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ABSTRACT 

Use of the National Ignition Facility with green light as the laser output is an 

intriguing option for advanced applications ranging from inertial fusion to production of 

compact x-ray sources. Particular attention is given to the potential use of 0.53 ym light 

to produce a high-energy x-ray source. This application requires the efficient generation 

of high-energy electrons which can subsequently produce high-energy x-rays as they 

transport into gold or other high Z wall. One- and two-dimensional computer simulations 

are used to explore high-energy electron generation by intense 0.53 urn laser light in a 

plasma with density near one-quarter the critical density. Significant absorption is shown 

to occur into high-energy electrons with an effective temperature which is reduced by the 

development of ion fluctuations. The results compare favorably with some recent 

experiments using 0.53 urn light. 
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I. INTRODUCTION 

The purpose of this thesis is to present computer simulations of laser - plasma 

interactions. Specifically, I intend to examine how much energy from the input laser is 

converted into heated electrons, and what the energies of those electrons are. The 

production of high-energy electrons depends on how efficiently a uniform plasma 

absorbs 0.53 um green laser light. 

Numerous ways have been proposed to create a viable source of sustained fusion 

using a large number of high-intensity lasers to compress and heat a capsule containing a 

small quantity of deuterium and tritium. At present, researchers are concentrating on two 

major avenues, namely direct drive and indirect drive. The goal for each method is the 

same: to create more sustainable output power than the quantity input. The major 

difference is that direct drive involves focusing all the individual laser beams directly 

onto the capsule and heating the deuterium - tritium target very uniformly. Indirect drive 

involves shining the individual laser beams onto a small cylinder of high atomic weight 

material, usually gold, which forms a plasma. This plasma emits x-rays. These x-rays 

then cause the deu; ?rium - tritium target to compress and heat until fusion '.s achieved. 

Figures 1 and 2 show the much-simplified view of each process. 

Although sustained fusion is a noteworthy goal, the laser intensity must be lower 

than the values I have used in this project to negate producing high-energy electrons and 

x-rays. I am keeping the intensity high to produce these generally undesired laser-plasma 

interaction effects. 
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Figure 1. Direct Drive Fusion. 
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Figure 2. Indirect Drive Fusion 

A. UNDERSTANDING PLASMAS AND PLASMA COMPUTER SIMULATIONS 

A plasma is basically a semi-neutral collection of charged particles that exhibit 

collective behavior. Plasmas exist all around us, and actually comprise the largest 



fraction of matter in the universe. Without plasmas, it is safe to say that life as we know 

it would not exist on the earth. We have learned to harness plasmas in many useful ways, 

such as low-consumption fluorescent lights and cathode-ray tubes. Scientists have been 

researching ways to make further uses, and it is a goal to use plasmas to power fusion 

reactors with the hope of eliminating the world's dependence on less efficient means to 

generate electricity. We are still a long way off from such a noble goal. 

Plasmas are described on a large scale by their temperatures and densities and on 

a small scale by the statistical positions and velocities of the particles. Given the large 

number of particles, a statistical approach is used and provides accurate information. 

Plasmas as a whole also display a wide range of interesting phenomena, including waves 

(electron plasma waves and ion acoustic waves), instabilities (Raman and Brillouin 

Scattering are the most commonly studied for inertial fusion), damping (Landau damping 

for example), and dispersion of incident radiation. Some of these phenomena will be 

discussed since they directly affect the usefulness of plasma in the problem of power 

generation. 

One can describe a plasma as a large number of charges in a system in which the 

particles are coupled together by way of their electric and magnetic fields. Attempting to 

study the behavior of each particle would be a monumental task far beyond the reach of 

all but the most sophisticated, powerful computers in the world. Even they can not 

handle a large plasma, since a single mole of any element would contain approximately 6 

x 1023 molecules. A singly charged plasma would therefore contain twice as many 

particles (ions and electrons). The particles would also be randomly distributed, and the 

net charge of the plasma would effectively be zero. Computer random number generators 



would provide a sense of electric field irregularities found in nature based on the number 

and position of particles. Random number generators would also produce velocities 

based on ion and electron temperatures, direction vectors, and displacements to simulate 

the initial plasma conditions. To simplify the problem, the temperature would have to be 

sufficiently high to assure a nearly collisionless plasma. If collisions were considered as 

part of the plasma condition, then the calculations would exceed even the most powerful 

computers available today. To mitigate the problem, we choose a much smaller number 

of plasma particles that most desktop computers can handle. Now we enter the realm of 

computer simulations of plasmas. More than 10 years ago (around 1990), scientists had 

very few computers available that could handle large quantities of data and that could 

perform the enormous number of calculations necessary to assure statistically accurate 

pictures of plasma behavior. Now the average computer available on the open market 

can handle the types of interesting problems typically encountered. Systems are currently 

available that can handle a fairly large number of particles and that provide a reasonable 

solution to a complex problem. As the technology of computers advances, systems with 

multiple processors and large memory cores will be able to handle larger and larger 

numbers of particles in codes and provide even moi^ realistic solutions. 

