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ABSTRACT 
 
 
 

Perceptual watermarking is a promising technique towards the goal of producing 

invisible watermarks. It involves the integration of formal perceptual models in the 

watermarking process, with the purpose of determining those portions of an image that 

can better tolerate the distortion imposed by the embedding and ensuring that  the 

watermarking will inflict the least possible degradation on the original image . In a 

previous study the Discrete Cosine Transform was used, and the watermark embedding 

was done in a non-uniform manner with criteria based on both the host image and the  

watermark. The decoder model employed made use of apriori access to unmarked and 

marked images as well as to the watermark. A fair level of success was achieved in this 

effort. In our research we refine this scheme by integrating a perceptual model and by 

proposing a modification to the decoder model that makes possible the successful 

recovery of the watermark without apriori access to it. The proposed perceptual scheme 

improves the watermark’s transparency while at the same time maintains sufficient 

robus tness to quantization and cropping. The proposed semi-blind variation offers 

adequate transparency and robustness to quantization, but its performance against 

cropping is considerably degraded.  
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EXECUTIVE SUMMARY 
 

 
 

The basic ideas behind digital watermarking have emerged steadily over the last 

few decades. In order for the watermarking to be dependable it is imperative that it has 

certain characteristics. The most important of these are transparency of the watermark (it 

should be imperceptible to the Human Visual System) and robustness against common 

tampering with the image. Perceptual watermarking is a promising technique towards 

invisible watermarks. It involves the integration of formal perceptual models in the 

watermarking process with the purpose of determining those portions of an image tha t 

can better tolerate the distortion imposed by the embedding and thus make sure that the 

watermarking will inflict the least possible degradation on the original image . 

In a recent study [1] the Discrete Cosine Transform was used and the watermark 

embedding was done in a non-uniform manner with criteria based on both the host image 

and the watermark. The decoder model employed made use of apriori access to unmarked 

and marked images as well as to the watermark. A fair level of success was achieved in 

this preliminary effort. With our work we provide a technique for the integration of a 

perceptual model in this proposed preliminary scheme and investigate the feasibility of 

employing a semi-blind structure.  

The perceptual model we incorporated in the watermar king process is based on 

the VMSE, which stands for Visual Mean Square Error and corrects the inefficiency of 

the Mean Square Error by taking advantage of the unitary property of the DCT transform.  

The analytic form for the VMSE can be written as  
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where i=1,2,..8 and j=1,2,…8 are indices for the elements of an 8x8 DCT block in the 

original image, k=1,2,…,K  is index identification for the 8x8 blocks of the original 

image, Co and Cw  are the 8x8 block DCT representations of the orig inal and watermarked 

images respectively. The weighting coefficients W[i,j,k] are given by  
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where s[i,j,k] are the “slacks” calculated through the Corrected Watson Distance 

perceptual model. The Corrected Watson Distance perceptual model is the outcome of an 

experimental luminance correction we applied to the well -known Watson perceptual 

model. [2] 

In the context of our scheme, the embedding takes place in the DCT domain, 

which is also used by the JPEG standard, and allows for the exploitation of the domain's 

particular characteristics for the attainment of watermark transparency and robustness. 

Both the watermark and the image are transformed using the DCT. To integrate the 

VMSE model we modified the method used in the preliminary sc heme for rating the 8x8 

blocks of the DCT of the image according to their Priority Coefficient (PC).   

For each 8x8 block of the DCT coefficients of the image, we calculate the 

Complexity Factor (CF), a metric for measuring the capacity of each block to receive 

watermark coefficients. The CF is defined as the combination of the Total Visual 

Strength Factor (TVSF) and the Embedding Visual Correction Factor (EVCF) through 

the power relation 

,1 ww
k EVCFTVSFCF −×=  

where w ]1,0[∈  is a power weighting factor determined experimentally. The TVSF uses 

the VMSE model to provide a pooling of the ability of all block DCT coefficients to 

withstand distortions, while the EVCF aims to account for the fact that only some of the 

block DCT coefficients are used for embedding.  

Additionally, following the rationale of the preliminary scheme, for each block of 

the cover image we calculate the Center of Interest Proximity Factor (CIPF), which is a 

measure of significance of each 8x8 block with respect to cropping resistance. We first 

determine the Euclidean distance r between the center of the block and the Center of 

Interest (CI). In our experiments we assumed that the CI is the center of the image. The 

Euclidean distance r, is then normalized over the diagonal (i.e. the maximum possible 
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distance within the image) to produce a normalized value rnorm. This normalized 

distance is then processed by a transformer with characteristic function f, where 

2
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3
2((tan1)( 1 +−⋅⋅−= − rnormkrnormf

π
. 

 

We call this index f(rnorm) as CIPF. 

The CF of each 8x8 block is scaled by the CIPF to produce a Priority Coefficient 

(PC), which is attached to the block and contains all the information that is required for 

its rating. The blocks are now sorted by descending order of their PC.  

The DCT coefficients of the watermark are sorted according to magnitude and 

divided into m groups of descending magnitude with equal number of elements. We then 

form embedding sets of coefficients. Each set contains m coefficients, one from each 

group. The sets are then embedded into m frequency coefficients of the 8x8 DCT image 

blocks. Embedding in the lowest frequencies allows for higher robustness of the 

watermark against JPEG compression, since these coefficients are the least affected by 

the quantization process. However, the lower frequencies are the most perceptible ones, 

but we manage to compensate for the latter by appropriately adjusting a weighting factor 

a. 

The decoder works in reverse order and requires both the original image and the 

watermark. The level of detection is based on the correlation coefficient ?, which is given 

by 

∑ ∑ ∑⋅∑

∑ ∑
=

i i j
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and is a measure of similarity between the watermark and the extracted pattern.  

For the semi-blind variation the sorting of the DCT coefficients is omitted, 

allowing the decoder to extract the watermark without apriori access to it. The resulting 

scheme maintains adequate transparency and robustness to quantization, but its 

performance against cropping is considerably degraded.  
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I. INTRODUCTION 

Electronic distribution of multimedia content is an important byproduct of the 

confluence of recent technological advances. The growth of the Internet has made 

communication easier and more extensive than ever before. However, the rapid growth of 

the demand for quick and reliable dissemination of digitized media products has 

generated a challenging need for str onger protection of intellectual property (IP) rights 

for audio, video, images, and other digital documents . To satisfy this need, an integrated 

system design is necessary [3] . The basic IP protection system consists of three main 

components. First, the media is compressed and is stored in a cryptographic container 

before distribution. Second, a flexible licensing mechanism is implemented to determine 

the credibility of those seeking access to the content. Third, digital watermarks are 

embedded in the media  so that it can be recognized if the system is breached. A secure 

system design integrates these three components [4]. Under this framework, the 

watermarking component of the IP protection system is  expected to play a very important 

role in the protection of copyrights. 

The basic ideas behind digital watermarking have emerged steadily over the last 

few decades. Recently, there has been a drastically increased interest from both academia 

and industry in this area, as witnessed by numerous patents filed for watermarking 

techniques for the protection of a broad array of multimedia products. Some international 

organizations are even considering combining watermarking techniques with existing 

standards [5]. Concerning image watermarking, most recent research focu ses on invisible 

watermarks, those that are imperceptible under normal viewing conditions. The 

classification of different techniques that are being used for invisible image watermarks 

has been treated in detail in [1]. Other surveys regarding invisible watermarking 

classification can be found [7], [8] and [9].  In the present thesis, we focus our attention 

on a special class of invisible watermarking schemes known as perceptual or image 

adaptive watermarks, which are specifically designed to exploit percep tual information in 

the watermarking process through the use of formal perceptual models.  
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A. PURPOSE 

In order for the watermarking to be dependable it is imperative that it has certain 

characteristics. The most important of these are transparency of the watermark (it should 

be imperceptible to the Human Visual System) and robustness against common 

tampering with the image. In a recent study [1] the Discrete Cosine Transform was used 

and the watermark embedding was done in a non-uniform manner with criteria based on 

both the host image and the watermark. The decoder model employed made use of apriori 

access to unmarked and marked images as well as to the watermark. A fair level of 

success was achieved in this preliminary effort. The purpose of this research  is to refine 

the DCT based non uniform embedding watermarking scheme developed in [4] by 

investigating whether the integration of a perceptual model could further improve the 

transparency of the watermark and whether the decoder model may be modified to 

successfully recover the watermark without apriori access to it.  

In the course of this research we studied several perceptual models and the 

methods for their integration in the watermarking process used in the relevant literature. 

This background work, along with the ideas and concepts put forward in [1], served as 

the basis for the development of a watermarking scheme that uses a formal perceptual 

model to improve the transparency of the watermark while maintaining a fair level of 

robustness. In addition, we examined the prospect of modifying the resulting scheme so 

that the decoder only requires the marked and unmarked images to successfully recover 

the watermark. Our efforts resulted in a Semi-blind variation of the developed 

watermarking scheme that main tains satisfactory robustness to quantization.   

B. RESEARCH QUESTIONS 

There are a number of research questions that we strive to answer in this thesis. 

First, we investigate how image quality can be analytically assessed and whether a 

generic perceptual model for use in watermarking schemes can be formulated. Towards 

that end we unravel some methods aiming at quantifying image quality, and recast them 

as methods for measuring the transparency of the watermark.   
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Furthermore, we look into techniques designated to integrate perceptual models in 

watermarking and propose a general approach for incorporating any frequency domain 

based perceptual model into the watermarking scheme put forward in [1].  

Finally, we treat the question of how to implement a semi-blind structure in the 

resulting perceptual watermarking scheme.  

C. THESIS OUTLINE 

This thesis is organized as follows: 

Chapter II develops the notion of perceptual watermarks. Perceptual watermarks 

are the result of the incorporation of formal perceptual models in the encoding process. In 

this chapter, therefore, we start by defining the concept of perceptual models and 

presenting the principles upon which they rely. We continue by providing a systematic 

analysis of several commonly used perceptual models and finally link perceptual models 

to perceptual watermarks. Among the perceptual models considered is the VMSE, which 

is used in our algorithm and may provide a generic approach towards perceptual 

watermarks.  

Chapter III provides an overview of the original watermarking scheme developed 

in [1] as background material to the arguments used in this thesis.    

In Chapter IV we develop a technique to incorporate the VMSE model in the 

original watermarking algorithm and present the obtained results. This chapter in  essence 

consists of three sections. In the first section we introduce our proposed modifications of 

the original algorithm and explain the rationale behind them. Our train of thought 

gradually leads to a new algorithm that makes full use of the VMSE model to determine 

the portions of the host image that can better tolerate the distortion imposed by the 

embedding and thus make sure that the watermarking will inflict the least possible 

degradation on the original image. In the next section, we test the resulting algorithm and 

present the obtained results. The images and watermarks used for testing are the same as 

the ones used in [4], both for consistency and because we found that the pixel values 

distribution of the proposed test images and watermarks are qu ite representative of the 

range and distribution shapes that one might come across in practice.  Finally, in the third 
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section, we compare the new algorithm to the original in terms of watermark 

transparency and robustness.  

In Chapter V we implement a straightforward variation to the algorithm 

developed in Chapter IV in order for the decoder to extract the watermark from the 

marked image without making use of the original watermark itself, present the obtained 

results and compare the variation’s performance to that of the original and modified 

algorithms.  

Finally, in Chapter VII, our work is briefly summarized and conclusions 

following the experimental results are made. In addition, we make suggestions for 

possible future work based on this material.  

D. EXPECTED BENEFITS OF THE THESIS 

One of the most challenging tasks that the watermarking community faces is 

balancing the mutually competitive requirements for watermark transparency and 

robustness. Perceptual models seem to be effective in the examination of the feasibility of 

this task. In the past, perceptual models have been employed for both for comparing 

different watermarking schemes and minimizing the perceptual impact of the 

watermarks. However, none of the developed algorithms has been able to provide  a 

dependable and complete generic approach to the integration of perceptual models in 

watermarking schemes.  

In our research we investigate an original approach for the development of 

perceptual watermarks. Our approach provides a general methodology for creating 

perceptual watermarks that permits us to quickly update the perceptual model used in the 

watermarking process. Moreover, the resulting algorithm allows the user to flexibly 

balance the transparency and robustness requirements and may as well be us ed for further 

research in the field. Finally, the elimination of the need for apriori access to the 

watermark in the decoding process enhances the security of the algorithm.  With our 

research we hope have contributed towards the direction of developing a composite 

algorithm that addresses collectively the watermarking problem.  
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II. PERCEPTUAL WATERMARKS AND PERCEPTUAL 
MODELS  

It is generally accepted that, in order for an invisible watermarking scheme to be 

considered effective, the watermark should be 

• perceptually invisible within the host media,  

• statistically invisible to thwart unauthorized removal,  

• readily extracted by the image owner, and 

• robust to accidental and intended signal distortions incurred by the host 
image, e.g. filtering, compression, re-sampling, re-touching, cropping, etc. 
[1], [9], [10] 

These desired qualities for the invisible watermarking schemes are mutually 

competitive and cannot be clearly optimized at the same time. A reasonable compromise 

is always a necessity [9].  Earlier approac hes addressed the issue by applying common 

sense rules for the choice of the host image’s frequency bands or spatial elements used 

for embedding. Typically, these rules favoured the embedding of the watermark data into 

the least-significant bits of the hos t image’s pixels (e.g., in [11]) or into the medium 

spatial frequency bands of the host image (e.g. in [12]). However, these approaches 

exhibit relatively low robustness or don’t provide a clear indication as to exactly where 

the watermark should be hidden and as to what extend the host image can be modified to 

find the necessary compromise between the robustness and transparency requirements 

[13]. Watermarks produced by such schemes are generally referred to as image -

independent watermarks. The requirement  to address the issue gave rise to the 

development of watermarking schemes that incorporate the characteristics of the Human 

Visual System (HVS) in the watermark encoder design through the employment of 

perceptual models. Perceptual models aim to provide an analytic measure of the 

perceptual competence of the HVS and are used by the encoder to determine the location 

and maximum strength of the watermark signal that can be tolerated in every portion of 

the image without producing changes in the watermarked image’s fidelity that are not 

tolerated by the HVS. The watermarks produced by such schemes are generally referred 

to as perceptual or image-adaptive watermarks. Perceptual watermarks take advantage of 
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the research advances regarding perceptual models. Ther efore, we begin our presentation 

by introducing the perceptual models and the principles upon which they rely.  

A. PERCEPTUAL MODELS 

The final judge of a watermarking scheme’s achieved transparency is the HVS. In 

practice few, if any, watermarking systems produce watermarks that are perfectly 

imperceptible. However, a watermarking system can be considered perceptually 

successful if it manages to produce watermarks that are unnoticeable to the HVS. 

Consequently, there is the need to define a measure of the perceptibility of the HVS, by 

means of perceptual models, both for the purpose of improving and comparing different 

watermarking schemes.  

Perceptual models can be based either on the space domain (e.g. [11]) or on a 

transform domain (e.g. [1], [5], [13]). Perceptual models based on the space domain are 

generally better in accounting for perceptual differences resulting from distortions related 

to slight geometric transformations (rotation, scaling, translation, skew etc), whereas 

those based on a transform domain are generally better in accounting for perceptual 

differences resulting from distortions related to the non-uniform response of the HVS. 

The choice of a particular visual model depends on the application it is intended to 

supplement and sometimes involves a trade off between accuracy and computational cost. 

A perceptual model that would account for the impact on perceptibility of all possible 

types of distortion would be very complicated. In practice, most models only account for 

the impact of a limited number of distortions and thus their accuracy may be limited to 

only a class of applications [2]. In that context, perceptual models must be considered as 

a means for obtaining an insight which is almost always accurate, but it may be 

misguiding in certain cases. As models are constantly updated and corrected, they may 

become a lot more accurate in the future. In the meantime, the researcher must make do 

with the limitations and shortcomings of currently available perceptual models and be 

conscious of the possibility that they might err in their estimations.  

1. Definition and Purpose of Perceptual Model 

Models that produce an analytic estimation of the perceptual difference between 

two images are generally referred to as Perceptual Models. In that sense the perceptual 
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difference between the original and the watermarked version of an image provides a 

measure of the transparency of the watermark. In the watermarking framework perceptual 

models are applied in two different instances: 

In comparing the original and watermarked picture: In this context we wish to 

measure the fidelity of the watermarked image to the original. This approach differs from 

that used in the context of image quality, which is an absolute measure of appeal and 

where perceptual difference criteria are used to evaluate the effects on the image quality 

of the applied image processing techniques. In the watermarking context, if a low quality 

image is watermarked then the watermarked image will also be of low quality. However, 

if the watermarked version of the image is indistinguishable from the original, the 

watermarking scheme is considered successful. In this case, perceptual models provide a 

measure of the similarity between the original and watermarked image.  

In developing perceptually based watermarking algorithms: Such algorithms use 

perceptual models to determine the location and maximum strength of the watermark 

signal that can be tolerated in every portion of the image without producing changes in 

the watermarked image’s fidelity that are not tolerated by the HVS. The goal is to use the 

perceptual models in order to ensure that the watermark will inflict as little perceptual 

changes in the original image as possible.  

It should be pointed out that perceptual models are very subjective in nature and 

hence imperceptibility should not be viewed as a binary condition. A watermark having a 

higher or lower level of imperceptibility means that there is a lesser or greater likelihood 

that a given observer will perceive it. This likelihood cannot be given absolute values or 

direct practical meaning, since perceptual similarity is not transitive in nature. [2]  

Perceptual models are based upon the notion of Just Noticeable Difference (JND). 

JND is a term related to psychometrics and refers to the m inimum amount by which 

stimulus intensity must be changed in order to produce a noticeable variation in a sensory 

experience [14]. The implementation of the notion in watermarking lies in the fact that 

the process of embedding a watermark in any image can be regarded in the same way as 

adding noise to the image.  This process leads to an alteration of the host original image. 
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Obviously altering a large number of pixel values arbitrarily will result in noticeable 

image distortions. These distortions depend on the amplitude of watermark image as well 

as the spectral properties of both the image and the watermark. Taking advantage of this 

relation, a given image can be distorted only to a certain limit without making the 

difference between the original and the altered one perceptible. This limit varies 

according to the image and watermark content and is referred to as JND.  

The determination of JND needs to make inferences on the judgment of human 

beings. One way to do that is to conduct rigorous observations invo lving a large number 

of human subjects and analyze the results statistically. This approach, although it may 

produce very accurate information on image fidelity, is time-consuming, expensive and 

cannot easily be repeated. An alternative approach to overcome these difficulties is to use 

an algorithmic fidelity measure based on perceptual models. The goal of perceptual 

models is to predict an observer’s response. In practice though, it is very difficult to 

predict the human judgment accurately. Consequently, visual perception models are 

designed to produce a measure of perceptual difference between watermarked and 

original images, without calibrating those distances in terms of expected results. Under 

this scope, perceptual models are functions that give a measure of the distance between 

the original and watermarked image, by taking into account the characteristics of the 

HVS. [13] 

2. The HVS in Perceptual Models  

To better understand the structure of a perceptual model, it is useful to appreciate 

the perception mechanisms of the HVS, which are not uniform in nature. The HVS 

response to spatial and temporal frequency, luminance and color varies significantly with 

the input and a perceptual model should account for that.  When an image is processed by 

the HVS, the different parameters describing spatial and temporal sensitivity to chromatic 

and achromatic image components are used to form the visual perception of the image. In 

the case of still grayscale images the most important component of the HVS image 

processing is its response to the spatial frequency and the luminance of the image. This 

response is described through Contrast Sensitivity (CS). Contrast sensitivity may be 

defined as the reciprocal of the minimum contrast between a lighter and a darker spatial 
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area that is required for a viewer to detect differences between the areas. The contrast of a 

given visual pattern is typically expressed as the ratio of the difference between the 

luminance of light and dark areas over the sum of their luminance [15]. Analytically, 
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= ,  1.2  
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CS = .  2.2  

where L and D are the luminances of light and dark spatial areas, respectively, C is the 

contrast between the lighter and darker areas, and Cmin is the minimum contrast required 

to distinguish between lighter and darker areas. In a sensitive visual system, only a small 

luminance difference between light and dark spatial area (low contrast) is necessary for 

the human to detect the difference between the dark and light spatial areas. In a less 

sensitive visual system, a larger difference in luminance (high contrast) is necessary 

before the difference between the light and dark spatial areas is recognizable.   Contrast 

sensitivity is greatly affected by the spatial frequency 

response of the HVS. With regard to the HVS, 

spatial frequency indicates the number of alternating 

bright and dark areas (cycles) per degree in the field 

of view, as shown in Figure 11. Every image has 

spatial frequencies that present variations of 

brightness (alternating bright and dark areas) to the 

eye. The eye resolves the variations into a 

recognizable image. The effect of the spatial 

frequency in the Contrast Sensitivity is expressed 

by the Contrast Sensit ivity Function (CSF) that plots the contrast sensitivity for all spatial 

frequencies. The shape of the CSF varies with many factors and is highly dependent upon 

a person’s HVS abilities, the viewing distance and angle, the orientation and nominal 

                                          
1 Figure taken from DeValois R. L. and DeValois K. K: “Spatial Vision” Oxford 1998 - Oxford 

University Press.  

