

Calhoun: The NPS Institutional Archive DSpace Repository

Analysis and design of control systems by means of time domain matrices

Dorf, Richard Carl

Monterey, California: U.S. Naval Postgraduate School
https://hdl.handle.net/10945/11592

ANALYSHS AND DRSIGN OF CONTROM. SYSTEMS BY MEANS OF TMM: BOMAN MATRICES
 RICHARD G: DORF

LIBRARY
USS. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNA LIBRARY
USS. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNA LIBRARY
USS. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNA LIBRARY
USS. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNA
\qquad
\qquad
-

-

\qquad
\square ,

4-
-
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

-
\qquad
ER
4
\qquad
Cl_{4}

4
 1
\square

3534

GNALYSIS AND DESIGN OF CONTROL SYSTENS BY MEANS OF TIME DOMAIN MATRICES

RICHARD C. DORF

ANALYSIS AND DESIGN OF CONTROL SYSTEMS BY NEANS OF TIME DOMAIN MATRICES

by
Richard Carl Dorf

Subnitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

United States Naval Postgraduate School
Monterey, California
May, 1961

NPS ARCHIUE

1961
pority

Library
U. S. Naval Postgraduate School Monterey, California

ANALYS IS AND DESIGN OF CONTROL SYSTEMS BY leans of time domain matrices

by
Richard Carl Dorf

This work is accepted as fulfilling the Dissertation requirement for the degree
DOCTOR OF PHILOSOPHY
from the
United States Naval Postgraduate School

The aim of this dissertation is to present a new method of engineering analysis and design for complex control systems. This method is the time domain infinite matrix method. The formulation of the infinite matrix follows from the convolution summation of sampled data systems. The mathematical basis of the time domain matrix formulation is presented in a discussion of the applicable concepts of infinite matrices and sequence spaces. This method of analysis and design is applicable to both continuous data and sampled data systems. For continuous systems it is necessary to introduce a fictitious sampler and hold of sufficient sampling rate to effect an accurate approximation.

The time domain matrix method is presented and illustrated as a method of analysis and design of linear, nonlinear, and time parying systems of the continuous or sampled data class. Sampled data, time varying systems may not be conveniently investigated by any other existing method。 Furthermore the investigation of nonlinear systems is greatly simplified by the time domain approach. Multiloop systems may be treated with ease and the signals at intermediate points throughout the loops are readily available. Also, systems with muitiple nonlinearities may be investigated, for which there is not a presently available method of analysis and design.

Two methods of design of a discrete compensator for a sampled data system are presented. These methods are accomplished directiy in the time domain and allow for a compromise of specifications in the time domain. Also the response between samping instants is
accounted for in one of the two design procedures.
The time domain matrix method may be readily programmed on a digital computer and therefore provides a rapid analysis and design technique.

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION 1
II THF TIME DOMAIN MATRIX
2.1 Introduction 5
2.2 A Sampled Data System and the z Transform 5
2.3 The Convolution Summation 7
2.4 The Evaluation of the System Transfer Matrix of A Transfer Function 11
2.5 Response Between the Sampling Instants 12
2.6 The Formulation of the Matrix Equation for Closed Loop Systems 15
2.7 The Solution for the Response of A Simple System 17
III
THE MATHEMATICAL THEORY OF INFINITE MATRICES
3.1 The Mathematical Theory 20
3.2 Convergence and Stability in the Sequence Space 22
IV ANALYSIS OF CLOSED LOOP CONTROL SYSTEMS
4.1. A Method of Eraluatirig the Response of A Closed Loop System Without Inversion of Matrices 27
4.2 Evaluation of the Response of A Closed Loop System With Other Than Unity Feedback 32
4.3 Analysis of Multiloop Control Systems 35
404 Anslysis of Time Varying Control Systems 39
4.5 Analysis of Control Systems with Nome linear Components 47
4.6 Analysis of Continuous Control Systems 53
V INTRODUCTION TC THF DESIGN OF CLOSED LOOP CONTROL SYSTEMS
5.1 Introduction 57
5.2 The Design of the System Utilizing Time Varying Gain Compensation 59
5.3 Application of the Time Domain Matrix Method to the Design of Various Types of Control Systems 62
Chapter Page
$V I$ THE ANALYSIS AND DESIGN OF ADAPTIVE CONTROL SYSTEMS
6.1 Introduction 72
6.2 The Use of A Model in an Adaptire System 73
6.3 An Adaptive Gain System 78
6.4 An Adaptive Sampling Frequency System 80
6.5 The Use of the Time Domain Matrix Method for Anslysis and Design of Adaptive Sys tems 85
VII THE DESIGN OF DISCRFTE DATA COMPENSATORS
7.1 Introduction عٌ7
7.2 The Physical Realizability of Discrete Data Compensators 88
7.3 The Sensitivity Matrix of the Sampled Data System with A Discrete Compensator 90
7.4 Design of A Closed Lcop Discrete Com- pensator 91
7.5 Design of the Closed Loop Compensator by Time Domain Evaluation 96
7.6 The General Characteristics of the Clesed Loop Discrete Compensator 99
7.7 Time Domain Design of A Discrete Como pensator 102
VIII CONCLUSIONS
8.1 Summary of Results 125
8.2 Further Conciusions 126
8. 3 Future Work 128
RFFFREMCES 130
BIBLOGRAPHY 131
AFPENDICES
A THE SYSTEM TRANSFER MATRIX
A.l Determination of the System Natrix Using the z transform 132
Chapter Page
A.2. The Use of the Impuise Response to Epaluate the System Transfer Matrix 134
A. 3 Evaluation of the System Transier Matrix for Tntersample Response Using the Modified z Transform 135
Ao4 Evaluation of the System Transfer Matrix for Intersample Resporise Using the Impuise Response $23{ }^{r} 7$
A. 5 The System Matrix for A Type I Second Order System With A Hold 138
A. 6 The System Matrix for A Type II Second Orcier System With A Hold Network 139
B A METHOD OF INVERTING A LOWER TRIANGULAR MATRIX 144
Figure Page
I-1 Sampled Data Control System Block Diagram 2
2-1 Open Loop Sampled System 6
$2=2$ An Oper Loop Continuous System 6
$2=3$ Open Loop Sampled System With Hold 19
2-4 The Intersample Response 13
2-5 First Order Sampled System 16
$2=6$ Two Block Open Loop System 16
$2-7$ Closed Loop Sampled System 19
2-8 Closed Loop System With A Step Input 19
3-1 Closed Loop Sampled Data System 23
$4-1$ Error Sampled System 27
4-2 Two Sampler Feedback System 33
4-3 Error Sampled System 33
4-4 Three Sampler Single Loop System 36
4-5 Multiloop Sampled System 36
4-6 A Maitiloop Sampled System 38
$4-7$ Sampled Open Loop System 40
4-8 Time Varying Closed Loop System 41
4-9 System With Two Time Varying Components 42
4-10 Time Varying System With A Feedbsck Component 42
4-11 Open Loop Time Varying System 43
4-12 A Time Varying Gain 46
4-13 System With A Time Varying Gain 45
4-14 Time Varying Gain Example 46
$4-15$ Single Loop Nonlinear System $4 ?$
$4-16$ Saturating Amplifier Characteristic 47
4-17 Saturating Amplifier Characteristic Example 49
4-18 Hysteresis Characteristic 50
4-19 System With Two Noniinear Components 51
4-20 Continuous Feedback Control System 54
4-21 Location of The Fictitious Sampler 55
$4-22$ The Approximation of A Time Function 55
$5-1$ Unity Feedback Sampled Data Control System 59
5-2The Compensated Control System60
5-3 Step Response of Uncompensated and Compensated System 63
5-4 Continuous Data Compensation 64
5-5 The Digital Compensator in A Sampled Dats System 65
$5-6$ Control System With A Disturbance Input 67
5-7 Continuous Control System With Fictitious Sampling 70
6-1 The Use of A Model to Shape the Input Signal 74
6-2

 The Use of A Model in A Conditional FeedbackSystem74
 Figure Page
$6-3$ A Sampled Data Conditionel Feedback System 75
6-4 Cutput Response Por A Conditional Feedback System 777
$6-5$ Adaptive System With A Variable Gain 78
6-6 Compensated and Uncorpensated System Response 81
$6-7$ Variable Sempling Rate System 82
$7-1$ A Sampled Data System With A Discrete Data Compensator 88
$7-2$ The Sensitivity of the Compensated and Uncom- pensated System 92
$7-3$ Error Sampled System With A Discrete Compen- sator 93
$7-4$ An Opea Loop Discrete Compensator 93
$7=5$ Response of the System to A Step Input 97
7-6 Response of the System to A Ramp Inputo 98
$7-7$ System Response to A Unit Step Input 100
$7-8$ The Stable Sampled Imprise Response of the Discrete Compensator 103
$7-9$ Compensated Sampled Data Control System 105
$7-10$ Compensated and Uncompensated System Response 109
$7=11$ The Relation of the Intersample Response and the Sampled Response 115
7-12 Compensated and Incompensated System Respons: 116
$7-13$ Compensated and Reduced Gair System Response 219
$7-14$ The Relation of Intersample Response and the Sampled Response 220
7-15 System Response to A Ramp Ioput 122
A-1 Open Loop Sampled System 132
A -2 Delayed Sampling 135
$A=3$ The Impuise Response for Three Systems 143

LIST OF TABIES

Table Page
5.1 Rise Time and Overshoct of the Compensated and Uncompensated System 62
6.1 Response with Fixed and Variable Samplirug Period 84
7.1 Indices of Response for the Conpensated and Urampensated Systems 110
A. 1 Element Values for the System Transfer Natrix for Parious Systerms 140

TABLE OF SYMBOLS AND ABBREVIATIONS

Symbol	Description
s	The Laplace complex variable
z	z-transform variable $\left(=e^{s i}\right)$
$r(t), R(s), R(z)$	Input Signal
$C(t), C(s), C(z)$	Output Signal
$D(z)$	Transfer function of discrete compensator
$G(s), G(z)$	Transfer function of the plant or system
k, n	An interger
K	Gain
$[G]$	System Transfer Matrix
$[D]$	Discrete Compensator Matrix
$R]$	Input sequence column matrix
$C]$	Output sequence column matrix
$r(t), R(s)$	Sampled Input Signal
m	A sampler

During the last two decades, feedback control systems have become increasingly important to our technological civilization and have par= ticularly coritributed to national defense. Simultaneously, there has been increased interest and effort in the investigation of automatic control systems with respect to their analysis and design with various excitation signals.

The IoRom。defines a feedback control system as a control system comprising one or more feedback control loops, which combines functions of the controiled signals with functions of the commands to tend to maintain prescribed relationships between the commands and the cone trolled signals. Feedback control systems are a large olass of sys. tems which include many subclasses of which a few are linear systems, nonlinear systems, multivariable systems, time varying systems, sampleddata systems, and adaptive systems. The active and dynamic elements are not limited and may be electronic, electromechanical, hydraulic, or pneunatic.

An important subclass of control systems, sampled-data control systems, is a dynamical system which operates with sampled or quantized information. That is, the information is present as a sequence of dism crete numbers in time, in contrast to continuous data systems for which the controiling information is monitored continuously in time。 Ordic narily, the information is carried in the amplitude of the samples and may be considered puise amplitude moduiation. The block diagram of a typical sampled-data control system is shown in ifgure 1-1, where the sampled-controller may be a special or general purpose digital computer.

Figure 1-1. Sampled Data Control System Slock-Diagroqn

The wide use of digital computers today has further stimulated investigation of sampled-data systems. The seemingly unlimited possibilities of the use of a digital computer as an active element allow the possibility of considering these systems as a beginning towards the realizac tion of the much discussed adaptive and learning control systems which may imitate the human brain and nervous system.

There exist at present three major methods for the analysis and design of sampled-data systems as follows:

1. Difference equation approach
2. Frequency response methods
3. Z transform and modified transforms and the use of the root locus.

All these methods assume that sampling occurs instantaneously or therefore, that the pulses are of negligible width. The first method uses classical methods of difference equations and yields a solution only at the sampling instants. Frequency response methods are an attempt to extend concepts from continuous systems and suffer from the attendant disadvantages. The z transform uses a complex-variable transformation and determines the performance of the system by location of roots on loci in the complex z plane, and by inverse transformation.

It is the purpose of this dissertation to present a method of en gineering analysis and design for complex control systems. This method is the use of infinite matrices in the time domain. Analysis and dea sign for this method takes place directly in the time domain and avoids the necessity of transformations in complex-variables. This method has proven to be potentially useful for the investigation of a variety of systems.

Time domain anslysis and design has the important advantage of affording investigation directly in the domain of interest and direct evaluation of performance, therefore avoiding use of correlation theorems which are complex and may be inaccurate. This method avoids the difficulty of solution that is present for higher order systems using the z-transformation. In fact, the amount of work necessary for investigation is approximately the same for a first order as for any $n^{\text {th }}$ order system.

This method can be applied to many classes of systems which either do not lend themselves or are not possibly investigated by frequency os z-transform techniques. Therefore, beyond Inear system investigation, one may analyze and design nonlinear and time-varying systems. Also the investigation of continuous systems is made possible through the introduction of a fictitious sampler and hold of suitably high sampiing rate. The error introduced by this approximation of a continuous system by a sampled-data system can be reduced to a negligible amount with an attendant increase in labor of calculation.

This dissertation is presented in three parts. The first part comprising Chapters 2 and 3 presents the mathematical background and formulation of the time domain matrix equations. The second part coms prised of Chapters 4 and 5 presents the analysis and design methods and verification of the theory by application to various types of systems. The third part comprised of Chapters 6,7 , and 8 is concerned with the design and realizibility of the digital compensator in the time domaing and the final conclusions and possibilities for future investigation.

CHAPTER 2

THE TIMF: DOMAIN MATRIX

2-1 Introduction

The method of investigation of sampled-data control systems most comonly used today is the z-transformation, as is correspondingly the s-transform for continuous systems. The z-transformation converts the difference equations to a set of simultaneous algebraic equations which may be solved for the unknown variable and then by means of the inverse transiorm yields the response in the time domain. Formulation of the problem directly in the time domain allows one to avold this transfore mation and inverse transformation.

2-2 A Sampled-data System and the z Transform
A block diagram of a simple open loop sampled-data system is show in figure 2-1. The definition of the z-transform of $x^{*}(t)$ is ${ }^{\text {1 }}$

$$
\begin{align*}
& X(z)=X^{*}\left(\frac{1}{T} \ln z\right)=\sum_{n=0}^{\infty} x(n T) z^{-n} \tag{2-1}\\
& \text { where } z=e^{-s T}=u+j v \\
& \text { and } T=\text { sampling period }
\end{align*}
$$

Then it can be shown that the output at the sampling instants $Y(z)$ is:

$$
\begin{equation*}
Y(z)=G(z) X(z) \tag{2-2}
\end{equation*}
$$

where $G(z)$ is the z transform of $G(s)$.
In order to obtain the response between the sampling instants Jury ${ }^{2}$ introduced the modified z-transform where the response between the samples is:

$$
\begin{equation*}
Y(z, m)=G(z, m) X(z) \tag{2-3}
\end{equation*}
$$

Figure 2-1. Open Loop Sampled System

Figure 2-2. An Open Loop Continuous System

In order to obtain the response in the time domain, the inverse transformation must be utilized of which one form is:

$$
\begin{equation*}
y(n T)=\frac{1}{2 \pi_{j}} \oint_{\Gamma} G(z) z^{n-1} d z \tag{2-4}
\end{equation*}
$$

where Γ is the path of integration in the z-plane which encloses all the singularities of the integrand. It is found that the usefulness of the transform lies with the use of the root loci on the z-plane. However, one desires to obtain the reso ponse directly in the time domain and that will be the subject of the next section.

2-3 The Convolution Sumnation

The time response of a continuous system $G(s)$ as shown in figure $2-2$ to a continuous input $x(t)$ is given by the convolution integral:

$$
\begin{align*}
& y(t)=\int_{-\infty}^{t} g(t-\lambda) x(\lambda) d \lambda \tag{2-5}\\
& \text { where } \lambda=\text { dummy variable time delay } \\
& \text { and } g(t-\lambda)=\text { the delayed impulse response of the system } G(s) .
\end{align*}
$$

This method of obtaining the response is usually avoided in favor of the Laplace transform due to the difficulty of evaluation of the integral.

However, for the sampled data system as shown in figure 2-1, the input signal may be written:

$$
x^{*}(t)=\sum_{n=0}^{\infty} x(n T) \delta(t-n T)=\left[\begin{array}{c}
x_{1} \tag{2=6}\\
x_{2} \\
\text { where }[x] \text { is a column } \\
x_{3} \\
\vdots \\
0 \\
x_{n}
\end{array}\right]
$$

Now, in contrast to equation $2-5$, one may write an equation for the continuous output response as a convolution summation:

$$
\begin{equation*}
y(t)=\sum_{k=0}^{n} g(n T-k T) x(k T) \tag{2-7}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{n}=\sum_{k=0}^{n} g_{n-k x_{k}} \text { or } y_{n}=\sum_{k=0}^{n} g_{k} x_{n-k} \tag{2-8}
\end{equation*}
$$

where g_{n-k} is of ten referred to as the weighting sequence。 The values at the sampling instants of the impulse response, g_{n}, are related to $g(t)$ the impulse response as:

$$
\begin{equation*}
g_{n}=g(n T)=\left.g(t)\right|_{t=n T} \tag{2-9}
\end{equation*}
$$

Therefore, when the input is an ideal impulse of unity height, then:

$$
x_{n-k}=\left\{\begin{array}{lr}
1 & \text { for } k=n \\
0 & k \neq n
\end{array}\right.
$$

and $y_{n}=g_{n}$ the weighting sequence.
If equation 2-8 is expanded, one obtains:

$$
\begin{align*}
n=0 & y_{0}=g_{0-0} x_{0} \\
n=1 & y_{1}=g_{1-0} x_{0}+g_{1-1} x_{1} \\
n=2 & y_{2}=g_{2-0} x_{0}+g_{2-1} x_{1}+g_{2-2} x_{2} \\
& \therefore \tag{2-10}\\
& 0 \\
& 0 \\
n=n & y_{n}=g_{n-0} x_{0}+g_{n=1} x_{1}+g_{n-2} x_{2}+\cdots \\
& +g_{n-n} x_{n}
\end{align*}
$$

And equation 2-10 may be written as:

$$
\begin{array}{rl}
y_{0}= & g_{0} x_{0} \\
y_{1}= & g_{1} x_{0}+g_{0} x_{1} \tag{2-11}\\
y_{2}= & g_{2} x_{0}+g_{1} x_{1}+g_{0} x_{2} \\
& 0 \\
0 & 0 \\
y_{n}= & g_{n} x_{0}+g_{n-1} x_{1}+\ldots . . g_{0} x_{n}
\end{array}
$$

It can then be seen that this set of equations $2-11$ may be written in matrix form as:

or

$$
\begin{equation*}
\mathrm{Y}]=[\mathrm{G}] \mathrm{X}] \tag{2-12}
\end{equation*}
$$

where $Y]$ and $X]$ are column matrices of order Y_{i}
and $[G]$ is a square matrix of order n called the system trans fer matrix. ${ }^{3}$

For the case of a time varying system one then obtains instead of equatron 2-7 and 2-8:

$$
\begin{equation*}
y(n T)=\sum_{k=0}^{n} g(n T, k T) x(k T) \tag{2-13}
\end{equation*}
$$

and the transfer matrix form for the system $G(s)$ would be:

$$
[G]=\left[\begin{array}{cccccc}
g(0,0) & 0 & 0 & 0 & \cdots & 0 \\
g(1,0) & g(1,1) & 0 & 0 & & 0 \\
g(2,0) & g(2,1) & g(2,2) & 0 & & 0 \\
0 & 0 & 0 & 0 & & 0 \\
0 & 0 & \cdot & \vdots & & \vdots \\
g(n, 0) & g(n, 1) & g(n, 2) & g(n, 3) & \cdots & g(n, I)
\end{array}\right](2-14)
$$

For example, in order to obtain the output response for a unit step input to a system which is simply an integrator, we have to dec termine the X and G matrices. For a unit step input, the input at the sampling instants is always one or:

$$
\mathrm{X}]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

To determine the system matrix one must determine the weighting values at the sampling instants. If the period T is equal to one second then one simple method of determining the sequence is to find $G(z)$ and to divide:

$$
\begin{equation*}
G(z)=\frac{z}{z-1}=1+z^{-1}+z^{-2}+z^{-3}+\cdots . \tag{2-15}
\end{equation*}
$$

Another, more generally useful method is to determine the impulse response $g(t)$ and $f i n d$ the values at the sampling instants. For an $i n m$ tegrator, $G(s)=1 / s$ or:

$$
g(t)=u(t) \text { a unit step. }
$$

Therefore, the system matrix is:

$$
[G]=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \tag{2-16}\\
1 & 1 & 0 & 0 & & 0 & 0 \\
1 & 1 & 1 & 0 & \cdots & 0 & 0 \\
. & 0 & 0 & 0 & & & \\
i & i & i & i & \cdots & 1 & 1
\end{array}\right]
$$

Then, the output can be obtained using matrix multiplication: ${ }^{3}$

$$
\left.\begin{array}{rl}
Y
\end{array}=[G] X\right] \quad\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & \cdot \tag{2-17}\\
Y \\
1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2 \\
3 \\
4 \\
0 \\
0
\end{array}\right] .
$$

2-4 The Evaluation of the System Transfer Matrix of a Transfer Function In order to determine the output response of a system, the system transfer matrix must be available. This is determined with the most facility and accuracy by determining the $g(t)$ by taking the inverse transo form of $G(s)$. In order to evaluate the matrix values substitute $t=n T$ 。 This method of evaluation of the matrix is illustrated in Appendix A and Table A-l gives the values for some representive systems.

In many cases, a system has an undetermined $G(s)$ or frequency reso ponse and the $G(s)$ must be determined experimentally. In this case, it would be as convenient to determine the impulse response of the system directly and therefore the g_{n} values. For a large percentage of the sampled systems, a hold circuit filters the output of the sampler as shown in figure 2-3. In this case, the unit impulse is converted to a unit pulse of one sampling period width. Therefore, the z-transform equation for the output $I(z)$ is:

$$
\begin{align*}
Y(z) & =G_{h} G(z) X(z) \\
\text { where } G_{h} G(z) & =z\left\{G_{h} G(s)\right\} \tag{2-18}
\end{align*}
$$

Therefore, we are interested in determining the matrix

$$
\left[G_{h} G\right] \text {, and experimentally the values of this matrix may be }
$$

determined by exciting the system $G(s)$ with a unit pulse of period T 。

This method has been verified experimentally and yielded values within three percent of the expected elements of the matrix. This method of determination of the pulse response of the controlled system is easy to accomplish, and quite useful in investigating components with unknown transfer functions.
2.-5 Response Between the Sampling Instants

In any but the most well behaved system, the response between the sampling instants is of interest and must be determined. For this pure pose the modified z transform was introduced in the z domain, and an analogous method must be determined for the time domain matrix. Writing equation ($2-9$) one has:

$$
\begin{equation*}
g_{n}=g(n T)=\left.g(t)\right|_{t=n T} \tag{2-19}
\end{equation*}
$$

for the values at the sampling instants. Therefore, if the values at half-way between each sample are to be determined ($m=1 / 2$ in the modio fied transform) one has:

$$
\begin{equation*}
g_{n}(m=I / 2)=g\left(n T+\frac{1}{2} T\right)=\left.g(t)\right|_{t=n T+\frac{1}{2} T} \tag{2-20}
\end{equation*}
$$

The symbol m was chosen to be consistent with the modified z-transform and is defined as the percentage of the period from the sample point, as shown in figure 2-4. The index m can assume a value 0 to I and is at the $n^{\text {th }}$ sample when $m=0$ and the $n-1{ }^{\text {th }}$ sample when $m=1$ 。

For example, if the output between the sampling instants is required for the system show in figure 2-5, then one writes the equation for the output as:

$$
\begin{equation*}
Y(m)]=[G(m)] X] \tag{2-21}
\end{equation*}
$$

The impulse response of the system is:

Figure 2-3. Open Loop Sampled System With Hold

Figure 2-4. The Intersample Response

$$
g(t)=e^{-t}
$$

Then, the values of the transfer matrix at the sampling instants

$$
(m=0) \text { is: }
$$

$$
g_{n}=e^{-n}
$$

and the matrix is:

$$
[G]=\left[\begin{array}{lll}
1 & 0 & 0 \tag{2-22}\\
e^{-1} & 1 & 0 \\
e^{-2} & e^{-1} & 1 \\
0 & & 0 \\
e^{-n} & &
\end{array}\right]
$$

In order to determine the values at half-way between the sample points one must determine $[G(m)]$ where $m=1 / 2$. Therefore

$$
\begin{align*}
g_{n}(1 / 2) & =e^{-(n+1 / 2)} \\
\text { and }[G(1 / 2)] & =\left[\begin{array}{llll}
e^{-1 / 2} & 0 & 0 & 0 \\
e^{-1.5} & e^{-.5} & 0 & \\
e^{-2.5} & e^{-1.5} & e^{-.5} & \ldots
\end{array}\right] \tag{2-23}
\end{align*}
$$

Then, the output at the sampling instants and at the mid-point of the sampling period is:

$$
C]=\left[\begin{array}{clc}
1 & 0 & 0 \tag{2-24}\\
(.3679) & 1 & 0 \\
(.1353) & (.3679) & 1 \\
0 & & 1 \\
1 & 1.3679 \\
1 \\
1.5032
\end{array}\right]=
$$

and

$$
\left.\left.C(1 / 2)]=\left[\begin{array}{ccc}
.6065 & 0 & 0 \tag{2-25}\\
.2231 & .6065 & 0 \\
.0821 & .2231 & .6065 \\
\vdots & & 0
\end{array}\right] \begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\begin{array}{c}
.6065 \\
.8296 \\
.9117
\end{array}\right]
$$

The determination of these values is discussed further in Appendix A and values are given for the systems considered.

