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ABSTRACT

An analytical model for replenishment at sea is formu-

lated for two supply ships and L combatants using queueing

theory concepts and a random walk model in the plane. Ex-

ponential distributions are assumed for replenishment times,

and, given the initial number of combatants to be replenished

by each supply ship, the distribution for total time to com-

plete the finite operation is obtained in terms of Laplace

transforms. All possible sequences for finishing the re-

plenishments of the combatants have been considered in the

model, and the techniques which were developed to count the

number of sequence possibilities are presented as an appen-

dix. Although this model involves only two supply ships,

it is believed that the methods used may be generalized for

application to more complicated models.
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I. Introduction

The capability of the United States Navy to maintain

fleets at sea, fully ready to carry out any assigned task, is

an important asset in the ever increasing global responsibil-

ities of this nation. To achieve this capability, the

necessary logistic support for naval combatant forces is pro-

vided by replenishment at sea. This underway replenishment

(UNREP) , however, must be accomplished without interfering

with the primary mission of the supported force. Consequent-

ly, the principle aim of underway replenishment is the safe

delivery of a maximum amount of supplies in a minimum of

time.

An UNREP is accomplished primarily by means of intership

horizontal transfers via rigs connecting the supply ships and

the supported units. Normally, there is a supported unit on

each side of the supply vessel. This necessity for working

at close quarters makes maneuvering a critical operation.

Speed and course changes are restricted, and speed is

necessarily slower than normal. The increased vulnerability

of forces while replenishing and the increased hazards

associated with close operations further enhance the impor-

tance of minimizing total replenishment time.

Extensive training, revised delivery techniques, and

newer types of supply ships are among the ways the Navy is

presently combatting the time problem. However, the overall

efficiency and effectiveness of an UNREP is usually directly

proportional to the thoroughness of prior planning. A

detailed knowledge of the limitations, capabilities, and

7



requirements of all units involved in an UNREP is essential

to properly schedule ships for a successful replenishment.

Aids for efficient planning and models for studying the

effects of this planning are limited. McCullough (5) made

an analytic approximation of the replenishment process by

using a multi-stage cyclic-queuemg model. The model con-

sidered M supply ships, the stages, placed in series. These

ships serviced N combatant units, each of which passed by

the supply ships in succession. An infinite queue with cycles

was then assumed by allowing the combatant ships to repeat

the operation indefinitely, and the long run (or "steady

state") behavior was studied. The solution to this model

provided an upper bound for a computer simulation also con-

sidered.

Although McCullough 's model gives some insight into the

UNREP process, it does not really represent the actual opera-

tion of replenishment at sea. An UNREP is not cyclic in

nature, because the sequence of operation is not repeated.

It is a finite operation with series queues in parallel. The

number of combatant ships is fixed, and there are no new

arrivals. Consequently, a time dependent (not "steady state")

solution is required.

Gordon and Copes (2) developed a deterministic model for

the planning of a replenishment operation by treating the

UNREP as a special case of a job-scheduling problem. The

service times of each ship were assumed to be known, and

general expressions were obtained for the total time to com-

plete the UNREP and the total waiting time of the ships

8



involved. A solution was derived which considered a maximum

replenishment force of three supply ships and only three

combatant ships, although the techniques developed were be-

lieved extendable to larger operations. Unfortunately, when

service times are predetermined and fixed, as in this model,

the possibility of a mishap or unexpected event occurring is

not anticipated. Rig failures, broken lines, or accidents

could change the replenishment time for a given ship, Thus,

it seems reasonable to assume service times are random

variables rather than deterministic <,



II. Background

The general UNREP problem is concerned with a flow of

customers requiring services, a trait common to all queueing

systems. However, an UNREP differs from most queueing proc-

esses because it involves finite series queues which start

simultaneously at every service facility. Each facility may

provide a different type service, and every customer nor-

mally requires all services that are provided. The order for

receiving services is predetermined for every customer, but

each customer does not follow the same sequence, so that

there is a different series queue for each customer. All

queues are finite, and there are no new system arrivals. The

operation is finished when the original number of customers

in the system has received all required services.

