

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1968-12

Accuracy of a procedure for computing lower confidence limits on system reliablilty for various failure distributions.

Girouard, Richard Joseph

Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/11546

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1968 GIROUARD, R.

> ACCURACY OF A PROCEDURE FOR COMPUTING LOWER CONFIDENCE LITMITS ON SYSTEM RELIABILITY FOR VARIOUS FAILURE DISTRIBUTIONS

> > by

Richard Joseph Girouard

UNITED STATES NAVAL POSTGRADUATE SCHOOL

THESIS

ACCURACY OF A PROCEDURE FOR COMPUTING LOWER CONFIDENCE LIMITS ON SYSTEM RELIABILITY FOR VARIOUS FAILURE DISTRIBUTIONS

by

Richard Joseph Girouard

December 1968

trole and each trole in the second start when percent

TR Citation Patabase

Page 1 of 2

Accuracy of a Procedure for Computing Lower Confidence Limits on System Reliability for 130800 - MFG & INDUSTRIAL ENG & CONTROL OF PRODUCT SYS Save for Later Citation Format: Full Citation (1F) Technical Reports Collection NAVAL POSTGRADUATE SCHOOL MONTEREY CA Add to Shopping Cart Various Failure Distributions. Girouard, Richard Joseph **Citation Classification:** Field(s) & Group(s): Masters thesis, Personal Author(s): Title Classification: **Corporate Author:** Accession Number : **Unclassified Title:** 01 Dec 1968 Unclassified **Descriptive Note:** Unclassified AD0846239 **Citation Status: Report Date:** Active

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

ACCURACY OF A PROCEDURE FOR COMFUTING LOWER CONFIDENCE LIMITS ON SYSTEM RELIABILITY FOR VARIOUS FAILURE DISTRIBUTIONS

by

Richard Joseph Girouard Major, United States Army B.S., Creighton University, 1960

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL December 1968 Add to Shopping Cart Save for Later

Technical Reports Collection

Citation Format: Full Citation (1F)

Accession Number : AD0846239
Citation Status:
Active
Citation Classification:
Unclassified
Field(s) & Group(s): 130800 - MFG & INDUSTRIAL ENG & CONTROL OF PRODUCT SYS
Corporate Author: NAVAL POSTGRADUATE SCHOOL MONTEREY CA
Unclassified Title: Accuracy of a Procedure for Computing Lower Confidence Limits on System Reliability for Various Failure Distributions.
Title Classification: Unclassified
Descriptive Note:
Masters thesis,
Personal Author(s):
Girouard, Richard Joseph
Report Date:
01 Dec 1968
Media Count:
33 Page(s)
Cost:
\$7.00
Report Classification:
Unclassified
Descriptors: *CONFIDENCE LIMITS), (*SYSTEMS ENGINEERING, (*RELIABILITY, RELIABILITY), MATHEMATICAL MODELS, STATISTICAL DISTRIBUTIONS, PROBABILITY DENSITY FUNCTIONS, LIFE EXPECTANCY, COMPUTER PROGRAMS, SAMPLING, SIMULATION, THESES
Identifiers: COMPUTERIZED SIMULATION, PROBABILITY DISTRIBUTIONS.
Abstract: A statistical model for obtaining a lower 100(1 - alpha)% confidence limit on system reliability was developed for the Department of Navy Special Projects Office in May 1965. This method is a part of NAVWEPS OD 29304. The accuracy of this model is examined by computer simulation for various failure time distributions. The simulation results are presented and discussed. (Author)
Abstract Classification:
Unclassified
Distribution Limitation(s):
01 - APPROVED FOR PUBLIC RELEASE
Source Code:
251450

https://drols.dtic.mil/search97cgi/docview.dll?Key=AD0846239&Query=%28%28girouar... 3/21/2003

Document Location: DTIC Change Authority: ST-A USNPS LTR, 27 SEP 71

.

RRD G454 CI

NPS Archive 1968 Girovord, R

ABSTRACT

A statistical model for obtaining a lower 100(1-x)/3confidence limit on system reliability was developed for the Department of Navy Special Projects Office in Hay 1955. This method is a part of NAVWEPS OD 29304. The accuracy of this model is examined by computer simulation for various failure time distributions. The simulation results are presented and discussed.

