

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1968-06

Calibration of turbine test rig with impulse turbine at high pressure ratios

Lenzini, Martin Joseph

Monterey, California. U.S. Naval Postgraduate School

https://hdl.handle.net/10945/11753

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1968 LENZINI, M.

> CALIBRATION OF TURBINE TEST RIG WITH IMPULSE TURBINE AT HIGH PRESSURE RATIOS

> > by

Martin Joseph Lenzini

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5101

UNITED STATES NAVAL POSTGRADUATE SCHOOL

THESIS

CALIBRATION OF TURBINE TEST RIG JITS

INFULSE TURBINE AT HIGH PRESSURE RAFIOS

by

Hartin Joseph Lenzini

June 1958

This document is subject to special export controls and each transmittal to foreign government or foreign nationals may be made only with prior approval of the U. S. Naval Postgraduate School.

CALIBRATION OF TURBINE TEST RIG WITH IMPULSE TURBINE AT HIGH PRESSURE RATIOS

by

Martin Joseph Lenzini Captain, United States Marine Corps B.S., University of New Mexico, 1961

Submitted in partial fulfillment of the requirements for the degree of AERONAUTICAL ENGINEER from the

NAVAL POSTGRADUATE SCHOOL June 1968

HIVE Thesis L527 C.1 LENZINI, M

ABSTRACT

The Transonic Turbine Test Rig of the Turbo-Propulsion Laboratory, Department of Aeronautics, of the Naval Postgraduate School was designed to investigate the performance of turbines with transonic or supersonic rotor inlet velocities. The test rig has provisions for testing single stage axial turbines at high pressure ratios and at variable axial and radial clearances. The present study describes the calibration of the turbine test rig with an impulse turbine at high pressure ratios. The turbine stage consists of a double circular-arc rotor with sharp leading edges and a stator with converging nozzle type blading. The results of the flow rate calibration and labyrinth seal leakage tests are described. The instrumentation necessary to separate rotor and stator losses is also discussed.

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5101

TABLE OF CONTENTS

51	ECTION	٧	PAGE
	1.	INTRODUCTION	13
	2.	TURBINE DESCRIPTION	15
	3.	TEST INSTALLATION	17
	4.	FLOW NOZZLE CALIBRATION	22
	5.	PLENUM LABYRINTH SEAL LEAK RATE	25
	6.	ANALYSIS AND DATA REDUCTION	29
		6.1 General	29
		6.2 Flow Rate Determination	29
		6.3 Stator Entrance Properties	31
		6.4 Stator Discharge Properties	31
		6.5 Rotor Discharge Properties	37
		6.6 Performance Parameters	41
	7.	DESCRIPTION OF TURBINE TESTS	44
	8.	RESULTS AND DISCUSSION OF TURBINE TESTS	47
	9.	RECOMMENDATIONS	55
	REFER	RENCES	88
	APPEN	NDIX I: COMPUTER PROGRAMS FOR FLOW RATE	
		DETERMINATION AND TURBINE TEST	
		DATA REDUCTION	89
	APPEN	NDIX II: EVALUATION OF THE FORCE ACTING	
		ON THE STATOR ASSEMBLY BY THE	
		STATOR DISCHARGE PRESSURE	140

1 PORT A DOVERSTONEY

LIST OF ILLUSTRATIONS

FIGUR	E	PAGE
l.	Blade Profiles Circular-Arc Rotor	
	Converging Stator	57
2.	Converging Stator (View showing	
	stator entrance)	58
3.	Circular-Arc Rotor (View showing	
	rotor entrance)	59
4.	Mean Radius Blade Profile	
	Converging Stator	60
5.	Mean Radius Blade Profile Circular-Arc	
	Rotor with Sharp Leading Edges	61
6.	Blade Profile Circular-Arc Rotor	
	with Blunt Leading Edges	62
7.	Blade Profile Contoured Rotor	63
8.	Blade Profile Converging-Diverging	
	Stator	64
9.	Piping Installation, Transonic	
	Turbine Test Rig	65
10.	Transonic Turbine Test Rig	66
11.	Turbine Blading Arrangement	67
12.	Closure Plate Assembly	
	Transonic Turbine Test Rig	68
13.	Closure Plate Calibration Rig (View	
	showing closure plate assembly setup	
	for calibration run)	69

14.	Closure Plate Assembly Installation	
	Transonic Turbine Test Rig	70
15.	Turbine and Shroud Details	71
16.	Circular-Arc Rotor and Bearing Assembly	
	Mounted in Rotor Bearing Stand	72
17.	Floating Stator Assembly	73
18.	Flow Nozzle Discharge Coefficient	
	Transonic Turbine Test Rig	74
19.	Referred Labyrinth Seal Leak Rate	
	Transonic Turbine Test Rig	75
20.	Referred Labyrinth Seal Leak Rate	
	Transonic Turbine Test Rig	76
21.	Modified Referred Labyrinth Seal Leak	
	Rate Transonic Turbine Test Rig	77
22.	Pressure Survey at Stator Entrance	
	Pressure Ratio = 2.0	78
23.	Velocity Diagram of Turbine Stage	79
24.	Thermodynamic Process of Fluid	
	in an Axial Turbine Stage	80
25.	Total-Static Efficiency at Various	
	Axial Clearances	81
26.	Referred Moment versus Referred RPM	
	Pressure Ratio = 2.0	82
27.	Efficiency Total-Static Initial	
	Turbine Tests	83
28.	Referred Moment versus Referred RPM	
	Initial Turbine Tests	84

- 12

29.	Stator Torque Capsule Variation with	
	RPM Transonic Turbine Test Rig	85
30.	Stator Torque Capsule Variation with	
	Temperature Transonic Turbine Test Rig	86
31.	Stator and Rotor Loss Coefficient versus Hood	
	Temperature at 13080 RPM and Pressure	

Fatio	of	2.5	5.		•	•								•							5	37	2
-------	----	-----	----	--	---	---	--	--	--	--	--	--	--	---	--	--	--	--	--	--	---	----	---

Latin

Cross-sectional area (in^2) A Flow channel throat diameter (in) a Speed of sound (ft/sec) a Ъ Blade width (in) Conversion factor, $2gJc_{p}$ (ft²/sec²- $^{\circ}R$) С Specific heat at constant pressure (BTU/lb - °R) С р Diameter (in) D Force (1b,) F Gravitational constant (32.174 $lb_m - ft / lb_f - sec^2$) g Blade height (in) h HP Horsepower Differential pressure across turbine flow nozzle h w $(in H_20)$ Conversion factor (778.16 ft - 1b,/BTU) J Work coefficient (dimensionless) K K. is Head coefficient (dimensionless) Flow nozzle discharge coefficient (dimensionless) 1 n Moment (ft - lb_f) M Absolute Mach number (dimensionless) M Relative Mach number (dimensionless) MR Rotational speed (rpm) Ν Total pressure (psia) P+ Static pressure (psia) Ρ Gas constant (ft - $lb_{f}/lb_{m} - {}^{O}R$) R Reynolds number (dimensionless) Re

R	Mean radius (in)
m	Padius (in)
1	hadrus (III)
r	Labyrinth pressure ratio (dimensionless)
r*	Theoretical degree of reaction (dimensionless)
S	Distance between blades (in)
S	Entropy (BTU/1b _m - ^O R)
Т	Static temperature (^O R)
T _t	Total temperature (^O R)
t	Blade thickness at trailing edge (in)
t	Static temperature (^o F)
t _t	Total temperature (^O F)
U	Peripheral velocity (ft/sec)
V	Absolute velocity (ft/sec)
N	Relative velocity (ft/sec)
Ŵ	Flow rate (lb _m /sec)
Yl	Expansion factor (dimensionless)
Z	Number of blades in a row

Greek

α	Absolute flow discharge angle (degrees)
a _n	Coefficient of thermal expansion of flow nozzle (dimensionless)
β	Relative flow discharge angle (degree)
γ	Ratio of specific heats (dimensionless)
S	Referred pressure (dimensionless)
ζ	Loss coefficient (dimensionless)
η	Efficiency (dimensionless)
θ	Referred temperature (dimensionless)
ξ	Area restriction factor (dimensionless)

- Φ Flow function (dimensionless)
- $\Phi_{\rm L}$ Referred labyrinth seal leak rate (in²)
- $\Phi_{\rm LM}$ Modified referred labyrinth seal leak rate (in²) Angular velocity (radians/sec)

Subscripts

- a Axial direction
- ax Area normal to the axial direction
- Cl Closure plate
- D Dynamometer
- E Equivalent thermodynamic property
- h Blade hub
- h Hood
- is Isentropic
- L Labyrinth seals
- m Mean streamline
- n Flow nozzle properties
- o Stator entrance properties
- P Labyrinth plenum properties
- R Rotor
- REF Referred value
- S Stator
- t Blade tip
- th Theoretical value
- u Peripheral direction
- 1 Stator discharge properties
- 2 Rotor discharge properties

SECTION 1

INTRODUCTION

Turbines for modern gas turbine plants and jet propulsion units must operate at high pressure ratios. It is advantageous to use stages with supersonic or transonic flows in the rotating rows thereby limiting the number of stages and increasing the specific work output. Although the efficiency of such stages may prove to be somewhat lower than that of rotating rows with subsonic flows, they are desirable for use in low-weight power plants. An application presently under consideration by NASA is the use of a single-stage supersonic turbine in a hydrogenfueled open-cycle auxiliary space power plant [1].

Very little quantitative information on supersonic and transonic turbine performance is available in the literature. Therefore, a Transonic Turbine Test Rig was built at the Naval Postgraduate School, Monterey, California. The test rig was designed by Dr. M. H. Vavra of the Department of Aeronautics to determine the effect of different blading arrangements on turbine efficiency and to separate the total losses of the turbine into those of the rotating and the stationary rows of blades. With the Transonic Turbine Test Rig, investigation of turbine performance for transonic and supersonic rotor inlet velocities is possible.

The present study is concerned with the installation modifications and calibration tests necessary to obtain meaningful data for transonic or supersonic turbine performance analysis at high pressure ratios. Initial calibration

tests using an impulse turbine with a stator, consisting of converging nozzle type blading, and a rotor with circular-arc profiles with sharp leading edges are described. Several instrumentation difficulties were experienced during the initial tests which required a number of modifications to the test installation. Tests are described which were carried out with the turbine after the different modifications of the Turbine Test Rig.

The author wishes to express his deep appreciation to Dr. M. H. Vavra for his guidance during the experimental work and for his help in the reporting of the study. Thanks are also given to Mr. J. E. Hammer for his generous assistance during the project.

the second se

SECTION 2

TURBINE DESCRIPTION

The turbine investigated is a single stage axial flow turbine of the impulse type which was designed for transonic rotor inlet velocities. The rotor has double circular-arc blade profiles with sharp leading edges and is one of three rotors presently available for the Transonic Turbine Test Rig, which hereafter is referred to as the TTR. The stator used during the present turbine tests has converging type nozzles. Also available is a stator with convergingdiverging type nozzles for supersonic stator discharge velocities. The three rotors and the two stators are interchangable, and any stator-rotor combination can be tested with the TTR. Of the six available combinations only one was tested because of time considerations and the delays because of the TTR modifications. Figures 1, 2, and 3 are photographs of the stator and rotor of the turbine stage tested. Scale drawings of the mean radius blade profiles of this stator and rotor are shown in Figs. 4 and 5, respectively. Pertinent turbine dimensions are listed in Table I. The blading parameters indicated in Table I are at the mean radius of the stage.

Another rotor which can be run in the TTR has double circular-arc blade profiles with blunt leading edges. This type of rotor, which is shown in Fig. 6, could be used in high temperature applications where blade cooling is necessary. A third rotor, whose blade profiles are shown in Fig.

7, has blade profiles with gradually changing curvature. Figure 8 is a photograph of the blade profiles of the converging-diverging stator.

TABLE I

IMPULSE TURBINE DIMENSIONS

Converging Stator and Circular-Arc Rotor with Sharp Leading Edges

ITEM	SYMBOL	STATOR	ROTOR
Number of Blades	Z	31	60
Blade Height (in)	h	: 0.690	0.932
Blade Width (in)	Ъ	0.975	0.750
Hub Radius (in)	Rh	3.895	3.826
Mean Radius (in)	R _m	4.240	4.292
Tip Radius (in)	R _t	4.585	4.763
Blade Spacing (in)	S	0.8594	0.444
Trailing Edge Thickness (in)	t	0.024	0.020
Throat Diameter (in)	a	0.205	0.1313
Throat Area (in ²)	Ath	4.385	7.348
Axial Exit Area (in ²)	Aax	18.382	25.134

SECTION 3 TEST INSTALLATION

The TTR installation and instrumentation has been described by Commons [2]. Therefore, the information presented here will be concerned with the salient features of the TTR only. However, modifications made to the TTR for the impulse turbine tests will be covered in more detail.