There are many complications associated with the UNREP

problem alone, but finite inputs to systems with waiting

lines at several service facilities are not uncommon. A sim-

ilar problem is evident at a garage when a given number of

cars require the same services and order of service is unim-

portant, i.e., services such as tire rotations, oil changes,

and gasoline fill-ups. Another example materializes in a

commercial store at closing time, when a given number of cus-

tomers all require services at several different counters, A

group of refreshment stands catering to a given number of

people also falls in this category.

The most practical examples are probably the multistage

production processes. These processes have been studied in

10



the category of job-shop problems, and the similarity to an

UNREP was indicated by Gordon and Copes (2) . The known job-

shop investigations to date, however, are concerned with the

case in which all jobs must start with the first machine.

Other constraints usually considered involve definite se-

quences of operations and time limitations for each job.

Bellman (1) has described a number of simple prototype

multistage problems and touched on some of the analytical and

computational techniques used in early investigations. Many

of the complications involved in an UNREP were considered,

but never were all present in the same model

.

Sisson (6) defined the job-shop process and reviewed

several methods for sequencing in job shops. Two basic mod-

els for the job-shop sequencing problem were discussed, but

they were presented only as an aid for an intuitive under-

standing of the situation, A complete solution was not found,

In a more recent work, Smith and Dudek (7) describe an

algorithm that yields an optimal sequence for n-jobs requir-

ing processing through M-machines when no passing is allowed.

A pre-scheduled sequence is assumed, times are deterministic,

all jobs commence with the first machine, and only one series

is considered, therby severely restricting its use in an

UNREP model

c

Service facilities in series have also been investigated

using queueing theory, but, although there have been numerous

studies in recent years, the models presented cannot be sim-

ply modified to represent the UNREP situation, Only a

11



relatively few of the studies have even considered the

restriction of finite queues, and these studies usually do

not limit the queue size in front of the first server. One

of the first investigations of finite queues under these con-

ditions was performed by Hunt (4) , who derived the maximum

possible utilization for four particular cases of service

facilities in series: infinite storage between stages, no

storage between stages, finite storage space between stages,

and the case of the unpaced belt-production line. The corre-

sponding expected number of customers in the system under the

assumption of exponential service times was also obtained.

Hillier and Boling (3) extended Hunt's work in terms of

numerical results and numerical procedures that made it pos-

sible to analyze larger systems having exponential or Erlang

service times. But, the input process considered was again

such that the first queue was never empty.

Allowing only finite inputs, starting all service facil-

ities at the same time, simultaneously allowing different

sequences of machine usage or service, and keeping all facil-

ities occupied, as desired in an UNREP, create difficult

twists to the job-shop problem or series queue situation.

Unfortunately, there are no published works, to the author's

knowledge, which have considered problems of this nature.

12



III. Description of a Replenishment Operation

In an actual underway replenishment, there can be several

different types of supply ships (servers) and different types

of combatants (customers) . A complication that is immediately

evident is that the quantity of each type of supply ship (and/

or the combatant) can be different. For instance, a typical

underway replenishment group could consist of three AOs

(oilers), one AK (cargo ship), and two AEs (ammunition ships)

replenishing five DDs (destroyers) and one CVA (attack car-

rier) , or one AO and one AE replenishing a CVA, a CAG (guid-

ed missile cruiser), and four DDs- This latter composition

is typical of the frequent UNREPs in the South China Sea.

Each supply ship is capable of servicing two ships

simultaneously (excluding helicopter operations) . The ser-

vice rate is normally different for each type of server and

also varies according to the type of combatant being serviced.