Figure 1.   Spatial Frequency.  
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luminance of the observed light and dark spatial areas, the light conditions of the 

observation as well as the characteristics of the display media (photo print, PC monitor 

etc.) [16]. The shape of the CSF determines the human perception of an image; therefore 

it is an important component of a perceptual model. The subjective nature of the CSF and 

its dependence upon so many factors make the development of a generalized perceptual 

model difficult. In practice, perceptual models assume standard viewing conditions and  

simulate the behavior of the CSF vis-à-vis spatial frequency and luminance to quantify 

the perceptual difference between images.  

Figure 22 shows the shape of the CSF for a range of luminance differences 

between light and dark areas. For a fixed luminance, the human visual system is more 

sensitive in the intermediate spatial 

frequencies, less sensitive in the lower 

spatial frequencies and even less sensitive in 

the higher spatial frequencies. Moreover, the 

higher the nominal luminance of the 

observed spatial areas is, the more sensitive 

the HVS is. These characteristics of the CSF 

imply that higher spatial frequencies and 

low luminance areas of an image can 

withstand more distortion before the HVS 

detects a difference in the image. Under this 

scope, the CSF can be thought as a means of 

accounting for two non-uniform components 

of the HVS: its response to spatial frequency 

and its response to luminance.  

Besides the CFS there are two other phenomena that determine human perception 

of an image. These are Masking and Pooling. The CFS represents the human response to 

spatial frequency assuming that only one stimulus is present and only one characteristic 

                                          
2 Figure taken from DeValois R. L. and DeValois K. K: “Spatial Vision” Oxford 1998 - Oxford 

University Press.  

Figure 2.   Contrast Sensitivity Function. 
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of the stimulus (spatial frequency) is varied. However, an image practically co nsists of 

many spatial areas of variable dimensions, each with different characteristics and visual 

properties.  Masking is a measure of the HVS response to one stimulus when a second 

stimulus is present. The presence of the second stimulus defines the con text under which 

a stimulus is observed and affects perception. The perception of still grayscale images is 

influenced by two masking phenomena. These are Contrast Masking, where the presence 

of one spatial frequency masks the perception of another, and Luminance Masking, 

where local luminance masks contrast changes. The combined effect of Contrast and 

Luminance Masking is often called Spatial Masking [17]. Pooling is the effect on 

perception caused by the combined result of the multiple frequency and lumin ance 

variations that are present in an image. [2] 

The effect of Luminance Masking is illustrated in Figure 33, which consists of a 

sequence of four images. For each of the four images, the spectral amplitudes are exactly 

the same, but their luminance is different, the highest being on the left and the lowest on 

the right. It is easily observed that the pattern is more distinguishable in the case of the 

brighter luminance. Hence, when the background luminance is higher, the same variation 

would be less visible than in a darker region. This phenomenon is referred to as 

luminance masking. 

 

 
Figure 3.   Luminance Masking Effect. 

 
Contrast Masking refers to the fact that when an image component is observed in 

the presence of other image components with similar spatial frequency and orientation 

characteristics, that image component becomes less visible to the HVS. This effect is 

                                          
3 Figure taken from S. S. Henami: “Perception of Extremely Low-Rate Images & Video: 

Psychophysical Evaluations and Analysis” , Cornell University Visual Communications Lab 2001.  
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illustrated in Figure 4, in which uniform noise was added in the New York image. It is 

obvious that although the noise is uniform, its distorting effect is quite non-uniform and 

is highly dependent on the local image frequency structure. In the relatively flat region of 

the sky, the noise is clearly visible, whereas in the highly textured regions of the 

buildings, whose spatial frequency characteristic s are closer to those of the uniform noise, 

the distortion is almost imperceptible by the HVS.  

 

 
Figure 4.   Contrast Masking Effect. 

 

Finally, pooling aims to combine the perceptibilities of separate distortions, due to 

multiple frequency and luminance variations that are present in an image, into a single 

estimate of the overall change of the image. It is common to apply a formula of the form  

( ) 3.2,][p

i

pidD ∑=  

where d[i] is an estimate of the difference between original and distorted image due to an 

individual parameter such as a spatial pixel or a Fourier or DCT frequency coefficient.  

[18]. Equation 2.3 is often referred to as a Minkowski summation or an Lp-norm.   

The structure of visual models attempts to account for the HVS response to spatial 

frequency, luminance, masking and pooling in order to produce a measure of the 

perceptual difference between original and watermarked images [2].  To that end, visual 

models need to include two important components.  

Original New York Image  New York Image with Noise Added 
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The Frequency and Luminance sensitivity threshold s: These represent the amount 

of the smallest magnitude of a spectral or luminance coefficient that is discernible in the 

absence of any masking and are determined experimentally through the CSF 

measurements.  

The Masking thresholds: These correct the sens itivity thresholds to account for 

the effects of spatial masking. Most commonly, the masking thresholds are computed 

analytically through formulas derived from experimental procedures. In earlier years, the 

most common formula, which is known as Weber’s Law, was  

4.2,IkesholdMaskingThr ×=  

where k is an experimentally determined constant and I is the masking stimuli (luminance 

or contrast). Weber's Law, more simply stated, says that the size of the masking threshold 

is a constant proportion of the masking stim ulus value [15]. However, modern visual 

models use more complicated formulas to achieve more accuracy in the determination of 

the masking thresholds.  

3. An Overview of the Existing Perceptual Models  

One of the initial applications of Perceptual Models in the area of Image 

Processing involved their use in Source Coding and Compression, where they were used 

to generalize, revise and supplement simple, mathematically defined image quality 

measures such as the peak signal to noise ratio (PSNR) or the mean squar ed error (MSE). 

Originally, perceptual models viewed the HVS as a filter with characteristics determined 

by the CSF. Models based on this principle included a compressive nonlinearity to 

account for luminance masking, filtered the original image according to the CSF, and 

then calculated a difference metric between the original and compressed images. Among 

the first perceptual models of this kind was suggested as early as 1974 by Mannos and 

Sakrison in [19]. More recent implementations of this philosophy, like that proposed by 

Ahumada in [20], also incorporate estimates of image contrast in an attempt to capture 

some of the properties of contrast masking. The progress of the research on the HVS 

properties gave rise in the early 90s to a new set of perceptual models which attempt to 

model the HVS in as complete a manner as possible taking into account psychophysical 

and physiological evidence and thus provide a perceptually meaningful measure of image 
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quality near the visual threshold. The most popular representative of the set of perceptual 

models is that of Watson introduced in [20]. The popularity of the model is due to the fact 

that it’s based in the 8x8 block DCT domain which was incorporated in the Joint 

Photographic Experts Group (JPEG) standard, one the most widely used standards for 

lossy image compression. Recent trends involve the development of perceptual models 

based on the wavelet domain, like those described in [21] and [22], and the development 

of perceptual based on new philosophies regarding the function of the HVS, like the one 

introduced in [23].  

Despite the difficulties experienced by perceptual models in fully reflecting the 

response of the HVS, they are usually reported to provide more consistent estimates of 

image quality than mathematically defined metrics when artefacts are near the visual 

threshold [24]. It was therefore logical for researchers of the watermarking community to 

investigate and integrate them in their watermarking schemes. At this point, we present in 

detail four perceptual models that have been widely used by the watermarking 

community and are important in the development of our modification of the original 

watermarking scheme presented in [4]. Most of these models are based in the 8x8 DCT 

block domain. The reason is that our scheme is intended to be applied in the context of 

the JPEG standard and thus by choosing a framework that matches the current 

compression standards, it’s easier to design the algorithm to avoid embedding in the 

coefficients that are normally discarded or severely quantized during compression. In this 

way we can ensure robustness to this particular kind of compression [25].   

a. The MSE as a Perceptual Model 

Although the MSE cannot be regarded as a perceptual model in the strict 

sense ([24]), it is often used as a rough test of a watermarking system fidelity.  If c o [i,j] 

and cw [i,j] are the spatial matrix representations of the original and watermarked images 

respectively, then the MSE between the original and watermarked image  is defined as  

DMSE= ( ) 5.2,],[c- j][i, c
1

1

2

1
wo∑∑

Ν

= =Μ×Ν i
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ji  

where N and M are the dimensions of the image.  
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The MSE as defined above is calculated in the space domain 

representation of the images. However, due to the fact that the DCT is unitary ([26]), the 

MSE can equivalently be calculated us ing the 8x8 DCT block transformation of the 

image; in both cases the resulting MSE is the same. If Co [i,j] and Cw [i,j] are the 8x8 

DCT matrix representations of the original and watermarked images respectively, the 

above property can be analytically writ ten as  

( ) ( )
2 28 8

o w o w
1 1 1 1 1

1 1
c  [i,j] -c C  [i,j] -C 2 6

M

MSE
i j i j

D [ i , j ] [ i , j ] , .
Ν Κ

κΝ Μ Ν Μ= = = = =

= =
× ×∑∑ ∑∑∑  

where K is the total number of 8x8 blocks of the image (i.e., K= 64
Μ×Ν ). 

Equation 2.5 clearly demonstrates that the MSE in fact treats changes in 

all frequency components of the images equally, without taking into consideration the 

non- uniform response of the HVS. Consequently, it is bound to err when used to 

measure perceptual differences between images [27]. In Figure 5 the original Lena image 

was used to create two distorted versions. One was created by adding a Low Pass filtered 

White Noise pattern, and the other by adding a High Pass filtered White Noise pattern. 

Given that the HVS is more sensible to low frequencies than it is to high frequencies, one 

expects that the Low Pass Filtered Noise will produce more distortion. This effect is 

visually demonstrated in Figure 5, where the Low Pass Filtered Noise version on the right 

produces a considerably worse visual effect than the High Pass Filtered Noise version on 

the left. However, the MSE between original and distorted images is practically the same 

for both versions, so the MSE in this case fails to capture the exact extent of the 

perceptual difference between the original and distorted versions of the images.  
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Figure 5.   MSE and Watson Distance Comparison.  
 

b. The Watson Distance Perceptual Model 

The Watson perceptual model estimates the perceptual impact of changes 

applied to the individual terms of an image’s 8x8 block DCT representation. Following 

the general structure of perceptual models described earlier, the estimation of the 

perceptual distance is based on a sensitivity function, two masking components (one for 

luminance and one for contrast) and a pooling component.  

The frequency sensitivity function is defined through an 8x8 frequency 

sensitivity table t, whose entries represent the amount of change in the corresponding 

DCT coefficient that produces one JND. The derivation of the frequency sensitivity table 

takes into account a number of parameters that describe the viewing conditions, the 

image resolution and the HVS response for an average individual [28]. For the purposes 

of the thesis, a set of the parameter values has been chosen for which the resulting 

frequency sensitivity table t, shown below, proved experimentally to produce good 

results [13].   

MSE=826.91 -DWats=35.99 
DwatCorr=16.61- VMSE=0.16 

MSE=827.04 -DWats= 84.12 
DwatCorr=34.2-VMSE=0.66 
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t [i,j] =          

15.2129.1751.1317.1060.788.593.456.6

29.1750.1458.1171.828.660.467.379.4

51.1358.1162.946.730.564.371.243.3
17.1071.846.715.655.498.200.240.2

60.728.630.555.477.359.252.166.1
88.560.464.398.259.224.232.116.1

93.467.371.200.252.132.145.101.1
56.679.443.340.266.116.101.140.1

 

 

From a perceptual point of view, the higher an entry of t [i,j] is, the less 

sensitive the HVS is at the frequency represented by the entry. These thresholds account 

for the HVS non-uniform response to spatial frequency without any masking stimuli 

present.  

To adjust the frequency sensitivity table for Luminance Masking the 

model defines the luminance masking threshold tL[i,j,k] for every element of the 8x8 

DCT block DCT representation of the original image to be 

7.2,
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where i=1,2,..8 – j=1,2,…8 are indices for the elements of an 8x8 DCT block in the 

original image, k=1,2,…,K are indices for the blocks of the original image, Co[1,1,k] is 

the DC term of the kth block, ooC ,  is the average DC of the DC terms of all blocks and 

α T is a constant with a suggested value of 0.649. From a perceptual point of view, ooC ,  

represents the overall luminance of the image and α T controls the degree to which this 

masking occurs (if α T is set to 0, the masking effect is suppressed).  

These thresholds are then adjusted for the effects of contrast masking by 

correcting them through the formula  

{ } 8.2,],,[],,[],,,[max],,[ ],[1],[ jiw
L

jiw
oL kjitkjiCkjitkjis −×=  

where w[i,j] is a factor between 0 and 1 which depends on the frequency coefficient of 

the blocks. Watson refers to the thresholds adjusted for luminance and contrast masking 
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as slacks and suggests a constant value of w[i,j]=0.7, ∀  i,j. The formula was derived 

experimentally and is a generalization of Weber’s Law. When w[i,j] is set to 0, the 

threshold is constant  in log or percentage terms (for cijk > tijk ) as the Weber Law suggests. 

When w[i,j] is set to 1, the contrast masking is suppressed.  

Finally, to compare an original image Co with a distorted version Cw the 

differences of the corresponding DCT coefficients are scaled by their respective slacks 

and the scaled differ ences are subsequently pooled in a single perceptual difference 

estimate represented by the L4-norm of the scaled differences defined in 2.8 
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The resulting metric is a far better estimate of the perceptual difference 

between images than the MSE. In Figure 5, the Watson Distance for the Low Pass 

Filtered Noise distorted version of the original ‘Lena’ image on the right is 84.12 whereas 

the Watson Distance for the High Pass Filtered Noise distorted version on the left is 

35.99. This implies that the High Pass Filtered Noise distorted version is perceptually 

closer to the original, which agrees with the visual observation. Therefore, the Watson 

Distance manages to capture the effects of the HVS response to the distortion of the 

original image, whereas the MSE as we explained earlier, failed.  

c. The Corrected Watson Distance Perceptual Model  

The Watson Distance as defined in the previous paragraph underestimates 

the ability of the low luminance blocks to withstand greater distortion without producing 

perceptual effects when no stimuli are present. This shortcoming is demonstrated in 

Figure 6, where a synthetic 512x512 pixel image consisting of two vertical regions was 

constructed. The region on the left has a low luminance, while the one on the right has a 

high luminance. Two distorted versions of the original synthetic image were subsequently 

created, by inflicting the same amount of distortion in each of the two regions. On the left 

distorted version, white noise was added in the high luminance region of the original 
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image while the low luminance region was left intact. On the right distorted version, 

white noise with the same characteristics was added in the low luminance region of the 

original image while the high luminance region was left intact. From a perceptual point 

of view, the distortion on the high luminance region is more perceptible, since the HVS is 

more sensitive to high luminance. However, the Watson distance model erratically 

suggests that the low luminance distortion version has greater perceptual difference than 

the higher luminance.  

 
High Luminance 

Distortion  
Original  Low Luminance 

Distortion  

DWats=54.39 - Dwatcorr=13.6  
VMSE= 0.08 

DWats=404.39 - Dwatcorr=9.1  
VMSE=0.036  

  
Figure 6.   Erratic Estimation of the Perceptual Difference by the Watson Model.  

 

To overcome this shortcoming, a correction on the Watson Distance 

definition was implemented by applying a suitable multiplicative correction to the 

Luminance thresholds defined in equation 2.6, before substituting them in equation 2.7. 

The multiplicative correction factor depends on the block DC coefficient and was 

determined experimentally. 
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To determine the correction 

factor a 512x512 image with constant 

luminance, determined by the common value 

of DC coefficient of the image’s blocks, was 

created and the value of a number of pixels of 

the image was changed in small increments. 

When the change produced visible distortion, 

its value was recorded. The procedure was 

repeated for all possible values of the block 

DC coefficient and the recorded values were 

translated to a multiplicative correction 

factor. The resulting correction factor as a 

function of the DC block coefficient is depicted in Figure 7.  

d. The Weighted MSE (VMSE) Perceptual Model 

The Visual MSE (VMSE) model seeks to correct the inefficiency of the 

MSE, by taking advantage of the unitary property of the DCT transform. It is based upon 

the logic that since the MSE can equivalently be calculated in the 8x8 DCT block 

domain, one may account for the HVS response by appropriately weighing the squared 

differences of equation 2.5 [19]. The analytic form for the VMSE can be written: 
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where i=1,2,..8 and j=1,2,…8 are indices for the elements of an  8x8 DCT block in the 

original image, k=1,2,…,K are indices for the blocks of the original image, Co and Cw are 

the 8x8 block DCT representations of the original and watermarked images 

respectectively, and W[i,j,k] are the weights of the squared differences. A normalized 

VMSE version can also be used to produce an index of perceptual difference between 

original and watermarked images. In this context the Normalized VMSE is defined as  
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Figure 7.   Correction to the Watson 
Model. 
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The VMSE has the advantage of being able to descr ibe a variety of 

perceptual models in a coherent way. The squared difference summation of the VMSE 

can be thought as a pooling process based on L2-norm and the weights as the adjusting 

functions of the HVS. Any model based on the frequency domain processes  these 

characteristics of pooling and frequency adjustment. So, by appropriately choosing the 

weights of the VMSE, we can make it reflect the effects of any visual model. For 

example, if the weights are chosen to be: 
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where s[i,j,k] are the slacks calculated through the Corrected Watson Distance perceptual 

model, then the VMSE reflects the Corrected Watson Distance perceptual model, in the 

sense that if a watermark embedding algorithm uses the VMSE metric to minimize the 

perceptual difference between an original and a watermarked image, it will also be 

minimizing the Corrected Watson Distance metric. This relationship between the 

Corrected Watson Distance metric and the VMSE is reflected in Figures 5 and 6, where 

the VMSE reflected the change observed in the Corrected Watson Distance metric. The 

fact that the MSE is equivalently calculated in the space domain and the 8x8 DCT block 

domain will also be true for any unitary transform. Hence, the VMSE can also be 

calculated using appropria te weights in any unitary transform domain. Consequently, 

watermark embedding algorithms based on VMSE minimization can be easily modified 

(just by adjusting the weights) to reflect perceptual models based on any unitary 

transform. From this point of view,  the VMSE can provide a general approach for a 

perceptual watermarking scheme. That is why, for the purposes of the thesis, we will be 

using the VMSE as the basis of our visually adjusted embedding algorithm with weights 

as defined in equation 1.9 in order to ensure its functionality for a variety of perceptual 

models. 