For this problem, assume that the plasma can be decomposed into two distinct 

electric fields, Ei and E2. Ei has a spatial variation much less than the electron Debye 

Length, ^DEBYE- The Debye Length is characterized by the length of shielding that an 

electron (or ion) provides for a surrounding number of charges. It is determined by 

Ä-DEBYE       = ( Eo K Telectron / n e   )   2 



where Eo is the permittivity of free space, Teiectron is the electron plasma temperature, n 

is the density of the plasma, K is a constant, and e is the basic electronic charge. This 

shielding is an important effect in keeping the plasma electrically neutral. The field of an 

individual charge is shielded out by the surrounding charges over the Debye Length. Ei 

is essentially the fluctuating field due to multiple, random collisions among the vast 

number of plasma particles. E2, on the other hand, varies on a scale larger than the 

Debye Length and represents the forces due to the average collective motion of all of the 

charges. Fortunately, we can neglect the effects of Ei because collisional behavior is 

negligible for a large number of electrons within a given Debye Sphere. Another way of 

sufficing the plasma condition is by saying that the number of particles in a Debye 

Sphere must be much, much greater than one (No » 1). 

Particles within a plasma have a wide distribution of velocity. It is necessary to 

apply statistics to determine the average velocity and therefore the temperature. Often 

one has a Maxwellian distribution of velocities. Plasma temperatures are generally given 

in terms of energy, not in degrees Kelvin. The conversion factor for temperature is 

1 electron - volt = 11,594 K 

With rounding to three significant digits, it is generally accepted lhat 1 eV = 11,600 K. 

Plasmas are composed of charged particles, as noted before. The masses of the 

ions are at a minimum of 1,836 times the masses of the electrons for a simple hydrogen 

plasma. With higher Z materials, the ions are made much heavier. The effect is that the 

ions are not moved very much when electrons bounce into them. Therefore, little energy 

is exchanged, so that there are effectively two different temperatures present: the ion 



temperature (T,-) and the electron temperature (Te). Each species can exhibit its own 

thermal equilibrium. 

B. COMPUTER SIMULATIONS OF PLASMAS 

Plasmas can be readily simulated using computer codes in a variety of languages 

such as MATLAB, FORTRAN, and C++. Computer codes provide a powerful approach 

to study the non-linear effects of laser - plasma interactions. Much of the plasma's 

behavior is non-linear, so the computer is the best resource to use. The codes allow us to 

simulate the behavior of a limited number of representative particles and apply the 

simulation to the whole plasma. One must use a sufficiently large number of particles to 

statistically approximate what is actually happening inside the real plasma. However, it 

is also possible to overload a computer's available memory resources by choosing too 

large a number. It is also necessary to incorporate the correct time step in the code for 

reliable results. For example, the Courant Condition must be satisfied when solving 

Maxwell's equations. The Courant Condition relates the step sizes for both time and the 

grid size. The Cour.rnt Condition in mathematical form looks like 

(c At)2 [ (1 / Ax)2 + (1 / Ay)2 ] < 1 

where c is the speed of light, At is the time step, Ax is the step size in the x-direction, and 

Ay is the step size in the y-direction. One must also take care to choose step and time 

sizes sufficiently small to resolve the highest frequency behavior in the problem. 

Since computers can't actually execute derivatives of functions and solve them 

directly, it is necessary to use numerical finite difference methods. The simplest case to 



solve, but one that provides an enormous amount of information, is the one-dimensional 

problem using just Poisson's Equation: 

So   dE     =    (e) (Bjon - Ileiectron) 

dx 

In this equation, s© is the permittivity of free space, E is the electric field, e is the basic 

electronic charge, nion is the ion charge density, and Electron is the electron density. In 

using the finite difference method, we use 

dE  =  E fi + n — E m 
ax 6 

where the subscript, i, denotes the grid location and 8 is the cell size. In the simplest 

case, variations occur only in one dimension and periodic boundary conditions are used, 

effectively "wrapping around" the fields once they reach the end of the simulated plasma. 

Figure 3 shows the cycle the code implements throughout the simulation. 

