 

to the observation point of the field, rrt is the magnetic moment of the dipole, n is the 

unit vector in the direction ^, and it is the magnitude of R. The potential energy, 

E, of a dipole in an external magnetic field is 

E = -rrt- B (2.2) 

Slichter3 describes the derivation of the quantum mechanical form of the dipolar energy 

Hamiltonian by starting with the classical form of the interaction energy between two 

2Jackson, J. D., Classical Electrodynamics, Third Edition, John Wiley and Sons, Inc., 1999, p. 
186. 

3Slichter, C. P., Principles of Magnetic Resonance, Third Edition, Springer, 1990, p. 66. 
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magnetic dipole moments, as determined from the above two equations 

= m[-rr?2 _ 3(m? • ~r*)(m| • T*) ^ ^ 

where "f* is the radius vector from m[ to m|.   For the quantum mechanical description, 

we now treat fn^ and fn% as operators for the atomic dipole moments 

m = i^X (2.4) 

m%  = 72hi2 

Ii and I2 are the angular momentum operators for the two spins.    Then for N spins 

the general dipolar Hamiltonian equation is 

1     N     N 

i=l fc=l 

m£ • rat      3(frij ■ f]l)(mt • rjt) 
rjk ' jk 

(2.5) 

where j ^ k. This equation can be simplified by writing ml and ra| in component form, 

considering only two identical spins ^ = 72 = 7), expressing the x and y components 

of the angular momentum operators in terms of the raising and lowering operators, con- 

verting to spherical coordinates, r, 9, (j>, and neglecting weak absorption terms in -the 

expression.   The final simplified form4 is 

^ = Z^2E (1-3c
3°

s2^)(3/j2/fcz -X-%) (2-6) 

0 is the angle between the 2-axis and the vector r^.. This equation is often called 

the secular part of the dipolar Hamiltonian. It neglects all components of the dipolar 

field that rotate about the 2-axis. These components are non-secular and very small 

(Intensities of their absorption modes are proportional to f ^ J ) and they can be safely 

neglected. 

4Slichter, Ibid. p. 70. 
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In solids, each atom is surrounded by a fixed number of other atoms. Therefore, each 

nucleus effectively "sees" a large number of fixed dipoles. These dipoles have a strong 

effect of the dynamics associated with an NMR experiment, in that they effectively per- 

turb the magnetic field of a given nucleus. The closer nuclei will give a more pronounced 

perturbation of the main magnetic field owing to the ^ behavior of the dipolar field. All 

nuclei therefore have an effect on the local field experienced by a given nucleus. Since the 

dipolar fields from the surrounding nuclei can either aid or oppose the main static field, 

there will be a spread in the Larmor frequency. The dipolar field is thus responsible for 

large line widths of solid sample spectra. This effect is included in a larger subset of line 

shape effects termed homogeneous broadening5. Homogeneous broadening occurs when 

each spin makes the same contribution to the line width, or, as in the case of solid single 

crystals, there are separate contributions caused by the dipolar field, but individual con- 

tributions cannot be identified. In contrast, an inhomogeneously broadened line is one 

in which the individual contributions to the line shape can be identified. For example, 

the line shape associated with an inhomogeneous main magnetic field, B0, is broadened 

because each spin "sees" a different field and will precess at a different Larmor frequency. 

The inhomogeneous broadening can be removed by perfecting the shim, or homogeneity 

of the main magnetic field. Homogeneous broadening, on the other hand, will not be 

affected by the quality of the shim. 

2.1.2    Motional Narrowing in Liquids 

Liquid molecules are not located in any form of periodic lattice, and liquid molecules are 

continually moving at much faster rates than those of a solid. Slichter6 gives a simple 

description of the effects of molecular motion on spin-spin relaxation, in which the spins 

are coupled to an external fluctuating field.    Slichter's example gives all the qualitative 

5Fukushima E., Roeder S., Experimental Pulse NMR, A Nuts and Bolts Approach, Addison- 
Wesley Publishing Company, 1981, pp. 218-219. 

6Slichter, p.p. 212-213. 
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information necessary to describe the effects considering dipole-dipole coupling. 

The following equation results from Redfield theory when considering an ensemble of 

spins coupled to an external fluctuating magnetic field. 

i=7„Hfr+^ (2.7) 

This is an equation relating T2, the spin-spin relaxation constant, to Ti, the spin-lattice 

relation constant, the mean square local 2-component of field, H%, and r, the motional 

correlation time of the fluctuating local magnetic field. A shorter r represents faster 

motion and a longer r represents slower motion. The first term in this equation is 

adequately derived by Slichter assuming that the local field, Hz, has a value \HZ\, for 

a period of time, r, and then changes randomly to ± \HZ\. This field change occurs 

because, in liquids, a nucleus moves relative to its neighbors by diffusion. In each 

interval of time, r, a spin precesses a small phase angle, and the mean squared phase 

angle after time, i, or n = ^ intervals is7 

A02 = n^H2
zr

2 (2.8) 

Defining T2 as the time for the spins to get 1 radian out of phase results in the first term 

on the left side of Eqn. (2.7). Thus, as r decreases (the motion becomes more rapid) 

T2 increases resulting in a more narrow frequency spectrum line. This line narrowing is 

termed "motional narrowing". The motion narrows the line because the total dephasing 

takes place by a random walk of steps. When there is no motion, each spin experiences a 

constant field and precesses either slower or faster than the average. The total dephasing 

of a group of spins occurs because of the accumulation of positive or negative phase. The 

motional narrowing effect is the reason why dipolar effects are often neglected in the liquid 

state. However, as discussed in the following section, dipolar effects can be reintroduced 

by considering a long range mean dipolar field. 

7Ibid., p. 212. 
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2.2    Reintroducing the Dipolar Field in Liquid State 

NMR 

This section describes, in basic terms, how experimentalists have been able to reintroduce 

the effects of the dipolar field in liquid state NMR. Theoretically, the dipolar field effects 

in liquids can be explained using both a classical and quantum mechanical description. 

Both descriptions can be applied to describe experimental data, and each description 

has its own particular advantages depending on the type of experiment performed. The 

classical description is typically reserved for experiments involving multiple echoes and 

structural determinations. The quantum mechanical description has traditionally used 

in solution 2D-NMR to describe the presence of intermolecular cross peaks and other 

phenomena for multi-component systems. 

2.2.1    Multiple Echoes in 3He and Liquids at High Magnetic 

Field 

As stated before, credit for the first quantitative analysis of the mean dipolar field (also 

called the Dipolar Demagnetizing Field) is typically reserved for Deville et. al.8. Their 

studies focused on solid 3He NMR. Solid 3He atoms experience a large zero-point motion 

that contributes to motional narrowing and a long T2. They discovered the unusual 

phenomenon of multiple echoes after two radio frequency (r.f.) pulses.. Typically, two 

r.f. pulses result in a single echo as given by Hahn9. Deville explained multiple echoes by 

considering a long range demagnetizing field Bd with a magnitude that was on the order 

of the nuclear equilibrium magnetization M0. Since this field is typically very small, 

it does not significantly contribute to normal the dynamics of an NMR experiment. 

However, when transverse magnetization evolves in the presence of Bd over a time period 

8G. Deville, M Bernier, and J.M. Delrieux, "NMR Multiple Echos Observed in solid 3He", Physical 
Review B, 19 (11), June 1979, pp. 5666-5699. 

9E.L. Hahn, "Spin Echoes", Physical Review, 80 (4), November 1950, pp. 580-594. 
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on the order of T2, with ^BdT2 h 1 the nonlinear effects of the field interaction play 

a significant role. One might think that motional narrowing would destroy the effects 

of the dipolar field. But the interaction that contributes to motional narrowing (the 

exchange interaction) is short ranged. Therefore, as the distance, r, between two spins 

increases, the fluctuations caused by the exchange interaction decrease, so that, at a 

critical distance, any long range dipolar interaction can dominate. 

The experiments consisted of two pulses which placed a magnetization grating along 

the z-axis, and transverse magnetization then evolved in the presence of the longitudinal 

magnetization. The entire experiment was carried out under the presence of the applied 

gradient. They noted the usual spin echo, but also a number of other echoes, spaced at 

the same time intervals as the first echo (i.e., multiples of r, where r is the time between 

pulses). 

Deville's analysis begins with the derivation of a simple form for Bd. By assuming a 

relatively large gradient is applied to the sample, the effects of the sample shape can be 

neglected, and the field becomes local and one dimensional.   They derived 

^d(s) = ^[3(s-z)2-l] M2(s)z-±tf{i (2.9) 

where s is the direction of the applied gradient, and z is the direction of the main 

magnetic field. This field affects the precession frequency, and must be included in the 

Bloch equations to determine its effect on the NMR signal. Neglecting relaxation, the 

Bloch equation becomes 

^P- = 7 {M (a) x [B0 + Gs + ßoßMz (s)} z} (2.10) 
at 

where ß = 3(3?) * and G is the applied gradient strength. This equation results because 

the components of Bd (s) parallel to M (s) do not affect the precession of M (s). 

The following example illustrates the calculation of the effects assuming no relaxation 

and a ^-directed gradient, so that ß = 1.   The addition of the dipolar field to the Bloch 
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equations creates a nonlinear equation of motion.   The complex magnetization represents 

the transverse magnetization, and can be given by 

M+ = Mx + iMy (2.11) 

Solutions of Eqn. (2.10) give the following form for M+ 

M+ (s, t) = M0e^G3Tein<»°M^s)t (2.12) 

or 

M+ (s, t) = M0e-^GsVw"MoSin(7Gsr)i (2.13) 

for a sine modulated longitudinal magnetization. The second exponential term in this 

equation can be expanded into 

oo 

ei^0M0sm(lGsr)t =    ^   Jn (^QM0t) e
in^GsT (2.14) 

n=-oo 

Thus, when t = nr, the two exponential terms will cancel and the magnitude of the echo 

will be Jn (ry/j,0M0t). This process explains why numerous echoes are observed after the 

application of the second pulse. The continuously applied external gradient refocuses the 

spatial components at integer multiples of the spatial encoding wave number when the 

evolution time, t, is an integer multiple of r. Deville's paper goes into the determination 

of the signal magnitude considering the effects of relaxation and diffusion. However, the 

general conclusion of refocusing spatial Fourier components remains unchanged. Only 

the amplitude of the echoes is changed. 

Bowtell10 and Körber11 did additional studies of dipolar field effects in the early 

10R. Bowtell, R.M. Bowley, and P. Glover,  "Multiple Spin Echoes in Liquids in a High Magnetic 
Field", Journal of Magnetic Resonance, 88, 1990, pp. 643-651. 

uHarold Körber, Elmar Dormann, and Goerg Eska, "Multiple Spin Echoes for Protons in Water", 
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1990's. They were studying liquid systems, and noted the same effects in these systems 

that Deville noted. The higher magnet strengths available at this time made the effects 

apparent. Again the results were attributed to the long range dipolar field. In the 

same volume of the Journal of Magnetic Resonance as Körber's paper above, Bowtell12 

described an investigation of multiple spin echoes in multicomponent liquids. He noted 

the effects of the dipolar field from one substance in a two-component solution on the 

other substance. They noted that the total amplitude of the second echo was modulated 

at the beat frequency of the chemical shifts, ^B0 (<5i - <52), where 8X - <52 is the chemical 

shift between the two species.   The additional echoes were also modulated. 

The next year, Bowtell13 published his work on using the dipolar field to indirectly 

detect the magnetization of a spin species. The method employed separate channels 

so that each component in the system could be separately excited, and the experiments 

were conducted in a continuously applied gradient field. The pulse sequence is shown in 

Figure (2-1). Obviously, no echo would be observed on the I-spin channel if the dipolar 

field was not present. The echo occurs because the transverse magnetization of the I-spin 

is perturbed by the field of the S-spin. The Fourier components of the resulting I-spin 

magnetization are unwound by the applied gradient and an echo results. If diffusion and 

relaxation are neglected, the transverse I-magnetization after the 90 ° pulse is 

Mi{t) = MIoY; Jni^oliMsotU        L   •"      J (2.15) 
n=—oo 

where echoes occur at times t = nr — nr'1*. The I-magnetization is unwound by the 

gradient at a rate (^ ] times the rate at which the S-magnetization is wound up. This 

study showed that the presence of the dipolar field could allow indirect detection provided 

that the species were intermingled on a microscopic scale.   At this time, the usefulness of 

Journal of Magnetic Resonance, 93, 1991, pp. 589-595. 
12A.S. Bedford, R. Bowtell, and R.M. Bowley, "Multiple Spin Echoes in Multicomponent Liquids", 

Journal of Magnetic Resonance, 93, 1991, pp. 516-532. 
13R. Bowtell, "Indirect Detection via the Dipolar Demagnetizing Field", Journal of Magnetic Reso- 

nance, 100, 1992, pp. 1-17. 
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90° 

S-spin RF 

I-spin RF 

90° 

90° 

I-spin Signal i A 

Figure 2-1: Pulse sequence used by Bowtell to study indirect effects of the dipolar field. 

the dipolar technique lay in the fact that, under certain circumstances, it could produce 

a signal-to-noise ratio (SNR) that was greater than direct detection. This increase in 

SNR could occur by detecting a low 7 spin via a large 7 spin, say protons. However, the 

gain in SNR was still less than could be obtained using other established methods. 