TABLE OF CONTENTS

CHAFTER

т	TN	mpc	וות	i Ciri	סדי	TA																			_
۲.	T 1/	TUC			. 10	11	9	0	•	•	*	•	•	•	•	٠	•	•	٠	٠	•	٠	•	•	7
II.	ΞX	PLA	NA	TI	ION	r c)F	SI	'A'I	IS	STI	CA	ΙL	MC	DE	EL	•	٠	•	٠	•	•	•	•	10
III.	SI	MUL	AI	lC	N	PR	100	E	DUE	RΕ	AN	JD	RE	ESt	JLI	S	•	•	•	•	•	٠	•	•	16
IV.	SU	MMA	RY	I A	ND) C	10	ICI	JUS	SIC	DNS	5.	•	•		•	•	•	•	•	•	•	•	•	23
BIBLIOG	RA	PHY ′	•	•	•	œ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	26
APPENDI	X	1	•	•	•	•	•	•	¢	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	27
APPENDI	Χ	2	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
APPENDI	IX	3	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30

LIST OF TABLES

r.	ABLE		PAGE
	l.	Beta Values for 80% Confidence Limit	15
	2.	Results of Computer Simulation for Rayleigh Distributed Failure Times	21
	3.	Results of Computer Simulation for Binomial Distributed Failure Times	22

CHAPTER I

INTRODUCTION

In the last few years reliability has become of primary concern in the development of most large weapon systems. This growing importance of reliability has produced a great need for methods of predicting the overall reliability of these systems. Because of the size and complexity of present day military weapons system, it is necessary for major contractors to have many sub-contractors located throughout the country. This fact complicates the problem of formulating a method for computing lower confidence limits on system reliability where the reliability of the system is computed as the product of the reliabilities for the components.

Recently a system reliability model for computing a lower confidence limit for the reliability of weapon systems has been developed for the Navy and is contained in "Guide Manual for Reliability Measurement Program," NAVJEPS OD 29304, 15 May 1965. The model was prepared for the Department of Navy Special Projects Office. The document states that the model can be utilized by all contractors for subsystem reliability measurement and by the Navy for weapon system reliability measurement. The model permits the combination of test data from all levels (from component to weapon system) and types of tests into meaningful component, equipment, and subsystem failure rates and reliability indices.

An underlying assumption to this statistical model is constant failure rate, i.e., the exponential failure law is assumed to hold:

$$R = e^{-\lambda}$$
 (1)

where

R = reliability $\lambda = failure rate per mission$

It is the purpose of this thesis to examine the accuracy of the statistical model contained in OD 29304. The investigation that follows will examine the model when

(1) the failure distribution is other than exponential;
 in particular, when failure times have a Rayleigh
 distribution, i.e., increasing failure rate.
 Appendix 1 contains a graph of the Rayleigh distribution and its failure rate function.

(2) the failure distribution is a binomial distribution.

In later chapters, it will be explained that the $100(1-\alpha)$ percentile of the simulated distribution of the lower confidence limit, denoted by $A_{1-\alpha}$, and the true reliability of the system, R_s , should be equal. Therefore, the difference will be used as a measure of the accuracy of the model. As an example of some of the results, consider the system with 4 components, each having a reliability of .995. Samples of sizes of 50 and 500 components were tested

with a planned test time of 2 mission units. The true reliability of the system, R_s, is .9801. The 80th percentile points of the distribution of the lower confidence limit for Rayleigh distributed failure times were computed to be:

<u>a</u>	ni	$\frac{A_1 - \alpha}{\alpha}$	$A_{1-\alpha} - R_{s}$
.20	50	.957	.023
.20	500	.961	.019

Jhen the failure times were binomially distributed and the test time was one mission unit, the 80th percentile points of the distribution of the lower confidence limit were computed to be:

<u> </u>	ni	$\frac{A_1 - \alpha}{\alpha}$	$A_1 - \alpha - R_s$
.20	50	.968 3	.0120
.20	500	.9800	.0001

Chapter II contains a complete explanation of the statistical model in OD 29304. Chapter III discusses the simulation procedures and presents the simulation results. It also discusses the two methods used to determine the accuracy of the model. Chapter IV discusses and summarizes the results and states the conclusions.

CHAPTER II

EXPLANATION OF STATISTICAL MODEL (1)

If a system consists of k components in logical series, the true system reliability, $R_{_{\rm S}}$, may be expressed as

$$\mathbf{R}_{s} = \prod_{i=1}^{k} \mathbf{R}_{i}$$
 (2)

where $R_{_{4}}$ is the true reliability of the ith component.