The combatant order for replenishing is predesignated so that,

technically, lines are formed behind each server when the

operation commences, but the service sequence is not the same

for all customers. Each combatant replenishes at one supply

ship and then proceeds to another line, replenishing from

each type of server only once. The operation ends when all

combatants have been replenished

„

The many complications of the UNREP problem make it

amenable for computer simulation, but computer programs can

be expensive to run, and computers are not always available

to the planning staffs. Therefore, it seems desirable to

13



develop an analytical model which could realistically approx-

imate an underway replenishment operation. The model describ-

ed in the following pages is presented as a first approach to

the problem.
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IV. Formulation of the Problem

Although a model for the general case of m servers and

n customers is desirable, for simplicity, attention is re-

stricted to the case of two different servers and a given num-

ber of customers. Each customer is serviced by both servers.

The distribution of time for completion of an UNREP is ob-

tained. Having obtained this solution, it is believed that

the problem may be generalized to include a larger number of

supply ships.

It should be noted that the solution to this problem is

still a practical one. Many UNREPs presently conducted in

the South China Sea involve one or two supply ships, each

replenishing any number of ships of the same type.

The force composition being investigated is two supply

ships, A and B, and L combatants of the same type. Each

supply ship replenishes only one combatant at a time. When

the UNREP begins, the L combatants are divided into two ser-

vice lines, M ships waiting for server A and N = L - M ships

in B's service line, No additional ships join the queues

once the operation has started,,

The order of service is predetermined. When a combatant

has been serviced by A, that ship joins the queue behind B.

Likewise, a combatant proceeds to A's line when replenishment

is completed from B. The operation is finished when all

combatants have been serviced by both supply ships. Figure

1 indicates the initial queues and the flow from one line to

the other.

15
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Each server acts independently of the other server, and

customer services are independent, so that all service times

are independent. Transit times between supply ships are

assumed identical for all customers and considered negligible

in comparison with service times. The two servers have ser-

vice times exponentially distributed, with service rates of

X and u, respectively. It is hoped that this restriction may

be reduced in future studies. The exponential distribution

frequently does fit many realistic queueing situations. How-

ever, to insure a more accurate model, the service time dis-

tributions should be determined from known operational data.

This is a problem for further study and is not considered

here.
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V. The Model

A. Graphical Representation

Given L combatants to be replenished by both of two

supply ships, A and B, the distribution for the total UNREP

time can be determined with the aid of two variables, U. and

V. . U represents the number of combatants that A replenishes

by time t, and V, denotes the number that B replenishes by

time t.

Starting at the origin of a graph, a horizontal step

of unit length will be made to the right if A finishes re-

plenishing a combatant before B; if B finishes first, a verti-

cal step of unit length will be made upwards . The second, and

subsequent, steps will also be to the right or up, depending

on whether the next customer finishing is serviced by A or B.

With the abscissa of the graph as U. and the ordinate as V
.

,

the coordinates (U, , V.) indicate the state of the UNREP at

(l
;

l)

.*. u.

L -- tA * N

17



any time t, and the UNREP process may now be regarded as a

random walk in this plane.

A specific sequence of steps from the origin to (L,L)

will represent an entire UNREP process. However, not all

paths are possible. If A has replenished the M combatants

initially waiting in his line, U. = M, and B has not com-

pleted any replenishments, V = 0, then A will be idle until

B has replenished one ship. Likewise, if U. = M + 1 and

V .
= 1 , A will again be idle until V, = 2 . This leads to the

restriction that U < M + V, , and, since the total number of

replenishments by A is L, U, <^ M + V, £ L. Similarly,

V, <. N + U <. L. Figure 2 depicts the graph with restric-

tive boundaries.

B. Distribution Development

Now examine a specific UNREP sequence from start to

finish. Let X represent the service time of A and Y the

service time of B. By definition, let

P(X < t) = 1 - e"
Xt

, t ^ and

P(Y < t) = 1 - e"
yt

, t > .

When the process begins, the first step on the graph

in the UNREP sequence will be either horizontally to the right

if A's service time, X, is less than B's, Y, or vertically up

if the situation is reversed, Y is less than X. It is shown

in appendix A that the conditional distribution of service

time for A, given X is less than Y, is again exponential, but

with parameter X + y, i.e.,

P(X < t|x < Y) = 1 - e" (X + y)t
, t > .