2.2.2    The Dipolar Field in Solution NMR 

Study of the dipolar field in the context of solution 2D-NMR stemmed from Warren et al.'s 

work14 regarding the presence of intermolecular cross peaks. They showed that relatively 

simple pulse sequences generated cross peaks between bulk water and a glycoprotein 

fragment. Cross peaks are associated with intermolecular multiple quantum coherences. 

Warren's work centered on the pulse sequence described by Figure (2-2). He named 

this sequence the "Crazed" sequence.   The sequence looks much like a COSY sequence, 

14 Warren S. Warren, Wolfgang Richter, Amy Hamilton Andeotti, and Bennet T. Farmer II, "Genera- 
tion of Impossible Cross-Peaks Between Bulk Water and Biomelecules in Solution NMR", Science, Vol. 
262, December 1993, pp. 2005-2009. 
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Figure 2-2:  "Crazed" sequence used by Warren et.al. 

and the presence of an intermolecular cross peak could only result from double quantum 

coherences across molecules. The only realistic coupling to create the coherence is the 

dipolar coupling, but it is generally assumed to be negligible owing to diffusion and 

motional narrowing, as discussed earlier. Warren attributed the presence of cross peaks 

to the long range dipolar coupling between spins separated by distances greater than 

diffusion lengths on an NMR time scale (~ 10/mi). The presence of a non-isotropic 

distribution of dipoles broke the symmetry and reintroduced the dipolar coupling. He 

used a density matrix approach to study the NMR signal characteristics, and he discarded 

the usual high temperature approximation, peq P=S 1— (-]j§r) h-, where peq is the equilibrium 

density matrix, 7 is the gyromagnetic ratio, B0 is the applied static magnetic field, k is the 

Boltzman constant, T is the temperature, and Iz is the magnetization in the ^-direction. 

The first neglected term | [(^) h] is verY smaU as (^) ^ 10~4- However, Warren 

shows that the presence of extra terms in the density matrix, the extra dipolar terms, and 

such an enormous number of spins in a given sample, transfers intermolecular multiple 

quantum coherences into observable magnetization.    The normalized signal magnitude, 
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using Warren's approach, is 

Crazed Signal = —-M0t2^0 / ^   C°S ,  cos (<ygsT) r2 sin 6drd6d(j) (2.16) 
62,11 J rö 

v 

If not for the presence of the cos ('ygsr) term in Eqn. (2.16), the angular integration 

results in zero signal. The cosine modulation acts to break the symmetry, and reintroduce 

the dipolar effects. This equation must be integrated over the sample volume minus a 

sphere of radius rcutoff = 10 fan. For simplicity, Warren integrated over a spherical 

sample.   Warren first plotted the function F (jgrr) defined by 

(igr) F (70TT) [H°'^   ~lj = J j (3COS^~1) cos (jgsr) r2 sin edOdtj,      (2.17) 

0=0 <fr=0 

versus ^grr radians. Physically, F {'ygrr) is the effectiveness of the long-range dipolar 

Hamiltonian in transferring coherence from slowly modulated two-spin operators into 

observable magnetization. This function showed that the majority of the crazed signal 

resulted when -ygrr was between 2 and 4, and that the calculation converges as r —* oo. 

Thus, the majority of the signal results from spins within about half of the wavelength of 

the applied grating. In addition, the logarithmic divergence associated with the radial 

integration was broken. Warren then continued with the radial integration and showed 

that 

Crazed Sigrml = \ *i£^S!zil (2.18) 

where rd = -^— is the "dipolar demagnetizing time". The combined contribution 

of the very small dipolar couplings and the small additional terms in the equilibrium 

density matrix resulted in a signal that was comparable in magnitude to that produced 

by a single |-pulse. Finally, Warren noted that the dependence of the dipolar range on 

the gradient strength could possibly lead to applications for structural measurements. 
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Warren has continued to enhance and build upon the quantum mechanical formalism 

to study the effects of the dipolar demagnetizing field in solution NMR15'16'17. Several 

comparisons have been made between the "classical" and "Warren" approaches to solving 

the dipolar problem. Jeener18 lays to rest all concerns regarding the equivalence of the 

two approaches. Basically, the classical approach uses the mean field resulting from a 

magnetization distribution and neglects individual couplings between molecule, while the 

quantum mechanical approach retains the couplings, but assumes that diffusion destroys 

couplings close to any given molecule. 

2.2.3    Structural Investigations Using the Dipolar Field 

In 1996, Bowtell19 published a paper that discussed the use of the dipolar field to probe 

structural properties in solution NMR using multiple spin echoes (MSE). The technique 

was similar to the indirect detection technique, but the study dealt only with protons in 

two different components. Thus, the chemical shift between compounds distinguished 

the protons in the NMR frequency spectrum. Bowtell experimentally studied a coaxial 

cylindrical system in which the outer glass tube contained water (component 1) and the 

inner glass tube contained acetone (component 2). The pulse sequence is shown in Figure 

(2-3). The first two selective pulses rotate the magnetization of component 1 onto the 

longitudinal axis, and the first gradient modulates this longitudinal magnetization. The 

crusher gradient removes all remaining transverse magnetization.   The second component 

15S. Lee, W. Richter, S. Vathyam, and W.S. Warren, "Quantum Treatment of the Effects of Dipole- 
Dipole Intercations, in Liquid Nuclear Magnetic Resonance", J. Chem. Phys., 105 (3), July 1996, pp. 
874-900. 

16Warren S. Warren and Sangdoo Ahn, "The Boundary Between Liquidlike and Solidlike Behavior in 
Magnetic Resonance", J. Chem. Phys., 108 (4), January 1998, pp. 1313-1325. 

17Sangdoo Ahn, Natalia Lisitza, and Warren S. Warren, "Intermolecular Zero-Quantum Coherences 
of Multi-Component Spin Systems in Solution NMR", Journal of Magnetic Resonance, 133, 1998, pp. 
266-272. 

18J. Jeener, "Equivalence between the "Classical" and the "Warren" Approaches for the Effects of 
Long-Range Dipolar Couplings in Liquid Nuclear Magnetic Resonance", J. Chem. Phys., 112 (11), 
March 2000, pp. 5091-5094. 

19R. Bowtell and P. Robyr, "Structural Investigations with the Dipolar Demagnetizing Field in Solu- 
tion NMR", Physical Review Letters, 76 (26), June 1996, pp.4971-4974. 
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Figure 2-3: Pulse sequence used by Bowtell for coaxial cylindrical experiments. 

is then excited by the final selective pulse, and the final gradient modulates the transverse 

magnetization at the same wavelength as the surrounding water. The 7r-pulses serve to 

refocus transverse magnetization and do not affect the evolution of the MSE. Bowtell 

explained the experimental results by considering the Fourier transformed form of the 

dipolar field, 

ßdip 

(*)- 
-A*o3(*-*y At (y) - 2>MZ (T) 2] (2.19) 

where 

00 

(2.20) 

and 

00 

jtf fr?\ =  j e-^'^Ä? ("r*) d3r (2.21) 

26 



The study also assumed that the dipolar field generates a small perturbation of the local 

magnetization so that the time evolution equation becomes 

6ti {T, t) = Ä? (T*, t) - Ä? (T*, 0) « 7Ä? (T*, 0) x ^dip (-T) t (2.22) 

This equation assumes that the magnetization builds up linearly over the time range of 

the experiment (jBdipt «1). 

The analysis consisted of Fourier transforming the equilibrium magnetization of each 

species over their respective sample volumes, and then, after considering the effect of the 

pulse sequence, integrating Eqn. (2.22) over all fc-space to arrive at the signal magnitude 

for a given evolution time and modulation wave number. The study compared the signals 

generated with different cylinder thicknesses and spacings. The signal clearly changed 

depending on the particular arrangement, and the study showed that structural aspects 

could be probed using the dipolar field. 

Bowtell has continued to build upon his classical analysis to study dipolar field effects. 

In another paper20, his group used the above technique to study packed glass beads of a 

certain diameter in a surrounding water matrix.   The techniques were very successful at 

fitting the derived signal curves to the experimental data in order to extract the diameter. 

In another study21, the group studied randomly packed microspheres of identical size, 

and then interpreted the results in the form of a spatial autocorrelation, or Patterson, 

function 

00 

PM m = j^—  f M0 (T") M0 (T" + T») dV (2.23) 

20P. Robyr and R. Bowtell, "Nuclear Magnetic Resonance Microscopy in Liquids Using the Dipolar 
Field", J. Chem. Phys., 106 (2), January 1997, pp. 467-476. 

21 P. Robyr and R. Bowtell, "Measuring Patterson Functions of Inhomogeneous Liquids Using the 
Nuclear Dipolar Field", J. Chem. Phys., 107 (3), July 1997, pp. 702-706. 
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where 

Mi total 

oo 

=   f M0(-r>)d3r (2.24) 

Using their techniques and observing the Patterson functions, they were able to extract 

the diameter of the beads with reasonably good accuracy. The proposed main benefit 

of the study was that it potentially widened the applicability of using the dipolar field 

because the results did not requiring fitting data using a complex model. The Patterson 

functions tended to give a broad minimum at modulation gratings corresponding to the 

size of the spheres. However, in each of the above papers described in this paragraph, the 

dipolar signal resulted from interactions between a single species, water. The experiments 

did not transfer magnetization to another species, as had been done with the cylindrical 

studies. In addition, the physical nature of the field behavior was partially masked by 

the mathematical techniques used in the study. 

2.3    Possible Applications for Two-Phase Flow Mod- 

eling 

One aspect of this thesis will be to investigate the feasibility of using the NMR dipo- 

lar field to make interfacial structural and velocity measurements for two-phase flowing 

systems. The basic premise is to limit the NMR signal to a region that is close to the 

interface. Then extract the necessary information (structure or relative velocity). The 

next few sections will introduce the necessary variables required to solve the two-phase 

flow modeling problem, and discuss the current state of the art regarding experimental 

determination of these parameters. 

Thermal hydraulic computer codes are invaluable for the design and validation of 

complex reactor systems. They are developed to study steady state as well as transient 

accident scenarios. Most codes rely on a two-fluid framework, where each phase is mod- 
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eled with its own set of field equations. The codes solve for all necessary variables, subject 

to boundary and initial conditions. This section will focus on interfacial parameters in 

the codes and models. Specifically, several examples of the Nuclear Regulatory Commis- 

sion's (NRC) TRAC-M code are used in order to explain the importance of several key 

closure relations, specifically the interfacial area and interfacial velocity. This code is 

representative of previously developed two-fluid codes. It is the most recently developed, 

and was developed to consolidate several other codes. 

The field equations require closure laws, so that each phase can be coupled to allow for 

simultaneous solution of the necessary variables. Most two-fluid model codes solve similar 

field equations. However, differences exist regarding the methodologies for incorporating 

the closure relations. Closure relations must describe the phenomena of mass transfer, 

momentum transfer, and energy transfer between the phases. In addition, while the codes 

perform satisfactorily compared to experimental validation, there is a strong motivation 

for improving the accuracy of the codes to further improve safety and reduce design costs 

incurred by excessive design margins. 

The Transient Reactor Analysis Code (TRAC) was developed by the NRC to pro- 

vide advance simulations of transients for pressurized water reactors (PWR) and boiling 

water reactors (BWR)22. TRAC-M/F90 (M stands for Modernized, F90 stands for FOR- 

TRAN 90) is the newest version of the code developed using the standard FORTRAN 

90 programming language. The present discussion will focus on the parameters used in 

the TRAC-M code, but the basic methodology and processes regarding solving the field 

equations are similar between different codes. 

2.3.1    Two-Fluid Model Description 

As discussed above, a two-fluid model describes the flow based on modeling each distinct 

phase.    For example, the TRAC-M code uses a four component, two-fluid model.  The 

22TRAC-M/FORTRAN 90 (VERSION 3.0) Theory Manual, J. W. Spore et al., U.S. NRC, July 
2000. 
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four components are liquid water, liquid solute, water vapor, and non-condensable gas. 

The two fluids are liquid and gas. Since two phases are considered, the model requires 

six field equations for each phase. Two additional equations are necessary to model the 

liquid solute and non-condensable gas considerations in the model. The model solves the 

partial differential equations using a finite-difference technique to obtain solutions for the 

following eight variables 

• Liquid and gas field velocities, Vi and Vg 

• Liquid and gas field temperatures, 7] and Tg 

• Void fraction, a 

• Pressure, P 

• Partial pressure of non-condensables, Pa 

• Solute concentration, m 

In order to solve the eight equations, the model makes some basic assumptions. The 

most important assumptions are the quasi-steady state assumption, and the time and 

volume averaged form of the field equations. 