Newton's 
Laws 

{E,B} 

{x,v} 

Grid 
Assignment 

|P,J| 

Maxwell's 
Equations 

Figure 3. Particle Simulation Cycle. Note: x is position, v is velocity, p is charge 

density, T is current, E is the electric field, and B is fee magnetic field. 



To assign the charge density, p, and position, x, to the grid, the length of the 

plasma is divided into "cells," determined by the user. The particles are then assigned to 

the linear "grid;" the grid is divided into an integer number of units, with the cell size, S, 

equal to one. The linear grid starts with one and increases by integer values to the right, 

as in an ordinary number line. Beyond the last grid point, the code automatically sends 

the particles back around to the first grid point, thus "wrapping" the particles around, 

which accounts for the periodic boundary conditions. The entire charge is not assigned to 

a specific grid; instead, each particle's charge is shared between adjacent grids. Figure 4 

demonstrates how charge sharing occurs in the program. 

x = 0 
Ax 

12 3 4 5 6 7 
■/■ 

/ 

Particle "j' 
location 

/ 
Cell "i"       Cell "i + 1" 

Figure 4. Charge Sharing Used in Plasma Simulation Codes. 

x = L 

'NC 

For a charge located a distance Ax to the right of grid point i, the following equations 

govern charge sharing: 



Ap(i) = (q)(l-Ax) 

Ap(i + 1) = (q)(Ax) 

where Ap is the change in charge density, q is the charge, and Ax is the step size. 

Figure 5 shows charge sharing in more detail. 

Particle j 
location 

Ax 

•-©■ 

Celli Cell i +1 

Figure 5. Close-up of Charge Sharing 

The force on a particle is generated using a similar technique. For a given particle, the 

force is calculated as 

F = (q)(E(5))(l-Ax) + (q)(Efl + I))(Ax) 

Where q is charge, £ is the electric field at position i, and Ax is the step size. The code 

assumes no external magnetic fields. This allows the position and velocity to be updated 

by At in time using 

vn + %  =  vn-'/: + Fn.At 

Xn + I = xn +vn*H-At 

where v is velocity, F is force, x is position, and At is the time step. The superscripts 

define the time step of the program. By using this algorithm, one effectively achieves 

second-order accuracy. 



The cycle continues until the end time is reached using a sufficiently small time 

step to resolve the plasma oscillations. Using the electrostatic case, the electron plasma 

frequency, ©PLASMA, is the highest frequency that one could expect to encounter. It is 

equal to 

2 2 
©PLASMA   = ne 

mso 

where n is the density, e is the basic electronic charge, m is the mass of an electron, and 

So is the permittivity of free space. A time step must be on the order of, or less than, 0.2 / 

©PLASMA in order to resolve the high frequency effects. The grid size is usually chosen to 

be about the Debye Length. Choosing a grid size that is too many Debye Lengths 

introduces a numerical instability called aliasing. 

C. OTHER PROGRAMMING CONSIDERATIONS 

I modified a simple one-dimensional, electrostatic particle code in MATLAB to 

demonstrate its usefulness. The program uses a random number generator to establish the 

initial particle positions. Such a practice can introduce noise into the code that can hide 

some non-linear behaviors. The code is written to be "quiet" near the low amplitude 

regions where this effect can be the most damaging. One can study many interesting 

plasma effects even with this simple code. 

10 



II. DEMONSTRATION OF ONE-DIMENSIONAL MATLAB CODE 

As a simple example, I used the MATLAB code to illustrate electron heating by 

large amplitude electron plasma waves. A spatially homogeneous electric field 

oscillating with frequency near the electron plasma frequency (©PLASMA) drives these 

waves and the accompanying ion fluctuations unstable. The electron plasma waves grow- 

to a large amplitude and accelerate and heat the electrons. I show the simulation results 

in the following figures. The left hand side shows the electron phase space (velocity 

versus position) and the right hand side shows the distribution function (number of 

electrons versus velocity). The last figure (Figure 6u) shows the time evolution of the 

various energies. 

11 
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Figure ,6u. Energy Plots from time = 0 to time = 1000 / ©PLASMA- 

Table 1. Values used for Figures 6a through 6u. 

Number of Particles: 1500 Time step: 0.1/©PLASMA 

RunTime: 1000 time steps Time Between Plots: 50 /©PLASMA 

Number of Cells: 200 Thermal Electron Velocity:    1 
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III. INTERPRETATION OF MATLAB RESULTS 

Figures 6a through 6t show how the plasma's phase space evolves in time and 

how the velocity distributions evolve. Each pair of figures is a snapshot of the plasma 

after 50 time steps; therefore; figures 6a and 6b show the plasma 50 time steps into the 

run, figures 6c and 6d show the plasma 100 time steps into the run, etc. By examining 

the phase space distributions, it becomes clear that the oscillating electric field (emulating 

a laser) is causing ion and electron fluctuations plus electron plasma waves. As the field 

drives the plasma waves to large amplitudes, the electrons are heated. As time evolves 

more energy is deposited into the plasma and the electrons are heated to higher and 

higher temperatures. 