2-6 The Formulation of the Matrix Equation for Closed Loop Systems
Before considering the closed loop system, one must consider the two block open loop system as show in figure $2-6$ and examine the matfix algebra.

Then, the necessary equations are:

$$
\begin{equation*}
\left.\left.\left.B]=\left[G_{1}\right] X\right] \text { and } Y\right]=\left[G_{2}\right] B\right] \tag{2-26}
\end{equation*}
$$

Therefore, $\left.Y]=\left[G_{2}\right]\left[G_{9}\right] X\right]$
and, in general, since matrix multiplication is not commutative it is incorrect to write the transfer matrices in the reverse order, that is:

$$
\begin{equation*}
\left.\left.Y]=\left[G_{2}\right]\left[G_{1}\right] X\right] \neq\left[G_{1}\right]\left[G_{2}\right] X\right] \tag{2-28}
\end{equation*}
$$

Now, for a closed loop control system as shown in figure $2-7$ one has:

$$
e(t)=r(t)-(c) t \text { and } e^{*}(t)=r^{*}(t)-c^{*}(t)
$$

In matrix form one obtains:

$$
\begin{equation*}
\left.E]=R]-C] \quad \text { and } C]=\left[G_{2}\right]\left[G_{1}\right] E\right] \tag{2-29}
\end{equation*}
$$

Therefore, one has:

$$
\left.\left.\left.E]=R]-\left[G_{2}\right]\left[G_{i}\right] E\right] \text { and } E\right]=\left\{[I]+\left[G_{2}\right]\left[G_{1}\right]\right\}^{\infty 1} R\right](2-30)
$$

Therefore

$$
\begin{equation*}
\left.C]=\left[G_{2}\right]\left[G_{1}\right]\left\{[I]+\left[G_{2}\right]\left[G_{1}\right]\right\}^{-1} R\right] \tag{2-31}
\end{equation*}
$$

where $[I]=$ identity matrix $=\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & & \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & & & \\ 0 & 0 & & 0 & 1\end{array}\right]$
and $[A]^{-1}=$ inverse of matrix A. Thus, the solution for the output response involves matrix multiplication, addition, and inversion. Fortunately, one finds the inversion process is simplified by the fact

Figure 2-5. First Order Sampled System

Figure 2-6. Two Block Open Loop System
that the matrices are all lower trangular matrices; that is, all the elements above the diagonal are zero. Also, one finds equation 2-31 may be written as:

$$
\begin{equation*}
C]=[K] R] \text { where }[K]=[A]\{[I]+[A]\}^{-1} \tag{2-32}
\end{equation*}
$$

where $[A]=\left[G_{2}\right]\left[G_{1}\right]=$ the product of the transmission matrices in the forward path.

Post multiplying equation $2-32$ by $[I]+[A]$ one obtains:

$$
\begin{equation*}
[K]\{[I]+[A]\}=[A] \tag{2-33}
\end{equation*}
$$

Adding $[I]-[I]=[0]$ to both sides, then:

$$
[K]\{[I]+[A]\}=[A]+[I]-[I]=\{[I]+[A]\}-[I]
$$

Therefore, postmultiplying by the inverse of $[I]+[A]$, one obtains:

$$
\begin{equation*}
[K]=[I]-\{[I]+[A]\}^{-1} \tag{2-34}
\end{equation*}
$$

which substitutes subtraction for more difficult multiplication necese sary in equation (2-32).

2-7 The Solution for the Response of a Simple System
In order to evaluate the response of a closed-loop system, the in verse of the matrix $[I]+[A]$ must be determined. Since a physical system always is represented by a lower triangular matrix, one powerful method for inversion is given by Frazer, Duncan, and Collar and presented in Appendix $B{ }_{0}{ }^{4}$ Consider a simple approximate first order transfer funco tion system where the sampling period is one second and a>> 1 , so that a neglible delay will be introduced, but there will be no output at the $\mathrm{n}=0$ sampling instant. The system with a step input is shown in figure 2-8.

The system matrix is determined in Appendix A and given in Table A-1 and rewritten here:

$$
[G]=\left[\begin{array}{llllll}
0 & 0 & 0 & \cdots & \cdots & 0 \tag{2-35}\\
1 & 0 & 0 & & & \\
1 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 1 & \vdots & & & \\
1 & 1 & 1 & \cdots & \cdots
\end{array}\right]
$$

then

$$
\begin{align*}
& {[I]+[G]=\left[\begin{array}{llll}
1 & 0 & 0 & \cdots \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}\right] \quad \text { and }} \\
& \{[I]+[G]\}^{-1}=\left[\begin{array}{rlll}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 \ldots & 0 \\
0 & 0 & 0 & \\
0 & 0 & 0 & 1
\end{array}\right] \tag{2-36}
\end{align*}
$$

$$
[I]-\left\{\left[I \left\lvert\,+\left[\left.G\right|^{-1}=\left[\begin{array}{rlllll}
0 & 0 & 0 & & & \tag{2-37}\\
+1 & 0 & 0 & & & \\
0 & 1 & 0 & & & \\
0 & 0 & 1 & 0 & 0 \\
\vdots & & & & 0 \\
0 & & & & & 0
\end{array}\right]\right.\right.\right.\right.
$$

so that

$$
\mathrm{C}]=\left[\begin{array}{llll}
0 & 0 & 0 \tag{2-38}\\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 & .
\end{array}\right] \begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \\
&
\end{aligned}
$$

The values between the sampling instants after the first period would be the same as at the sampling instants, since

$$
[G(m=0)]=[G(m)] \text { for } n>1
$$

Figure 2-7. Closed Loop Sampled System

Figure 2-8. Closed Loop System with A Step Input

CHAPTER 3

THE MATHFMATICAL THEORY OF INFINITE MATRICES

3-1 The Mathematical Theory

It was shown in chapter two that the output time response could be obtained with the use of a matrix formulation. Furthermore, these matrices consist of elements whose values are those of a time response evaluated at discrete instants. For an open loop sampled-data system the matrix equation $2-12$ will be rewritten here:

$$
\begin{equation*}
Y]=[G] X] \tag{3-1}
\end{equation*}
$$

The column matrices Y] and XI contain the values of the discrete response and input respectively. If the response is to be determined for all time, then the order of the colum matrix, and the square sys $=$ tem matrix, is infinite. Of course, even if one does not need to evalum ate the infinite number of response values, the system matrix can be considered as an infinite matrix; that is, of large order. The content of this chapter is a discussion of infinite matrices and infinite sequences, and the calculation of the time response of a sampled-data system utilizing a matrix formulation in the time domain.

The system matrix G is an infinite matrix since

$$
\begin{equation*}
[A]=A=\left(a_{i j}\right)(i, j=1,2,3, \ldots \circ n \ldots . \infty) \tag{3-2}
\end{equation*}
$$

that is, the matrix A is an array of elements of infinite order. Hence forth, in this chapter, $\operatorname{let}[A]=A$ and the column matrices $X \mid=x$ and $Y \mid=y$ for convenience in notation. Cooke ${ }^{5}$ discusses, at length, the characteristics of infinite matrices. Only the characteristics of immediate importance shall be mentioned here. In general, the theory of infinite matrices is connected with mathematical analysis and the theory of functions.

The operations of interest for the infinite matrices are:

$$
\begin{align*}
& A+B=\left(a_{i j}+b_{i j}\right) \\
& A B=\sum_{k=1}^{\infty} a_{i k} b_{k j} \tag{3-3}\\
& \lambda A=\lambda a_{i j}
\end{align*}
$$

where λ is a scalar.
The input and output time responses are expressed as an infinite sequence of discrete values. These discrete values constitute the elew ments of the column vectors x and y. A vector x may be considered a sequence space. A definition of sequence space is: ${ }^{5}$

A set S of sequences is called a sequence space when it contains the origin, and is such that, for every x and y in S and for every (complex) scalar $c, x+y$ and $c x$ are in S.

The sequence space of interest is called σ, the space of all seo quences. Then, the matrix equation

$$
\begin{equation*}
y=A x \tag{3-4}
\end{equation*}
$$

or

$$
y_{n}=\sum_{k=0}^{n} a_{n k} x_{k}
$$

is a linear transformation of σ on itself, that is, the system with matrix A transforms the input sequence into another sequence, the output sequence. When

$$
\begin{equation*}
a_{n k}=a_{n-k} \tag{3-5}
\end{equation*}
$$

the system is time invariant as previously discussed in section 2-3. The infinite, positive time, matrices for physical systems are always lower triangular matrices (L.T.M.), that is:

$$
a_{1 j}=0 \text { when } j>i_{0}
$$

11so, for time invariant systems the elements are equal along the upper left to lower right diagonal. This matrix is called a diagonally invariant matrix ($\mathrm{D}_{0} I_{0} \mathrm{M}_{0}$) and exists when:

$$
\begin{equation*}
a_{i j}=a_{i-j} \text { for every } i, j \tag{3-6}
\end{equation*}
$$

It is important to note, that a matrix multiplication is non-commtative for the class of systems which are time-varying ($\mathrm{T}_{\mathrm{o}} \mathrm{V}_{0}$)。 These time-varying systems, for the operations defined in equation 3-3, are characterized by a non-Abelian (non-commutative) algebra. The time inc variant systems may be called a sub-class (T.I.) of the large class $T_{0} \nabla_{0}$ and are characterized by a Abelian algebra. That is, for time invariant systems, matrix multiplication is commatative. Thus for linear constant coefficient systems the order of the matrix multiplication may be reversed, while for nonlinear or time varying systems they may not.

Inversion of the infinite matrix A is of ten necessary and it is shown in reference 3 , that if there is no i where $a_{i i}=0$, and A is nono singular, then a unique inverse of A exists. The evaluation of the inverse of the $L_{0} T_{0} M_{0}$ is discussed in Appendix B_{0}

3-2 Convergence and Stability in the Sequence Space.
In an automatic control system it is of great importance to determine if the overall closed-loop system is stable and therefore the output time response is bounded. The output response is a sequence in the sequence space and it must be determined if the sequence is bounded. Therefore, if a step function test signal is applied to the system it is necessary to determine if the output sequence converges to a final value. If the system response diverges, the system is considered unstable。

For a closed loop control system, the output response may be written

$$
\begin{equation*}
y=A x \tag{3-7}
\end{equation*}
$$

where A is the closed loop system matrix and

$$
\begin{equation*}
A=G(I+G)^{-1} \tag{3-8}
\end{equation*}
$$

The G is an open loop system matrix as shown in figure 3-1

Figure 3-1. Closed Loop Sampled Data System
Then, given an input signal of a convergent nature, that is, of a bounded nature, the problem is to determine if the output sequence y is of a bounded nature. Mathematically, the problem is, given a convergent sequence x, under the transformation A, does a convergent sequence y rem sult? A theorem of fundamental importance concerning this problem is that of Kojima-Schur 。 ${ }^{5}$

> Kojima-Schur theorem: the necessary and sufficient condi-
tions that

$$
\begin{equation*}
y=A x \text { or } y_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k} \tag{3-9}
\end{equation*}
$$

should tend to a finite limit as $n \rightarrow \infty$ whenever x_{k} is convergent are that
(a) $\sum_{k=1}^{\infty}\left|a_{n k}\right| \leqslant M$ for every n.
(b) $\quad \lim _{n \rightarrow \infty} a_{n k}=\alpha_{k}$ for every fixed k,

$$
\begin{align*}
& \text { (c) } \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k}=\alpha \tag{3-12}\\
& \text { Moreover, if } \lim _{k \rightarrow \infty} x_{k}=\infty \text { then the final value is }
\end{align*}
$$

$$
\begin{equation*}
\text { (d) } \bar{y}=\lim _{n \rightarrow \infty} y_{n}=\alpha \overline{\bar{x}}+\sum_{k=1}^{\infty} \alpha_{k}\left(x_{k}-\bar{x}\right) \tag{3-13}
\end{equation*}
$$

A matrix satisfying a, b, c is called a k-matrix with α_{k} and \propto for its characteristic numbers. For, the special condition of $\alpha_{k}=0$ in condic tion (b), one defines the matrix A as a T matrix. The se are the condi= tions for convergence and clearly define the stability of a control syst. tom in the time domain. By examination of the impulse response of stable systems a physical understanding of these conditions results. Consider, for an example, a time invariant open loop system with a transfer function

$$
G(s)=\frac{1}{S} \text { and } T=1 \text { as discussed in section } 2-3 .
$$

Then $a_{n k}=a_{n-k}$ and $a_{m}=1.00$ where $m=n-k$. It is obvious that conc dition (b) yields $\alpha_{k}=1.00$. Furthermore, it can be seen that this system does not satisfy conditions (a) and (c). That is, examining conais tion (a) one finds for n
that

$\left|a_{n k}\right| \rightarrow \infty$. This result is as expected since the response is diverging as was determined in section $2-3$, equation $2-17$. Therefore condition (a) requires that the series $\sum\left|a_{n k}\right|$ converge in order for the system to be stable. For a closed loop system of figure 3-1, it is important at this point to recall that $A=G\{I+G\}^{-1}$. Therefore, A
may satisfy the condition (a) while G may not.
Theorem: If A is the matrix for a time-varying system ($T_{0} V_{0}$), the syse tem is stable if and only if it is a k_{r} matrix.

Corollary: If A is the matrix for a time invariant system, then it is a $D_{0} I_{0} M_{0}$ and $A=a_{i-j}$, and A is stable if and only if A is a T_{α} matrix.

For the large class of time invariant systems, the corollary implies that for stability it is necessary for

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty \quad \text { where } n=i-j \tag{3-14}
\end{equation*}
$$

For stable T.I. systems, one finds that $\alpha_{k}=0$, that is the matrix is a T_{α} matrix. For condition (c) one obtains $\alpha=1.00$ for a type I servo system. Then, by the use of relation (d) one obtains, as expected, the final value as:

$$
\begin{equation*}
\bar{y}=\alpha \bar{x}=\bar{X} \tag{3-15}
\end{equation*}
$$

The transformation on σ, accomplished by A as a $T_{e x}$ matrix is called a regular transformation. The property of importance is that as in equation 3-15, the T_{a} matrices have the property of consistency. That is, every convergent sequence is transformed io such a ratrix into another convergent sequence with the same limit when n approaches infinity. In addition, $T_{o x}$ or k matrices will frequently transform divergent sequences into convergent sequences. On this point it may be statad: ${ }^{5}$

Corresponding to each unbounded divergent sequence $\left\{S_{n}\right\}$ and each bounded sequence $\left\{y_{n}\right\}$, there is a general (square) $T_{o c}$ matrix which carries $\left\{S_{n}\right\}$ into $\left\{Y_{n}\right\}$.

In this chapter, the mathematical basis for the infinite matrices
has been discussed, and the operations defined. Furthermore, the theory of stability and convergence in the sequence space has been discussed. It is not to detract from this, that usually the conditions a), b), c), d) are investigated simultaneously with the evaluation of the actual output sequence for a given system.

CHAPTER 4

ANALYSIS OF CLOSED LOOP CONTROL SYSTEMS
4-1 A Method of Evaluating the Response of a Closed Loop System Witho out Inversion of Matrices

Consider the simple, error sampled, closed loop system as discussed in chapter two and shown in figure 4-1.

Figure 4-1. Error Sampled Systern

It was shown that the output response time sequence may be written as:

$$
\left.\left.C]=[G]\{[I]+[G]\}^{-1} R\right]=[I]-\{[I]+[G]\}^{-1} \quad R\right](4-1)
$$

Therefore, the evaluation of the output response involves the inversion of $[I]+[G]$ as discussed in Appendix B.

However, there is a simple method of evaluating the output response which avoids the inversion of a matrix. The output response column mas trix may be written as:

$$
\begin{equation*}
\mathrm{C}]=[\mathrm{G}] \mathrm{E}] \tag{4-2}
\end{equation*}
$$

where $E]=$ the error sequence in time.
The error sequence may be written as

$$
\begin{equation*}
E]=R]-C] \tag{4-3}
\end{equation*}
$$

It can be seen that the error matrix can be easily evaluated by subtrace tion. Then the error matrix multiplied by the system matrix will yield
the output response. Of course, the error matrix cannot be evaluated until the output sample values are available. However, it may be seen that the output sequence may be evaluated in a step by step procedure by examining the expanded form of equations $4-2$ and $4-3$ for the first three sampling instants. For a linear, time invariant system, one has:

$$
\left.\begin{array}{l}
c_{0} \tag{4-4}\\
c_{4} \\
c_{2}
\end{array}\right]=\left[\begin{array}{lll}
g_{0} & 0 & 0 \\
g_{1} & g_{0} & 0 \\
g_{2} & g_{4} & g_{0}
\end{array}\right]
$$

and

$$
\left.\left.\left.\left.\begin{array}{l}
e_{0} \tag{4-5}\\
e_{1} \\
e_{2}
\end{array}\right]=\begin{array}{l}
r_{0} \\
r_{1} \\
r_{2}
\end{array}\right]=\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\begin{array}{l}
\left(r_{0}-c_{0}\right) \\
\left(r_{1}-c_{1}\right) \\
\left(r_{2}-c_{2}\right)
\end{array}\right]
$$

Expanding equation $4-4$ with row by row matrix multiplication one obtains the following results.

For the first sampling instant, the time origin, one has:
and

$$
\begin{equation*}
c_{0}=g_{0} e_{0} \tag{4-6}
\end{equation*}
$$

$$
e_{0}=r_{0}-c_{0}
$$

Therefore, solving for e_{0} one obtains:

$$
\begin{equation*}
e_{0}=\frac{r_{0}}{1+g_{0}} \tag{4-7}
\end{equation*}
$$

However, for all physical systems, there can not be an output immediately: that is, there is always a time delay of small, but real magnitude. There fore, $\mathrm{g}_{0}=0$ for systems of interest. Then one has

$$
\begin{equation*}
e_{0}=r_{0} \tag{4-8}
\end{equation*}
$$

and

$$
c_{0}=0
$$

For the second sampling instant one has:

$$
\begin{equation*}
c_{1}=g_{1} e_{0}+g_{0} e_{1}=g_{1} e_{0}=g_{1} r_{0} \tag{4=9}
\end{equation*}
$$

and

$$
e_{1}=r_{1}-c_{1}
$$

Since g_{9} and r_{0} are known, then c_{1} may be evaluated and then e_{9} may be evaluated. Now, for the third sampling instant one obtains:

$$
c_{2}=g_{2} e_{0}+g_{1} e_{1}+g_{0} e_{2}=g_{2} e_{0}+g_{4} e_{8}
$$

and

$$
\begin{equation*}
e_{2}=r_{2}-c_{2} \tag{4-10}
\end{equation*}
$$

Therefore, it can be seen that one may proceed to evaluate the time response sample by sample in time. The equations such as $4-10$ bee come lengthy for larger n and it is simpler to use the matrix form. The matrix form may be written, with $g_{0}=0$, as:

$$
\left.\begin{array}{c}
c_{0} \tag{4=11}\\
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
g_{1} & 0 & 0 & \\
g_{2} & g_{1} & 0 & \cdots \\
\vdots & \vdots & \vdots \\
g_{n} & g_{n-1} & g_{n-2}
\end{array}\right]\left(\begin{array}{c}
r_{0} \\
\left(r_{1}-c_{1}\right) \\
\left(r_{2}-c_{2}\right) \\
\left(r_{n}-c_{n}\right)
\end{array}\right]
$$

For a linear time invariant system, the system matrix is diagonally inc variant. Therefore, multiplication of $[G]$ e] as a row-colunn multiplies cation may be replaced by a colunn-column multiplication. This is possiebile since, for example, the third row is identical to the first column from the third element upwards. That is, one may write the $3^{\text {rd }}$ muitipiic cation as:

$$
c_{2}=\left[g_{2}, g_{1}, g_{0}\right]\left[\begin{array}{l}
e_{0} \tag{4-12}\\
e_{1} \\
e_{2}
\end{array}\right]=\left[\begin{array}{lll}
g_{2}, & g_{1}, & 0
\end{array}\right]\left[\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2}
\end{array}\right]
$$

or alternately as:

$$
c_{2}=\left[\begin{array}{l}
0 \tag{4-13}\\
g_{1} \\
g_{2}
\end{array}\right]\left[\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2}
\end{array}\right]=g_{2} e_{0}+g_{1} e_{1}
$$

Multiplication is accomplished by multiplying the first element of E] by the last element of [G] of interest.

Then, in general it is possible to write:

$$
\left.[c]=\left[\begin{array}{c|c}
0 & e_{0} \tag{4-14}\\
g_{4} & e_{4} \\
g_{2} & e_{2} \\
g_{3} & e_{3} \\
g_{4} & e_{4} \\
0 & 0 \\
0 & 0
\end{array}\right]=\begin{array}{c}
0 \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
0
\end{array}\right]
$$

If a table of the form of equation $4-14$ is established, a step by step evaluation procedure may be used as follows:

1) Evaluate $e_{0}=r_{0}$, and $c_{0}=0$
2) Then for c_{9}, multiply the G and E matrices by starting at g_{9} in the G matrix. Then one obtains $c_{1}=g_{9} e_{0}$. Now evaluate $e_{1}=r_{4}-c_{4}$ and fill in c_{1} and e_{2} in the computation table 。
3) Now evaluate c_{2} by multiplying the G and E matrices by starting at g_{2}. Then one obtains $c_{2}=g_{2} e_{0}+g_{1} e_{1}$. Then evaluate $e_{2}=r_{2}-c_{2}$ and place the values in the table.
4) Continue this procedure for each sample point of interest, typically until the system settles to a final value.

An example will best illustrate this procedure. Let the system matrix of figure $4-1$ be:

$$
\left.[G]=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \tag{4-15}\\
.4 & 0 & 0 & 0 & 0 \\
.8 & 04 & 0 & 0 & 0 \\
1.00 & .8 & .4 & 0 & 0 \\
1.0 & 1.0 & .8 & .4 & 0
\end{array}\right] .\right]
$$

Assume a step input signal $R]=[1,1,1, \ldots . .1]$. Then, establishing a table as in equation 14 one calculates each value of c_{n}
and e_{n} step by step as outlined. This method is illustrated for the first two calculations by use of dashed lines to indicate the flow of the calculations as follows:

Then, the next step is illustrated schematically as:

$$
\begin{aligned}
& \text { G E C }
\end{aligned}
$$

If this procedure is carried on step by step, one obtains for the response at the first six sample points:

$$
\left.\left.C]=\left[\begin{array}{cc}
G & E \tag{4-18}\\
0 \\
.4 \\
.8 \\
1.0 & 1 \\
1.0 \\
1.0
\end{array}\right] \begin{array}{c}
-.040 \\
-.464 \\
\hline .3824 \\
\hline .0358
\end{array}\right]=\begin{array}{c}
0 \\
1.040 \\
1.464 \\
1.3824 \\
1.0358
\end{array}\right]
$$

To evaluate the intersample response one proceeds as.discussed in section 2-5. Rewriting equation 2-21 one has:

$$
\begin{equation*}
C(m)]=[G(m)] E] \tag{4-19}
\end{equation*}
$$

If the $G(m)$ matrix for the midpoint of the sampling period is founc to be:

```
Hitr Mantil
Hern
min
```


$$
[\mathrm{G}(\mathrm{~m})]=\left[\begin{array}{ccccc}
.20 & 0 & 0 & 0 & 0 \tag{4-20}\\
.60 & .20 & 0 & 0 & 0 \\
.90 & .60 & .20 & 0 & 0 \\
1.00 & .90 & .60 & .20 & 0
\end{array}\right]
$$

Then one may calculate the intersampling response as:

$$
\left.\left.C(1 / 2)]=\left[\begin{array}{cc}
G(n) & E
\end{array} c \begin{array}{c}
.20 \\
.60 \tag{4-21}\\
.90 \\
1.00 \\
1.00
\end{array}\right] \begin{array}{c}
1 \\
\hline .600 \\
-.040 \\
\hline .164 \\
\hline .3824
\end{array}\right]=\begin{array}{r}
.200 \\
.720 \\
1.252 \\
1.423 \\
1.209
\end{array}\right]
$$

It is valuable to note at this point, that the calculations in the case considered in this section were simplified by the unity feedback condition which yields $E] \approx R]$ © $]_{0}$. Single loop systems with other than unity feedback shall be considered in the next section.

4-2 Evaluation of the Response of A Closed Loop System with Other than Unity Feedback.

In this section the closed loop system shall be considered with other than unity feedbsck as shown for one case in figure 4-2. The samplers are synchronized and with the same sampling period. Then the matrix equations may be written as:

$$
\begin{align*}
C] & =[G] E] \tag{4-22}\\
E\rfloor & =R]-B] \quad \text { where } \quad B] \quad \because[H] C] \\
\text { Therefore } E] & =R]-[H] C] \tag{4-23}
\end{align*}
$$

Now, to evaluate the output response one wises equations 4-22 and 4-23 and evaluates the c_{n} and e_{n} ster ly step as outlined in the prerious section. The only difference is in this case, in order to evaluate $E]$, one must evaluate $[\mathrm{H}] \mathrm{C}]$ and then substract H_{n}, the sample value, from r_{n} to obtain the error e_{n} at the particular sample. It must be pointed

Figure 4-2. Two Sampler Feedback System

Figure 4-3. Error Sampled System
out that the solution in this case depended on the fact that the transfer blocks $G(8)$ and $\mathbb{H}(8)$ were separated by samplers.

Consider the system show in figure $4-3$ which does not have samplers separating both transfer blocks. Then one may write:

$$
\begin{align*}
C \mid & =|G| E \mid \\
\text { and } E \mid & =R \mid-B]
\end{align*}
$$

But, noting that $B(s)=H(s) C(s)=H(s) G(s) E(s)$, then:

$$
\begin{align*}
E] & =R]-H C] \tag{4-26}\\
& =R]-[H G] E] \tag{4-27}
\end{align*}
$$

Therefore, it can be scen that E] is not readily available in equation $4-26$ siace MC$]$ is not usually arailable. Then, rearrsinging equation $4-27$, one obtains:

$$
\begin{align*}
& \{[I]+[\mathrm{HG}]\} E]=R] \tag{4-28}\\
& E]=\{[I]+[\mathrm{HG}]\}-1 \quad R] \tag{4-29}
\end{align*}
$$

Therefore, in order to avaluate the output response for this system, inversion of a matrix camot be avoided.