B. FROM PERCEPTUAL MODELS TO PERCEPTUAL WATERMARKS 

The techniques for the incorporation of perceptual models in the watermarking 

schemes involve a frequency domain transform. No scheme based entirely on the space 

domain has so far been reported in the literature [25].  The most widely used frequency 



 22

domain is by far the 8x8 block DCT domain, mainly because of the popularity of the 

JPEG standard and the extent of the existing supporting literature. However, the wavelet 

domain shows signs of growing attractiveness among researchers , especially after the 

announcement of the new JPEG 2000 standard, which incorporates it.  

One popular embedding approach towards perceptual watermarks is that of the 

image adaptive DCT (IA-DCT). The embedding procedure for the IA-DCT scheme is 

described by the equation 

 

 
 
 

where: i=1,2,..8 and j=1,2,…8 are indices for the elements of an 8x8 DCT block in the 

original image, k=1,2,…,K are indices for the blocks of the original image, Co and Cw  are 

the 8x8 block DCT representations of the original and watermarked images 

respectectively, J[i,j,k] are the JND calculated through the Watson model and W[i,j,k] is 

the sequence of watermark values generated through a normal distribution. Similarly, an 

embedding procedure can be defined for an image adaptive Wavelet procedure [25]. 

Variations of this general approach have been considered in [29] and [30]. Our approach 

is somewhat different and is based presented in Chapter IV.  

C. SUMMARY 

In this chapter we established that perceptual watermarks come as a result of the 

incorporation of perceptual models in the watermarking schemes.  

We analyzed the principles upon which perceptual models rely and presented in 

detail four commonly used perceptual models: 

• The MSE, which is often used as a rough test of a watermarking system 
fidelity impact but which fails to reflect the HVS non-uniform response.  

• The Watson distance model, which is a lot more accurate and flexible than 
the MSE but fails to capture the effect of the HVS’s luminance sensitivity.  

• The Corrected Watson Distance, which aims to correct the shortcoming of 
the Watson Distance regarding the effect of the HVS’s luminance 
sensitivity. 

• The VMSE which provides a general approach in  the incorporation of 
perceptual models in perceptually based watermarking algorithms.  

Cw[i,j,k]   = 

Co[i,j,k]+J[i,j,k]xW[i,j,k], if Co[i,j,k]> s[i,j,k]  

Co[i,j,k], otherwise   

14.2
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These models are representative of the general structure of perceptual models. 

Their implementation and interpretation must always be judged in the context of the 

subjectivity involved in the fidelity judgment.  

Finally, we outlined a general approach towards the integration of perceptual 

models in watermarking algorithms. In the following chapters, we present two 

watermarking schemes that use the VMSE model to minimize the perceptual effects of 

the embedded watermark in the original image.   

During the course of our research we also explored a fifth model, the Universal 

Quality Index (QI), proposed in [23]. Our expectation was to attain an independent 

verification of the watermark’s transparency amelioration achieved by our algorithms. 

Unfortunately, the (QI) failed in producing conclusive results. The reader may find more 

details in Appendix A.  
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III. AN OVERVIEW OF THE ORIGINAL ALGORITHM 

Before presenting our ideas on how to integrate the VMSE perceptual model with 

the basic watermarking algorithm developed by I. Retsas in [1], we find it useful to 

briefly describe the rationale and concepts related to it. Since our id eas for the 

incorporation of the VMSE perceptual model involve modification of the theoretical 

concepts used in the development of the original scheme, the reader should be aware of 

its structure and philosophy.   

A. PRESENTATION OF THEORETICAL CONCEPTS  

In order to assure that the watermarking scheme sustains basic attacks of cropping 

and compression, while at the same time maintaining sufficient transparency, I. Retsas 

formulated the concepts of the Center of Interest Proximity Factor (CIPF), the 

Complexity Factor (CF), and the Priority Coefficient (PC), by introducing the notions of 

Embedding Size (es) and Embedding sets. These concepts or variations of them are also 

used in the modified algorithm we propose.  

1. The Center of Interest Proximity Factor (CIPF) 

The purpose of the CIPF is to increase the watermarking scheme’s resistance to 

cropping. The rationale behind it is that, since the resistance of the image to cropping 

depends heavily on the spatial 

location of the image blocks that 

are selected for embedding the 

watermark coefficients, the scheme 

should use for embedding spatial 

portions of the image that are 

unlikely to be cropped. To that 

end, the CIPF is used to provide a 

ranking of the host image’s 8x8 

blocks according to the likelihood of 

not being removed as a result of a 

cropping attack.  

Figure 8.   Typical CIPF Distribution for a 
256×256 Image with k=15. 
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For the definition of the CIPF, it is asserted that in cases of commercially used 

images there is a Region of Interest (RI), where most of the image inform ation is 

concentrated. For the purposes of the analysis, for each given image the RI was assumed 

to be a specific point, called Center of Interest (CI), coinciding with the center of the 

image (M/2,N/2 for an M×N image). Of course, the CI may be chosen to be any other 

point of the image. It is reasonable to assume that any cropping attack would be directed 

against some portion near the borders of the image, avoiding portions of the image 

situated around the CI. To define the CIPF, the following steps are fo llowed: 

• For each 8x8 block of the host, with center (m,n), we determine the 
Euclidean distance r(m,n), from the CI. 

• The calculated Euclidean distance is then normalized over the diagonal 
(i.e. the maximum possible distance within the image) to produce a 
normalized value rnorm, where rnorm ∈ [0,1].  

• This normalized distance is then processed through a transformer with 
characteristic function f, defined by 

1.3
2
1))

3
2((1tan1)( +−⋅−⋅−= rnormkrnormf

π
, 

where k is a constant that can typically vary in the range [10,25].  

The result is the Center of Interest Proximity Factor (CIPF=f(rnorm)). A typical 

distribution of the CIPF is depicted in Figure 8 above.  

2. The Complexity Factor (CF)  

The purpose of the CF is to provide a ranking of the host image’s 8x8 blocks 

according to their capacity to withstand distortions without producing visible effects. To 

that end, the absolute values of each 8x8 block’s DCT coefficients are weighted 

according to the part of the spectrum that they describe, and then added to prod uce the 

CF of the block. The DC coefficient is excluded from the calculations. The weights used 

in the summation are determined by the coefficients’ position in the standard JPEG 

zigzag plan. Analytically,  

,2.3kk DweightCF ′⋅=  

where weight=[1,2,…,63] is a vector (1x63), Dk is a vector (63x1) containing the DCT 

coefficients of the k th block of the image according to the standard zigzag arrangement 
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(excluding the DC coefficient), (·) is the matrix multiplication operation, and CFk is the 

resulting Complexity Factor for that block. 

It should be noted that the CF as defined can be thought of as a crude Visual 

Model with the following characteristics: 

• The response of the HVS to the spatial frequency represented by a DCT 
coefficient of an 8x8 block is assumed to be proportional to the position of 
that coefficient in the standard JPEG zigzag arrangement.  

• The response of the HVS to luminance and the effects of masking are not 
taken into account. 

• Pooling is carried out using the L1 norm. 

The indirect implementation of this crude Visual Model permits a rough 

estimation of the portions of a host image that can better tolerate the distortion imposed 

by the embedding. 

3. The Priority Coefficient (PC)  

The purpose of the PC is to combine the CIPF and CF in order to prod uce a 

relative priority ranking of blocks for embedding. The PC of a block is defined as the 

product of the corresponding CIPF and PC: 

3.3kk CFCIPFkPC ⋅= , 

where PCk, CIPFk, and CFk are the Priority Coefficient, the Center of Interest Proximity 

Factor, and the Complexity Factor of the host image’s kth block, respectively. 

4. The Embedding Size (es) and Embedding Sets  

In order to preserve transparency, only a relatively small number of the 

watermark’s 8x8 block DCT coefficients can be embedded in each 8x8 block of the host 

image. The number of the watermark’s 8x8 block DCT coefficients allowed for 

embedding in each in each 8x8 blocks of the host image is referred to as the embedding 

size. In practice, the embedding size is allowed to take the values of 2, 4, or 8 watermark 

coefficients per image block. The set of DCT coefficients that are embedded in a host 

image’s block is referred to as an embedding set.  
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B. THE ENCODER 

The structure of the encoder is depicted in Figure 9. In the operation of the 

Encoder, two components play an important role and need special explanation, which is 

provided in sections B.1 and B.2. 

 
 

 
  

 

 

 

 

 

 

Figure 9.   Encoder of the Original Scheme.  
 

1. Formation of the Embedding Sets 

The algorithm used to produce the embedding sets consists of the following steps: 

• First, the 8x8 DCT block coefficients are sorted in descending order of 
absolute magnitude and divided into m number of groups, where m is the 
embedding size. Each group consists of L/m coefficients, where L is  the 
total number of the watermark’s coefficients ( ,ww NML ×=  where Mw 
and Nw are the dimensions of the watermark)  

• Then the coefficients are regrouped to form the embedding sets. Each set 
contains m coefficients, one from each groups created in the previous step. 

The procedure is depicted in Figure 10 for the case of an embedding size equal to 4.  

The rationale behind the adoption of the above procedure for the formation of the 

embedding lies in ensuring that 

• The watermark coefficients with higher magnitude are embedded in the 
higher-rated image blocks, so that they cause the least possible distortion 
and are better protected against cropping.  

• Not too many of the higher magnitude watermark coefficients are 
embedded in one image block, so that they do not cause severe distortion.  
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• Higher magnitude watermark coefficients are embedded in image block 
coefficients that correspond to lower spatial frequencies, so that they are 
better protected against quantization. 

 
W m  c o e f f s
s o r t e d  b y  

m a g n i t u d e

W m  c o e f f s
d i v i d e d  i n t o  

4  g r o u p s

c 1 ,  c ( L / 4 ) + 1 ,  c ( L / 2 ) + 1 ,  c ( 3 L / 4 ) + 1

…

c L / 4 ,  c L / 2 ,  c 3 L / 4 ,  c L

E m b e d d i n g  s e t s

c 1
c 2

c L

…

c L / 4

c 1
…

c ( L / 4 ) + 1
…

…

…

c L / 2

c ( L / 2 ) + 1

c ( 3 L / 4 ) + 1

c 3 L / 4

c L

 
Figure 10.   Formation of the Embedding Sets. 

 
2. Embedding 

For embedding, only the first N sorted by descending order of their PC host image 

blocks are used, where N is the total number of embedding sets. For the embedding 

procedure, the 8x8 DCT block coefficients of the host image used are rearranged 

according to the JPEG standard zigzag plan and each set is embedded into m coefficients 

of the corresponding image block following the formula,  

where a is a weighting factor that typically ranges around 0.1, Cij is the jth watermark 

coefficient of the ith embedding set, uij is the jth coefficient on the zigzag arrangement of 

the ith block, u'ij is the modified image coefficient uij after embedding, and xstart is the 

first coefficient in the standard JPEG zigzag plan used for embedding (user defined). 

Finally, the embedded DCT block coefficients of the host image are put back in their 8x8 

1)()( iCxstartiuxstartiu ⋅+=′ α

2)1()1( iCxstartiuxstartiu ⋅++=+′ α

imCmxstartiumxstartiu ⋅+−+=−+′ α)1()1(

… 4.3,
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arrangement.  The procedure for the case of an embedding size m=4 is depicted in Figure 

11. 

 
 

Figure 11.   The Embedding Process.  
 
C. DECODER AND DECISION MAKING 

The decoder works in reverse order and requires both the original image and the 

watermark. The DCT coefficients of the test image are subtracted from the DCT 

coefficients of the original. The sorting information of the watermark coefficients is used 

to reassemble the potentially recovered watermark and the result is IDCT transformed to 

produce the recovered object.  

The decision-making device compares the recovered object to the original 

watermark by calculation of the correlation coefficient ρ , which is defined by  
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where W(i,j) is the (i,j) pixel of the original watermark, and Wr(i,j) is the (i,j) pixel of the 

recovered object. The decoder decides whether the recovered object corresponds to an 

actual watermark, based on a predetermined threshold T. 

 
Figure 12.   Decoder of the Original Scheme.  

 
D. SUMMARY 

The original algorithm, developed by I. Retsas, produces satisfactory results in 

terms of watermark transparency and resistance to cropping. It implicitly employs a crude 

visual model to select which image blocks to use for embedding and applies a simple 

embedding procedure. The decoder needs the original and watermarked images as well as 

the watermark, which classifies the algorithm as a private watermarking scheme.  

We’ll be attempting to integrate a improved visual model in the scheme and to 

explore the possibility of producing a semi-blind variation of the original algorithm. Our 

endeavour consists of adjusting the definition of the concepts introduced in the original 

algorithm to inc orporate the VMSE model and revising the structure of the encoder to 

ensure that the watermark sorting information is not needed in the decoder. The following 

two chapters present our proposed modifications and the obtained results.  
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IV. NEW ALGORITHM BASED ON THE VMSE PERCEPTUAL 
MODEL 

Watermarking algorithms based on perceptual models are ideally suited to 

addressing the watermarking problem. Perceptual models can be used to determine the 

portions of an image that can better tolerate the distortion imposed by the embedding and 

thus make sure that the watermarking will inflict the least possible degradation of the 

original image. 

In this chapter, we will propose a modification of the watermarking algorit hm 

developed by I. Retsas in [1], to incorporate the VMSE perceptual model in order to 

achieve higher transparency of the watermark. In addition, we will compare the new 

algorithm to the original both in terms of transparency and in terms of efficiency in 

retrieving the watermark. Finally, we will investigate the new algorithm’s resistance to 

cropping.  

A. PROPOSED MODIFICATION OF THE ORIGINAL ALGORITHM 

The proposed encoder follows the same philosophy implemented in the original 

algorithm and is depicted in  Figure 13. The modification lies in the definition of the 

Complexity Factor (CF) of the original image DCT blocks. The CF reflects the ability of 

the blocks to withstand distortions without producing visible effects. Under the 

assumption that the more complex a block is, the greater is its ability to withstand 

distortions, the CF aims to provide a ranking of the original image’s blocks according to 

their complexity.  
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Figure 13.   Encoder for the New Algorithm. 

 

One measure of a block’s complexity that has been proposed in the literature [31] 

is the variance of the image blocks in the space domain. This measure, though, does not 

provide accurate estimation of a block’s visual complexity. In Figure 14, both 8x8 blocks 

have the same number of black and white pixels, hence the same variance (0.2540) in the 

space domain. However, it’s obvious that changing any one pixel on the left block will be 

immediately detected by the human eye, whereas, the same alteration on the right block 

(which has a more complicated visual pattern) would require more thorough observation 

for detection. The shortcoming of the variance of the image blocks in the space domain as 

a measure of a block’s visual complexity has been pointed out in the thesis of I. Retsas 

and in [32], where it was also demonstrated that the CF, as defined in Chapter III, was 

capable of correctly indicating that the block on the right is more complex. Using the CF 

method for the same example of Figure 14, we get a factor of 44.2044 for the left block 

against a factor 790.8275 for that on the right.  
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Figure 14.   Failure of a Block’s Variance in the Space Domain to Reflect its Visual 

Complexity. 
 

As stated in the previous chapter, the original algorithm indirectly uses a crude 

visual model based on the JPEG standard zigzag path to define a measure of a block’s 

visual complexity through calculation of the CF for the blocks. Our idea is use the VMSE 

model to refine the crude CF calculation implemented in the original algorithm in order 

to ensure higher transparency of the w atermark. To calculate the CF for the kth 8x8 block 

of the host original image we define two new concepts associated with the visual 

properties of a block. These are the Total Visual Strength Factor (TVSF) and the 

Embedding Visual Correction Factor (EVCF).   

The definition of TVSF for the kth 8x8 DCT block of the host image is based on 

the same principles as was the CF associated with the original algorithm, and is 

calculated through the formula  

1.4,
],1,1[
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kjiC

kjiW
TVSF  

where i=1,2,..8–j=1,2,…8 are indices for the elements of an 8x8 DCT block of the 

original image, k=1,2,…,K are indices for the blocks of the original image,  W[i,j,k] are 

the VMSE weights (equation 2.13) associated with the (i,j) th DCT coefficient of the kth 

block, and Co is the 8x8 block DCT representation of the original image. Since the 

reciprocal of the VMSE weights represents the ability of a DCT coefficient to withstand 

variations without producing visible effects, the TVSF can be thought as a pooling of the 

(i,j) ? (1,1) 
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ability of all block DCT coef ficients to withstand variations. The DC coefficient is not 

directly included in the summation of equation 4.1, although it is taken into account for 

the TVSF calculation, where the rest DCT coefficients of the blocks are weighted against 

the DC coefficient of the block. Although the DC coefficient of the block is not used for 

embedding and has been taken into account for the calculation of the VMSE weights, we 

find it necessary to include it in the TVSF calculation because its effect upon the block’s 

ability to withstand variations is very significant. Figure 15 demonstrates this necessity. 

For Figure 15, two 8x8 blocks are considered, one with low luminance and one with high 

luminance. These blocks are depicted in the top part of the figure. If the DC coef ficient is 

not taken into account, the TVSF for the block with high luminance is 0.16, while the 

TVSF for the block with low luminance is 0.0001, suggesting that the block with high 

luminance has far greater ability to withstand distortions than the block with low 

luminance. However, this is not really true. In the bottom part of Figure 15, six 

coefficients of DCT transform of the blocks were altered by the same amount. This 

variation resulted in visibly more distortion for the high luminance block contrary  to what 

the TVSF implies. The situation is remedied if the DC coefficient is taken into account 

using formula 4.1. In that case, the TVSF for the high and low luminance blocks is 

0.000081 and 0.00008 respectively, allowing correct comparison of the blocks ’ ability to 

withstand distortions. 
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Figure 15.   Necessity to Consider the DC Coefficient in the TVSF. 

 

In the context of our watermarking scheme we embed the watermark coefficients 

according to the JPEG standard zigzag path, using a number of the original image bloc ks’ 

DCT coefficients starting from a specified coefficient. The TVSF provides the same 

estimate for a block’s ability to withstand distortion regardless of the coefficients that are 

actually used for embedding. Consequently, the TVSF is bound to err if used as the sole 

criterion for determining the CF of a block. This is illustrated in Figure 16, for which two 

blocks were considered: one with variable luminance and one with low luminance. These 

blocks are depicted in the top part of the figure. The block with variable luminance is 

actually an 8x8 version of the stripes watermark, while the block with low luminance 

consists of two vertical regions, one being slightly darker than the other. The TVSF for 

the variable luminance block is 0.0003 while that of the low luminance block is 0.0001, 

suggesting that the variable luminance block can withstand greater amount of distortion 

that the low luminance block. However, if the 2nd through 8th standard JPEG path DCT 

coefficients of both blocks are altered by the same amount, the effect on the variable 
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luminance block is more visible, as it can be seen in the bottom part of Figure 16. To 

overcome this shortcoming, we introduce the EVCF, which is defined by  
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where: i=1,2,..8 – j=1,2,…8 are indices for the elements of an 8x8 DCT block of the 

original image, k=1,2,…,K are indices for the blocks of the original image,  W[i,j,k] are 

the VMSE weights associated with the (i,j) th DCT coefficient of the kth block, Co is the 

8x8 block DCT representation of the original image, and 

 

 

 

Figure 16.   Necessity to Correct the TVSF. 
 

d(i,j,k)     = 
1, if the (i,j) th coefficient of the kth block is used for embedding a 
watermark coefficient 

0, otherwise    



 39

Thus EVCF is the weighted absolute mean of the block coefficients that are 

actually used for embedding and can be thought of as a variant TVSF that takes into 

account only those coefficients used for embedding. It should be pointed out that the 

EVCF alone cannot be used as an estimate of a block’s ability to withstand variations 

without producing noticeable visible distortion. A trivial example is illustrated in Figure 

17, where two blocks, one with complex spatial representation and one with simple 

spatial representation are depicted. As in the case of the blocks of Figure 16, the 2nd 

through 8th standard JPEG path DCT coefficients were altered by the same amount. 

