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ABSTRACT 

Real world phenomena commonly exhibit nonlinear relationships, complex 

geometry, and intricate processes. Analytic or exact solution methods only address a 

minor class of such phenomena. Consequently, numerical approximation methods, such 

as root-finding methods, can be used. 

The goal is, by making use of a variety of root-finding methods (Newton- 

Rhapson, Chebyshev, Halley and Laguerre), to gain a qualitative appreciation on how 

various root-finding methods address many prevailing real-world concerns, to include, 

how are suitable approximation methods determined; when do root finding methods 

converge; and how long for convergence? 

Answers to the questions were gained through examining the basins of attraction 

of the root-finding methods. Different methods generate different basins of attraction. In 

the end, each method appears to have its own advantages and disadvantages. 
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I.       INTRODUCTION 

A.        BACKGROUND 

Root finding methods have been of interest for a longtime. Why? Often people 

ask qualitative questions about real-world phenomena, and they want these questions 

answered. To come to an answer, one must accurately model the real world phenomena 

in a mathematical model, and then solve the model. In many applications, the solution 

involves finding a root. 

Constructing models is rarely a simple process. Models come in many shapes and 

sizes. Some of these represent a dynamical process - a recipe for how real-world 

phenomena interact and change over time. How these interactions and changes occur 

governs the choice of model. For example, the continuous model leading to a differential 

equation is reasonable for certain phenomena, while difference equations in the form of a 

recurrence relation address phenomena occurring in discrete steps. Solutions, however, 

are not guaranteed in every instance. 

When analytical or exact methods are applicable, sometimes formulas for 

solutions exist. However, these methods are restrictive, often providing insight into the 

behavior of only a minor class of real world phenomena. Included in this category are 

models that can be approximated by linear relationships, simple geometry, and low 

dimensionality. For a great deal of real world phenomena, that is not the norm. Real 

world phenomena commonly exhibit nonlinear relationships, complex geometry, and 

intricate processes. Consequently, exact methods can be of limited practical value 

(Chapra, 1988). 



B. MOTIVATION 

Where analytical or exact methods fail, numerical approximation methods often 

succeed, approximately. One such approximation method employs difference equations. 

When applied to a large though finite number of steps, difference equations are closely 

related to the continuous behavior of a differential equation (Figure 1.1) In fact, a 

continuous model, y(t), can be seen as a limit of the discrete model, yn(tn) (Figure 1.2). 

X0  Xl  X2  X3 X0 Xl X2 X3 X4 X5 X6 ^ 

Figure 1.1. Approximating Continuous Behavior 

dt 
= f(t,y) 

lim yn+,-yn 
äi^o      At. 

^ yn+l      yn 

At 

f(K>yn)~ yn+l       yn 

At 

yn+l*y„+At\f(tn>yj] 

Figure 1.2. Approximating a Differential Equation Using a Difference Equation 

Although the model approaches are different, solution methods for each share 

common ground.   In the continuous model, solution curves may be obtained from the 



roots of a linear, constant-coefficient differential equation's characteristic polynomial. In 

the discrete model, solutions come from the roots of the recurrence relation's 

characteristic polynomial. In either case, roots can be real, imaginary, or complex. 

Consequently, solutions can vary greatly in their dynamical behaviors. 

Numerical (Root finding) methods, however, serve as the computational tools that 

unveil the mysteries of such dynamical behavior. Different methods, however, may 

produce different results from the same initial guess. So things can get really interesting! 

C. GOALS 

This thesis seeks to gain a qualitative appreciation on how various root-finding 

methods address many prevailing real-world concerns, to include, how are suitable 

approximation methods determined; when do root finding methods converge; and how 

long for convergence? Particular emphasis is given to finding which initial guesses lead 

to which roots. 

D. METHODOLGY 

From a mesh of points within the complex plane, Newton-Raphson, Chebyshev, 

Halley, and Laguerre root-finding methods numerically compute the successive 

approximations of some nth order complex polynomial's roots. In order to better grasp 

the effects, the results are mapped - thus, creating a geometry of basins of attractions 

which are the set of starting points whose trajectories are asymptotic to a bounded region 

(Devaney, 1989). The geometrical differences lend to the qualitative difference amongst 

the root-finding methods. 
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II.     BEHAVIORS OF DYNAMICAL SYSTEMS 

While   the   mathematics   describing   dynamic   behavior   may   be   fairly 

straightforward, interpreting such behavior can be difficult. In order to truly grasp it, one 

must familiarize oneself with the role of numerical methods and the utility of mapping 

their geometry. 

A.       NUMERICAL METHODS ROLE 

Numerical methods approximate solutions to mathematically expressed models. 