The working fluid for the TTR is air which is supplied by an Allis Chalmers VA 312 Compressor. As shown in Fig. 9, the supply air enters the turbine test cell through the inlet valve attached to tank 1 which is manually operated, and normally in the open position. The turbine inlet valve, which was originally a manually operated valve, was replaced by a remote controlled electrically operated butterfly valve. Both the turbine inlet valve and the exhauster inlet valve could then be operated simultaneously from the control room. This change reduces the time spent to set and maintain a desired pressure ratio if the TTR is operated with the exhauster.

A scale drawing of the cross-section of the TTR is shown in Fig. 10. Air enters the floating armature assembly radially from a plenum which is instrumented with total temperature and total pressure probes. Labyrinth seals, with 0.005 inch radial clearance between the armature assembly and the plenum, limit the leakage flow to about 7 per cent of the turbine flow rate. A conical screen is fitted in the armature assembly to reduce the possibility of

damage to the turbine by foreign objects. The air flows through the conical screen into the stator plenum which is instrumented with five fixed total pressure probes, one 3-hole survey probe, and two total temperature probes. In addition a so-called bullet probe is installed at the downstream end of the armature assembly, which measures total pressure and total temperature. The arrangement of these probes is shown in Fig. 11.

The closure plate assembly, also shown in Fig. 11, was completely redesigned for the impulse turbine tests. The moment on the closure plate was obtained from six equally spaced torque flexures. The flexures, which are 0.025 inch thick and extend radially from an inner support to an outer ring, are equipped with two strain gages. The strain gages are arranged to measure the bending moments on the flexures in the axial plane. The inner support is fastened to the closure plate force flexure. The force flexure consists of four webs of 0.080 inch thickness which are also instrumented with strain gages. These gages measure the bending moments applied to the flexure by the axial force acting on the closure plate. The signals from both sets of strain gages was read on a Daytronic model 700 strain gage digital indicator. Figure 12 is a photograph of the closure plate assembly which shows the force and torque flexures. The closure plate was calibrated on a specially built calibration rig by applying known forces and moments with various combinations of weights. The arrangement of the calibration rig is shown in Fig. 13. Figure 14 gives two views of the

closure plate assembly installed in the TTR.

Stator hub and tip static pressures are measured in the cavities between the stator assembly and the closure plate, and between the stator assembly and shroud, respectively. These static ports are shown in Fig. 11. The outer shroud is instrumented with seven static pressure taps, P_{15} through P_{21} , spaced at 0.25 inch intervals from about the mid-rotor plane to the downstream end of the shroud. The last four static taps determine the shroud ϕ pressures needed in the momentum analysis of the inlet guide vanes.

There are seven shroud inserts available with different inside diameters. All inserts are cylindrical with the exception of two, one with a five degree slant and the other with a ten degree slant, for tapered rotor blade tips. Only the cylindrical shroud insert with an inside diameter of 9.546 inches was used in the present tests. The arrangement of the shroud, the shroud insert, and the seven static pressure taps is shown in Fig. 15.

Different radial tip clearances are obtained with a particular shroud insert by reducing the rotor diameter. The radial clearance used for the present tests was 0.010 inch.

The turbine rotor, shown in Fig. 11, is supported by two sets of precision ball bearings which are lubricated by oil mist. Two photographs of the rotor in the bearing stand are shown in Fig. 16. The axial clearance between the stator and rotor is varied by sliding the rotor bearing

assembly in the bearing stand. The minimum axial clearance is limited by the distance by which the closure plate extends beyond the trailing edges of the inlet guide vanes. Operating at 20,000 rpm and pressure ratios of 4 or more, the minimum axial clearance is about 0.1 inch.

The stator assembly, shown in Fig. 17, is supported by flexures which permit measuring of the reactions of the stator discharge flow by means of reluctance type force gages. One of the flexures was instrumented with strain gages for the final three runs of the impulse turbine. The results obtained with the strain gage and the reluctance capsule measurements are discussed in Section 8.

An air dynamometer capable of absorbing 200 HP at 20,000 rpm is used to measure the turbine torque. The torque is measured by a reluctance type force capsule which is attached to a 20 inch long lever arm that is fitted to the dynamometer housing. The force gage limits the angular rotation of the dynamometer housing to about 0.25 degree. Originally a so-called direct reading spring capsule, which turns by about 30 degrees at maximum torque, was used as a bearing housing for the dynamometer. At the small rotation of the dynamometer housing it was believed that the coil spring which serves as the measuring element of the capsule would not affect the readings of the reluctance gage. This assumption was proven false and it was necessary to remove the coil spring (Section 8). Similar to the rotor bearings, the dynamometer bearings are lubricated by oil mist.

All pressures are measured by mercury manometers except the pressure difference across the flow nozzle, which is read on a water U-tube manometer. All temperatures are measured with Iron-Constantan thermocouples using an ice bath as a reference. The hood temperature, to which reference is made in this study, was measured by a thermocouple located in the plastic casing of the stator torque capsule. This casing shields the thermocouple from the flow of air in the hood. The location of the thermocouple is shown in Fig. 17.

SECTION 4

FLOW NOZZLE CALIBRATION

The turbine flow nozzle installation and the calibration techniques used are described by Eckert [3]. Early tests by Eckert indicated that the nozzle 'ischarge coefficient was a function of nozzle supply pressure. Further investigation by Naviaux at nozzle supply pressures of 20, 22, and 24 psia showed that the nozzle coefficient was a function of Reynolds number only [4]. The latter result was obtained with the equations used by Eckert and an expansion factor Y_1 for nozzles instead of sharp edge orifices in accordance with the ASME Power Test Codes [5].

Nozzle supply pressures for the turbine performance tests normally vary between 30 and 42 psia. Because of past experience with the calibration of the TTR flow nozzle it was decided to carry out additional tests at supply pressures of 24, 29, 34, 39, and 42 psia to verify the results which Naviaux obtained at lower pressures. The test data were reduced by using the IBM 360 Computer of the Naval Postgraduate School. The data reduction program was similar to that of Naviaux with the exception that the specific gravities of mercury and water in the manometer were corrected for the temperatures in the control room and that only the flange taps of the sharp edge orifice in the calibration pipe were used. The specific gravities of water and mercury as a function of temperature, and the standard conversion factors used for data reduction, were

obtained from the International Critical Tables [6]. The program description and the reduced data are given in Appendix I. In Fig. 18 the results of the nozzle calibration tests are plotted as a function of Reynolds number. Above a Reynolds number of $7(10^5)$ these results differ by less than 1 per cent from those found by Naviaux. Below a Reynolds number of $7(10^5)$ Naviaux's nozzle coefficient decreases sharply to a value of 1.002 at a Reynolds number of $4.2(10^5)$. The nozzle coefficients obtained from the present tests decrease less sharply below a Reynolds number of $7(10^5)$ resulting in differences of between 2 and 4 per cent at Reynolds numbers between $4.2(10^5)$ and $6(10^5)$. Since the present study was concerned with flows over a wider range of Reynolds numbers, considerably more data were taken at Reynolds numbers below $6(10^5)$.

An analytical expression for the nozzle discharge coefficient as a function of Reynolds number was obtained by using the method of least squares. This expression, which represents a fourth order polynomial approximation to the reduced data and is also plotted in Fig. 18, is

$$K_{n} = 9.32928 \times 10^{-1} + 4.268322 \times 10^{-7} R_{e} - 6.151495 \times 10^{-13} R_{e}^{2} + 3.895006 \times 10^{-19} R_{e}^{3} - 9.138062 \times 10^{-26} R_{e}^{4}$$
(1)

where

K = nozzle discharge coefficient
R_e = Reynolds number referred to nozzle diameter

The maximum deviation between reduced data points and the analytical curve in the operating range of the impulse turbine between Reynolds numbers of $4(10^5)$ and $8(10^5)$ is 0.3 per cent.

and the second sec

SECTION 5

PLENUM LABYRINTH SEAL LEAK RATE

The method used for the plenum labyrinth seal leak tests and the associated instrumentation are described by Eckert [3]. Although the measuring techniques remained unchanged, the tests were carried out over a wider range of operating conditions.

The purpose of these tests was to find a simple analytical expression for the determination of the leak rate as a function of the pressure ratio across the labyrinth. This expression should cover the entire operating range of the TTR. To accomplish this goal two series of labyrinth leak tests were performed. The so-called hooded configuration of the TTR was used for both test series. Figure 9 represents a schematic of the installation of the TTR and shows the exhauster with the necessary piping for hooded operation. Labyrinth leak rates at pressure ratios between 1 and 6 were measured in both series of tests.

The first test series was performed before the impulse turbine was tested. From these tests a referred leak rate as a function of labyrinth pressure ratio was determined which was based on the actual labyrinth flow rate obtained from the square-edged orifice data for different conditions in the plenum. The referred leak rate (in^2) is

$$\Phi_{\rm L} = \frac{\dot{M}_{\rm L}}{P_{\rm tp}} \sqrt{T_{\rm tp} \frac{R}{g}}$$

where

$$\dot{W}_{L}$$
 = labyrinth flow rate (lbm/sec)
 P_{tp} = inlet plenum total pressure (lb_f/in²)
 T_{tp} = inlet plenum total temperature (°R)
R = gas constant for air (ft-lb_f/lbm-°R)
g = gravitational constant (lbm-ft/lb_f-sec²)

The results of the first series of labyrinth leak tests and the analytical expression derived from them are shown in Fig. 19. It can be seen that the labyrinth leak rate becomes choked at a pressure ratio of about 3. The referred labyrinth leak rate for the choked condition is equal to 0.073. This value corresponds to a flow rate between 0.06 lbm/sec and 0.1 lbm/sec, depending on inlet total conditions.

After the first twelve test runs of the impulse turbine, inconsistent values of turbine flow rates were noted. Analysis of these runs indicated that the inconsistency was probably due to errors in the labyrinth leak rate (Section 8). Re-evaluating the data from the first series of labyrinth leak tests, it was noticed that the hood temperature from run to run did not vary by more than 8°F and remained practically constant during each run. However, during normal operation of the TTR with the turbine installed, the hood temperature is a function of the turbine discharge temperature and varies with turbine speed. Furthermore, the variation of hood temperature at different pressure ratios can be as much as 90°F. The difference in the range of hood temperatures during the first labyrinth tests and

during normal operations of the TTR made it necessary to perform a second series of leak tests. For this series a two inch pipe with a gate valve was connected from tank 1 to the TTR hood. Since the air temperature in tank 1 can be changed by about 100°F, it was possible to control the hood temperature.

Three tests were performed at hood temperatures of 59°F. 91°F and 116°F, each for the whole range of pressure ratios of the TTR. The results of these tests are given in Fig. 20, which shows the referred leak rate of Eq. (2) as a function of labyrinth pressure ratio. From this figure it is seen that the labyrinth leak rates depend on the hood temperature. Above a pressure ratio of 3 the referred leak rate varies by 12 per cent for a change in hood temperature of 57°F. Since this temperature can vary by 90° F during the turbine tests, an expression for the leak rate was empirically obtained which is independent of hood temperature and inlet plenum conditions. This expression is obtained by multiplying Eq. (2) with a correction factor which depends on the hood temperature and the inlet plenum total temperature. This so-called modified referred leak rate Φ_{LM} was found to be

$$\Phi_{\rm LM} = \Phi_{\rm L} \left[1 + 0.32 \left(\frac{t_{\rm p} - t_{\rm h}}{t_{\rm tp}} \right) \right]^{1.2}$$
(3)

where

 $\Phi_{\rm L}$ = expression from Eq. (2)

Figure 21 shows $\Phi_{\rm LM}$ as a function of labyrinth pressure ratio from the tests at the three above-mentioned hood temperatures. An analytical expression for $\Phi_{\rm LM}$ as a function of labyrinth pressure ratio was obtained from the method of least squares, by approximating the test data by a fifth order polynomial. The resulting expression is

$$\Phi_{\rm LM} = -0.1004586 + 0.2122579r - 0.1081851r^{2} + 0.0276576r^{3} - 0.003489933r^{4} + (4) 0.0001726733r^{5}$$

where

 $r = labyrinth pressure ratio = P_{tp}/P_2$

 $P_2 = hood static pressure (lb_f/in^2)$ Equation (4) is plotted in Fig. 21. The maximum deviation between the test data and the analytical curve is 4 per cent for the operating range (l.0<r≤4.0) of the impulse turbine.