Although the two blocks share the same EVCF, the effect on the simple block is a lot 

more visible. This indicates that the EVCF alone is not a good measure of a block’s 

complexity. 

Figure 17.   Necessity to Consider the TVS. 
 

It is obvious that in order to calculate the CF one needs to suitably combine the 

TVSF and the EVCF. Our idea is to combine them through the power relation  
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3.4,1 ww
k EVCFTVSFCF −×=  

where w ]1,0[∈  is a power factor to be determined experimentally.   

Figure 18.   Determination of w.  
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For the experimental determination of w, we employed the embedding algorithm 

to mark our regular images using different watermarks, embedding sizes and xstart 

values, keeping the embedding factor a constant equal to the proposed value of 0.1 of the 

original algorithm. For each embedding, we plotted the VMSE between original and 

marked image for different values of w and chose the value of w that minimizes the 

VMSE. Having no a priori knowledge of the new scheme’s behavior with regards to the 

embedding factor a one may argue that the above choice might not be suitable. However, 

since the embedding procedure of the new algorithm follows the same philosophy as the 

original algorithm, and since the choice of embedding factor doesn’t influence the CF, 

choosing the proposed value α =0.1 seems reasonable. In fact, as the proposed 

modification only affects the choice of blocks used for embedding and not the embedding  

procedure itself, we expect our decoder to exhibit roughly the same properties as the 

original, hence the proposed optimal value of α =0.1 of the original algorithm should be 

close to the one of the modified algorithm. The results can be seen in Figure 18 , which 

depicts the mean VMSE of all regular images as a function of w and xstart for different 

embedding sizes.  The behavior of the VMSE with regards to w varies considerably in 

nature and depends on the host image, the watermark and the choice of xstart. The 

embedding size effect is also important, especially when the embedding size is equal to 8. 

However, the results on Figure 18 indicate that the general tendency is for the mean 

VMSE to become minimum at w ≈ 0.4 for values of xstart less than 5 and at w ≈ 0 for 

values of xstart greater than 5. The latter implies that when higher frequency bands are 

used for embedding, only the DCT coefficients of the block that are actually used fo r 

embedding are important in the determination of the CF. We decided to use this set of 

values for w in our encoder. Figures 16 and 17 seem to confirm this choice. In both cases 

the CF version we propose provides correct comparison between the blocks’ abil ity to 

withstand distortions. Moreover, the modified CF, just like the original, also captures the 

relative complexity of the blocks in Figure 14, where the block on the left has a CF equal 

to 0.008, while block on the left has a CF equal to 1.168. 

Having calculated the CF of the original image blocks, the PC of the blocks is 

determined through multiplication by the CIPF, just as in the original algorithm. As 
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expected, the blocks chosen by the two algorithms are different. Figure 19 depicts the 

blocks chosen by the algorithms for the ‘Fishing Boat’ image.  

 
Figure 19.   Choice of Blocks for the ‘Fishing Boat’ Image.  

 

B. PERFORMANCE OF THE DECODER  

The decoder and the decision-making device used for our watermarking scheme 

are the same as in the original algorithm (Figure 12) and require both the original image 

and the watermark.  

To test the performance of the 

decoder we calculated the resulting ρ  

before and after quantization using different 

values for α , xstart and embedding sizes, 

for all possible combinations of our test 

images and watermarks. Figures 22 and 23 

depict the mean ρ  achieved by the regular 

and synthetic images respectively before 

and after quantization for various values of 

α , xstart and embedding sizes. The 

results of our experiments can be 

summarized as follows: 

Figure 20.   Recovery of Stripes Watermark 
for ‘New York’ (α =0.1-q=0 -xstart=5-

es=8) ρ =0.98. 

Original Algorithm es3 
New Algorithm 
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1. Performance Before Quantization 

If no quantization is performed, would logically expect the recovery of the 

watermark to be perfect ( ρ =1). However, this is not the case, due to rounding errors 

introduced during the decoding process. The introduction of rounding errors emanates 

from two sources. One is the inverse DCT transform procedure and the other is the 

conversion of the inverse DCT results to integer values for the visual presentation of the 

recovered watermark. Because of these rounding errors, the correlation coefficient ρ  is 

in most cases lower than 1, even when the marked image has not been tampered with. 

The behavior of ρ  before quantization can be described as follows: 

• For a fixed value of xstart, up to a certain value of α , we have a dramatic 
performance improvement. This value is close to 0.1. As α  still increases, 
the amount of improvement is reduced and the performance becomes 
essentially unchanged. When α  reaches a value of approximately 0.3, the 
performance starts to deteriorate slightly.  

• For a fixed value of α , up to a certain value of xstart the performance 
slightly decreases. When xstart reaches a certain value, which depends on 
the image the watermark and the embedding size, the performance starts to 
somewhat improve.  

• The effects of the embedding size and the watermark type in the 
performance of the decoder before the quantization are minimal. Although 
smaller embedding sizes tend to produce slightly larger ρ , the 
predominant factors that dictate the performance of the decoder remain α  
and xstart.  

2. Performance Under 
Quantization 

As expected, the performance of the 

decoder under quantization varies 

significantly with the frequency band that is 

selected for the embedding of the watermark 

coefficients and the value of the embedding 

factor α . The behavior of ρ  under 

quantization can be described as follows: 

 Figure 21.   Recovery of Stripes Watermark 
for ‘New York’ (α =0.1- q=50% 

xstart=5-es=8) ρ =0.83. 

Recovered Watermark
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• For a fixed value of α , as we embed in higher frequency coefficients 
(larger xstart), there is a general tendency for the performance to 
deteriorate (smaller ρ ). This is due to the fact that under the JP EG 
scheme, the higher frequency coefficients are severely quantized and so 
after quantization the embedded watermark information is essentially lost  
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Figure 22.   Mean ρ  Achieved by Regular Images for Various Embedding Sizes and 

Watermarks. 
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• For a fixed value of xstart, as α  is increased, the performance improves. 
This is logical, since higher values of α  imply more prominent 
embedding of the watermark coefficients, hence better protection against 
quantization. 

• The effects of the embedding size in the performance of the decoder after 
quantization are more pronounced than in the case where no quantization 
was performed. For fixed α  and xstart, the smaller the embedding size is, 
the better the performance of the decoder becomes. This is due to the fact 
that when the embedding is small, the algorithm uses lower frequency 
bands for embedding, hence the effects of the quantization are less severe.  

• The effects of the watermark type in the performance of the decoder after 
quantization are also more pronounced than in the cas e where no 
quantization was performed. It was observed that the more random 
elements are present in the watermark’s structure, the worse the 
performance of the decoder becomes. This can be easily explained if we 
consider that a simple perceptual pattern like the one of the ‘stripes’ 
watermark, has some large coefficients in the lower frequencies and most 
of its remaining higher DCT coefficients are close to zero, where as a 
pattern with random elements has a large number of non zeros higher 
frequency DCT coefficients. Since quantization greatly affects higher 
order coefficients, watermarks with many non-zero higher order DCT 
coefficients are bound to perform worse.  
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Figure 23.   Mean ρ  Achieved by Synthetic Images for Various Embedding Sizes and 

Watermarks. 
 
C. TRANSPARENCY  

Our experiments showed that by using the modified algorithm with no 

normalization and images of type uint8 we may obtain very satisfactory performance in 

terms of the transparency of the watermark. Figure 24 depicts the NPS logo marked 

image next to the original using the parameter setting α =0.1, xstart=4 and es=8. The 

observed visual effects of the parameters in the watermark transparency can be 

summarized as follows: 
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Original Image  Marked Image  

  

  

  
Parameters used: a =0.1, xs tart=4, embedding size =8. All images were marked using NPS logo  

Figure 24.   Original and Marked Images Fishing Boat, New York and Pentagon.  
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• For a fixed value of xstart, as α  increases the watermark becomes less 
transparent, i.e. more visible to the HVS. This is expected since higher 
values of α  imply more prominent embedding of the watermark 
coefficients, hence greater inflicted distortion of the block used for 
embedding. 

Figure 25.   Perceptibility of the Watermark through the Corrected Watson Distance.  
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• For a fixed value of α , one would expect that using higher values of 

xstart would make the watermark more transparent, since the HVS is more 
sensitive to low frequency distortions. Although the above expectation is 
visually verified when one compares the transparency achieved by using 
values of xstart that differ significantly (more than 20 positions), it is not 
always true when one compares the transparency achieved by using 
relatively close small values of xstart. For example, it was visually 
observed that the watermark is generally more transparent when xstart=5 
than when xstart=20. This phenomenon can be justified by the fact that, as 
explained in Chapter I, for a fixed luminance, HVS is more sensitive in the 
intermediate spatial frequencies, less sensitive in the lower spatial 
frequencies and even less sensitive in the higher spatial frequencies.  

• For fixed a  and xstart, as the embedding increases, the watermark 
becomes less transparent. The effect is more pronounced when the 
embedding size is equal to 8. This is due to the fact that smaller 
embedding sizes inflict to each block used for embedding considerably 
smaller distortion than bigger embedding sizes. 

• The effects of the choice of the watermark in the achieved transparency 
are minimal.  

Since our proposed modification uses the VMSE model, whose structure is bas ed 

on the Corrected Watson Distance model, a potential failure of the Corrected Watson 

Distance model to reflect the above visually observed results would inevitably result in 

failure of our algorithm.  Therefore, it is important at this point to investiga te whether the 

Corrected Watson Distance model manages to capture the above visually observed 

results. Figure 25 depicts the mean Corrected Watson Distance between original and 

marked images of all test images as a function of a and xstart for different embedding 

sizes and types of watermark. It can be seen that the shape of the surfaces reflects the 

visual observations on the perceived watermark transparency presented earlier by 

attaining lower values for parameter settings that correspond to low HVS sensitivity and 

higher values for parameter settings that correspond to high HVS sensitivity. Moreover, 

the shape and values of the surfaces are independent of the watermark used for 

embedding. Thus, it is verified that the Corrected Watson Distance model provides 

accurate estimation of the watermark transparency.  
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D. ROBUSTNESS TO CROPPING 

The performance of our algorithm when the image is subjected to cropping varies 

with the images marked. The inclusion of the CIPF in the calculation of the PC for the 

blocks offered a significant improvement to the algorithm’s robustness to cropping. The 

results are shown in tables 1 and 2. For Table 1 the images were severely cropped, 

reducing their total number of pixels to 64% of their initial quantity. Despite the severe 

cropping, in most cases, the algorithm managed to achieve a value of ρ  close to 0.3. As 

expected, the performance improves as the embedding size increases.   

 

 
Table 1. Effect of the CIPF.  

 
parameter setting: α =0.1, xstart=4, es=2 using NPS Logo  

Achieved ρ  Maintained pixels after cropping 
(initially 512×512) Lena  Peppers  fishing boat New York 

(11:502, 11:502) 0.7526  0.7787  0.6753  0.4931  
(31:482, 31:482) 0.5030 0.112 0.3804  0.2905  
(51:462,51:462) 0.3747 0.098 0.2518  0.2112  
(71:442, 71:442) 0.3075 0.063 0.1242  0.1278  

 
Table 2. Performance Against Cropping. 

 

E.  SELECTION OF THE PARAMETERS  

The system’s performance is affected by the values of three parameters: the 

weighting factor a , the frequency band used for embedding defined by xstart and the 

embedding size. In order to choose values for these parameters, one needs to carefully 

balance two contradicting demands: the need for a correct assessment whether  the 

parameter setting: α =0.1, xstart=4 using NPS Logo  

Image  

Maintained 
pixels after 

cropping 
(initially 
512×512) 

 
 
Embedding 

Size  

ρ without 

CIPF 

ρ  with 

CIPF 
Improvement 

(%) 

2 0.3167 0.4174 31,79665 Lena 
4 0.2678 0.5586 108,5885 
2 0.0827 0.2721 229,0206 New York 
4 0.033 0.3269 890,6061 
2 0.2053 0.2856 39,11349 fishing boat 
4 0.1743 0.2919 67,46988 
2 0.0144 0.0734 409,7222 peppers 

(50:460,50:460) 
 

4 0.012 0.088 633,3333 
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recovered object corresponds to an actual watermark by the decision making device and 

the need for high transparency.  

Since the ultimate requirement is for the system to produce an accurate judgment 

whether the recovered object corresponds to an actual watermark, the principal factor to 

be considered is the effectiveness of the decision making device. In order to ensure that 

the decision-maker produces a correct evaluation, the watermark needs to be recovered 

with the highest ρ  possible, and in any case higher than the decision threshold T used by 

the decision maker. The threshold should be calculated to match the desired required 

probability of detection, PD, and probability of false alarm, PFA. The determination of the 

threshold as a function of PD and PFA is outside the scope of the present thesis. Until such 

a calculation is carried out, we may assume that the user seeks to maximize the achieved 

ρ before and after quantization, under the sole restriction that the watermark inflicts the 

least possible distortion.  

Examining the behaviour of ρ  before under quantization (Figure 22) and the 

perceptibility of the watermark (Figure 25), we can say that the best results are obtained 

when a ≈ 0.1, xstart ≈ 10 and embedding size equal to 4. 

F. COMPARISON WITH THE ORIGINAL ALGORITHM 

The proposed modification aims to produce a new algorithm with better visual 

qualities. However, in order to make a judgment on whether the proposed modification 

should be accepted, one needs to consider the overall system performance under the 

modification. To that end, the performance of the decoder and the resistance to cropping 

should be considered in addition to the watermark’s transparency.  

1. Performance of the Decoder 

Since practically the only modification of the original algorithm lies in the choice 

of the blocks used for embedding, one expects that the modification would not inflict 

major changes in the performance of the decoder. Our experiments verified this 

expectation. Figure 22 indicates that the behavior of the decoder both before and after 

quantization is almost identical to the one of the original algorithm, as described by I . 

Retsas in [1]. 
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2. Transparency of the Watermark  

Figures 26 and 27 depict the mean difference between the VMSE and the 

Corrected Watson Distance of original and marked regular images achieved by the 

modified and original algorithms.  A negative value sug gests that the modified algorithm 

achieved higher transparency, whereas a positive value suggests the opposite. Figures 26 

and 27 indicate that the modified algorithm achieves lower VMSE and Corrected Watson 

distance in all cases except when the embedding size is equal to 8 and xstart=20. 

Moreover, they indicate that the logic upon which the modification is based is valid.  

Indeed, the modified algorithm serves its purpose by reducing the VMSE and 

reducing the VMSE results in lower Corrected Watson Distance.  Despite the indications 

of Figures 26 and 27, however, the decision on whether the modification increases the 

transparency of the watermark should be based on subjective judgment by independent 

observers. Both the VMSE (directly) and the Corrected Watson Distance (indirectly) 

models have been integrated in the embedding procedure, so a judgment based solely on 

these models is bound to be biased.  
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Figure 26.   Mean VMSE Difference Between Original and Modified Algorithms.  
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Figure 27.   Mean Corrected Watson Distance Difference Between Original and 
Modified Algorithms. 
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Original Algorithm Modified Algorithm 

  

  

  
Parameters used: a =0.15, xs tart=2, es=8. All images were marked using Stripes  

Figure 28.   Comparison of the Watermark Transparency Between Original and 
Modified Algorithms. 
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In our opinion, the modif ied algorithm achieves higher transparency of the 

watermark and in some cases, especially for small values of xstart, the improvement is 

considerable. Figure 28 depicts the stripes marked image by the modified algorithm next 

to the corresponding marked image by the original using the parameter setting α =0.15, 

xstart=2 and embedding size equal to 8. 

3. Robustness to Cropping 

Our experiments demonstrate that the modified algorithm is less robust to 

cropping than the original. Table 3 shows the difference between achieved ρ by the two 

algorithms after cropping. The original algorithm behaves a lot better under cropping and 

manages to achieve an average of 15% higher ρ  than the modified. The modified 

algorithm, although it behaves better than the original without the use of the CIPF, still 

falls short when compared to the original.       

 
parameter setting:  α =0.1, xstart=4, es=2 using NPS Logo  

Difference between achieved ρ  Maintained pixels 
after cropping 

(initially 512×512) 
Lena  Peppers  fishing boat New York 

(11:502,11:502) 0.16 0.14 0.17 0.14 
(31:482,31:482) 0.25 0.18 0.18 0.19 
(51:462,51:462) 0.18 0.11 0.1 0.13 
(71:442,71:442) 0.06 0.04 0.11 0.09 

 
Table 3. Comparison of the Algorithms’ Robustness to Cropping.  

 
G. SUMMARY 

In this chapter we proposed a modification of the watermarking algorithm 

developed by I. Retsas, to incorporate the VMSE perceptual model in order to achieve 

higher transparency of the watermark. The modification involved the redefinition of the 

CF of the image blocks through TVSF and the EVCF. The purpose of the modification 

was to ensure that the algorithm chooses the most distortion resistant blocks of the image 

for embedding, so that the watermark inflicts the least possible degradation of the host 

image. 

The algorithm succeeded in lowering both the VMSE and the Corrected Watson 

Distance between original and marked images. However, since it incorporates both of 
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them in the embedding process, the judgment of independent observers is necessary to 

verify that the algorithm achieves higher transparency than the original. Our personal 

observations indicate that the visual amelioration of the embedding process can be 

considerable. 

The robustness of the modified algorithm to quantization is satisfactory and 

comparable to that of the original. However, its robustness to cropping is lower than that 

of the original. The decision whether to accept the modification lies in the ju dgment of 

the user. To make the judgment the user needs to evaluate the relative importance of 

robustness to cropping and transparency. 

The encoder of the modified algorithm still needs the original and watermarked 

images as well as the watermark, which classifies it as a private watermarking scheme, 

like the original. It turns out that a simple modification may be applied to make it 

possible for the decoder to require only the original and watermarked images. In the next 

chapter we will present this modification and examine the performance of the resulting 

semi-blind variation of the modified algorithm. 
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V. A SEMI-BLIND VARIATION OF THE MODIFIED 
ALGORITHM 

In the previous chapter we introduced a modification incorporating the VMSE 

perceptual model to the original algorithm developed by I. Retsas, and presented the 

obtained results. The proposed modification involved the definition of the PC for the host 

image’s blocks and not the embedding process itself.  Consequently, the decoder needs 

the watermark, in addition to the original and marked images, in order to function. In this 

chapter we present a variation of the modified algorithm in which the decoder only needs 

the original and marked images.  

A. THE PROPOSED VARIATION 

A simple observation of the decoder’s function, both for the original and the 

modified algorithms, reveals that the only information regarding the watermark needed is 

the sorting of its 8x8 block DCT coefficients. The sorting information is used to 

rearrange the extracted embedding sets in their original order so that the recovered object 

could be reconstructed. Under the light of this observation, a straightforward variation 

that does not need the original watermark in the decoding process would be to omit 

sorting the watermark before the embedding process in the encoder.  

 

Figure 29.   Encoder for the Semi Blind Variation. 
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The encoder in such a setting becomes simpler and is depicted in Figure 29. An 

additional simplification would be the modificatio n of the embedding sets’ formation. 

The procedure described in Chapter II aimed to take advantage of the fact that the 8x8 

block DCT coefficients of the watermark had been sorted according to descending order 

of magnitude in order to enhance the watermark’ s transparency and its recovery under 

quantization. If the watermark coefficients are not sorted, there is no point in 

implementing the above procedure. Therefore, in the encoding process of the semi-blind 

variation, we adopt a procedure for the formation of the embedding sets that consists of a 

simple rearrangement of the watermark 8x8 block DCT coefficients in groups of size 

equal to the desired embedding size. The procedure follows two steps: 

• The watermark DCT coefficients are reshaped to form a MwxNw vector, 
where Mw and Nw are the dimensions of the watermark 

• The resulting vector is subsequently split to form the embedding sets.  