Figure 6u is perhaps the most important of all. This series of four individual 

graphs demonstrates how the energy from the laser is converted to heating in the plasma. 

The electric field energy exponentiates from 70 to 10,000 within 190 / ©PLASMA, which 

gives a growth rate of about 0.01 ©PLASMA-for the electric field. At around time step 190, 

the electric field is saturated and can be treated as nearly constant. The kinetic energy of 

the particles goes from 0 to 100,000 in approximately 400 / ©PLASMA- At time step 400 / 

©PLASMA, the kinetic energy's rate of change decreases, and between time steps 400 / 

©PLASMA and 1000 /©PLASMA, the kinetic energy increases from 100,000 to about 145,000 

respectively, leading to an energy doubling time of about 

1200 / ©PLASMA- The graph of the total energy is a compilation of the two energies, 

which is then the total energy of the system. The final graph is a pictorial of the 
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individual energies and their sum. The velocity distributions show that many electrons 

achieve a higher velocity as time progresses. 
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IV. SIMULATIONS USING TURBOWAVE 

Turbowave is a parallel, three-dimensional, relativistic electromagnetic, particle- 

in-cell program that uses C++ to simulate plasmas. The code was written by Dan 

Gordon, PhD., UCLA, in 1999. It can simulate plasmas in one, two, or three 

dimensions. This program is far more useful than MATLAB, and overcomes 

MATLAB's shortcomings in many respects. Turbowave is resource intensive, but the 

resulting graphs and movies more than make up for the time tradeoff. The program is 

written for the Macintosh platform of computers, which makes it difficult for non- 

Macintosh users to employ the program. The program allows for a far greater number of 

particles, which dramatically increases the statistical reliability of the simulation, and the 

program allows for longer simulation times than is realistically possible using MATLAB. 

Turbowave has more diagnostic tools as well, which means that more information can be 

garnished from a single simulation. In the simulations that follow, I employ the 

following diagnostics: Kinetic Energy, Lost Particles, Field Energy, Left Poynting Flux 

(from the laser as it enters the plasma), Right Poynting Flux (from the laser as it exits the 

plasma), and Input (fron: the laser as if no plasma were extant; this is the maximum 

energy input into the system. 

I have used Turbowave to carry out simulations of plasmas to explore the 

generation of high energy electrons by intense laser light shining on-axis with the 

simulated plasma. These simulations were motivated by recent experiments carried out 

by the Atomic Weapons Establishment in which a single beam of 0.53 urn light was 

shined on a plasma near 0.25 ncRrncAU note that ncRincAL is the density at which all 
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incident light striking a plasma is totally reflected. In my simulations, I used a perfectly 

uniform, collisionless plasma with density ©PLASMA / ©LASER =1/2.1, which is 

approximately 0.23 ncRrriCAL- Note that ©LASER is the angular frequency of the laser, and 

is equal to 3.556 " 10IS / second. The plasma lengths used are (51.2)(c) / ©PLASMA and 

(204.8)(c) / ©PLASMA, corresponding to 9 microns or 36 microns of plasma, respectively. 

The 0.53 pm laser light intensity was either 5 ' 1016 Watts / cm2 or 6 " 10!5 Watts / cm2. 

For all the simulations, the laser enters the plasma from the left and propagates to the 

right. I carried out simulations with and without moving ions in order to clarify the role 

of ion fluctuations in the generation of high energy electrons. 

Most simulations were one-dimensional, allowing variation along the direction in 

which the laser propagated. A two-dimensional simulation gave quite similar results for 

the absorption of the laser and heated electron energies. I now will present four 

simulations using Turbowave. 

A. FIXED IONS, "SMALL" PLASMA 

In this case, the ions are treated as massive and immovable objects. The 

characteristics of the set-up include the following parameters: 

• VOSCILLATION / c = 0.1 (the driver amplitude, related to the dimensionless laser 

intensity, V0SCILLATIOK is the electron's velocity as a result of the laser's E-field) 

• ©LASER / ©PLASMA = 2.1 

• Plasma length = (51.2)(c) / ©PLASMA 

• Duration of the run = 2100 / ©PLASMA 
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Figure 7 shows the evolution in time of various energies for this simulation run. Figure 8 

gives the electron energy distribution (number of electrons versus energy) at a time late in 

the simulation. For this plot, the number of electrons corresponding to a given energy is 

counted and assigned to a bin. 
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Figure 7. Energy Diagram for Fixed Ions, Small Plasma. 
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Figure 8. Electron Energy Distribution for Fixed Ions, Small Plasma. 