2.3.2     Field Equations and Closure Relations 

To solve the field equations, a number of closure relations are specified. For computer 

codes, the field equations are often one-dimensional and nodalized, assuming constant 

fluid properties in each node. Thus, typical codes remove all properties, such as density 

and void fraction, from inside differentials, and then evaluate the equations for a given 

node. The closure relations then couple the equations, which are solved simultaneously 

for the variables given in the previous section.    Levy23 gives the general two-fluid field 

23Levy, S., Two-Phase Flow in Complex Systems, John Wiley and Sons, Inc., 1999, pp.125-128. 
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equations for mass transfer as: 

f [PI (i - «)] + \j-z [Pi (i - «)M] = -r (2.25) 

The area average void fraction is represented by a, p is the phase density, A is the channel 

cross-sectional area, ü is the average phase velocity, and Y is the mass transfer rate per 

unit volume at the interface. 

For momentum transfer, Levy gives the following general equations: 

^\pl{l-a)ül) + ~[Pl(l-a)ü*A]    =   -(l-a)-£-gPl(l-a)sm9 

PWITWI +EiL± + Yüa (2.27) 
A A 

+Cap (1 - a) 
d (ug - uj) 

dt 

|fc^)+I^fe-M)    =   -a|-*p.« «n *-*=£* (2.28) 

_^i + r5<|r_C7^(l-a)^fi^) 

The right sides of these equations represent the various forces applied to each phase. The 

first term is the net pressure force, and the second term is the gravitational force. The 

third term is the wall frictional force, or wall shear, and the fourth term is the interfacial 

frictional force, or interfacial shear. The phasic wetted perimeter is represented by Pj, 

and Q represents the interfacial area per unit volume, interfacial area concentration. 

The fifth term is the momentum transferred at the interface by mass exchange between 

the phases. The final term is the virtual mass term, and represents the force required 

to accelerate the mass of the surrounding phase, when the relative velocity changes. 
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C is a constant that depends on flow regime, and p is the average mixture density, 

p = pga + pl{l-a). 

The TRAC-M code neglects the virtual mass term in the momentum equations. The 

virtual mass term only becomes significant in very highly changing flow velocities, such as 

critical flow. TRAC-M also assumes that the interfacial velocity can be approximated as 

the difference between average phase velocities. In contrast, Collier24 assumes that the 

mass transferred across the interface is accelerated to the mean velocity of the receiving 

phase, and therefore uses the associated average phase velocity in place of the interfacial 

velocity in the momentum mass transfer term. The determination of the true interfacial 

velocity will be one parameter for which NMR could be ideally suited. 

For energy conservation, we will only present the gas phasic field equations, as the 

liquid phase equations are similar.   Levy gives: 

8   ( -r°\ Id/ To_     A „,       ,    QigPi    ,    QwgPhg        „-7-0 8P Pi -j-o 

(2.29) 

The total gas phase enthalpy is given by hg. The first term on the right side is the heat 

generation in the gas, and the second term represents the interfacial heat flux into the 

gas phase. The third term is the wall heat flux into the gas phase, and the fourth term 

accounts for energy addition into the phase due to mass transfer at the interface. The 

fifth term accounts for work due to expansion or contraction of the phase, and the last 

term accounts for frictional dissipation at the interface. 

TRAC-M adapts a different form for the energy equations, and uses internal energy, 

e, versus enthalpy,/?,. TRAC-M provides one equation for the gas phase, and then uses 

another equation for the combined gas and liquid phases, instead of an equation for the 

liquid phase only.     This approach removes the interface to liquid dependence of the 

24J.G. Collier, Convective Boiling and Condensation, Third edition, Clarendon Press, 1994, pp. 
34-41. 
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model.   For TRAC-M, the applicable one-dimensional gas phase equation is: 

— (apgeg) + — {aPgegug) = -P-^ - P— (aug) + qwg + qig + qdg + qgi + Th'v   (2.30) 

The heat transfer terms on the left side of the equation are the wall-to-gas, qwg, interface- 

to-gas, qig, heat deposited directly in the gas, qdg, and the liquid-to-gas sensible heat 

transfer, qgt. The interfacial terms are important for this chapter, and will be briefly- 

discussed.   The interface-to-gas term is given by 

q» = WTVTsa0 (2.31) 
Vcell 

where hig is the associated heat transfer coefficient, a; = -j is the interfacial area con- 

centration, Tg is the gas phase temperature, Tsat is the saturation temperature, and Vceii 

is the cell volume. Note that the interfacial area concentration is required for proper 

closure.   In addition, the sensible heat transfer is given by, 

qgl = h9iai
{T\;Tl) (2.32) 

Vcell 

which again incorporates the interfacial area concentration. 

A very important closure parameter for all field equations is T, the rate of interfacial 

mass transfer. V is negative for mass transfer to the liquid, and positive for mass transfer 

to the gas. T depends on four other closure parameters: 

• aj, the interfacial area concentration 

• hu, the interface to liquid heat transfer coefficient 

• hig, the interface to gas heat transfer coefficient 

• hwh the wall to liquid heat transfer coefficient 
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Figure 2-4: Flow regimes defined in the TRAC-M code. 

2.3.3    Interfacial Area 

One of the most significant closure variables for the two-fluid models described in the 

previous section is the interfacial area concentration. It plays a role in all interfacial 

terms, notably the interfacial mass transfer, T, interfacial shear, a^Ti, and interfacial 

heat transfer, qig = q" ty. It is customary to define relationships for the interfacial 

area based on flow regime and its corresponding geometry, particularly the characteristic 

length scales of the system (such as bubble diameter). For example, Figure (2-4) shows 

the flow regimes used in the TRAC-M code. The particular regime is dependent on 

the total mass flux, and the calculated void fraction in the particular cell. Based on 

location within this map, the interfacial area calculation is determined using geometrical 

considerations and previously developed correlations. For example, in the bubbly flow 

regime. TRAC-M25 uses 

a,- = 
6a (2.33) 

25TRAC-M/FORTRAN 90 (VERSION 3.0) Theory Manual, J. W. Spore et al., U.S. NRC, July 
2000, p. F-12. 
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where A is the Sauter mean diameter of the bubbles26 

E(f) 

E(40 

where the sums are taken over the number of bubbles. Eqn. (2.33) is based purely on 

geometry and the definition of Db. TRAC-M determines Db based on a suggestion by 

Ishii27 

A = 2L0 (2.35) 

where L0 is the Laplace number defined as 

L0=J   ,   °     , (2-36) 
V 9 [Pi - Pg) 

The bubble diameter A obtained in Eqn. (2.35) is an approximate arithmetic average. 

Using these methods, the Sauter mean diameter in the bubbly flow regime is a weak 

function of pressure. Thus, the interfacial area is simply determined by Eqn. (2.33) and 

is only strongly dependent on the void fraction and a relatively constant bubble size, or 

basically the number of bubbles of a constant radius. These types of calculations are 

typical of those used for many flow regimes in several computer codes. TRAC-M code 

writers readily admit that this type of calculation is rough and possibly inaccurate, but it 

is sufficient to meet code evaluation requirements when compared to experimental data 

(i.e., code validation). 

Levy28 discusses a method used by several investigators and computer codes that uses 

26Levy, S., Two-Phase Flow in Complex Systems, John Wiley and Sons, Inc., 1999, pp.177-178. 
27M. Ishii, Argonne National Laboratory, Private Communication, Letter to R. Nelson, Los Alamos 

National Laboratory, (July 1987). 
28Levy, S., Two-Phase Flow in Complex Systems, John Wiley and Sons, Inc., 1999, pp.132-133, 

177-178. 

35 



a critical Weber number in the calculation of the mean bubble diameter. The critical 

weber number, given by 

Wb = Db'maxPl (U° ~ Ul) (2.37) 
a 

is representative of the maximum bubble diameter in a two-phase system. The codes 

assume a Weber number (10 is often used), and then calculate £>b,max- Assuming a 

distribution of sizes, Db, is determined (often, Db>max is taken to be 2Db). Therefore, 

as the relative velocity between the phases increases, this method would determine that 

Db decreases. In actuality, as determined by photographic and ultrasonic methods, and 

pointed out by Levy, the bubble diameter increases because of a grouping effect. 

The development of an interfacial area transport equation is being researched by a 

team at Purdue University under the guidance of Ishii. The addition of this equation 

will help alleviate many of the problems associated with current methods, including jump 

discontinuities at flow regime transitions, and trend problems. 

NMR can possibly shed light onto the behavior of the interfacial area in two-phase 

systems. This thesis will investigate and develop the physics associated with using the 

dipolar field to determine interfacial area in a static two-phase system. Specifically, 

the dipolar field can be used to get a very good estimate of the characteristic length 

scale of a system (for example, average bubble diameter). In addition, using established 

techniques, NMR is well suited for measuring the volume fraction of each species present. 

A combination of the two measurements, together with a model of the size distribution, 

should give a good estimate of the interfacial area in the sample. 

2.3.4    Interfacial Velocity and Shear 

Interfacial shear plays a significant role in the momentum transfer equations, Eqns. (2.27) 

and (2.28). The term, £**■, which combines the interfacial area and the shear stress, 

enters into each equation, and is a significant contribution to the pressure drop in two 
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phase forced convection. In addition, the interfacial velocity enters into the momentum 

equations as Tüü and Tuig. These terms represent the momentum transfer caused by 

mass transfer at the interface. As discussed before, these terms are often approximated 

by the bulk velocities of the receiving phase or the difference between the bulk velocities 

of the two phases. 

The accepted definition for wall shear stress is given by 

du 
Tw = lJ>-Q-\y=0 (2-38) 

where y is perpendicular distance from the wall, and u is the fluid velocity along the wall. 

A similar expression can be used to describe the interfacial shear stress for each phase. 

du 
T~i = {1>TT L=interface (2.o9j 

dy 

Basically, the interfacial shear is the slope of the velocity profile at the interface. This 

stress will differ between phases because of different viscosities and velocity profiles. 

Thus, if the phasic velocities can be measured at given distances from the interface, the 

resulting distribution can be plotted and the slopes at the interface determined. However, 

this method of shear stress determination is not used in practice because of the difficulties 

with experimentally measuring interfacial velocities in this fashion. 

Typically, interfacial shear is incorporated into computer codes using developed cor- 

relations and estimations of interfacial friction factors. Shear stress is given by equations 

of the type 

Q 

where CD is the interfacial drag coefficient and ur is the average relative velocity between 
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the phases.   Usually, ur is simplified by 

ur = ug -ui taüg-üi (2-41) 

This equation is only valid for radially uniform velocity and void profiles, but is still 

widely used in practice. For example, the TRAC-M code the interfacial shear term 

takes the form 

^ = ci{ltg-l}l)\Tta-Ttl\ (2.42) 

where the velocities are the average phasic velocities in the node, and q is the interfacial 

drag coefficient and depends on flow regime.   For bubbly flow 

Ci ~      4Db 
K '    J 

where cDb is the bubble drag coefficient and is a function of a bubble Reynold's number, 

Db is the bubble diameter that is a function of the Laplace number, and Ps is a profile 

slip factor that accounts for migration of bubbles into the region of the flow channel with 

higher velocity. 

The use of the dipolar field in NMR offers an opportunity to further explain interfacial 

shear in two-phase systems. As will be explained in Chapter 3, the distance of the dipolar 

field interaction between two phases is directly under experimental control. Conceivably, 

by systematically adjusting this distance, and then measuring the velocity of the spins 

within this distance, the velocity distribution at the interface could be investigated. 

Chapter 4 will further explore the physics associated with the NMR signal behavior for 

such an experiment. 
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Chapter 3 

Signal Physics 

The dipolar field effect is well known in the field of NMR, especially in the context of 

solid state NMR1. In liquids, the dipolar field is often neglected because of diffusion and 

motional narrowing. In recent years, interest has been generated in the reintroduction 

of dipolar effects in liquids. With improvements in magnetic field and NMR technology, 

along with a better understanding of the physics behind dipolar effects in liquids, the 

examination and use of these effects for NMR spectroscopy and imaging techniques has 

risen dramatically in the last decade. 

Deville2 observed a dipolar field in He-3 where a relatively strong external gradient 

created a magnetization grating and thus a local macroscopic dipolar field. The NMR 

signal then resulted from the evolution of the system in the presence of the magnetization 

grating and dipolar field to generate nonlinear effects and multiple echoes. Warren et al.3 

suggested that the dipolar field could be used to investigate structural properties of liquid 

NMR samples, and that the effective length over which the field interacts is mostly limited 

to within one-half wavelength of the applied gradient pitch.   Structural properties have 

^.P.Slichter, Principles of Magnetic Resonance, Third Edition, Springer-Verlag Berlin Heidel- 
berg, 1990. 

2G. Deville, M. Bernier, J. M. Delrieux, "NMR Multiple Echoes Observed in Solid He-3", Physical 
Review B, Vol. 19, Number 11, 1 June 1979, pp. 5666-5688. 