When these solutions are obtained from the zeros of some functions, root-finding 

methods serve as the tool of choice. These methods are usually iterative - beginning with 

an initial starting value and computing successive approximate solutions using a well- 

defined recurrence relation (Figure 2.1). Each successive step yields a numerical solution 

Sample Recurrence Relation Idea of Successive Approximations 

*„+l = f(x«) *„=/(/(-/(*o)-) 
n times 

Figure 2.1. Recurrence Relation & Iteration 

to the recurrence relation - in essence, generating a sequence of even better 

approximations. Hence, the solution process itself is a discrete dynamical system that 

generates a sequence of numbers. As Table 2.2 illustrates, each term of the sequence not 

Sequence Numerical Solutions Per Iterative Step                  Long Term 
Behavior 

I 

n 

n 

K'K'X'X'^'X'X'-   "*      °    (Convergence) 

/2'/2'/2'/2'/2'/2'/2''"'   "^      °°   (Divergence) 
1/    2/    3/    9/   7/    9/1/          ^9 
/2 ' 73 ' 72 ' 72 ' /2 ' /2 ' 72 ' *" 

Figure 2.2. Arbitrary Numerical Solutions 
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only signifies a numerical  solution for the nth iterative  step,  but  also suggests the 

ultimate behavior of that solution.  Determining such behavior is not always done by 

simple inspection. Some sequences are obvious; others are not. Consequently, numbers 

alone are often not enough. 

B.        UTILITY OF MAPPING - SINGLE FIXED POINT 

Another, often preferred, method used to determine dynamical behaviors is to 

visualize them. Visualization entails mapping out the geometry of the numerical 

solutions. Why is this geometry important? Simply put, it graphically depicts the 

dynamical behavior of root-finding methods. 

As Figure 2.3 suggests, the mapping of a sequence of numerical solutions depicts 

the behavioral path or trajectory of a single starting point. Starting points that do not 

change after iteration are called fixed, and qualitative behaviors of other starting points 

can be interpreted in relation to the fixed points. 

Sequence I Sequence II Sequence 111 

"a*. "o 

Figure 2.3. Mapping of Numerical Solutions 

Cobweb diagrams help point out the qualitative behaviors near fixed points using 

the principle of feedback (Figure 2.4) (After Peitgen, 1992). The principle of feedback is 

simple - an  input, x„, is  given, processed  through   some   function, /, and  then the 

output, y„, becomes the next input, x„+i, repeatedly.  When allowing the ouput to equal 

6 



the next input, an identity exists so that (xn+l = yn ) = (x = y). Cobweb diagrams exploit 

the relationship, map the iterations, and reveal the behaviors of fixed points. 

© 
y = f(x) 

xn+]=y„ f(*J 

<£) 
Figure 2.4. Cobweb Diagram from the Principle of Feedback 

Behaviors about fixed points are converging, diverging or chaotic, and all can be 

mapped. Convergent mappings point out attracting fixed points; divergent mappings 

denote repulsive ones; and chaotic mappings never settle. While all three behaviors are 

essential in describing dynamical behavior, a simple example excluding chaotic 

mappings will suffice to illustrate the point.      Consider a simple linear recurrence 

relation;    xtt+1= f(xn) = mxn+b.      When   |/'(*„)| < 1>   me   mapping   contracts, 

converging to a fixed point. When |/'0O|  > 1, the mapping expands diverging off to 

positive or negative infinity. Figure 2.5 clarifies the point. 

With relatively little effort, the geometrical approach can handle nonlinear 

behavior as well. For smooth nonlinear recurrence relations, the same sort of contracting 

and expanding argument holds near the fixed point. As Figure 2.6 indicates, the trick is 

to locally reduce the nonlinear model to linear parts, apply the graphical analysis, and 

then couple the pieces together. 
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Figure 2.6. Concept of Linearizing a Nonlinear Mapping Function 



Although dynamic behaviors about a single fixed point are fairly predictable, 

startling behavioral effects can and often do occur when multiple fixed points exist. 

C.       UTILITY OF MAPPING - MULTIPLE FIXED POINT 

When fixed points coexist, the geometry of numerical solutions can change 

considerably. The effect of each fixed point is no longer simple; rather their effects 

interact. Consequently, determining such points and their effect is a necessity. 

Multiple fixed points are often found in the realm of nonlinear phenomena. While 

the effect of a single fixed point has been discussed, what happens when there are two, 

three, or n of them? How many can there be when the iterator is a root approximation 

method? As Figure 2.7 points out, the fundamental theorem of algebra tells us that an nth 

degree polynomial is factorable into n linear factors and contains exactly n roots, which 

are not necessarily distinct. Whether these points are real, imaginary or complex, their 

coexistence may create surprising behaviors. 

th 
Every n -order polynomial possesses exactly n roots 

Any polynomial of the form 

p(x) = anx
n + a^x"'1 + an_2x"~2 +... + a2x

2 + axx + a0 

«=0 

can always be expressed as 

P(X) = am(x~ Zn)(X ~ Zn-l)(X ~ Zn-l)-(X ~ Z2)(X ~ Zl) 

where the points z, are the polynomial roots, and they may be real, imaginary or 
complex. 

Figure 2.7.  Fundamental Theorem of Algebra (After Smith, 1977) 



With each additional fixed point, coexisting attractors can exhibit varying 

behaviors. Such behaviors are actually emerging in a sort of competitive state - with 

each vying to influence a solution's trajectory. As Figure 2.8 suggests, such behavioral 

effects may or may not extend globally. Each attracting region is called a basin of 

attraction - the set of starting points whose trajectories are asymptotic to a bounded 

region. Competition amongst the fixed points, in the effect upon x„, exists near and on 

basin boundaries. Moving the fixed points can create new basins and destroy old ones. 