This is depicted in Figure 30 for the case of a 16x16 watermark and an embedding 

size equal to 4. 

 

 

 
 

 

 

 

 

 

 
 
 
 
 
 

Figure 30.   Formation of the Embedding sets in the Semi Blind Case.  
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requiring the watermark as input, since in such a setting the decoder needs no additional 

information regarding the watermark’s DCT coefficients’ relative position. The resulting 

decoder for the semi-blind variation is depicted in Figure 31. It can be seen that the 

watermark is only needed at the decision making device.  

 

 

Figure 31.   Decoder for the Semi-Blind Variation. 
 

B. PERFORMANCE OF THE DECODER – COMPARISON WITH THE 
ORIGINAL AND MODIFIED ALGORITHMS 

To test the performance of the decoder we calculated the resulting ρ  before and 

under quantization using different values for α , xstart and embedding size for all 

possible combinations of our test images and watermarks, just like we did  for the case of 

our modified algorithm. It was observed that the behavior of ρ , both before and after 

quantization, follows the general trends described in the previous chapter. However, there 

exist differences, mainly in the critical values that determine ρ ’s behavior with regards 

to a and xstart, which can be described as follows:  

• The maximum value of ρ  before quantization for fixed xstart is achieved 
at a ≈ 0.08, compared to a ≈ 0.1 for the original and modified algorithms.  
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• The effects of the watermark type and the embedding size in the 
performance under quantization are less pr onounced than in the case of the 
original and modified algorithms. 

If we were to make a direct comparison of the achieved ρ  between the semi-

blind variation and the original and modified algorithms we would conclude that 

although, as expected, the semi-blind variation performs more poorly in general, the 

difference between the algorithms is not significant. Figure 32 depicts the mean 

difference of achieved ρ  by regular images for various embedding sizes and watermarks 

between the modified algorithm and its Semi-blind variation. It can be seen that the 

maximum difference does not exceed 0.1; moreover, when lower frequency bands and 

values of α are used, the difference becomes almost negligible. However, when 

comparing the performance of the decoder for semi-blind variation to the one of either 

the original or the modified algorithms one needs to take into account the fact that the 

semi-blind variation requires lower α  values to achieve satisfactory transparency, 

especially for low values of xstart. In light of this, the semi-blind variation performs 

worse than Figure 32 suggests especially under quantization, because, as we stated in 

Chapter IV, lower α  values result in lower achieved ρ  when xstart is fixed.  
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Figure 32.   Mean Difference of Achieved PY Regular Images for Various Embedding 
Sizes and Watermarks Between the Modified Algorithm and Its Semi-Blind 

Variation. 
 

C. TRANSPARENCY - COMPARISON WITH THE ORIGINAL AND 
MODIFIED ALGORITHMS 

Our experiments showed that by using the semi blind variation with no 

normalization and images of unsigned 8bit integer type we obtain satisfactory 

performance in terms of the transparency of the watermark for values of α <0.08 and for 
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values of xstart>8. Figure 33 depicts the NPS logo marked image next to the 

corresponding marked image obtained by the original and modified algorithms using the 

parameter setting a =0.1, xstart=4 and embedding size equal to 8. As expected, the 

transparency achieved is worse than that of both the original and modified algorithms. 

For values of xstart>10 though, the difference in transparency is not that pronounced.  

 
Original Algorithm Semi-blind variation  Modified Algorithm 

   

   

   
Parameters used: α =0.1, xs tart=4, es=8. All images are of type were marked using NPS Logo  

 
Figure 33.   Comparison of the Watermark Transparency for the Semi-Blind Case. 

 

The proceeding visual observation is verified also by the Corrected Watson 

Distance model. In Figure 34 we plotted the mean difference between the Corrected 

Watson Distance of original and marked regular images achieved by the modified 
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algorithm and the semi-blind variation. A negative value suggests that the modified 

algorithm achieved higher transparency, whereas a positive value suggests the opposite.  

 

Figure 34.   Mean Corrected Watson Distance Difference Between the Modified 
Algorithm and the Semi-Blind Variation. 
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D. ROBUSTNESS TO CROPPING - COMPARISON WITH THE ORIGINAL 
AND MODIFIED ALGORITHMS 

The performance of the semi-blind variation when subjected to cropping follows 

the same trends observed in the case of the modified algorithm. How ever, our 

experiments demonstrated that the semi-blind variation is less robust to cropping than 

both the original and the modified algorithms. Tables 4 and 5 show the obtained results. 

It can be seen that the semi-blind variation achieves 16% lower ρ  than the modified 

algorithm, which implies a 30% lower ρ  that the original [1].   

 

parameter setting: α =0.1, xstart=4, embedding size=2  using NPS Logo  
Achieved ρ  Maintained pixels after cropping 

(initially 512×512) Lena  Peppers  fishing boat New York 

(11:502, 11:502) 0.5086  0.3549  0.5232  0.2726  
(31:482, 31:482) 0.3361 0.2083  0.2505  0.1703  
(51:462,51:462) 0.2884 0.1581  0.1934  0.1483  
(71:442, 71:442) 0.2423 0.1083  0.1058  0.1031  

 
Table 4. Performance Against Cropping of the Semi-Blind Variation. 

 
parameter setting:  α =0.1, xstart=4, embedding size=2  using NPS Logo  

Difference between achieved ρ  Maintained pixels after 
cropping 

(initially 512×512) 
Lena  Peppers  fishing boat New York 

(11:502,11:502) 0.244 0,4238  0.1521  0.2205  
(31:482,31:482) 0.1669  -0.0963 0.1299  0.1202  
(51:462,51:462) 0.0863  -0.061 0.0584  0.0629  
(71:442,71:442) 0.0652  -0.0453 0.0184  0.0247  

 
Table 5. Cropping Robustness Performance Comparison Between the Semi-Blind 

Variation and the Modified Algorithm. 
 
E.  SELECTION OF THE PARAMETERS  

Following the same rationale as in the case of the modified algorithm and taking 

into account the rather poor performance of the semi-blind variation against cropping, we 

may say that the best results are obtained when a≈ 0.08, xstart ≈ 10 and embedding size 

equal to 8. 

F. SUMMARY 

In this chapter, we implemented a straightforward variation in the modified 

algorithm that made it possible for the decoder to extract the wate rmark from the marked 
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image without making use of the original watermark itself. The resulting semi-blind 

variation produces satisfactory results in terms of transparency. However, it achieves 

lower ρ  under quantization and performs worse against cropping, compared to both the 

original and the modified algorithms. Up to a certain extent this is expected because of 

the smaller amount of information that is available throughout the watermarking process 

in the case of semi-blind algorithms. To decide whether the degradation of the scheme’s 

performance under the semi-blind variation should be accepted, one needs to weigh two 

key parameters involving the overall system performance: 

• The practical advantages of semi-blind watermarking schemes.  

• The necessary minimum ρ  that the decision making device should use as 
the decision threshold. 

During the course of our research we also explored the possibility of producing a 

semi-blind variation with better performance that would only use the watermarked image 

and the watermark in the decoding process. However, we discovered that in such a 

setting, although the achieved watermark transparency is of the same quality as in the 

modified algorithm, the decoder performance is extremely poor. The reader may find 

more details in Appendix B.  
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VI. CONCLUSION 

A. SUMMARY 

In this thesis we explored the possibilities for refinement of the original DCT- 

based non-uniform embedding watermarking scheme developed in [1] by investigating 

the advantages of integrating a perceptual model and employing a semi-blind variation. 

In Chapter II we introduced the notion of perceptual watermarking, presented the 

principles upon which perceptual models are based, analyzed some frequently used 

perceptual models, and linked them to perceptual watermarks. After going through a brief 

overview of the original watermarking scheme in Chapter III, we presented in Chapter IV 

a modification that incorporates the VMSE model and compared it to the original. In 

Chapter V we introduced a straightforward semi-blind variation of the resulting modified 

algorithm and presented the obtained results. In this chapter, we discuss other parts of our 

research. 

B. SIGNIFICANT REMARKS 

The application of perceptual models in digital watermarking provides a 

significant insight for embedding the coefficients in a way that will take full advantage of 

the Human Visual System. However, the inherent uncertainties involved in human 

judgment make the task of evaluating the performance of perceptual watermarking 

schemes quite challenging. In this context, the researcher must be conscious of the 

limitations and shortcomings of the perceptual model he employs and make efforts to 

complement his estimations with statistical observations involving independent 

observers. 

The task of balancing the mutually competitive requirements of robustness and 

transparency is non trivial. A complete watermarking scheme should address the issue by 

proving flexibility to the user for applying his judgment through the selection of 

appropriate values for the scheme’s parameters. Moreover, the scheme should offer a 

suggested default set of parameter values. This default set of parameter values should 

give priority to the accurate operation of the decision-making device by determining a 

reasonable decision threshold. 
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The performance of Discrete Cosine Transform - based perceptual watermarking 

still needs further investigation. The researcher should take into account the 

developments of perceptual modeling and the emerging trends towards the integration of 

perceptual models in the watermarking process. Moreover, the development of the JPEG 

2000 standard and how this will affect the unquestionable current domination of the 

JPEG standard should be also considered for future research in the perceptual 

watermarking area.  

In the proposed perceptual scheme we used a metric (CF) for measuring the 

relative capacity of each image block to receive watermark information without 

perceptual distortion of the overall image. In addition, another metric was used (CIPF) to 

provide protection cropping attacks. The combination of the two metrics is used to 

prioritize the image blocks and determine the watermark coefficients that will be 

embedded in each one of them. The achieved watermark transparency improvement 

appears to be satisfactory, but the evaluation is rather subjective, based only on 

observation. Moreover, the resulting scheme exhibits satisfactory robustness to 

quantization and cropping, although its robustness to cropping is slightly worse than that 

of the original scheme.  

The semi-blind variation consisted in omitting the sorting of the watermark 

coefficients during the encoding process. The resulting scheme maintains satisfactory 

transparency and robustness to quantization. However, its robustness to cropping is 

considerably degraded. 

C. FUTURE WORK 

Our watermarking scheme is far from being complete. Considerable interesting 

future work may be carried out towards refining and complementing it. Some of the areas 

demanding special attention include the following: 

1. Refinement of the Watson Model 

The selection of the JND thresholds used for the Frequency Sensitivity Table in 

the Watson Model was not based on formal statistical analysis. Although a statistical 

model has been used in [28] to estimate the effects of the parameters involved in the JND 

threshold derivation, no study has been conducted to determine the average value of the 
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parameters for the typical human individual.  A refinement based on a large number of 

observations involving human subjects is necessary for obtaining more precise estimation 

of the JND thresholds. This field of research has also application in Image Quality 

Assessment and Human Factors Engineering.  

2. Improvement of the Embedding Process 

The embedding process of our scheme does not take advantage of the watermark 

spatial frequency distribution characteristics to improve transparency and robustness. The 

procedure for the formation of the embedding sets  is identical for any watermark 

regardless of its characteristics. Researching possible computationally effective methods 

for allowing the watermark to interact with the host image during the watermarking 

process for the selection of the blocks used for embedding could considerably improve 

the transparency and robustness of the scheme.   

3. Improvement of the Robustness to Cropping 

As we mentioned, the modified algorithm’s robustness to cropping is slightly 

worse than that of the original algorithm, while that of the semi-blind variation is 

considerably degraded. This implies that in these schemes the CIPF is less effective in 

protecting against cropping. In our opinion the reason lies in the fact that the dynamic 

range of the PC of our scheme is quite differ ent from the one of the original algorithm.  

Possible remedies could be: 

• Transforming the dynamic range of each 8x8 block’s VMSE weight so 
that it takes values between 1 and 64. The simplest transformation would 
be 

1.6,
]),,[max(

],,[
631],,[

kjiW
kjiW

kjiW ×+=′  

 

where i=1,2,..8 and j=1,2,…8 are indices for the elements of an 8x8 DCT block in the 

original image, k=1,2,…,K are indices for the blocks of the original image, W[i,j,k] are 

original VMSE weights of the kth block and W’[i,j,k] are the transformed weights.  

• Modifying the CIPF definition so that blocks likely to be cropped are not 
used for embedding. The simplest method to achieve that would be to 
redefine the characteristic function of the CIPF transformer using the 
equation 

(i,j) 
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where rnorm is the normalized Euclidean dis tance of the block from the Center of Interest 

of the host image and rmax is the maximum normalized Euclidean block distance allowed 

for embedding. Equation 6.2 makes sure that blocks away from the Center of Interest are 

not used for embedding by putting them at the bottom of the PC ranking that takes place 

in the Encoder.  

The feasibility and effectiveness of these modifications along with the 

examination of other possible techniques to improve robustness to cropping should be 

considered in tandem to the watermarks transparency and constitute a challenging field 

for future research.  

4. Determination of the Decision Threshold 

The ultimate requirement is for the system to produce accurate judgment whether 

the recovered object corresponds to an actual watermark. This makes the effectiveness of 

the decision-making device a principal factor to be considered in the system’s design. To 

ensure the functionality of the decision making device, the decision threshold should be 

calculated to match the desired probabilit y of detection, PD, and probability of false 

alarm, PFA, requirements. Considerable research is necessary to determination of the 

threshold as a function of PD and PFA. In this effort watermark benchmarking tools like 

the one presented in [33] can be of gr eat help. In addition, benchmarking tools can be 

used for comparison between algorithms.      

5. Further Improvements 

Our watermarking scheme currently treats only grayscale images. There is a need 

to complement it in order to address the issue of color im age watermarking. Moreover, 

further investigation is required to employ techniques that would protect the resulting 

watermark from other possible attacks besides quantization and cropping. Finally, as the 

JPEG 2000 standard is expected to gradually substit ute the JPEG standard in image 
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processing applications, the feasibility of reformulating the model with the WT (wavelet 

transform ) used in lieu of the DCT must be investigated in detail.  

D. EPILOGUE 

The watermarking community is still far from presenting a dominating 

watermarking scheme. Perceptual watermarks are currently the most promising technique 

for invisible watermarking. The research on perceptual watermarking has been following 

closely the advances of Image Quality Assessment and Psychometrics to respond to the 

need for an effective and dependable watermarking scheme. However, little effort has 

been dedicated for the development of a perceptual model specifically designed for 

watermarking needs. Such a perceptual model would directly address the pa rticularities 

of the watermarking problem, promoting rapid advancements on the field. Maybe the 

watermarking community should invest in a more independent approach that would allow 

sufficient time for the research in the perceptual watermarking area to mature and 

produce results.      
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APPENDIX A.  THE UNIVERSAL QUALITY INDEX (QI) 

A. THE NEED FOR AN ADDITIONAL PERCEPTUAL MODEL 

The perceptual models described in Chapter II can be used for the evaluation of a 

watermarking scheme’s achieved transparency or as a part of a watermark embedding 

algorithm seeking to minimize the perceptual difference between original and 

watermarked image. Applying the same model for embedding the watermark and for the 

evaluation of the results achieved would inevitably lead to a biased judgment. One way 

around that would be to use different metrics for embedding and evaluation, when it 

comes to incorporating a perceptual model in the algorithm. These metrics would have to 

be independent of each other, based on different philosophies and tested in the literature 

for their correctness and efficiency.  The downside of this approach is that in certain 

(hopefully rare) cases these metrics being independent might disagree. However, if the 

visual impact in the watermarked image is imperceptible, it makes sense to accept the 

embedding result as satisfactory even in these cases.  

Using another VMSE-derived metric as the second independent evaluation metric 

will not result in independence of judgment. The Universal Quality Index (QI) proposed 

in [23] uses the space domain representations co [i,j,k], cw [i,j,k] of the original and 

watermarked images to produce an index that reflects the quality of the watermarked 

image viewed as a reproduction of the original.  This quality measurement approach does 

not depend on the viewing conditions or the individual observers and cannot be 

considered as a perceptual model in the strict sense, since it treats the HVS from a 

general qualitative point of view rather than quantifying its response to specific stimuli. 

However, it provides a comparative measurement of quality and hence it may be used as 

an evaluation tool for watermarking algorithms.  

B. DEFINITION OF THE QI 

The QI is based on the philosophy that  the main function of the HVS is to extract 

structural information from the viewing field and that the HVS is highly adapted for this 

purpose. Therefore, a measurement of structural distortion should be a good 

approximation of the perceived image distortio n caused by the process of embedding a 
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watermark. For the calculation of the QI, both the original and watermarked versions of 

the images are divided into 8x8 blocks. For each of the K blocks of the images, a quality 

index Qk is calculated through the formula 
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between the kth blocks values of the original and watermarked images.  

As equation A.1 indic ates, this index models any distortion between respective 

blocks as a combination of three different factors: loss of correlation, luminance 

distortion and contrast distortion. Each factor is represented by a term of equation A.1. 

The first term is the correlation coefficient between the blocks of the original and 

watermarked images and measures the degree of linear correlation between them. Its 

dynamic range is [-1,1] and the highest value is achieved if the blocks are linearly 

correlated. The second term is a measure of how close the mean luminance of the blocks 
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is and has a dynamic range of [0,1]. Finally the third term is a measure of how similar the 

contrasts of the blocks are and has a dynamic range of [0,1]. Having calculated the 

quality indices Qk for all the blocks, the total QI for the images is then the mean of the 

indices of the blocks, i.e., 

2..
1

1

Α= ∑
=

K

k
kQ

K
QI  

The resulting QI will also have a dynamic range of [ -1,1]. Although the QI as 

defined does not directly provide a measure of perceptual distance between compared 

images, one might translate it to a distance metric by transforming it to a percentage scale 

through the formula 

3..100
2

1
Α×

−
=

QI
QImetric  

The QI metric has a dynamic range of [0,100] reflecting the visual distance 

between compared images.  

C. RESULTS  

The fact that the QI is based on the space domain representation of the original 

and watermarked images while the VMSE is based on the DCT domain makes the QI 

suitable for an independent evaluation of a watermarking scheme that incor porates the 

VMSE as a visual model. To that end, we used the QI to compare the achieved 

watermark transparencies of the original and modified algorithms presented in Chapters 

III and IV respectively. The results revealed that the QI and the VMSE perception  models 

generally disagreed as to which of the two algorithms produces better watermark 

transparency.  

The disagreement between the two perceptual models puts forward the question 

as to which of the two is actually more accurate in its assessment. To answer that we 

relied on our own subjective judgment since it was not possible for the purposes of the 

thesis to conduct rigorous observations involving a large number of human subjects. We 

concluded that the VMSE model is more accurate in accounting for the pe rceptual 

differences caused by the watermarking schemes we investigated. The accuracy of our 

judgment is amplified by two additional facts: 
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Figure 35.   Mean QI Difference Between Original and Modified Algorithms.  

 
• The fact that perceptual models based on the space domain are less precise 

in accounting for perceptual differences resulting from distortions related 
to the non-uniform response of the HVS [2].  
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• The fact that the QI indicates that the achieved transparency of the two 
algorithms is almost the same. Figure A.1 depicts the absolute mean QI 
difference of original and marked regular images achieved by the modified 
and original algorithms, which is of the order of 10-3 or of less than 1% in 
percentage terms. This small difference when compared to the 30% 
respective difference implied by the VMSE model signifies that the QI 
cannot produce conclusive results regarding the comparison of the original 
and modified algorithms. 