It is desired to find a lower $100(1-\alpha)\%$ confidence limit for R_s. That is, a statistic $\stackrel{A}{R_s}_{,L(\alpha)}$ such that whatever the actual values of R_i, i = 1,2,...,k,

$$\mathbb{P}[\mathbb{R}_{s} \ge \mathbb{R}_{s,L(\alpha)}] = 1 - \alpha$$
(3)

The proposed method to find this lower $100(1-\alpha)\%$ confidence limit for R_s as outlined in OD 29304 will be presented below to include:

- (1) Operating assumptions.
- (2) Estimation of failure rates.
- (3) Statistical equations for confidence limits on failure rates and reliability.

Operating Assumptions

The reliability measurement system described in OD 29304 is predicated upon the general reasonableness of the following assumptions:

- (1) Constant Failure Rate the exponential failure law is assumed to hold.
- (2) Additivity of Stress Effects the failure rate induced by two simultaneously acting stresses is equal to the sum of the failure rates due to the two stresses acting sequentially. This assumption permits adding data from single environment tests together to simulate mission experience.
- (3) Independence of Component Failures independence of component failures is assumed because components are normally tested individually by type, and subsystem reliability is estimated using component and other applicable test results (e.g., equipment and subsystem).
- (4) Failure Rate Constancy the failure rate is considered a function of only the stress acting. In other words, the item under test has no memory.

Estimation of Failure Rates

Under the above assumptions, if component 1 has failure rate λ_1 , and component 2 has failure rate λ_2 , then the corresponding failure rate for the simple serial subsystem is:

$$\lambda_{\text{subsystel}} = \lambda_1 + \lambda_2 \tag{4}$$

Since the mode of testing generally employed by subsystem contractors is to test until some planned test time, the failure rate estimates, λ_i , contain bias. Therefore, an

unbiased failure rate estimate has been developed in OD 29304 and is given as

$$\hat{\lambda}_{i} = \frac{f_{i}}{S_{i}} \left[\frac{2n_{i}}{2n_{i}+1} \right]$$
(5)

where

- n_i = sample size for the ith component; i.e., the number of tests conducted on component i.
- S_{i} = the sum of all test times accumulated on the n components of type i.

Under the OD 29304 method, failure rate estimates for subsystem reliability can be calculated from component, component-environment, or component-environment-test condition level data. That is

$$\lambda_{\text{component}} = \Sigma \lambda_{\text{component-environment}}$$
(6)

$$\lambda_{equipment} = \sum \lambda_{component}$$
 (7)

$$\hat{\lambda}_{subsystem} = \Sigma \hat{\lambda}_{equipment}$$
 (8)

It permits the combination of test data from all levels (from component to weapon system) and types of tests into meaningful component, equipment, and subsystem failure rates.

Statistical Equations

All statistical estimates, based as they are upon fragmentary data, are subject to statistical uncertainty. In reliability work, it is usually of interest to compute upper limits on the failure rate and corresponding lower limits on the reliability. The following statistical equations for calculation of the lower confidence limit are based on normal theory and have been corrected to compensate for small values of λ . Detailed derivations of these formulas are contained in reference 1.

The method proposed is to put n_i items of component i on test under the environmental conditions defined in the mission and let each operate until failure or the planned test time, whichever occurs first. All time is measured in mission units. Then an unbiased estimate of failure rate, λ_i , for each component i is obtained from equation (5). If failures have occured for any of the i components, an upper limit on failure rate can be calculated as follows:

$$\Lambda_{u} = \frac{2\lambda + (\beta K)^{2}C + \sqrt{4\lambda(\beta K)^{2}C + (\beta K)^{4}C^{2}}}{2}$$
(9)

where

$$\begin{array}{l} \mathbf{\hat{\lambda}} = \sum_{\substack{\Sigma \\ \mathbf{i} = 1}}^{\mathbf{k}} \mathbf{\hat{\lambda}}_{\mathbf{i}} \\
\end{array} \tag{10}$$

$$\hat{C} = \frac{\Sigma(\lambda_{i}/S_{i})}{\lambda}$$
(11)

 $K = (1 - \alpha)$ th percentile of the normal distribution

 β = correction factor; Table 1 shows appropriate beta values for the 80th percent confidence limit

Then no failures have occurred, the upper limit on failure rate is

$$\hat{\lambda}_{u} = \frac{(\beta K)^{2}}{k} \sum_{i=1}^{k} \frac{1}{S_{i}}$$
(12)

where

k = number of components in the simulations S_i = the sum of all test times accumulated on the n_i components of type i

Substitution of the upper limits on the failure rates previously obtained will generate corresponding lower confidence limits on reliability; thus:

$$A_{\rm B_{\rm s}, L(\alpha)} = e^{-\lambda_{\rm u}}$$
(13)