The IBM 360 Computer was used to reduce the data for both series of labyrinth leak tests. The computer program for the data reduction is presented in Appendix I together with the output for the second series of tests.

SECTION 6

ANALYSIS AND DATA REDUCTION

6.1 General

The TTR is instrumented to obtain data for a onedimensional performance analysis of single stage axial turbines. It is assumed that steady axisymmetric flow conditions exist at the entrance and exit of the blade rows and that the flow on the mean stream surface is representative of the flow through the whole stage. The mean stream surface is assumed to exist at the mean radius R_m

$$R_{\rm m} = \frac{R_{\rm t} + R_{\rm h}}{2} \tag{5}$$

where

 $R_t = radius of stator blade tip (in)$ $R_h = radius of stator blade hub (in)$

The TTR data were analyzed on the IBM 360 Computer at the Naval Postgraduate School. The computer program is described in Appendix I, which give samples of printouts for runs 32, 33 and 34.

6.2 Flow Rate Determination

The flow rate through the turbine is the difference of the flow rate through the flow nozzle and the labyrinth leak rate,

$$\dot{W} = \dot{W}_n - \dot{W}_L \tag{6}$$

where

$$\dot{W}_n$$
 = nozzle flow rate (lbm/sec)
 \dot{W}_L = labyrinth leak rate (lbm/sec)

The nozzle flow rate is obtained from the nozzle flow equation given by Commons (Reference 2, p. 46). However, the nozzle discharge coefficient K_n is determined from Eq. (1). Moreover, the constant in Commons' equation was found to be incorrect. The correct equation for the determination of \mathring{W}_n is

$$\dot{W}_{n} = 0.16384 D_{n}^{2} \alpha_{n} K_{n} Y_{1} \sqrt{\frac{P_{noz} h_{w}}{T_{noz}}}$$
(7)

where

$$\begin{split} & D_n = \text{nozzle throat diameter (in)} \\ & C_n = \text{coefficient of thermal expansion of the flow} \\ & \text{nozzle (dimensionless)} \\ & K_n = \text{nozzle discharge coefficient from Eq. (1)} \\ & (\text{dimensionless}) \\ & Y = \text{expansion factor (dimensionless)} \\ & 1 \\ & h_w = \text{differential pressure across the pressure taps} \\ & \text{at } 68^\circ \text{ F (in H}_2 \text{O}) \\ & P_{\text{noz}} = \text{absolute static pressure at upstream pressure} \\ & \text{tap (lb/in^2)} \\ & T_{\text{noz}} = \text{temperature at upstream pressure tap (}^\circ\text{R}) \\ & \text{The leakage flow rate through the plenum labyrinths is} \end{split}$$

obtained from

$$\dot{N}_{\rm L} = \frac{\Phi_{\rm LM} P_{\rm tp}}{\sqrt{T_{\rm tp} R/g} \left[1 + 0.32 \left(\frac{T_{\rm tp} - T_{\rm n}}{T_{\rm tp}}\right)\right]^{1.2}}$$
(8)

where Φ_{LM} is the modified referred labyrinth leak rate obtained from Eq. (4)

6.3 Stator Entrance Properties

The total pressure P_{to} at the stator entrance is taken as the average of the data obtained with the five fixed total pressure probes. A radial survey with the 3-hole flow probe at this location indicated a maximum variation of 0.75 per cent in total pressure from stator hub to stator tip. The results of this pressure survey are presented in Fig. 22. The total temperature T_{to} is obtained from two Temperature-Kiel probes.

6.4 Stator Discharge Properties

The stator discharge properties can be obtained from the momentum and moment of momentum equations applied to the fluid in the stator assembly. These two fundamental equations yield the axial and peripheral velocities from which the other discharge properties can be derived. In addition, the axial velocity component can be obtained also from the equation of continuity applied to the stator exit. The equations used in the stator analysis are presented here without derivation, since they are given by Messegee [7]. From the theorem of angular mementum

$$V_{ul} = 12(M_{s} + M_{cl})g/N_{ml}$$
 (9)
where

- V_{ul} = peripheral component of absolute velocity at stator exit (ft/sec)
- R = mean radius at stator discharge (in)

The two values of the average axial velocity component obtained from the momentum and continuity equations are used to establish a parabolic change of the pressure at the stator discharge between the measured pressures at hub and tip such that both methods yield the same results. These calculations are carried out by an iteration procedure of the computer program. However, the resulting pressure distribution cannot be verified experimentally. The stator exit pressure distribution is first assumed to be linear between the stator hub and tip pressures. From the momentum equation

$$V_{al} = g/\tilde{W}[F_{s} + F_{cl} - F_{o} - 2\pi \int_{l}^{R} P_{l}rdr] \qquad (10)$$

where

- F = force acting on stator assembly, measured by reluctance gage (lb_f)
- F = force acting on stator assembly by closure plate,cl measured by strain gages (lb_f)
- F_o = sum of pressure forces acting on stator assembly
 less force due to the stator discharge pressure
 (lb_f)

$$P_1 = \text{static pressure at radius r at stator exit}$$

 (lb_r/in^2)

The last term of Eq. (10) is then evaluated by assuming that P_1 varies parabolically from hub to tip. A factor \in is introduced so that the shape of the parabola can be changed to satisfy continuity considerations. From the derivation presented in Appendix II

$${}^{\mathrm{H}t_{1}}_{2\pi} = \frac{\pi}{3} P_{\mathrm{h}1} \left[(1 + \epsilon) R_{\mathrm{t}1}^{2} + R_{\mathrm{t}1} R_{\mathrm{h}1} - (2 + \epsilon) R_{\mathrm{a}1}^{2} \right] + R_{\mathrm{h}1}^{2} + R_{\mathrm{t}1}^{2} R_{\mathrm{h}1} - (2 + \epsilon) R_{\mathrm{a}1}^{2} + R_{\mathrm{h}1}^{2} \right]$$

$$\frac{\pi}{3} P_{\mathrm{t}1} \left[(2 + \epsilon) R_{\mathrm{t}1}^{2} - R_{\mathrm{t}1} R_{\mathrm{h}1} - (1 + \epsilon) R_{\mathrm{h}1}^{2} \right]$$

$$(11)$$

where

 P_{hl} = hub static pressure at stator discharge (lb_f/in) P_{tl} = tip static pressure at stator discharge (lb_f/in)

The integral of Eq. (10) can be represented by an average stator discharge pressure P_{lav} , multiplied by the stator exit axial area. Using Eq. (11),

$$P_{lav} = \frac{P_{hl}}{3} \left[\frac{(1 + \epsilon)R_{tl}^{2} + R_{tl}R_{hl} - (2 + \epsilon)R_{hl}^{2}}{R_{tl}^{2} - R_{hl}^{2}} \right] +$$
(12)

$$\frac{P_{tl}}{3} \left[\frac{(2 + \epsilon)R_{tl}^2 - R_{tl}R_{hl} - (1 + \epsilon)R_{hl}}{R_{tl}^2 - R_{hl}^2} - \frac{(1 + \epsilon)R_{hl}}{R_{tl}^2 - R_{hl}^2} \right]$$

From the continuity equation

$$V_{al} = \left[C \left[T_{t_{o}} - \frac{CA_{l}^{2}P_{lav}}{R^{2}W^{2}} \left(-1 + \left(1 - \frac{4W^{2}R^{2}}{CA_{l}^{2}P_{lav}} \left(\frac{V_{ul}}{C} - T_{t_{o}} \right) \right)^{\frac{1}{2}} \right) \right] - V_{ul}^{2} \right]^{\frac{1}{2}}$$
(13)

where

 A_1 = effective axial flow area at stator exit (in²) C = conversion factor, $2gJc_p$ (ft² /sec² - ^{O}R) c_p = specific heat at constant pressure (BTU/lbm- ^{O}R)

The axial velocity component obtained from Eqs. (10) and (13) varies directly with the stator discharge pressure. Since this pressure is a function of the factor ϵ , an increase or decrease in ϵ will increase or decrease the axial velocity, respectively. The solutions of these equations are matched by varying ϵ until the velocity calculated with Eq. (10) equals the velocity calculated from Eq. (13). This iteration is possible because the value of Eq. (10) changes more rapidly for a change in ϵ than the value of Eq. (13). The absolute velocity at the stator exit is then

$$V_{1} = [V_{a1}^{2} + V_{u1}^{2}]^{\frac{1}{2}}$$
 (14)

The static temperature T_1 at the stator exit is found from the energy equation, or

$$T_{1} = T_{to} - \frac{V_{1}^{2}}{2gJc_{p}}$$
 (15)

From Fig. 23, which represents a velocity diagram of a turbine stage, it can be seen that the angle of the absolute flow at the stator discharge is

$$\alpha_{l} = \operatorname{Tan}^{-1} \left(V_{ul} / V_{al} \right)$$
 (16)

Further, the relative velocity W_1 at the rotor inlet has an axial component

and a peripheral component

$$W_{ul} = V_{ul} - U_l \tag{18}$$

where, with N representing the rotor speed in rpm,

$$U_{l} = \frac{N\pi R_{ml}}{360}$$
 (19)

Thus, the relative velocity is

$$M_{l} = \left[W_{al}^{2} + W_{ul}^{2} \right]^{\frac{1}{2}}$$
(20)

The angle of the relative flow at the rotor inlet is

$$\beta_{l} = \operatorname{Tan}^{-1} \left(N_{ul} / N_{al} \right)$$
(21)

The speed of sound of the air at the stator exit is

$$a_{1} = \left[\gamma_{gRT_{1}}\right]^{\frac{1}{2}}$$
(22)

where γ is the ratio of the specific heats of the working fluid. The absolute and relative Mach numbers of the flow

at the stator discharge are

2

$$M_{1} = V_{1}/a_{1}$$
 (23)
 $M_{R1} = W_{1}/a_{1}$ (24)

 ζ_s is defined as

$$\zeta_{s} = \frac{(T_{l} - T_{lis})}{\Delta T_{lis}} = \frac{(T_{l} - T_{lis})}{(T_{to} - T_{lis})}$$
(25)

where

$$T_{lis} = T_{to} \left(\frac{P_{lav}}{P_{to}} \right)^{\frac{\gamma-1}{\gamma}}$$
(26)

Also, from Fig. 24,

$$S_{s} = 1 - \frac{V_{1}^{2}}{V_{1th}^{2}}$$
 (27)

where

$$V_{lth}^{2} = 2gJc_{p} (T_{to} - T_{lis})$$
(28)

The stator efficiency is

$$\eta_{\rm s} = 1 - \zeta_{\rm s} \tag{29}$$

The so-called flow function Φ is given by Vavra (Reference 8, Pt. I, p. C24) as

$$\Phi = \frac{\dot{W}}{A_{\rm th}P_{\rm to}} \left[T_{\rm to} R/g \right]^{\frac{1}{2}}$$
(30)

where A_{th} = stator throat area given in Table I (in²). For isentropic conditions the flow function Φ_{is} is obtained from

$$\Phi_{is} = \left[\frac{2\gamma}{\gamma-1} \left[\left(\frac{P_{th}}{P_{to}}\right)^{2/\gamma} - \left(\frac{P_{th}}{P_{to}}\right)^{\frac{\gamma}{\gamma}+1} \right] \right]^{\frac{1}{2}}$$
(31)

where $P_{th} = \text{stator throat static pressure (lb_f/in^2)}$. The stator throat pressure is assumed to equal P_{lav} until the flow through the stator becomes choked. For choked conditions the pressure ratio P_{th}/P_{to} in Eq. (31) is taken as the critical pressure ratio, which for air is equal to 0.5283. A stator blockage factor can now be defined by

$$\xi = \Phi / \Phi_{is}$$
(32)

Therefore, ξ represents that percentage of throat area which would be necessary to pass the flow if the expansion process through the stator were frictionless.