D. SUMMARY 

In the course of our research we explored the possibility of using the QI, a 

perceptual model based on space domain, to get an independent confirmation of the 

modified algorithm’s competence to ameliorate the watermark transparency. The 

implementation of the QI model revealed that it generally disagreed with the VMSE 

model as to which of the two algorithms produces better watermark transparency. The 

disagreement of the two models required a judgment call as to which of the two is 

actually more accurate in its assessment. Based on our personal visual observations, the 

characteristics of our watermarking scheme and the obtained results, we concluded that 

the VMSE is more accurate in accounting for the effect of the distortions caused by the 

watermarking schemes we investigated. 
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APPENDIX B.  AN UNSUCCESSFUL SEMI-BLIND VARIATION 

A. THE RATIONALE BEHIND THE SECOND SEMI -BLIND VARIATION 

The shortcomings of the semi-blind variation presented in Chapter IV are due to 

the abolition of the watermark DCT coefficients’ sorting procedure in the encoder. This 

resulted in lower achieved transparency and robustness to cropping, compared to the 

original and modified algorithms. Because of that, the formation of the embedding sets 

procedure implemented in the case of the original and modified algorithms cannot be 

applied. Consequently, the high magnitude watermark DCT coefficients, which are the 

most significant in its recovery, are not fully protected against cropping and quantization. 

Indeed, both the original and modified algorithms used the watermark DCT coefficients 

sorting procedure to suitably formulate the embedding sets in order to make sure that 

watermark coefficients of higher magnitude are embedded in blocks of higher PC and 

lower frequency image DCT coefficients, thus offering greater protection against 

cropping and quantization. A method to overcome this inherent deficiency of the 

proposed semi-blind variation would be to revise the decoder so that only the watermark 

and the marked image are needed. 

B. THE DEVELOPMENT OF THE SECOND SEMI -BLIND VARIATION 

In the context of the original and modified algorithms, the unmarked host image is 

subtracted from the marked image at the decoder to recover  the watermark. If the original 

unmarked image is not available then the decoder must be endowed with the ability to 

acquire information on the exact location of the original image’s DCT coefficients used 

for embedding. With that information in hand, the decoder would be able to use the 

marked image and the watermark to assemble the original image and then use it to 

recover the watermark. From our scheme’s perspective, providing the decoder with the 

sorting information of the original image’s 8x8 DCT blocks  according to their PC would 

be sufficient. In such a case, the decoder would be able to simply utilize the values of α  

and xstart used for embedding and construct the original image. However, the only means 

that the decoder has at its disposal to acquire the necessary sorting information is the 

marked image. If the sorting of the marked image’s 8x8 DCT blocks in descending order 
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of their PC is very similar (ideally identical) to that of the original image, the encoder 

should have no trouble constructing the original image and recovering the watermark.  

This train of thought gives rise to the development of a watermarking scheme that 

would use the same encoder as the modified algorithm and thus be able to achieve high 

watermark transparency and a decoder whose function is depicted in Figure 36.  

Figure 36.   Decoder for the Second Semi-Blind Variation.  
 
C. PERFORMANCE OF THE SCHEME 

The performance of the scheme in terms of transparency is identical to that of the 

modified algorithm, since the both use the same encoder. However, the performance of 

the scheme’s decoder is extremely poor. The decoder was unable to successfully recover 

the watermark with satisfactory ρ , even if no quantization takes place. In general the 

achieved ρ  was very close to 0, even in the most favorable for recovery cases ( α =0.1, 

xstart=2 and embedding size equal to 2).  

The reason for this profound failure lies in the fact that mismatches between the 

sorting information provided by the marked image and the actual one of the original 

image generate tremendous effects in the decoding process. Moreover, for the practical 

ranges of the parameter settings used in the scheme, the PC ranking mismatch betw een 

original and marked images is substantial.  In Figure 37 we see the percentage of blocks 

that preserved their ranking position in the PC sorting of the marked image for different 

values of α  before and after quantization. In t he case where no quantization is applied, 

for very small values of α  the mismatch is not that pronounced. However, for values 

near 0.1, less than 75% of the marked image blocks retain the same PC ranking position 
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they occupied in the corresponding ranking resulting from the original image. The effect 

is far more evident when quantization is applied. As a consequence of the ranking 

mismatch, the decoder is not using the correct blocks to reconstruct the original image, 

which results in the failure of the decoder. 
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Figure 37.   Comparison of the PC Sorting of Original and Marked Images.  

 
D. SUMMARY 

In the course of our research we explored the possibility of developing a semi-

blind variation of the modified algorithm that would eliminate the need to make available 

the original image to the decoder. The expected benefit from such a scheme was the 

amelioration of the performance of the semi-blind variation presented in Chapter III, both 

in terms of watermark transparency and robustness to cropping. The development of the 

scheme was based on the assertion that the PC ranking of the marked image’s 8x8 DCT 

blocks would be very similar to that of the original image and that potential differences in 

the ranking would not inflict major consequences in the watermark recovery. 

Unfortunately, the above assertion was proven wrong and as a result the scheme’s 

performance is inadequate.  
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APPENDIX C.  SOFTWARE 

In this appendix we include the listings of the Matlab codes we created for the 

thesis. The appendix is divided in three parts. The first part consists of the codes related 

to the perceptual models we described in Chapter II, the second part consists of the codes 

related to the modified algorithm we analyzed in Chapter III and the third part consists of 

the codes related to the semi-blind variation we presented in Chapter IV.    
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function m = mse(C1,C2) 
 
%***********************************************************************  
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: June 20, 2002 
% FUNCTION: mse 
% INPUT: Two 2D arrays corresponding to images.  
% DESCRIPTION: Mean square error calculation. One image is the original,  
%              the other is the distorted 
% RETURNS: A double real corresponding to the MSE.  
%***********************************************************************  
 
disp('MSE Processing...') 
b=size(C1); 
C1=double(C1); 
C2=double(C2); 
m=0; 
for i=1:b(1) 
   for j=1:b(2) 
      m=m+ ( C1(i,j)-C2(i,j))^2; 
   end 
end 
m=m/(b(1)*b(2)); 
return 
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function Dwat= Watson_Dist(ORIG,DIST) 
%***********************************************************************  
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: June 20, 2002 
% FUNCTION: Watson_Dist  
% INPUT: Two images to calculate Watson distance  
% DESCRIPTION: returns the Watson Distance of the images of input  
%              ORDER CONVENTION: the first input is the original.  
% RETURNS: A double real corresponding to the watson distance.  
% Watson_dist calls Freq_Sensi_table, getfirst, Lum_Mask.  
%***********************************************************************  
disp('Watson Distance Processing...') 
[M,N] = size(ORIG); % M,N are the image dimensions 
if ((M/8)/fix(M/8) ~= 1) | ((N/8)/fix(N/8) ~= 1)  
    fprintf(1,'The dimensions of the selected image are not multiples of  
               8\nand errors will occur;\nTHE PROGRAM IS TERMINATED\N');  
    return 
end 
wij=0.7; 
% Making the DCT  
% It is assumed that the input images are in uint8 form [0 255]  
ORIG = double(ORIG);  
DIST = double(DIST);  
TD = dctmtx(8); 
dctORIG = blkproc(ORIG,[8 8], 'P1*x*P2',TD,TD'); 
dctDIST = blkproc(DIST,[8 8], 'P1*x*P2',TD,TD'); 
% Getting the frequency sensitivity table 
T=Freq_Sensi_table; 
% Getting the mean of the DC components 
Coo=blkproc(dctORIG,[8 8], 'getfirst'); 
Coo=mean2(Coo); 
% Getting the Luminance Masking 
TL=blkproc(dctORIG,[8 8],'Lum_Mask',T,Coo); 
% Getting the slacks 
s=zeros(M,N); 
for i=1:M 
   for j=1:N 
      l= (abs(dctORIG(i,j))^wij)*(TL(i,j)^(1-wij)); 
      s(i,j)=max(TL(i,j),l); 
   end 
end 
% Getting the Watson distance 
d=zeros(M,N); 
e=abs(dctORIG-dctDIST); 
for i=1:M 
   for j=1:N 
      d(i,j)=(e(i,j)/s(i,j)); 
   end 
end 
d=reshape(d,M*N,1); 
Dwat=norm(d,4); 
           
% Reference: 
% I. COX, M. MILLER, J. BLOOM, DIGITAL WATERMATKING Chapter7, pp215 -218 
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function DC= getfirst(mat) 
%***********************************************************************  
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: July 22, 2002 
% FUNCTION: getfirst  
% INPUT: A vector or a matrix  
% DESCRIPTION: If the input is a block of the 8x8  DCT of images 
%              getfirst returns the DC coefficient. 
% RETURNS: The leftmost (first) element of the matrix or vector.  
%***********************************************************************  
DC=mat(1); 
 
 
function [TL] = Lum_Mask(dctBlock,T,Co o)     
%***********************************************************************  
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: July 22, 2002 
% FUNCTION: Lum_Mask  
% INPUT: A block of a DCT transformed matrix dctBlock, a Frequency  
%        Sensitiv ity table T and the mean Coo of the DC components of  
%        all the DCt blocks 
% DESCRIPTION: Uses Formula 7.3 of the reference  
% RETURNS:  The Luminance masking table for an image.  
%**********************************************************************  
DCcomp= dctBlock(1,1); 
% Getting the Luminance Masking table 
TLl=T*((DCcomp/Coo)^0.649); 
TL=TLl; 
 
% Reference: 
% I. COX, M. MILLER, J. BLOOM, DIGITAL WATERMARKING Chapter7, pp215 -218 
 

 
function [q]=Freq_Sensi_table 
%*********************************************************************** 
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: June 20, 2002 
% FUNCTION: Freq_Sensi_table 
% INPUT: - 
% DESCRIPTION: - 
% RETURNS: The proposed DCT Frequency Sensitivity table    
%************************************ *********************************** 
q= [ 1.4   1.01  1.16  1.66  2.4    3.43   4.79   6.56;  
     1.01  1.45  1.32  1.52  2      2.71   3.67   4.93;  
     1.16  1.32  2.23  2.59  2.98   3.64   4.6    5.88;  
     1.66  1.52  2.59  3.77  4.55   5.3    6.28   7.6;   
     2.4   2     2.98  4.55  6.15   7.46   8.71  10.17;  
     3.43  2.71  3.64  5.3   7.46   9.62  11.58  13.51;  
     4.79  3.67  4.6   6.28  8.71  11.58  14.5   17.29;  
     6.56  4.93  5.88  7.6  10.17  13.51  17.29  21.15  ];  
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% Reference: 
% I. COX, M. MILLER, J. BLOOM, DIGITAL WATERMARKING Chapter7, pp215 -218 
function Dwat= Watson_Dist_Corr(ORIG,DIST) 
%***********************************************************************  
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: September 10, 2002 
% FUNCTION: Watson_Dist_Corr 
% INPUT: Two images to calculate Corrected Watson distance  
% DESCRIPTION: returns the Corrected Watson Distance of images of  
%              the input.  
%              ORDER CONVENTION: the first input is the original.  
% RETURNS: A double real corresponding to the corrected Watson distance.  
% Watson_dist_Corr calls Freq_Sensi_table, getfirst, Lum_Mask_Corr.  
%***********************************************************************  
disp('Watson Distance Processing...') 
[M,N] = size(ORIG); % M,N are the image dimensions 
if ((M/8)/fix(M/8) ~= 1) | ((N/8)/fix(N/8) ~= 1)  
    fprintf(1,'The dimensions of the selected image are not multiples of 8\nand errors will occur;\nTHE 
PROGRAM IS TERMINATED\N');  
    return 
 end 
wij=0.7; 
% Making the DCT  
% It is assumed that the input images are in uint8 form [0 255]  
ORIG = double(ORIG);  
DIST = double(DIST); TD = dctmtx(8);  
dctORIG = blkproc(ORIG,[8 8], 'P1*x*P2',TD,TD'); 
dctDIST = blkproc(DIST,[8 8], 'P1*x*P2',TD,TD'); 
% Getting the frequency sensitivity table 
T=Freq_Sensi_table; 
% getting the mean of the DC components 
Coo=blkproc(dctORIG,[8 8], 'getfirst'); 
Coo=mean2(Coo); 
% Getting the Luminance Masking 
TL=blkproc(dctORIG,[8 8],'Lum_Mask_Corr',T,Coo); 
% Getting the slacks 
s=zeros(M,N); 
for i=1:M 
   for j=1:N 
      l= (abs(dctORIG(i,j))^wij)*(TL(i,j)^(1-wij)); 
      s(i,j)=max(TL(i,j),l); 
   end 
end 
% Getting the Corrected Watson distance 
d=zeros(M,N); 
e=abs(dctORIG-dctDIST); 
for i=1:M 
   for j=1:N 
      d(i,j)=(e(i,j)/s(i,j)); 
   end 
end 
d=reshape(d,M*N,1); 
Dwat=norm(d,4);   
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% References: 
% I. COX, M. MILLER, J. BLOOM, DIGITAL WATERMARKING Chapter7, pp215 -218 
% Chapter II of the Thesis 
 
function [TL] = Lum_Mask_Corr(dctBlock,T,Coo)     
%*********************************************************************** 
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: September 21, 2002  
% FUNCTION: Lum_Mask_Corr 
% INPUT: A block of a DCT transformed matrix dctBlock, a Frequency  
%        Sensitivity table T and the mean Coo of the DC components of 
%        all the DCt blocks 
% DESCRIPTION: Adjusts Formula 7.3 of the reference to correct for  
%              the HVS response to luminances 
% RETURNS:  The Luminance masking table for an image.  
% Lum_Mask_Corr calls multcorWD 
%***********************************************************************  
DCcomp= dctBlock(1,1); 
% Getting the Luminance Masking table 
TLl=T*((DCcomp/Coo)^0.649); 
TLl=multcorWD(DCcomp,TLl);  
TL=TLl; 
 
% References: 
% I. COX, M. MILLER, J. BLOOM, DIGITAL WATERMARKING Chapter7, pp215 -218 
% Chapter II of the Thesis 
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function [TLc] = multcorWD(DCo,TL)    
%***********************************************************************  
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: September 10, 2002  
% FUNCTION: multcorWD 
% INPUT: The DC coefficient of a DCT block and the luminance thresholds for  
%        the bock as calculated by the Watson distance formulas  
% DESCRIPTION: multcorWD corrects the luminance threshold for the block  
%              by multiplying them according to the DC coeff of the  
%              block 
% RETURNS: A matrix corresponding to the corrected luminance threshold  
%          of the block. 
%***********************************************************************  
if DCo<50 
   TLc=65*TL; 
   return 
elseif DCo<240 
   TLc=45*TL; 
   return 
elseif DCo<320 
   TLc=15*TL; 
   return 
elseif DCo<1600 
   TLc=3*TL; 
    return 
elseif DCo<1920 
   TLc=4*TL; 
   return 
elseif DCo<2000 
   TLc=4.5*TL; 
   return 
else  
    TLc=5*TL; 
end 
 
% Reference: 
% Chapter II of the Thesis 
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function vmse= VMSE(ORIG,DIST) 
%***********************************************************************  
% Giakoumakis Michail 
% September 2002 
% LAST MODIFICATION: September 29, 2002  
% FUNCTION: WMSE  
% INPUT: Two images to calculate VMSE 
% DESCRIPTION: returns the visual MSE of the two images of the input  
%              ORDER CONVENTION: the first input is the original.  
% RETURNS: A double real 
% vmse calls VMSE_Coeff 
%*********************************************************************** 
disp('VMSE Processing...') 
[M,N] = size(ORIG); % M,N are the image dimensions 
if ((M/8)/fix(M/8) ~= 1) | ((N/8)/fix(N/8) ~= 1)  
    fprintf(1,'The dimensions of the selected image are not multiples of  
               8\nand errors will occur;\nTHE PROGRAM IS TERMINATED\N');  
    return 
end 
% Making the DCT  
% It is assumed that the input images are in uint8 form [0 255]  
ORIG = double(ORIG);  
DIST = double(DIST);  
TD = dctmtx(8); 
dctORIG = blkproc(ORIG,[8 8], 'P1*x*P2',TD,TD'); 
dctDIST = blkproc(DIST ,[8 8],'P1*x*P2',TD,TD'); 
coeff=VMSE_Coeff(dctORIG); 
vmse=zeros(M,N); 
vmse=(dctORIG-dctDIST).^2; 
vmse=coeff.*vmse; 
vmse=sum(sum(vmse)); 
vmse=(1/(M*N))*vmse; 
return 
 
 
% Reference: 
% Chapter II of the Thesis 
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function coeff= VMSE_Coeff(dctORIG) 
%***********************************************************************  
% Giakoumakis Michail 
% June, 2002 
% LAST MODIFICATION: September 10, 2002  
% FUNCTION: VMSE_Coeff 
% INPUT: The 8x8 DCT block transform of images to calculate the  
%        coefficients of the VMSE  
% DESCRIPTION: returns the weight coefficients for  
%              ORDER CONVETION: the first input is the original.  
% RETURNS: A double real matrix containing the slacks for the image.  
% VMSE_Coeff calls Freq_Sensi_table, getfirst, Lum_M ask_Corr.  
%***********************************************************************  
% In our case Just use the Corrected Watson Distance derived weights  
[M,N] = size(dctORIG); % M,N are the image dimensions 
if ((M/8)/fix(M/8) ~= 1) | ((N/8)/fix(N/8) ~= 1)  
    fprintf(1,'The dimensions of the selected image are not multiples of 8\nand errors will occur;\nTHE 
PROGRAM IS TERMINATED\N');  
    return 
 end 
wij=0.7; 
% Getting the frequency sensitivity table 
T=Freq_Sensi_table; 
% getting the mean of the DC components 
Coo=blkproc(dctORIG,[8 8], 'getfirst'); 
Coo=mean2(Coo); 
% Getting the Luminance Masking 
TL=blkproc(dctORIG,[8 8],'Lum_Mask_Corr',T,Coo); 
% Getting the slacks 
s=zeros(M,N); 
for i=1:M 
   for j=1:N 
      l= (abs(dctORIG(i,j))^wij)*(TL(i,j)^(1-wij)); 
      s(i,j)=max(TL(i,j),l); 
   end 
end 
for i=1:M 
   for j=1:N 
      if s(i,j)==0 
         s(i,j)=eps; 
      end 
   end 
end 
coeff=(1./s).^2; 
return 
 
% Reference: 
% Chapter II of the Thesis 
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function qimet= QImet(image1,image2) 
%**********************************************************************  
% Giakoumakis Michail 
% September 2002 
% LAST MODIFICATION: September 29, 2002  
% FUNCTION: WMSE  
% INPUT: Two grayscale images to calculate the quality index metric  
% DESCRIPTION: returns the visual quality index metric for input images  
% RETURNS: A double real 
% QImet calls img_qi, a function written by ZHOU WANG that can be  
% downloaded from  
% http://anchovy.ece.utexas.edu/~zwang/research/quality_index  
%*********************************************************************** 
display('Quality Index processing...'); 
qi=img_qi(image1,image2); 
qimet=(abs(1-qi))*50; 
return 
 
 
 