In looking at the energy plots in Figure 7, the laser strikes the plasma from the left 

and propagates to the right. The initial kinetic energy of the plasma is essentially 

negligible and can be considered zero. The pksma is driven fairly hard, as is evidenced 

by a value of 0.1 for VOSCDULATION / c. The length of the plasma is small, only about 9 

microns. The ratio of the laser frequency (©LASER) to the plasma frequency (©PLASMA) is 

2.1, which ensures that the plasma is just below quarter critical density (0.25 ' ncRmcAL)- 

By the end of the run 2100 / ©PLASMA (~ 1-24" 10"12 seconds) later, the lost particle energy 

equates to about 7 (dimensionless units used), and the kinetic energy of the plasma only 

increases to a value of about 1. Adding these values together and dividing by the input 

energy (which is the amount of energy crossing the right boundary if there were no 
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plasma present) from the laser, 22.5,1 obtained an absorption value of 0.356. This 

number equates to the amount of energy absorbed from the laser that is converted to 

heated electrons. 

As shown in Figure 8, the energy distribution consists of a main body that has 

been heated somewhat from its initial temperature of 2.5 keV plus a tail of higher energy 

electrons. For the energy range from about 50 keV to 100 keV, the effective plasma 

temperature is 61 keV. For the higher energies, an effective temperature is 178 keV. 

These temperatures are roughly those estimated by (m)' (vPHASE
2) / 2, where one uses the 

phase velocity of the plasma wave associated with the Raman back and forward 

scattering of the laser light, repectively. 

B. FIXED IONS, "LONG* PLASMA 

The next simulation has the same parameters, except the intensity is lower and the 

plasma length is longer. The characteristics of the set-up include the following 

parameters: 

* "^OSCILLATION ^ C = 0.04 

• OLA.SER/<öPLASMA
=:

2.1 

♦ Plasma length = (204.8)(c) / ©PLASMA 

• Duration of the run = 1400 / CDPLASMA 

Figure 9 shows the evolution in time of the various energies for this simulation. Figure 

10 shows the resulting electron energy distribution for a time late in the simulation. 
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Figure 10. Electron Energy Distribution for Fixed Ions, "Long" Plasma. 

The energy plot in Figure 9 again enables one to determine the laser energy 

absorption. The initial kinetic energy of the plasma is not negligible and is 

approximately 0.15 (dimensi;;nless units!). The plasma is not driven as hard as in the 

first case, as is evidenced by a value of 0.04 for VQSCILLATION / c. The length of the 

plasma is about 36 microns. As before, the ratio of the laser frequency (©LASER) 
to tf*e 

plasma frequency (©PLASMA) is 2.1, which ensures that the plasma is just below quarter 

critical density (0.25 " IICRITICAL)- By the end of the run 1400 / ©PLASMA (~ 8-28 • 10'u 

seconds) later, the lost particle energy equates to about 0.1 (dimensionless units used), 

and the kinetic energy of the plasma only increases to a value of about 0.22. Adding the 

values of the lost particle energy with the final kinetic energy and subtracting the initial 
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kinetic energy, and dividing by the input energy from the laser (which is the amount of 

energy crossing the right boundary if there were no plasma present), 0.48,1 obtained an 

absorption value of 0.351. This number equates to the amount of energy absorbed from 

the laser that is converted to heated electrons, and is close to the value found in the first 

case. The plasma is longer but more weakly driven, which leads to about the same 

amount of absorption. 

The energy distribution in Figure 10 again shows a hot main body plus a high 

energy tail. For the energy range of 50 keV to 100 keV, the heated electron temperature 

is about 45 keV. For the higher electron energies, the effective temperature is about 135 

keV. These values are again quite similar to those found in the smaller, more strongly 

driven simulation previously discussed. 

C. MOVING, DAMPED IONS, "SMALL" PLASMA 

In this case, the ions are treated as mobile objects. For simplicity, an ion-electron 

mass ratio of 100:1 is used. This value is sufficient enough to separate the time scaling 

for electron and ion motion and enables quicker simulations. The characteristics of the 

set-up include the following parameters: 

* VOSCILLATION / C = 0.1 

* ©LASER / ©PLASMA = 2.1 

• Plasma length = (51.2)(c) / ©PLASMA 

• Duration of the run = 700 time steps 
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Figure 11 shows the time histories of the various energies for the simulation. Figure 12 

shows the electron energy distribution from a time late in the simulation. 
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Figure 11. Energy History for Moving, Damped Ions, Small Plasma. 
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Figure 12. Electron Energy Distribution for Moving, Damped Ions, Small Plasma. 