18



Likewise, the conditional service time distribution for B,

given Y is less than X, is also exponential with parameter

A + y . Therefore, for the first step,

P(Y < t|Y < X) = P(X < t|x < Y) = 1 - e" (X + U,t
, t > .

The second step of the sequence will be examined

from the point (U, = 1, V, = 0). Again, the choice for this

step is either to the right or up, depending on whether A or

B finishes first. Since A is servicing a new customer, the

distribution of service time for A is known, B is still re-

plenishing his first customer . However, by employing the

memoriless property, P(X .: T|x < t) = P (X <, T-t) when t < T,

of the exponential, the distribution of the service time that

is left for B remains exponential with rate p. Therefore,

the problem is exactly as before, and the conditional distri-

bution of time for the second step is again exponential with

parameter X + y, given that it is a vertical, or given that

it is a horizontal, step.

In general, this conditional distribution is true

at any point except those points on the boundary, i.e., when

U
t

= M+Vt; <LorV=N + Ut= ^L. If U = M + V
fc

^ L

,

then the path position for the process is on the right bound-

ary, and B is working while A is idle. Therefore, the next

step must be up, and the distribution of time is the same as

the distribution for Y, exponential with parameter y. This

is again due to the memoriless property of exponential dis-

tributions. Similarly, when V = N + U < L, the location

is on the upper boundary, and the next step must be to the

right with the same distribution of time as X,

19



Let E. . denote the event that a given route has i

positions on the upper boundary and j positions on the right

boundary. Then, when E. . occurs, 2L - (i + j) positions

along the path are not on a boundary.

The total time T for a given UNREP sequence is,

therefore, just the sum of the times between each of the

positions on the path. Let Z be the random variable with

P(Z < t) = 1 - e" U + M)t
; then

T = Z OT + X. + Y , if event E. occurs.2L-1-: 1 j' 13

The subscripts on Z, X, and Y indicate the number of times

each variable is summed, i.e., X. is the sum of i exponential

random variables, each with parameter X.

C. Total Time Probability Statement

Unfortunately, a given E. . can occur in many ways,

and, in addition, there are many combinations of i and j that

are also possible. However, once the probability of event

E. . is determined, the unconditional distribution of UNREP
ID

time can be ascertained by applying the theorem of total

probability. The unconditional probability statement is,

therefore

:

P T t ) = Y P(T t E. . • P E. .)—
.

u
. = ' in ID

i/D J J

20



VI. The Solution for Total Time

A. Path Probabilities

Consider once more the step sequence representing an

UNREP process. Starting at the origin, the first step in the

sequence will be to the right with probability p, or up with

probability 1 - p = q. It can be shown (See appendix A.) that

p = ?—-—and q = t —̂—. Then, considering any point along

the route except those points on the boundaries, and employ-

ing the memoriless property of the exponential distribution,

the probability that a step will be to the right is p and

that a step will be up is q.

When a position is on the right boundary, the next

step must be up with probability one. Similarly, from posi-

tions on the upper boundary, the next step must be to the

right with probability one. Consequently, when E, occurs,

i steps to the right and j steps up are made at the bound-

aries. Since L steps are made m each direction, L - i

steps are to the right, each with probability p, and L - j

vertical steps are made, each with probability q.

For a given E... however, several different step3 1 j

sequences are obviously possible. Therefore, for specific i

and j , the number of possible routes must be counted before

the probability of E. . can be determined,, Utilizing combina-

torial analysis and the reflection principle, a counting

technique is developed in Appendix B which yields R. ., defined

as the number of possible ways in which E . can occur. The

results are as follows [Note: C(n,r) = nS/r! (n-r) !]

:
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R
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= °

2. R = C(2L-i-l / L-l) - C(2L-i-l, M-i) - C(2L-i-l, N-i)

,

3.

1 — L r Z , , . . f Li

R = C(2L-j-l, L-l) - C(2L-j-l, M-j) - C(2L-j-l, N-j)

j = 1 / 2 , . . . ,L

4. R. .
= C(2L-k-l,M-k+l) + C (2L-k-l ,N-k+l) - C(2L-k-l, M-k) -

C(2L-k-l, N-k) , where k = i + j = 2,3,...,

max (M,N) + 1, and i _> 1 , j >_ 1.