% References: 
% Zhou Wang and Alan C. Bovik: A Universal Image Quality Index  
% IEEE Signal Processing Letters, vol. 9, no. 3, March, 2002  
% http://anchovy.ece.utexas.edu/~zwang/research/quality_index/demo.html 
% Appendix A of the Thesis 
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%********************************************************* ************** 
% Giakoumakis Michail 
% November 2002 
% LAST MODIFICATION: January 10, 2003 
% FILE NAME: Encoder 
% DESCRIPTION: This is the main encoding file of our watermarking  
%              framework. 
% Encoder calls functions: 
% (i) imageSelection, WmTypeC, SNR and qFunc that can be found in  
%     I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
%     Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
%      March 2002. 
% (ii) embedder.  
%*********************************************************************** 
clear all 
delete C:\MATLABR11\work\*.mat  
disp('Processing...') 
%*****************************SETUP SECTION*****************************  
% _______________ Select Image to mark - check dimensions ______________ 
I = imageSelection; % selecting an image for processing from the gallery  
save C:\MATLABR11\work\I I 
[M,N] = size(I); % M,N are the image dimensions 
if ((M/8)/fix(M/8) ~= 1) | ((N/8)/fix(N/8) ~= 1)  
    fprintf(1,'The dimensions of the selected image are not multiples o f  
               8\nand errors will occur;\nTHE PROGRAM IS TERMINATED\N');  
    return 
 end 
% ______________Select Watermark to use - set dimensions________________ 
fprintf(1, 'The watermark size is set by default to 64x64;\n');  
% Any modification of the size should consider the dimensions of the  
% image and the embedding size.  
Mw = 64; 
Nw = 64; 
W = WmTypeC(Mw,Nw); 
save C:\MATLABR11\work\W W  
% ___________________Get parameters from user __________________________  
%-------------------------WEIGHTING FACT OR------------------------------ 
alpha = input('Set the weighting factor alpha (recommended value  
               0.1);\n'); 
disp('Processing...') 
save C:\MATLABR11\work\alpha alpha 
%------------------------------XSTART ----------------------------------- 
start = input('Set the index of the coefficient (1 to 64) where  
               the\nembedding would start in each block;\n'); 
while (start <= 0)|(start >= 64)|(start/fix(start)~=1)  
    fprintf(1,'Your choice was either beyond the allowed range or was  
                not an integer;\n');  
    start = input('Try again:\n'); 
end 
disp('Processing...') 
save C:\MATLABR11\work\start start  
%----------------------------EMBEDDING SIZE----------------------------- 
fprintf(1, 'Set the embedding size (number of watermark coefficients per  
           block);\n'); 
length = input('Choose 2, 4 or 8;\n'); 
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while (length ~= 2)&(length ~= 4)&(length ~= 8)  
    start = input('Your choice should be 2, 4 or 8; Try again:\n'); 
end 
disp('Processing...') 
save C:\MATLABR11\work\length length 
% __________________________Output choices _____________________________  
%------------------------------CROPPING SETUP --------------------------- 
flagCrop = input('For cropping press 1; otherwise press 0;\n'); 
while (flagCrop ~= 0)&(flagCrop ~= 1) 
    flagCrop = input('Your choice should be either 0 or 1; Try  
                      again:\n'); 
end 
disp('Processing...') 
save C:\MATLABR11\work\flagCrop flagCrop 
if flagCrop == 1 
    leftB = input('Enter the column that will be the new LEFT border of  
                   the Image;\n'); 
    disp('Processing...') 
    rightB = input('Enter the column that will be the new RIGHT border  
                    of the Image;\n'); 
    disp('Processing...') 
    upperB = input('Enter the row that will be the new UPPER border of  
                    the Image;\n'); 
    disp('Processing...') 
    lowerB = input('Enter the row that will be the new LOWER border of  
                    the Image;\n'); 
    disp('Processing...') 
    cropParam = [leftB rightB upperB lowerB];  
    save C:\MATLABR11\work\cropParam cropParam 
end 
%----------------------------- QUANTIZATION------------------------------ 
flagQ = input('For quantization press 1; otherwise press 0;\n'); 
while (flagQ ~= 0)&(flagQ ~= 1) 
    flagQ = input('Your choice should be either 0 or 1; Try again:\n'); 
end 
disp('Processing...') 
%--QUALITY FACTOR-- 
if flagQ == 1 
    q_jpeg = input('Set the quality factor q_jpeg in the range  
                    [1,100];\n'); 
    while (q_jpeg < 1)|(q_jpeg > 100)|(q_jpeg/fix(q_jpeg)~=1)  
        fprintf('Your choice was either beyond the allowed range or was  
                  not an integer;\n');  
        q_jpeg = input('Try again:\n'); 
    end 
    disp('Processing...') 
end 
save C:\MATLABR11\work\flagQ flagQ 
%-------------------------MARKED IMAGE IN UINT8------------------------- 
flag8 = input('For marked image in uint8 press 1; otherwise press  
               0;\n'); 
while (flag8 ~= 0)&(flag8 ~= 1) 
    flag8 = input('Your choice should be either 0 or 1; Try again:\n'); 
end 
disp('Processing...') 
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save C:\MATLABR11\work\flag8 flag8  
%-- IF MARKED IMAGE REAL --> NORMALIZATION  
if flag8 == 0 
    flagNorm = input('For normalization press 1; otherwise press 0;\n'); 
    while (flagNorm ~= 0)&(flagNorm ~= 1) 
        flagNorm = input('Your choice should be either 0 or 1; Try  
                          again:\n'); 
    end 
    disp('Processing...') 
    save C:\MATLABR11\work\flagNorm flagNorm 
end 
 %**************************END OF SETUP SECTION************************  
%*********************PROCESSING SECTION******************************** 
%-----------------------DCT OF THE IMAGE --------------------------------  
Id = double(I);  
T = dctmtx(8); 
dctI = blkproc(Id,[8 8], 'P1*x*P2',T,T'); 
save C:\MATLABR11\work\dctI dctI 
%-------------------- DCT OF THE WATERMARK------------------------------- 
Wd = double(W); 
dctW = blkproc(Wd,[8 8],'P1*x*P2',T,T');  
save C:\MATLABR11\work\dctW dctW 
clear Wd 
%--------------------------EMBEDDING------------------------------------ 
dctI = embedder(dctI,dctW,alpha,start,length);  
clear dctW  
%--------------- IDCT OF MARKED IMAGE COEFFICIENTS----------------------- 
Im = blkproc(dctI,[8 8],'P1*x*P2',T',T); % scrambled marked image  
clear dctI 
%---------------------------UINT8 - SNR--------------------------------------  
if flag8 == 1 
    Im = uint8(Im); % Im is the marked image in uint8 
    SNR8 = SNR(Id,double(Im)); 
    fprintf(1,'SNR of uint8 image, SNR8(dB)=%1.4f\n',SNR8); 
else 
%------------------------ NORMALIZATION - SNR---------------------------- 
    SNRr = SNR(Id,Im); 
    fprintf(1,'SNR of real image, SNRr(dB)=%1.4f\n',SNRr); 
    Im = Im/255; % reduce Image to range [0 1] plus some distortion  
                   caused from the embedding 
    if flagNorm == 1 
        n = 3.5;  % selected optimal value  
        save C:\MATLABR11\work\n n 
        Im = 1/pi*atan(n*(Im-1/2))+1/2; % normalization 
        SNRnorm = SNR(I,(255*Im));          
        fprintf(1,'SNR of real, normalized image,  
                   SNRnorm(dB)=%1.4f\n',SNRnorm); 
    end 
end 
save C:\MATLABR11\work\Im Im 
%--------------- ---------QUANTIZATION----------------------------------- 
if flagQ == 1 
    if flag8 == 0 
        Im = 255*double(Im); % we multiply by 255 to return to the  
                               correct scale 
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    end 
    Imq = qFunc(Im,q_jpeg); 
    if flag8 == 0 
        SNRrmq = SNR(Id,Imq); 
        fprintf(1,'SNR of real, marked and quantized image,  
                    SNRrmq(dB)=%1.4f\n',SNRrmq); 
        Imq = Imq/255; 
    else 
        Imq = uint8(Imq); 
        SNR8mq = SNR(Id,double(Imq)); 
        fprintf(1,'SNR of uint8, marked and quantized image,  
                   SNR8mq(dB)=%1.4f\n',SNR8mq); 
    end 
    save C:\MATLABR11\work\Imq Imq 
end 
clear Id 
%*********************END OF PROCESSING SECTION*************************  
%*********************DISPLAY SECTION***********************************  
figure(1) 
imshow(I) 
title('Original Image') 
figure(2) 
imshow(Im) 
title('Marked Image') 
if flagQ == 1 
    imhist(Imq,64) 
end 
if flagQ == 1 
     figure 
     imshow(Imq)  
     title('Quantized Marked Image') 
end 
%******************END OF DISPLAY SECTION*******************************  
 
% References: 
% I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
% Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
% March 2002. 
% Chapter IV of the Thesis 
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function [dctIo] = embedder(dctI,dctW,alpha,start,length)  
%***********************************************************************  
% GIAKOUMAKIS MICHAIL 
% October 2002 
% LAST MODIFICATION: January 23, 2003  
% FUNCTION: embedder 
% INPUT: The matrix dc tI which will be marked, the matrix dctW which  
%        will mark dctI, the weighing factor alpha, the coefficient in  
%        each 8x8 % block where the embedding starts, the number of  
%        coefficients that are embedded in each 8x8 block.  
% DESCRIPTION: As in Chapter IV of the thesis 
% RETURNS: A matrix dctIo with the marked coefficients.  
% CAUTION:IT IS REQUIRED THAT [LENGTH] DIVIDES EXACTLY (MW*NW) AND THAT % 
(MW*NW/LENGTH)IS EQUAL OR SMALLER THAN T HE NUMBER OF 8X8 IMA GE BLOCKS.  
% embedder calls functions: 
% (i)  zigzag and zzRvs that can be found in  
%      I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
%      Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
%      March 2002. 
% (ii) VMSE_Coeff, 
%***********************************************************************  
[M,N] = size(dctI); 
[Mw,Nw] = size(dctW); 
% _______________________Get the embedding sets_________________________ 
[x, index2(Mw*Nw:-1:1)] = sort(abs(dctW(:))); 
dctW = dctW(index2); % this way we avoid changing the values to positive 
                       after sorting by var  
% group the dct coefficients of the watermark in [length] groups 
for i = 1:length 
    gr(:,i) = dctW((i-1)*Mw*Nw/length+1:i*Mw*Nw/length)';  
    indexGr(:,i) = index2((i-1)*Mw*Nw/length+1:i*Mw*Nw/length)'; 
 end 
save C:\MATLABR11\work\indexGr indexGr  
K=(Mw*Nw)/length; 
% _____________________Get the CIPF of the image blocks_________________  
% we mark each 8x8 block with its Eucledean distance from the center  
% r(x,y) is the distance of the center of block (x,y) from the center of  
% the image  
for m=1:8:M 
    for n=1:8:N 
        r(fix(m/8)+1,fix(n/8)+1) = (((m+3)-M/2)^2 + ((n+3)-N/2)^2)^(1/2); 
    end 
end 
% we (row-wise) reshape the matrix r with the distances  
r_line = reshape(r',size(r,1)*size(r,2),1); 
% we calculate for each block the CIPF (Center of Interest Proximity  
  Factor) 
rmax = max(max(r)); 
CIPF =  -1/pi*atan(14*(r/rmax-2/3))+1/2; 
lenCIPF=size(CIPF,1)*size(CIPF,2);  
CIPF=reshape(CIPF,1,lenCIPF); 
% ________________Get the slacks-Reshape slacks and image_______________ 
% get slacks 
slk = 1./VMSE_Coeff(dctI); 
slk=slk/max(max((slk))); 
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% Reshaping to get matrices containing the image 8x8 DCT blocks and 
% slacks 
k=1; 
for i = 1:8:M 
    S(:,:,k:k+N/8 -1) = reshape(slk(i:i+7,:),8,8,N/8); % S is 8x8xK!!! 
    k = k+N/8; 
end 
k = 1; 
for i = 1:8:M 
    B(:,:,k:k+N/8 -1) = reshape(dctI(i:i+7,:),8,8,N/8); % B is 8x8xK!!! 
    k = k+N/8; 
end 
% __________________ Get the weightinf factor the blocks________________  
if (start<5) 
    w=0.4; 
elseif (start<10) 
    w=0.1; 
else 
    w=0; 
end 
% ______________________ Get the PC for the blocks______________________  
% get the CF 
for i = 1:size(B,3) 
   V1=abs(zigzag(B(:,:,i))); 
   if V1(1)==0 
      V1(1)=eps; 
   end 
   W1=zigzag(S(:,:,i)); 
   k= (V1(2:64)/V1(1)).*S(2:64); 
   F1(i)=sum(k); % The TVSF 
   V2 = V1(start:start+length-1); 
   W2 = W1(start:start+length-1); 
   D=W2.*V2; 
   F2(i)=sum(D)/sum(W2); % The EVCF 
end 
CF=(F1.^w).*(F2.^(1-w)); 
% Normalize CF 
CF=(CF/max(CF)); 
% Get PC 
PC=CIPF.*CF; 
% ____________________ __ Perform the Embedding_________________________  
% sort the blocks in descending order of PC 
[varB(size(B,3):-1:1), index(size(B,3):-1:1)] = sort(PC); 
B(:,:,:) = B(:,:,index); % B contains the 8x8 blocks sorted by  
                         % descending order of PC 
save C:\MATLABR11\work\index index 
% embedding 
for i = 1:size(gr,1) 
    V = zigzag(B(:,:,i)); % V is a row vector that contains the elements 
                          % of an 8x8 block aligned in zz fashion.  
    V(start:start+length-1) = V(start:start+length-1) + alpha*gr(i,:); 
    B(:,:,i) = zzRvs(V); 
end 
% desorting the 8x8 dct blocks of the image to get their original order   
B(:,:,index) = B(:,:,:);  
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% ______________________ Return the marked image________________________  
 k = 1; 
for i = 1:8:M 
    dctIo(i:i+7,:) = reshape(B(:,:,k:k+N/8 -1),8,N); % contains the  
                                                    % marked dct coeffs 
                                                    % of the image  
    k = k+N/8;     
 end 
 
 return 
 
% References: 
% I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
% Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
% March 2002. 
% Chapter IV of the Thesis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
%******************************************** *************************** 
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% Giakoumakis Michail 
% November 2002 
% LAST MODIFICATION: February 12, 2003  
% FILE NAME: Decoder 
% DESCRIPTION: This file recovers the Watermark from a marked Image  
% Decoder Call functions: 
% (i) BER, BERmod, corCoef, that can be found in  
%     I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
%     Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
%     March 2002. 
% (ii) extract  
%********************************************************************** * 
%______________________________ DATA LOADING_____________________________ 
clear all 
load C:\MATLABR11\work\indexGr 
load C:\MATLABR11\work\index 
load C:\MATLABR11\work\alpha 
load C:\MATLABR11\work\start  
load C:\MATLABR11\work\length 
load C:\MATLABR11\work\flagCrop 
load C:\MATLABR11\work\flagQ 
if flagQ == 1 
    select = input('Press 0 to process the marked image; press 1 to  
                    process the quantized, marked image \n'); 
    while (select ~= 0)&(select ~= 1) 
        select = input('Your choice should be either 0 or 1; Try  
                        again:\n'); 
    end 
end 
disp('Processing...') 
load C:\MATLABR11\work\flag8 
if flag8 == 0 
    load C:\MATLABR11\work\flagNorm 
end 
load C:\MATLABR11\work\I 
load C:\MATLABR11\work\W  
% load C:\MATLABR11\work\Key 
[Mw,Nw] = size(W); 
if flagQ == 1 
    if select == 0 
        load C:\MATLABR11\work\Im 
        Itest = Im; 
        clear Im 
    elseif select == 1 
        load C:\MATLABR11\work\Imq 
        Itest = Imq; 
        clear Imq 
    end 
else 
    load C:\MATLABR11\work\Im 
    Itest = Im; 
    clear Im 
end 
Itest = double(Itest); 
%__________________________CROPPING_____________________________________  
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if flagCrop == 1 
    load C:\MATLABR11\work\cropParam 
    if flag8 == 0 
        I1 = 0.5*ones(size(Itest,1),size(Itest,2)); 
    else 
        I1 = 128*ones(size(Itest,1),size(Itest,2));  
    end 
    I1(cropParam(3):cropParam(4),cropParam(1):cropParam(2)) = ... 
        Itest(cropParam(3):cropParam(4),cropParam(1):cropParam(2));  
    title_array = strcat('Cropped Marked Image (alpha=', num2str(alpha),  
                         ')') 
    if flag8 == 0 
        figure(5), imshow(I1), title(title_array)  
    else 
        figure(5), imshow(uint8(I1)), title(title_array)  
    end 
    Itest =I1; 
    clear I1 
 end 
 [M,N] = size(Itest); % final dimensions after cropping 
%___________________________PROCESSING__________________________________  
% DENORMALIZATION 
if flag8 == 0  
    if flagNorm == 1 
        load C:\MATLABR11\work\n    
        Itest = 1/2 + tan(pi*(Itest -1/2))/n; 
    end 
    Itest = 255*Itest; % bring to range [0,255] 
end 
% ORIGINAL IMAGE DCT  
load C:\MATLABR11\work\dctI 
% TEST IMAGE DCT  
T = dctmtx(8); 
dctItest = blkproc(Itest,[8 8],'P1*x*P2',T,T');  
clear Itest  
% RECOVERED WATERMARK DCT (EXTRACTED)  
dctWr = extract(dctI,dctItest,Mw,Nw,index,indexGr,alpha,start,length);  
clear dctI 
clear dctItest  
% IDCT ON RECOVERED WATERMARK COEFFICIENTS 
Wr = blkproc(dctWr,[8 8],'P1*x*P2',T',T); %recovered watermark 
Wr = uint8(round(Wr)); 
clear dctWr 
% BER 
ber = BER(W,Wr); 
fprintf(1, 'BER(bits per pixel)=%1.4f\n',ber); 
bermod = BERmod(W,Wr); 
fprintf(1, 'BERmod(bits per pixel with error)=%1.4f\n',bermod); 
% rho 
rho = corCoef(W,Wr); 
fprintf(1, 'rho=%1.4f\n',rho); 
figure(5)  
imagesc(Wr,[0 255]), colormap(gray), title( 'Recovered Watermark') 
% References: 
% I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
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% Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
% March 2002. 
% Chapter IV of the Thesis 
 