To determine the accuracy of the above model, one needs to look at the characteristics of $\stackrel{\bullet}{R}_{s,L(\alpha)}$. By definition, $\stackrel{\bullet}{R}_{s,L(\alpha)}$ is a lower $100(1-\alpha)\%$ confidence limit for $\stackrel{\bullet}{R}_{s}$, the system reliability; i.e., from equation (3)

$$P[R_{s,L(\alpha)} \leq R_{s}] = 1 - \alpha$$

This says that R is always the $(1 - \alpha)$ th percentile point of the probability distribution of $R_{s,L(\alpha)}$. Thus if we construct the distribution of $\hat{R}_{s,L(\alpha)}$ by computer simulation, we should find that the $(1-\alpha)$ th percentile point of our constructed distribution is R_s , <u>if</u> equation (3) is correct; i.e., <u>if</u> in fact $\hat{R}_{s,L(\alpha)}$ is a true $100(1-\alpha)\%$ lower confidence limit for R_s .

Thus a measure for the accuracy of the model is

$$A_{1-\alpha} - R_{s}$$

where

$$A_{1-\alpha} = (1-\alpha) \text{th percentile point of the distri-}$$

bution of R
s,L(\alpha)

If equation (3) is correct, then $A_{1-\alpha}$ should equal R_s .

TABLE 1

BETA VALUES FOR 80% CONFIDENCE LIMIT

Number of Failures f _i	Beta Values ^{\$} 1	f _i	β _i	f	β _i
0	1.507	10	1.173	20	1.129
1	1.369	11	1.167	21	1.126
2	1.309	12	1.161	22	1.124
3	1.272	13	1.156	23	1.122
4	1.246	14	1.153	24	1.119
5	1.227	15	1.146	25	1.117
6	1.212	16	1.144	26	1.115
7	1.200	17	1.139	27	1.113
8	1.190	18	1.135	28	1.111
9	1.180	19	1.132	29	1.110

CHAPTER III

SIMULATION PROCEDURE AND RESULTS

In order to evaluate the accuracy of the OD 29304 model, a computer program was written and used to simulate the distribution of $\hat{R}_{s,L(\alpha)}$. The distribution is constructed on a computer by generating 500 values of $\hat{R}_{s,L(\alpha)}$ for a given set of parameter values k, n_i (i = 1,2,...,k), R_i (i = 1,2,...,k), T_{oi} (i = 1,2,...,k), and a given failure distribution; i.e., $\hat{R}_{s,L(\alpha)}$ is a function of

k: number of components in the system
n_i: number of items of component i tested
R_i: reliability of component i
T_oi: planned test time for component i
f_i(t): failure distribution for component i

When a failure distribution for component i is specified, the computer program generates 500 random failure time variates, $T_{ij}(j=1,2,\ldots,500)$, for component i. If the generated time variate is less than the planned test time, T_{oi} , a failure is "counted" by the computer. With the total number of failures, f_i , counted for a set of 500 generated failure times, the computer program then computes the failure rate for component i, $\hat{\lambda}_i$, from equation (5). The above procedure is repeated for each component i, and the corresponding upper limit on the system failure rate, $\hat{\lambda}_u$, is then calculated from equations (9), (10), and (11). With this value of the

system failure rate, the lower confidence limit on the system reliability, $R_{s,L(\alpha)}$, is computed from equation (13). The above procedure is replicated, giving 500 values of $\hat{R}_{s,L(\alpha)}$. These 500 values are then ordered by a separate subroutine, and the computer "picks" the $(1-\alpha)$ th percentile of these 500 values, denoted by $A_{1-\alpha}$. This value is then compared with the true system reliability R_{s} .

The above simulation procedure was carried out for the following two methods:

- (1) Rayleigh distributed failure times
- (2) Binomial distributed failure times

Rayleigh Distributed Failure Times

Since the Rayleigh distribution is a one parameter distribution (see appendix 1), it was decided to choose the value of this parameter (a) such that the reliability of a component for one mission unit is .995; i.e.,

$$R_{j}(1) = P[T_{jj} > 1] = .995$$
(14)

The determination of the value of this parameter is shown in appendix 2. The resulting failure time distribution that will be assumed for each component i in the simulation is:

$$f_{1}(t,a) = \frac{1}{a^{2}}te^{-\frac{t^{2}}{2a^{2}}}$$
, $a = 10, t > 0$ (15)

For Rayleigh distributed failure times, the accuracy of the model was examined for five cases:

(1) Case 1:
$$T_{oi} = 0.5$$
 mission units
(2) Case 2: $T_{oi} = 1.0$ mission units
(3) Case 3: $T_{oi} = 1.5$ mission units, $i = 1,2$
1.35 mission units, $i = 3,4$
(4) Case 4: $T_{oi} = 2.0$ mission units
(5) Case 5: $T_{oi} = 5.0$ mission units

Determining the Case 4 planned test time, T_{oi} , is shown in appendix 2. For each case, the number of components k was equal to 4, the reliability R_i was equal to .995, and various values of n_i were used. The cases are numbered and the results shown in Table 2. The mean and variance of the distribution of $R_{s,L(\alpha)}$ are also shown in Table 2. The quantity labeled TT in Table 2 is expressed by

$$TT = \sum_{i=1}^{k} n_i Q_i$$
(16)

where

 $Q_1 = 1 - R_1 =$ the unreliability of component i

This quantity, TT, is a function of the amount of testing relative to the unreliability or failure rate. The results of the cases in Table 2 imply that the model is more accurate as TT increases.

Binomial Distributed Failure Times

For this method, the failure rate for component i, λ_i ,

is given as

$$\hat{\lambda}_{i} = \hat{q}_{i} = \frac{\hat{f}_{i}}{n_{i}}$$
(17)

where

 f_i = number of components of type i that failed n_i = number of items of component i tested

Using a uniform random number generator, the computer generates a uniform random value between 0 and 1 for component i. If the value is greater than R_i , a failure is "counted" by the computer. This procedure is repeated n_i times for each R_i and for each component i. Thus the number of failures counted divided by n_i becomes an estimate of the failure rate for component i as given by equation (17) above. This process is repeated for all components. Nith these estimates, A_i , the computer simulation determines $A_{1-\alpha}$ and calculates the mean and variance of the 500 values of $R_{s,L(\alpha)}$ as previously explained.

For this method, the accuracy of the model was examined for three cases:

(1) Case 1: $R_i = .995$ (2) Case 2: $R_i = .950$ (3) Case 3: $R_i = .900$

The sum of the failure times, S,, was set equal to to n;; i.e.,

$$S_{i} = \sum_{i=1}^{n_{i}} T_{ij} = n_{i}$$
, $i = 1, 2, ..., k$ (18)

the number of components k was equal to 4, and various values of n were used. The cases are numbered and the results shown in Table 3. Again, the quantity, TT, is also listed in Table 3.

TABLE 2

RESULTS OF COMFUTER SIMULATION (Rayleigh Distributed Failure Times)

EL LI	1.0	2.0	10.0	2.0	0.0	10.0	1.0	2.0	10.0	1.0	2.0	10.0	1.0	2.0	10.0
Standard Deviation of $\mathbf{R}_{s,L(x)}$.023	.016	.008	.015	.008	.006	.020	.015	.006	.018	.013	007	.023	.017	.006
Rean of $\mathbf{R}_{s,L}(\alpha)$.926	.956	.981	.959	.970	.973	.936	- 947	.956	. 892	. 897	. 897	.938	.939	.961
Αl - α	.937	.968	.988	.970	- 572.	.984	.957	.961	.961	.907	.909	.909	.956	.957	.967
ರ	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20
an M	.980	.980	.980	.980	. 980	.980	.980	.980	.980	. 980	.980	.980	.980	.980	.980
ы. Г	.995	.995	.995	.995	.995	.995	.995	.995	.995	.995	.995	.995	.995	.995	.995
i u	50	100	500	100	300	500	50	100	500	50	100	500	50	100	500
Toi	0.5			1.0			2.0			5.0			$T_{Ol} = T_{O2} = 1.5$	$T_{03} = T_{04} = 1.35$	
k	4			4			- †			4			4		
CASE	Ч			2	an that a little start	nativ gi an maa	9			7			5		10404744

TABLE 3

RESULTS OF COMPUTER SIMULATION

	10	0	0	0	0	10	())		10			
LL	0.5	1.0	2.0	10.0	1.3	2.5	5.2	26.0	2.6	5.0	10.4	52.0
Standard Deviation of $\mathbb{R}_{s,L(\alpha)}$.033	. 025	.016	400.	.048	.036	.024	700.	. 063	行行0。	. 031	.004
Mean of Rs,L(α)	.916	- 94J	.959	.973	. 879	+06.	.923	.939	. 825	. 850	. 869	. 889
$A_1 - \alpha$	-937	.968	.970	.980	.937	.942	.946	.948	.887	. 896	. 894	. 899
ರ	.20	.20	.20	.20	. 20	.20	.20	.20	. 20	.20	.20	.20
at on	.980	.930	.980	.980	.950	.950	.950	.950	006.	.900	.900	.900
n,	25	50	100	500	25	50	100	500	25	50	100	500
ц.	.995				.987		-		426.			
$S_{\hat{1}} = \Sigma T_{\hat{1},\hat{j}}$	ц,				ŗ				ņ			
শ্ব	4				4				t			
CASE	r-I				(V)				3			