Finally, if one was analyzing a systen such as show in figure 4-4, the equations of interest are:

$$
\begin{align*}
E\rfloor & =R\rfloor-[\mathrm{H}] \mathrm{C}] \tag{4-30}\\
\text { and } C] & \left.=\left[\mathrm{G}_{9}\right]\left[\mathrm{G}_{2}\right] E\right] \tag{4-31}
\end{align*}
$$

If the response at an intemediate point in the system is desired, such as the output of $G_{q}(s)$, it is readily spailable by writing the following equation:

$$
\begin{equation*}
\left.\left.E_{2}\right]=\left[G_{4}\right] E\right] \tag{4-32}
\end{equation*}
$$

The response at intermediat points in a system is of great importance in nonlinear systems which will be discussec in section 405 .

保

Section 4-3 Analysis of Multiloop Control Systems.
The Introduction of more than one feedback loop is necessary or inherently present in many control systems. The investigation of a multiloop sampled-data control system is complicated by the presence of samplers in some loops, and the absence of samplers in others. Therefore, all the feedback signals are not of the same form throughout the system. Consider at first a two loop system as shown in figure $4=50$ which has samplers separating all the transfer blocks.

One may write a set of simultaneous sampled-data equations, where the starred notation indicates a sampled signal or transform, as follows:

$$
\begin{align*}
& E^{*}(s)=R^{*}(s)-H^{*}(s) C^{*}(s)-M^{*}(s) \\
& M^{*}(s)=G_{a}^{*}(s) E^{*}(s) \tag{4-33}\\
& C^{*}(s)=G_{b}^{*}(s) M^{*}(s)=G_{b}^{*}(s) G_{a}^{*}(s) E^{*}(s)
\end{align*}
$$

Solving these equations simultaneously, one obtains for the sampledoutput:

$$
\begin{equation*}
C^{*}(s)=\frac{G_{b}^{*}(s) G_{a}^{*}(s) R^{*}(s)}{1+G_{2}^{*}(s)+G_{b}^{*}(s) G_{a}^{*}(s) M^{*}(s)} \tag{4-34}
\end{equation*}
$$

The z-transformed equation then follows as:

$$
\begin{equation*}
C(z)=\frac{G_{b}(z) G_{2}(z) R(z)}{1+G_{a}(z)+G_{b}(z) G_{a}(z) H(z)} \tag{4-35}
\end{equation*}
$$

One may then write the matrix equations directly from equations 4-34 and 4-35, or alternatively one may derive the matrix equations directly from the system signals. In either case, one obtains:

$$
\begin{equation*}
\left.c]=\left\{[I]+\left[G_{2}\right]+\left[G_{b}\right]\left[G_{a}\right][H]\right\}-1\left[G_{b}\right]\left[G_{a}\right] R\right] \tag{4-37}
\end{equation*}
$$

and $\left.C(m)]=\left\{[I]+\left[G_{a}\right]+\left[G_{b}\right]\left[G_{a}\right][H]\right\}^{-1}\left[G_{b}(m)\right]\left[G_{a}(m)\right] R\right](4-38)$

Figure 4-4. Three Sarapler Single Loop System

Figure 4-5. Nultiloop Sampled System

If it was desired to avoid the inversion necessary in equations $4-37$ and $4-38$, one may write a set of simultaneous equations which provide a means of step by step evaluation of intermediate signals. In this case one would write:

$$
\begin{align*}
& E]=R]-M]-[H] C] \tag{4-39}\\
& \left.M]=\left[G_{2}\right\rceil E\right] \tag{4-40}\\
& \left.C]=\left[G_{b}\right] M\right] \tag{4-41}
\end{align*}
$$

In order to evaluate E], M], and C] a step by step procedure is followed similar to that of the single loop method. First, assuming no imnediate or:tput for either G_{a} or G_{b}, one may write:

$$
\begin{align*}
& m_{0}: 0 \\
& c_{0}=0 \tag{4-42}
\end{align*}
$$

and $e_{0}=r_{0}$
Then, for the next sample one obtains:

$$
m_{1}=g_{1 a} e_{0}=g_{12} r_{0}
$$

where g_{4}. the first impulse response value of the G_{2} block and

$$
g_{n a}=\text { the } n^{\text {th }} \text { impulse response value of the } G_{2} \text { block. }
$$

Then, continuing, one obtains:

$$
\begin{equation*}
c_{i}=g_{i} b m_{0}+g_{0 b} m_{4}=g_{1} b m_{0}=0 \tag{4-43}
\end{equation*}
$$

$$
\text { since } g_{0 b}=0 \text { and } m_{0}=0
$$

Therefore, one uses equations $4-39,4-40,4-41$ in that order, step by step. For the next sample one obtains:

$$
\begin{equation*}
e_{8}=r_{1}-r_{1}-\left(h_{0} c_{1}+h_{1} c_{0}\right)=r_{1}-g_{12} r_{0}-0 \tag{4-44}
\end{equation*}
$$

$$
\text { since } c_{0}=c_{4}=0
$$

and

$$
\begin{equation*}
m_{2}=g_{22} e_{0}+g_{12} e_{1} \tag{4-45}
\end{equation*}
$$

and finally

$$
c_{2}=g_{2 b} m_{0}+g_{4} b m_{4}=g_{4 b} m_{4} \quad \text { since } m_{0}=0
$$

As is the usual case, it is actually casier and more methodical to use the matrix form throughout the calculations. Therefore, one will estac blish a table similar to that of section $4-1$ using equations $4-39,4-40$, 4-41. The flow of calculation is from E] to M] to C] and then back through the feedback loops again to E]. It is obrious, that actually one is simply following the signal around the closed loops.

Finally, consider a multiloop system which possesses only one sampe ler in the control loops. The simple sampler typically is placed in the error channel as is shown in figure $4-6$.

Figure 4ab. A Nuitiloop Sampled System
One may write the equations for the signals as follows:

$$
\begin{aligned}
& E^{B}=R^{\&}-M^{\frac{2}{*}}-B^{*} \\
& M=G_{a} E^{*} \\
& C=G_{b} M=G_{b} G_{a} E^{\frac{3}{2}} \\
& B=H C
\end{aligned}
$$

Therefore, one obtains for the closed loop sampled error and output:

$$
\begin{equation*}
E=\frac{R^{*}}{1+G_{a}^{*}+\widetilde{H G}_{b} G_{a}^{*}} \tag{4-47}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{*}=\frac{{\bar{G} G_{b}}^{*} R^{*}}{1+G_{a}^{*}+{\overline{H G_{b} G_{a}^{*}}}^{*}} \tag{4-48}
\end{equation*}
$$

One may then write the matrix equations directly as:

$$
\begin{equation*}
\left.E]=\left\{[I]+\left[G_{a}\right]+\left[H G_{b} G_{a}\right]\right\}-1 \quad R\right] \tag{4-49}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.c]=\left[G_{a} G_{b}\right]\left\{[I]+\left[G_{a}\right]+\left[H G_{b} G_{a}\right]\right\}^{-1} R\right] \tag{4-50}
\end{equation*}
$$

The equation for the intersample response is then:

$$
\begin{equation*}
\left.C(m)]=\left[G_{a} G_{b}(m)\right]\left\{[I]+\left[G_{a}\right]+\left[H G_{b} G_{a}\right]\right\}^{-1} \quad R\right] \tag{4-5I}
\end{equation*}
$$

Therefore, whenever one desires to calculate the intersample response and the inversion of the matrix $I+G_{a}+H G_{b} G_{a}$ has been already accom plished, one simply evaluates the $G_{a} G_{b}(m)$ matrix and carries out the multiplication. Therefore, multiloop systems with one sampler or samp lers separating all transfer blocks may be equally treated by the use of time domain infinite matrices. The response at any sampler location is readily available and is usually of interest in the investigation of multiloop systems, particularly with nonlinearities present. The introm duction of nonlinearities into a control loop is treated in section 4-5. Section 4-4. Analysis of Time-varying Control Systems

The analysis of time-varying sampled-data control systems may be accomplished using the time domain matrix method. A control system may have as one of the transfer function blocks, a component whose parameters are changing with time. This effect is present with high altitude jet aircraft, where the dynamic characteristics of the aircraft change with altitude, and therefore time.

Consider the simple open loop system shown in figure 4-7. The impulse response of the time varying component is changing with time.

Figure 4-7. Sampled Open Loop System

Therefore the matrix equation for the output may be written as in section 2-3, equation 2-13 and rewritten here:

$$
\begin{equation*}
C]=[G(n, k)] \quad R] \tag{4-52}
\end{equation*}
$$

where

$$
[G(n, k)]=\left[\begin{array}{llll}
g(0,0) & 0 & 0 & \\
g(1,0) & g(1,1) & 0 & .
\end{array}\right]
$$

In order to substitute numbers in the $G(n, k)$ matrix, the time variation of the system G must be known or determined. As an illustration, consder an abrupt change of

$$
G(s)=\frac{\left(1-e^{-s T}\right)}{s^{2}(s+2)} \text { from } a=1.0 \text { to } a=2.0 \text { at the third }
$$

sampling instant $(k=2)$ where $T=1$ second. Then, using the values of g_{n} from table $A-1$ one has for the system matrix:

$$
[G(n, k)]=\left[\begin{array}{cccccll}
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
.3679 & 0 & 0 & 0 & 0 & 0 & \\
.7675 & .3679 & 0 & 0 & 0 & 0 & \\
.9145 & .7675 & .2838 & 0 & 0 & 0 & \\
.9685 & .9145 & .4707 & .2838 & 0 & 0 & \cdots \\
.9884 & .9685 & .4960 & .4707 & .2838 & 0 \\
0 & 0 & & 0 & &
\end{array}\right]
$$

Then, of course if this component had feedback introduced as shown in figure $4-8$, one would have the following closed loop equation:

$$
\begin{equation*}
c]=[G(n, k)\}\{[I]+[G(n, k)\})-1 \quad R] \tag{4-53}
\end{equation*}
$$

$r(t)=(\Sigma$
TIme Varying Component G

Figure $4=8$. Tine Varying Closed Loop System
In order to obtain the intersanple response, the equation for the output response may be written:

$$
\begin{equation*}
\left.C(m)]=\left[G_{n, k}(m)\right]\{[I]+[G(n, k)]\}^{-1} \quad R\right] \tag{4-54}
\end{equation*}
$$

Analysis of a feedback system with more than one time varying element follows the same approach as for the time invariant systems. The matrix equations are found to be the same as for time invariant systems with the time variation of a transfer function only affecting the system mac trix itself. Therefore, for the system shown in figure $4-9$, the follow ing equation is obtained:

$$
\begin{equation*}
\left.c]=[G(n, k)]\{[I]+[G(n, k)][H(n, k)]\}\}^{-1} \quad R\right] \tag{4-55}
\end{equation*}
$$

It can be seen that it is not necessary for samplers to separate the time varying component from all other transfer blocks. Therefore, if H (s) was time invariant, it would not be necessary to have a sampler

Figure 4m. System with Two Time Varying Components between $G(s)$ and $H(s)$ for the use of the time domain matrices. For the system shown in figure $4-10$, one obtains the equation:

$$
\begin{equation*}
C]=[G(n, k)]\{[I]+[G H(n, k)]\}-1 \quad R] \tag{4-56}
\end{equation*}
$$

Figure $4=10$. Time Varying System with A Feedback Component

A control system, where one of the components is a time -varying amplifier is worthy of consideration. Consider the system as shown in figure $4-11$.

The gain alt: is changing with time and therefore has a different magnitude at each sampling instant. The equation for the output may be written:
Chen

Figure 4-11. Open Loop Time Varying System

$$
\begin{equation*}
C]=[A G(n, k)] \quad R] \tag{4-57}
\end{equation*}
$$

or

$$
\left.\begin{array}{l}
c_{0} \tag{4-58}\\
c_{4} \\
c_{2} \\
C_{3} \\
c_{4} \\
0
\end{array}\right]=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & \\
a_{0} g_{1} & 0 & 0 & 0 & 0 & 0 \\
a_{0} g_{2} & a_{1} g_{1} & 0 & 0 & 0 & \\
a_{0} g_{3} & a_{1} g_{2} & a_{2} g_{1} & 0 & 0 & \\
a_{0} g_{4} & a_{4} g_{3} & a_{2} g_{2} & a_{3} g_{1} & 0 & 0 \\
0 & & & 0 & 0 & \\
0 & & & 0 & 0 & r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right]
$$

Then, the output at the third sampling instant is as expected:

$$
\begin{equation*}
C_{2}=a_{0} g_{2} r_{0}+a_{1} g_{1} r_{1} \tag{4-59}
\end{equation*}
$$

It can be seen that equation $4-58$ may be written as follows:

$$
\left.C][G][A] R]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \tag{4-60}\\
g_{8} & 0 & 0 & 0 \\
g_{2} & g_{1} & 0 & 0 \\
g_{3} & g_{2} & g_{1} & 0
\end{array}\right]\left[\begin{array}{llll}
a_{0} & 0 & 0 & 0 \\
0 & a_{1} & 0 & 0 \\
0 & 0 & a_{2} & 0 \\
0 & 0 & 0 & a_{3}
\end{array}\right] R\right]
$$

The operation of multiplication of the A and G matrices is not commue tative as was previously discussed. That this is so is obvious from the form of the matrices. Now, consider an open system identical to that of figure $4-11$ except that a hold circuit immediately follows the sampler. Then, if the amplifier changes gain during the sample period,

this must be accounted for in the system matrix G, which is a function of m. In most cases it is reasonable to make the simplifying assumpo tion that the gain changes only at the sampling instants. In other words, the assumption is that if the gain is changing continuously with time, the time constant of this change is much greater than the sampling period. Therefore, one is approximating the gain by a staircase function as shown in figure $4-12$.

Figure 4-12. A Time Varying Gain

Then, on this basis, one may analyze closed loop systems with a time varying gain. For the system shown in figure $4-13$, one may write the equations for the system signals as:

$$
\begin{align*}
E] & =R]-[H] C] \tag{4-61}\\
\text { and } C] & =[G][A] E]
\end{align*}
$$

Equations $4-61$ and $4-62$ may be solved by the step by step procedure previously outlined for the time-invariant systems. Using this step by step method, the gain change at each interval is clearly displayed to the investigator. Alternately, one may solve for the output response and error response by means of inversion of the matrix in the following equations:

Figure 4-13. System with A Time-Varying Gain

$$
\begin{equation*}
\left.E]=\{[I]+[H][G][A]\}^{-I} R\right] \tag{4-63}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.C]=[G][A]\{[I]+[H][G][A]\}^{-1} \quad R\right] \tag{4-64}
\end{equation*}
$$

If there was no sampler between the output and the feedback block $H(s)$, then one obtains the equation for the error sequence in the same manner as carried out in section 4-2. Therefore, one obtains for the error sequence:

$$
\begin{equation*}
\left.E]=\{[I]+[\mathrm{HG}][\mathrm{A}]\}^{-1} \quad \mathrm{R}\right] \tag{4-65}
\end{equation*}
$$

As an example, consider a system where $H(s)=1$ as shown in figure 4-13. Let $R(s)=1 / s$, and the gain function be $a(t)=e^{-\frac{1}{2} t}$, with a sampling period of one second. In this the time constant of the gain change is only double the sampling period, but the results are instrucfive with this marked gain change as shown in figure $4-14$.

Use equations $4-61$ and $4-62$ where $[H]=[I]$ and one may write:

$$
\begin{align*}
& E]=R]-C] \tag{4-66}\\
& C]=[G][A] E]=[G] P] \tag{4-67}
\end{align*}
$$

where $P]=[A] E]$ the amplified magnitude of the error pulse and

Figure 4-14. Time Varying Gain Example

$$
[G]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
.4 & 0 & 0 & \\
.8 & .4 & 0 & \\
1.0 & .8 & .4 & \cdots \\
0 & & 0 &
\end{array}\right]
$$

Then, one obtains:

$$
\begin{aligned}
& \left.C]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
.4 & 0 & 0 & 0 \\
.8 & .4 & 0 & 0 \\
1.0 & .8 & .4 & 0 \\
1.0 & 1.0 & .8 & .4
\end{array}\right]\left[\begin{array}{cccc}
1.0 & 0 & 0 & 0 \\
0 & .6065 & 0 & 0 \\
0 & 0 & .3679 & 0 \\
0 & 0 & 0 & .2231
\end{array}\right] \begin{array}{c}
1 \\
.600 \\
.0544 \\
-.2991
\end{array}\right] \\
& G \quad P
\end{aligned}
$$

The availability of the amplified magnitude of the error pulse as P]
is often useful in the investigation of nonlinear systems which shall be discussed in the next section.

4-5. Analysis of Control Systems with Nonlinear Components.
The analysis of sampled-data control systems with nonlinear components may be accomplished by the use of time-domain infinite matrices. The methods most commonly used for continuous nonlinear systems are the describing function and the phase-plane. These methods are somewhat limited in their application to sampled-data control systems. Consider a single loop nonlinear system as shown in figure 4-15.

Figure 4-15. Single Loop Nonlinear System
Then, it can be seen that the nonilnear component has replaced the varia ble gain amplifier of figure 4-13. The nonlinearities considered are those sensitive to the magnitude of the signal input; that is, they have a nonlinear amplitude response such as shown in figure 4-16 for a saturating amplifier.

Figure 4-16. Saturating Amplifier Characteristic

Therefore, as the input voltage varies in magnitude, the gain of the amplifier changes. Since the input to the nonlinear element is the held error magnitude, this magnitude determines the gain. However, the error is evaluated directly in the time domain and therefore a gain cal culated for a calculated error input is also known as the gain at the specific sample instant. Therefore, the nonlinear element may be treated as a time-varying gain. This statement is true for hysteresis, a relay servo, and other single nonlinearities following a sampler. Then the output of the nonlinearity is the sequence P]. One may write for the output response and error response:

$$
\begin{align*}
& \mathrm{E}]=\mathrm{R}]-\mathrm{C}] \tag{4-69}\\
& \mathrm{C}]=[\mathrm{G}][\mathrm{U}] \mathrm{E}] \tag{4-70}
\end{align*}
$$

where

$$
v]=\left[\begin{array}{llllll}
u_{0} & 0 & 0 & 0 & \cdots & \cdot \\
0 & u_{1} & 0 & 0 & & \\
0 & 0 & u_{2} & 0 & \cdots & \cdots \\
0 & 0 & 0 & u_{3} & & \\
0 & & & 0 & \cdots & \\
0 & & & \vdots & &
\end{array}\right]
$$

The values of u_{n} depend upon the error magnitude and are determined in the step by step solution. As an example, consider a saturating amplifier with a characteristic curve as shown in figure $4-17$, which is the nonlinear component of figure $4-15$. If the input signal is a unit step, then the amplifier is expected to saturate. This amplifier has a maximum gain of two throughout the linear region. Then, using equation 4-69, at the first sampling instant $(n=0) e_{0}=1.0$ and therefore $u_{0}=1.0$, and $p_{0}=1.0$, a gain of one. The G matrix for this example is:

Figure 4-17. Saturating Amplifier Characteristic Example

$$
[G]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
.4 & 0 & 0 & 0 . . \\
.8 & .4 & 0 & 0 \\
1.0 & .8 & .4 & 0 \\
1.0 & 1.0 & .8 & .4
\end{array}\right]
$$

Therefore, $c_{9}=g_{9} e_{0}=.40$ and $e_{1}=.60$. This magnitude continues to saturate the amplifier and $p_{1}=1.0$, and $u_{1}=1.667$. Continuing in this manner, one obtains the following matrix solution:

$$
\begin{aligned}
& C]=[G][U] E]=[G] P] \\
& \left.=\left[\begin{array}{cc}
0 & \cdots \\
.4 & \cdots \\
.8 & \cdots \\
1.0 & \\
1.0 & \\
1.0
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.56 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right] \begin{array}{c}
1 \\
.6 \\
-.2 \\
-.64 \\
-.28 \\
+.424
\end{array}\right]
\end{aligned}
$$

The analysis of systems with a nonlinear component which is also a storage device follows along in the same manner. For example, if the nonlinearity was hysteresis in a magnetic amplifier, then the gain is dependent upon the past value of input voltage to determine which side of the hysteresis loop is applicable to the present signal. This can be seen clearly from figure $4-18$ which shows a simple hysteresis loop. If the input was E_{q}, there are two possible output magnitudes depending upon the magnitude of the input of the previous sample. If the previous sample had a magnitude of E_{0}, then the output magnitude will be E_{b}.

Figure 4-18. Hysteresis Characteristic

Furthermore, any nonlinearity may be treated in this manner since the relation

$$
\begin{equation*}
P]=[U] E] \tag{4-72}
\end{equation*}
$$

applies to any nonlinearities whose characteristics are known or can be approximated.

The analysis of systems with a nonlinear component which does not have a sampler immediately preceding it cannot be treated by this method. However, as an approximation a fictitious sampler may be placed before the nonlinearity. The accuracy of this approximation depends upon the

sampling rate and the time constants of the system. This approximation shall be discussed further in the next section.

If there is more than one nonlinearity present in the system and samplers appear before every nonlinearity, then the investigation of the system by time domain matrices is entirely possible. In fact, for a system with many nonlinearities, analysis is possible with the introducetion of samplers with a high sampling rate, wherever a nonlinearity exists. The necessary sampling rate shall be discussed in the next sectron.

Furthermore, the signal sequence magnitudes are available at intermediate points throughout the system and can aid an investigator in the analysis of the component requirements. Consider for example the system of figure $4-19$ which has two nonlinearities. Then the equations for the

Figure 4-19. System with Two Nonlinear Components
error, the output sequence of G_{1}, and the output sequence of G_{2} is:

$$
\begin{align*}
& \mathrm{E}]=\mathrm{R}]-\mathrm{C}] \tag{4-73}\\
& \left.\mathrm{M}]=\left[\mathrm{G}_{0}\right]\left[\mathrm{U}_{1}\right] \mathrm{E}\right] \tag{4-74}\\
& \left.\mathrm{C}]=\left[\mathrm{G}_{2}\right]\left[\mathrm{U}_{2}\right] \mathrm{M}\right] \tag{4-75}
\end{align*}
$$

A phase plane portrait of the error and the derivative of the error of ten aids an investigator in the analysis of a nonlinear system. By the use of the backward difference formulas of numerical methods, the
derivative of the error may be obtained using the past values of the discrete error. The derivative of the error may be calculated by use of the present and one past value as: 6

$$
\begin{equation*}
\left.e_{n}^{\prime}=\frac{1}{T}\left(e_{n}-e_{n-1}\right)+00^{\prime} T\right) \tag{4-76}
\end{equation*}
$$

where the inaccuracy is of the order of magnitude of the sampling period T. If the present value and two past values of the error are to be used, one has:. 6

$$
\begin{equation*}
e_{n}^{\prime}=\frac{1}{2 T}\left(3 e_{n}-4 e_{n-1}+4 e_{n-2}\right)+0\left(T^{2}\right) \tag{4-77}
\end{equation*}
$$

Use of three values of error has reduced the inaccuracy of the approximation to within the order of the sampling period squared. In order for this calculation to be accurate, the sampling period must be short with respect to the time constants of the system. This requirement is not restricting since this condition is necessary for stability in a sampleddata control system.

If it was useful to postulate the phase space and determine the derivatives of higher orders it is possible to use the following formulas, the choice of formula depending on the accuracy requir ed. 6
or $\quad e_{n}^{\prime \prime}=\frac{1}{T^{2}}\left(2 e_{n}-5 e_{n-1}+4 e_{n-2}-e_{n-3}\right)+0\left(T^{2}\right)$
Formulas for higher derivatives using backward differences are readily available. 7

Writing the above formulas in a matrix form results in the following matrices with an accuracy of the order of the sample period.

$$
\begin{aligned}
& \text { E }]=\left(\frac{1}{T}\right)\left[\begin{array}{rrrll}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \cdot \cdot \\
0 & & 0 & & 0
\end{array}\right] \\
& \text { E] } 0=\left(\frac{1}{\mathrm{~T}^{2}}\right)^{2}\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \cdots \\
0 & & &
\end{array}\right]
\end{aligned}
$$

The matrices with an accuracy of the order of the square of the sample period are:

$$
\begin{align*}
& \text { E }]=\left(\frac{1}{2 T}\right)\left[\begin{array}{rrrrl}
3 & 0 & 0 & 0 & 0 \\
-4 & 3 & 0 & 0 & 0 \\
4 & -4 & 3 & 0 & 0 \\
0 & 4 & -4 & 0 & 0 \\
0 & 4 & -4 & 3 & 0 \\
\vdots & & & & 0
\end{array}\right] \\
& \text { E] } \\
& \text { (4-83) } \\
& \text { II } \mathrm{E}]=\left(\frac{1}{T^{2}}\right)\left[\begin{array}{rrrrl}
2 & 0 & 0 & 0 & 0 \\
-5 & 2 & 0 & 0 & 0 \\
4 & -5 & 2 & 0 & 0 \\
-1 & 4 & -5 & 2 & 0 \\
0 & -1 & 4 & -5 & 2 \\
0 & & & & 0 \\
0 & & & &
\end{array}\right] \tag{E}
\end{align*}
$$

4-6. Analysis of Continuous Control Systems
The analysis of continuous control systems can be accomplished with the use of time-domain infinite matrices. This is possible through the introduction of a fictitious (mathematical) sampler or samplers in the
continuous closed loop. The approach is basically that of the use of numerical analysis methods in the solution of a differential equation. Therefore, the accuracy of this approximation depends upon the sampling rate of the fictitious sampler. However, the fact that it is not necessary to calculate the closed-loop roots or to invert the closed-loop response equation in order to obtain the time response, is of great importance。

Consider a continuous system to be investigated, which is a single loop system as shown in figure $4-20$.