\ 
\ 

1 ►: 

i   - / 
/ 

r 
i 
\ 

'Fixed Point ' Fixed Point 

I 
I ► 
\ 
\ 
\ 

Basin Boundary 

Figure 2.8.   Competing Effects of Multiple Fixed Points 

Basin boundaries can take on infinitely many shapes. And basin boundaries can 

be far more complicated than a simple curve, and in most instances are.   Within their 

intricate patterns, commonly referred to as Julia sets, is the key that reveals some erratic 

behaviors. Where the basins interact and compete, the behavior is not so obvious. Figure 

2.9 demonstrates how nearby starting points, which are expected to have similar 

behaviors,  can assume distinct solution paths, particularly near basin boundaries. 

Consider each starting point, xi, x2, and x3. Despite their 'nearness', starting points xt and 

X3 reach a root (through different roots) while x2, which begins on a basin boundary, 
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never settles. Hence, behaviors have a sensitive dependence on starting points, and can, 

at times, be considered chaotic. 

Figure 2.9.   Behavioral Effects of Multiple Fixed Points (After Pergler, 1999) 

D.       JULIA SETS 

Further consideration of such behaviors begins with observing the role of Julia 

sets. Julia sets are the boundary of basins of attraction ~ distinguishing which starting 

points are 'prisoners' to some fixed points' basin, and others that 'escape' them. 

Consider the following example in Figure 2.10 (After Peitgen, 1992). Note that 

'prisoner' points converge to some basin, while 'escapees', had any existed, would never 

settle. While the Julia set may be quite complicated, its role remains crucial in revealing 

the coexistence and competition of complex behavior. 

11 



Rules: Within the bounded region, select an arbitrary starting point. Move about to 
the next point as indicated (by Newton-Rhapson's method for cube roots of unity), and 
continue until one, the path halts - in which the next destination is itself (marked by 
X), or two, the path becomes cyclical. Evaluate each starting point. 

L K2 K3 K3 K4 K4 15 16 17 18 18 19 

K K3 K3 X K3 13 H4 H5 G7 H8 H9 H9 

I 13 13 K4 K3 12 G3 F5 F7 F8 G9 G10 

H H3 14 K5 L3 Kl D2 B5 D7 F9 F9 G10 

G G4 H5 K7 K6 LA A2 C7 CIO E10 F10 F10 

F F4 F6 F9 F10 Fll Fll Fll Fll Fll X F10 

E E4 D5 B7 B6 A2 L2 17 110 G10 F10 F10 

D D3 C4 B5 A3 Bl H2 K5 H7 F9 F9 E10 

C C3 C3 B4 B3 C2 E3 F5 F7 F8 E9 E10 

B B3 B3 X B3 C3 D4 D5 E7 D8 D9 D9 

A B2 B3 B3 B4 B4 C5 C6 C7 C8 C8 C9 

10    11 

While it is apparent that three basins of attraction exist, there is another valuable 
piece of information. Through adding the number of moves necessary from an 
arbitrary starting point to a fixed point and coloring the basins of attraction, the Julia 
set (approximated by the white boundary) becomes apparent. 

Figure 2.10. Julia Set Example 
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in.    NUMERICAL METHODS 

Since numerical methods are capable of approximating the zeros of an analytic 

function, root-finding methods serve as the tool of choice. Such methods come in many 

shapes and sizes. Some are rather simple; others are complex. Each, however, employs a 

different iterative approach that affects the geometry of numerical solutions, and thus 

impacts on dynamical interpretations. Consequently, an investigation of such methods is 

necessary. 

Although there are many root-finding methods to choose from, their conceptual 

origin is the same - that is, all stem from a successive point-wise approximation of an 

arbitrary function's root. For example, Taylor's theorem approximates a function value 

and, when truncated accordingly, is a numerical method of some sort. Figure 3.1 

illustrates another, and more recent, method yielding a one parameter family, e, of single- 

point numerical methods capable of finding roots (After Popovski, 1979). Of particular 

interest were the Newton-Raphson, Chebyshev, Halley, and Laguerre methods. 

For illustrative purposes, a uniform approach is applied. No matter the root- 

finding.method, each considers the function, f(z)= z3-l, and is restricted to real arithmetic 

for its geometrical interpretation. From an arbitrary point, x0, approximations are 

computed so as to satisfy Popovski's single-point method, y(z) = px + p2{x-p3)
e, save 

our final method. Successive computations yield more approximations, xo, xj, X2,..., x„. 

To ensure the dynamic behavior is clear, approximations are represented numerically and 

geometrically. 