CHAPTER IV

SUMMARY AND CONCLUSIONS

It was stated previously that a measure of the accuracy of the model was given by

 $A_{1-\alpha} - R_{s}$

where A is the $(1-\alpha)$ percentile point of the distribution of $\hat{R}_{s,L(\alpha)}$, and R_{s} is the true reliability of the system. For the Rayleigh distributed failure times, this measure for the various cases is shown below for R_{s} equal to .995.

T _{oi}	α	ni	Rs	$A_{1-\alpha} - R_{s}$
0.5	.20	50 100 500	•995 •995 •995	.043 .012 .008
1.0	.20	100 300 500	•995 •995 •995	.010 .003 .003
2.0	.20	50 100 500	•995 •995 •995	.023 .019 .019
5.0	.20	50 100 500	•995 •995 •995	.073 .071 .071

The above results bring out some rather interesting points. If the planned test time, T_{oi} , is large, the model gives pessimistic results; i.e., the accuracy is not very good, regardless of the sample size n_i . However, if the planned test time is small, the accuracy of the model is very good

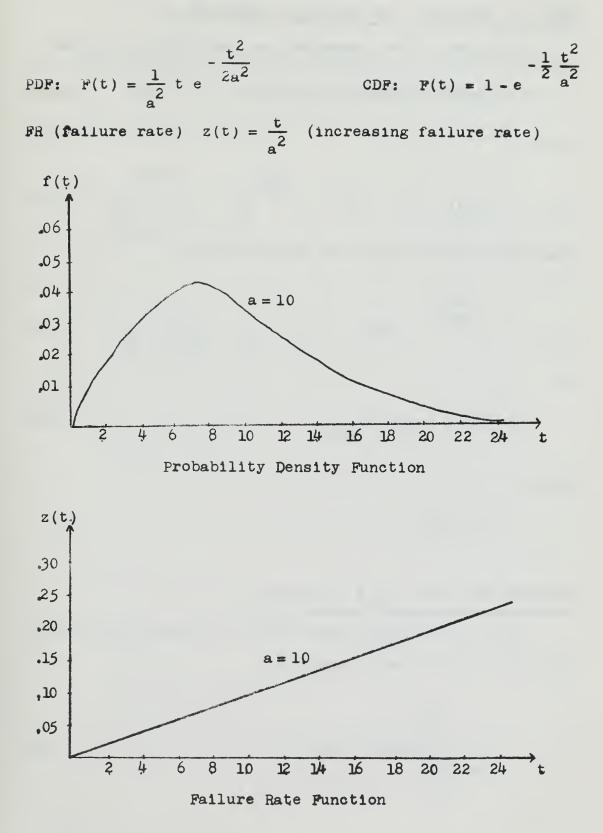
if a large sample of a particular component is tested. In other words, for small planned test times, the accuracy of the model is very good when the quantity, TT, is greater than 6.

For the Binomially distributed failure times, the accuracy of the model for the various cases is given below.

α	R _s	ni	$A_{1-\alpha} - R_{s}$
.20	.980	25	.043
	.980	50	.012
	.980	100	.010
	.980	500	.000
.20	.950	25	.013
	.950	50	.008
	.950	100	.004
	.950	500	.001
.20	.900	25	.013
	.900	50	.004
	.900	100	.002
	.900	500	.001

The results clearly show that the accuracy of the model is extremely good, especially when the sample size, n_i, is large.

Obviously, the main reason for the results in the case of Rayleigh distributed failure times is the fact that the components have increasing failure rates. The underlying assumption in this model is that components under test have a constant failure rate. In practical applications, many components follow this assumption reasonably well, when infant mortality failures are deleted and wearout failures are not anticipated during the mission duration. However, if a new component is being tested, a constant failure rate


may not be reasonable at all. Therefore, when this model is being used to obtain a lower confidence limit on the reliability of a weapon system, and it is known that a particular component has an increasing failure rate, then the points brought out above as a result of the simulation should be taken into consideration.