Knowing R. ., the probability of E. . is determined below:

P(E. .) = R. .p
L " i

q
L "

j

ID ID

B. Transform of the Distribution

The necessary equations and expressions for determin-

ing the total time distribution are now known and are sum-

marized briefly below:

1. T = Z OT . + X. + Y., given E. .,2L-1-J i D ID

2. P(E. .) = R. .p
L_1

q
L "

j
,13 iy M

3. P(T t) = J P(E. .) • P(T t|E. . ) .=
.

L
, i] =11

i/D J

Since the random variables X.,Y., and Z„ T . are mutually
1 j ' 2L-1-3

independent, the Laplace transform, denoted f*(s), will be

used to determine the total time distribution,

-sT

1

2L-i-j

f*(s) = E(e ST
) = I

t

[P(E
i

.)]f* (s) - f*(s) f; *

i/D 1 D 2L-1-:
(s)

= I [P(E
i

.)] [f*(s)]
1

[f*(s)] :, [f*(s)]
i/j :

f X L-i I y
X+y

L-jf X

X+s
y

X+s
d LA±H_

^X+y+s
2L-i-j
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X~y~ v B (a+m+s) 1+:]

(X+y+s)

L LL L
A y

9T I I R. .

+ y+s)
/ij i=0 i = 13 (X+s)

1
(y+s) D

Let a = A + s

X+y + s
and 8 = U+s

A+y + s
Then substituting

the values of R . and evaluating, if X ^ y

f*(s) =
,L L
A y

(X+y+s)
2L

L r

I C(2L-j-l, L-l) a" 3 + 8
D

j-l

M r
v
L

j=ll
C(2L->1, M- d )[cT*(jSj) +8-^l-

T|^^};
- C(2L-;j-2, M-3) |a $

(X+y+s)
(X+s)

L

u
l y-x^ M ^y-x

[C(2L-2, N-l) + C(2L-2, M-l)

]

If X = y

f*(s)
X > 2L

^
l 2X+sJ

2

| C(2L-j-l, L-l)a :

j = l

-
I a D-[C(2L-j-l, N-j) + C(2L-j-l, M-j)]

X ^2L+ ^2X+sJ '

M

I C(2L-j-2, M-j)ja ^
1

j-l

N
+ J C(2L-j-2, N-j) ja : 1

j = l

M
+ I C(2L-j-l, M-j)ja 3 +

j=3
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N
+ I C(2L-j-l, N-j) jot

:

J-3

For a given number of combatants, L, the effects of

changing M and N on total replenishment time can be determined

by differentiating f*(s) and setting s = 0. This yields the

negative of the expected replenishment times for easy compar-

ison.

C. Examples

1. Assume the simple case of two servers and two

customers with M = N = 1. Then, if y ^ X,

2 2

f*(s) = X y -1
r \ I C(3-j,l).[a D + B

J
] - a .[C(2,0)+C(2,0)]

(X+y + s) (j = l

1
" 2 I

j-l

- C(2-j,l-j)-

, 2 2
X y

yi-x^-j . r 3-i(^|

(y+X+2s)
v 2 , ,2, ,2

(X+y+s) (X+s) (y+s)

yX (y+X+2s) n 2

(X+y+s) (X+s) (y+s)

Differentiating and setting s = 0,

E(T) - -f*(0) = 2(^-1- i).