6.5 Rotor Discharge Properties

The rotor discharge properties are obtained by the application of the moment of momentum equation, the continuity equation, and the energy equation to the fluid passing through the rotor. The flow in the rotor will be treated with respect to a relative coordinate system. In this manner the fundamental laws, applied to the rotating row of blades, will yield discharge properties analogous to those obtained for the stator.

From the moment of momentum equation the peripheral component of the absolute discharge velocity is

$$V_{u2} = \frac{R_{m1}}{R_{m2}} V_{u1} - \frac{12M_D g}{R_{m2} W}$$
 (33)

where

The peripheral component of the relative velocity is

$$M_{u2} = V_{u2} - U_2$$
 (34)

with

$$U_2 = U_1 \frac{R_{m2}}{R_{m1}}$$
 (35)

Introducing the so-called equivalent temperature T_E as defined by Vavra (Reference 8, Pt. III, p. G4), the energy equation for relative flows becomes

$$T_{E} = T_{1} + \frac{W_{1}^{2}}{2g_{J}c_{p}} + \frac{U_{2}^{2} - U_{1}^{2}}{2g_{J}c_{p}} = T_{2} + \frac{W_{2}^{2}}{2g_{J}c_{p}}$$
(36)

Using the energy equation in this form with the continuity equation, the static temperature at the rotor discharge is found as

$$T_{2} = \frac{\gamma}{\gamma - 1} \frac{P_{2}^{2} A_{2}^{2} g}{\sqrt[M]{2} R} \left[\left[1 - \frac{2}{g} \left(\frac{\gamma - 1}{\gamma} \right) \frac{\sqrt[M]{2} R}{P_{2}^{2} A_{2}^{2}} \left(\frac{W_{u2}}{2 g J c_{p}} - T_{E} \right) \right]^{\frac{1}{2}} - 1 \right]$$
(37)

where

 $P_2 = hood static pressure (lb_f/in^2)$

 A_2 = effective axial flow area at rotor discharge (in²) From Fig. 24, the total temperature at the rotor discharge is

$$\mathbf{T}_{t2} = \mathbf{T}_{t0} - \Delta \mathbf{T}_{W} \tag{38}$$

The temperature drop $\triangle T_{\overline{W}}$ is proportional to the work generated by the turbine stage or

$$\Delta T_{W} = \frac{M_{D}(\omega)}{\dot{w}c_{p}J}$$
(39)

where

 ω = rotational speed of rotor (rad/sec). From Euler's turbine equation, ΔT_{u} is also

$$\Delta T_{W} = \frac{U_{1}V_{u1} - U_{2}V_{u2}}{gJc_{p}}$$
(40)

In accordance with Fig. 24, the absolute and relative velocities at the rotor discharge are

$$I_{2} = \left[(T_{t2} - T_{2}) 2gJc_{p} \right]^{\frac{1}{2}}$$
(41)

$$W_2 = \left[(T_E - T_2) 2gJc_p \right]^{\frac{1}{2}}$$
(42)

The axial velocity components of V_2 and W_2 are

$$V_{a2} = W_{a2} = [V_2^2 - V_{u2}^2]^{\frac{1}{2}}$$
 (43)

From Fig. 23, the angles of the absolute and relative velocities at the rotor discharge are

$$\alpha_2 = Tan^{-1} (V_{u2}/V_{a2})$$
 (44)

$$\beta_2 = Tan^{-1} (W_{u2}/W_{a2})$$
(45)

With the equivalent temperature of Eq. (12), the rotor loss coefficient is obtained from

$$\zeta_{\rm R} = \frac{T_2 - T_{2is}}{T_{\rm E} - T_{2is}} \tag{46}$$

with

Que tel

$$T_{2is} = T_{E} \left(\frac{P_{2}}{P_{El}}\right) \frac{\gamma - 1}{\gamma} = T_{1} \left(\frac{P_{2}}{P_{lav}}\right) \frac{\gamma - 1}{\gamma}$$
(47)

where

 $P_{El} = total equivalent pressure at the stator dis$ charge (lb_f/in²). From Fig. 24, the rotor loss coefficientof Eq. (46) is also

$$\zeta_{\rm R} = 1 - \frac{W_2^2}{W_{\rm 2th}^2}$$
(48)

where

$$W_{2\text{th}}^{2} = 2gJ_{cp}(T_{1} - T_{2\text{is}}) + W_{1}^{2} + U_{2}^{2} - U_{1}^{2} = 2gJ_{cp}(T_{E} - T_{2\text{is}})$$
(49)

The rotor efficiency is

$$\eta_{\rm R} = 1 - \zeta_{\rm R} \tag{50}$$

6.6 Performance Parameters

For the evaluating of the overall performance of a turbine stage it is advantageous to use dimensionless coefficients. The performance parameters presented in this section are those given by Vavra [9].

The overall stage efficiency is the ratio of the work generated by the turbine stage and the isentropic enthalpy drop across the turbine from the total conditions at the stator inlet to the static conditions at the rotor discharge. Therefore, the so-called total-static efficiency is obtained from

$$\gamma = \frac{\Delta T_{W}}{\Delta T_{is}} = \frac{\frac{M_{D}\omega}{Wc_{p}J}}{\Delta T_{is}}$$
(51)

where, as shown by Fig. 24,

$$\Delta T_{is} = T_{to} \left[1 - \left(\frac{P_2}{P_{to}} \right) \frac{\gamma - 1}{\gamma} \right]$$
 (52)

 ΔT_{is} can be expressed also by

$$\Delta T_{is} = \frac{c_o^2}{2gJc_p}$$
(53)

where C_{o} is the theoretical velocity obtained by an isentropic expansion from P_{to} to P_{c} .

The theoretical degree of reaction r* is that fraction of the isentropic enthalpy drop of the turbine stage which is used up by the rotating row of blades. It is a measure for the acceleration of the relative flow in the rotor. From Fig. 24

$$r^* = 1 - \frac{V_{1th}^2}{C_0^2}$$
(54)

Using Eqs. (26), (28), (52) and (53) the degree of reaction at the hub or the tip of the blading can be expressed by

$$P^* = \frac{\left(\frac{P^*}{P_2}\right)\frac{\gamma-1}{\gamma} - 1}{\left(\frac{P_{to}}{P_2}\right)\frac{\gamma-1}{\gamma} - 1}$$
(55)

where $P' = P_{hl}$ or $P_{tl} (lb_f/in^2)$.

The isentropic head coefficient K_{is} is used to estimate the number of stages necessary to handle a given isentropic enthalpy drop at a given speed U₁. It is defined as

$$a_{1s} = \left(\frac{c_o}{U_1}\right)^2 \tag{56}$$

The work coefficient K is a measure of the actual work that the stage generates per unit mass of fluid at a given speed U_1 , or

$$K = \frac{\Delta T_{W}}{U_{l}^{2}/2gJc_{p}}$$
(57)

The peripheral speed U was selected to make K and l K dimensionless since it is usually a fixed quantity determined by rotor stress considerations. Referred values of flow rate, rotational speed, dynamometer moment, and horsepower are obtained by using the NASA reference system. They are defined by

$$W_{\rm REF} = \frac{\dot{w}\sqrt{\theta}}{S}$$
(58)

$$N_{\rm REF} = N / \Theta$$
 (59)

$$M_{\rm DREF} = M_{\rm D} / S \tag{60}$$

$$HP_{REF} = \frac{HP}{S\sqrt{\theta'}} = \frac{M_D}{550 S\sqrt{\theta'}}$$
(61)

with

$$9 = T_{to}/518.4$$
 (62)

$$S = P_{to}/14.7$$
 (63)

SECTION 7

DESCRIPTION OF TURBINE TESTS

During the present study the TTR was operated for 191 hours, 84 of which were used for calibration tests with the impulse turbine installed. The initial tests consisted of the runs conducted before the second series of labyrinth leak tests, and the final tests consisted of three turbine test runs that followed these labyrinth tests.

During the first run of the impulse turbine foreign object damage to the circular-arc rotor blading was encountered. The damaged rotor, however, could be saved by cutting back the leading edge of the blade row by 0.125 inch and shaping each blade as shown in Fig. 6. Another circular-arc rotor with sharp leading edges was installed, and the tests were resumed.

The next five runs were carried out without the exhauster system at a pressure ratio of 2.0 and different axial clearance $\triangle X$ between the stator and the rotor. The turbine was tested at $\triangle X$ equal to 0.200, 0.250, 0.265, 0.300 and 0.350 inch. As stated in Section 3 the radial rotor tip clearance was 0.010 inch for all runs. Data were taken at rotor speeds between 14,000 and 20,000 rpm, where the lower speed was imposed by the maximum torque absorption of the dynamometer.

After the optimum clearance $\triangle X$ was determined, the exhauster was installed for so-called hooded operation of the TTR. Tests were conducted at turbine pressure ratios

of 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 at speeds up to 20,000 rpm. Several runs were conducted at pressure ratios of 2.0 and 3.0 to insure that consistent results could be obtained. The minimum speed possible with the presently installed dynamometer varies with pressure ratio. The minimum speeds for the above-listed pressure ratios were 9,000; 11,000; 12,500; 14,000; 15,000 and 16,900 rpm, respectively.

A particular turbine pressure ratio can be set by different combinations of stator inlet pressure and hood pressure. However, to adopt a standard procedure, the stator inlet pressure was kept at 5 inches of mercury above the atmosphere, and the pressure in the exhauster was varied to obtain the desired pressure ratio up to a value of about 2.7. For higher pressure ratios the maximum vacuum of about 17 in. Hg was maintained and the stator inlet pressure was increased.

From the initial test results, discrepancies were found in the turbine flow rates and the loss coefficients of stator and rotor. As discussed in Section 8, the second series of labyrinth leak tests was then undertaken to investigate the leakage flow problem. The unrealistic loss coefficients could be attributed to inaccurate measurement of the torque which is exserted on the stator assembly. Inaccurate stator hub and tip static pressures were thought to be a secondary cause for this discrepancy.

For the final three runs the reluctance type force capsule used for measuring the stator torque was disconnected

and one of the horizontal torque flexure shown in Fig. 17 was instrumented with strain gages to measure the torque of the stator assembly. Additionally the static taps for the measuring of the hub and tip pressures at the stator discharge were modified and static taps were arranged to determine the pressures at the hub and tip radius of the stator throat section as shown in Fig. 15.

The final tests were conducted with the hooded configuration of the TTR. For two of the three runs data were recorded at various speeds between the minimum possible and 20,000 rpm at pressure ratios of 2.0 and 2.5. The third run was carried out at a fixed speed of 13,080 rpm and a constant pressure ratio of 2.5. For this run the stator inlet total temperature was varied between 135° and 165° F. Appendix I lists the raw data that were recorded for each run.

SECTION 8

RESULTS AND DISCUSSION OF TURBINE TESTS

Figure 25 gives the measured total-static turbine efficiencies as a function of the referred speed at different values of the axial clearance $\triangle X$. It is seen that the maximum efficiency of 83.0 per cent was obtained for an axial clearance of 0.250 inch.

Increasing ΔX to 0.265 and 0.30 inch produced optimum efficiencies of 82.2 per cent and 82.8 per cent, respectively, indicating that the values obtained for $\Delta X = 0.265$ inch might be doubtful. At a reduced axial clearance of 0.20 inch the optimum efficiency is about 82.2 per cent, equal to that obtained for $\Delta X = 0.35$ inch.

The efficiency, as defined by Eq. (51), depends on the dynamometer torque M_D and the mass flow rate λ , for given values of turbine pressure ratio P_{to}/P_2 , inlet total temperature T_{to} , and rotational speed N. The influence of dynamometer torque can be seen by the plot of referred dynamometer moment against referred rotor speed of Fig. 26. Figure 26 shows these data for values of ΔX of 0.250, 0.265 and 0.300 inch. The graph shows that the values of referred dynamometer moment at $\Delta X = 0.250$ inch and $\Delta X = 0.300$ inch lie on the same curve, whereas the data for $\Delta X = 0.265$ inch form a curve that is parallel to but below the curve for the other clearances. Therefore, it can be concluded that the low efficiency obtained with $\Delta X = 0.265$ inch was due to low values of measured

dynamometer torque. During the tests the dynamometer seemed to be functioning normally, and no reason could be found to explain the lower readings. However, during the next several runs it was noticed that the dynamometer readings would sometimes fluctuate by 10 or more counts as the temperature of the dynamometer housing increased. It was found that the fluctuations were due to expansion and contraction with temperature of the coil spring that was located inside the capsule which served as the bearing housing of the dynamometer. After removing this spring consistent values of dynamometer torque were obtained. The results of the runs with the hood attached with $\triangle X = 0.250$ inch indicated that there were inconsistencies in the data necessary for the calculation of the efficiencies and the stator and rotor loss coefficients. These discrepancies will be discussed by comparing the data of runs 21, 23 and 24 carried out with the hood, with the data obtained from run 20 where the turbine discharged into the atmosphere. Runs 20 and 21 were carried out at a pressure ratio of 2.0, and runs 23 and 24 at a pressure ratio of 3.0.