Figure 4-20. Continuous Feadkacle Control System

The approximation intraduced by the fictitious sampler will depend upon:

1) The location of the fictitious sampler
2) The form of the fictitious hold circuit
3) The frequency of the sampling

Since it is important for the sampler frequency to be many times greater than the highest frequency of the input signal to the sampler, the location of the sampler is usually chosen to be in the feedback loop before the $H(i)$ as shown in figure $4-21$. This location takes advantage of the filtering of the input signal $R(s)$ by the plant $G(s)$.

Figure 4-21. Location of the Fictitious Sampler

The fictitious hold network is present in order to reconstruct the continuous signal from the sampled signal. In actual sampled-data systems a zero-order hold is usually used for its practical realizability and for stability considerations. However, for a fictitious hold the possibility of straight line and parabolic approximations should be considered. Consider a straight line approximation hold which can be achieved by a triangular hold circuit which has a transfer function: 2

$$
G_{\text {hold }}(s)=\frac{\left(1-e^{-s T}\right)^{2} e^{s T}}{s^{2} T}
$$

The approximation of a time function is shown in figure 4-22. This hold is not physically realizable, but is very useful for mathematical appro-

Figure 4-22. The Approximation of A Time Function

[^0]The sampling frequency determines the accuracy of the mathematical approximation and must be balanced by the amount of calculation that will be acceptable to the investigator. As the sampling period approaches zero, the inaccuracy is approaching zero, but the number of calculations rapidly approaches infinity. Fortunately, it has been determined experimentally that there exists a reasonable sampling rate for closed loop systems which yields less than 5% error in approximation。 For a type $I_{\text {, }}$ second order system, this approximation holds when the sampling frequency is ten times the magnitude of the pole of the plant $G(s)$. As an example, for a plant with a transfer function:

$$
G(s)=\frac{K}{s(s+1)}
$$

the sampling frequency should be 10 radians per second or the sampling period is approximately one-half second. The calculations of previous sections were carried out with a period of one second and a type one system. Therefore, the number of calculations necessary to determine the approximate response to a continuous-data system are not impractical. The simplest method of determining the necessary sampling rate is trial and error. One calculates a few points on the output response using a trial sampling rate, then recalculates these points using twice the sampling rate. If there is a neglible change in the results, then the former rate was sufficient for the desired accuracy.

This method of approximation may be used on non-linear or timevarying systems and therefore all the previously discussed methods of analysis will apply。

CHAPTER 5

INTRODUCTION TO THE DESIGN OF CLOSED LOOP CONTROL SYSTEMS

5-1. Introduction

The method of time-domain infinite matrices may be used successfully for design of closed loop control systems. The design or develop ment of control systems for a specific application is a practical problem of great importance. The designer may readily apply the analysis methods of the previous chapter to the design problem. They are used to evaluate the performance of the system under the specified operating conditions. Also, with the aid of experience in calculating the response directly in the time-domain, the designer may determine what system parameters must be adjusted and in what manner.

Given the basic specifications of the system and the performance requirements, the designer often must determine a compromise between conflicting requirements. In the design of closed loop continuous systems, many designers rely on the open and closed loop frequency response curves of the system to indicate the performance of the system. These frequency response techniques are not very useful in sampled-data systems. Correlation of the time response of the system with the frequency response is not readily achieved since a transformation of the z variable, into a new complex frequency variable w, is necessary to map the unit circle of the z-plane into the entire left half of the w plane. Therefore, the use of frequency response characteristics, such as the height and frequency of the resonant peak, and the bandwidth, is very limited. Design by use of the root locus method in the z-plane is limited since 1$)$ the design only considers the response at the sampling
instants, and the intersampling response may be wholly unacceptable. 2) Correlation theorems between the time domain and the $z-p l a n e$ are accurate only under certain conditions.

The time domain performance indices such as rise time, settling time, over-shoot, and number of oscillations are readily applied to sampled-data systems using the time domain matrix method. Furthermore, this method allows one to design directly in the time domain and determine the compensator necessary for the specific application. This method of design of a digital compensator shall be discussed in chapter 7.

For the design of continuous systems, the designer has all the standard techniques at his disposal for the selection of a system adjustment or compensator. The methods of Bode, Nichol, and the use of the root locus all may be applied in the design of the continuous system. Then, the sampled data approximation may be introduced and the design evaluated directly in the time domain by means of the time domain matrix method. Therefore, all the background of previous determined theory and methods will apply profitably. The designer may use these techniques to determine the type and location of the compensator, and the parameter values.

The designer may determine the necessary compensator directly in the time domain by use of the digital compensator design technique discussed in Chapter 7. If the system is a continuous system approximated by a sampled-data system, the digital compensator may be converted to a continuous compensator by time domain network synthesis techniques.

In addition to these design problems, one may consider the design of adaptive systeras. Due to the great interest of these systems, they
are reserved for discussion in Chapter 6. This chapter shall be concerned with the use of standard design techniques and the use of time domain matrices to design various types of control systems such as nonlinear and time varying systems.

5-2. The Design of A Systern Utilizing Time Varying Gain Compensation. Consider the design of a closed-loop, unity feedback sampled-data system as shown in figure 5-1. The basic design steps are:

Figure 5-1. Unity Feedback Sampled-Data Control System
(1) Dutermine the response for the given system $G(s)$ and compare with the required performance specifications.
(2) If the performance is not satisfactory, adjust the gain or choose another plant if possible. Otherwise, introduce a compensating element or block in the closed-loop. Choose the compensating component on the basis of factors such as design criteria and design experience and the time response obtained for the uncompensated system.
(3) Evaluate the compensated system response and readjust the system parameters if necessary.

In this section it shall be assumed that 1) and 2) have been accome plished and it has been decided to attempt to compensate using a time-
varying amplifier in the forward transmission path as shown in figure 5-2. The variation of the gain must be chosen to provide the desired output response performance. Changing the gain of the amplifier does not alter the system dynamics and therefore the achievable results are limited. The designer may alter the response, but it is only possible to compromise between desired performance indexes. For example, it is possible to reduce the rise time, but only with a resulting increasing maximum overshoot.

Figure 5-2. The Compensated Control System
An example will best illustrate the possibilities. Consider a system with a transfer function of

$$
\begin{equation*}
G(s)=\frac{1}{s(s+1)} \tag{5-1}
\end{equation*}
$$

and a zero order hold and sampling period of one second. The input signal for this example will be a unit step. Then the uncompensated output at the sampling instants is found to be:

$$
\left.\left.\mathrm{C}]=\left[\begin{array}{ccc}
G & E & C \\
0 \\
0.3679 \\
.7675 \\
.9145 \\
.9685 \\
.9853
\end{array}\right] \begin{array}{cc}
1 & .6321 \\
-.400 \\
-.400 \\
-.150
\end{array}\right] \quad \begin{array}{c}
1.3679 \\
1.00 \\
1.40 \\
1.15
\end{array}\right]
$$

2
\qquad
\qquad

Therefore, the uncompensated system has a rise time of two seconds and an overshoot of greater than 40% occurring between the third and fourth sample. If the specifications call for a maximun overshoot of 30% and a rise time less than four seconds, the required response can be achieved with a time-varying gain. The designer learns, from the experience of calculating the response directly in the time domain, that the first two error samples largely determine the magnitude of the maximun overshoot. Therefore, the designer choses an amplifier with a gain of one-half at the first two samples, and a gain of one thereafter. This amplifier can be practically realized by constructing an amplifier which switches to a gain of .5 when a step input is applied, and switches to a gain of 1.0 after two seconds $(n=2)$. This system will give a more desirable response than simply lowering the gain to one-half for all time. This fact shall be verified later in this section. Calculating the compensated response one obtains:

$$
\begin{equation*}
C]=[G][A] E]=[G] P] \tag{5-3}
\end{equation*}
$$

and therefore

$$
\begin{align*}
C] & \left.=\left[\begin{array}{c}
0 \\
.3679 \\
.7675 \\
.9145 \\
.9685 \\
.9884
\end{array}\right]\left[\begin{array}{cccc}
.5 & 0 & 0 & 0 \\
0 & .5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 . \\
0 & & 0
\end{array}\right] \begin{array}{c}
1 \\
.81606 \\
0 \\
0 \\
0
\end{array}\right] \tag{5-4}\\
& \left.\left.=\left[\begin{array}{c}
0 \\
.3679 \\
.7675 \\
.9145 \\
.9885 \\
.9884 \\
.9957
\end{array}\right]\left[\begin{array}{cc}
.5 \\
.4080 \\
.4662 \\
.0581 \\
-.2365 \\
-.2733
\end{array}\right]=\begin{array}{c}
.1839 \\
-
\end{array}\right] \begin{array}{c}
1.9438 \\
1.27365 \\
1.1238
\end{array}\right] \tag{5-5}
\end{align*}
$$

The intersample rasponse is found as follows:

$$
\left.C(\mathrm{~m})]=[\mathrm{G}(\mathrm{~m})] \mathrm{P}]=\left[\begin{array}{c}
.10653 \tag{5-6}\\
.6166 \\
.8590 \\
.9481 \\
.9809 \\
.9930
\end{array}\right]\left[\begin{array}{c}
.5 \\
.4080 \\
.4662 \\
.0581 \\
-.2365 \\
-.2733
\end{array}\right]=\begin{array}{r}
.053317 \\
.7307 \\
1.1817 \\
1.2884 \\
1.2137
\end{array}\right]
$$

It can be seen that the maximum overshoot is about 29% for the compensated system and the rise time is 3.15 seconds. The response of the uncompensated, compensated, and the system with a gain of one-half for all time are shown on figure 5-3. A comparison of the rise time and maximum overshoot is given in table 5-1.

System	Rise Time (seconds)	Maximum Overshoot (Percent)
Uncompensated (Gain = 1)	2.0	45
Time-varying Gain	3.15	29
Gain $=.5$ for all time	3.70	15

Further discussion of the application of the time domain matrix method to the design of control systems is presented in the next section.

5-3. Application of the Time Domain Matrix Method to the Design of
Various Types of Control Systems.
In this section it is intended to show the great scope of possibilities of design of various types of control systems using the time-domain matrix method.

A) Single Loop Linear Sampled-Data Control System

When the preliminary analysis of a linear sampled data system reveals that the overall transient performance is inadequate, compensation techniques must be employed in order to improve the system performance. For a single loop system, the simplest and most direct step is to change the

system gain。 Usually, however, this adjustment alone is not sufficient to satisfy the design requirements. Therefore, it is necessary to inm sert a compensating network in the system in order to achieve the desired response. This compensating network may be cascaded in the forward or feedback channel or inserted as a minor feedback or feedforward loop. The sampling process in the control loop complicates the choice of the location for the compensating network. For error sampled systems, it is found advantageous to operate on the sampled error by a cascade conim pensator as shown in figure $5-4$.

Figure 5-4. Continuous-Data Compensation
This compensator operates on the sampled and held error and yields cone tinuous data information to the controlled system. Furthermore, for the output response one may write:

$$
C]=\left[\begin{array}{ll}
G_{h} G_{c} G \tag{5-7}
\end{array}\right]
$$

where $\left[G_{h} G_{c} G\right]$ is the system matrix for $G_{h}(s) G_{c}(s) G(s)$. Investigation of this form of compensation reveals that it is difficult to stabilize a sampled-data control system containing higher-order integration with the use of linear continuouswdata networks. The stabilization and coinspensation of sampled-data systems by means of continuous cascade
compensation is further complicated by the calculations necessary in order to find the matrix for the overall system for every trial compen sator. This is not a disadvantage pecuiar to this method, but also results when using the z-transform. The use of a continuous-data network for compensation is not to be excluded. These networks are simple R-C networks coupled with amplifiers and are easy to realize. Furthermore, for simple systems, they are sufficient and therefore probably desirable. However, for more complex systems it is often necessary to evaluate many trials in order to arrive at a reasonable compensation design.

Therefore, it often becomes desirable to use a sampled-data network as a cascade compensator as shown in figure 5-5. Then, for the output response one obtains:

Figure 5-5. The Digital Compensator in A Sampled-Data System

$$
\left.C]=\left[G_{h} G\right][D] E\right]=\left[\begin{array}{ll}
\left.G_{h} G\right] & P \tag{5-8}
\end{array}\right]
$$

$$
\begin{equation*}
\text { where } \mathrm{P}]=[\mathrm{D}] \mathrm{E}] \tag{5-9}
\end{equation*}
$$

Therefore, the sampled input to the controlled system is the output of the compensating device which is a result of a transformation of the error sequence. As was stated in Chapter 3, there is always a [D] which

$$
-5=
$$

12

1
-

Tin

4

+ +acmarn
will transform a diverging sequence E] into a stable, converging sequence P]. Furthermore, the design of $[D]$ is relatively easier than the design of a continuous data compensator since the $\left[G_{h} G\right]$ matrix need be evaluated only once. The sampled-data compensating network can be realized as a program of a digital computer or more simply as a dataprocessing network. It has been shown, that a digital nrocessing unit may be realized by operational amplifiers and electronic samplers. ${ }^{\text {\& }}$ Therefore, a digital compensator may be part of a large computer program for missile control, or simply a controller for a DC motor. The realiza= bility and the synthesis of digital compensators shall be discussed further in Chapter 7 。
B) Multiloop Sampled-Data Control Systems.

The design of multiloop sampled-data control systems is more coniplex and difficult than design of single loop control system. The use of linear continuous data compensation networks has the same limitations as discussed in the previous paragraph. Therefore, the sampled-data compensating network is used more often. A fundamental problem in the design of multiloop systems is the selection of the location of the compensators. This problem is difficult to solve in continuous systems as it is in sampled-data systems. One advantage of the time domain matrix method is the availability, in the calculations, of the response at intermediate points throughout the multiloops, wherever a sampler exists. Knowledge of each response allows the designer to use this information to adjust the parameters of the compensator. If there is only one sampler present in the multiloop system, then this advantage is not pres sent. If a fulsed-data network is used as the compensator, then ofters
\square
2

Tan
$2-2+2$ 1+2

7n

(

$$
4=
$$

1

1 518 \square

itex 4
feedforward control will aid in the elimination of disturbance innuts. Consider figure $5-6$ which shows a feedback control system with a distur bance input and feedforward control. Then the output due to the innut signal C, and that due to the disturbance signal C_{u} can be considered separately as:

Figure 5-6. Control System with A Disturbance Input

$$
\begin{align*}
& C]=[G] P] \tag{5-10}\\
& \left.\left.C_{u}\right]=\left\{[I]+\left[D_{1}\right][G]\right\}^{-1} \quad \mathrm{UG}\right] \tag{5-11}
\end{align*}
$$

where

$$
\left.\left.\mathrm{P}]=\left[\mathrm{D}_{2}\right] \mathrm{R}\right]+\left[\mathrm{D}_{1}\right] \mathrm{R}\right]
$$

Then, the output due to the reference may be written as:

$$
\begin{equation*}
\left.C]=[G]\left\{\left[D_{1}\right]+\left[D_{2}\right]\right\}\left\{[I]+\left[D_{1}\right][G]\right\}^{-1} \quad R\right] \tag{5-12}
\end{equation*}
$$

Therefore, the output due to the disturbance may be minimized by means of D_{1}, and the digital network D_{2} used to design the system for the output performance with respect to the signal input. Multiloop systems will be considered further in the next chapter, especially the conditional feedback system.
C) Nonlinear Control Systems.

The techniques used in analyzing nonlinear systems as presented in
the previous chapter are very useful in the design of nonlinear systems. The nonlinear component is considered as a time-varying amplifier in the system where the gain is dependent upon the input magnitude。 The design of linear as well as nonlinear compensators for the nonlinear systems is possible. Also it is usually an advantage to have available the signal magnitude at various intermediate points in the system.

The first method of compensation to be considered would be the insertion of a linear compensating network at a point in the system located before the nonlinear element. If this proved to be unsatisfactory, then a pulsed data network could be inserted before the nonlinearity in the loop. Also, since the nonlinearity is considered as a magnitude sensitive device and treated as a time varying amplifier, an interesting possio bility for compensation would be the use of a time-varying amplifier with essentially complementary characteristics to that of the nonlinear device. If the amplifier and the nonlinear element were cascaded, then the magnic tude of the signal into the nonlinear element could be kept within the linear region of the comronent. In the case where the nonlinear element has storage of energy, this could not be achieved by a time-varying amo plifier. Therefore, in most cases a pulsed-data network is used as a compensator and designed on the basis of performance criteria and eqalua= tion.

The design of a nonlinear system usually involves some trial and error steps in order to evaluate effective design changes. The design of a relay servo, for example, may require a number of trials in order to arrive at the proper output voltage on the relay and acceptable values of dead-zone and hysteresis. The use of a nomlinear element as a como pensator also may require many design trials in order to arrive at an
acceptable design for all the desired criteria. If there is a reason for using a nonlinear device as a compensator, the calculations are as easily accomplished as for the inherently nonlinear system. Furthermore, the shape of the nonlinearity necessary to give the required output response may be determined. There are no general restrictions imposed on the dem sign of nonlinear compensators. This is a distinct advantage over present methods of design of nonlinear compensators. The method may be applied to the solution of systems with multiple nonlinearities with the same ease.
D) Continuous Data Control System.

The design of continuous data control systems may be achieved by the use of the time domain matrix by the introduction of the approximation of the fictitious sampler and hold. The approximation and the atten= dant error is discussed in section 4-6. Basically, the sampling rate must be sufficient and a fictitious hold introduced in order to produce a continuous input to the controlled system. A continuous-dat, compensation network may be selected by any of the standard design techniques and then introduced into the feedforward channel and its compensating effects evaluated by the time domain matrix method. A single loop continuous system with fictitious sampler and hold is shown in Figure 5-7。 The fictitious sampler and hold are usually inserted in the feedback loop in order to take advantage of the filtering action of the forward channel on the input signal. The use of lead and lag networks as compensating filters may be investigated directly in the time domain by this me thod.

[^1]

Figure 5-7. Continuous Control System With Fictitious Sampling。 the feedback channel, the introduction of a second fictitious sampler and hold will allow for compensation by a matrix in the matrix equations. Then the discrete compensator D found to be desirable may be approximateत by a continuous network in the time domain. By techniques of approximation in the time domain a network can be synthesized to yield a prescribed output for a prescribed input. ${ }^{2,9}$ The time necessary for the calculation of the digital compensator and evaluation of a suitaco ble continuous network may be considerably less than that for a design carried out for the continuous data system by standard s-plane or fre quency response techniques.
E) Time-Varying Sampled Datı Control Systems. The design of time varying sampled-data control systems is possible with the use of the method of time domain matrices. The standard methods of analysis and design for non-time-varying systems, that is the z-transform, and frequency response methods, are not applicable。 The time varying system is represented by the $G(n, k)$ matrix and allows the general design procedures of the preceding paragraphs to be applied. Furthermore, the design of a continuous data time-varying system is
possible through the introduction of a fictitious sampler and hold． This approach offers great possibilities to the designer，in the analy＝ sis and design of systems of which the dynamics vary with some variable。 An important example is the high performance jet aircraft，where the dynamics of the aircraft vary with altitude and therefore time。 A com－ pensator may be introduced and a design evaluated．This compensator may be a continuous data or sampled data network．The limitations，advan－ tages，and purposes of each type of compensator are essentially the same as those for the non－time varying systems discussed in the pleceding paragrarhs．

If the variation of the time varying element is relatively large， it often is impossible to compensate with a non－time varying compensator． In this case it is necessary to use a time varying compensator such as a time varying amplifier，or perhaps a time varying network．The systems of this class are often termed adaptive systems．It is useful to consi＝ der systems with time varying dynamics（poles and zeros of the system transfer function），time varying gain，and time varying sampling rate。 Research on these concepts has been carried out．${ }^{10}$ The area of adaptive sampled－data systems shall be considered further in the next chapter．

Finally，it is possible to use a time varying compensator in a non－ time varying system．For example，it is possible to compensate a sys－ tem for specified criteria by the use of a time varying amplifier． This possibility was illustrated by an example in the previous section．

THE ANALYS IS AND DESIGN OF IDAPTIVE, CONTROL SYSTEMS

6-1. Introduction

An important class of control systems are those for which para= meter values of the system change as functions of some independent variac ble during the period of operation. An important example is the change in the system dynamics of a supersonic aircraft with altitude. Another example is that of a chemical process where a parameter may change as a function of the ambient temperature. Usually, a fixed invarisble cornpensator will be adequate over a restricted range of operating conditions. If the system is expected to operate outside this region, then some other form of compensation is necessary. The compensator of ten used, varies or adapts to the changed operating conditions.

At the present time there is no widely accented fundamental defini= tion of an adaptive system, although several are advanced in the litera* ture. 11,12,13 A system which changes or adapts a parameter of the controlled system to drive the actual performance towards the desired perom formance shall be considered adaptive. The two basic segments of an adaptive system are 1) the identification of the dynamics of the con trolled system, directly or by means of a related variable; 2) the generation of an appropriate actuating signal for the controlled system. Identification of the dynamics may be accomplished, for example, by measuring the impulse response, by measuring the response to white noise, or measuring a related variable such as the output to a known input signal. The adaptive actuator may be a nonlinear, time-varying, or a digital device. For complex systems, it is common to use a digital
computer in which case the systen must be treated as a sampled-data system。

6-2. The Use of A Model in an Adaptive System.
One philosophy of design of adaptive systems incorporates the use of a system model in the input channel as shown in figure 6-1. The output of the model is then compared with the actual output and the error used to drive the system towards the desired output. Another form of a closed loop system using a model is shown in figure 6-2. This configuration has been called a conditional feedback system, the feedback of a control signal being conditional on the result of the error between the desired and actual system output. The necessary conditions for the desired performance are determined by the model and the Adaptive computer provides the actuating signal. The model may be a physical simulation or analog of the process or a mathematical abstraction manifested as a set of equations stored in a computer. The Adaptive computer is often a special purpose digital computer, but may be a nonlinear or time varying controller.