BIBLIOGRAPHY

- "Guide Manual for Reliability Measurement Program.", NAVNEPS OD 29304, 15 May 1965. Prepared for Department of Navy Special Projects Office.
- 2. Gress, J. A., "A Refinement of an Established Method for Computing Confidence Limits on System Reliability." THESIS, Naval Postgraduate School, Monterey, California, June 1967.
- Lipow, M., and Lloyd, D. K., <u>Reliability: Management</u>, <u>Methods, and Mathematics</u>, Prentice-Hall, Inc., New Jersey, 1962.

APPENDIX 1

RAYLEIGH DISTRIBUTION

APPENDIX 2

Value of Parameter for Rayleign Distribution

The value of the parameter, a, was chosen such that

$$R_{i}(1) = P[T > 1] = .995$$
(19)

where

$$R_{i}(t) = 1 - F(t) = e^{-\frac{t^{2}}{2a^{2}}}$$
(20)

Equating equations (19) and (20), we obtain

$$-\frac{1}{2a^2}$$

e = .995 , t = 1 (21)

or

$$a^2 = -\frac{1}{2(\ln .995)}$$
(22)

hence

$$a = 10$$

Planned Test Time (T_{oi}) for Case 4

The Case 4 planned test time was chosen such that T oi satisfied the following equation:

$$\frac{1}{T_{o1}} \int_{0}^{T_{o1}} Z(t) dt = Z(1)$$
 (23)

where

$$Z(t) = \frac{t}{a^2} \qquad (24)$$

This value of T_{oi} makes the "average" value of Z(t) between o and T_{oi} equal Z(1). Setting t = 1 in equation (24) and equating (23) and (24) gives

$$\frac{1}{T_{\text{oi}}} \int_{0}^{T_{\text{oi}}} \frac{t}{a^2} dt = \frac{1}{a^2}$$
(25)

(26)

or

$$\frac{1}{T_{oi}} \left(\frac{T_{oi}^2}{2a^2} \right) = \frac{1}{a^2}$$

hence

$$T_{01} = 2.0$$

APPENDIX 3

COMPUTER PROGRAM

```
DIMENSION PT(4,3), RSL(500), A(3), RSBAR(3), SRS(3),
       BETA(30), RS1(3), RSLBAR(3), RS(500), Q(4), NM(4)
      READ(5,10)(NM(J), J = 1, 4), (BETA(K), K = 1, 30), (Q(I), I = 1, 4)
   10 FORMAT(414/16F5.3/14F5.3/4F6.3)
      TPR = URN(0)
      DO 999 K = 1,4
      SS = NM(K)
      SRS(K) = 0.0
      A(K) = 0.0
      RSLBAR(K) = 0.0
      SRSL(K) = 0.0
      F2 = NM(K)
       B = (2.0 * F2)/(2.0 * F2) + 1.0)
This loop generates 500 time variates for each component
      DO 900 M = 1,500
      FS = 0.0
      VU = 0.0
      C = 0.0
      V1 = 0.0
      RSL(M) = 0.0
      RS(M) = 0.0
      DO 800 I = 1,4
      FF = 0.0
      VL = 0.0
      NL = NM(K)
      DO 700 J = 1, NL
      TPR = URN(1)
      IF(TPR.GT. Q(I))GO TO 605
      GO TO 700
  605 \text{ FF} = \text{FF} + 1.0
  700 Continue
      VL = FF/F2
      V1 = V1 + VL
      FS = FS + FF
      C = C + (VL/SS)
      VU = VU + (1.0/SS)
  800 CONTINUE
This statement computes a value of R_{c} = e^{-\lambda}
      RS(M) = EXP(-V1)
      RSBAR(K) = RSBAR(K) + RS(M)
      IF(FS .GT. 0.0)GO TO 842
      BTA = BETA(1)
      VU = (VU * BTA) * (BTA * . 177241)
      Go to 832
```