As done with the previous cases. Figure 11 determines the laser absorption. In 

looking at Figure 11, the laser strikes the plasma from the left and propagates to the right. 

The initial kinetic energy of the plasma is essentially negligible and can be considered 

zero. The plasma is driven hard, as is evidenced by a value of 0.1 for VOSCIUATION / c. 

The length of the plasma is small, only about 9 microns. The ratio of the laser frequency 

(©LASER) to the plasma frequency (©PLASMA) is 2.1, once again ensuring that the plasma is 

just below quarter critical density (0.25 ' ncRrncAi.). By the end of the run 700 / ©PLASMA 

(~ 4.14 • lO"1"" seconds) later, the lost particle energy equates to about 0.38 (dimensionless 

units used), and the kinetic energy of the plasma only increases to a value of about 0.25. 

34 



Adding these values together and dividing by the input value, 1.48, from the laser (which 

is the amount of energy crossing the right boundary if there were no plasma present), I 

obtained a value of 0.426. This number equates to the amount of energy absorbed from 

the laser that is converted to heated electrons and ions. This absorption is about 20% 

greater than that found in the previous case involving a small plasma and fixed ions. 

One can infer two temperatures from the high energy electrons shown in Figure 

12. These temperatures are 33 keV and 90 keV associated with the Raman back scattered 

and forward scattered light, respectively. Significant ion fluctuations which significantly 

lowered the heated electron energies developed in this simulation. Note that lower 

temperature reasonably agrees with the hot electron temperature measured in an actual 

experiment performed with the Helen Atomic Weapons Establishment 2o (0.530 urn) 

green laser in England. The similarities between the computer simulation and the actual 

experiment show that this technique reproduces observed laser-plasma coupling and other 

phenomena within a reasonable amount of error. 

D. MOVING IONS, "LONG" PLASMA 

Once again, the ions are treated as massive and mobile objects. The simulation 

parameters are similar to the ones found in the third case (moving, damped ions, small 

plasma). The characteristics of the program's input variables include the following 

parameters: 

• VACILLATION / C = 0.04 

• ©LASER / ©PLASMA = 2.1 
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• Plasma length = (204.8)(c) / ©PLASMA 

• Duration of the run = 1400 / ©PLASMA 

Figure 13 shows the time evolution of the energies in this simulation, and Figure 14 

shows the electron energy distribution at a time late in the simulation. 

0 200 400 600 800 1000 
Time (©PLASMA ' Real Time) 

1200        1400 

-e- Kinetic Energy 
-E— Lost Particles 
-e— Field Energy 
-3^- Left Poynting Flux 
.+_ Right Povnting Flu: 
-A— Input from Laser 

Absorption 
(KEEND 

+ LP - KEJXIT/ Input) 
(0.25 + 0.08 -0-15)/ 0.48 

37.5 % 

Figure 13. Energy History for Moving Ions, "Long" Plasma. 
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Figure 14. Distribution Versus Energy Plot for Moving Ions, "Long" Plasma. 

Since the ions are moving, ion fluctuations again develop. In looking at Figure 

13, the laser strikes the plasma from the left and propagates to the right. The initial 

kinetic energy of the plasma is not negligible and is. about 0.15 (dimensionless units!). 

The plasma is not driven very hard, as is evidenced by a value of 0.04 for V0SCILLATION / c. 

The length of the plasma is large, about 60 wavelengths of light. The ratio of the laser 

frequency (©LASER) 
to *e plasma frequency (©PLASMA) is 2.1, which ensures that the 

plasma is just below quarter critical density (0.25 ' ncRmcAL)- By the end of the run, 

1400 / copLASMA (~ 8.28 ' 10"1" seconds) later, the lost particle energy equates to about 

0.08 (dimensionless units used), and the kinetic energy of the plasma only increases to a 
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value of about 0.25. Adding these values together and dividing by the input value, 0.48, 

from the laser (which is the amount of energy crossing the right boundary if there were 

no plasma present), I obtained a value of 0.375. This number equates to the amount of 

energy absorbed from the laser that is converted to heated electrons and ions. This 

fraction is nearly the same as that found in the second case with fixed ions. 