The efficiency as a function of head coefficient K_{is} for the four runs is shown in Fig. 27. It can be noted that the efficiency was different for the runs at equal pressure ratios. Moreover, the maximum efficiency was obtained at a value of K_{is} of about 3.7 for runs 20, 21, and 23 whereas for run 24 the maximum efficiency occurred at $K_{is} = 4.3$.

Figure 28 shows the referred dynamometer moment as a function of referred speed. It is evident from this graph that the difference in efficiencies at a pressure ratio of 3.0 was due to the higher values of the referred dynamometer moment obtained during run 24. The non-linear shape of the referred moment curve accounts for the different value of K_{is} at which the maximum efficiency for run 24 was obtained.

During later runs it was noticed that fluctuations occurred in the dynamometer moment readings. Examination of the reluctance gage showed that a lead from a cannon plug to the gage had broken within the insulation. This faulty lead may have affected the dynamometer readings during run 24.

The referred moments for runs 20 and 21 plotted against referred speed lie on the same curve. Equal referred moments for a given referred speed and pressure ratio indicate that the difference in efficiency must be due to differences in mass flow rates. Since it was believed that errors in turbine flow rate were due to wrong values of labyrinth leakage, the second series of labyrinth leak tests was undertaken as discussed in Section 5. As stated earlier it was found from these tests that the labyrinth leak rate is a function of hood temperature. However, the new labyrinth leak rates used for the reduction of the data from runs 20 and 21 did not account for the difference in efficiency of 1.7 per cent since the variation in hood temperature between the two runs was only 12°F. Without

further testing it is not possible to explain the differences in the efficiencies of Fig. 26.

Equation (25), (27), (46) and (48) show that the stator and rotor loss coefficients depend on the discharge properties after the rows of blades and can be obtained from the calculated velocities. These velocities are obtained with the methods explained in Section 6. The peripheral component of the absolute velocity after the stator is determined primarily from the stator torque measurements. It is about 3 to 4 times larger than the axial velocity component. Thus a variation in peripheral velocity influences the losses more than an equal percentage variation in axial velocity. Figure 29 shows the stator torque reading as a function of speed for runs 20, 21, 23, 24 and 25. All the runs clearly indicate a decrease of the order of 15 per cent in the stator moment as the speed is increased from the minimum rotor speed to 20,000 rpm. It can be shown that a 3.5 per cent variation in the stator moment will change the rotor loss coefficient by about 0.10, hence it can be concluded that the measured stator moments are responsible for the inconsistent values of the losses. Therefore, it was decided to monitor the read-out of the stator torque capsule during the second series of labyrinth leak tests to determine if a change in hood temperature would influence its reading. Since a closure plate was placed over the stator discharge during these tests, any variation of the stator torque capsule reading from its calibration setting had to occur because of different

thermal expansion of the capsule and the frame to which the capsule is attached. Figure 30 is a plot of the torque capsule readings for different hood temperatures. The latter are given in millivolts above the electrical read-out of the instrument at the calibration temperature. The calibration temperature, which changed for each run, was the hood temperature at which the capsule was set to zero. Figure 30 shows that the read-outs of the stator torque capsule are strongly affected by the hood temperature. The read-outs varied by 10 to 15 per cent of full scale read-out over a 56°F temperature range. To separate the overall losses into stator and rotor losses with a sufficient degree of accuracy, the variation of the stator torque must be less than 2.5 per cent of full scale read-out. The axial stator force, which was monitored also during these tests, varied by less than 1 per cent of full scale readout in the same temperature range. Since both reluctance capsules are identical except for their operating range, it was concluded that the large variation in the stator torque capsule read-out was due to the thermal expansion of the frame to which the capsule is fastened. This conclusion is supported by Fig. 17 since the U-shaped frame to which the capsule is attached is made of aluminum whose coefficient of thermal expansion is at least twice that of the capsule and its attachment rods.

For the final series of tests one of the horizontal torque flexures shown in Fig. 17 was instrumented with strain gages to measure the stator torque, and the

reluctance torque capsule was removed. Additionally, as shown in Fig. 15, the outer diameter of the closure plate rim was reduced by about 0.030 inch to avoid impingement of flow on the rim which could falsify the readings of the static hub pressure. This modification was necessary since the closure plate assembly could not be centered perfectly with the stator assembly. Moreover, as shown in Fig. 15, a cylindrical shim was placed behind the upstream end of the shroud insert which blocked the upper portion of the stator tip static port, reducing its radial width from 0.069 inch to about 0.025 inch, to ensure a more accurate measurement of the stator tip pressure. From Eq. (10) it is evident that correct measurements of the hub and tip pressures are necessary to obtain accurate values of the axial velocity component after the stator.

Results of tests indicated that the readings obtained by the strain gages attached to the torque flexure were influenced by the hood temperature also. Figure 31 shows the stator and rotor loss coefficients obtained from the data of a run at a constant rotor speed and constant pressure ratio. In Fig. 31 these loss coefficients are shown as functions of the measured hood temperature. It is seen that reasonable values of the loss coefficients were obtained only if the hood temperature did not differ by more than about 2°F from the temperature at which the torque flexure strain gages were calibrated. During this test it was noticed also that the temperature difference along the flexure was about 70°F, which made it impossible

to compensate the strain gage circuit for temperature. Thus it can be concluded that accurate measurements of the stator moment are not possible with the torque flexure or the reluctance capsule as presently installed in the TTR. However, it is felt that accurate measurements can be obtained with the reluctance capsule if it is relocated as recommended in Section 9.

The change in the axial velocity due to the modifications to the stator hub and tip static pressure ports was negligible. It was found that the tip pressure decreased by about 2 per cent and that the hub pressure remained unchanged from values recorded for similar runs during earlier turbine tests.

As stated in Section 7 the stator throat was instrumented with static pressure taps at the hub and tip radii. The throat hub static pressure was found to be the same as the hub pressure measured in the gap between the closure plate and the stator hub. Whether this condition truly occurs or whether it occurs because of a leak in the measuring line can be verified only by additional tests. The throat tip pressures measured at an overall turbine pressure ratio of 2.5 were 15 per cent higher than the theoretical pressure for choked conditions. The theoretical critical pressure ratio for air is 1.89 and that obtained from the measured stator throat tip pressure was 1.60. This indicates that either the flow is not choked at the tip at a overall turbine pressure ratio of 2.5 or that

the pressure tap is located upstream of the actual stator throat. Tests at higher pressure ratios would show whether the last-mentioned condition exists.

SECTION 9

RECOMMENDATIONS

The rotor and stator losses cannot be separated accurately with the present instrumentation of the TTR because of the difficulties associated with the measurement of the moments that act on the stator assembly. It is felt, however, that accurate measurements of the stator torque are possible if the force capsule is arranged near the back strut of the cradle that supports the stator.

The capsule should be mounted vertically with one end connected to an arm attached to the cylindrical inlet pipe and the other end to a steel frame which is bolted to the cradle. Using steel for the frame reduces the differential thermal expansion of the frame and the capsule. To reduce temperature effects further, an enclosure should be built around the frame and the capsule into which a small amount of ambient air would be blown from the atmosphere to keep the capsule and frame at constant temperature. A similar arrangement has been successful in reducing the temperature effects on the dynamometer force capsule (Reference 2, p.33).

Further tests should be carried out at a number of turbine pressure ratios between 2.0 and 4.0 to determine whether accurate measurements of static pressure can be obtained from the stator throat hub and tip taps as presently installed, or whether these taps need to be relocated. It is suspected that the static pressure line to the stator

throat hub tap has become disconnected in the cavity between the closure plate assembly and the stator hub. This possibility should be investigated before further tests are carried out.

FIGURE I BLADE PROFILES CIRCULAR - ARC ROTOR CONVERGING STATOR

Ð

FIGURE 2

CONVERGING STATOR (VIEW SHOWING STATOR ENTRANCE)

FIGURE 3

CIRCULAR-ARC ROTOR (VIEW SHOWING ROTOR ENTRANCE)

FIGURE 4 MEAN RADIUS BLADE PROFILE CONVERGING STATOR

0.975 - 0.095^R -a= 0.205* 0.147 PLANE RADIAL 906 -0.916 -s*=0.8594*-1.70^R 1.500 t 60° 0.071-+ 0.012^R 1.617 180

FIGURE 6

BLADE PROFILE CIRCULAR - ARC ROTOR WITH BLUNT LEADING EDGES

FIGURE 7 BLADE PROFILE CONTOURED ROTOR

FIGURE 8

BLADE PROFILE CONVERGING - DIVERGING STATOR

TRANSONIC TURBINE TEST RIG

FIGURE 10

FIGURE 12

CLOSURE PLATE ASSEMBLY TRANSONIC TURBINE TEST RIG

CLOSURE PLATE CALIBRATION RIG (VIEW SHOWING CLOSURE PLATE ASSEMBLY SETUP FOR CALIBRATION RUN)

View a

View b

FIGURE 14

CLOSURE PLATE ASSEMBLY INSTALLATION TRANSONIC TURBINE TEST RIG

View a

View b

FIGURE 16

CIRCULAR - ARC ROTOR AND BEARING ASSEMBLY MOUNTED IN ROTOR BEARING STAND

10008-071

AXIAL TURBINE STAGE

`3

C5

TORQUE CAPSULE READING, COMMIS

REFERENCES

- 1. Vanco, M. r., "Thermodynamic and Turbine Characteristics of Hydrogen-Fueled Open-Cycle Auxiliary Space Power Systems," NASA TM X-1337, 1967.
- 2. Commons, P. M., "Instrumentation of the Transonic Turbine Test Rig to Determine the Performance of Turbine Inlet Guide Vanes through the Application of the Momentum and Moment of Momentum Equations," Naval Postgraduate School Thesis, September 1967.
- 3. Eckert, R. H., "Determination of Flow Rates, Transonic Turbine Test Rig," Naval Postgraduate School TN 66T-1, January 1966.
- 4. Naviaux, J. C., "Transonic Turbine Test Rig Exhauster System Tests and Tests of a Reaction Turbine," Naval Postgraduate School Thesis, December 1966, p. 68.
- 5. Flow Measurement, Chap. 4, Part 5, Supplement to ASME Power Test Codes, ASME, New York, N. Y., 1959, p. 74.
- 6. National Research Council, <u>International Critical</u> Tables, McGraw Hill, 1928.
- 7. Messegee, J. A., "Influence of Axial and Radial Clearance on the Performance of a Turbine Stage with Blunt-Edge Non-Twisted Blades," Naval Postgraduate School Thesis, September 1967, pp. 112-119.
- 8. Vavra, M. H., Problems of Fluid Mechanics in Radial Turbomachines, Pts. I, II, III and IV, "Von Karman Institute Course Note 55a," Rhode-Saint-Genese, Belgium, Von Karman Institute for Fluid Dynamics, March 1965.
- 9. Vavra, M. H., <u>Aero-Thermodynamics and Flow in Turbo-</u> machines, John Wiley and Sons, Inc., New York, N.Y., 1960, pp. 418-438.

APPENDIX I

COMPUTER PROGRAMS FOR FLOW RATE DETERMINATION

AND TURBINE TEST DATA REDUCTION

A. Program FLOCAL.

This program calculates the flow nozzle discharge coefficient of the Transonic Turbine Test Rig by comparing the flow through the nozzle with that through a standard ASME square-edge orifice. The inputs for this program are:

Card No.	Format	Units	Fortran	Description
l	13		L	Number of runs to be processed.
2	13		N	Number of data points in a given run. Entries on cards 2 through 11 are repeated for each run.
3	3F10.4	in.Hg.	PBAR	Barometric pressure.
		°F	TCL	Temperature of Hg. of barometer
		°F	TCR	Control room temperature.
4	8F10.4	in.H ₂ 0	DH	Differential pressure across flow nozzle, mul- tiple entries.
5	8F10.4	in.Hg.	PATM	Reference for nozzle pressure, multiple entries.
6	8F10.4	in. Hg.	PNOZ	Flow nozzle upstream static pressure, multiple entries.
7	8F10.4	m.v.	TNOZ	Flow nozzle temperature, multiple entries.
8	8r10.4	m.v.	TTDI	Orifice temperature at upstream pressure tap, multiple entries.
9	8F10.4	in.Hg.	PFL	Orifice upstream static

10	8F10.4	in.Hg.	PREF	Reference for orifice pressure, multiple entries.
11	8F10.4	cm.H ₂ 0	DPFL	Pressure difference across orifice with flange taps, multiple entries.