842 C = C/VIIF(FS .GE. 30.0)GO TO 820 L1 = FS + 1.0BTA = BETA(L1)GO TO 825 820 BTA = 1.0825 B2 = (BTA * .708964) * BTA D = ((4.0 * V1)*(B2*C)) + ((B2*B2)*(C*C)) $D = S \Im RT(D)$ VU = (((2.0 * V1) + (B2*C)) + D)/(2.0)This statement computes a value of $\hat{R}_{s,L}(\alpha) = e^{-\hat{\lambda}_{u}}$ 832 RSL(M) = EXP(-VU)RSLBAR(K) = RSLBAR(K) + RSL(M)900 CONTINUE The following statements compute the mean and variance of R_s and R s,L RSBAR(K) = RSBAR(K)/500.0RBAR = RSBAR(K)DO 905 M = 1,500SRS(K) = SRS(K) + (RS(M) - RBAR) **2905 CONTINUE SRS(K) = SQRT(SRS(K)/500.0)RSLBAR(K) = RSLBAR(K)/500.0RLBAR = RSLBAR(K)DO 2410 J = 1,500SRSL(K) = SRSL(K) + (RSL(J) - RSBAR) * 22410 CONTINUE SRSL(K) = SQRT(SRSL(K)/500.0)The following statements order the 500 values of Rs, L and picks the 80th percentile of the 500 values, $A_{1-\alpha}$. II = 1DO 910 I = 1,101TEMP = RSL(1)DO 915 J = 1,500IF(TEMP - RSL(J))916,915,915 916 TEMP = RSL(J)II = J915 CONTINUE RSL(II) = 0.0A(K) = TEMP9.0 CONTINUE The following statements print out the results- $A_{1-\alpha}$, mean and standard deviation of R_{S.L}, and the mean and standard deviation of R₂.

```
WRITE(6,1010) A(K),RSLBAR(K),SRSL(K),RSBAR(K),SRS(K)
1010 FORMAT(//6F13.5)
999 CONTINUE
END
```

•

INITIAL DISTRIPUTION LIST

		1VO.	Copics
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		20
2.	Library U.S. Naval Postgraduate School Monterey, California 93940		2
3.	Sponsor (Code 96) Department of the Army Jashington, D.C.		l
4.	Professor <i>A.</i> M. Joods Department of Operations Analysis Naval Postgraduate School Monterey, California 93940		5
5.	Major Richard J. Girouard, USA 3621 "Q" Street Omaha, Nebraska		l

UNCLASSIFIED								
Security Classification								
DOCUMENT CONT	ROL DATA - R	& D						
Security classification of title, body of abstract and indexing a	annotation must be e	ntered when the	overall report is classified)					
1 ORIGINATING ACTIVITY (Corporate author)			ECURITY CLASSIFICATION					
Naval Postgraduate School Monterey, California 93940		25. GROUP						
ACCURACY OF A PROCEDURE FOR COMPUT LOVER CONFIDENCE LIMITS ON SYSTEM RELIABILITY FOR VARIOUS FAILURE DI		NS						
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Thesis								
5. AUTHOR(S) (First name, middle initial, last name)								
Richard Joseph Girouard, Major, U.S. Army								
December 1968	78. TOTAL NO. OF PAGES		7b. NO. OF REFS					
88. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT NUMB	ER(S)					
b. PROJECT NO.								
с,	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)							
d.								
10. DISTRIBUTION STATEMENT		portage o						
and each transmittel to forming of		10101	Contraction and a					
Beat quadante Schmidy House and	l of the							
11. SUPPLEMENTARY NOTES	12. SPONSORING N	ALLITARY ACTIV	/17Y					
		-	te School					

13. ABSTRACT

A statistical model for obtaining a lower $100(1-\alpha)$ % confidence limit on system reliability was developed for the Department of Navy Special Projects Office in May 1965. This method is a part of NAVWEPS OD 29304. The accuracy of this model is examined by computer simulation for various failure time distributions. The simulation results are presented and discussed.

35

UNCLASSIFIED

6

KEY WORDS	LINK A		LINKB		LINK	
	ROLE	WΤ	ROLE	wт	ROLE	L
System Reliability						
Confidence Limits						
Comfidence Timits						
Computer Simulation of a						
Probability Distribution						
"A the start a the server and a server		·				
な 一篇は · 「読 an · · · · · · · · · · · · · · · · · ·			un à	- All		
· · · · · · · · · · · · · · · · · · ·	-	нт, 6 И		24	12 5.64	
Contract in the second s				•		
	-					
D FORM 1473 (BACK)		UNCI	ASSIF:	TED		
0101-807-6821 36 ·			Classifi			

UNCLASSIFIED

	KEY WORDS		LINK A		LINKB		LINK C	
		ROLE	ΨT	RÔLE	ΨT	ROLE	w	
			-					
	Sustan Dolishilita							
	System Reliability							
	Confidence Limits							
	Computer Simulation of a							
	Probability Distribution							
			1					
	·							
U.L.	the second states and second sec	-						
25	The state of second							
5	· Chief and in the second of the second of	255	5 m *		an in	100 200		
	the and the second second		br .			10.20.00	f	
		1						
-			1		1			

,

1.