2. Let L = 10 with M = N = 5. Then, for X ± y,

m \
10 f 10 _• -' -1

f*(s) = -JMi J
I C(19-j,9).(a ^ + e 3) _ 2a ^(18,4)

(X+y+s)^ U /j=l

" 2 I
j-l

C(19-j,5-j) a (y-xJ +
* ^ (X + s) (y-X)J

J

+ C(18-j,5-j)
-^-1 rX + s^,

a J
• —

H

^y-X ;

j_x -^)]
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If A = 2 per hour and y = 4 per hour, after differentiating

and setting s = 0,

E(T) = -f'*(0) = 5,15 hours .
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APPENDIX

A. Conditional Time Distribution for Steps

The random variables X and Y have exponential distribu-

tions with parameters X and u, respectively, The conditional

distribution of X, given X < Y, is developed below:

P(X .. tlx < Y) = 1 - P(X > tlx < Y) = 1 - Y)
P(X < Y)

P(t < X < Y) = / / f (x) f (y) dx dy
t < X < Y

f
oo

f
oo -ax -ay , ,=

't 'x e
*

pe dY dX

= fl Ae" a + M)X dx

*
e" U + y)t

t >= X + y e ,r^u

If t = 0, then

P(X < Y) =
A + u

Therefore, P(X^t|x < Y) = 1 - e~
(A + p)t

, t > 0.

B. Counting Techniques for Bounded Step Functions

Step functions having unit steps which are vertically up

or horizontally to the right are the only functions permitted

in a graph with the following boundaries: x=M+y, x=L,

y = N + x, and y = L. The boundary x = M + y will be the

lower right boundary, and the combined boundaries

x = M + y .. L will be referred to as the right boundary. The

upper left boundary is y = N + x f and the upper boundary is

the combined boundaries y = x + N £ L.
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j.— (y+M,x-M)
j

Reflected path

C 1 2 L=M+N
Figure 3

Path illustration of reflection principle about x=y+M.

Nf —
Del et ell

St"epi

Original path-

(L,L)

,L-1)

,L-2)
Path after mandatory
step deleted and
subsequent steps
dropped one unit.

x=y+M
x=y+M+1

C 1 M M+1 L
Figure l±

Illustration of step function that
hits loiter right boundary once.
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First a technique for counting the number of step

functions from (0,0) to (x,y) , M^x < L and N y < L,

that do not touch the upper left or lower right boundaries

must be developed. To do this, the number of paths or routes

(both terms used interchangeably with step functions) that

have a point in common with these boundaries will be sub-

tracted from the number of routes that are possible without

considering any boundaries,

The number of steps required to go from (0,0) to (x,y)

by any route is x steps to the right and y steps up. The

number of possible combinations of x + y steps with x steps

to the right is C(x + y, x) = (x + yH/ x "yE. This is also

the number of routes that are possible without considering

any boundaries.

Next, consider a path that hits the lower right boundary

of the graph as exemplified in figure 3, If the part of this

route from the first point of contact with the boundary to

(x,y) is reflected symmetrically about the boundary, then the

reflected route (dotted line in diagram) has the same number

of steps to the point (y + M, x - M) as does the original

step function to (x,y). Also, if any path that proceeds to

(y + M, x + N) is reflected symmetrically from the first

point of contact with x = y + M, the reflected route proceeds

to (x,y) . Therefore, the two sets of routes are equivalent,

and it is only necessary to count the step functions from

(0,0) to (y + M, x - M) in order to determine the number of

routes touching the lower right boundary . This number is

C(x+y ,y+M)

.
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Similarly, by using the reflection principle about

y = x + n, the number of routes touching the upper left

boundary is C(x + y, x + N) . Therefore, the total possible

number routes from (0,0) to (x,y) , M _< x < L , N _< y < L,

that do not touch either of the boundaries is

C(x + y, x) - C(x + y, y + M) - C(x + y, x + N) .

Note that this relation is dependent on M and N, the inter-

section of the boundaries with the axes, so that the bound-

aries may be shifted and the total number of routes not

touching the new boundaries may be determined by the above

method.

It can be shown that, in general, the number of possible

routes from any point (x , y ) to(x,y) that do not touch the

boundaries x = y + M and y = x + N is

C(x-x +y-y ,x-x ) - C(x-x +y-y ,y-x +M) - C(x-x +y-y ,x-y +N)
o i o o o 2 J o J o o J J o J o

Now define R. . as the number of possible paths from

(0,0) to (L,L) that touch positions on the upper boundary i

times and the right boundary j times. Since a diagonal step

is not permitted, every path must pass through (L - 1, L) or

(L, L - 1) to get to (L, L) , and so Rno is obviously zero.