B. Program LABLEK.

This program calculates the labyrinth leak rate of the Transonic Turbine Test Rig. The referred labyrinth leakage is computed and compared with the values obtained from the analytical expression of Section 5. The variation between these two values in percentage is included as output. The inputs for this program are:

Card

No.	Format	Units	Fortran	Description
l	13		L	Number of runs to be processed.
2	F10.4	in.Hg.	PBAR	Barometric pressure.
	12		N	Number of data points in the given run. Entries on cards 2 through 12 are repeated for each run.
	I3		NRUN	Run number.
3	2F10.4	° _F	TCL	Temperature of Hg. of barometer.
		°F	TCR	Control room temperature
4	8F10.4	in.Hg.	PATM	Reference of labyrinth plenum pressure and hood pressure, multiple entries.
5	8F10.4	in.Hg.	PSPL	Labyrinth plenum total pressure, multiple entries.
6	8F10.4	in.Hg.	PHD	Hood static pressure, multiple entries.
7	8F10.4	m.v.	TTPLD	Labyrinth plenum total temperature, multiple

8	8F10.4	m.v.	TTDL	Total temperature at up- stream pressure tap of the flow orifice, multiple entries.
9	8F10.4	m.V.	THD	Hood temperature, multiple entries.
10	8F10.4	in.Hg.	PFL	Orifice upstream static pressure, multiple entries.
11	8F10.4	in.Hg.	PREF	Reference for orifice pressure, multiple entries.
12	8F10.4	cm.H ₂ 0	HWFL	Pressure difference across orifice with flange taps, multiple entries.

C. Program TTRSS.

This program reduces the data obtained with the Transonic Turbine Test Rig. The program consists of an executive routine and 10 subroutines. The executive routine provides the calling sequence for the subroutines. This sequence is:

1. INPUT. This subroutine reads the input test data. The data items which have multiple entries are so indicated in the item description, all others are single entry items. Each test run may consist of a maximum of 50 data points. The input data consists of the following items:

Card No.	Format	Units	Fortran	Description
1	IIO		ММ	Number of runs to be processed
2	IIO		NRUN	Run number. Entries on cards 2 through 37 are repeated for each run.
3	2F10.4	in.	AXCLR	Axial clearance.

		in.	RADCR	Radial clearance.
4	F10.4	in.Hg.	PBAR	Barometric pressure.
5	IIO		N	Number of data points in the given run.
6	2F10.4	°F	TCL	Temperature of Hg of barometer.
		о _ц	TCR	Control room temperature
7	8 F 10.4	in.Hg.	PREF2	Reference for stator plenum pressure and shroud pressures, multiple entries.
8	8F10.4	in.Hg.	PTPL	Stator plenum total pressure, multiple entries.
9-15	8F10.4	in.Hg.	P15-P21	Shroud pressures, multiple entries.
16	8F10.4	in.H ₂ 0	DH	Differential pressure across the flow nozzle, multiple entries.
17	8F10.4	in.Hg.	PATM	Reference for the nozzle pressure, laby- rinth plenum pressure, stator hub and tip pressures and the hood pressure, multiple entries.
18	8F10.4	in.Hg.	PNOZ	Flow nozzle upstream static pressure, multiple entries.
19	8F10.4	in.Hg.	PSPL	Labyrinth plenum total pressure, multiple entries.
20	8F10.4	in.Hg.	PHUB	Stator hub static pressure, multiple entries.
21	8F10.4	in.Hg.	PTIP	Stator tip static pressure, multiple entries.
22	8F10.4	in.Hg.	PHD	Hood static pressure, multiple entries.

23	8F10.4	m.V.	TNOZ	Flow nozzle temperature, multiple entries.
24	8F10.4	m.v.	TTPLD	Labyrinth plenum total temperature, multiple entries.
25	8F10.4	m.V.	TTPL	Stator plenum total temperature, multiple entries.
26	8F10.4	m.v.	THD	Hood temperature, multiple entries.
27	8F10.4	RPM	RPM	Turbine rotational speed, multiple entries.
28	8F10.4	counts	AXIL	Stator assembly axial force, multiple entries.
29	8F10.4	counts	TORQR	Stator assembly torque, multiple entries.
30	8F10.4	counts	DYNAR	Dynamometer torque, multiple entries.
31	8F10.4	counts	CLAXIL	Closure plate force, multiple entries.
32	8F10.4	counts	CLTRQR	Closure plate torque, multiple entries.
33	10X,4A2		DATE	Month/Day/Year.
34	15X,3A2		TTYPEB	I (circular-arc rotor with sharp leading edges) or II (circular- arc rotor with blunt leading edges).
			STATOR	I (converging stator) or II (converging- diverging stator).
			METHOD	MF (V _{al} determined using momentum and continuity) or CF (V _{al} determined using continuity alone).
35	F5.3	in.	RMEAN	Stator mean radius.
36	Il		J	Number of pressure ratios tested in given run.

37 8(215)

- NPTS(K) First data point at particular pressure ratio.
- NPTSS(K) Last data point at particular pressure ratio. These two entries repeat in pairs, one pair for each pressure ratio tested in given run.

 SETCON. This subroutine consists of all the constant factors used in the data reduction calculations.
 CONVERT. This subroutine converts the units of the

input data into a single system compatible with the equations of Section 6.

4. FLORAT. This subroutine computes the turbine flow rate using the equations of Subsection 6.2.

5. STATOR. This subroutine uses the equation of Subsection 6.4 to calculate the stator discharge properties. Subroutine MOMENT is called from STATOR when using momentum and continuity to compute the axial velocity component.

6. MOMENT. This subroutine determines the axial component of absolute velocity by the application of the momentum equation to the fluid within the stator assembly. 7. This subroutine computes the rotor discharge ROTOR. properties using the equations of Subsection 6.5. 8. This subroutine computes the performance PERFRM. parameters and the referred quantities of Subsection 6.6. 9. OUTPTA. This subroutine gives a detailed printed output consising of the stator and rotor discharge properties and the performance parameters.

10. OUTPUT. This subroutine prints the turbine performance parameters in report form.

Prevalue of the second state of the secon MENSION TNDZ(100), TTD1(100), DH(100), PNDZ(100), PATM(100), PFL(100) REF(100), DPFL(100), RE(100), W(100), FLOCO(100), TTD1R(100), TNDZR(10)

FLOU IL

1.30G.1.

```
HW68=0DPFL/2.54*RATGW
Z=0.019+0.0024*(TTDI(I)/100.-1.)
WPART=0.153842658*D20**2*ALPH0*Y0*S0RT(PFL(I)*HW68/TTDIR(I))
CI=WPART*0KINF
C2=CI*A*2/5359.48144
WC1)=C1/2.+S0RT((C1**2/4.)+C2)
HW68N=0DH*RATGW
FLOCO(I)=6.1034166*W(I)/(D2N**2*YN*ALPHN)*S0RT(TN0ZR(I)/(HW68N*PND
IZ(I)))
RE(I)=5359.48144*W(I)/2
C0NTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               α
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TMÓS. PŘESS.11X,11HUATA POINTS11X,5HGAMMA)
,19X,12,17X,F3.1)
01NT8X,9HFLOW RATE8X,9HDISCHARGE8X,9HREYNOLDS/47X,
HCOEFFICIENT8X,6HNUMBER//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TUR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     7//32X,58HFLOW NOZZLE CALIBRATION FOR THE TRANSONIC
16)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SERIES25X, 22HNDZZLE SUPPLY PRESSURE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                N=SORT(XR**EX3*EX1*((1.-XR**EX2)/(1.-XR))*((1.-B)/(1.
gDH=DH(I)
GDPFL=DPFL(I)
TTD1([]=32.+35.99*TTD1([])-.425*TTD1([])**?
TTD1R(I]=32.+35.98*TTD1([])-.425*TTD1([])**?
TTD2R(I]=32.+35.98*TTD1([])-.425*TTD2(I])**?
TTD2R(I]=32.+35.98*TTD1([])-.425*TTD2(I])**?
ALPHD0=1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.00193*([TTD1([])-68.)/1728.
ALPHD1.+0.00193*([TTD1([])-68.)/100.)
ALPHD1.+0.000193*([TTD1([])-68.)/100.)
ALPHD1.+0.000193*([TTD1([])-6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WRITE(6,102)
WRITE(6,103) M, PNDZ(1)
WRITE(6,104)
WRITE(6,105) PAMB, N, GAM
WRITE(6,106)
WRITE(6,106)
DO 90 I=1,N
WRITE(6,107) I, W(I), FLOCD(I), RE(I)
CONTINUE
S FORMAT(I3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ///32X,11HTEST
5X,13,38X,F5.2)
2X,13HATMOS. PR
5X,F6.3,19X,12,
34X,5HPOINT8X,9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .F5.2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   EC)7X,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               9H(LBM/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ORMA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ORMA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ORMA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DRMAD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FORMA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         90
100
101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00000
```

107 FORMAT(36X,12,9X,F8.4,8X,F9.5,7X,F11.2) STOP END

TEST SERIES		NOZZLE	SUPPLY PRESSURE
ATMOS. PRESS. 14.766	DA	TA POINTS 10	GAMMA 1.4
POINT	FLOW RATE (LBM/SEC)	DISCHARGE COEFFICIENT	REYNOLDS NUMBER
1 2 3 4 5 6 7 8 9 10	4.5470 4.1810 3.7625 3.3435 2.9460 2.6033 2.2851 1.8747 1.4961 1.0637	1.04389 1.04332 1.03974 1.04034 1.03806 1.04049 1.03916 1.03927 1.02885 1.02885 1.00591	1249496.00 1150119.00 1036495.37 921833.00 812751.44 718826.87 631762.94 519366.69 415375.44 295950.94
TEST SERIES 2 ATMOS. PRESS. 14.767	DA	NOZZLE TA POINTS 10 ·	SUPPLY PRESSURE 41.95 GAMMA 1.4
POINT	FLOW RATE (LBM/SEC)	DISCHARGE COEFFICIENT	REYNOLDS NUMBER
1 2 3 4 5 6 7 8 9 10	4.6679 4.2442 3.8877 3.4127 2.8829 2.5549 2.2868 1.9506 1.5451 1.0399	1.03796 1.03850 1.03734 1.04024 1.03816 1.03302 1.03217 1.02720 1.01220 C.98741	1284592.00 11675C8.00 1069204.00 939151.62 793691.87 703979.37 630379.37 538148.44 426719.87 287806.31
		99	

FLOW NOZZLE CALIBRATION FOR THE TRANSONIC TURBINE TEST FIG

TEST SERIES 3		NDZZLE	SUPPLY PRESSURE 34.30
ATMOS. PRESS.	DATA	POINTS	GAMMA
14.735		2	1.4
POINT	FLOW RATE (LBM/SEC)	DISCHARGE COEFFICIENT	REYNOLDS
12	4.2561 3.9094	1.04044 1.04132	1182130.00 1085137.00
TECT CEDIEC			
4			34.25
ATMOS. PRESS.	DATA	POINTS	GAMMA
14.700	:	LO	1.4
POINT	FLOW RATE (LBM/SEC)	DISCHARGE COEFFICIENT	REYNOLDS
1 2 3 4 5 6 7 8	3.4087 3.0387 2.5675 2.3839 2.1594 1.9635 1.7285 1.4205	1.03932 1.04327 1.04209 1.04038 1.03792 1.03493 1.03260 1.02484	944578.00 842217.06 711613.37 660725.44 598632.69 544912.75 479896.50 395303.19
10	0.9363	1.00979	261676.87
IEST SERIES		NUZZLE	29.35
ATMOS. PRESS.	DATA	POINTS	GAMMA
14.682	1	9	1.4
POINT	FLOW RATE (LBM/SEC)	DISCHARGE COEFFICIENT	R EYNOLDS NUMBER
1233456789	3.9243 3.5504 3.1456 2.7296 2.3435 2.0941 1.8079 1.4423 0.9900	1.04078 1.04636 1.04380 1.04415 1.04390 1.04002 1.04002 1.03963 1.02582 1.02611	1094621.00 990741.62 878523.81 762850.12 655627.62 586375.50 506764.06 404797.87 278830.06