3Warren S. Warren, Wolfgang Richter, et al., "Generation of Impossible Cross Peaks Between Bulk 
Water and Biomolecules in Solution NMR", Science, Vol. 262, 24 December 1993, pp. 2005-2009. 
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Experiment 

Imaging 

Scattering 

Mean Field 

Applicable Equation 

j(Y) =/p(^)e^T>d" 

3 (t, t) = / p (T*) eiq^ j P {-?\r") e~{ q ^ cfT'dT 

Table 3.1: Comparison of three NMR experiments used for size determination 

since been examined by Bowtell for simple cylindrical geometries4, periodic geometries5, 

and randomly packed microspheres6. Bowtell also described how the dipolar field could 

be used to measure the spatial auto-correlation function (or Patterson function) of the 

magnetization in the system7. 

The present study focuses on using the dipolar field to investigate structural properties 

of a relatively complex system. Specifically, we show that Dipolar Demagnetizing Field 

(DDF) experiments can be used to complement existing Nuclear Magnetic Resonance 

(NMR) techniques for investigating structural properties of two-phase systems. Table 

(3.1) illustrates the complementary nature of DDF experiments compared to imaging 

and normal scattering experiments (neglecting relaxation). In Table (3.1), p is the spin 

density, while if and  k  are wave vectors. 

The imaging signal, i(k\ provides a measure of the absolute position of spins by 

phase encoding their location in the form of a magnetization grating8. The spatial 

resolution is largely limited by gradient strength and diffusion. Scattering is concerned 

with spin displacements9.     Scattering experiments give a measure of the conditional 

4R. Bowtell, P. Robyr, "Structural Investigations with the Dipolar Demagnetizing Field in Solution 
NMR", Physical Review Letters, Vol. 76, No. 26, 24 June 1996, pp.4971-4974. 

5P. Robyr, R. Bowtell, "Nuclear Magnetic Resonance Microscopy in Liquids Using the Dipolar Field", 
Journal of Chemical Physics, Vol. 106 (2), 8 January 1997, pp. 467-476. 

6 P. Robyr, R. Bowtell, "Measuring Patterson Functions of Inhomogeneous Liquids Using the Nuclear 
Dipolar Field", Journal of Chemical Physics, Vol. 107 (3), 15 July 1997, pp. 702-706. 

7Ibid., p.703. 
8A. Sodickson and D.G. Cory, "A Generalized k-space Formalism for Treating the Spatial Aspects of 

a Variety of NMR Experiments", Progress in Nuclear Magnetic Resonance Spectroscopy, 33 (1998), pp. 
77-108. 

9P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Oxford University 
Press, Inc., New York, 1995. 
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displacement probability over a given time scale. In Table (3.1), s (!f,t) is the signal 

intensity, and P (~r*|~r*') is the conditional displacement probability for spin at position 

T* to move to position T>/ during time, t. Scattering experiments are dynamic in nature, 

and the cleanest structural measurements are made in the limit of bounded diffusion10. 

Thus, scattering experiments are limited to length scales below about 50//m. 

The inter-species DDF provides a magnetic field at the location of one species resulting 

from the magnetization distribution of another species. The mean field equation in Table 

(3.1) gives the secular DDF resulting from a z-axis source magnetization distribution. 

The DDF contributes a phase to the observed spins. d(lf,t) is the signal resulting 

from the mean DDF, psource ("r*7) is the spin density of the source spins, and A ("r") 

is a function that represents this distribution of source magnetization, which depends 

on preparation methods in the applicable pulse sequence. The applied gradient e1"5*'7* 

term acts to filter out structural information contained in spatial Fourier components of 

the correlated spins. The extent of the spatial cross-correlation is limited by diffusion 

and the range over which the field interacts. The technique is well suited for studying 

systems with large length scales. 

The present work focuses on introducing a methodology that can be used to study 

complex systems with DDF scattering experiments. The system under study is a poly- 

disperse oil/water emulsion, created by dispersing oil bubbles in an aqueous agarose gel. 

Specifically, the DDF can be used to determine the average oil droplet size and some 

measure of the overall bubble size distribution. 

3.1    Theory 

This section discusses the theoretical derivation of the NMR signal generated from the 

dipolar demagnetizing field in a sample of immiscible oil bubbles emulsified within a 

water phase.   The pulse sequence is designed such that the signal results from the mean 

10D.G. Cory and A.N. Garroway, Mag. Reson., Med., 14, 435. 
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Figure 3-1: Pulse sequence for emulsion experiment. 

field dipolar interaction between the water and the oil, and carries information on the 

sample geometry, including the bubble size. 

3.1.1    Basic Experiment and Overview 

The experiment is shown schematically in Figure (3-1). It is essentially a stimulated echo 

with a transfer of spatial coding from water to oil during the storage period. The gradient 

between the two water | pulses generates a sinusoidally modulated magnetization in the 

water along the z, or B0, direction. Spatial information is exchanged between the water 

and oil through the mean field dipolar interaction. This method is very similar to those 

studied by Warren11 and Bowtell12 for structural measurements. 

During the mixing time, the water's longitudinal magnetization is represented by the 

following equation: 

^water = M0,water COs(qmZ + qm8)z (3.1) 

where: 

11 Warren S. Warren, Wolfgang Richter, et al., "Generation of Impossible Cross Peaks Between Bulk 
Water and Biomolecules in Solution NMR", Science, Vol. 262, 24 December 1993, pp. 2005-2009. 

12R. Bowtell, P. Robyr, "Structural Investigations with the Dipolar Demagnetizing Field in Solution 
NMR", Physical Review Letters, Vol. 76, No. 26, 24 June 1996, pp.4971-4974. 
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• M0 water is the water equilibrium magnetization. 

• qm = <ygT is the spatial wave number of the grating, g is the magnitude of the 

gradient pulse, and r is the duration of the gradient pulse. The wavelength (or 

pitch) of the grating is A = ^. 

• 6 is the position offset of the magnetization grating, which depends on the r.f. pulse 

phase. 

3.1.2    Calculation of the Magnetic Field in an Oil Bubble 

From a known geometry of the two phases, the mean field of the water seen by a test oil 

spin is straightforwardly calculated from the spatially distributed water dipoles 13, 

B. 
J   \r - r ' 

3 Ä^aterCr") • {I* - !*')]  {I* ~ T") 

-f* -~r>'\2 

(3.2) 

Deville et al.14 used a Fourier transformed form of Eqn. (3.2) to derive a local form 

of the field that did not depend on structural properties, and Bowtell et al.15 Fourier 

transformed the field and equilibrium magnetization distribution to solve the associated 

NMR signal problem in spatial Fourier space. In the present research it is more consistent 

to explore the mean field for the specific geometry of distributed spheres. 

We start by calculating the field within a single sphere located in a static magnetism 

grating of infinite spatial extent. The water surrounds a single spherical oil bubble of 

radius a. The water magnetization distribution is approximated as a ferromagnet with 

zero macroscopic current density,  J = 0. 

13G. Deville, M. Bernier, J. M. Delrieux, "NMR Multiple Echoes Observed in Solid He-3", Physical 
Review B, Vol. 19, Number 11, 1 June 1979, pp. 5666-5688. 

14Ibid., p. 5667. 
15R. Bowtell, P. Robyr, "Structural Investigations with the Dipolar Demagnetizing Field in Solution 

NMR", Physical Review Letters, Vol. 76, No. 26, 24 June 1996, pp.4971-4974. 
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We proceed by finding the scalar magnetic potential, 5>, and then the magnetic field 

intensity, it = - V$, is calculated from the spatial gradient of the potential. Finally, 

the magnetic flux density, B oih is determined, 

^oii = ßo0oii + ^oii) (3-3) 

~B* is the magnetic flux density (sometimes called the magnetic induction). fi0 is the 

permeability of free space, /J,0 = 4IVX 10~7(^). The internal field derivation neglects the 

small change in the permeability between the oil and water. The associated effects on the 

internal field are small. However, permeability differences will contribute a significant 

"susceptibility field" in the water. This effect will be discussed later. 

The solution to Poisson's equation16, 

V2* = V • H, (3.4) 

with boundary surfaces is, 

1    [V-tiCr")«, ,    1   IrSjJkj»).. 
Air 

fV1M(^ld,r,+ l_I^Mmda, (3.5) 
J    \r  — r'\ 4TT J   \ r  —  r '\ 

The prime coordinates indicate the source coordinates (water), and the unprimed coor- 

dinates indicate the location for observation of the potential (oil), n' is the unit normal 

to the surface (n' = P), and da1 is an element of surface area on the boundary of the 

sphere. To calculate the potential, we first solve the potential equation for a sphere of 

radius R of the given water magnetization. Then, from this potential, we subtract the 

potential of a sphere of water that is the size of the oil bubble, radius a. The resulting 

potential is that which exists within a "hollowed-out" sphere located within the water 

magnetization.   See Figure (3-2). 

The coordinate system for this calculation is centered at the center of the oil sphere 

16 John D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., Third Edition, 1999. 
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Figure 3-2: Coordinate system and problem setup for the mean field calculation. 

with radial coordinate, r. Therefore, "z" in Eqn.(3.1) is the longitudinal coordinate 

within the bubble, and 6 is the position offset of the magnetization at the origin of this 

coordinate system. The offset in this coordinate system will depend on the phase of the 

r.f.,pulses, and also on the bubble's location along the longitudinal axis of the sample. 

The divergence of the magnetization is 

V • ^("r") = -M0jWaterqm sm(qmz' + qm6) (3.6) 

and the component of the magnetization along r is 

f • Ä?(T*') = M0:Water cos(qmz' + qm8) cos(0') (3.7) 
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In spherical coordinates for a sphere of radius R, Eqn.(3.5) is, 

*» = --/ I  f -M^at-qm sin [qmr'cos{e ] + qm8]r* smjeyr'dew 
4TT J    J     J |T> - -p'| 

r'=O0'=O^'=O 

7T 27T 

4-7T 
—   ff M°'water cos ^mÄ COS^') + gm^ cos(0') jg2 zin(e')de'd(l:' (3.8) 
In J    J |T* - T*'| 

'=0 <A'=0 

The term pr^rri (the Green's function) can be expanded into the following17, -j=»_-f»'l 

oo / 1 __. 1 rL 

^ = *'EE äTT^ "'• *>Y,m [e'" (3'9) 
/=0 m= 

This expansion gives the potential at T* due to the magnetization at ~r". Ylm [6, (ß] is the 

spherical harmonic. The radial parameters, r< and r>, represent the smaller and larger 

of r and r' respectively. Given the azimuthal symmetry of our spherical problem (the 

water magnetization only depends on the z coordinate), this expansion can be simplified 

by setting m = 0 and using Legendre polynomials, Ph instead of spherical harmonics, 

Ym=J^Pi[co8(0)) (3.10) 

and the overall expansion simplifies to, 

-i °°      i 

=0 

Following the above substitutions, subtracting an equivalent expression with a smaller 

spherical boundary of radius a, and   integrating over 0', the potential inside the inner 

17John D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., Third Edition, 1999. 
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sphere is, 

$ = $R - $a = -—   /     / {-2itM0iWaterqmsm[qmr' cos(ö') + qm6]r'2 sm(e')dr'd6' 

R      -K 

r'=ae =0 
oo ; 

r/(Hl)' 
1=0 

+ j- I {2nM0tWater cos [gmÄ cos(Ö') + gm<5] cos(0')#2 sin(0')^' 

ö'=0 
oo ; 

1=0 
7T 

- —   / {27rM0]„,ater cos [gma cos(6>') + gm<5] cos(6»')a2 sin^')^' 

e'=o 
oo j 

1=0 

It is convenient to introduce a new dimensionless parameter called the size ratio, Aqm, 

describing the ratio of the sphere radius to the grating's period, 

9m 2TT 

The potential was computed using Mathematica. For A9m < .6, the potential is well 

described for I < 7. Higher A9m requires additional harmonics, and for our purposes 

I < 11 suffices. 

The flux density inside the bubble due to the water magnetization outside the bubble 

^M(r,e,S) = Boa^rJjyr + BoafiWW (3-14) 

Only the z-component of the magnetic field leads to a variation in the oil precession 

rate.   The z-component of the field is the projection of the spherical components of the 
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Figure 3-3: Parametric plot of the field intensity within an oil bubble (Aqm = .5, qm6 
2JL) 

B vector on to the 2-axis, 

£U2M,<5) = Boiltr(r,e,6)cos(e) - BMß{r,e,6)sin{e) (3.15) 

A visual example of the field calculation is shown in Figure (3-3). This figure shows 

Bou,z(r,9,6) for a bubble with M0tWater = .045380 A (600 MHz), kqm = .50, and qm8 = 

27I-/3. In the cut-away section, red represents the highest field intensity, and corresponds 

to a peak in the outer water grating. Light blue represents zero intensity. Note that 

the grating structure is passed into the bubble, and how the field falls off in the interior 

of the bubble. 

The essential physics is contained in the field variation over the oil sphere. 

1) At qm = 0, there is no spatial modulation of the water magnetization, and zero 

field over the sphere. The qm = 0 case is singular and care must be taken since 

the field depends on the shape of the inner and outer surfaces. 