13 



Solving f(z)=0 can be found on the basis of a single-point approximation by the four 
parameter function 

y(z) = P\ + P2(
z ~ PzY 

Consider a function f(z) on an interval [a,b] where f(a)f(b)<0 and f'(z)f(z)^, 
zefa,bj. Let zie[a,b] be the ith approximation to the root re[a,b] qff(z)=0.  Then the 
following approximation to the root r, zi+i may be obtained from the system of 
equations where 

y(\+I) = o 
y<d>(zn) = f<d>(zj = f<d>,d = 0,l,2. 

and when solved yields 

z     =z+(e-l)1^1 \      e   f(z„)f(zn)f 

.     e-1    f\znf    ) 
-1 

Figure 3.1. Popovski's Single-Point Iteration Formula 

No matter the function to be approximated, special parameter values, e, reveal 

familiar methods. When e approaches one, the single point iteration formula reduces to 

the popular Newton-Raphson method (Figure 3.2). The approximation method simply 

computes a tangent line to the point x„ of our function. When e equals one-half, the 

single point iteration formula reduces to Chebyshev's method (Figure 3.3). The 

approximation method, rather than line, computes a tangent horizontal parabola to the 

point x„ of our function. When e equals negative one, the single point iteration formula 

reduces to Halley's method (Figure 3.4). The approximation method computes a tangent 

hyperbola to the point x„ of our function. Laguerre's method takes a different approach 

(Figure 3.5)(Press, 1988). Rather than computing a tangent near the point x„t the method 

mimics the function's behavior there - that is, an «th order function receives an nth order 

14 



polynomial approximation.  For each of these approximations, the root of its tangent or 

Jh n   approximation typically represents a better approximation to our function's root. 

Newton-Rhapson Single Point Approximation 

y(x) = p1 + p2(x-p3) 

where       P,=f(xn)-f( xn )( xn ) 

P2=f'(Xn) 
Ps=0 

yielding   y( x) = f( xn) + f'( x n)( x - xn) 

y(x) approximations. 

n Xn 

0 3.5000 
1 2.3605 
2 1.6335 
3 1.2139 
4 1.0355 
5 1.0012 

6 1.0000 

Newton-Rhapson Iterator is 

xn+l~xn 
f(xn) 
f'(xn) 

for f(x) = x3-l... 

Xn+1 ~ xn ' 
bid 
3x 2 

n 

Figure 3.2. Newton-Rhapson Method 
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Chebyshev Single Point Approximation 

y(x) = Pi + P2(x-p3Y
2 

where      pl=f(xn) + If'QcJ 

P2=2f\x,,Xxa-p3/
2 

P^Xn+^TT," 
2/'(x„) 

yielding y(x) = f(xJ+I±$iL + 2f'( xn) 
f (xn) 2f'(xn)_ 

i'A 
x-x. f'(*J i'A 

"    2f'(xn) 

y(x) approximations. 

n *n 

0 3.5000 
1 1.9899 
2 1.2421 
3 1.0125 
4 1.0000 

Chebyshev Iterator is 

xn+l~xn 
f(xn)    f(xn) f{xn) 

f'(*n)        2f'(xn)
3 

for f{x) = x3 - 1. 

xn+i ~ xn 
3x 2 

3   1 \2 

9xJ 

Figure 3.3. Chebyshev Method 
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Halley Single Point Approximation 

y(x) = px + Pi 

(x-p3) 

where       p, = f(xn) 
2\f\xn)f 

Pi = 

P3=Xn + 

yielding   y(x)=f(xn) 

y(x) approximations... 

4f(xn)J 

2f(xn) 

/"(*„) 

2f'(xnf 

f"(Xn) 

4f(xnf 

f'(*J 

n *n 

0 3.5000 
1 1.8105 
2 1.1163 
3 1.0009 
4 1.0000 

Halley Iterator is 

2f(xn)f\xa) 
2[f'(xn)]2-f(xn)f(xn) 

forf(x) = x3-l. 

Xn+1 ~ Xn 
6(xn

3-l)xn
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Figure 3.4. Halley Method 
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Examining relations between the polynomial, its roots, and its derivatives 

Factor the 
polynomial- 

Obtain 
derivative 
relations: 

Pn{x) = {x-xl){x-x1)...{x-xn) 

\n\Pn(x)\ = ln|(x -xl)\ + \r\\(x - x2)\ +... + ln|(x - x„)| 

1 d\Pn(x)\=     1      ,      1 
dx 

■ + ... + ■ 
«-V ^Vi Ai A/i-\ 

dYM_   i i 

dx2 (x-x,)      (x-x2) 

x-x„ 

• + ... + • 

p' 

1 

(x-xn)
2 

P: 
H 

Assume root Xj is distance a from current guess, while all other roots are 
assumed to be located at a distance b, where 

a = x - jc, 

a       b 

b = x-X[,    i-2,3,...,n 

a 
G±^(n-\)(nH-G2) b = 

a       b 

(n-l)a 

Ga — a 

yielding        y{x) = [x- (xn - an)] [x - (xn - bn)]""' 

y(x) approximations. 

n Xn 

0 3.5000 
1 0.8814 
2 1.0651 
3 1.0000 

Laguerre Iterator is 

n 
Xn+1       Xn 

max 
ffU,)1 ' 

Figure 3.5. Laguerre Method 
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While each method can determine the appropriate root, certain methods are 

preferred. As Figure 3.6 illustrates, when monotonic behavior exists, the preferential 

order is clear - Laguerre, Halley, Chebyshev, and then Newton-Rhapson. In Laguerre, 

Halley and Chebyshev, the approximating curves echo the shape of our function. 

Newton-Rhapson's approximating curve is restricted to a simple line. Although 

convergence is guaranteed, it varies according to the step sizes of the approximating 

methods. With the smallest step size, Newton-Rhapson is only quadratically convergent 

while the other methods having larger step sizes are cubically convergent. When a 

function is not monotonic, the preference is generally uncertain - with no single method 

consistently better than the others. Clues to determining such an ordering begins with the 

careful observation of each method's geometry. 