The application of time domain matrix methods to the analysis and design of adaptive systems follows the methods discussed in the previous chapters. The investigation of a sampled-cata conditional feedback system shall illustrate the basic aproach. Consider a basic system where $G_{q}=1$, the adaptive comouter is a direct connection, and the feedback $H(s)=2$, as shown in figure $6-3$. The sampling period will be one second and the plant is a type $I, 2^{\text {nd }}$ order system for which the system matrix is set forth in Appendix A. The goal of the design shall be to obtain a system output response for shifting system dynamics which
N=

- $=$
 IV $=1$

1×1
4
Hen
20

$$
1=
$$

4inem
Hit而
$7+1=1+14$
(
\qquad-

Figure 6-1. The Use of A Model to Shape the Input Signal

Figure 6-2. The Use of A Mbdel in A Conditional Feedback System 1

Figure 6-3. A Sampled-Data Conditional Feedback System
approaches the output response for the desired system. The desired reso ponse is present in the loop as the output of the model, $X(s)$. This desired response is compared with the actual and the difference used to drive the output towards the desired response. For exanple, if $a=1$ for the unvaried system, then the output for a step input would be:

$$
C]=\operatorname{Column}\{0, .3679,1.00,1.40,1.40,1.15, .894, .798, \ldots \circ\}
$$

where $\{c\}$ is the transposed column vector. This response is shown on figure $6-4$ as curve number 1. Furthermore, if the varying system manifests its variation in a shift in the pole a, over the range $a=.50$ to $a=2.0$, the simple single loop system output would vary in the limit as shown in figure $6-4$ as curve 2 and 3 . For the conditional feedback system of figure $6-3$, one obtains the following matrix equations:

$$
\begin{align*}
& E]=R]+X]-2 C] \tag{6-1}\\
& C]=[G] E] \tag{6-2}
\end{align*}
$$

Then, one may write equation 6-1 as:


```
\(4 \sqrt{1}\)
```

 \qquad
1

```

\section*{Tenl lifit \\ \(\square\) \\  \\ 1+honem}
```

11

```
-

```

$$
4
$$

```
\(\qquad\)
\[
\begin{align*}
& 1-2 C_{0} \\
& 1.3679-2 C, \\
& 2.000-2 \mathrm{C}_{2} \\
& E]=2.40-2 \mathrm{C}_{3}  \tag{6-3}\\
& 2.40-2 C_{4} \\
& 2.15-2 \mathrm{C}_{5} \\
& 1.894-206 \\
& 1.798-2 \mathrm{C}_{7} \text { ] }
\end{align*}
\]

For the system with the model in the limit at \(a=2.0\), one obtains:
\[
\begin{align*}
& \text { G } \\
& \left.\left.C]=\left[\begin{array}{c}
0 \\
.2838 \\
.4708 \\
.4961 \\
.4995 \\
.500 \\
.500 \\
0 \\
0
\end{array}\right] \begin{array}{c}
1.226 \\
.3626 \\
.0478 \\
-.1838 \\
. .3064 \\
. \\
.
\end{array}\right]=\begin{array}{c}
.8187 \\
1.1761 \\
1.2919 \\
1.2625 \\
1.6352 \\
.843 \\
0
\end{array}\right] \tag{6-4}
\end{align*}
\]

This output response for the system with the model is shown as curve number 4 on figure \(6-4\) and the response at the limit for the pole \(a=0.50\) is shown as curve number 5. It can be seen, that the system with the model gives a response more closely approximating the desired than would the uncompensated system for either the limiting pole magnitude of \(\varepsilon=050\) or \(a=2.0\). The simple conditional feedback system illustrated here, yields a definite advantage for varying parameter systems. If it was necessary to duplicate the desired response more perfectly, it would be necessary to use an adaptive controller in the feedback loop as show in figure 6-2. In a sampled data system this would usually be a digital

network or \(D\) block. The design of digital networks shall be discussec in the next chapter.

\section*{6-3 An ldaptive Gain System.}

One possible method of adaption for a system is to set a parameter of the closed loop system denendent on a variable related to a perfor mance index. One proposal advanced in the literature considers the varla= tion of a compensator pole based on a measured figure of merit. \({ }^{12}\) The calculation of the figure of merit, such as ITAE (Integrated Product of Time and Absolute Error), is usually accomplished by a special purpose computer and consideration of the signals as sampled-data usually follows.

One form of an adaptive system would use the magnitude of the sampled error to control the gain of the system. There is no signal storage involved in a simple gain adjustment system and therefore the compensation improvement is limited. However, this system illustrates the possibilities of this approach. Consider the system shown in figure 6-5. The input shall be considered a step function, and the amplifier gain a function of the error. Then, for the equations of the system one obtains:


Figure 6-5. Adaptive System With A Variable Gain
\[
\begin{align*}
\left.F_{1}\right] & \left.=\left[\begin{array}{c}
R
\end{array}\right]-C\right]  \tag{6-5}\\
{[A] } & =\left[\begin{array}{lll}
a_{0} & 0 & 0 \\
0 & a_{1} & 0 \\
0 & 0 & a_{2} \cdot
\end{array}\right]=\text { function of the sampled error } \\
0 &  \tag{6-6}\\
\cdot & (6-5)  \tag{6-7}\\
P] & =\left[\begin{array}{ll}
A \\
C
\end{array}\right] \\
C] & =[G] P]
\end{align*}
\]

For a system where \(K=1\) and the amplifier gain is directly proportional to the magnitude of the error with a minimum gain of .20 , one obtains:
and
\[
\left.C]=\left[\begin{array}{c|c}
0 & 1  \tag{6-9}\\
.3679 & .40 \\
.7675 & .0171 \\
.9145 & -.0519 \\
.9685 & -.1078 \\
.9884 & -.0973 \\
.9957 & .059 \\
.9984 & . .367 \\
.9994 & -.0337 \\
\hline
\end{array}\right]=\begin{array}{c}
1.228 \\
\hline .0227 \\
\end{array}\right]
\]

The response for the uncompensated system is curve 1 on figure \(6=6\), while the compensated response is curve 2. The compensated system has less overshoot, shorter settling time and also a somewhat greater rise time. For this type of system, the designer has the choice of the minimum gain and the function of error that controls the gain of the ample= fier. If the pole of the plant is expected to change within the range
\(a=1\) to \(a=05\), then the designer may evaluate the response at \(a=05\) for the compensated system. The resronse for the compensated system is shown on figure 6-6 as curve 3 and the uncompensated response is shows as curve 4. It can be seen that, again, the compensated system will have a smaller overshoot, less settling time and approximately the same rise time as the uncompensated system.

The change in the output response effected by this compensation scheme may not be satisfactory for many purposes. It is not the intent of this chapter to treat exhaustively adaptive systems, but rather to illustrate the application of the time domain matrix method to adaptive systems. Another nowerful approach would involve relating the gain of the amplifier to the derivative of the error. The derivative of the error can be generated from the error samnle magnitudes by the method of backward differences. The use of the error derivatives to control the gain or any other system parameter will yield a more desirable res= ponse than that using the error magnitude. A system which uses the error derivative to control the sampling rate is discussed in the next section.

6-4. An Adaptive Samnling Frequency System
Sampled-data control systems usually have fixed sampling frequen cies which must be set high enough to give satisfactory performance for all anticipated conditions. It is useful to reduce the sampling frem quency whenever possible in order to extend component life and allow time sharing of the digithl components, particularly the digitgl compisters. It is usually desired to have an efficient sampler. That is over a given time interval, fewer samples are needed with the variable
年
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & II & + & & & & & & & & & & & & & - & & & - & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & \(1+\) & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & - & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & & & & \[
11
\] & & & & \[
4
\] & & & & & & & & & \\
\hline & & & & & & &  & & & & \[
\pi
\] & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & - & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & - & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & , & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & & & & & & & & - & & & & & & & & & \\
\hline & & & & & 1 & & & & & & [4 & & & & & & & & & \\
\hline & & & & & & & & & & & - & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & & & & - & & & & - & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & - & & & & & & & & & \\
\hline & & & & & & & & & & & ' & & \(\cdots\) & & - & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & 1 & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & - & & \(\square\) & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & - & & & & & & & & - & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & 7 & & & & & & & - 2 & & - & & & & & & & & & \\
\hline & & & & & & & & & & & H1+ & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & & - & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline & & , & & & 1 & & & & & & 0 & & - & & & & & & & \\
\hline \(\square\) & & & & & & & & & & & & & & & & & & & & \\
\hline \(\square\) & & H & 11 & & 11 & & \(\underline{1}\) & & IT & & & & H & & & & & & & 1 H \\
\hline
\end{tabular}
frequency system than with a fixed frequency system while maintaining essentially the same response characteristics. A study of an adaptive system which varies the sampling frequency by measuring a system pargo meter has been accomplished. 10 It was shown experimentally, that a sampler whose sampling period is controlled by the absolute value of the first derivative of the error signal will be a more efficient sampler than a fixed frequency sampler.

Analytical methods of investigation were not available and in order to compare the experinental results with calculated results, it was neces= sary to develop a method of investigating sampled systems with varying sampling rates. Fortunately, the tine domain matrix method with a time varying system natrix may be extendea to investigation of variable fre quency sampling. Consider the systen shown in figure 6-7. The samping frequency is controlled by a function of the error, and could be cone trolled by a function of the sampled error if this was the available error signal as in a radar system.


Figure 6-7. Variable Sampling Rate System


Hen Mration
+im
niles
nem
-1m

THin

In H Lin min


Hes rum

As was shown in the previous section, the derivatives of the error may be obtained from the sampled error by backward difference formulas. The output response may be written as:
\[
\begin{equation*}
C(k)]=[G(n, k)] E(\dot{k})] \tag{6-10}
\end{equation*}
\]
where \([G(n, k)]\) is the time varying systern matrix and \(C(k)]\) and \(E(k)]\) are time varying colunn matrices. That is, with the period of sampling changing with time, one cannot correctly write
\[
\begin{equation*}
c]=\left\{C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, \ldots\right\} \tag{6-11}
\end{equation*}
\]
where the output samples are equally spaced \(T\) seconds apart. When the sampling rate changes, samrles occur at various times and in this case \(k\) equals the number of seconds elarsed from the time origin.

As an example, consider a system with two values of sampling period. \(T=1\) second and \(T=2\) seconds. Obvjously, it is more efficient to have a sampling period of two seconds when the error is changing slowly, therefore the first derivative of the error may be used to switch the sampling period from one second to tivo seconds. Consider a step input and a system with a transfer function:
\[
\begin{equation*}
G(s)=\frac{1}{s(s+1)} \tag{6-12}
\end{equation*}
\]

Furthermore, for illustration, the sampling rate shall be considered to switch at the first sample when the derivative of the error is zero which is at the first overshoot peak. Considering line A of table \(\sigma_{-1}\) which is the response for this system with \(T=1\) second for all time, one can expect the same values of response for the first three seconds. At the output peak overshoot the sampling period switches to \(T=2\) seconds and one obtains for equation \(6 \times 10\) :

\[
C(k)]=\left[\begin{array}{lllll}
0 & 0 & 0 & \ldots &  \tag{0-13}\\
g(1,0) & 0 & 0 & & \\
g(2,0) & g(2,1) & 0 & & e(0) \\
g(3,0) & g(3,1) & g(3,2) & 0 & \\
\mathrm{e}(1) \\
\mathrm{e}(2) \\
\mathrm{g}(5,0) & \mathrm{g}(5,1) & \mathrm{g}(5,2) & \mathrm{g}(5,3) & 0 \\
\mathrm{~g}(7,0) & \mathrm{g}(7,1) & \mathrm{g}(7,2) & \mathrm{g}(7,3) & \mathrm{g}(7,5) \\
\mathrm{e}(5) \\
\mathrm{e}(7) \\
\mathrm{e}(9)
\end{array}\right]
\]

Therefore, using the values for the \(g_{n}\) given in appendix \(A\) for \(T \approx 1\) second up to \(n=3\) and then for \(T=2\) seconds one obtains the following, where the star indicates the \(T=2\) condition:
\[
C(k)=\left[\begin{array}{lllll}
0 & 0 & & & \\
.3679 & 0 & & & \\
.7675 & .3679 & 0 & 0 & \\
.9145 & .7675 & .3679 & 0 & \\
.9824 & .9685 & .9145 & 1.1353^{*} & \\
.0321 \\
.9984 & .9957 & .9884 & 1.0830^{*} 1.1353^{*} & \\
.000 \\
.9998 & .9994 & .9984 & 1.9842^{*} & 1.8830^{*} 1.1353^{*}
\end{array}\right](6-14)
\]

Therefore, the output response is:

It can be seen that there will be fewer samples necessary for this varia= ble frequency and it is therefore more efficient. The resnonse of the variable sampling frequency system is given in table 6-1, and it is esseac tially the same as the fixed frequency system with respect to overshoct.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline time (seconds) & 0 & 1 & 2 & 3 & 5 & 7 & 9 \\
\hline A Output-Fixed T & 0 & .368 & 1.00 & 1.40 & 1.15 & .802 & .994 \\
\hline B Output-VariableT & 0 & .368 & 1.00 & 1.40 & 1.15 & .708 & .893 \\
\hline
\end{tabular}

Table 6-1. Response With Fixed and Variable Sampling Period.

\section*{Eil Fitran}

\section*{Hinn numbry}

IE IIN:

17
-

+iment
rise time, and settling time. This subject is treated further in re= ference 10, where it was show experimentally that a reduction in the number of samples of twenty-five to fifty percent may be accomplished. 6-5. The Use of the Time-Domain IGtrix for Analysis and Design of Adap= tive Systems.

Adaptive systems may be treated as time-varying control systems in almost all cases. Therefore, continuous or sampled-data adaptive sys: tems may be profitably investigated by the use of time domain matrix methods. In fact, there may be no other method than can be used except solution by numerical methods ultilizing the digital computer.

One of the necessary stens in the adaptive process is the identio fication of the system, that is, the impulse response or the transfer function. With the use of time domain matrices it is possible to determine the pulse response when the system is at rest as outlined in chapter two. If the system is not at rest at any time, then the identification of the dymamics must be accomplished by some other means. 13

A predictor or learning system may be designed by the use of backe ward and forward differences. The evaluation of a forward difference equation allows the system to predict its next few values and adjust for optimum conditions. For example, the Gregory-Newton forward intere polation formula may be programed in a digital network for the prew dicted output as:
\[
\begin{equation*}
c_{n+1}=3 c_{n}-3 c_{n-1}+c_{n-2} \tag{6-16}
\end{equation*}
\]
using the present value and two past values requiring two storage ele ments. The accuracy of prediction increases with an increase in the number of storage elements and if three past values were to be used

in the calculation, then the formula to be nrogramned would be:
\[
\begin{equation*}
c_{n+1}=4 c_{n}-6 c_{n-1}+4 c_{n-2}-c_{n-3} \tag{6-17}
\end{equation*}
\]

On the basis of the predicted value of the output response, the adape tive system may adjust a system parameter on add a signal to drive the actual output towards the desired output. The accuracy of this method improves with an increasing sampling frequency as would be expected. This adaptive system using equation 6-16 and 6-17 may be implemented by the use of digital logic networks or operational amplifiers and electronic samplers. Equations 6-16 and 6-17 may be written in matrix form to aid in the calculation of the predicted values.

The use of a special or general pumpose computer in an adaptive system can be investigated in general by the method of time domain matrices. One adaptive system uses the integrated Product of Time and Absolute Error as the figure of merit and obtains the magnitude of this figure of merit by calculations on the sampled signals. These calculations are accomplished by a programmed numerical method and can be written in matrix form. Furthermore, the method of steepest descent may also be calculated by the matrix approach. In general, the use of numerical methods in the calculation of the figure of merit and adjustment necessary in adaptive systems may readily be accomplished through the use of time domain matrix methods.


7-1. Introduction
In the design of control systems it is desired to satisfy a set of specifications and response requirements. In many cases, this requires the introduction of a compensator in the control loop. The design process may be carried out by the use of the time domain matrix for sampled-data systems and for continuous data systems by the introduction of the fictitious sampler.

The introduction of a discrete-data compensator in the control loop will allow the designer to achieve a required output response. The compensator operates on the discrete-data input and yields a dis-crete-data output. This compensator may be realized by a special or general purpose digital computer, a logic network, or a circuit composed of operational amplifiers and electronic samplers.

The process to be controlled is usually a continuous process and therefore it is necessary to investigate the response of the system between sampling instants while carrying out the design. Design by z plane or root locus methods does not include this possibility and often results in unsatisfactory intersample system response. The use of time domain cesign techniques has two basic advantages:
1) the design is carried out directly in the time domain
2) the intersample response is accounted for in the design.

A sampled data systern with a discrete data compensator is shown in figure 7*1. The \(D^{*}(s)\) is the sampled data transfer function of the compensator.

\title{

}
\[
2
\]
 \(-\) \(\qquad\) \(\square-\square\)

草 14 \(x+2\)


\(\qquad\)部

\(-2\) ..... 
\(+1 \square 0\) - E- +1

- -
 ..... 4 ..... \(3811=\) ..... winn








 .....  .....  ..... 7 .....  .....  ..... 7 .....  .....  ..... 7 .....  ..... \(+\) .....  ..... \(+\) .....  ..... \(+\)
\(\square=\)
\(\square=\)
\(\square=\) - - - En En En \(-\) \(-\) \(-\)\(-2\)
2 ..... \(x+2+2 x=-2\)
 I
 ..... \(+2\)
- ..... 1
2
2
\(-\ln +1\)
(ink

\(\qquad\)
   ..... 411


Figure 7-1. A Sampled-Data Syster with A Discrete-Data Compensator. 7-2. The Fhysical Realizability of Discrete-Data Compensators.

The digital compensator operates on the input signal and yields a transformed discrete tine sequence output. The z-transform equation for this operation may be written for figure 7ol 3.5:
\[
\begin{equation*}
P(z)=D(z) E(z) \tag{7-1}
\end{equation*}
\]

Then, it can be seen that this operation may be written as a matrix equation as follows:
\[
\begin{equation*}
P]=[D] E] \tag{7-2}
\end{equation*}
\]
where
\[
[D]=\left[\begin{array}{ccccc}
d_{0} & 0 & 0 & 0 \\
d_{1} & d_{0} & 0 & 0 \\
d_{2} & d_{1} & d_{0} & 0 & \ldots \\
\vdots & & &
\end{array}\right]
\]
when the compensator is time invariant. If the digityl compensator is time varying, then ane may write:
\[
P]=[D(n, k)] E]
\]
where
(2men
\(\frac{15}{12}=\)


\[
\begin{aligned}
& 1
\end{aligned}
\]
\[
[D(n, k)]=\left[\begin{array}{lll}
d(0,0) & 0 & 0 \\
d(1,0) & d(1,1) & 0 \\
d(2,0) & d(2,1) & d(2,2) \ldots \\
\vdots & & \vdots \\
\cdot & & \vdots
\end{array}\right]
\]

It is necessary to detemine what restrictions are imposed upon the D matrix by the requirement of physical realizability.

A systern is said to te physically realizable, if the output signal of the systern does not depend upon future information of the input sigw nal. In the matrix equation \(7-1\), this is expressed as the requirement that all the elements of the \(D\) matrix above the main diagonal be zero. The truth of this statement can be seen from the following matrix equa tion.
\[
\left.F]=\left[\begin{array}{cccc}
d_{0} & d_{a} & 0 & 0  \tag{7-3}\\
d_{1} & d_{0} & d_{a} & 0 \\
d_{2} & d_{1} & d_{0} & d_{a} \\
\vdots & & &
\end{array}\right] E\right]
\]

Expanding the second row ( \(n=1\) ), one obtains:
\[
\begin{equation*}
p_{1}=d_{1} e_{0}+d_{0} e_{1}+d_{3} e_{2} \tag{7-4}
\end{equation*}
\]

Therefore, \(p_{1}\) would depend upon the future input signal \(e_{2}\) which is not available at the second sampling instant ( \(n=1\) ). Therefore, it is necessary for \(d_{a}=0\), and all elements above the majn diagonal to be equal to zero.

Furthermore, for a stable comensator, it is necessary for:
\[
\begin{equation*}
\operatorname{limit}_{n \rightarrow \infty}\left|\frac{d_{n+1}}{d_{n}}\right| \leqslant 1 \tag{7-5}
\end{equation*}
\]

If this limit is equal to one then the D block is a steady-state oscillator.
\(\stackrel{1}{1}\)
+
1
4

418
\(11=\)
2
\(\sin \mathrm{m}\)
 \(\pm\) 7inern
 A 101men \(-2\) \(\qquad\) \(1+2\) ene

2

屚 8

4ity 11
and

=od 1120
 \(-\ln\)

 Hevir

The discrete data compensators may be realized by:
1) Digital Frogramming
2) Delay Iine Networks
3) Discrete-data RC networks
4) Analog Computer Elements. है

7-3. The Sensitivity Matrix of the Sampled Data System with A Discrete Compensator.

A logical quantative measure of the control property of a feedback system is the sensitivity which is defined as the relative change in the system transfer function \(T\), divided by the relative change in the plant \(G\). \({ }^{14}\) In the \(z\) transform notation, this may be expressed as:
\[
\begin{equation*}
S=S_{G}^{T}(z)=\frac{d T(z) / T}{d G(z) / G(z)} \tag{7-6}
\end{equation*}
\]
where \(T(z)=\frac{C(z)}{R(z)}\)
For figure 7-1, one obtains:
\[
\begin{equation*}
T(z)=\frac{G(z) D(z)}{1+G(z) D(z)} \tag{7-7}
\end{equation*}
\]
and
\[
\begin{equation*}
S=\frac{I}{I+G(z) D(z)} \tag{7-8}
\end{equation*}
\]

This system possesses two degrees of freedom, which permits independent realization of \(T\) and \(S\) by means of the \(G\) and \(D\) comronents. Equations 7-7 and 7-8 may be written in matrix form as:
\[
\begin{equation*}
[T]=[G][D]\{[I]+[G][D]\}^{-1} \tag{7-9}
\end{equation*}
\]
and
\[
[S]=\{[I]+[G][D]\}-1
\]

Then the sensitivity specifications \(f i x\) the sensitivity matrix and therefore,
 \(-1=0\)






 \(+\pi\) \(=\)
\[
y-\frac{1}{11}+\frac{10}{11}
\]
\[
-11 \times 11-4 \mid+1
\]

\[
\begin{aligned}
& 1+
\end{aligned}
\]
\[
\begin{aligned}
& --4 \text { and ala a }
\end{aligned}
\]
\[
\begin{equation*}
[G][D]=[S]^{-1}-[I] \tag{7-10}
\end{equation*}
\]

The required output specifications fix the \(T\) matrix and since;
\[
\begin{equation*}
[T]=[\mathrm{G}][\mathrm{D}][\mathrm{S}] \tag{7-11}
\end{equation*}
\]
one obtains:
\[
\begin{equation*}
[G]=[T][S]^{-1}[D]^{-1} \tag{7-12}
\end{equation*}
\]

Therefore, equations 7-12 and 7-10 may ke used to obtain the required system matrices \(G\) and \(D\). If the plant \(G\) i.s fixed by power and load considerations, then a new compensator, \(D_{1}\), must be introduced in the control loop.

The sensitivity of an uncompensated and the compensated system is shown in figure 7-2. The uncompensated system is a type one, second order system with a zero order hold. The compensation reduces the overshoot for a step input, to half the uncompensated value while reducing the rise time by half a sampling period. The magnitude of the sensiti= vity response of figure \(7-2\) is greatest during the first three sampling periods and settiles out most rapidly for the compensated system.

The use of the sersitivity matrix or response, aids the designer in understanding the effects of comrensation by a discrete data network. Furthermore, the variation of the system response with a system changing with time may be studied for adaptive systems by considering the sensitivity.

7-4. Design of a Closed Loop Discrete Compensator by Neans of An Open Loop Discrete Compensator.

For the single closed loop samiled-data system shown in figure \(7-3\), a design of a discrete compensator is usually required in order
\[
\text { Of: }=1 \text { reiga }
\]
 1
or

\title{

}

-

E. \(2+20\)

 \(-\mathrm{Cl}_{1}+\) 0

 \(\mathrm{n}-\mathrm{n}-\mathrm{m}\) 1.





 \(=1\)



Figure 7-2. The Sensitivity of the Comnensated and Uncompensated


7-3. Error Sampled System with A Discrete Compensator
for the system to meet the necessary specifications. The output response at the sampling instants may be written in a time domain matrix equation as:
\[
\begin{equation*}
C]=[G][D]\{[I]+[G][D]\}-1 \quad R] \tag{7-13}
\end{equation*}
\]

This complex relation involving \(D\) causes the investigator to consider the design of an open loop compensator as shown in figure \(7-4^{2}\)


7-4. An Open Loop Discrete Comrensator

Then, the matrix equation for the sampled output response may be written as:
\[
\begin{equation*}
\left.C]=[G]\left[D_{0}\right] \quad R\right] \tag{7-14}
\end{equation*}
\]

If an open loop comnensator may be determined, then a closed loop compensator may be found. To find the relation between the open and closed loon, comensator, equations 7-1.3 and 7-14 are equated and solved for \(D\)

yielding:
\[
\begin{equation*}
[D]=\left[D_{0}\right]\left\{[I]-\left[D_{0}\right][G]\right\}^{-1} \tag{7-15}
\end{equation*}
\]

It can be seen that this method takes the plant \(G\) into consideration in the determination of the closed loop compensator.

An example will illustrate the design procedure. Consider a system with a transfer function \(G(s)=\frac{1}{s(s+1)}\), a zero order hold, and a sampling period of one second. A design of a compensator shall be accomplished for the best compromise for a step and ramp input. The open loop compensator is chosen to yield a system output with a final value of one for a step input. Then, one has:
\[
\begin{align*}
D_{0}(z) & =\left(1+d_{1} z^{-1}\right)\left(1-z^{-1}\right)\left(\frac{1}{1+d_{1}}\right) \\
& =\left(\frac{1}{1+d}\right)\left(1+\left(d_{1}-1\right) z^{-1}-d_{1} z^{-2}\right) \tag{7-16}
\end{align*}
\]

This compensator will have a minimum complexity since the use of further delays such as \({ }_{2} z^{-2}\), increases the complexity of the closed loop compensator. The final value in the time domain, for a step input, yields a value of unity for the system output as expected. The final value theorem is written and evaluated as follows:
\[
\begin{aligned}
& \left.\left.\operatorname{limit}_{t \rightarrow \infty} C\right]=\lim _{t \rightarrow \infty}[G]\left[D_{0}\right] R\right] \\
& =\operatorname{limit}_{t \rightarrow \infty}\left[\begin{array}{ccc}
0 & 0 & 0 \\
g_{1} & 0 \\
0 & 0 \\
0 & 0 \\
g_{n} & g_{n+1}
\end{array}\right]\left(\frac{1}{1+d_{1}}\right)\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
\left(d_{1}-1\right) & 1 & 0 \\
-\alpha_{1} & \left(d_{1}-1\right) & -1 & \\
0 & -d_{1} & \left(d_{1}-1\right) \cdots \\
0 & & 0 \\
0 & & \\
1 \\
1 \\
1
\end{array}\right] \\
& =\operatorname{limit}_{n \rightarrow \infty} \quad \frac{g_{n+1}+d_{1} g_{n}}{1+d_{1}}=1
\end{aligned}
\]
```