2) For finite qm, the field calculation converges at R » ^-. 
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3) The field shape at the surface of the sphere mimics the water grating. 

4) For a > —, the field falls off in the interior of the oil. The distance over which 

the dipolar field interacts in the presence of a spatial modulation is on the order of 

one-half the pitch of the grating. 

5) The boundary conditions were verified at the interface, and the normal component 

of the flux density and tangential component of the field intensity are continuous. 

3.1.3    Calculation of the Magnetization in the Oil Bubble 

Given the dipolar demagnetizing field specified at every point within the bubble, we 

are now in a position to calculate the transfer of the magnetization grating from water 

to the oil. In a cylindrical coordinate system with coordinates p and z, a transverse 

differential volume element of oil magnetization within the bubble acquires a phase as a 

result of the dipolar demagnetizing field from the water (the azimuthal symmetry of the 

problem negates any dependence on (p). The time evolution equation for the augmented 

transverse oil magnetization, neglecting relaxation and diffusion, is, 

dM^Z'6) = -i1M^l(p,z,6)Boil!Z(p,z,6) (3.16) 

M^(p, z, 6) represents the complex transverse oil magnetization. B^i^ does not depend 

on time and the solution of this equation results in, 

M+ (p, z, 6, t) = M0t0ile^
B°^r>z>sM (3.17) 

Mooii is the equilibrium water magnetization, and the time, t, represents the evolution 

time of the water magnetization in the presence of the water dipolar field. 

The spatially varying phase of the oil magnetization was calculated via a numerical 

integration of the field from the water spins. So far, the analysis has considered bubbles 

of constant radius.   A more realistic assumption is to assume that the bubble diameters 
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Figure 3-4: X-component of the oil magnetization versus z 

are distributed about a mean diameter, Dmean.    This distribution is typically assumed 

to be log-normal for NMR diffusion studies18. 

As shown in Table (1), the NMR signal results from the spatial Fourier transform of 

the oil magnetization throughout the sample. To perform the necessary integrations, 

we randomly choose a bubble size for each 6 location, perform the radial integration to 

determine M+t(z,t,6) for each bubble, and then add up each bubble's contribution to 

the overall oil-magnetization in the sample to obtain M^ (zLa6, t). This method projects 

the oil's radial magnetization on to the 2:Lafc-axis. Figure (3-4) gives a plot for the x- 

component (real part) of M£t(z,t,6) for thirteen bubbles of varying sizes at different 

positions over one spatial wavelength. This simulation was calculated for Dmean = 165 

/mi, qm = 40 mm"1, and a dipolar evolution time of 300 ms. Our experiments were 

performed at a much shorter evolution time, but using a longer time for the figure clearly 

18011e Söderman, Balin Balinov, "NMR Self-Diffusion Studies of Emulsions", Emulsions and Emul- 
sion Stability (edited by Johan Sjöblom), Surfactant Science Series Vol. 61, 1996, pp. 369-392. 
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shows the effects of the dipolar field.   The resulting oil magnetization distributions will 

constructively interfere to give spatial harmonics of the water magnetization grating. 

A Fourier transformation of the resulting oil magnetization over L provides Fourier 

components at integer multiples of the spatial wave number. We normalize this Fourier 

transform by dividing by the equilibrium oil magnetization to result in the following 

equation for the first spatial Fourier component, 

Area Ratio = —?— /   M^(zLab,t)e'i(lmZ^dzLab (3.18) 
M0!oiiL J0 

where, 

zLab = z + 6 (3.19) 

The normalization has the effect of removing the dependence of the signal ratio on the 

relaxation of the oil magnetization. This normalization is similar to Bowtell's normal- 

ization19, and it will simplify comparison of the calculations to the experimental results. 

We then plot the magnitude of the normalized first spatial Fourier component versus 

evolution time to generate buildup functions, see Figures (3-5) or (3-8). 

The effects of the different permeabilities between the oil and the water are now 

considered. Because this difference is very small, it will have a very small effect on the 

field inside the bubble. For the field calculation, we have assumed the permeabilities 

to be equal. However, the small difference in permeability has a significant effect on 

the grating produced in the water because of a static "susceptibility field" present in the 

region surrounding the bubble. For a spherical geometry, the difference in permeability 

manifests "itself by giving the sphere an "effective" uniform magnetization along the z- 

axis. This magnetization results in a uniform field within the sphere and a dipolar field 

surrounding the sphere.    The susceptibility field tends to disturb the formation of the 

19R. Bowtell, P. Robyr, "Structural Investigations with the Dipolar Demagnetizing Field in Solution 
NMR", Physical Review Letters, Vol. 76, No. 26, 24 June 1996,  pp.4971-4974. 
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Figure 3-5: Comparison of experimental to model results (Dmean = 180/zm) 

water grating while the external gradient is applied as shown in Figure (3-6). This 

figure shows a simulation for the disruption of the water grating in an area close to the 

bubble for a bubble diameter of 160 yum, and a 4.8 G / cm external gradient applied for 

1 ms. The disrupted area extends well out to 30/im beyond the edge of the bubble. The 

susceptibility field can lead to attenuation of the signal. This is minimized following 

Lowe20, by adding a hard 7r-pulse to refocus spin evolution from time independent fields, 

while still writing a phase grating via the time dependence of the applied gradients. A 

hard 7r-pulse was also added after the oil selective pulse to refocus the effects of field 

inhomogeneities within the oil bubbles. Thus, the total evolution time for the dipolar 

demagnetizing field is from the center of the selective oil pulse until the formation of the 

echo after the 7r-pulse. The magnitude of the oil gradient is twice the magnitude of each 

of the water gradients in order to select the first Fourier component of the water's spatial 

20R.F. Karlicek and I.J. Lowe, "A Modified Pulsed Gradient Technique for Measuring Diffusion in the 
Presence of Large Background Gradients", Journal of Magnetic Resonance, 37, pp. 75-91 (1980). 
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Figure 3-6: Susceptibility fields around an oil bubble. 

modulation. 

3.2    Experiments and Discussion 

The emulsion was prepared from a 50/50% volume mixture of .02 M Sodium Dodecyl- 

Sulfate (SDS) and hexadecane. The oil/water mixture was shaken and then allowed to 

sit for a short time. After waiting, the creamed layer was removed, and this cycle was re- 

peated several times21. The final creamed layer was transferred to a 5 mm NMR sample 

tube. Warm agarose solution (.05 g Agarose in 10 ml water) was added to the sample 

tube, which was gently agitated and cooled to suspend the oil bubbles in the gel. The 

final cooled sample consisted of separate oil bubbles surrounded by water. The mean 

diameter of the bubbles was visually estimated under a microscope to be approximately 

150/xm with bubble sizes ranging from about 25 fj,m to 320 /im. 

21J. Bibette, "Depletion Interactions and Fractionated Crystallization for Polydisperse Emulsion Pu- 
rification", Journal of Colloid and Interface Science, Vol. 147, No. 2, December 1991, pp. 474-478. 
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Figure 3-7: NMR spectrum of the emulsion sample. 

The NMR experiments were performed on a Bruker AMX 600 MHz spectrometer. 

Figure (3-7) gives the one-dimensional NMR spectrum of the sample for a hard TT/2- 

pulse on the methylene resonance. This figure shows how the water line is broadened at 

the base by the susceptibility fields near the oil bubbles. In fact, we can distinguish two 

"types" of water depending on its proximity to an oil bubble. The narrow peak seen at 

the top of the water spectrum is made up of water that is removed from the oil, and the 

broadened peak is made up of water that is close to the oil. 

The sample's relaxation times were: 

• Tlwater = 2.81 sec and Tloii = 851 sec 

• T9Mil = 48.8 ms 

T2watlr = 29.3 ms and T^ter = 76.2 ms. The different water T2 values correspond 

to the different isochromats. The water close to the oil gives a lower T2 value 

because of diffusion through the susceptibility fields. 

54 



Experiments were conducted at four different qm values (6.42 mm-1, 12.8mm"1, 

19.3 mm"1, and 38.5mm"1). In each experiment the evolution time was varied from 

35 to 83 msec. A spin echo experiment at the same delay times was used to normalize 

the dipolar experiments. 

The buildup of the signal was simulated using the model presented in the previous 

section. The model accounts for unrestricted diffusion of the water, and T2 decay that 

occurs in the water while writing the grating. 7\ relaxation of longitudinal magnetization 

was neglected. 

The presence of the oil bubbles in the water disrupts the continuity of the water 

grating. In other words, for a given bubble, the water grating that surrounds the bubble 

will be interrupted by the presence of another bubble. To account for this effect, a 

volume fraction correction was included in the calculation of the water magnetization. 

The volume fraction was determined based on the ratio of the total oil NMR spectrum 

area to the total water spectrum area. By knowing the ratio of the water and oil 

spins in the sample, and knowing the molecular weights and densities of each species, we 

estimated the volume fraction, Vfrac = ^^S of water as .760. This type of calculation 

is further explained in Chapter 4. This volume fraction correction factor was multiplied 

by the water magnetization in the model. 

Figure (3-5) provides a comparison of the simulations to experimental results for 

a lognormal bubble diameter distribution with mean diameter of 180 ßm and standard 

deviation, a, of 75 ßm. The magnitudes of the simulations closely match the experimental 

data for the higher qm curves. The basic form of the simulations is the same as the 

experimental data, with a closer separation between the two lower qm curves than the 

two higher qm curves. The key feature of this data is the slope and relative slopes as qm is 

varied. The vertical intercept is sensitive to diffusion and volume fraction considerations 

which are not interesting here. 

Using the lower three values for qm (qm = 6.42, 12.8, 19.3mm"1), the experimental 

results were compared to several simulations run with different average bubble sizes and 
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different size distributions, log-normal and Gaussian. The buildup function curves are 

approximately linear for the time frames of our experiments. Linear curves were fit to 

the experimental data and to the model curves in the time frames of the experiments, 

and the ratios of linear slopes between curves were compared to determine which set of 

model curves best matched the experimental data behavior. Based on the results, a 

log-normal distribution with a mean bubble diameter between 140 - 160//m was chosen 

as having the best fit. Smaller diameter bubbles show groupings that are close together 

relative to the data, and larger diameter bubbles show groupings that are spaced further 

apart. These results match well with the observed average bubble size of 150 fjm. The 

Gaussian curves did not match the behavior of the data quite as well as the log-normal 

curves (the curves at low qm were not grouped as closely together relative the curves at 

higher qm). The simulation runs show that the signal buildup is sensitive to the type and 

variability of the size distribution. The skewness of the log-normal distribution appears 

to reduce the intensity of the signal in the long wavelength region, and cause the signal 

buildup curves to behave more like the actual sample. This effect is likely caused by the 

greater number of large diameter bubbles in the log-normal distribution, and is a likely 

reason for the similar slope ratios of the two experimental curves at lower qm. 

Figure (3-8) gives the simulated buildup functions for a log-normal distribution with 

four mean diameters and a = 75. These curves display the sensitivity of the model for 

varying diameter length scales. The simulations show increased sensitivity to the bubble 

size as qm increases. Note the change in relative spacing of the curves as the length scale 

of the simulation approaches the length scale of the emulsion. The form of the curves 

better approximates the form of the experimental data as the average diameter decreases. 

Figure (3-8) also shows the ratios of slopes for the linear fitted curves and respective mean 

diameters, mj gives the slope for qm = 6.42 mm"1, ra2 for qm = 12.8 mm"1, and m3 

for qm = 19.3 mm"1 The slope ratios for the experimental data are ^ = 1.0426 and 

222 = 1.1914.   The model slope ratios more closely resemble those of the data for smaller 
m.3 r 

mean diameters, with a better fit occurring between 140 — 160 ßm. 
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Figure 3-8: Comparison of buildup curves showing sensitivity to mean diameter 

Next, consider the behavior of the signal as a function of qm. The signal buildup 

reflects the behavior of the bubble's internal field. At low qm, the water grating pitch 

is coarse, and many bubbles are located within one wavelength. The signal results from 

low-numbered harmonic functions of the dipolar field, and the fact that the field depends 

on the height of the bubble in the water grating. We expect little sensitivity to the 

bubble size for qm in this range. This fact is confirmed by the experimental data, and 

the model.    When — is on the order of the bubble diameter, we expect the behavior 
Qm 

to change from the more global effect discussed above, to a more local effect, where the 

internal field falls off as the center of the bubble is approached from the surface. In 

addition, as qm increases, we expect the signal to decrease because fewer spins contribute 

to the signal at small wavelengths. 

The experimental data in Figure (3-5) is grouped more closely together with respect 

to qm, and we attribute part of this to the effect of the surrounding bubbles. At high 

qm, the influence of a finite volume fraction is negligible, but at low qm, the oil volume 
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fraction directly reduces the signal of the dipolar field. The low qm buildup rate is thus 

somewhat lower than the model. At high qm, water diffusion in the presence of the 

sample's susceptibility fields introduces an additional attenuation that also reduces the 

buildup rate. 