150 

100 

50 

-50 

^A 

X3-! 

Newton 
Chebyshev 
Halley 
Laguerre 

Figure 3.6.   Monotonic Behavior & The Methods 
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IV.    NUMERICAL METHODS' GEOMETRY 

Again, numerical methods can sort through a dynamical system's behavior 

through finding its roots and examining their affect. With different methods yielding 

different behaviors, an examination of individual numerical methods is necessary. Recall 

how our four numerical methods, while obtaining the appropriate root, all sought distinct 

solution paths to it. Consider now a mesh of complex starting points, rather than a single 

real point, with an assortment of fixed points. What are the numerical solution paths 

now? What is the effect of the competition and coexistence of fixed points? What 

numerical method is preferred, if any? Answers to these questions appear when mapping 

and coloring each numerical method's solutions. 

While an n order complex polynomial with distinct roots partitions the complex 

plane into n number of basins, the partitions may or may not be equally distributed - or 

even connected for that matter. In an ideal setting, these attracting regions resemble a 

Voronoi diagram - regions containing all points that are the nearest neighbors to the 

polynomial's zero (Figure 4.1). Few things, though, are ideal. Rather, an attracting 

region contains all starting points that asymptotically approach the zero, despite their 

locality. 

Single Multiple Fixed Points 
Fixed Point Ideal Basins (V oronoi Diagrams) Calculated Basins 

0 

• 

•/. 

• 
.\ 

Figure 4.1. Basins of Attraction 
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One popular method to visualize these regions is basin coloring. The process 

simply assigns n colors to the n basins, executes some numerical method to calculate 

which initial points within a bounded region or mesh converge to a particular basin, and 

paints that basin's color to that point (Figure 4.2). Furthermore, the number of iterations 

necessary to converge to a root can be shown through variety of color intensities. Points 

calling for fewer iterations appear with greater intensity. Through employing these tools, 

sensible geometric interpretations are possible for nearly all complex polynomials. 

Single 
Fixed Point 

Multiple Fixed Points 
Ideal Basins (Voronoi Diagrams) Calculated Basins 

Figure 4.2. Basins of Attraction Coloring 

A.   PURE REAL AND PURE IMAGINARY ROOTS 

When considering pure real or pure imaginary roots, the geometries, while still 

creating a variety of basin shapes, sizes, and complexities, are remarkably similar - only 

differing by a rotation to the appropriate coordinate the axes. Consequently, observations 

for one case support the other. 

Even in what appears to be the simplest of settings, real roots, our basins of 

attraction are not ideal (Figure 4.3). Whether considering the case of equally or unequally 

distributed roots (Figures 4.4 - 4.9), nearest neighbor convergence fails to hold. With the 

exception of Laguerre's method, the shape of the basins roughly appears to conform to 
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that of a hyperbola. Laguerre's basin, on the other hand, resembles our anticipated basin 

shape to a minor degree - especially for those eager to see some relationship. Symmetry 

is another common factor that plays a role in shaping the basins. Equally distributed 

roots generate symmetry throughout the geometry; unequally distributed roots do not. 

Figure 4.3.   Ideal Basins & Associated Roots 

With slight exceptions along basin boundaries, the basin sizes for these are fairly 

comparable. For each, there exists some effective radius of convergence - that is, points 

in the neighborhood of a root tend toward that particular root (Figure 4.4). As Figures 

4.4 - 4.9 suggest, that effective convergence radius not only changes amongst the 

numerical methods applied, but also with each polynomial considered. With higher order 

polynomials commonly creating more and more complex geometries, such radii are often 

greatly reduced. 

Each method also bears some sensitive dependence on starting conditions. With 

nearby starting points assuming distinct solution paths, unpredictable behaviors can 

result. Although Figure 2.7 pointed out the concept initially, chaos' impact cannot be 

ignored - particularly with it present in every method's geometry. Figure 4.10 further 

reveals that basin boundaries may be self-similar, with infinite levels of detail, 

characteristic of fractal geometry. 

23 



Newton-Rhapson Halley 
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Chebyshev Laguerre 

-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5 

Roots 
[-1,0,1] 

rd Figure 4.4. Equally Spaced Roots - 3   Order 
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Newton-Rhapson Halley 

Chebyshev Lagusrre 

Roots 
[-3,-1,1,3] 

th Figure 4.5. Equally Spaced Roots - 4   Order 
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Newton-Rhapson Halley 
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Roots 
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Figure 4.6. Equally Spaced Roots - 5th Order 
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Newton-Rhapson Halley 

10        15        20        25        30 10 15        20        25        30 

Chebyshev Laguerre 
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Roots 
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Figure 4.7.   Unequally Spaced Roots - 3rd Order 
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Newton-Rhapson Halley 
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Chebyshev Laguerre 
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3U 

20 

10 

0 

-10 

-20 
W' 

-30 
-30 -20 -10 0 10 20 30 

Roots 
[-25,-1,20,25] 

th, Figure 4.8. Unequally Spaced Roots - 4   Order 
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Newton-Rhapson Halley 