TEST SERIES		NOZZLE	SUPPLY PRESSURE
6			24.39
ATMOS. PRESS.	DAT	TA POINTS	GAMMA
14.603		4	1.4
PGINT	FLOW RATE (LBM/SEC)	DISCHARGE CDEFFICIENT	REYNOLDS NUMBER
1 2 3 4	3.5521 3.3403 3.1144 2.8472	1.04187 1.04228 1.04286 1.04237	994823.81 935497.94 872236.44 796562.81
TEST SERIES 7		NOZZLE	SUPPLY PRESSURE
ATMOS. PRESS.	DAT	A POINTS	GAMMA
14.574		6	1.4
POINT	FLOW RATE (LBM/SEC)	DISCHARGE COEFFICIENT	REYNOLDS NUMBER
1 2 3 4 5 6	2.5438 2.2157 1.9886 1.7660 1.5451 1.2198	1.04131 1.03960 1.03860 1.03475 1.03297 1.03049	711068.44 619473.12 556218.69 493973.37 432556.75 342052.44
TEST SERIES 8		NOZZLE	SUPPLY PRESSURE
ATMOS. PRESS.	DATA	POINTS	GAMMA
14.654		11	1.4
POINT	FLOW RATE (LBM/SEC)	DISCHARGE COEFFICIENT	REYNOLDS NUMBER
1 2 3 4 5 6 7 8 9 10 11	4.6614 4.3785 4.0059 3.6474 3.2227 2.8031 2.5465 2.2738 1.9652 1.5387 1.1206	$1 \cdot 04521$ $1 \cdot 04539$ $1 \cdot 04457$ $1 \cdot 04790$ $1 \cdot 04723$ $1 \cdot 04634$ $1 \cdot 04634$ $1 \cdot 04855$ $1 \cdot 044422$ $1 \cdot 03927$ $1 \cdot 02991$ $1 \cdot 01809$	1294436.00 1216127.00 1112648.00 1013286.12 896041.56 779872.37 708955.31 633425.87 547810.06 429389.37 313372.31

BROGALI LALLER PROCESSION CONTRACTOR CONTRC DI= 2.067 D2= 0.825 B= D2/D1 0KINF=0.608913 0KINF=0.608913 A=D2*(830.-5000.*8+0000.*8**2-4200.*8**3+5?)./SOPT(01)) GAM=1.4 GHGR =13.63905-.0013630303*TCR GHGC =13.63905-.0013630303*TCR GHGC =13.63905-.00136303033*TCR GHGC =0.48915856GHGR M/13.54 CHGC =0.489158556HGR M/13.54 GHGC =0.489158556HGR M/13.54 GHGC =0.489158556HGR M/13.54 GHGC =0.99837533+1.06057555*58.710).-1.593185.*58.**2/1 GW68=0.99837533+1.06057555*58.710

```
ĔŘROP(I)=(WREFT(I)-WREF(I))/WREFT(I)*100.
WRITF(6,201)[,WLΔRR(I),PR(I),TTPLO(I),RE(I),WREE(I),WREFT(I),E0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WREFR=4]+42*PR(1)+43*PR(1)**2+44*PR(1)**3+65*DR(1)**4+6400(1)**5

      0PHD=PHSPL(T)

      0PHSPL=PHEL(T)

      0PHSPL=PHEL(T)

      0PHSPL=PHEL(T)

      0PHSPL=PHSPL(T)

      0PHSPL=PHSPL(T)

      0PHSPL=PHSPL(T)

      0PHSPL=PHSPL(T)

      0PHSPL=PHSPL(T)

      0PHSPL=PHSPL(T)

      0PHSPL=PHSPL(T)

      0PHSPL=PHHSPL(T)

      0PHSPL=PHHSPL(T)

      0PHSPL=PHHSPL(T)

      0PHSPL=PHHSPL(T)

      0PFL=PHMSPL(T)

      0PFL

      0PFL

      0PFL

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          T([]-WREF(])20,20,30
)=-(WREF(])-WREFT(])/WREF(])*100
RATGW=GWRM/GW68
PAMB=PRAR
PAMB=PAAR*CHGC
R=53.3448
G=32.174
DD 49 I=1.N
DPATM=PATM(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WRFFT(I)=WRFFR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ¢
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINIE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (WRFFT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ERROR (I)
GO TO 51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             T I AM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     504
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C
N
```
50 CONTINUE 99 FDRWAT(FI0.4,12,13) 100 FDRWAT(FI0.4,12,13) 101 FORWAT(FI0.4) 103 FDRWAT(FI0.4) 109 FDRWAT(AFI0.4) 109 FDRWAT(AFI0.4) 109 FDRWAT(AFI0.4) 109 FDRWAT(AFI0.4) 100 FDRW

F C	
NIIMBER	
RIJN	
TTRSS	

	1001 (3) (3) (3) (3) (3) (3) (3) (3)	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	115°574	110,070	701 705	94,743	95, 695 91, 967	77 85 E	77, 225 75, 75	82°010	(C C C C C C C C C C C C C C C C C C C
		-2,4135 -5,7037	- 5, 72.25 - 5, 71.5 - 5, 71.5	-5.15737	-5, 11A0 -5, 4941	- 4 0000 - 2 0000	- 3 74 A J	-1.5761 -4.7530	-2,4075 5475	-2, 1870	2 1 CO - 1 -
	2011 1111 1111 1111 11111 1111111111111	0°074540	0,074303 0,074303	1.074400 1.074304	0.074355	1 1 2 7 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2	0°074301	0, 074333 7,00270	1, 140001 1, 140020	7 7×9874	1.049994 1.049895
NIC THRATME TEST	DEEF20FD [C1K 2ATE (SO 1M)	C. 177187 C. 177850	0,078310 0,078310	C.070340	0.078365	0.078215	C. 775873	0 74617	0.1724.02	0, N71256	0.070205 0.070505
TE DE THE TRANSD	REYNALAS	109630.57	114777.25	114244.31	119213.55	123121.12	125485.64	122473.37	98774 94 97431 FU	95251.00	94161.69 94161.69
ABYRINTH LEAK PA	PLENUM TOTAL TEMPERATURE (DEG E)	107.005	107.858	104.956	97.590 95.690	92.771	84.124 80.824	78.039	74.550	79.084	84.471 87.070
_	LABYPINTH PRESSINE RATIO	5.5690	5.3559 5.4566	5.4628 5.3829	5.4171	5.3674	555 555 555 555 555 555 555 555 555 55	5.3012	3.2175	3. 2164	3.2192
	LABYPINTH LEAK RATE (LRM/SEC)	0.084465 0.085082	0.085526	0.086881	0.085647	0.086213	0.085284	0.082868	0.067472	0.067689	0.068397 0.068580
	PUINT	-0	m 4	. 10 4	ρ ι -α	000		1.01	54	1	19

TTPSS PUN NUMBED 24

ίδαγοιντη ίρδκ αδτε σε της ταδηςουίς τησατνε τεςτ στο

רחרא דבעקבסאדדס לחרה ב)	
DEQFEUT CODO	111 40,
1 стторал оппаста оппаста оппаста опраста	<pre>CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC</pre>
рсесрова Fak зұта (са тч)	CCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCC
REYNOLOS	LL,
PLENUM TOTAL TEMPERATURE (DFG E)	
LARYPINTH PPESSURE RATIO	
LABYRINTH LFAK RATE (LRM/SEC)	00000000000000000000000000000000000000
TNIŪd	ーこうようなてほゆのーこうようなてほののーこうようなうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょう

TTRSS RUN NUMBED

			ANYN NIL FAK KA					
TNIDA	LARYRINTH LEAK RATE (LRM/SEC)	LAVRINTU PACSSUPE PATTA	DE FNIJW TOTAL TEMPEDATIIRE (JEG F)	su Juhan su	БГЕГАРЕЛ БАК 2 ХТЕ СО ТК	* N.* VIIC* 3 F.C.00011 1 F.K. 0.* IF	9601541 19000	
	0.033354	1.4001 1.4584	97,747	45454 01 63278 44	 くないいない。 くれないため くれないため 	0 . 754 J 4 J	6, 21 51 2, 152 5	100 JUL
ver	0.042311		80.146	57340.97	r		4,0144	- 13,551
4	0.047126	1.0774	91.132	52013.25	0.3430AF		1, 231 Ω 2, 0E72	1 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 4	002750-0	2.3658					01010	115, 845
- 10	0.058356	5.6177	95, 355	70207 37	n_146440	7 ~ ~ ~ ~ ~ ~ ~	1 7 4 1 1	114,407
α	0.061834	2.8781	97.419	84024.12	n <u>, 16</u> P 3 3 4	1 CK0727	, 5 R 2 2	1 1 7 0 0 0 0
0	0.065040	3.1677	97.932	88571 ni	0, 140747	1 NECT22	ິດິກິ∧ ∧	116,633
10	0.068253	3.4081	99 534	03718.94	0.070502	2 C77753	1°2263	116,121
	0.071632	3,0077	99 564	97120.75	010120	100[20"0	1, 23RK	116,063
61	0.074619	4 2092	101 364	100205.50	r.77701	CO72C07	7,2047	119.040
10	0.080311	4.5743	101.702	1 10-67 75	0 073575	r, r73E70	0.00.0	017,710
14	0.084070	4 8930	102.540	117195 81	0.774520	r, r72387	- C - 7 - 7 - 7	525°255
5	0.091794	5 1405	103.418	124079.44	0 75733	1 . 174174	-2,0275	114,400
1	0 . 099423	5 90.80	105.640	135438.81	7007LU U	1,075411	-1,7041	114,105

5 TTRSS PIIN NIMACE

1

PROGRAM TTRSS

PORTAGE FERFER MENTER Decrement charterites of the formation of the format WON= C

Toto the second second

```
.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DREM, CORED.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   THURSON.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     . THUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EWM .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               VOLAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                11111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (22)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            · vur
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TCP. PH. PNU7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     I, PD)
RANCLR, N, PR, XKIS, ETA, CHEFI, CHEFM,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PI6, PI7, P19, 20, 001, TTPI0
PI6, P17, P19, 000, 001, TTPI0
PI7, 501, PTPL (50), PHIRISON,
PMISON, TOPOR(50), AXTL (50),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              21100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 LOH2, RI
, DEACTO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   . ponten
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DEAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Ha
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  <
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RANCLR OPAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      101010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S.TT2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  μa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SUBR NUTINE INPUT (NPUN, AXGLR, B
1 PTPL, PHUR, PTTP, TTPL, PAT4
2 CLAXIL, CLTRQR, PRE2, P18, P15, F
01MENSINN NH (50), PNDZ (50), TV
1 TTPLN(50), TTPL (50), PSTM (50), PDV
2 PHN (50), P15(50), P15(50), P17(50), P17(50), P17(50), P17(50), P17(50), P15(50), P17(50), P17(50)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DIDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ۵
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   =OFALTS
                                                                                                                                                                                                                                                                                               П = 0 м = 0 м = 0 м = 0 м = 0 м = 0 м = 0 м = 0 м = 0 м = 0 м = 0 м = 0 м = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = 0 = 1 = 0 = 1
ТТ2 (1) =011

Т72 (1) =017

Т72 (1) =017

АL РНЛ (1) =017

ВЕТАЛ (1) =077

ВЕТАЛ (1) =077

ВЕТАЛ (1) =076

ВЕ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I NG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              STOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00
```

					~	22			
					Z	-22		-	
	ZZZZ	22222	\overline{z}	22222	-2	2 • • • • • • • • • • • • • • • • • • •	22000		ZZZZ
c .	and part and part	i grind gain gained gained	•Z	nd gand gand gand gand	mi = m		perford to the the	* * * * *Z *	un gand gand gani
السيب	11 11 11 11	I II II II II		IE DE DE DE DE			H H enterier	and grind grind grind - Real	1 11 11 11
00	ferri fans ferri fer	r periper periper Per de de de		an der der der den der			A. de defensionen bereit Berriken († 11. 11. 11. Berriken († 11. 11. 11. 11.		en pen pen pen :
A									
α	()	ng ganang ganang ganang ganang ang ganang ganang ganang ganang							and Barris Barris Barris
à	HN-		LHEN.	JEG N		JOAXA	-		NUC
La	-LLD. L. V	000010	ユートロ	13-55	0.0.0Z	-azar:	2110 UCM	acont	- 04 2
Nd XC		0000							0.0.0
VOZ	Full				しししこ、		えこここここ		
00									· · · ·
000	000000	00000	0000	00000	00000	00000	000000	000000	0000
		ni gani gani gani gani			pend pend pend pend g			يو (سمو (سمو (سمو (سمو	ni proj proj proj
IC IC IC	າດເດເດ				ເດັບດີເດັບ	ດ ເດ ເດ ເດ ເ ດ ຊ		00000	0000
000	00000	0000	0000	0000	000				
202		AAAA					net Banet Banet Banet Banet Banet	period participants period participants period p	un baun baun baun

.