|

```


```

 ~-nalllumanmo
    ```



```

 < (a)
    ```


```

4-m

```

```

 #
    ```



```

 L2,
 *)
    ```


The output response for the sampling instants may be written for a step input as:
\[
\begin{align*}
& \left.=\left(\frac{I}{I+d_{1}}\right)\left[\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
g_{1} & 0 & 0 \\
g_{2} & g_{1} & 0 \\
g_{3} & g_{2} & g_{1} & \\
\vdots & & & \\
\cdot & &
\end{array}\right] \begin{array}{l}
l \\
d_{1} \\
0 \\
0 \\
\vdots
\end{array}\right] \tag{7-18}
\end{align*}
\]

Therefore, the output at the sampling instants is:
\[
\begin{equation*}
c_{n}=\frac{g_{n}+d_{1} g_{n-1}}{1+d_{1}}, \quad n \geqslant 2 \tag{7-19}
\end{equation*}
\]

The response between the sampling instants may be evaluated from:
\[
\begin{equation*}
\left.C(m)]=[G(m)]\left[D_{0}\right] R\right] \tag{7-20}
\end{equation*}
\]

Then, for half way between the sampling instants ( \(m=1 / 2\) ), one obtains for the output response:
\[
\begin{equation*}
c_{n}(1 / 2)=\frac{g_{n-1 / 2}+d_{1} g_{n-1.5}}{1+d_{1}}, \quad n \quad 2 \tag{7-2.1}
\end{equation*}
\]

For a ramp input, the output response may be written as:
\[
\begin{equation*}
\left.C]=\left(\frac{1}{1+d_{1}}\right)[G][D] R\right] \tag{7-22}
\end{equation*}
\]
where \(R]=\operatorname{colum}\{0,1,2,3,4, \cdots\}\)
Then, one obtains:
\[
c_{0}=c_{1}=0
\]


2
\[
1 \text { itin }
\]

\[
-\frac{1-2}{1-2}-\frac{1}{2}-2
\]

就
\[
c_{n}=\frac{g_{n-1}}{1+d_{1}}+g_{n-2}+g_{n-3}+\cdots \cdots, n \quad 2 \quad(7-23)
\]

The output response is then easily evaluated for the step and ramp in puts and the results for this example are shown on figures \(7-5\) and \(7=6\). The designer would be able to choose a value of \(d\) on the basis of the specifications for a step and ramp input. In this case, as a compromise, the designer might choose \(d_{1}=-.60\). Then, the matrix for the closed loop compensator \(D\) may be evaluated from equation 7-1.5. Since the system \(G(s)\) is second order, the closed loop compensator required will be third order.

If more control over the output response is desired by the designer. then one may use a higher order \(D_{0}\). For example, a higher order compen sator might be:
\[
\begin{equation*}
D_{0}(z)=\left(\frac{1}{1+d_{1}+d_{2}}\right)\left(1+d_{1} z^{-1}+d_{2} z^{-2}\right)\left(1-z^{-1}\right) \tag{7-24}
\end{equation*}
\]

With this form of compensator, a deadbeat response to a step input is possible. In general, this method of compensation in the open loop, gives the designer strong control over the system output response. The method may be applied to linear sampled-data and continious systems. and time varying sampled-data and contirusus systems.

7-5. Design of The Closed Loop Compensator By Time Domain Evaluation. A simple method of the design of the closed loop discrete compensator should not be overlooked; that is, the arbitrary choice of a \(D(z)\) and an evaluation of the output response by the use of time domain ma= trices. The evaluation of the output response between the sampling instants avoids the possibility of hidden oscillations. The choice of


 \(\operatorname{men}\) in
 Pita

 \(0_{0}\)



路



 -2 (2.0

 \(\frac{1}{4}\)

 1


the \(D(z)\) may be aided by all the standard \(z\)-transform techniques, and evaluated by the time domain matrix. For the example, of the previous section, one might choose on the basis of \(z\)-plane techniques a compen sator as:
\[
\begin{equation*}
D(z)=\frac{K(z-.3678 \varepsilon)}{(z+d)} \tag{7-25}
\end{equation*}
\]

Then, evaluating the outrut response for \(K=2, d=.50\) and \(d=.72\), as show in figure 7-7, the designer would choose the compensator on the basis of the specifications. It is interesting to note that for \(K=2, d=.72\), one obtains
\[
\begin{align*}
G(z) D(z) & =\frac{(.3679)}{(z-1)(z+.72)}(z-.3679) \\
& =\frac{.7358}{(z-1)} \tag{7-2.6}
\end{align*}
\]

This type of compensation in the \(z\) plane, comnonly called cancellation compensation is nisleading since the \(z\)-plane only accounts for the sampling instants. The total resnonse for all time may be evaluated using the time domain matrix. If \(K\) is set equal to 2.718 and one obtains:
\[
\begin{equation*}
G(z) D(z)=\frac{1}{(z-1)} \tag{7-27}
\end{equation*}
\]
and the closed loop, z plane response is:
\[
C(z)=z^{-1} R(z)
\]

The response for this system is shown on figure \(7-7\) as curve number 3 . It is obvious that it is necessary to consider the intersample response in most design problems.

7-6. The General Characteristics of the Closed Loop Discrete Compensstor。 It is worthwhile to look at the general form of the discrete compersator \(D\). The compensator may be written in the z-transform as:
\(\square\)
3 1. \(1+2\)空
 - - - inion ind
 3 \(711=10\)

\section*{\(-1\)}

\title{
-
}

N \(-2\) \(-1-\mathrm{x}=\)

\(->\) - \(=\pi=0\) \(x=-20\)
 14 4
\(\qquad\) 2 \(x+200\)
\(\qquad\)
\[
x-2
\]

\[
+\ln +\frac{2}{2}+2
\]
\(-\)84-
\(\qquad\)\(11-3\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{26}{|c|}{\(3 * y\)} \\
\hline & & & & & T1/ & & & & & & & & & 11 & 17 & & & & & & & & & & \\
\hline & & & & & & & & & & & 11 & , & & 11 & H & & & & & & & & & & \\
\hline & & & & & - & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & 1 & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & \(1 /\) & & & & & & & & & & & & \(\pm\) & & & & & & & & \\
\hline & & & & & & & & & \(\square\) & & & & & & & & & & & & & & & & - \\
\hline & & & & & 1+1-1 & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & \% & &  & & & - & \(\square\) & & & & & & & & & & & & & & & \\
\hline & & & & & & - & & & & - & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & - & & & Oo & & & & & & & & & & & & & \\
\hline & & & & & & & & & - & 7 & & & & & & & & & & & & & & & \\
\hline & & & & -1 & & & & & \(\dagger\) & 1 & & & & ¢ & N & & & & & & & & & & \\
\hline & & & & & & & & & I & & & \(1+\) & & m & ? & & & & & & & & & & \\
\hline & & & & & '\% & & & & & & & N0 & & & + & & & & & & & & & & \\
\hline & & & \(\dagger\) & & +3 11 & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & 11 & & & & & & & & & & & & & \\
\hline & & \(\square\) & & & S & & & & & \(\because\) & & \(\cdots\) & & & 11 & & & & & & & & & & \\
\hline & & & & & & & & & & & & N & & & \(\cdots\) & & & & & & & & & & \\
\hline & & & & & \% & & & & & & - & - & & & \(\stackrel{\sim}{\sim}\) & & & & & & & & & & \\
\hline & & & & & \(\bigcirc\) & & & & V & & & & & & \(\square\) & & & & & & & & & & \\
\hline & & & & & E\% & & & & & & & & & & & & & & & & & & & & \\
\hline & & - & & & \(\cdots\) & & & & - & \(\cdots\) & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & , & , & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & H1H & & & & & & & & & & , & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & - & \(\underline{ }\) & & & & & & & & & & & H & & & & \\
\hline & & & & & \(\square\) & & & & - & 1 & & & & & & & & & & & & & & & \\
\hline & & & & \(\square\) & \(\square\) & & & & - & & & & & & & & & & & & & & & & \\
\hline & & & & & \(\cdots\) & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\square\) & & & & & & & & & N & \(\cdots\) & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & cr \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & \(\gamma\) & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & - & - & & & - & & & - & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & , & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & , & & & \(\square\) & \(\cdots\) & & & & & & & & & & & & \\
\hline & & & & & & & & & 1 & & & & 1 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & - & & & & & & & : & & & & & & & & \\
\hline & & & & & & & & & & & & \(\stackrel{1}{0}\) & & & & & & & & & & & & & \\
\hline & & 1 & & & \(\square\) & & & & 1 & & & + & & & & & & & & & & & & & \\
\hline & \(\bigcirc\) & & & & & & & \(\square\) & & & & 50 & & & & & & & & & & & & & \\
\hline & & - & & \(\square\) & \(\square\) & & & & & & & 100 & & + & & & & & & & & & & & \\
\hline \(\square\) & 1-1 & - & & & & & & & & 1 & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\[
\begin{align*}
D(z) & =\frac{K\left(z+z_{1}\right)\left(z+z_{2}\right) \cdots}{\left(z+p_{1}\right)\left(z+p_{2}\right) \cdots}=\frac{K\left[a_{0}+a_{1} z^{\infty 1}+a_{2} z^{\infty 2}+\cdots\right]}{1+b_{1} z^{-1}+b_{2} z^{-2}+\ldots} \\
& =K\left\{1+d_{1} z^{\infty 1}+d_{2} z^{-2}+\ldots \cdot\right\} \tag{7-29}
\end{align*}
\]

The time domain matrix is written as:
\[
[D]=K\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0  \tag{7-30}\\
d_{1} & 1 & 0 & 0 & 0 \\
d_{2} & d_{1} & 1 & 0 & 0 \\
d_{3} & d_{2} & d_{1} & 1 & 0 \\
\vdots & & & & 0 \\
\vdots & & & & 0
\end{array}\right]
\]

For a first order compensator one has:
\[
\begin{equation*}
D(z)=\frac{K(z-a)}{(z+b)} \tag{7-31}
\end{equation*}
\]
where the zero is in the right half of the \(z\) plane, almost always the case. Then, one obtains:
\[
D(z)=K\left\{1-(a+b) z^{-1}+b(a+b) z^{-2}=b^{2}(a+b) z^{-3}+\ldots\right\}(7-32)
\]

For this compensator, the matrix values are:
\[
\begin{equation*}
d_{8}=-(a+b), \quad d_{2}=b(a+b), \quad d_{3}=-b^{2}(a+b), \cdots \tag{7-33}
\end{equation*}
\]

Therefore, if the values of \(d_{1}\) and \(d_{2}\) are obtained as necessary for come pensation, the necessary \(D(z)\) may be realized as equation 7-31. If it is necessary to specify four elements of the \(D\) matrix then the compensator must be second order. That is, if \(d_{1}, d_{2} d_{3}, d_{4}\) are specified, then \(D(z)\) must be of the forn:
\[
\begin{equation*}
D(z)=\frac{K(z-a)(z+c)}{(z+b)(z+e)} \tag{7-34}
\end{equation*}
\]

The sampled impulse response of the discrete network weights the past and present values of the input signal, yielding the output signal
\[
\begin{aligned}
& \pm \underset{\mathrm{min}}{\mathrm{~m}} \mathrm{~m}
\end{aligned}
\]
\[
\begin{aligned}
& 1+2+20-1+1
\end{aligned}
\]
\[
\begin{aligned}
& \text { 1者 } \\
& \text { (-1.4 }
\end{aligned}
\]
\[
\begin{aligned}
& -2+\ln -2
\end{aligned}
\]

at the sampling instants. There are three possible sampled inpulse response time series for a stable discrete conpensatcr. These possi= bilities are illustrated by figure \(7-8\) which also lists the necessary first order compensator and its \(z\)-plane pole and zero locations. An unstable discrete compensator occurs when \(b>1\) in case \(c\), where then the alternating series is a diverging time series.

It is worthwhile to investigate further, the alternating weighting series of the compensator of case \(c\). This discrete compensator would normally be used to stabilize the system wile maintaining a desired rise and settling time. Fron equation 7-32 one can observe that if \((a+b)\) is greater in magnitude than one, the second term of the converging series is greater than the constant term of one. Therefore, it is actually possible to weigh past samnlcd information with a greater value than present information. This condition may be used, although usually to weigh past data with the greater value would have an unstabilizing influence. A picture of the sampled impulse response of the discrete compensator is useful in designing a compensator as shown in the next section.

7-7. Time Domain Design of A Discrete Compensator.
The design methods discussed in the previous sections depend either on standard techniques on the z-plane or on the choice of a trial compensator and evaluation in the time domain. These methods are powerful and are the oncs used predominantly in practice. However, it would be of value to the designer if une could design the compensator directly in the time domain. Two methods of compensation design in the time domain by the use of time domein matrices have been developed by the author
\(2 \cos 2\)
\(\pi=\frac{20}{2}+2\) ..... \(4=11\)

\(\tan 1-20\) \(4-1+\frac{1}{4}\)
2 \(+\) ..... 
Cr
Cr
\(=2\) \(+1\)
17) 41
\(1-8+8\)14
lutern \(-2+3\) 3 IFervil
1 Hone ..... \(+2+2\)
 ..... \(31-2\)
min 1埗


2
\(45=-2\) 都

\(\qquad\)

\(\qquad\)
\(12+2\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\pi+5-5+3\) 2 4 1 15et \(1+\square\)
\(\qquad\) ..... \(+2+18\)
(20) ..... \(12-1\)


2020


\(\qquad\)


\(\qquad\)
\(\qquad\)
 
-
(40) 10

\(\qquad\)nexum
?4ET
 ..... \(-\quad-\)
 \(1-1\) -

\([-2\) ..... 
\(\square\)18

2
 \(\square\)
(2) ..... T-

\(\qquad\)

 ..... -4
1
1 -



Figure 7-8. The Stable Sampled Impulse Response of The Discrete Compensator


and are presented in this section.
A. Synthesis at the Sampling Instants.

For the error compensated single loop sampled-datz system shown in figure 7-3, one may write the following time domain matrix equations:
\[
\begin{align*}
& C]=[G] \mathrm{P}]  \tag{7-35}\\
& \mathrm{P}]=[\mathrm{D}] \mathrm{E}] \tag{7-36}
\end{align*}
\]
where \(E]=R]-C]\)
Also, the equation for the response between the sampling instants may be written as:
\[
\begin{equation*}
C(m)]=[G(m)] p] \tag{7-38}
\end{equation*}
\]

Therefore, if the designer speciries the values of the \(C\) matrix in equation \(7-35\) on the basis of the required response, the values of the \(P\) matrix may be determined. Then, with a known input \(R\), and a specified C matrix, the error matrix may be evaluated from equation 7-37. Since, \(P\) and \(E\) are then known, the required \(D\) matrix may be evaluated from equation \(7-35\). It must be noted that the designer has no control over the intersample response when using this method. When the \(P\) matrix is found on the basis of the desired output \(C\) at the sampling instants, the output between the sampling instants \(C(m)\) is then calculated from equation 7-38.

Once the values of the sampled output are specified, the \(P\) matrix may be determined from equation \(7-35\), or by writing:
\[
P]=\left[\begin{array}{ll}
G]^{-1} & C \tag{7-39}
\end{array}\right]
\]

It is usually convenient to use equation 7-35 and avoid the inversion of the G matrix. It is possible to specify an output response at the

sampling instants which the compensated system will be unable to yield, in which case the calculated compensator, \(D(z)\), will be unrealizable 。 For most design problems, it is sufficient to find the first few eleaments of the \(D\) matrix and determine a \(D(z)\) compensator on this basis from equation 7-32 or 7-34.

An example will illustrate the procedure and the possibilities of compensation. Consider the system of figure 7-9 which has been considered in the previous sections. The output response of the uncompensated sym term is shown as curve number 1 in figure \(7-10\).


Figure 7-9. Compensated Sampled Data Control System. It is desired to lower the rise time (for \(90 \%\) of the final value) while lowering the maximum overshoot to 10 percent. Then, on this basis, set:
\[
\begin{equation*}
c]=\operatorname{coluran}\{0, .50,1.0,1.10, \ldots\} \tag{7-40}
\end{equation*}
\]
and using equation \(7-35\) evaluate the necessary values in the \(P\) matrix. For the first four sampling instants, one may write:

\[
\left.\left.\begin{array}{l}
c_{0}  \tag{7-4i}\\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
.3679 & 0 & 0 & 0 \\
.7675 & .3679 & 0 & 0 \\
.9145 & .7675 & .3679 & 0
\end{array}\right] \begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
\]

Using this matrix, the \(p_{n}\) may be evaluated step by step as follows:
\[
\begin{align*}
& p_{0}=\frac{c_{4}}{.3679}=\frac{.50}{.3679}=1.359 \\
& p_{4}=\frac{c_{2}-g_{2} p_{0}}{g_{4}}=\frac{1.0-(.7675)(1.359)}{.3679}=-.1170  \tag{7-42}\\
& p_{2}=\frac{c_{3}-g_{3} p_{0}-g_{2} p_{1}}{g_{4}}=-.1441
\end{align*}
\]

Then, the D matrix may be evaluated on the basis of equation 7-36 and the calculated error values as follows:
\[
\left.\left.\begin{array}{l}
P]=[D T E] \\
-. .359  \tag{7-43}\\
-.1170 \\
-.1447
\end{array}\right]=K\left[\begin{array}{llc}
d_{0} & 0 & 0 \\
d_{1} & d_{0} & 0 \\
d_{2} & d_{1} & d_{0}
\end{array}\right] \quad .00\right] . \begin{gathered}
1.0 \\
.00
\end{gathered}
\]

Therefore, the \(d\) values are;
\[
K d_{0}=1.359, \quad K d_{1}=-.7965, K \mathrm{~K}_{2}=+.2542
\]
and the \(D\) matrix may be written as:
\[
K[D]=1.359\left[\begin{array}{ccc}
1 & 0 & 0  \tag{7-44}\\
-.5861 & 1 & 0 \\
+.1870 & -.5861 & 1
\end{array}\right]
\]

If a first order compensator is used to realize this compensator, equation 7-31 through 7-33 will apply. Using equation 7-33, the compensator is found from:
\[
(a+b)=.5861, \quad b=\frac{d_{2}}{(a+b)}=\frac{.1870}{.5861}=.3191
\]

Therefore, \(a=.2670\) and the compensator \(D(z)\) may be written as:
(1)


(1)


it
Nimin
Hin
\(\qquad\)


\[
\begin{aligned}
D(z) & =\frac{1.359(z-.2670)}{z+.3171} \\
& =1.359\left(1-.5961 z^{-1}+.1870 z^{-2}-.0597 z^{-3}+.0191 z^{-4}-\ldots\right.
\end{aligned}
\]

For this compensator, the total response may be evaluated using equations 7-35 and 7-38. The response of the uncompencated and compensated systems are shown on figure 7-10, as curves number one and two respectively The output response between sampling instants is not directly taken in= to account in this design approzch. Therefore, if too stringent requirements are imposed on the response at the sampling instants, the inter \(=\) sample response may become unacceptable. The designer will usually eval. uate the intersample response for a design choice by using equation 7-38. For examile, if the specifications called for a maximum overshoot of five percent for the previous example, one might attempt to set \(c_{3}\) equal to unity rather than 1.10 as was previously done. This design change will not effect the values of \(p_{0}\) and \(p_{1}\) or \(d_{0}\) and \(d_{q}\) that have been tetermined. Therefore;
\[
\begin{align*}
p_{0} & =1.359, \quad p_{1}=-.1170 \\
\text { and } \quad p_{2} & =\frac{c_{3}-g_{3} p_{0}-g_{2} p_{1}}{g_{1}}=\infty .4159 \tag{7-46}
\end{align*}
\]

Then, the gain and pole and zero of the first order compensator may be determined as follows:
\[
\begin{equation*}
\mathrm{Kd}_{2}=\mathrm{p}_{2}-.5 \mathrm{~K} d_{1}=-.4159-.5(-.7965)=-.01765 \tag{7-47}
\end{equation*}
\]
where \(K=1.359\) and \(K d_{1}=-.7965\) as previously。
Therefore, from equation 7-33;
\[
(a+b)=\left|d_{1}\right|=.5861
\]
and
\(\square\)
2-innate
 \(-x-2-20\)
\(1-18\)
\(\square\) \(\square\)
 Th

 2

 \((1-20.20\)



1. Chation
ve ditian
\[
\begin{align*}
& b=\frac{d_{2}}{(a+b)}=\frac{-.01299}{.5861}=-.02216  \tag{7-48}\\
& a=.6083
\end{align*}
\]

Then, the compensator may be written as:
\[
\begin{align*}
D(z) & =\frac{1.359(z-.6083)}{(z-.0222)}  \tag{7-49}\\
& =1.359\left(1-.5861 z^{-1}-.01299 z^{-2}-.000287 z^{-3} \cdots\right)
\end{align*}
\]

The output halfway between the sampling instants may be calculated from equation 7-38 as:
\[
C(1 / 2)]=[G(1 / 2)][D] E]
\]
\[
C(1 / 2)]=\left\lvert\, \begin{array}{l|l|l}
.1065 & 1.359 & \\
.6166 & -.7965 & \\
.859 & -.0177 & E] \\
.9481 & -.0004 &
\end{array}\right.
\]
\[
\left.\left.=\left\lvert\, \begin{array}{c|c}
.1447 & 1 \\
.7531 & .5 \\
.6744 & 0 \\
.5933 & 0
\end{array}\right.\right]=\begin{array}{c}
.145 \\
.8255 \\
1.0509 \\
.9305
\end{array}\right]
\]

This response would have an overshoot of five percent between the sample ing instants and the design would marginally meet the specifications. This response is shown as curve number 3 on figure 7-10. If the designer chose to set \(c_{3}\) equal to 1.050 , then the complete output response for a compensator calculated for this new set of response values at the sampling instants is shown as curve number 4 in figure 7-10. The maxio mum overshoot for this compensation is 6.5 percent. A comparison of the rise time, maximum overshoot, and settling time for the uncompensated and compensated systems is presented in table 7-1. Tne designer would



\(1 \begin{aligned} & 1 \\ & 1\end{aligned}\)
(a)

\section*{\(01 \times 0130 M\)}

R-7
chose the compensation that rovided the closest approximation to the original snecifications. It can be seen that it is a nowerful method of design of discrete compensators. The compensator may be located in
\begin{tabular}{l|c|c|c|lc} 
& 1 & 2 & 3 & 4 & \\
Curve Number & 1 & 10.0 & 5.0 & 6.5 & \(\%\) \\
Naximum Overshoot & 45 & 1.82 & 1.65 & 1.05 & 1.65 \\
\(90 \%\) Rise Time & 1.65 \\
\(2.5 \%\) Settling Time & 16.0 & 4.8 & 6.4 & 5.2 & seconds
\end{tabular}

Table 7-1. Indices of Response For the Compensated and Uncom=o pensated Systems.
the feedback channel or in one loop in a multiloop system and the desigr method loses none of its usefulness. However, if the designer has a set of stringent specifications, it may be necessary to account for the intersample response in the design.
B. Synthesis of the Discrete Compensator Accounting for the Intersampie Response。

It is possible to account for the response between the sampling instants by the use of the time domain matriz equation for the intersample response which may be written as:
\[
\begin{equation*}
C(m)]=[G(m)][D] E] \tag{7-51}
\end{equation*}
\]

Then, the designer may chose the first few elements of the \(D\) matrix by considering the sampled output while simultaneously considering the rem sultant intersample response value. Therefore, for example, the designer will chose the \(K_{0}\) value of the \(D\) matrix by examining the resultant \(c_{9}\) and \(c_{.5}\) values at the same time. This process is carried on step by step until all necessary values of the compensator matrix are determaned. In this manner, the next step would involve the determination of \(K_{9}\) by a choice of \(c_{2}\) and \(c_{1.5}\). The ch rice of \(c_{n}\) and \(c_{n-\Delta}\), where \(\Delta\) is

 2






 \(-2=-2\) \(\qquad\)
 3 \(+\) \(=\square\)

\[
-2 \cdot 1 . \operatorname{lin}+1 \cdot=
\]

\(\square\)
in + \(\square\)
 \(2-20+2=0\)


usually equal to one-half to yield the response midway between samples, is facilitated by the determination of an expression relating the two variables and its graphical presentation. The three basic matrix equa= tions are:
\[
\begin{align*}
& C]=[G][D] E]=[D][G] E]  \tag{7-52}\\
& C(m)]=[G(m)][D] E]=[D][G(m)] E] \\
& E]=R] O C] \tag{7-54}
\end{align*}
\]
where order of matrix multiplication may be interchanged for time in variant systems. Then, for the typical system with \(g_{0}=0\), and a unit step input, one obtains:
\[
\begin{equation*}
c_{1}=K d_{0 E 1} \tag{7-55}
\end{equation*}
\]
and
\[
\begin{equation*}
c_{.5}=K d_{0 g} .5 \tag{7-55}
\end{equation*}
\]

It is usually necessary to choose \(\mathrm{Kd}_{0}\) such that the value of the first sampled response is less than the final value in order to achieve small maximum overshoot. In the previous example, for instance, Kdo was set equal to 1.359. Then, one may solve for \(c{ }_{.5}\) in terms of \(c_{q}, ~ a s\) :
\[
\begin{equation*}
c_{05}=\left(\frac{g_{.5}}{g_{1}}\right) c_{1} \tag{7-57}
\end{equation*}