The above results show that the DDF can be used to probe length scales in a system 

with bubble sizes that are too large to probe with other techniques, for example, Pulsed 

Gradient Spin Echo (PGSE) experiments. The presence of the inter-species mean field 

establishes a spatial cross-correlation across the interface, and the signal behavior con- 

tains information on the system's average structural characteristics. The extent of the 

spatial cross-correlation is limited by the range of the DDF, and diffusion in areas where 

susceptibility differences between phases create strong magnetic field gradients. Carr- 

Purcell Meiboom-Gill (CPMG) techniques may provide a means of overcoming these 

diffusive effects during the correlation time. 

3.3     Conclusive Remarks Regarding Signal Physics 

This chapter has provided the solution to the "forward problem" regarding the DDF 

signal characteristics given a certain length scale distribution in a complex system. The 

study displays that the DDF signal inherently contains structural information, and a 

methodology has been developed to study DDF signal behavior in such systems. Future 

studies will build upon these results to solve the "inverse problem"; given a set of ex- 

perimental results, what structural information can be obtained easily, and what scaling 

laws can be applied to confirm DDF behavior. The unique properties of the dipolar field 

enable its use in characterizing large scale systems, which can be used to complement 

PGSE studies. 
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Chapter 4 

Signal Behavior and Interfacial 

Properties 

The previous section described the derivation of the mean field generated by a modulated 

source magnetization, and the associated NMR signal generated within spherical bubbles 

of a different phase. Up to this point, the analysis has focused on solving the "forward 

problem". That is, given a system with known characteristics, namely the bubble size 

distribution, the signal behavior can be forecast quit accurately. A more useful and 

powerful result is the solution of the "inverse problem", in which NMR experimental 

results can be used to directly understand the characteristics of an unknown two-phase 

system. The solution of this problem requires that general scaling laws be developed 

to describe signal behavior versus experimentally controllable parameters, specifically, 

the wavelength of the applied magnetization grating. This chapter will focus on the 

development of these general results. The analysis provides much insight into the NMR 

behavior, and introduces new possibilities for the use of the technology, namely studying 

interfacial behavior. 

Figure (4-1) provides a comparison of a numerical calculation of the signal intensity 

(blue line) to the experimental results (x's) versus the applied wavelength. The red 

dashed line will be discussed in the following section.   The insets of this figure show the 
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Figure 4-1: Variation of the signal ratio versus applied wavelength A.   Insets show field 

intensity. 
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calculated field intensity within the bubbles of radius a, at the indicated wavelengths. 

The north and south poles of the sphere lie on the z-axis. Red (+) and orange (-) 

show the highest intensities, and light blue indicates zero intensity. Note the change in 

behavior as the wavelength varies. At longer wavelengths the field is relatively uniform 

over the bubble. As the wavelength approaches the length scale of the system (140 fim) 

the behavior changes and is localized near the interfacial regions of the bubble. In Figure 

(4-1), the series of plots below show the magnitude of the z-component of the magnetic 

flux density along the longitudinal axis of the bubbles. The water magnetization gratings 

(magnitude not to scale) are shown for comparison as the light gray curves that overlay 

the darker flux density curves. Note that the flux density along the center of the bubbles 

decreases in intensity as the wavelength decreases, giving rise to the interfacial dominant 

behavior. The NMR signal behavior will be described in detail and quantified by scaling 

laws in the following sections. 

4.1     Scaling Behavior in the Long Wavelength Region 

At long wavelengths, the variation of the field within a given bubble is small. The field 

in this region can be described by simplifying the lowest order harmonic that contributes 

to the mean field, the I = 1 harmonic. After taking the limit of this term as R -> oo 

and simplifying the result, the z-component of the field takes the following form, 

= 2M     te cos0 cos _ s.n {aqm)] (41) 

a3Qm 

where </> = qm6, in which 6 is the position offset as before. This equation can be simplified 

to give, 

Hz = -2M0tWatercos(f) 
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where ji is the first order spherical Bessel function of the first kind. Note that the only- 

spatial variable in this equation is <f> which depends on the bubble's center position along 

the grating.   Assuming no relaxation, the associated oil complex magnetization is, 

M+ = M0,^e
iw'2Mo^(erCra4^ (4.3) 

Letting A = ^lJi0t2M0iWater 
h Km) 

aqm 
, the complex magnetization can be expanded to give, 

oo 

(4.4) 
fc=-oo 

The f term in the exponential only contributes a phase, and will be neglected in this 

analysis.   The normalized NMR signal is given by 

1    f   °° 
Signal Ratio = T       J2 ^J* (A) ^iqmZLabdzLab (4.5) 

fc=—oo 

Assuming that the range of z <C range of 6, where 6 = ■&-, and integrating over one cycle 

of the modulation so that L = —, the following equation results, 
Qm 

„      oo 

Signal Ratio = — /   ^ e^ Jk (A) e^# (4.6) 
fc=-oo 

Only the k = 1 term contributes to the signal in the experiment.   When attenuation of 

the water is included, the resulting signal ratio is given by, 

Signal Ratio = Jx I ^/i02K,M0tWater 
h {aqm) 

aq„ 
(4.7) 

where K is an attenuation variable that depends on water diffusion and the effect of the 

surrounding bubbles. For diffusive attenuation, K is a time integrated variable and so 

incorporates the evolution time into Eqn. (4.7). In general K is a complicated function 

of time.     As qm —>• 0, Eqn.    (4.7) approaches a constant that is independent of the 
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systems length scale. This function is displayed in Figure (4-1) as the red (dashed) 

curve, where ß =.lß0'2.KM0tWater. Note that this function is a good approximation to 

signal behavior until the wavelength approaches the length scale of the system. In 

the previous chapter, for modeling purposes, K was determined by the product of the 

water volume fraction, relaxation of the transverse water magnetization while writing 

the grating, and unrestricted diffusive attenuation in the water grating. These factors 

provided a reasonable approximation to the attenuation of the signal. For Figure (4-1) K 

was calculated by fitting the model curve to the two far right points of the experimental 

data to get K = A9revolve, where revolve is the evolution time (80 msec). In general, K 

is not linear in time, but for a given time, and neglecting water diffusion in the applied 

grating, this form is sufficient, and higher values of K only serve to shift the model 

curve down in magnitude. Water diffusion in the applied gratings was not modeled for 

construction of Figure (4-1) in order to display the scaling behavior of the dipolar field. 

Simple estimates give reasonable values for K as described below. 

The presence of susceptibility fields in the water while writing the grating contributes 

to diffusion while the water magnetization is aligned in the ^-direction. By estimating 

the bulk susceptibility field magnitude from the linewidth of the broadened portion of 

the water spectrum (144 Hz), this effect gives a diffusive time constant TD « 88msec. 

Thus, K will include the following factor 

Tevolve 

_//TY,   i. _T t /Tn/n      /-i .-T..,»l.../Tn^ r Arn CA., 
evolve 

(4.8) 

T evolve. 

KsuscMoad « e~T—h/TD    f   e-V^dt = e-T—h/TDTD (l - e~T^'/TD) = MTD = .59re 

where Tcrush is the time between the second water pulse and the oil pulse (rcrush = 

9 msec). The broadened water represents 63% of the total water in the spectrum. 

Accounting for this fact, and neglecting any attenuation in the narrow water gives 

KSUSC ~ Tevolve [.37 + .63 (.59)] = .74revoive (4.9) 
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Combining the above susceptibility diffusion with the volume fraction (.76) and atten- 

uation of the water on the transverse plane (e T2,^^< P=S .83) results in a total attenuation 

estimate of K ?a .47rei)otoe. This figure is in reasonable agreement with the previous value 

of K determined from fitting. A fully accurate solution to the signal attenuation requires 

additional research and more complex modeling incorporating the effects described above. 

Diffusive effects in the applied grating become very evident in the experimental data at 

wavelengths on the order of the bubble diameter, where the signal is localized to the 

interface. In addition, the volume fraction effect is expected to attenuate and flatten 

out the signal behavior as the wavelength increases, but its effect should lessen as the 

wavelength approaches the length scale of the system. This effect is displayed in the 

experimental data. 

4.2    Scaling Behavior in the Short Wavelength Re- 

gion 

As the wavelength of the applied grating approaches the characteristic length scale of 

the system, the higher harmonics play a greater role in signal behavior. To analyze 

this behavior, a simplified model was used. The water was considered as a slab of 

magnetization that is of infinite extent in the x and z directions (see Figure 4-2); the 

^-direction is defined in the B0 direction). In the y-direction, the water slab extends 

from —oo < y < 0.   The water magnetization is described by 

^water = M0iWater COS (qmz' + <f>)z (4.10) 

(j) is the phase of the magnetization at z' = 0, resulting from the height along the grating. 

The resulting field in the oil was calculated as a function of y and 0.   Again, the previously 
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Interface at y = 0 

Figure 4-2: Coordinate system and problem setup for the slab problem. 

described solution for Poisson's equation is used, repeated here for convenience, 

1    /"V'-itfrf»)«,,   1   JrH'tiiT')^ 
$ = 

47T / 
_     _ , -dV + -f- <b   :."'".,  da' 
r — r'\ 47T./    I r — r " 

(4.11) 

The z-component of the field is found by taking the ^-component of the gradient of Eqn. 

(4.11). The surface integral vanishes because the surface normal is perpendicular to the 

interface.   After substitution of Eqn. (4.10), the following equation results, 

H,= 

0     oo     oo 

M0>waterqm   f   f    f z' sin (qmz' + 4>) 

A-K in 
-co —OO —CO 

[a;'2 + (y- y'f + z>*] 
3/2 

dz'dx'dy' (4.12) 

Integrating along z', the result is 

Hx 
M0tWaterqL COS <f> 

27T 

0     oo 

/   / K0   qm^'2 + (y-y')2   dx'dy' (4.13) 

—oo — CO 
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where K0 is the zero-order modified Bessel function of the second kind.    Now, let x' 

qmx' and y1 — qmy'', and then make the substitution r/ = yqm.   The result is 

Hz = 
M0tWater cos <j) 

2TT 

0     oo 

/  / K0   ^ + (rj-y>)2  dx'dy' (4.14) 

Eqn.   (4.14) was integrated numerically.    The solution was determined to be an expo- 

nentially decreasing function of r\ given by 

H7 — —■ e   ' COS i 
4 

(4.15) 

Thus, the field directly depends on the height of the observation point along the grating, 

the distance from the interface, and the wavelength of the grating. Letting (f> = qmz, the 

NMR signal ratio is given by 

a   2TT 

Signal Ratio = 
27vaJ J 

Exp -ijfi0t
: 
M, o,water -yqm COS0 ei(f>d(j)dy (4.16) 

0     0 

where a is the distance over which y is integrated (for this model, a is the radius of the 

bubble). Using a Bessel function expansion similar to the previous section, integrating 

over 0, neglecting unnecessary phase terms, and substituting ry = yqm, the following 

equation results 

Signal Ratio 

*)max _ 

-I A qma J      I Ißt} -Ä 
e   V dr\ (4.17) 

Since 0 < y < a, then rjmgx = qma.     For small arguments, the Bessel function can be 

given by its approximately linear form, resulting in 

'^Ißo       o, water Signal Ratio = _l£^^=l   j e-vdrj 
8qma 

(4.18) 
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Water Slab Boundaries 

y 

Figure 4-3: Coordinate system and problem setup for polar region calculation. 

or 

Signal Ratio =    ^^M0,water ,^qma 

8qma i) (4.19) 

For qma in the range of interest, the exponential term can be safely neglected giving 

Signal Ratio = 
^T/A?       o, water 

8qma 
(4.20) 

This result gives a g"1 dependence at short wavelengths that is displayed in Figure 

(4-1). To investigate this result, the field shape, as determined by the model of the 

previous section (using all harmonics up to eleventh order) was studied in regions close 

to the interface in transverse regions of a given bubble. The field shows approximately 

exponential behavior in these regions at high qm. 

In addition, another field calculation was performed to investigate field behavior in 

the polar regions of the bubble. For this calculation, another flat slab was assumed, 

but this time, it was oriented transverse to the applied water magnetization grating, 

see Figure (4-3).     Eqn.   (4.11) was again used, but now the surface contributions are 
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nonzero. The subsequent field integrations yielded constant field terms with respect to 

z for a given phase at the interface. The volume field terms cancels the surface terms 

yielding a zero field contribution from this geometry. Thus, there is zero contribution to 

the signal from this geometry, and the signal is dominated by the exponential behavior 

noted earlier, modified by the actual spherical shape of the real problem. Therefore, 

approximate g"1 behavior is used as the scaling law for NMR behavior in the region of 

short wavelengths. 

4.3    Discussion 

The scaling behavior described in the previous two sections provides a powerful novel 

means of using the dipolar field to extract the average length scale of a system. The 

first order harmonic dominates most of the signal behavior, and is responsible for a large 

bend in the curve at qma & 1. This result can be generalized to give fm • f m 1, where 

If is a characteristic length along the measurement direction. For long wavelengths, the 

signal approaches a constant, and for short wavelengths, the signal falls off as qr1. The 

rest of this section gives a brief discussion of the physics controlling the behavior and 

serves as a summary of the material described so far. 