The temperatures inferred from Figure 14 are now 28 keV and 80 keV for the 

Raman backscattered and forward scattered light, respectively. These temperatures are 

again lower than in the fixed ion run and are about the same as those found in the more 

strongly driven, smaller plasma simulation with moving ions (Case C, "Moving, Damped 

Ions, Small Plasma"). The lower temperatures compare favorably with those found in the 

Atomic Weapons Establishment experiment-[Reference 5]. 
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V. INTERPRETATION OF ONE DIMENSIONAL TURBOWAVE RESULTS 

Each of the above paragraphs contained a specific run with specified constants. It 

is unfortunate for the reader not to be able to see the accompanying Quick Time movies 

for each of the runs; the compiled movies of the laser entering the plasma are all quite 

fascinating. Turbowave generated movies for the laser and scattered light waves, the 

electric field of the plasma wave, the magnetic fields generated by the laser and the 

moving plasma charges, and the phase space (heating) of the plasma. The resulting 

output files were all fairly large, between 500 kilobytes and 15 megabytes in size, and 

provided a clear picture of what occurs in a uniform, collisionless plasma. 
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VI. TURBO WAVE TWO DIMENSIONAL RESULTS 

Turbowave was written to handle one, two, and three dimensional analyses of 

plasmas. Having spent some time on the one-dimensional case, I turned my attention to 

using Turbowave to illustrate a two-dimensional plasma. Specifically, I was curious to 

see if the results were comparable. I shall elucidate those results now by providing a 

single representative study out of several two-dimensional cases that I pursued. 

The plasma is allowed to vary in both the x-direction (the direction in which the 

laser propagates) and in the y-direction. For this simulation, the electric vector of the 

laser light is in the z-direction. Future simulations will have the electric vector in the y- 

direction which will then allow the inclusion of the two-plasmon decay instability. The 

parameters are identical to those found in the third case (Moving, Damped Ions, Small 

Plasma), except that the simulation is two-dimensional. The characteristics of the 

program's input deck included the following parameters: 

• VOSCILLATION / C = 0.1 

• »LASER I »PLASMA = 2.1 

• Plasma length = (51.2)(c) / ©PLASMA in the x-direction 

• Plasma length = (12.6)(c) / ©PLASMA in the y-direction 

• Duration of the run = 700 / ©PLASMA 

• TON / TELECTRON (Temperature) Ratio (for Landau Damping Effects): 1/4 

Figure 15 shows the history of the various energies in this simulation run. Figure 16 

gives the electron energy distribution at a late time in the simulation. 
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Figure 15. Energy History for Two-Dimensional Turbowave Problem. 
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Figure 16. Number of Particles Versus Energy for the 2-D Simulation. 

The initial kinetic energy of the plasma is negligible and can be considered 

approximately zero. The plasma is driven fairly hard, as is evidenced by a value of 0.1 

for VOSCILLATION / c. The length of the plasma is small, about 9 microns. The ratio of the 

laser frequency (©LASER) 
to ^e plasma frequency (©PLASMA) is 2.1, which ensures that the 

plasma is just ";elow quarter critical density (0.25 " HCRITICAL)- By the e:.d of the run 

700 / ©PLASMA (~ 4.14' 10"B seconds) later, the lost particle energy equates to about 29 

(dimensionless units used), and the kinetic energy of the plasma only increases to a value 

of 30. Adding these values together and dividing by the input value, 170, from the laser 

input, I obtained an absorption of 0.347 of the laser energy, which is roughly the same 

value found in the third case (Moving, Damped Ions, Small Plasma) of the one- 

dimensional simulations. From Figure 16, one infers heated electron temperatures of 36 
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keV and 60 keV. These temperatures are similar to those obtained from the one- 

dimensional simulation, although the higher electron temperature is somewhat less (60 

keV versus 90 keV). Significant fluctuations in the ion density have again occurred in 

the two-dimensional simulation. 

These results compare favorably with the one-dimensional simulation, including 

the amount of energy converted from the laser light into heated electrons and ions. THOT 

is nearly equivalent for both cases, so it appears that you don't improve your results 

merely by adding another dimension. The one-dimensional results are apparently good 

enough. It should be noted as well that the time to execute a two dimensional simulation 

is much greater than that of the one-dimensional case. The majority of the one- 

dimensional runs were under a few hours of computer computation time, whereas the two 

dimensional runs required over ten hours to complete. 
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VII. ANALYSIS OF AN ACTUAL EXPERIMENT WITH THE HELEN LASER 

in late 2000, a team of physicists at the Atomic Weapons Establishment in 

England used the green 0.53 urn Helen laser to conduct a series of experiments in which 

a single beam of laser light was shot at gold cylinders that were filled with C5H12 gas in 

which the pressure ranged from 0.4 atmospheres to 1.2 atmospheres. The hohlraum's 

dimensions were 564 um by 564 pan, and the cylinder was capped on both ends with 

polyimide windows that were 3500 Angstroms (3.5 '10" m) thick. The polyimide was 

fully transparent to the green laser light, which ensured that all of the laser's energy was 

able to pass through and strike the inner wall of the hohlraum. Smoothed beams of 

intensity 4' 10!4 Watts / cm2 and unsmoothed beams of intensity 6' 1015 Watts / cm2 

were used. The resulting plasmas ranged from 0.1 IICRITICAL to 0.3 ncRrncAL [Reference 

5]. 