function dctW=extract(dctI,dctIm,Mw,Nw,index,indexGr,alpha,start,length)  
%***********************************************************************  
% Giakoumakis Michail 
% Novemebr 2003 
% LAST MODIFICATION: January 17, 2003  
% FUNCTION: extract  
% INPUT: The matrix dctI, the marked matrix dctIm, the watermark  
%        dimensions Mw and Nw, the weighting factor a, the embedding  
%        size length, xstart and  the indexes for the embedding sets  
%        and watermark sorting.  
% DESCRIPTION: Uses the input information to recover the watermark.  
% RETURNS: The dct coeffs of the retrieved wat ermark. 
%***********************************************************************  
[M,N] = size(dctI); 
dctDif = dctIm - dctI; 
k = 1; 
for i = 1:8:M % reshape 
    B(:,:,k:k+N/8 -1) = reshape(dctDif(i:i+7,:),8,8,N/8); % B is 8x8x4!!! 
    k = k+N/8; 
end 
B = B(:,:,index); % sorting using index (:,:,:) 
embeddingSetsNumber = Mw*Nw/length; 
for i = 1 : embeddingSetsNumber 
    V = zigzag(B(:,:,i)); % V is a row vector that contains the elements 
                          % of an 8x8 block aligned in zz fashion.  
    dctWr(i,:) = V(start:start+length-1)/alpha; 
    B(:,:,i) = zzRvs(V); 
end 
dctWr(indexGr(:)) = dctWr(:); % desorting the dctW coefficients using  
                              % indexNew 
dctW = reshape(dctWr,Mw,Nw); 
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PART 3: SEMI -BLIND VARIATION 
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%***********************************************************************  
% Giakoumakis Michail 
% December 2002 
% LAST MODIFICATION: February 23, 2003 
% FILE NAME: Encoderblind 
% DESCRIPTION: This is the main encoding file of the Semi-blind 
%              watermarking framework. 
% Encoder calls functions: 
% (i) imageSelection, WmTypeC, SNR and qFunc that can be found in  
%     I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
%     Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
%     March 2002. 
% (ii)embedder blind.  
%***********************************************************************  
clear all 
delete C:\MATLABR11\work\*.mat  
disp('Processing...') 
%******************************SETUP SECTION****************************  
% _____________ Select Image to mark - check dimensions ________________ 
I = imageSelection; % selecting an image for processing from the  
                      gallery 
save C:\MATLABR11\work\I I 
[M,N] = size(I); % M,N are the image dimensions 
if ((M/8)/fix(M/8) ~= 1) | ((N/8)/fix(N/8) ~= 1)  
    fprintf(1,'The dimensions of the selected image are not multiples of  
               8\nand errors will occur;\nTHE PROGRAM IS TERMINATED\N');  
    return 
end 
% _____________ Select Watermark to use - set dimensions_________________ 
fprintf(1, 'The watermark size is set by default to 64x64;\n');  
% Any modification of the size should consider the dimensions of the  
% image and the embedding size.  
Mw = 64; 
Nw = 64; 
W = WmTypeC(Mw,Nw); 
save C:\MATLABR11\work\W W %Needed for the decision making device 
save C:\MATLABR11\work\Mw Mw 
save C:\MATLABR11\work\Nw Nw 
% ______________________Get parameters from user _______________________  
%-------------------------WEIGHTING FACTOR------------------------------ 
alpha = input('Set the weighting factor alpha (recommended value 0.08); \n'); 
disp('Processing...') 
save C:\MATLABR11\work\alpha alpha 
%-------------------------XSTART ---------------------------------------- 
start = input('Set the index of the coefficient (2 to 56) where the\nembedding would start in each block;\n'); 
while (start <= 1)|(start >= 57)|(start/fix(start)~=1)  
    fprintf(1,'Your choice was either beyond the allowed range or was not an integer; \n');  
    start = input('Try again:\n'); 
end 
disp('Processing...') 
save C:\MATLABR11\work\start start  
%-------------------------EMBEDDING SIZE-------------------------------- 
fprintf(1, 'Set the embedding size (number of watermark coefficients per block); \n'); 
length = input('Choose 2, 4 o r 8;\n'); 
while (length ~= 2)&(length ~= 4)&(length ~= 8)  
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    start = input('Your choice should be 2, 4 or 8; Try again:\n'); 
end 
disp('Processing...') 
save C:\MATLABR11\work\length length 
% _________________________Output choices _________________________ ____ 
%----------------------------CROPPING SETUP ----------------------------- 
flagCrop = input('For cropping press 1; otherwise press 0;\n'); 
while (flagCrop ~= 0)&(flagCrop ~= 1) 
    flagCrop = input('Your choice should be either 0 or 1; Try again:\n'); 
end 
disp('Processing...') 
save C:\MATLABR11\work\flagCrop flagCrop 
if flagCrop == 1 
    leftB = input('Enter the column that will be the new LEFT border of the Image; \n'); 
    disp('Processing...') 
    rightB = input('Enter the column that will be the new RIGHT border of the Image;\n'); 
    disp('Processing...') 
    upperB = input('Enter the row that will be the new UPPER border of the Image; \n'); 
    disp('Processing...') 
    lowerB = input('Enter the row that will be the new LOWER border of the Image; \n'); 
    disp('Processing...') 
    cropParam = [leftB rightB upperB lowerB];  
    save C:\MATLABR11\work\cropParam cropParam 
end 
%----------------------------- QUANTIZATION------------------------------ 
flagQ = input('For quantization press 1; otherwise press 0;\n'); 
while (flagQ ~= 0)&(flagQ ~= 1) 
    flagQ = input('Your choice should be either 0 or 1; Try again:\n'); 
end 
disp('Processing...') 
%--QUALITY FACTOR-- 
if flagQ == 1 
    q_jpeg = input('Set the quality factor q_jpeg in the range [1,100]; \n'); 
    while (q_jpeg < 1)|(q_jpeg > 100)|(q_jpeg/fix(q_jpeg)~=1)  
        fprintf('Your choice was either beyond the allowed range or was not an integer; \n');  
        q_jpeg = input('Try again:\n'); 
    end 
    disp('Processing...') 
end 
save C:\MATLABR11\work\flagQ flagQ 
%------------------------ MARKED IMAGE IN UINT8-------------------------- 
flag8 = input('For marked image in uint8 press 1; otherwise press 0;\n'); 
while (flag8 ~= 0)&(flag8 ~= 1) 
    flag8 = input('Your choice should be either 0 or 1; Try again:\n'); 
end 
disp('Processing...') 
save C:\MATLABR11\work\flag8 flag8  
%-- IF MARKED IMAGE REAL --> NORMALIZATION  
if flag8 == 0 
    flagNorm = input('For normalization press 1; otherwise press 0;\n'); 
    while (flagNorm ~= 0)&(flagNorm ~= 1) 
        flagNorm = input('Your choice should be either 0 or 1; Try again:\n'); 
    end 
    disp('Processing...') 
    save C:\MATLABR11\work\flagNorm flagNorm 
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 end 
 %***************************END OF SETUP SECTION***********************  
%************************PROCESSING SECTION ***************************** 
%-----------------------DCT OF THE IMAGE --------------------------------  
Id = double(I); % It is assumed that the image from is in uint8 form [0 255]  
T = dctmtx(8); 
dctI = blkproc(Id,[8 8], 'P1*x*P2',T,T'); 
save C:\MATLABR11\work\dctI dctI 
%-------------------- DCT OF THE WATERMARK------------------------------- 
Wd = double(W); 
dctW = blkproc(Wd,[8 8],'P1*x*P2',T,T');  
save C:\MATLABR11\work\dctW dctW 
clear Wd 
%-------------------------EMBEDDING----------------------------------- -- 
dctI = embedderblind(dctI,dctW,alpha,start,length);  
clear dctW  
%--------------IDCT OF MARKED IMAGE COEFFICIENTS------------------------ 
Im = blkproc(dctI,[8 8],'P1*x*P2',T',T); % scrambled marked image  
clear dctI 
%-------------------------UINT8 - SNR----------------------------------- 
if flag8 == 1 
    Im = uint8(Im); % Im is the marked image in uint8 
    SNR8 = SNR(Id,double(Im)); 
    fprintf(1,'SNR of uint8 image, SNR8(dB)=%1.4f\n',SNR8); 
else 
%------------------------ NORMALIZATION - SNR---------------------------- 
    SNRr = SNR(Id,Im); 
    fprintf(1,'SNR of real image, SNRr(dB)=%1.4f\n',SNRr); 
    Im = Im/255; % reduce Image to range [0 1] plus some distortion  
                 % caused from the embedding 
    if flagNorm == 1 
        n = 3.5;  % selected optimal value  
        save C:\MATLABR11\work\n n 
        Im = 1/pi*atan(n*(Im-1/2))+1/2; % normalization 
        SNRnorm = SNR(I,(255*Im));         fprintf(1, 'SNR of real, normalized image, 
SNRnorm(dB)=%1.4f\n',SNRnorm); 
    end 
end 
save C:\MATLABR11\work\Im Im 
%------------------------ QUANTIZATION----------------------------------- 
if flagQ == 1 
    if flag8 == 0 
        Im = 255*double(Im); % we multiply by 255 to return to the  
                             % correct scale 
    end 
    Imq = qFunc(Im,q_jpeg); 
    if flag8 == 0 
        SNRrmq = SNR(Id,Imq); 
        fprintf(1,'SNR of real, marked and quantized image, SNRrmq(dB)=%1.4f \n',SNRrmq); 
        Imq = Imq/255; 
    else 
        Imq = uint8(Imq); 
        SNR8mq = SNR(Id,double(Imq)); 
        fprint f(1,'SNR of uint8, marked and quantized image, SNR8mq(dB)=%1.4f \n',SNR8mq); 
    end 
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    save C:\MATLABR11\work\Imq Imq 
end 
clear Id 
%************************END OF PROCESSING SECTION**********************  
%**********************DISPLAY SECTION**********************************  
figure(1) 
imshow(I) 
title('Original Image') 
figure(2) 
imshow(Im) 
title('Marked Image') 
if flagQ == 1 
    imhist(Imq,64) 
end 
if flagQ == 1 
     figure 
     imshow(Imq)  
     title('Quantized Marked Image') 
end 
%********************END OF DISPLAY SECTION****************************  

 
% References: 
% I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
% Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
% March 2002. 
% Chapter V of the Thesis 
 
 
 
 
 
 
 
 
 
 
 
 
 
function [dctIo] = embedderblind(dctI,dctW,alpha,start,length)  
%***********************************************************************  
% GIAKOUMAKIS MICHAIL 
% October 2002 
% LAST MODIFICATION: January 23, 2003  
% FUNCTION: embedderblind 
% INPUT: The matrix dctI which will be marked, the matrix dctW which 
%        will mark dctI, the weighing factor alpha, the coefficient in  
%        each 8x8 block where the embedding starts, the number of  
%        coefficients that are embedded in each 8x8 block.  
% DESCRIPTION: As in Chapter V of the thesis 
% RETURNS: A matrix dctIo with the marked coefficients.  
% CAUTION:IT IS REQUIRED THAT [LENGTH] DIVIDES EXACTLY (MW*NW) AND THAT % 
(MW*NW/LENGTH)IS EQUAL OR SMALLER THAN T HE NUMBER OF 8X8 IMA GE BLOCKS.  
% is equal or smaller than th e number of 8x8 image blocks.  
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% embedder calls functions 
% (i) zigzag and zzRvs that can be found in  
%     I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
%     Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
%     March 200 2. 
% (ii)VMSE_Coeff, 
%***********************************************************************  
[M,N] = size(dctI); 
[Mw,Nw] = size(dctW); 
% Simple reshaping of the watermark  
dctWvec=reshape(dctW,1,Mw*Nw); 
gr=reshape(dctWvec,Mw*Nw/length,length);  
K=(Mw*Nw)/length; 
% ____________________Get the CIPF of the image blocks__________________  
% we mark each 8x8 block with its Eucledean distance from the center  
% r(x,y) is the distance of the center of block (x,y) from the center of  
% the image  
for m=1:8:M 
    for n=1:8:N 
        r(fix(m/8)+1,fix(n/8)+1) = (((m+3)-M/2)^2 + ((n+3)-N/2)^2)^(1/2); 
    end 
end 
% we (row-wise) reshape the matrix r with the distances  
r_line = reshape(r',size(r,1)*size(r,2),1);  
% we calculate for each block the CIPF (Center of Interest Proximity 
% Factor) 
rmax = max(max(r)); 
CIPF =  -1/pi*atan(14*(r/rmax-2/3))+1/2; 
lenCIPF=size(CIPF,1)*size(CIPF,2);  
CIPF=reshape(CIPF,1,lenCIPF); 
% _______________Get the slacks-Reshape slacks and image_______________ 
% get slacks 
slk = 1./VMSE_Coeff(dctI); 
slk=slk/max(max((slk))); 
% Reshaping to get a martix containing the image 8x8 DCT blocks 
k=1; 
for i = 1:8:M 
    S(:,:,k:k+N/8 -1) = reshape(slk(i:i+7,:),8,8,N/8); % S is 8x8xK!!! 
    k = k+N/8; 
end 
k = 1; 
for i = 1:8:M 
    B(:,:,k:k+N/8 -1) = reshape(dctI(i:i+7 ,:),8,8,N/8); % B is 8x8xK!!! 
    k = k+N/8; 
 end 
 % __________________ Get the weighting factor _________________________  
 if (start<5) 
    w=0.4; 
 elseif (start<10)  
    w=0.1; 
 else 
    w=0; 
 end 
% ____________________ Get the PC for the blocks__________ ______________ 
% get the CF 
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for i = 1:size(B,3) 
   V1=abs(zigzag(B(:,:,i))); 
   if V1(1)==0 
      V1(1)=1; 
   end 
   W1=zigzag(S(:,:,i)); 
   k= (V1(2:64)/V1(1)).*S(2:64); 
   F1(i)=sum(k); %TVSF 
   V2 = V1(start:start+length-1); 
   W2 = W1(start:start+lengt h-1); 
   D=W2.*V2; 
   F2(i)=sum(D)/sum(W2); %EVCF 
end 
CF=(F1.^w).*(F2.^(1-w)); 
% Normalize CF 
CF=(CF/max(CF)); 
% Get PC 
PC=CIPF.*CF; 
% ______________________ Perform the Embedding_________________________  
% sort the blocks in descending order of PC 
[varB(size(B,3):-1:1), index(size(B,3):-1:1)] = sort(PC); 
B(:,:,:) = B(:,:,index); % B contains the 8x8 blocks sorted by  
                         % descending order of PC 
save C:\MATLABR11\work\index index 
% embedding 
for i = 1:size(gr,1) 
    V = zigzag(B(:,:,i)); % V is a row vector that contains the elements  
                          % of an 8x8 block aligned in zz fashion.  
    V(start:start+length-1) = V(start:start+length-1) + alpha*gr(i,:); 
    B(:,:,i) = zzRvs(V); 
end 
% desorting the 8x8 dct blocks of the image to get their original order   
B(:,:,index) = B(:,:,:);  
 
% ____________________ Return the marked image_________________________  
k = 1; 
for i = 1:8:M 
    dctIo(i:i+7,:) = reshape(B(:,:,k:k+N/8 -1),8,N); % contains the  
                                                    % marked dct coefs  
                                                    % of the image  
    k = k+N/8;     
end 
  
return 
 
% References: 
% I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
% Cropping and Compression”. Master's Thesis, NPS, Monterey, CA, 
% March 2002. 
% Chapter IV of the Thesis 
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%***********************************************************************  
% Giakoumakis Michail 
% November 2002 
% LAST MODIFICATION: February 12, 2003 
% FILE NAME: Decoderblind 
% DESCRIPTION: This file recovers the Watermark from a marked Image with  
%              no apriori access to the watermark.  
% Decoderblind calls functions: 
% (i) BER, BERmod, corCoef, that can be found in  
%     I. Retsas, “A DCT-based Image Watermarking Algorithm Robust to  
%     Cropping and Compression”. Master's Thesis, NPS, Monterey, CA,  
%     March 2002. 
% (ii) extractblind 
%***********************************************************************  
%____________________ __________DATA LOADING_____________________________ 
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clear all 
load C:\MATLABR11\work\index  
load C:\MATLABR11\work\alpha  
load C:\MATLABR11\work\start  
load C:\MATLABR11\work\length 
load C:\MATLABR11\work\flagCrop 
load C:\MATLABR11\work\flagQ 
load C:\MATLABR11\work\Mw 
load C:\MATLABR11\work\Nw 
if flagQ == 1 
    select = input('Press 0 to process the marked image; press 1 to  
                    process the quantized, marked image \n'); 
    while (select ~= 0)&(select ~= 1) 
        select = input('Your choice should be either 0 or 1; Try  
                        again:\n'); 
    end 
end 
disp('Processing...') 
load C:\MATLABR11\work\flag8 
if flag8 == 0 
    load C:\MATLABR11\work\flagNorm 
end 
load C:\MATLABR11\work\I %the original image needed 
% load C:\MATLABR11\work\Key %-> load in case keying was used 
if flagQ == 1 
    if select == 0 
        load C:\MATLABR11\work\Im 
        Itest = Im; 
        clear Im 
    elseif select == 1 
        load C:\MATLABR11\work\Imq 
        Itest = Imq; 
        clear Imq 
    end 
else 
    load C:\MATLABR11\work\Im 
    Itest = Im; 
    clear Im 
end 
Itest = double(Itest); 
%***********************************************************************  
%***************************CROPPING************************************  
if flagCrop == 1 
    load C:\MATLABR11\work\cropParam 
    if flag8 == 0 
        I1 = 0.5*ones(size(Itest,1),size(Itest,2));  
    else 
        I1 = 128*ones(size(Itest,1),size(Itest,2));  
    end 
    I1(cropParam(3):cropParam(4),cropParam(1):cropParam(2)) = ... 
        Itest(cropParam (3):cropParam(4),cropParam(1):cropParam(2));  
    title_array = strcat('Cropped Marked Image (alpha=', num2str(alpha), ')') 
    if flag8 == 0 
        figure(5), imshow(I1), title(title_array)  
    else 
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        figure(5), imshow(uint8(I1)), title(title_array)  
    end 
    Itest =I1; 
    clear I1 
 end 
 [M,N] = size(Itest); % final dimensions after cropping 
%***********************************************************************  
%********************************PROCESSING*****************************  
%---------------------------DENORMALIZING------------------------------ 
if flag8 == 0  
    if flagNorm == 1 
        load C:\MATLABR11\work\n    
        Itest = 1/2 + tan(pi*(Itest -1/2))/n; 
    end 
    Itest = 255*Itest; % bring to range [0,255] 
end 
%----------------------ORIGINAL IMAGE DCT ------------------------------- 
load C:\MATLABR11\work\dctI 
%----------------------------TEST IMAGE DCT ---------------------------------- 
T = dctmtx(8); 
dctItest = blkproc(Itest,[8 8],'P1*x*P2',T,T');  
clear Itest  
%----------------------RECOVERED WATERMARK DCT (EXTRACTED) -------------- 
dctWr = extractblind(dctI,dctItest,Mw,Nw,index,alpha,start,length);  
clear dctI 
clear dctItest  
%-------------IDCT ON RECOVERED WATERMARK COEFFICIENTS------------------  
Wr = blkproc(dctWr,[8 8],'P1*x*P2',T ',T); %recovered watermark 
Wr = uint8(round(Wr)); 
clear dctWr 
load C:\MATLABR11\work\W %the original watermark. Not needed for the  
                         % decoder. 
                         % We use it to calculate BER and rho 
%-------------------------------BER-------------------------------------  
ber = BER(W,Wr); 
fprintf(1, 'BER(bits per pixel)=%1.4f\n',ber); 
bermod = BERmod(W,Wr); 
fprintf(1, 'BERmod(bits per pixel with error)=%1.4f\n',bermod); 
%-------------------------------rho------------------------------------- 
rho = corCoef(W,Wr); 
fprintf(1, 'rho=%1.4f\n',rho); 
 
figure(11)  
imagesc(Wr,[0 255]), colormap(gray), title( 'Recovered Watermark') 
 
% References: 
% I. Retsas, “A DCT -based Image Watermarking Algorithm Robust to  
% Cropping and Compression”. Master's Thesis, NPS, Monterey, CA, 
% March 2002. 
% Chapter IV of the Thesis 
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function dctWr=extractblind(dctI,dctIm,Mw,Nw,index,alpha,start,length)  
 
%******************************************************************* **** 
% Giakoumakis Michail 
% December 2002 
% LAST MODIFICATION: March 2, 2003 
% FUNCTION: extractblind 
% INPUT: The matrix dctI, the marked matrix dctIm, the watermark  
%        dimensions Mw & Nw, the weighting factor a, the embedding  
%        size length and xstart.  
% DESCRIPTION: Uses the input information to recover the watermark.  
% RETURNS: The dct coeffs of the retrieved watermark.  
%*********************************************************************** [M,N] = 
size(dctI); 
dctDif = dctIm - dctI; 
k = 1; 
for i = 1:8:M % reshape 
    B(:,:,k:k+N/8 -1) = reshape(dctDif(i:i+7,:),8,8,N/8); % B is 8x8x4!!! 
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    k = k+N/8; 
end 
B = B(:,:,index); % sorting using index (:,:,:) 
embeddingSetsNumber = Mw*Nw/length; 
for i = 1 : embeddingSetsNumber 
    V = zigzag(B(:,:,i)); % V is a row vector that contains the elements  
                            of an 8x8 block aligned in zz fashion.  
    dctWr(i,:) = V(start:start+length-1)/alpha; 
    B(:,:,i) = zzRvs(V); 
end 
dctWr = reshape(dctWr,Mw,Nw); 
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