\]

Equations 7-55 through 7-57 allow the designer to choose the value of Kdo while taking into account the intersample resnonse. When the value of \(K d_{0}\) is chosen, the value of \(e_{1}\) is determined and then since \(\mathrm{d}_{0}=1\) by the definition of equation 7029, one obtains:
\[
\left.c]=\left\lvert\, \begin{array}{l|l|l}
K & 0 & 1  \tag{7-53}\\
K d_{9} & g_{1} & e_{1} \\
K d_{2} & g_{2} &
\end{array}\right.\right]
\]


\(\qquad\)
\(y=-=-1\)
\(-\)
 - ..... -
|- 1
|- 1
\(x+2\)



\(\qquad\)
2

\(\qquad\)
\(4 \pi\)
en e
 ..... \(-\quad\)
- 11 ..... 



\[
\frac{64}{11}
\]

\footnotetext{




}
and
\[
\left.C(I / 2)]=\left\lvert\, \begin{array}{l|l|l}
K & g .5 & I  \tag{7=59}\\
K d_{1} & g_{1.5} & e_{1}
\end{array}\right.\right]
\]

Therefore,
\[
\begin{equation*}
c_{2}=K d_{1} g_{4}+K\left(g_{2}+g_{1} e_{1}\right) \tag{7-60}
\end{equation*}
\]
and
\[
c_{1.5}=K d_{1} g_{.5}+K\left(g_{1.5}+g . e_{1}\right)
\]
where the \(g_{n}, K_{9}\) and \(e_{1}\) are known. Solving for \(c_{1.5}\) in terms of \(e_{2}\) one obtains the general form of:
\[
\begin{equation*}
c_{1.5}=\left(\frac{g_{0} .5}{g_{1}}\right) c_{2}+Q \tag{7-6z}
\end{equation*}
\]
where \(Q\) is a constant. In general, the linear relation nay be writtern as:
\[
\begin{equation*}
c_{n \sim \Delta}=\left(\frac{g_{l-\Delta}}{g_{i}}\right) c_{n}+Q_{n} \tag{7-6;}
\end{equation*}
\]

It is often useful to show this linear relationship in the form of a graph.

Consider the example of the previous section \(A\), where the specifizd maximum overshoot was five percent. The gain constant \(K\) shall again be set equal to 1.359 , so that \(c_{1}=.50\) as in the previous example。 The design procedure in section A did not account for the intersample response and it was found that this resulted in the responses presented in figure 7-10. The design of section \(A\) to satisfy the overshoot rew quirement would have a response as in curve number 4 on figure 7-10. Now, in order to carry out the design while accounting for the intersample response, one obtains the equations for \(c_{2}\) and \(c_{1} 5_{5}\) in terms of
\(\square\)
\[
\frac{7}{4}
\]
\(\min +\frac{1}{4}\) ..... (414)



\(\qquad\)

\(\qquad\)
 (6) ..... \(\sqrt{24}+5\)
a \(40+8+8=0\) ..... \(1+\)2
2
\(\qquad\)2
 ..... To20\(2 \operatorname{con} 41 \mid=\)五
易

\(\qquad\)
M14. 4

ailn-in in
\(K_{1}\), from:
\[
C]=\left|\begin{array}{l|c|c}
1_{.359} & 0 & 1  \tag{7-64}\\
K d_{1} & .3679 & .50 \\
\mathrm{Kd}_{2} & .7675 & \mathrm{e}_{2}
\end{array}\right|
\]
and
\[
C(1 / 2)]=\left|\begin{array}{l|l|l}
1.359 & .1065 & 1 \\
K d_{1} & .6166 & .5 \\
K d_{2} & .859 & e_{2}
\end{array}\right|
\]

Therefore, one has;
\[
\begin{equation*}
c_{2}=.3679 \mathrm{~K}_{1}+1.2931 \tag{7-66}
\end{equation*}
\]
and
\[
\begin{equation*}
c_{1.5}=.1065 \mathrm{Kd}_{1}+.9204 \tag{7-67}
\end{equation*}
\]

Then \(c_{1.5}\) is related to \(c_{2}\) as:
\[
\begin{equation*}
c_{1.5}=.2996 c_{2}+.5360 \tag{7-68}
\end{equation*}
\]
and this relation is shown on figure 7=11. Considering the equations 7-66 through 7-68 and the figure 7-11, the designer might choose \(c_{2}=.980\) and \(c_{1.5}=.8234\) as a compromise. Then, one finds \(K d_{4}=-0 \varepsilon \mathcal{I}_{5}\) and \(d_{1}=\infty .626\). The next step is to write the equation for \(c_{3}\) and \(c_{2.5}\) noting that the maximun overshoot for this design will occur in this interval. One obtains from equations 7-64 and 7-65;
\[
\begin{align*}
& c_{3}=.3679 \mathrm{Kd}_{2}+.9648  \tag{7-69}\\
& c_{2.5}=.1065 \mathrm{Kd}_{2}+1.0194 \tag{7-70}
\end{align*}
\]
and
\[
\begin{equation*}
c_{2.5}=. .896 c_{3}+.740 \tag{7-71}
\end{equation*}
\]

Equation 7-71 is plotted on figure 7-11, and this curve shows that the overshoot may be limited to five percent. If \(c_{3}\) is chosen as 1.040 ,


 \(\log ^{2}\)
 \(\qquad\)

Prer
\[
=
\]
\[
\begin{aligned}
& 2-1+2 \\
& 1+2
\end{aligned}
\]
then \(c_{2}=1.041\) and \(\mathrm{KA}_{2}=+.2045\). A compensator is then determined from equation \(7-33\) as:
\[
\begin{equation*}
D(z)=\frac{1.359(z-226)}{(z+.240)} \tag{7-72}
\end{equation*}
\]

The total output response is then determined and is plotted in figure \(7-12\) as curve 5. The uncompensated system response is again curve number 1 , and curve 3 is the response for the design of section \(A\) which did not account for the intersample response. The rise time and overshoot are equal for each design, while the \(2.5 \%\) settling time has been reduced 50 percent and there is no undershoot present.

As another example, consider the single loop system as shown in figure 709, where the sampling period is again one second, the input is a unit step, and the system has a third order transfer function. The transfer function and zero order hold are written as:
\[
\begin{equation*}
G(s)=\frac{4\left(1-e^{s}\right)}{s^{2}(s+1)(s+2)} \tag{7-73}
\end{equation*}
\]
and then the system transfer matrix is given in appendix \(A\), table \(A-1\) section II. The uncompensated response of this system is unstable, and the designer might try reducing the gain of the system in order to achieve stability. If the gain is reduced to two, or one-half of the unstable gain, the output response is shown in figure 7-13. This system has a maximum overshoot of 75 percent and a settling time of greater than 10 seconds. If the designer desired to maintain the same rise time while reducing the overshoot to 20 percert, it would be necessary to introduce a compensator. Using the discrete compensator design procedure, for a system gain of 4 as originally specified, one writes:

\(x=\)

\section*{OTM}
 \(-\square\)
-







 \(2 \mathrm{ll}+2\)
\(\qquad\)
 (2) \(40102+10\) Mixilita












304



\[
\left.c]=\left\lvert\, \begin{array}{l|c|l}
K & 0 & 1.0  \tag{7=74}\\
K d_{4} & .3362 & e_{1} \\
\mathrm{Kd}_{2} & 1.1869 & e_{2} \\
& 1.6736 &
\end{array}\right.\right]
\]
and
\[
\left.c(1 / 2)]=\left\lvert\, \begin{array}{l|r|l}
K & .0582 & 1.0  \tag{7-75}\\
K d_{1} & .7845 & e_{1} \\
K d_{2} & 1.4789 & e_{2}
\end{array}\right.\right]
\]

Choosing \(K=1.0\) and therefore using the original system of 4 one obtains:
\[
c_{q}=.3362
\]
and
\[
\begin{equation*}
e_{q}=.6638 \tag{7-70}
\end{equation*}
\]

Equation \(7 \times 79\) is plotted on figure 7-14. Now, choosing \(c_{2}\) approximately equal to \(1_{0} O_{2}\) one might use \(\mathrm{a}_{4}=-100\). Then, obtaining the relations for \(c_{3}\) and \(c_{2.5}\) one has:
\[
\begin{align*}
& c_{3.0}=.3362 d_{2}+1.0266  \tag{7=80}\\
& c_{2.5}=.0582 d_{2}+1.172 \\
& c_{2.5}=.1732 c_{3}+.9942 \tag{7-82}
\end{align*}
\]

Equation 70082 is plotted on figure 7014 and from this figure one may choose \(c_{3}\) approximately equal to \(c_{2.5}\) at about 17 percent overshoot.

Then it is found that \(d_{2}\) may be set at .5 . A first order compensator is determined for these values and one obtains:
\[
D(z)=\frac{(z+.5)}{(z-.5)}=\left(1-z^{-1}+0.3 z^{-2}-.25 z^{-3}+0.125 z^{-4}=00\right)(7 \times 3,
\]

The response for the comperisated system is shown in figure 7-13. The maximum overshoot is 20 percent, the rise time is reduced to lot secorats and the settling time is reduced to \(6 . \sec\) senas.

These design methods are equally applicable for other system inpat. signals. This will be shown by designing a compensator for the system considered in this section subjected to a unit ramp signal inpit. Agaike the sampling period is one second and the systen and hold transfer fux tion is:
\[
\begin{equation*}
G(s)=\frac{\left(1-e^{-s}\right)}{s^{2}(s+1)} \tag{7-84}
\end{equation*}
\]

The input signal and the urcompensated system response is shown on figure 7-14. The first two samples have a zero value, and one may write for the output response:
\[
\left.C]=\left\lvert\, \begin{array}{c|c|c} 
& 0 & 0  \tag{7-85}\\
K & .3579 & 1.0 \\
K d_{8} & .7675 & e_{?} \\
K_{2} & .9145 & \varepsilon_{3}
\end{array}\right.\right]
\]
and
\[
\left.C(1 / 2)]=\left\lvert\, \begin{array}{l|l|l}
K & .1065 & 0  \tag{7-80}\\
K d_{1} & .6166 & 1.0 \\
K d_{2} & .859 & e_{2}
\end{array}\right.\right]
\]

Then, choosing \(\tilde{K}=2\) so that \(c_{2}=.7358\), she may write for the next sample interval:



\[
\begin{align*}
& c_{3}=.3679 \mathrm{Kd}_{8}+2.465  \tag{7-87}\\
& c_{2.5}=.1065 \mathrm{Kd}_{8}+1.5026 \tag{7-88}
\end{align*}
\]
and
\[
\begin{equation*}
2.5=.2896 ; .7977 \tag{7-89}
\end{equation*}
\]

From these equitions and the nature of the response, one might set \(K_{i}=-.50\). Then repeating these steps for the next interval, one
 on the overshoot imitation. In this case, there would be no overshoot present. The total response is show ins figute 7.014 as curve number two. The steady state exror of the compersated system is sixty percent of the stoady state error of the uncomnnsated systera. The compensator to yield this response is found to be:
\[
\begin{equation*}
D(z)=\frac{2(z+0.25)}{(z+0.0)} \tag{7=90}
\end{equation*}
\]

If it is required to have a shorer rise time, while permiting an overshoot less than five percent, it \(u\) necessary to raise the value of \(K\) to three. Then if the usual sters sist carried ont, one obtains:
\[
K=3, \quad K X_{1}=-1.0 \quad K_{2}=4.5
\]

Then: the total response is found to be as curve number three in figure 7-15. The rise time is greatly reducei, while the maximum overshoot is less than two percent. IIso, the steady state error is reduced to 42 percent of that for the uncompensated syatem. The compensator recessary to realize this response is found to be:
\[
D(z)=\frac{3(z+.967)}{(2+.50)}
\]

If the input signal was expected to alternate between a ramp and step signal, it would be necessary to designia a supromise compensator with
为

respect to the design requizemente。 int 2 s recessarys since a com－ pensator to be cotimum wath respeon＂．Entren set of conditicns，can－ not be expected to be ontinum for a itangee set，of sperating condivorus and requirements．

It can be seen that the deaign apruaches presentea in this secw tion allows the designer a wide latitude of the onoice of spectficam tions，and aifords direct cortrol over the output response．Furthermore， the time domsin approach gives the तesigtee a direct picture of the time response．therefore avoiding insocunste and untelay correlation theorems for the \(z\) piane．The desigw method which zoccunts for the intersample respurse allowe the des geter wield control over the totai time response。 It is ofezous that this design pocedure may be prom grammed in a digital computer，the denigner supriying the speoifica－ tions and system transfer matrix as the lanht to the compter＂．

A discrete compensator may be wetermines．ror a continuous systern which is approximated by a fletitcus sarpiex and hold \(3 s\) discusseü previousiy．Then the eqeulated \(D(z)\) may be symthesized by a continio ous compensator in the tine domain．\({ }^{3}\) Therefcre，this technique is not limited to sampleduata syiteris，but nay be applied to ang type of continuous data syster．

The locztion of the ciscrete comrsugatu de not limited to the error channel and reyy be located in ary anbitary loop in the sysiem as feedback compensation．

Therefore，two methods of design，directly ito the time domaino have beer prestnted．These desien procedxees are entirely flexible in arplivaticno accurate in ezichistisusard repid in sclution。 The
design in the time domain gives the desigmer a complete insight into the total time response of the system. No other existing design procedure can be carried out directly is the time domain, nor can any existing design procedure provide the flexibility and accuracy of the time domain matrix method.

\section*{CHAPTFR 8}

CON JUSIONS
Q-1. Summary of Results
The aim of this dissertation was to present a new method of engineering analysis and design for complex control systems. This method is the time domain infinite matrix method. The formulation of the infinite matrix follows from the sonvolution summation of sampled data systems. The mathematical basis of the time domain matrix formulation is presented in a discussion of the applicable concepts of infinite matrices and sequexce spaces. This method of analysis and design is applicable to both continuous data and sampled data systems. For continuous systems it is necessary to introduce a fictitious sampler and hold of sufficient sampling rate to effect an accurate approximation.

It is possible to analyze and design linear, nonlinear, and time varying systems of the continuous or sampled data class. Sampled data, time varying systems may not be investigated by any other existing method. Furthermore the investigation of nonlinear systems is greatly simplified by the time domain approach. Multiloop systems may be treated with ease and the signsls at intermediate points throughout the loops are readily available. Also, systems with multiple nonlinearities may be investigated, for which there is not a presently available method of analysis and design.

Two methods of design of a discrete compensator for a sampled data system are presented. These methods are accomplished directly in the time domain and allow for a compromise of specifications in
\(\qquad\)
\(\qquad\)
 18 \(\qquad\) \(-\frac{2}{2+2}\) 2 \(x_{1}^{2}\) 2象 \(\cos\)
 2
 \(\qquad\)
 \(+\) \(1-2\)



\(=1\)


1
 2 \(\operatorname{dec}+\log _{2}\) ..... 1.
2 
2 \(54-850+5\) ..... T

\(\qquad\)2

\(1-2\)  ..... 4
\(2+\log +2\) ..... 1

1
the time domain. Also the response between sampling instants is accounted for in one of the two design prosedures.

The time domain matrix method misy be readily programmed on a digital computer and therefore provides a rapid analysis and design technique.

8-2. Further Conclusions
It is an important advantage that the design and analysis of systems using the time domain matrix nethod takes place directly in the time domain and not in any transtormed complex variable domain. This advantage aids the designer in understanding and controling the time response of the systom under study.

The availability of the intersample response is also an advan tage to the designer, so that a design zay be accomplished which accounts for the total time response and not that solely of the sam pling instants. Therefore, the time domain matrix method has strong advantages over the comonly used \(z=\) ingnsform on both of these points. Since adaptive systems may be treated as time varying systems, the time domain matrix method may be applied in general. Further* more, a learning control system with predictor may be realized and investigated by the use of time dorain matroices. The investigation of conditional control systems incoronrating a model was also accomplished。

For nonlinear systems, the time domain matrices provide a useful analysis and design technique. Tre characteristic of a deliberately introduced nonlinear compensator nay be determined and investigated; that is, it may be specified by the dasien approach. Furthermore,




 im 2
2








 20
 2 20 \(-20=1\)


the derivatives of the error or any other aesired signal may be evaluated readily by matrix methods and used to deternine the phase space response to aid the designer in the investigation. The use of a fictitous sampler and hold in a czntimucus datz system permits these techniques of investigation ami dosign to be applied.

The design of the discrete comper sator by means of the time domain matrix method propides the designer direct control of the time response of the control system. Therefore, the designer may specify the required system response and aetermine directiy, the necessary discrete compensator。 The waiizability, stability, and sensitivity of the discrete comensator was investigated, to provide the designer with an insight into the general characteristics of the discrete compensator.

In comparison with other methode of investigation and design, the time domain matrix method is moze sccurate due to its nunerieal formulation. Funthermore, the accuracy and ease of calculation for the matrix method remains the same regardless of the order of the system transfer function, while the accuracy decreases and the difficulty of caiculation increases for other methods, such as the \(z\) transform. The time necessary for calculation of the time response of a control system is considerabiy less than that of standard complex frequency techniques. Actualyy. the time response may be determined as rapidly as the determination or instability or stability by standard techniques such as Rowtin's method.

The transfer matrix of the system ms,y be easily determined by experimental pulse techaiques to ar. aceuracy of at least three


 ..... - ..... - ..... \(\square\) ..... \(\square\)


Then
Then
Then ..... 4 ..... 4 ..... \(8+\) ..... \(8+\)
\(x\) 

2
2 ..... \(1+\) ..... \(1+\) ..... \(1+2\) ..... \(1+2\)

 ..... \(=\) ..... \(=\)
1  ..... 1
 ..... 
1
\(-1+\square-1+0\) 2
\(2+2+2\)
14
\(=\) ..... Indillind
 ..... 2
\(0_{2}\)
2
 \(2+2\) 4
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(0^{2}\)
+2 \(+2+2+2\)

\[
6
\]

\(\qquad\)
\(\sqrt{4 \pi} \sqrt{51}\)
\(\sqrt{4 \pi} \sqrt{51}\) \(=\) \(=\) ..... 14 ..... 14
percent. This method of system characterization may be used for the identification process in adaptive systems.

Therefore, it has been shown that the time domain matrix method is applicable to a wide range of control system problems. Techniques have been developed which permit the solution of problems which are not solveable by any other method. Examples of such problems are the analysis and design of systems containing more than one nonlinear element, and the analysis and design of time varying systems, for continuous or sampled data.

A method has been developed which permits the design of a compensator for continuous or sampled data systems, without the use of trial and error methods. It also has been determined, that the difficulty of the application of this method and the labor involved, is considerably less than for other known methods when applied to systems of reasonable complexity. The adrantages inherent in this method are sufficiently great, that it should find wide application in the engineering analysis and design of systems.

8-3. Future Work
The time domain matrix method may be anplied to the complete spectrum of control problems. Therefore, the possibilities for future investigation utilizing this method are boundless.

For all classes of control systems, it would be valuable to investigate the problem of the location of the discrete compensator in the control loops, and determine and elassify the relocation of the compensator on the time performance indices.

For nonlinear systems, the investigation of the use of the error










 2
 aterex 1120
 \(+\)
\(1=1 \quad 10+0\)

\(1-1+2\)

\footnotetext{

}
derivatives and the signals available at intermediate points throughout the loops, would be very worthwhile.

For time varying and adaptive system, this method would bring a new insight into the very difficult problems. It is possible to use the time domain matrix approach to investigate the method of steepest descent for adaptive systems, as one example.
 \(\qquad\)
8


 5 2 2 4.

1．Tou，J．T．，Digital and Sampied Data Coritrol Systems， licGraw Hill Book Company．Ine．， 1959

2．Jury，E．I。\＆Sampled Data Control Systems， John Wiley and Sons，Incos 1958.

3．Stoll，R。Ro，Linear Llgebra and Matrix Theory， McGraw Hill Book Coos Ino．o 1952

4．Frazer，R。Ao，Duncan，Wo Joy Gollsr：A．Ro，Elementary Matrices，Cambridge Uriversity Press， 1952.

5．Cooke，R．Go，Infinite Matrises and Sequence Spaces， Macraillan and Co．，1950．

6．Salvadori，M．Go，Baron，M．Io，Munerical Methods in Engineering， Prentice Hall，inc．s 1952．

7．Kunz，K．S．，Numericii Analysis，
McGraw Hill Book Company．19E\％．
2．Enos，R．L．，＂An Analog Simalation of A Discrete Compensator For A Sampled－Data System，Masters Thesis，U．S．N．Postgraduate School，December， 1960.

9．Ba Hli，F．，＂A General ietincd Fow Time Domain Network Synthesis，＂ I．ReF．Trans．on Circuit Thecry，Yol．CT－1，Sept．1954， pp．21－28。

10．Farren，M．C．，Phillips，C．A．Adaptive Sampling Frequency For Sampled Data Control Systems，＂Masters Thesis，U．S．N． Postgraduate School，December，1960．

11．Thaler，G。Jo，＂Self Adaptiwe Coatrol Systems，＂U．S．N．P．G．S． Tech．Report No．18，April．1960．

12．Gibson，J．E．，＂Generalizing the Adaptive Principle，＂ Control Engineering，December，1960，pp．93－96．

13．Proceedings of the Self Adaptive Flight Control Systems Symposium， WADC Tech．Report 59－49，Narch，1959。

14．Horowitz，I．，＂Fundamental Theory of Automatic Linear Feedback Control Systems，＂IoRoE Transe on Automatic Control． December 1959，pp．5－19．


Ashby，W．R．，An Introduction to Cybernetics， Wiley and Sons，1956．

Birkhoff，Go，MacLane，S．，A Survey of Modern Algebra， The MacMillian Co．。 1953

Friedland，B．，＂A Technique For the Analysis of Time Varying Sampled Data Systems，＂Trans．AIEE，Vol。76，Pt。II， January 1957，pp。40700413。

Hildebrand，\(F\) ．\(B\) ．，Methods of Apnliea Mathematics， Prentice－Hall，Inc．91952．

Johnson，Ro，First Course in Abstraot ilbegra， Prentice Hall，Inc．1953．

Thaler，G．J．，Brown，R．Go，Analigis and Design of Feedback Control Systems，Second Edition，lko

Truxal，J．Go，Automatic Feedback Control System Synthesis， McGraw Hill Book Co．， 1955.




THE SYSTEM TRANSFER MATRIX

A-1. Determination of the System Transfer lotrix Using the Z-Transform. As discussed in chapter two, the determination of the system transfer matrix \(G\) is an important first step in the use of the tine domain matrix method. It is necessary to evaluate the values of \(g_{n}\), the values of the impulse response at the sampling instants. If the system transfer function is given in the Laplace variable, it is possible, by standard methods, to transfom to the \(z\) complex variable where \(z=e^{s T}\). Then the values of the inpulse response are obtained by inverting the z-equation to the time domain. The simplest method to accomplish this is use of division to yleld the response at the sampling instants. That is, \(G(z)\) may be expanded as:
\[
\begin{equation*}
G(z)=g_{0}+g_{4} z^{-1}+g_{2} z^{-2} \& \ldots g_{n} z^{-n} \tag{a-1}
\end{equation*}
\]

This series is the constant term and principal part of the Lsurent expansion of \(G(z)\) 。

As an example, consider a syster as shown in Figure A-1.


Figure A-1. Open Loop Sampled System

\section*{}
 2 ,1420

 2





Tin
 T
 \(1+20\)


The \(z\) transform of this system may be written as:
\[
\begin{align*}
G_{h} G(z) & =3\left\{\frac{K\left(1-e^{-s i}\right)}{s^{2}(s+1)}\right\}  \tag{a-2}\\
& =\frac{1}{z-1}-\frac{\left(1-e^{-1}\right)}{z 0.3679}=\frac{K\left(.3679 z^{-1}+.2642 z^{-2}\right)}{1=1.3679 z^{-1}+.3679 z^{-2}}
\end{align*}
\]

Then dividing we have
\[
\begin{equation*}
\frac{G_{n} G(z)}{K}=.3679 z^{-1}+.7675 z^{-2}+.9145 z^{-3}+\cdots \tag{a-3}