Consider R
n

. next, where j = 1, 2, ..., L. In this case, no

routes hit the upper boundary.

To formulate a method for finding R
Q

. in general, it

will be shown that a set A, consisting of routes hitting

positions on the right boundary exactly j times, is equiv-

alent to a set B, consisting of routes that proceed to
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(L - 1, L - j) without hitting the boundaries x = y 4 m +

j - 1 £ L and y = x + N _< L. This being true, the technique

developed to count routes within specific boundaries can be

applied directly.

If j = 1, set A paths pass through (L - 1, L - 1) with-

out hitting either of the original boundaries and then move

to the right. Set B paths also proceed to (L - 1, L - 1)

without hitting the boundaries x = y + M _: L and

y = x + N ^ L. The two sets are obviously equivalent be-

cause they are the same sets , and

R
Q1

= C(L-1+L-1, L-l) - C(2L-2, L-l-N) - C(2L-2, L-l-M)

.

If j is greater than one, however, the equivalence is

not so obvious because j different types of paths are pos-

sible . For descriptive ease, "type K" will indicate the

type of path that kits K positions on the boundary x = L and

j - K positions on the lower right boundary. For example,

let j = 2, and consider set A. Two types of routes are pos-

sible, type I and type II. A type II route passes through

(L - 1, L - 2) without hitting any boundary and proceeds to

(L, L - 2) «, A type I route hits the lower right boundary

exactly once, proceeds to (L - 1, L - 1), and then to the

right.

For j = 2, since all routes in set B proceed to (L-l,

L-2) , type II routes in set A correspond to the same routes

in set B. A type I route, however, hits the lower right

boundary once, and the next step after hitting the boundary

must be up. If this mandatory step up is deleted from con-

sideration, and all subsequent steps of the path are dropped
31



one unit down, as indicated by the dotted path in figure 4,

the path proceeds to (L - 1, L - 2) and then right, never

touching x = y + M + 1. Therefore, all routes in set A

have corresponding routes in B.

In set B, when j = 2, all routes proceed to (L - 1,

L - 2) and never touch x = y + M + 1. Consider a route that

hits x = y + M. If the route is raised one step after hit-

ting this line for the first time by inserting an extra

vertical step, then the route proceeds to (L - 1, L - 1)

and corresponds exactly to a type I route in set A. The

remaining routes in B do not hit either x=y+M+lor
x = y + M and still proceed to (L - 1, L - 2) . These routes

correspond to identical type II routes in A. Consequently,

the two sets are equivalent, and, using set B,

R
Q2

= C(L-l+L-2, L-l) - C(2L-3, L-2+M+1) - C(2L-3, L-l+N)

= C(2L-3, L-l) - C(2L-3, N-2) - C(2L-3, M-2).

In general, when i = 0, j types of routes are possible

among the R
n

. routes in set A: types I, II, ..., and j. A

type j - 1 route hits the lower right boundary one time and

then proceeds to (L-l, L-j-1) . If the mandatory step up

after hitting the boundary is deleted and the remaining part

of the route is dropped one unit, the path will proceed to

(L-l, L-j) without hitting x = y + M + 1. For a type K

route, I
]

: K _< j , j - K steps must be up when the lower right

boundary is hit. If these mandatory steps up are deleted and

the remainder of the route is dropped one unit following each

deleted step, the path proceeds to (L-l, L-j) and corresponds
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to a route in B that does not hit x = y + M + K. Therefore,

all routes in A correspond to routes in B

In set B, consider all routes that do not hit x = y + M.