-30 -20 -10 10 20 30 

Chebyshev Laguerre 

-30 -20 -10 10 20 30 -30 -20 -10 10 20 30 

Roots 
[-25-1,0,20,25] 

Figure 4.9. Unequally Spaced Roots - 5l Order 
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-066      -0.65       0 64      -063      -062      4 G1       O6 -075     -07«     -074     -073S     -0 73     -0.72     -072 -0.« -0.476 -0.47 4.465 446 

Roots 
[-1,0,1] 

Figure 4.10. Chaos Everywhere 

In considering the sensitive dependence on starting conditions, one need to only 

observe the 'decorations' along the basin boundaries for each method's geometry in 

terms frequency, size, and structure. As a consequence of the competition and 

coexistence of more and more fixed points, the decorations appear with greater frequency 

with higher order polynomials, yet their size decreases. Whether equally or unequally 

spaced real roots, the Newton-Rhapson, Chebyshev and Halley methods appear to 

experience chaotic dynamics in a phase-shifted manner with each other - an unexpected 
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outcome of their iterators. With rather clean, crisp boundaries, Laguerre's approximation 

technique provides better, though not absolute, predictability over the other methods. 

While pure roots create nifty geometries, things get really interesting with mixed 

roots. 

B.       MIXED ROOTS 

Mixed roots, those roots containing both real and imaginary components, provide 

a rich variety of basin shapes, sizes, and complexities. In many instances, there are 

striking similarities amongst these types of roots and pure ones. But when differences 

appear, a spectrum of spectacular geometries develops. 

1.        Roots of Unity (Equally Distributed Roots) 

In the simplest of settings, roots of unity, there are more similarities than 

differences. Nearest neighbor convergence fails to hold, save Laguerre's approximation 

to the third order polynomial (Figure 4.11). As expected from the equal distribution of 

roots, basin shapes are symmetric (Figures 4.11 - 4.13). Again, these shapes lend to the 

equally distributed sizes of each basin. 

Basin boundaries vary considerably - spanning from the very simple to the 

exceptionally intricate. Consequently! basins are more disconnected. As for sensitive 

dependence on starting conditions, the 'decorations' for each method's geometry in terms 

frequency, size, and structure remains similar to the case of real roots. Furthermore, the 

effective radius of convergence is also affected accordingly (Figure 4.11). Figures 4.11 — 

4.13 suggest, that effective convergence radius not only changes amongst the numerical 

methods applied, but also with each polynomial considered. 
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Again, as larger order polynomials are considered, basins become more 

complicated. Such behavior occurred previously, so this is of no great surprise. What is 

of great surprise is the rapid degradation of the Laguerre method near the origin (Figure 

4.14). The apparent 'disks of chaos' seem analogous to Feigenbaum's universality - that 

qualitative changes leading from order to chaos and chaos into order exist (Peitgen, 

1992). 

Newton-Rhapson 

-0.5 

Halley 

■1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5 

Chebyshev 

-1.5 -1 -0.5 0 0.5 1 1.5 

-0.5 

-1.5 
-1.5 -1 -0.5 0 0.5 1 1.5 

Roots 

2     2 ''  2     2l 1, - + 

Figure 4.11. Roots of Unity - 3rd Order 
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Newton-Rhapson Halley 
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th, Figure 4.12. Roots of Unity - 5m Order 
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Laguerre 
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th Figure 4.14. Roots of Unity - T Order (Zoom) 
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2.        Unequally Distributed Roots 

When roots are positioned irregularly, interesting things can and do happen. In 

general, the concepts of nearest neighbor convergence failing, basin shape, size, and 

complexity are as noted previously - but perhaps in a more pronounced fashion. 

Third order polynomials produce a variety of familiar behaviors. While Figures 

4.15 & 4.16 echo the behaviors previously found with real roots, Figures 4.17 & 4.18 

behave similarly to the roots of unity. Why the difference? Simply put, one is nothing 

more than a skewed version of the other. When one fixed point is a 'near-enough' 

reflection of another, a 'near-enough' symmetric geometry results; otherwise, a distorted 

geometry develops. Preference for a particular numerical method is subject to the 

presence of such symmetry. 

Figures 4.19 - 4.24 reveal how convergence changes with the next order of 

polynomials. With Figure 4.19 roots lying on a straight line, it is nothing more than a 

rotation of Figure 4.5, and it assumes similar behaviors. Figures 4.20 - 4.22, while 

containing a reflection of a fixed point to another, contain irregular and unexpected 

basins shapes and decorations - resulting from the competition and coexistence of a 

fourth fixed point. Halley's method generates the most pronounced irregularities, to 

include distinct breaks in basin connectivity. Figures 4.23 & 4.24 yield expected 

behaviors, save Halley. 

As for higher order polynomials, Figures 4.25 - 4.33 depict various geometries 

for fifth and sixth order polynomials. While the geometries are qualitatively different, 

their interpretation is found through the application of previous geometry's behaviors 

(Figures 4.4-4.24). 

36 



In all these instances, basin shapes, sizes and complexities vary considerably. 

And in nearly every case, the geometry remains unpredictable. But within this chaotic 

environment, is there any order? 