\end{equation*}
\]

This method is tedious in that one must transform into the \(z\) variable and then divide. It also involizes an inaccuracy introduced by the round-off in division. Jury presexts a method of inversion avoiding division which uses \(G(z)\) in the forn:
\[
\begin{equation*}
G(z)=\frac{p_{0}+p_{1} z^{-1}+p_{z^{2}}^{-2}+\ldots p_{n_{2}}^{-n}}{1+q_{1} z^{-1}+q_{i_{2}} z^{-2}+\ldots q_{n_{2}} z^{-2}} \tag{a-4}
\end{equation*}
\]
\[
\text { where } m \geqslant n \text {. }
\]

Then, it can be shown that:
\[
\begin{align*}
& g_{0}=p_{0} \\
& g_{1}=p_{1}-q_{1} g_{0}  \tag{a-5}\\
& g_{2}=p_{2}-q_{1} g_{1}-q_{2} g_{0}
\end{align*}
\]
and
\[
g_{n}=p_{n}-q_{1} \varepsilon_{n_{1} 4}-\varepsilon_{2} \varepsilon_{5,-1}=\ldots-G_{12} E_{0}
\]

Jury's method reduces the inaccuracies intsoduced by the division process, but remains inaccurate for a vaiue of \(n\) greater than four due to the roundoff error of multiplication. For a higher order system, the use of the z-transform ard ixversion is unwieldy and inaccurate.

\title{
OH
}



\section*{A \(=1\)}

2 \(1-10\)
 tat 4 \(1+\) 48

 2 \(2-2+2-20\)
 -17-
\[
\begin{aligned}
& \text { min }-6+3 \\
& \text { Lilationain -a }
\end{aligned}
\]

 \(2+1+2+1+2\)
 \()^{2}\)

A-2. The use of the Impulse Response to Evaluate the System Transfer位trix。

A simple and more direct method of evaluation of the system transfer matrix is the use of the impulse response of the system. If the impulse response \(g(t)\) is determined, then the elements of the system matrix are found by substituting \(t=n T\). That is,
\[
\begin{equation*}
g_{n}=\left.g(t)\right|_{t=n T}=g(n T) \tag{a-6}
\end{equation*}
\]

Since, invariably the impulse response is made up of a sum of time functions, the arithmetic operation involved in the evaluation is addition instead of division or multiplication. Therefore, the round off error of calculation is reduced as well as the difficulty of manipulation. Now reconsider the example of the previous section. The system transfer function is:
\[
\begin{equation*}
G_{h} G(s)=\frac{1-e^{-s T}}{s^{2}(s+1)} \tag{a-7}
\end{equation*}
\]
and the impulse response is:
\[
\begin{equation*}
g(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}(s+1)}\right\}-\mathcal{L}^{-1}\left\{\frac{e^{-s T}}{s^{2(s+1)}}\right\} \tag{a-8}
\end{equation*}
\]

The \(e^{-s T}\) simply implies a delay of one sampling period. Then the inverse is:
\[
\begin{align*}
g(t)= & {\left[t-\left(1-e^{-t}\right)\right]-\left[(t-T)-\left(1-e^{-(t-T)}\right)\right] u(t-T) } \\
& \text { where } T=1 \text { second as on figure } A-1 . \tag{a-9}
\end{align*}
\]

Then the values of interest at the sampling instants when \(t=n T=n\), are:
\[
\begin{align*}
g_{n} & =T+e^{-n T}=e^{-(n T=I)} \\
& =1+e^{-n}-e^{-(n-1)} \tag{a-10}
\end{align*}
\]
\[
n \geqslant 1
\]
(20)
 2 8 x 2 5 Ther \(\square\) \(\square\) \(\qquad\) \(\square\) 2 \(-1\)


\section*{\(8=1\)}
4
\[
=2
\]
3.
formin

Then, it is found:
\[
\begin{align*}
& g_{0}=0 \\
& g_{1}=e^{-1}=.36788  \tag{2-11}\\
& g_{2}=1+e^{-2}-e^{-1}=.76746, \text { etc. }
\end{align*}
\]

Therefore, the values of the system matrix are rapidly and accurately evaluated using a mathematics table. This calculation is a great improvement in accuracy over that of division in equation a-3.

A-3. Evaluation of the Systern Transfer Matrix for Intersample Response Using the Mbdified-z-Transform。

In order to determine the response of a system between the sampling instants, it is necessary to obtain the systern transfer matrix for values of time between the samples. In order to accomplish this with standard notation, let \(m=1 \sim \Delta\), where \(\Delta\) is the percentage delay from the sampling instants as shown in figure \(A-2\).


Figure A-2. Delayed Samping
Then, writing the transformation \(t=(\Omega=\Delta) T\) one has:
\[
t=(n-\Delta) T=(n-1+m) T \quad 0<m<1
\]
and the modified \(z\) transform is:
\[
\begin{equation*}
G(z, m)=z^{-1} \sum_{k=0}^{\infty} g(k T+m T)_{z}^{-k} \tag{a-12}
\end{equation*}
\]

The output response of a system between the samples \(Y(z, m)\) may then be determined for an imput \(X(z)\) as:
\[
\begin{equation*}
Y(z, m)=G(z, m) X(z) \tag{a-13}
\end{equation*}
\]
\(G(z, m)\) may be determined and inverted by division or an alternate method to obtain the elements of the system matrix for intersampling response. Then the intersample output response is:
\[
\begin{equation*}
Y(m)]=[G(m)] X] \tag{a-14}
\end{equation*}
\]
where
\[
G(m)]=\left[\begin{array}{llll}
g_{0}(m) & 0 & 0 & \ldots  \tag{a-15}\\
g_{9}(m) & g_{0}(m) & 0 & \\
g_{2}(m) & g_{9}(m) & g_{0}(m) & \ldots \\
\vdots & \vdots & \vdots & \ldots
\end{array}\right]
\]

Since \(\begin{aligned} G(z)= & z G(z, m) \\ & m \longrightarrow 0\end{aligned}\)
the \([G]\) matrix may be determined by allowing \(m \rightarrow 0\).
As an example of the determination of the modified system matrix using the modified z-transform consider the previous example. The modified \(z\) transform of the system is figure \(A-2\) is:
\[
\begin{align*}
& G(z, m)=\frac{\left(m+e^{-m}-1\right) z^{2}+p_{1} z+\left(.3679 m+e^{-m}-.7358\right)}{z^{2}-1.3679 z+.3679}  \tag{a-16}\\
& \text { where } p_{1}=2.3679-m(1.3679)-2 e^{-m}
\end{align*}
\]

Expansion by the method of section \(A=1\) yields
\[
\begin{align*}
& g_{0}(m)=p_{0}(m)=m+e^{-m}=1 \\
& g_{1}(m)=p_{1}(m)-p_{0}(m) q_{4}  \tag{a-17}\\
& g_{2}(m)=p_{2}(m)-p_{1}(m) q_{1}-g_{0}(m)\left(q_{3}-q_{1}{ }^{2}\right) \\
& \text { and so on. }
\end{align*}
\]


A-4. Evaluation of the System Tranaler Natrix for Intersample Response Using the Impulse Response.

The values of the nodified matrix are simple to evaluate by the impulse response method. One has:
\[
\begin{align*}
g_{n}(m) & =g(n T+\Delta T)=g i t)\left.\right|_{\hat{\imath}}=n T+\Delta T  \tag{a-18}\\
& =g(n T+T=m T)
\end{align*}
\]

Then, for the example previously discussed ore has:
\[
\begin{align*}
g_{0}(m) & =\left.\left(t-1+e^{\Delta t}\right)\right|_{t=n T+\Delta T \quad} \quad T=1 \\
& =\Delta T-1+e^{-\Delta T}  \tag{a-19}\\
& =\Delta-1+e^{-\Delta} \quad \Delta \simeq 1-m
\end{align*}
\]

Then, for example when \(\Delta=1 / 4, \mathrm{mi}=3 / 4\) one has:
\[
g_{0}(3 / 4)=e^{-1 / 4}-3 / 4=.0288
\]

For \(n>1\) one has
\[
\begin{align*}
g_{n}(m) & =T+e^{-t}-\left.e^{-(t-T)}\right|_{t \equiv n T+\Delta T} \quad, T=1 \\
& =1+e^{-(n+\Delta)}-e^{-(n+\infty=1)} \tag{a-20}
\end{align*}
\]

Therefore,
\[
\begin{align*}
& g_{1}(m)=1+e^{-(l+\Delta)}-e^{-\Delta} \\
& g_{2}(m)=1+e^{-(2+\Delta)}-e^{-(1+\dot{1})} \tag{a-21}
\end{align*}
\]
and for \(m=1 / 2, \Delta=1 / 2\)
\[
\begin{align*}
& g_{1}(1 / 2)=.61660=g_{1.5} \\
& g_{2}(1 / 2)=.85895=g_{2.5} \tag{2-22}
\end{align*}
\]

\[
\cdots+1+\infty=1
\]
(10)
\(=1=-7\)
\(=2\)
\(+5\)
\(\square=\)

\[
\begin{aligned}
& 18 \\
& 4
\end{aligned}
\]
\[
\begin{aligned}
& 2
\end{aligned}
\]
\[
\begin{aligned}
& 4
\end{aligned}
\]
\[
\begin{aligned}
& 2
\end{aligned}
\]
where \(g_{n+\Delta}\) is another form of notation.
A-5. The System Matrix for A Type I Second Order System with A Hold. The system transfer function for a type I second order system with a hold may be written 25 :
\[
\begin{equation*}
G_{h} G(s)=\frac{K\left(1-e^{-s T}\right)}{s^{2}(s+a)} \tag{a-23}
\end{equation*}
\]

Then using the inverse Laplace teansform the impulse response is:
\[
g(t)=\frac{K}{a^{2}}\left(a t-\left(1-e^{-3 t}\right)\right) \quad \text { for } t \leqslant T \quad(a-24)
\]
and
\[
\begin{align*}
g(t) & =\frac{K}{a^{2}}\left\{\left(a t-\left(1-e^{-a t}\right)\right)=\left(a(t-T)-\left(1-e^{-a(t-T}\right)\right)\right\} t \geqslant T \\
& =\frac{K}{a^{2}}\left[a T+e^{-a t}-e^{-a(t-T)}\right] \tag{a-25}
\end{align*}
\]

Therefore:
\[
\begin{equation*}
g_{n}=\frac{K}{a^{2}}\left[a T+e^{-a n T}=e^{-3 T(n-1)}\right] \quad n \geqslant 1 \tag{a-26}
\end{equation*}
\]
and
\[
\begin{equation*}
g_{n}(\Delta)^{\prime}=\frac{K}{a^{2}}\left[a T+e^{-a T(n+\Delta)}-e^{-a T(n+\Delta \infty 1)}\right] \tag{a-27}
\end{equation*}
\]

The matrix values for this second order system are tabulated in Table A-1 for three values of the constant \(3 T\). These matrix values may be used for any second order system with a hold which possesses the same aT value, making the proper allowance for the \(1 / 2\) factor appearing in equation \(2=26\). For example, a second order system with a pole at 10 , a sampling period of 2.2 second , and a gain of 100 will possess the matrix given in Table \(A=1\) for the \(a T=1\) system with a gain of one.


A-6. The System Matrix for a Type II Second Order System With A Hold Network.

The transfer function of a tyre two system of interest may be written as:
\[
\begin{equation*}
G_{h} G(s)=\frac{K(s+a)\left(1-e^{-s T}\right)}{s^{3}} \tag{a-28}
\end{equation*}
\]

Then using the inverse Laplace transform one obtains:
\[
\left.G(t)=K\left\{\left(t+\frac{a}{2} t^{2}\right)-\left[\left(t-\frac{\pi}{2}\right)+\frac{a}{2} f t-T\right)^{2}\right] u(t-T)\right\} \quad(a-29)
\]

Then, at the sampling instants,
\[
g_{n}=K\left\{T+\frac{2}{2}\left[(n T)^{2}=((n-1) T)^{2}\right]\right\} \quad n \geqslant 1 \quad(a-30)
\]

The values for the matrix of this system are given in Table All.

ELEMENT VALUES FOR THE SYSTEM TRANSFER MATPIX FOR VARIOUS SYSTEMS

Ia Type I Second Order System With A Hold Network
\[
\frac{G_{h} G(s)}{K}=\frac{1}{s^{2}(s+1)} \quad, \quad T=1 \operatorname{secon} \alpha \quad, \quad a T=1
\]
\begin{tabular}{llll}
n & \(\mathrm{g}_{\mathrm{n}}\) & \(\mathrm{n}+\Delta\) & \(\mathrm{g}(\mathrm{n}+\Delta)\) \\
& & & \\
0 & 0 & .5 & .10653 \\
1 & .36788 & 1.5 & .61650 \\
2 & .76746 & 2.5 & .85895 \\
3 & .91445 & 3.5 & .94812 \\
4 & .96853 & 4.5 & .98091 \\
5 & .98842 & 5.5 & .99298 \\
6 & .99574 & 6.5 & .99741 \\
7 & .99843 & 7.5 & .99905 \\
8 & .99943 & &
\end{tabular}
\begin{tabular}{llll}
\((n+\Delta)\) & \(g_{n+\Delta}\) & \((n+\Delta)\) & \(g_{n+\Delta}\) \\
& & & \\
.25 & .0288 & .75 & .22237 \\
1.25 & .5077 & 1.75 & .7014 \\
2.25 & .8189 & 2.75 & .89016 \\
3.25 & .9334 & 3.75 & .9596 \\
4.25 & .975 & 4.75 & .9852
\end{tabular}

Ib Type I Second Order System With A Hold Network
\[
\frac{G_{h} G(s)}{K}=\frac{1-e^{-s T}}{s^{2}(s+1)}, \quad T=2 \text { seconds, } \quad a T=2.0
\]
\begin{tabular}{llll}
\(n\) & \(g_{n}\) & \(n+\Delta\) & \(g_{n+\Delta}\) \\
& & & \\
0 & 0 & .5 & .36788 \\
1 & 1.13534 & 1.5 & 1.6819 \\
2 & 1.8830 & 2.5 & 1.95695 \\
3 & 1.98416 & 3.5 & 1.99417 \\
4 & 1.99786 & \(40 e_{n}\) & 1.99921 \\
5 & 1.99971 & & \\
& 2.0000 & &
\end{tabular}
攵

Ic Type I Second Order System with a Hold Network
\[
\frac{G_{h} G(s)}{K}=\frac{1 e^{-s T}}{s^{2}(s+1)} \quad, \quad T=.5 \text { seconds } \quad, \quad a T=.5
\]
\begin{tabular}{llll}
\(n\) & \(g_{n}\) & \(n+\Delta\) & \(g_{n+\Delta}\) \\
0 & 0 & .5 & .0288 \\
1 & .10653 & 3.5 & .19357 \\
2 & .26137 & 2.5 & .31413 \\
3 & .35523 & 3.5 & .38727 \\
4 & .41221 & 4.5 & .43163 \\
5 & .44674 & 5.5 & .45853 \\
6 & .46771 & & \\
7 & .48041 & & \\
8 & .48812 & & \\
9 & .49279 & & \\
10 & .49563 & &
\end{tabular}

II A Type I Third Order System with A Hold Network
\[
\frac{G_{h G}(s)}{K}=\frac{4\left(1-e^{-s T}\right)}{s^{2}(s+1)(s+2)} \quad, \quad I=1 \text { second }
\]
n
\(g_{n}\)
\(n * \Delta\)
\(g_{n+\Delta}\)
\begin{tabular}{ll}
0 & \multicolumn{1}{c}{0} \\
1 & .33616 \\
2 & 1.18626 \\
3 & 1.67364 \\
4 & 1.87626 \\
5 & 1.9540 \\
6 & 1.9830 \\
7 & 1.99372 \\
\(\infty\) & 2.0000
\end{tabular}
Pancine
\(5-\sqrt{4}+\)


III Type II Second Order System with A Hold Network
\[
\frac{G_{h} G(s)}{K}=\frac{15(s+10)\left(I-e^{-5 T}\right)}{s^{3}} \quad, T=.05 \text { seconds }
\]
\begin{tabular}{cc}
\(n\) & \(g_{n}\) \\
& \\
0 & 0 \\
1 & .9375 \\
2 & 1.3125 \\
3 & 1.6875 \\
4 & 2.0625 \\
5 & 2.4375 \\
6 & 2.8125
\end{tabular}

III Type II Second Order System With \& Hold Network
\[
\frac{G_{h} G(s)}{K}=\frac{15(s+10)\left(1-e^{-s T}\right)}{s^{3}} \quad, T=.10 \text { seconds }
\]
\begin{tabular}{lccc}
n & \(\mathrm{g}_{\mathrm{n}}\) & \(\mathrm{n}+\mathrm{t}\) & \(\mathrm{g}_{\mathrm{n}+\Delta}\) \\
& & & \\
0 & 0 & .5 & .9375 \\
1 & 2.25 & 2.5 & 3.000 \\
2 & 3.75 & 2.5 & 4.500 \\
3 & 5.25 & 6.000 \\
4 & 6.75 & & \\
5 & 8.25 & & \\
n & \(g_{\mathrm{n}-1}+1.50\) & &
\end{tabular}

\section*{5- \(=1\)} \(\square+\)
2

\title{

}
\(4 \geq+1\)
\(-2+4 a^{-1}-2\)
5.



The inversion of a lower trianculqu ratrix is a necessary step in the evaluation of the resporse \(\mathrm{ci}_{2} 2\) syatem by means of time domain matrices. It was show in ssotion \(2-6\) that the output time response was given by equation aco 340
\[
\begin{equation*}
C]=\{[I]-[[I]+[G]]=I\} \tag{b-1}
\end{equation*}
\]

Therefore, it is usually necessany to calcuiate the inverse of
\[
\begin{aligned}
{[I]+[G] } & =[A] \cdot \text { If }[d] \text { is widtan: } \\
{[A] } & =\left[\begin{array}{llll}
a_{11} & 0 & 0 & 00 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} \\
\vdots & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
\end{aligned}
\]

Then a matrix equation may be writter:
\[
\begin{equation*}
\left.\left.[A][\delta]^{-1} Y\right]=H\right] \tag{b-2}
\end{equation*}
\]

The solution for \(Y\) is:
\[
\begin{equation*}
Y]=[B] H] \tag{b-3}
\end{equation*}
\]
where \([B]=\{[A][\delta]-1\}-1\)
By the rules of matrix inversion:
\[
\begin{equation*}
[B]=[\delta][A]^{-1} \tag{b-4}
\end{equation*}
\]
or \([A]^{-1}=[\delta]^{-1}[B]\)

The equation \(b-2\) may written for c?axicy as:

\title{
14 \\ 1 \\ \(=-8\) \\ T- \(20-10=1\)
}


 \(1+2+2+1=1-2+0\)

101
\(-\)
I
athanationg on
\[
-1
\]
\[
1 \times 1 \quad 1
\]
\[
\begin{array}{ll}
y_{1} & =h_{1} \\
\left(\frac{a_{21}}{a_{11}}\right) y_{1}+y_{2} & =h_{2} \\
\left(\frac{a_{31}}{a_{11}}\right) y_{1}+\frac{a_{32}}{a_{22}} y_{2}+y_{3} & =h_{3} \\
\text { etc. } &
\end{array}
\]

Then it can be seen that
\[
[\delta]=\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & \\
0 & a_{22} & 0 & 0 & 0 \\
0 & 0 & a_{33} & 0 & \\
0 & 0 & 0 & a_{44} & 0 \\
& 0 & & & a_{n n}
\end{array}\right]
\]
and
\[
[\delta]^{-1}=\left[\begin{array}{lllll}
\left(1 / a_{11}\right) & 0 & 0 & 0 & 0 \\
0 & \left(1 / a_{22}\right) & 0 & 0 & 0 \\
0 & 0 & \left(1 / a_{33}\right) & 0 & \cdots \\
& 0 & & 0 & \left(1 / a_{n n}\right)
\end{array}\right]
\]

Hence, \([A]^{-1}\) can be obtained by multiplication of the successive rows of \([B]\) by \(\left(1 / a_{11}\right),\left(I / a_{1,2}\right)\) etc. Then it can be seen that the elements in the first colunki of \([B]\) are the values of \(Y\) when
\[
\mathrm{H}]=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\{1,0,0, \ldots,\}
\]

The elements in the second column of \([B]\) are the values of \(y]\) when \(H]=\{0,1,0,0, \ldots\}\) and so \(0 \tilde{n}_{6}\)
\[
\begin{aligned}
& \sin +i
\end{aligned}
\]
\[
\begin{aligned}
& 4
\end{aligned}
\]
\[
\begin{aligned}
& 43 \\
& = \\
& 1 \\
& 148 \\
& 14
\end{aligned}
\]
\[
\begin{align*}
& 2 \\
& \pm \text { and } \\
& \text { ( } \tag{1}
\end{align*}
\]

When \(H]=\{1,0,0, \cdots\}\) one obtains the first column as:
\[
\begin{align*}
& y_{1}=1 \\
& y_{2}=\left[-\frac{a_{21}}{a_{11}}\right]\{1\} \\
& y_{3}=\left[-\frac{a_{31}}{a_{11}},-\frac{a_{32}}{a_{22}}\right] \quad\left\{y_{9}, y_{2}\right\}  \tag{b-7}\\
& y_{4}=\left[-\frac{a_{41}}{a_{11}},-\frac{a_{42}}{a_{22}},-\frac{a_{43}}{a_{39}}\right]\left\{y_{4}, y_{2}, y_{3}\right\}
\end{align*}
\]

This solution suggests a method of computation which allows these calculations to be easily carried cut. The elements of \([\delta]^{-1}\) by which the rows of \([B]\) are to be zuitiviled, are recorded on the extheme right. This useful scheme, in the form of a table, is shown below for a \(4 \times 4\) matrix.
\[
\left\lvert\, \begin{array}{cccc|cccc|c}
- & - & - & - & 1 & 0 & 0 & 0 & \frac{1}{a_{11}} \\
-\left(\frac{a_{21}}{a_{11}}\right) & - & \cdots & - & b_{29} & 1 & 0 & 0 & \frac{1}{a_{22}} \\
-\left(\frac{a_{31}}{a_{n}}\right) & -\frac{a_{32}}{a_{22}} & \cdots & \cdots & b_{31} & b_{32} & 1 & 0 & \frac{1}{a_{33}} \\
-\left(\frac{a_{41}}{a_{11}}\right) & -\frac{a_{42}}{a_{22}} & -\frac{a_{43}}{a_{33}} & \cdots & b_{41} & b_{42} & b_{43} & 1 & \frac{1}{a_{44}}
\end{array}\right.
\]

The rules for setting up this table are
i) To form the left-hand array enter blanks in, and to the right of the principal diagonal. Derive the remaining elements from the A elements as shown.
ii) Commence the right hand array by entering units in the principal diagonal and zeros to the right of the diagonal
\[
\begin{aligned}
& \frac{1}{1}-3 \\
& \text { anill } \\
& +12+20-2000 \\
& 2
\end{aligned}
\]
\[
\begin{aligned}
& 1-1+1
\end{aligned}
\]
\[
\begin{aligned}
& =4=10
\end{aligned}
\]
iii) Calculate the remaining elements of \([B]\) in succession by the following method. To obtain \(b_{i j}\) postmultiply the row of the leftrharld array level with \(b_{i j}\) by the part column of \([B]\) standing shove \(b_{i j}\). Blank elements of the left-hand array are to be disregarded. iv) To find \([A]^{-1}\) multiply the rows of \([B]\) by the scalar factors on the right.
For example, the first column of \([B]\) is completed below:
\[
\begin{align*}
& b_{21}=\left[-\frac{a_{21}}{a_{11}}\right]\{1\} \\
& b_{31}=\left[-\frac{a_{31}}{a_{11}},-\frac{a_{32}}{a_{22}}\right]\left[\begin{array}{c}
1 \\
b_{28}
\end{array}\right]  \tag{b-9}\\
& b_{41}=\left[-\frac{a_{41}}{a_{11}},-\frac{a_{12}}{a_{22}},-\frac{a_{43}}{a_{33}}\right]\left[\begin{array}{l}
1 \\
b_{21} \\
b_{31}
\end{array}\right]
\end{align*}
\]

As an illustration of this method consider the inversion of the matrix [A] given as:
\[
[A]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0  \tag{b-10}\\
0 & -1 & 0 & 0 \\
3 & -11 & -36 & 0 \\
1 & -6 & -14 & \frac{22}{0}
\end{array}\right]
\]

One then sets up the computation table following the given rules.
\[
\left\lvert\, \begin{array}{cccc|cccc|c}
- & - & -\infty & \infty & i & 0 & 0 & 0 & 1 \\
0 & -\infty & -\infty & -\infty & \delta_{29} & 1 & 0 & 0 & -1 \\
-3 & -11 & -\infty & -\infty & s_{39} & b_{32} & 1 & 0 & -\frac{1}{36} \\
-1 & -6 & -\frac{7}{18} & -\infty & b_{41} & b_{42} & b_{43} & 1 & \frac{9}{22}
\end{array}\right.
\]



\(11+120\)
\[
\begin{aligned}
& 1 \%+\frac{45}{4}=0
\end{aligned}
\]
\(\qquad\)

4
\(?\)

4


Then, the \(b_{i j}\) are calculated as follows:
\[
\left.\begin{array}{l}
b_{21}=[0][1]=0 \\
b_{31}=[-3,-11]\left[\begin{array}{l}
2 \\
b_{21}
\end{array}\right]=\left[-3,-11\left[\begin{array}{l}
1 \\
0
\end{array}\right]=-3\right.  \tag{b-11}\\
b_{41}=\left[\begin{array}{ll}
-1,-6,-\frac{7}{18}
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right]=+\frac{1}{6} \\
b_{32}=[-3,-11]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \therefore-13 \\
b_{42}=\left[-1,-6,-\frac{7}{18}\right]\left[\begin{array}{c}
0 \\
1 \\
b_{43}=\left[-1,-6,-\frac{7}{18}\right.
\end{array}\right]=-6+\frac{77}{18}=-\frac{31}{18} \\
0 \\
0
\end{array}\right]=-\frac{7}{18} .\left[\begin{array}{ll}
-1,
\end{array}\right]
\]

Then, one obtains
\[
[\mathrm{B}]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0  \tag{b-12}\\
0 & 1 & 0 & 0 \\
-3 & -11 & 1 & 0 \\
\frac{1}{6} & -\frac{31}{18} & -\frac{7}{18} & 1
\end{array}\right]
\]
and since
\[
\begin{align*}
& \text { since }[A]^{-1}=[\delta]^{-1}[B] \\
& {[A]^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
\frac{1}{12} & \frac{11}{36} & -\frac{1}{36} & 0 \\
\frac{3}{44}-\frac{31}{44} & -\frac{2}{44} & \frac{2}{21}
\end{array}\right]} \tag{b-13}
\end{align*}
\]
(1hmentine

1－4）
-
\(-48\)
\[
\begin{aligned}
& 1=1 \\
& -1 \\
& -1
\end{aligned}
\]

Im
\[
\begin{aligned}
& \text { 新い }
\end{aligned}
\]

For a physical system it was thcwa ic appendix A that invariably the element go of the system matrix has a value of zero. For these physical systems one is usually interested in evaluating the inverse of \([I]+[G]\) and therefore the matrix \([\delta]^{-1}\) is simply equal to \([I]\) 。

As an illustration consider a type I system with a hold that has the following transfer function
\[
G_{h} G(s)=\frac{\left(1-e^{-s T}\right)}{s^{2}(s+1)} \text {, where } K=1 \text { and } T=1
\]

It was shown in appendix A that the system matrix is:
\[
[G]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0  \tag{b-14}\\
.3679 & 0 & 0 & 0 & 0 & 0 \\
.7675 & .3679 & 0 & 0 & 0 & 0 \\
.9145 & .7675 & .3579 & 0 & 0 & 0 \\
.9685 & .9145 & .7673 & .3679 & 0 & 0 \\
.9884 & .9685 & .9145 & .7605 & .3079 & 0
\end{array}\right]
\]

Then, one obtains for \([I]+[Q]\), the principal diagonal containing element values of unity. Completing the table for inversion, one has:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline -- & - & \(\infty\) & \(=\) & - & & & \\
\hline -. 3679 & - & - & = & \(\cdots\) & & & \\
\hline -. 7675 & -. 3679 & \(\cdots\) & - & \(\cdots\) & & & \\
\hline -. 9145 & -. 7575 & -. 3679 & x & -os & & & \\
\hline -. 9685 & -. 9145 & . . 7675 & -.367 & - & & & \\
\hline -. 9884 & -. 9685 & -. 9145 & -. 7675 & -.3679 & & & \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & I \\
\hline & -. 3679 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline & -. 6321 & -. 3679 & 1 & 0 & 0 & 0 & 1 \\
\hline & -. 400 & -. 6325 & -. 3679 & Y & 0 & 0 & 1 \\
\hline & +. 001 & -. 400 & -0.622i & -.36?9 & 1 & 0 & 1 \\
\hline & +. 2528 & +. 001 & \(=0400\) & -.0322 & -. 3679 & 1 & 1 \\
\hline
\end{tabular}


Purthermore, for non-time varying spstens the [G] matrix always contains equal values along any upron left to lower right diagonal. Therefore, inversion of \([I]+[U]\) ness be accomplished for only one colunn as is obvious from the example. This ciass of matrix called a diagonally invariant natrix ( \(D . \bar{I}_{0} 11_{0}\) ) ir chapter three, lends itself to the use of a recursion formila for the elements of the inverse matrix. For the first acium the matrix \([B]\) one may write:
\[
\begin{equation*}
b_{k 1}=-\left(a_{k 1}+a_{k-1} \cdot 1 \sum_{k 11}+\cdots+a_{21} b_{k 2}\right) \tag{3-15}
\end{equation*}
\]

For example, in the previous solutyon:
\[
\begin{equation*}
b_{31}=-\left(a_{31} b_{33}+a_{21} b_{32}\right) \tag{b-16}
\end{equation*}
\]

Since, the elements are inviniant on the diagonal, one has:
\[
\begin{equation*}
b_{33}=b_{11}=2 \tag{b-17}
\end{equation*}
\]
and \(\quad b_{32}=b_{21}\)

\section*{Therefore,}
\[
\left.b_{31}=-\left(a_{31}+a_{21} b_{29}\right)=-1.7675+0.3579(\infty .3679)\right)=-.6321
\]

In order to obtain acourate resultes it is necessary to use either a desk calculating machine or an automatic digital computer. This is necessary in order to apold the reundofif errors of multiplication. For the usual requiremerts one onesrent accuracy, the desk calculator is completely adequate.


32768001004609 DUDLEY KNOX LIBRARY```


[^0]:    正

[^1]:    If it proves desirable to investigate the use of a compensator in