Figure 17 shows the fraction of the laser energy absorbed into high energy- 

electrons versus plasma density normalized to the critical density. Figure 17 shows the 

results for a series of experiments, but the most relevant data for my simulations are the 

ones with values near 0.25 ncRrncnj.- With the laser operating at a peak intensity of 

6' 1015 Watts / cm2, the laser generated about 17% hot electrons, roughly half of what 

was seen in my ideal computer simulations. Our simulations begin with a perfect, 

uniform plasma; the simulated plasma does not contain the density gradients found in a 

real plasma. The heated electron temperatures inferred from the x-rays also compares 

reasonably well with the simulations. As shown in Figure 18, a hot electron temperature 
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of about 30 keV was observed. It would be interesting to look for the higher energy 

electron temperature also seen in the simulations. 
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Figure 17. Hot Electron Fraction, fHoT, versus Density. Helen Laser Experiment, 

Atomic Weapons Establishment England [Reference 5]. 
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VIII. CONCLUSIONS 

This research was motivated by the potential use of 0.53 (am laser light to produce 

a high-energy x-ray source. This application requires the efficient generation of high- 

energy electrons which can subsequently produce high-energy x-rays as they transport 

into a gold or other high-Z wall. 

I used one-and two-dimensional computer simulations to explore high-energy 

electron generation by intense 0.53 urn laser light in a plasma near 0.25 ncRrriCAL- 

Simulations with two different laser intensities and plasma lengths showed that a 

significant amount of the laser's energy is absorbed into high-energy electrons can occur. 

Ion density fluctuations that develop in the plasma reduce the heated electron 

temperatures. 

The simulations are consistent with some recent experiments at the Atomic 

Weapons Establishment, England, which show nearly 20 per cent absorption of the green 

laser light into high-energy electrons when a plasma near quarter critical density is 

irradiated. The measured hot temperature compares favorably with that seen in the 

simulations. 

More detailed comparisons with experiments will require simulations with a 

density gradient in the plasma. More two-dimensional simulations are also needed, 

especially to explore the contribution of the two-plasmon decay instability. Exploration 

of a variety of boundary conditions for the light waves and the heated electrons is also 

needed. Finally, it would be valuable to carry out simulations with lower laser intensities 

closer to those used for laser fusion applications. 
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No doubt that Turbowave is useful to predict plasma behavior for lasers of any 

intensity and wavelength. Further research could include using the code to determine the 

viability of fusion at lower laser intensities. It is well known that higher intensities 

produce high-energy electrons and x-rays; for fusion to occur, one would want to limit 

the production of both. In this thesis, I wanted to produce high-energy electrons and x- 

rays, so I deliberately kept the intensities high. 

I hope that this paper will assist further research into the viability of using green 

laser light over more damaging blue; although not addressed, it has been shown that 

green laser light causes far less damage in the optics assemblies because the energy 

deposited is significantly less than when blue light is used. Green light might very well 

be a useful option for the National Ignition Facility and elsewhere for a myriad of 

advanced applications, including sustained fusion. 

Finally, the one-dimensional MATLAB code was a useful introduction to the 

basic steps of computer simulation. However, I found that this code was insufficient to 

execute the task of simulating a large-scale plasma with a large number of particles. The 

MATLAB run depicted here required a tremendous amount of RAM (384 Megabytes), 

and the simulation took more than 10 hours. The total number of particles involved was 

a scant 1500, versus the 80,000 to 100,000 typically used in Turbowave. Plotting the 

results in MATLAB were not nearly as illustrative as in Turbowave, and the option to do 

a movie in MATLAB was attempted with very disappointing results. Even with the large 

quantity of memory available, the computer could not handle the graphics. Turbowave, 

on the other hand, attacked the problem with elegance and grace. Its only drawback was 

that it was written for the Apple Macintosh platform, although it can be modified to run 
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on IBM PCs with some effort. All of the resulting graphs and movies had to be 

converted to PC format in order to be genuinely useful, and that took a great deal of time 

to execute. I can't recommend studies in MATLAB unless the user desires to deal with 

very small plasmas and short timesclaes. Turbowave is by far the better choice to handle 

this kind of problem. 
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