The method of using the mean dipolar field in NMR is an interesting and important 

example of breaking translational symmetry in order to impart a scale dependence. This 

phenomenon of magnetostatics is commonly investigated in physics1. The scattering 

(transfer of spatial spin gratings) via intermolecular macroscopic fields in NMR carries 

a signature of the local spatial distribution of the spin density. For arbitrary geometry, 

the inverse problem of extracting this spin distribution from experiments is intractable. 

However, there is a universal crossover in the scaling behavior at the sample's charac- 

teristic length scale £ of the species fluctuations in the sample along the measurement 

direction.   This behavior has been demonstrated experimentally in the 100 micron-range 

lWarren, W., Richter, W., Andreotti A., & Farmer B. "Generation of Impossible Cross Peaks Between 
Bulk Water and Biomolecules in Solution NMR" Science, 262, 2005-2008 (1993). 
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for an oil-water emulsion, an important representation of complex, heterogeneous, soft 

matter. 

In statistical physics the inverse problem of extracting microscopic correlation lengths 

and times from the observed macroscopic response is, in general, intractable. Simple 

scaling relations, such as the Ornstein-Zernike2 relation, are of supreme importance, 

since they easily yield the underlying correlation lengths. Analogously, in the time 

domain, macroscopic relaxation rates often depend on the product cot of the microscopic 

correlation time t and the probe-frequency u. For example, the pioneering work of 

Blombergen, Purcell and Pound3 extracted the microscopic correlation time t of water 

by noting the frequency uc where the macroscopic relaxation rate changes rapidly as a 

function of the probing (Larmor) frequency. 

The "scattering" or transfer of transverse spin magnetization in NMR experiments 

described here is carried by the magnetostatics dipolar mean field of one phase seen by 

the other. Remarkably, standard magnetostatics4 is scale independent, and, as such, 

contains no information of the absolute size. When the translational symmetry is bro- 

ken, by imparting on the system a spatially dependent magnetization, the well-known 

incipient logarithmic divergence due to dipolar fields is removed, and new interesting re- 

sults emerge5. With a new scale available from that of the impressed symmetry-breaking 

field (SBF), it is possible to probe system length scales. The SBF becomes localized 

near the interface, and is quite analogous to a skin-depth phenomenon for a time-varying 

electromagnetic field in a dissipative medium (however, here we are concerned with the 

DC field). This localization near the interface provides a measure of the features near 

the interface. 

A direct analogy to indirect-scattering can be expressed from the method in which a 

20rnstein, I. & Zernike, F. Proc Acad Sei (Amsterdam) 17, 793 (1914) 
3Blombergen, N., Purcell, E.M., & Pound, R.V. "Relaxation Effects in Nuclear Magnetic Resonance 

Absorption" Phys. Rev. 73, 679-712 (1948). 
4See for example, Maxwell, J. C. Electricity and Magnetism, 1st Ed, Clarendon Press, Oxford 

(1873) or Lord Rayleigh, Phil. Mag. 34, 481 (1892). 
5Deville, G., Bernier M., & Delrieux J. "NMR Multiple Echoes Observed in Solid He-3" Phys. Rev. 

B 19, 5666-5688 (1979). 
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modulated SBF is exploited in the present case. A wave-vector dependence to the trans- 

verse magnetization is imparted first in one phase, which then is transferred to another 

phase and subsequently decoded. Recently, it has become well-appreciated6'7'8 that an 

experiment where the wave vector dependent magnetization "grating" is encoded and 

subsequently decoded constitutes an "NMR-scattering" experiment with the scattering 

amplitude given by an intermediate scattering function completely analogous to that in 

neutron scattering. So far, most NMR scattering experiments deal with "self" scatter- 

ing. The SBF experiments are unique in that they involve the transfer of the grating 

from one phase to another. These methods can extract the inter-phase Debye structure 

factors9, which are inter-phase spatial cross correlation functions. 

In summary, this thesis has described a simple scaling law appropriate for NMR 

scattering involving dipolar fields. The characteristic length scale can be extracted from 

a crossover in scaling with the applied wavelength. In the long wavelength regime, 

the magnetization, and hence the NMR signal, approaches a constant. In the short 

wavelength regime, the signal is restricted to spins near the surface, and is proportional to 

Surface Area xA i   _   ^n observation of a crossover of shape in response near "7f ■ £  fef 1 
Volume -g*. £ 

can be used to extract the size  £ . 

4.4    Interfacial Velocity 

Using the field determined for the parallel slab geometry given by Eqn. (4.15), this section 

will discuss the behavior of the field and NMR signal considering relative motion between 

the water slab and the oil region (see Figure 4-4). The experiment to be considered has 

a slab of water (in which the grating is written) sliding along a slab of oil (to which 

the magnetization is to be transferred).    The relative motion is expected to impart a 

6Cotts, R. M. Nature 351, 443 (1991). 
7Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., & Zelaya, F. 0. Nature 51, 467, (1991). 
8 Cory, D. G. & Garroway, A. N. Mag. Res. Med. 14, 435 (1990). 
9Debye, P., Anderson, H. R., & Brumberger H. J. Appl. Phys. 28, 679 (1957). \ 

70 



Interface at y = 0 

Figure 4-4: Coordinate system and problem setup for interfacial velocity calculation. 

phase-to the NMR behavior of the oil spins. The phase difference can be measured for 

different evolution time intervals, and the velocity distribution can be inferred from a 2D 

Fourier transform of the resulting data set. 

The initial analysis is simplified, and separates the transfer and buildup of the oil 

magnetization separate from the motion. First, the grating is written in the water. The 

resulting field generates Fourier components in the transverse oil magnetization, which 

are allowed to build up over a certain evolution time, r. The complex oil magnetization, 

neglecting relaxation, is represented by 

M+ = -iM^J, [ wM22«!L<r*-v*> -re 0tqmZ (4.21) 

Following the buildup time, the water grating moves a distance, v0t, where v0 is a constant 

water velocity, and t is the time of movement. Thus, the water magnetization phase 

changes by an amount, qmv0t, and the phase of the field, as seen by a spatially fixed 

oil test spin, changes accordingly.    Following the final refocusing gradient, the relative 
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movement applies a phase term to the oil, and the resulting magnetization is 

M+ = -iMo^Jt (wo^Zf^re-nA e^4 (4.22) 

Assuming that the argument of the Bessel function is small, the NMR signal ratio is just 

the previously derived signal from Eqn. (4.20), modified by the phase term giving 

Signal Ratio = »WM0|U,ater en^t 
Sqma 

(4.23) 

In reality, the solution to this problem is not separated into a buildup time and a move- 

ment time. The evolution and movement terms must be integrated over a single time 

period.   Neglecting relaxation, the complex magnetization is 

M+ = M0<oilExp 
M, 

-il»o      4 

o,water c~yq„ 

t 

/ cos (qmh0 + qmv0t') dt' (4.24) 

where h0 is the initial longitudinal position of the grating before the velocity shift and 

signal buildup.   The integral in the exponent can be evaluated as 

t 

/ cos (qmh0 + qmv0t') dt' = [sin (qmh0 + qmv0t) - sin (qmh0)] (4.25) 
J QmVo 

Simplifying and expanding into Bessel function form gives 

M+ = iM0>oil Jx 
!f fto     o,water 

2qmVo 

qmVot 

and the normalized signal ratio becomes 

(4.26) 

Signal Ratio 
i    iqmvot    j J/J, M0 water   -Vnm    ■     (qmvo* 

a J IqmVo 
-e »""sin dy (4.27) 

where a is the thickness of the oil slab. 
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Figure 4-5: Plots of the signal ratio versus v0 and t for qm = 3 mm *. 
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Figure 4-6: Plots of the signal ratio versus v0 and qm for t = 5 msec. 

The solution to this simplified velocity problem shows that interfacial velocity mea- 

surements using the NMR dipolar field are possible, assuming that the signal phase 

change can be experimentally observed (i.e., the signal magnitude is high enough). The 

range of the field extending into the oil slab is given by e~y9m, and at high qm, the ve- 

locity measurement is localized to the interface. The magnitude of the signal ratio for 

various parameters is shown in Figures (4-5, 4-6, and 4-7). Note that the signal is very 

small, and that there are regions where no signal is expected. This behavior is caused 

by translation of many periods of the water magnetization during the evolution time. 

For high relative velocities a different approach must be taken in order adequately build 

up a signal. Figure (4-8) displays one possible solution. Assuming that the grating is 

written in the water phase, the final 7r/2 pulse on the oil is followed by its refocusing 
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Figure 4-7: Plots of the signal ratio versus t and qm for v0 = .01 m/s. 
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Figure 4-8: Example stroboscopic pulse sequence with ra = 2. 
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Figure 4-9: Plot of the signal ratio (n = 20) and interval time for the stroboscopic velocity 

experiment. 

is gradient and several oil selective IT pulses. The time interval, r, between each 7r-pulse i 

limited to the time for 1/2 cycle of the water magnetization to pass a given oil test spin, 

or r = ——. The 7r pulses selectively refocus the oil spins so that they evolve on the 

transverse plane in the presence of the water dipolar field. Although the water grating 

is not affected by the oil pulses, the sequence effectively shifts the phase of the water 

grating seen by the oil spins. Each evolution time interval is limited to 1/2 cycle of 

the water magnetization, and the overall effect is to build up the signal in the oil. The 

resulting signal ratio, neglecting attenuation, is 

Signal Ratio = — / J\ 
a 

o 

a 

-yqm dy (4.28) 

where n is the number of 7r pulses after the oil 7r/2 pulse. Thus the buildup time is 

determined by n, qm and v0. Lower magnitudes of qm and v0 will obviously give larger 

signal ratios. But the desired experiment is to map out the velocity distribution as the 

interface is approached (i.e., as qm increases). Taking a to be 1mm, the wavelength 

must be adjusted to limit the signal to regions that are smaller than a. Assuming 

qm = 20 mm-1, the field extends out to ~ 250 jum, and should be a good estimate of a 

desired value for the experiment. Figure (4-9) shows a plot of the signal ratio for qm 

in the above range for n — 20.    Note that the magnitude of the signal is much higher 
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for this stroboscopic experiment for the desired qm value. Figure (4-9) also displays 

intervals times of a few milliseconds. Velocity profiles can be obtained by limiting each 

buildup interval r to less than 1/2 cycle and then varying the time to achieve phase 

shifts. After n such intervals, the accumulated phase shift can be studied to infer the 

velocity. The above plots show that interfacial velocity measurements are feasible using 

oil and water phases. These phases have a relatively high equilibrium magnetization 

that leads to a high signal ratio. However, this analysis has not considered the effects 

of the velocity distribution at the interface. As the interface is approached from the 

side of the stationary phase, the velocity increases (caused by the shear stress at the 

interface). Further research must improve upon the constant velocity approximation to 

fully understand the effects of the actual velocity profile. 

4.5    Interfacial Area 

NMR is very conducive to accurately measuring the volume fraction of two particular 

species in a two-phase system. The areas under the respective NMR line shapes from a 

simple 7r/2 pulse give the ratios of the number of spins in the system. For an example 

using proton spins, the volume fraction of each species can be calculated by knowing area 

ratios, together with the molecular weights, densities, and number of proton spins per 

molecule, from 

Area of Spin 1      p^V\ (# spins per molecule for species 1) MW2 

Area of Spin 2      p2V2 (# spins per molecule for species 2) MW\ 
(4.29) 

and 

Total Volume = Vx + V2 (4.30) 

The interfacial area can be estimated using knowledge of the average length scale obtained 

using the dipolar techniques.    The dipolar technique gives some information about the 
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variability of the distribution of length scales in the system. This distribution can be 

modeled using a probability distribution as discussed in the previous chapter. Once 

the distribution has been estimated, the interfacial area calculation becomes very simple, 

and is demonstrated as follows. Tong and Tang10 give the following equation for the 

interfacial area concentration in a two-phase system 

oo 

ai = n fi%a2f{a)da (4.31) 

o 

where n is the bubble number density, a is the bubble radius, and / (a) is the probability 

density function of the radius. The term in the integrand is the average area per bubble. 

Analogously, the volume concentration can be written 

oo 

vi = nj^a*f{a)da (4.32) 

o 

Therefore, the unknown n can be determined using the bubble volume fraction by 

n = 
f 4/3vra3/ (a) da 
o 

(4.33) 

where Vi is the volume concentration of species i, as determined by the above process. 