Newton-Rhapson Halley 

Chebyshev Laguerre 

Roots 

' 1    .      1       '. -1, — + i, — + 2i 
2 2 

Figure 4.15. Mixed Roots - 3rd Order 
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Newton-Rhapson Halley 
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Chebyshev Laguerre 
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Figure 4.16. Mixed Roots - 3rd Order 
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th, Figure 4.19. Mixed Roots - 4M Order 
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Figure 4.21. Mixed Roots - 4th Order 
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Figure 4.22. Mixed Roots - 4th Order 
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Figure 4.24. Mixed Roots - 4th Order 
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Figure 4.25. 5th Order Mixed Roots 
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Figure 4.28. Mixed Roots - 5th Order 
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Figure 4.29. Mixed Roots - 5th Order 
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Figure 4.31. Mixed Roots - 6th Order 
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V.      CONCLUSIONS AND RECOMMENDATIONS 

A.       CONCLUSIONS 

The Newton-Raphson, Chebyshev, Halley and Laguerre approximation methods, 

serve as powerful tools in evaluating complex polynomials' roots. These different 

methods, however, can yield different solutions from identical starting points. In 

determining any preference for the numerical methods, consideration must be given to 

the polynomial at hand, when do root finding methods converge and how long for 

convergence. 

Whether low or high order, the Laguerre approximation method tends to fare 

better than other methods. With relatively simple basin boundaries, the method not only 

affords a greater effective radius of convergence but also increased behavior 

predictability. In many instances, the Newton-Raphson and Halley geometries are nearly 

indistinguishable for the same reason. When fixed points are a reflection of another, 

Halley's method assumes a much larger effective radius over the Newton-Raphson 

method, and it can even outdo Laguerre's method. Chebyshev's method, filled with 

complex boundaries and relatively small effective radii, remains the worst of the group. 

With the methods relatively comparable in computational speed, the greater 

emphasis rests in basin shape, size, and complexity. 

Ultimately though, the method of choice depends on the complex polynomial at 

hand. 
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B.        RECOMMENDATIONS 

While room for further research in this topic exists, a particular effort with respect 

to more numerical methods, calculating effective radii, and consideration for repeated 

roots would prove both challenging and rewarding. 
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APPENDIX.    BASIN CODE (MATLAB) 

% This MATLAB program computes basins of attractions for complex, analytic     % 
% polynomials using various numerical methods. These methods include % 
% Newton-Rhapson, Chebyshev, Halley, and Laguerre. % 
% % 
% User inputs: f: Analytic function: % 
% i.e. f=[l 0 01] ==> zA3 +1 % 
% method!: Numerical Method % 
% i.e. N'= Newton-Rhapson,'C'= Chebyshev % 
% H' = Halley, L' = Laguerre % 
% ' tjimit: Maximum acceptable absolute difference between the       % 
% computed and actual root for both axis. % 
% i.e. tol=.01+.01i % 
% max_iteration: Maximum number of iterations before starting % 
% point becomes a member of the Julia set % 
% i.e. max_iteration=100 % 
% % 
% Notes: With an nth degree polynomial generating n roots, the user must     % 
% include n sets of the following codes to account for all roots. % 
% % 
% if abs(p_n-actual_root(2)) <= tol % 
% break % 
% end; % 
% % 
% if abs(p_n-actual_root(l)) <= tol % 
% root_color_code(real_counter,imag_counter)=l; % 
% end; % 
% % 

% Also, nth degree polynomial requires n+1 color assignments % 
%***###*******************************************#** 

function basin_generator=basins(f,methodl ,t_limit,max_iteration) 

% Defining/reseting initial conditions 
iteration=0; 
iteration_counter=0; 
roots_found=0; 
imag_counter=0; 
real_counter=0; 
n=length(f)-l; 
method=char(methodl); 
tol=t_limit +t_limit*i; 
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% Determining the actual roots, coloring assignments, and complex plane 
% boundaries and starting point step size 
actual_root=roots(f); 
root_colors=([l,0,0; 0,1,0; 0,0,1; 1,1,0; 1,0,1; 0,1,1; .5,1,0; 1,.5,0; .5,.5,.5; 1,1,1]); 
bound=max([abs(max(imag(roots(f))))abs(min(imag(roots(f))))abs(max(real(roots(f)))) 

abs(min(real(roots(f))))]); 
imag_start_pt=-bound-.5; 
imag_end_pt=bound+. 5; 
rea^startjrt^-bound-.S; 
real_end_pt=bound+.5; 
step=bound/30 

% Imaginary axis boundaries/do-loop 
forimag_axis=imag_start_pt:step:imag_end_pt 

imag_counter=imag_counter+1 
real_counter=0; 

% Real axis boundaries/do-loop/assigning starting points 
forreal_axis=real_start_pt:step:real_endjpt 

real_counter=real_counter+l; 
p_n_l=real_axis+imag_axis*i; 

% Resetting iteration counter/root 'a' measure for next starting point 
iteration=0; 
a=tol+l; 

% Iteration to determine convergence or Julia set member 
while iteration<=max_iteration 