These routes correspond exactly to the type j routes in set

A. Next, consider a route in B that hits x = y + M + j-l-K

and does not hit x=y+Mtj-K, I<K j-1. Ifa ver-

tical step is added to each route immediately following the

first and subsequent times the boundary x = y + M is hit, and

the remainder of the route is raised one unit for each step

added, the raised route will correspond to type K route in

set A. Therefore, all routes in B correspond to routes in A,

and set A is equivalent to set B. Consequently, for any j,

R
Q

. = C(L-l+L-j, L-l) - C(2L-l-j, L-j+M+j-1) - C(2L-l-j, L-l+N)

= C(2L-l-j, L-l) - C(2L-l-j, N-j) - C(2L-l-j, M-j).

By interchanging i and j, M and N, it is obvious that

R. = C(2L-l-i, L-l) - C(2L-l-i, M-i) - C(2L-l-i, N-i)

.

Consider now R. . when i 4 and j 4 (K Define R! . as
id J id

the number of paths that hit the lower right boundary first

and then proceed to (L-i, L), and RV „ as the number of paths

that hit the upper left boundary first and proceed to

(L, L-j) . Then, if i ? and j / 0, R. . = R! . + RV .

.

Let i = L Then, for R!
.

, the number of routes that hit
ID

the lower right boundary j times and proceed to (L-l, L-l)

must be found. Consider type I routes among the set A

routes that hit the right boundary j + 1 times and do not hit

the upper boundary. These routes hit the lower right bound-

ary j times and proceed to (L-l, L-l), which is exactly what
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is being sought. Therefore, for R!
.

, it is necessary only

to find the number of type I routes for set A. Considering

the previous set B, this is simply Rn . , less all those
u , [J

+ 1

routes that do not hit the boundaries x=y+M+ (j+1) -

2=y+M-j-l and y = x + N when proceeding to

(L-l, L-j-1) . Therefore,

R| . = [C(2L-l-( j + 1) ,L-1) - C(2L-j-2,N-j-l) - C ( 2L-J-2 , M-j-1)

]

- [C(L-l+L-j-l,L-l) - C(2L-j-2,L-j-l+M+j-l)-C(2L-j-2,L-l-N)

]

= C(2L-j-2,N-j) - C(2L-j-2,N-j-l)

.

Let i be greater than one, and consider a new right boundary,

X s y+M<L-i+l, If the number of type I routes hitting

this boundary j+1 times and not hitting y = x + N is found,

then R! . can be determined. By the same techniques used to
ID y m

formulate R„ . when x = y + M _; L, if the right boundary is

x = y + M_.L + l-i, then

R* ... = C(L-i+L-(j+l) , L-i) - C(2L-i-j-l, L- J-1+M+
(
j+1) -1)

, j + 1 J j j j

- C(2L-i-j-l, L-i+N)

= C(2L-i-j-l, L-i) - C(2L-i-j-l, N-i-j)

- C(2L-i-j-l. M-j-1)

.

The number of type I routes for this case is, therefore, equal

to Rn 'j-i
l ess the number of routes proceeding to (L-i,

u , ] + 1

L-(j+l)) without touching the boundaries x = y + M + (j+1) - 1

and y = x + N. Thus, for i ^ 0, j ^0,

R! .
= [C(2L-i-j-l, L-i) - C(2L-i-j-l, N-i-j) - C(2L-i-j-l,

M-j-1)] - [C(2L-i-j-l, L-i) - C(2L-i-j-l, L-j-l+M+j-1)

- C(2L-i-j-l, L-i-N)

]

= C.(2L-i-j-l, N-i-j + 1) - C(2L-i-j-l, N-i-j).
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If i + j = k, then for i ? and j ^ ,

R! . = C(2L-k-l, N-k+1) - C(2L-k-l, N-k)

.

lj

Similarly, by interchanging M and N and 1 and j ,

RV . = C(2L-k-l, M-k+1) - C(2L-k-l f M-k)

.

lj '

In general, therefore, with i + j = k , 1 ?
' , j ^ ,

R. . = C(2L-k-l, N-k-1) + G(2L-k-l, M-k-1)

- C(2L-k-l, N-k) - C(2L-k-l, M-k).

It should be noted that, although the maximum ranges of i and

j are from to L, the equations hold for all values of i and

j; since, if i or j is greater than L, the combinatorial

forms will be zero.
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