Thus, the concentration of interfacial area becomes 

3vi J a2f (a) da 

a« = — 
J a3f (a) da 
o 

°  (4.34) 

10L.S. Tong and Y.S. Tang, Boiling Heat Transfer and Two-Phase Flow, Second edition, Taylor 
& Francis, 1997, p.163. 
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or 

6vifD2f(D)dD 

CL; = ^  (4-35) 

fD*f(D)dD 

where D is the bubble diameter. For example, using the log-normal bubble diameter 

distribution of the previous chapter with Dmean = 150//m, a = 75, and vM = 1 - -76 = 

.24, Eqn. (4.35) gives 

a{ = 6.14 mm"1 (4.36) 

Of course this value is subject to some error. The error of this result is mainly caused by 

inaccuracies in the model of the sample size distribution. This distribution was derived 

by comparing model results to experimental results. To get an accurate estimate of the 

error, the model must be refined to account for all effects on the shape of the signal, and 

then errors determined by comparison to the experimental signal behavior. In addition, 

use of the dipolar field inherently incurs a limit in resolution caused by diffusion of spins 

during the evolution time. For a given desired length scale measurement, a certain 

polarization must be realized to achieve a reasonable signal ratio. Tighter gratings 

corresponding to smaller length scales must be accompanied by higher polarizations. 

Figure (4-10) plots the required equilibrium magnetization versus length scale needed 

to perform the static length scale measurement (with Signal Ratio = SR = .01) using 

water at various water diffusion coefficients. For this plot, water was assumed to be the 

transferring species, and oil is the species to which the magnetization was transferred. 

Note that for water at 600MHz (M0 = .045380 A/m), with a diffusion coefficient of 

3 x 10"9— the spatial resolution is limited to about 14/xm. This resolution limit sets 

an error that is inherent in length scale measurements. 

Figure (4-11) gives a plot of the required water magnetization needed to make a length 

scale measurement with a SR = .01 in the presence of relative motion between the oil 
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Figure 4-10: Required water equilibrium magnetization to acheive a SR = .01 for static 
experiment. 
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Figure 4-11: Required equilibrium water magnetization to acheive a SR = .01 for v0 = .05 
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phase (bubbles) and the water phase. The relative motion has shifted the resolution to 

about 30/mi for 600 MHz. The development of the model to make this plot deserves 

some explanation, and leads to some insights for future work in this area. The model 

uses the long wavelength scaling law, and takes into account relative motion and diffusion 

in the applied gradient plus some amount of attenuation caused by the volume fraction 

of water and susceptibility fields, assuming that the water was stationary and oil bubbles 

were translating through the medium at constant v0 = .05 m/s. The stroboscopic 

experiment described earlier was used with 10 7r-pulses applied to the oil phase (n = 10). 

For simplicity, the following discussion accounts for diffusion in the applied gradient 

only (susceptibility diffusion only adds a diffusive time constant to the problem, but 

complicates the math). The refocusing gradients in the oil phase have been divided into 

a series of gradient pulses between the 7r-pulses. Over the first time interval, r = ^^, 

and neglecting diffusion in the oil phase, the oil magnetization is 

M2
+ = M0touExp 

T 

i2lßoM0,watJ-^f- f e-D-^t cos {qmK + qmVot) dt (4.37) 

After substituting r = —— the integral in the complex exponential becomes 
gmVo 

T 

I 
^                                                L     <""£*»' +1\ [Dwaterqm cos (qmh0) - v0 sin (qmh0)] 

e-Dwaterqmt cos (qmho + qmVot) dt =  \ /     

Hm K^waterHm "•   uo) 

Letting 

(4.38) 

(-P„i«lfr1m"                 \ 

e          "°            +11 qmU water 
* = ^0m0tWater /   (4.39) 

Qmt, Qm {^waterQm   '   Vo) 
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and 

B = 2^ß0M0tWater 
3i (ftnf) 

e       "o        +1) v0 

9mS        9m {^waterQm ~*~ Vo) 

Eqn. (4.37) becomes 

M+ = M      ■ pil-A cos(qmho)-B sm(qmho)] 

This equation can be expanded by letting 

tan0 
B 

•<* Qm-L^water 

to give 

M+ = M0tou J2 ilJl (V^2 + B^ ea4>eil^h" 
l=—oo 

Setting 1 = 1, and integrating over qmh0 gives a signal ratio magnitude of 

h (9m0 SR=J1 ^lßoMo,water'- 

e       «o        +1J 

2m£ „2  n2 i   v2 
^■m    water   '      o 

J4> 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

The signal ratio still contains the structural information, but the magnitude has been 

modified by the relative velocity and the diffusion of each species. A similar function 

to Eqn. (4.44), modified by oil diffusion, a constant water diffusive attenuation, and 

accounting for the number of 7r-pulses, was used to make Figure (4-11). 

4.6    Laser Polarized Xenon 

This section will investigate the use of laser polarized Xe-129 as the second phase for 

the length scale experiment.     Thus, the Xe takes the place of the oil in the previous 
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Properties Water Xenon (enriched) 
Density @) 996.91 5.391 
Molecular/Atomic Weight 18.02 131.29 

Gyromagnetic Ratio (^f)      26.75 7.41 
Meg at 600 MHz (£) .04538 .003864 (P = 4%) 

D at room temp/1 atm. ({£)    2.5 x 10~9    5.6 x 10"6 

Table 4.1: Comparison of Xe-129 and Water Proton Properties 

experiments. The use of a gas introduces additional factors into the problem. The 

greatest challenges to using Xe are its high diffusion coefficient, and its low density, 

resulting in low equilibrium magnetization. 

The properties of enriched Xenon at a polarization (P) of 4% are compared to those 

of water protons in Table (4.1). The natural Xe-129 abundance is 26.4% but this value 

can be raised to 100% with enrichment. Just about all of the properties of Xe negatively 

impact the ease of using it for dipolar experiments. The gyromagnetic ratio is lower 

by a factor of four, and the density is almost three orders of magnitude lower. These 

facts contribute to a low Meq at a polarization of 4%, and give a much lower SNR than l 

proton experiments with water. However, possibly the most limiting aspect of Xenon is 

its much higher diffusion coefficient. The high diffusion coefficient contributes significant 

attenuation during the buildup time, even using the stroboscopic experiment.Figure (4- , 

12) gives the required equilibrium magnetization of water (transferring phase) to give a 

signal ratio in Xenon (receiving phase) of .01 for n = 10. The analysis used for the 

plot assumes that water surrounds Xenon and the relative velocity is .01 m/s. This 

relative velocity value corresponds to a typical bubble terminal rise velocity in bubbly 

flow for bubble diameters in the 1 mm range. The resolution is well in to the millimeter 

range (~ 600 /im) for water protons at 600 MHz for P = 4%, and the experiment seems 

feasible for large length scales.    Typical bubble diameters for two-phase flow models of 1 

bubbly flow are in the millimeter range (1-6 mm) with terminal rise velocities ~ .30 

m/s. As the Xenon polarization is increased, a lower equilibrium water magnetization is 

needed to achieve a given Xenon SNR, and a lower signal ratio can be tolerated.   Thus, ^ 
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Figure 4-12: Required water equilibrium magnetization needed to achieve a Xe SR = .01 
{P = 4%) ans SR = .005 (P = 8%) for v0 = .1 m/s. 

the curve in Figure (4-12) shifts downward as P increases. If P is doubled to 8%, the 

resolution becomes ~ 500 (im. At the wavevector magnitudes in Figure (4-12) , water 

diffusion is small and the curve shows very little variation with the diffusion coefficient 

of the surrounding medium. These results show that Xe experiments using the dipolar 

field will be very challenging, but are still worth pursuing in the future. 
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Chapter 5 

Conclusion and Future Research 

This goals of this thesis were stated in the introduction.    The completion of each goal 

will now be discussed: 

1) Develop the underlying physical model used to extract structural infor- 

mation using the nuclear dipolar field from a relatively complex het- 

erogeneous system. The theory and model that were developed took a novel 

approach to solving the problem. The field was determined in real space, versus 

Fourier space. The physical field model provided valuable insight into the form of 

the field and the physics behind its behavior. The model that was developed to 

solve for the NMR signal of the emulsion sample provided a characteristic behavior 

that was used to determine the effects of different bubble radii and different size 

distributions. The model shows that the NMR signal is strongly influenced by the 

bubble size, and the variability in the size distribution can also be probed. 

2) Verify the physics and model by comparison to a static NMR experiment 

(emulsion system). The emulsion sample provided an ideal tool for studying 

the effects of the dipolar field. The behavior of the model compared well with the 

behavior of the experimental results. By comparing the model to the experimental 

results, the size distribution was estimated, and the results compared well with 
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visual estimations of the actual bubble size distribution. 

3) Develop simple scaling laws that can be applied to easily extract length 

scale information. Chapter 4 developed simple scaling rules that can be used 

to easily extract length scale information from experimental results. The signal 

behavior displays a characteristic change in scaling at "Tf m • { « 1. At large 

wavelengths, the signal approaches a constant value. At short wavelengths, the 

signal falls off as g~!. The change in behavior is attributed to the localized nature of 

the dipolar field. The majority of signal derives from distances located within 1/2 of 

the applied water magnetization wavelength, and as the wavelength approaches the 

length scale of the system, the field is necessarily restricted to the interfacial regions 

of the bubble. Thus the technique lends itself to future research on interfacial 

properties of these systems. 

4) Theoretically investigate use of the dipolar technique for studying in- 

terfacial velocity between two phases. Also in Chapter 4, a theoretical in- 

vestigation of interfacial behavior was launched. Two potential experiments were 

discussed. The first experiment consisted of a slab geometry where one phase was 

sliding over the other. The experiment simply allowed one phase to slide over 

the other over the evolution time. The pulse sequence was basically the same 

as the static experimental pulse sequence. The calculated signal ratios showed 

that interfacial velocity could be probed by measuring the phase shift associated 

with the sliding field. However, this experiment resulted in very small signal ra- 

tios, especially in the higher velocity regime, and the higher qm values required 

to probe interfacial velocity. The second experiment consisted of a stroboscopic 

pulse sequence in which spin displacement over the time interval was limited to 1/2 

wavelength of the sliding magnetization grating in the water. Selective 7r-pulses in 

the receiving phase, spaced at the correct time intervals, allow the signal to build 

up, and minimize the sliding effect on the signal strength while also allowing an 
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interfacial velocity measurement to be made. Future research could possibly map 

out the interfacial velocity profile for this slab geometry. However, the velocity 

profile effect on the NMR signal characteristics requires further research to fully 

understand. 

5) Investigate the feasibility of using the technique to make length scale 

measurements in two-phase flowing systems. Finally, in Chapter 4, the 

feasibility of using the dipolar technique on flowing liquid-liquid and gas-liquid 

systems was examined. The strength of the signal is very strongly dependent 

on the polarization of the sample's net magnetization, and the diffusion of the 

spins of each phase. Diffusion in the receiving phase can be limited by using the 

stroboscopic pulse sequence described in Goal #4. For liquid-liquid systems, the 

feasibility of this technique is good, with length scale resolutions on the order of 

a few tens of microns for the relatively slow velocity used in the analysis. Higher 

relative velocities will be more challenging, yet the realization for future research 

seems very plausible. Future research is also necessary to fully explore the effect 

of disruption of the grating caused by movement of the bubbles through the water 

medium, and the effect that interfacial shear itself has on the signal characteristics. 

Further study of liquid-gas systems will be challenging. Gases have a very high 

diffusion coefficient, the effects of which can be lessened by using the stroboscopic 

sequence, and writing the magnetization grating in the water phase, while placing 

the gas in the receiving phase. In addition, gas (Xe) polarizations to date are low. 

Further improvements in the polarization technology may increase the success of 

studying these systems using the NMR dipolar technique. 
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Appendix A 

Calculation of Equilibrium 

Magnetization 

The equilibrium magnetization is calculated by determining the population difference 

between the two states for spin-1/2 nuclei. 

N-° =e(-^> (A.1) 
N. + o 

For v0 = 600MHz, B0 = 14.0926T, 

7ftg. _ (26.751 x 107^)(^ x 1Q-" J ■ sec)(14.0926T) _    5%gg y ^ 

kT (1.381 x 10-23-£)(298K) 

Therefore, 

^Lzl = e(-9.59686xl0"5) = ^ (^.3) 
N+0 
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M0, water ' 
pNA(# protons per molecule) 

M.W. (1 + ^4) 
~~i?p\ per proton (A.4) 

Using the high temperature approximation, this equation becomes, 

M, 
pNA{# protons per molecule) \~j?p\  B0 

o.water 
M.W. kT 

(A.5) 

Either of the above equations is sufficient. The proton magnetic moment is \~fip\ = 

& = 1.41053 x 10"2M • m. For water at room temperature (T = 25°C = 298K), 

p = 996.9096-H, M.W. = 18.0148-2-:, and there are two protons per water molecule. 
• mr ' mol' 

Therefore, 

M0. water = .045380- 
A 

m 
(A.6) 

At u0 = 750MHz, B0 = 17.616T and 

M0iWater = .056762 
A 

m 
(A.7) 

Xenon-129 is laser polarized.   The equation for the equilibrium magnetization of enriched 

Xe-129 is, 

Mn_x„ = 
pNAP\~j£Xe-12s\ 

AW. 

where P is the polarization (assumed to be 4%). The Xe-129 magnetic moment is 

\jtXe\ = ^ = 3.90729 x 10"2M • m. At room temperature and atmospheric pressure, 

p = 5.391%   Therefore, 

MoXe = .003865— 
m 

(A.8) 
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