% Fail safe — No iteration necessary is starting on a root 
if polyval(polyder(f),p_n_l )=0 

break 
end 

% Newton-Rhapson Iterator 

p_n=p_n_l-polyval(f,p_n_l)/polyval(polyder(f),p_n_l); 
end 

% Chebyshev Iterator 
ifmethod='C' 

p_n=p_n_l -polyval(f,p_n_l )/polyval(polyder(f),p_n_l )- 
((((polyval(f,p_n_l))A2)*(polyval(polyder(polyder(f)),p_n_l))) 
/(2*(polyval(polyder(i),p_n_l ))A3)); 
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end 

% Halley Iterator 
ifmethod='H' 

numeratorl=2*polyval(f,p_n_l)*polyval(polyder(f))p_n_l); 
denominator 1 =2*(polyval(polyder(f),p_n_l ))*(polyval(polyder(f),p_n_l ))- 

(polyval(f,p_n_l ))*polyval(polyder(polyder(f)),p_n_l); 
p_n=p_n_l -numeratorl/denominatorl; 

end 

% Laguerre Iterator 
ifmethod='L* 

if iteration ~= 0 
p_n_l=p_n; 

else 
p_n_l =real_axis+(imag_axis)*i; 

end 

% Fail safe — No iteration necessary is starting on a root 
ifpolyval(f,p_n_l)=0 

break 
elseif polyval(f,p_n_l )~=0 

G=(polyval(polyder(f),p_n_l )/polyval(f,p_n_l)); 
H=GA2- polyval(polyder(polyder(f)),p_n_l )/(polyval(fp_n_l)); 
if (G + sqrt((n-l)*(n*H-GA2)))=0 

break 
end 
if (G - sqrt((n-l)*(n*H-GA2)))=0 

break 
end 
if abs(G + sqrt((n-l)*(n*H-GA2))) > abs(G - sqrt((n-l)*(n*H-GA2))) 

a=n/(G + sqrt((n-l)*(n*H-GA2))); 
else 

a=n/(G - sqrt((n-l)*(n*H-GA2))); 
end 

end 
end 

% Updating computed roots/iteration 
iteration=iteration+l; 
ifmethod='L' 

p_n=p_n_l-a; 
else 

p_n_l=p_n; 
end 
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% Is computed root within tolerance of an actual root? 
if abs(p_n-actual_root(l)) <= tol 

break 
end 
if abs(p_n-actual_root(2)) <= tol 

break 
end 
if abs(p_n-actual_root(3)) <= tol 

break 
end 

% Extra statements for n roots 
% if abs(p_n-actual_root(4)) <= = tol 
%     break 
% end 
% ifabs(p_n-actual_root(5))<= = tol 
%     break 
% end 
% ifabs(p_n-actual_root(6))<= = tol 
%     break 
% end 
% ifabs(p_n-actual_root(7))<= :tOl 
%     break 
% end 
% if abs(p_n-actual_root(8)) <= = tol 
%     break 
%  end 
% if abs(p_n-actual_root(9)) <= tol 
%     break 
% end 

% No root found, update variable counters for next iteration 

end   % while 

% Iteration/Computed root trackers 
iteration_counter(real_counter,imag_counter)=iteration; 
computed_root(real_counter,imag_counter)=p_n; 

% If computer root within tolerance of an actual root, do color assignment? 
if abs(p_n-actual_root(l)) <= tol 

root_color_code(real_counter,imag_counter)=1; 
elseif abs(p_n-actual_root(2)) <= tol 

root_color_code(real_counter,imag_counter)=2; 
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elseif abs(p_n-actual_root(3)) <= tol 
root_color_code(real_counter,imag_counter)=3; 

% Extra statements for n roots 
% elseif abs(p_n-actual_root(4)) <= tol 
%     root_color_code(real_counter,imag_counter)=4; 
% elseif abs(p_n-actual_root(5)) <= tol 
%     root_color_code(real_counter,imag_counter)=5 
% elseif abs(p_n-actual_root(6)) <= tol 
%     root_color_code(real_counter,imag_counter)=6 
% elseif abs(p_n-actual_root(7)) <= tol 
%     root_color_code(real_counter,imag_counter)=7 
% elseif abs(p_n-actual_root(8)) <= tol 
%     root_color_code(real_counter,imag_counter)=8 
% elseif abs(p_n-actual_root(9)) <=tol 
%     root_color_code(real_counter,imag_counter)=9 
else 

root_color_code(real_counter,imag_counter)=10; 
end   % if 

end   % forreal_axis 
end   % forimag_axis 

% Building the true color specification for root_color_code using 
% an m-by-n-by-3 array of RGB values. 
b(:,:,l) = iteration_counter; 
b(:,:,2) = iterationcounter; 
b(:,:,3) = iteration_counter; 

% Scaling the colors to include iteration levels 
for i = 1 :length(root_color_code) 

forj = l:length(root_color_code) 
b(j,i,:)=root_colors(root_color_code(ij),:)*(((iteration_counter(ij) 

/(max(max(iteration_counter)))))A.37); 
end 

end 

% Draw figure with appropriate title 
figure(l) 
image(b) 
image(b,'XData',[-bound-.5 bound+.5],'YData,,[-bound-.5 bound+.5]); 
ifmethod=TST 

titleCNewton-Rhapson'); 
end 
ifmethod=,C* 

title('Chebyshev'); 
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end 
IfmelnDC^'H' 

titleCHalley'); 
end 
ifmethod='L' 

title('Laguerre'); 
end 
axis square 
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