.

```
レビィシト
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               U C Y D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DATA.
Warre(6,107)(PHTP(1), f=1,N)
Warre(6,107)(PHTP(1), f=1,N)
Warre(6,107)(TTPL(1), f=1,N)
Warre(6,107)(TTP
```

.

```
, тх
, тх
, т
,
 ā
  .
 1
  ·L
 ີ...ຕ
▶⊔.
υ.
```

```
SantP=0, 4440

FHKR=0.050

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:055/23

RHUR2=7:051/23

RHUR2012:

RHUR2012:
```

*

SUBROUTINE CNVEPT(DH, PNOZ, TNOZ, PTPL, PH44, PTTP, TTPLD, TTPL, TTPL, TTPL, TTPL, AXIL, DYNAR, PHD, THD, PSPL, CLTROP, CLAXII, P1AV, P2, 91

PANR, D'C, DOC, TTPL= TEMP(TTPL)+450.7 TNDZ=TEMP(TYDZ) TTPLD=TEMP(TYDZ) TTPLD=TEMP(TTPLD) TTPLD=TEMP(TTPLD) ST1=-4.955933F=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.45145E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.451445E=01 ST2=4.45145E=01 S

DATA1 ÅLPHN=1。+0。00252*(TNN7-68。)/100。 XR=1。-(DH/PNO2) YN=SORT(XR**EX3*FX1*([1。-XR**FX2)/(1。-XR))*((1。-R)/(1。-R*XR**FX2)) SUBROUTINE FLORAT (A, R, D2, RETA, FX1, FX2, EX2, R, G, GAM, PMD7, PSPL, TMD7, TTPLD, PHD, PH, HW68, NRUN, B1, R2, B3, 84, 85, A1, A2, A2, A5, A5, A5, FL DWT, THD, . CHO DIPI THEIK INPHT COMMON 6.8. C2. FX2. RM1. RM2. 44X. ATH. EL MWT. TTPL. TITS. T1. 1 PTIP. PHUB. PIAV. PIB. PI5. PI5. P17. PAS. TOPO. CL TORO. VI. VA. VII 2 ZETAS. PHI. XI. GAM. ALPHI. BETAI. ROM. 111. WI. VWI. WM1 3 CLFAX. FAX. RTTP1. CHURI. SKT. PAMR. PI9. P20. EX3. P71. EXI. WM1 3 RE=0.0 ۲ 2=0.019+0.0024*(TVNZ/100.-1.) TV02R=TN02+459.7 EPS=0.0 RF=A*WG/7 IF(RE.GT.1300000.)Gn Tn 52 CN=B1+B2*RF+R3*RF**2+B4*RF**3+RF*PE**4 WD=W-WG IF(RU0.LT.0001)Gn Tn 50 EPS=EPS+0.8R*Wn Gn Tn 48 FLOW=W PR=PSPL/PHD WREF=A1+A2*0R+A3*PR**2+A4*PR**3+AF*0R**4+A6*0P** WREF=A1+A2*0R+A3*PR**2+A4*PR**3+AF*0R**4+A6*0P** CORR=(1.0+0.32*((TTDLO-THO)/TTPLO))**1.2 TTPLOR=TTPL0+459.7 TTPLOR=WRFF*PSPL/S0RT(TTDLOR*R/G)/FO0R FLOWT=FLOW-WLAB RETURN FLOW HIGH. 52 WRITE(6,100)NRUN,I 100 FORMAT (/33X,14,7X,12,7X,35HFLOW RATE TOO 1) SUBRAUTINE STATAR 21) 50 48

- 10

SUBROUTINE RUTOR(G, R, CP, CJ, C2, EX2, RM1, RM2, AAXP, FLOWT, TTPL, RPW, 10YNA, 0P, P1AV, P2, T1, T2, T72, T215, VA1, VU1, V2, W1, W2, U1, U2, ALP42, RÉTA2, EX1, RKT) 28ETA2, EX1, RKT) 28ETA2, FX1, RKT) RAD=, 104 719667*RPM 0P=DYNA*RAD/CJ VU2=RM1/RW2*VU1-DYNA*G/RM2/FLOWT*12, T25=TTPL-DP/CD/FLOWT T25=T1*(P2/PLAV)**EX2

END

```
* * F X 2 * 8 * 1 U T * * 0
                                                                                                                                                                                                                                                                                                                                                         N. CUEFF.
                                                                                                                                                                                                                                                                                                                                                                                              · DAFT
                                                                                                                                                                                                                                                                                                                                                                                             . RETA
                                                                                                                                                                                                                                                                                                                                                                             u u c
                                                                                                                                                                                                                                                                                                                                                           BUHB
                                                                                                                                                                                                                                                                                                                                                                                           , RET
                                                      c-.
                                                                                                                                                                                                                                                                                                                                                                         L L L
                                                                                                                                                                                                                                                                                                                                                      . DTD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .
                                                         [ OMT ** ) * ( SODT ( ]
                                                                                                                                                                                                                                                                                                                                                                                             CHO IV .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (PTPI /PHO) **FX2-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (PTDI /DHU)*#FX2-
                                                                                                                                                                                                                                                                                                                                                                         1 * X K T
                                                                                                                                                                                                                                                                                                                                                           DHISSCOR(TTTLTTT)

FTA=DP/(TTTLTTT)

FTA=DP/(TTTLTTT)

FTA=DP/(Co*(TTTLTTT)

FTAT=DP/(Co*(TTTLTTT2))

FTAT=DP/(Co*(TTTLTT2))

FTAT=DP/(Co*(TTTLTT2))/FLOWT

SELEPTDL/14.60

DEL=PTDL/14.60

THETA=SORT (5AM* R*TTPL)/106.8107

COEFL=FLONNANFL

HP=3600./2545.*00

COEFTA=SON (DFL*THETA/DEL

COEFTA=SON (COEFTATE)/(COTPL/OHD)

REACHR=(CPHUB/PHD)**FX2-11)/((CTTLVPL/DHD)

REACTAR=(CPHUB/PHD)**FX2-11)/((CTTPL/DHD))**

REACTAR=(CPHUB/PHD))**FX2-11)/((CTTPL/DHD))**

REACTAR=(CPHUB/PHD))**FX2-11)/((CTTPL/DHD))**

REACTAR=(CPHUB/PHD))**FX2-11)/((CTTPL/DHD))**

REACTAR=(CPHUB/PHD))**FX2-11)/((CTTPL/DHD))**

REACTAR=(CPHUB/FTATE)//OHD)**FX2-11)/((CTTPL/DHD))**

REACTAR=(CPHUB/FTATE)//OHD)
                                                                                                                                                                                                                                                                                                                                                                                THO IV
                                                                         -TE))-]
                                                           L
K
                                                                        V16*(P2*4AXR*RKT)**2)*(WU2**2/
V2=50PT ((TT2-T2)*C2)
                                                                                                                                                                                                                                                                                                                                                                                                                             •
                WU2=VU2-U2
TE=T1+(W1**2。-U1**2。+U2**2。)
T2=FX1*G*(P2*AAXR*RKT)**2/(R
1/(G*(P2*AAXR*RKT)**2)#(WU2**
                                                                                                                                                                                                                                                                                                                                                                                 REACTP
                                                                                                                                                                                                                                                                                                                                                      SUBR NUTINE PERFRM (G,R,C)

1 RPM, FLOWT, DYNA, DP, P2, T115

2 COEFS, REACMN, REACHR, REAC

3 HP, U2, W1, W2, FX1, TT2, T2, FT

PR=PTPL/P2

T2TH=TTPL*(PHD/PTPL) **FX2
                                                                                                                                                        (WA2**2+WI)2**21
TAN (VI)2/VA2)
TAN (WU2/WA2)
                                                                                                                VA?=SORT (V?**2-V1)?**2
WA?=VA2
W2=SORT (WA2**2+W12**2
M2=SORT (W22**2+W12**2
ALPH2=ATAN (V12/VA2)
RFTA2=ATAN (WU2/WA2)
() = R M > * R A D / 1 2
                                                                                                                                                                                                                   RETURN
                                                                                                                                                                                                                                        END
                                                                                                                                      ĸ
```

BETA2=BETA2*57.295779 DRETA=RETA1-RETA2 RETURN END SUBROUTINE OUTPTA (NeUN AXCL8 PAO(L⁰ FLOWT N, H0, YKTS, FTDEL, FTDEF, FTA, W2 FUL, V2, W1 PUL, W1 PUL, W1 PUL, W1 PUL, W2 FUL, W1 PUL, W1 PUL,

```
RETURN
            C Z L
```

```
XCLR, RADCLR, N, PR, XKIS, EFF, COFFL, COFFM,
COFFS, REACHB, REACTP, PTPL)
), EFF(50), COFFL(50), COFFM(50), COFFP(50),
CHB_(50), RFACTP (50), OPTPL(50), NPTS(R),
                                                                                                                                                                                                                                                                         TTYPER, STATOR, PADEL R
                                                                                                                                                                                                                                                                                                                                                COEFS(I), XKIS(I), FFF(I), COFFL(I), COFFP(I), COFFP(I),
COEFS(I), REACHB (I), REACTP (I)
                                                                         TTYDER, STATOP, METHOD
                                                                                                                                                                                                                                                               WRITE(6,901)RMEAN
DD 940 1=NX,NXX
ICDEFS(1)=CDEFS(1)
                                                                                                             (NPTS(K), NPTSS(K), K=1, A)
                                                                                                                                                                                                                                                                                                                                                                       TF (J-K) 940.924 924

TF (I-NPTSS(K)) 940.025,940

5 LL=NPTS(K)

1 LL=NPTSS(K)

1 NTGER = LLL-LL+1

AVG= INTGER

AVGPR=00

0 00 926 L=LL LLL

AVGPR=AVGATM+PTPL(L)/14.69 /AVG

AVGPR=AVGPR+PP(L)/AVG
                                                 FS(50)
                                                                                                                                                             920,920,921
                        DI MENSION PR (50) , XKIS (50)
COEFS (50) , REACH
NPTSS (8) , TCOEFS
SUBROUTINE DUTPUT(NRUN
                                                                                                                       91915151
(1)=100.#EFF(1)
950 JJ=1,2
(N+3#J-43) 920,9
                                                          5,905) D.A.T.F
5,907) RMEAN
5,909) (NPTS
                                                                                                                                                                                                                                                                                                                                                 WRITE(6,902)
                                                                                                                                                                                   NXX=N
GO TO 922
NPP=2
NXX=43
NP=1
                                                            Np p= 1
                                                                                                                                                  0-
                                                                                                                                                                                                                                                 I = XN
                                                                                                                                                  C
                                                                                                                                                                                                                                                                                                                                                                                     924
                                                                                                                                                                                                                                                                         023
                                                                                                                                     616
                                                                                                                                                                         920
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 926
                                                                                                                                                                                                             921
                                                                                                                                                                                                                                     922
```

WX=1+1 WXX=1+1 WXX=1A WRITE(6,904)WP WRITE(7,734)PP 902 FURMAT(9X,12,5X,F6.4,5X,F5.4,8X,FE.2,6X,FA.4,5X,FA.3,4X,F4.3,4X, 15,4X,F6.4,6X,F5.4) 003 FURMAT(/5X,12H FOR POINTS 12,34 TO,1X,12,21H AVE. 28ESCUPE RAT 1=,1X,F6.4,1RH , WAX, 0FVIATION +, F5.3,7H DFT. -, F5.3,10H PC 2 PAVG /PATMO=1X,F6.4 /) 904 FORMAT(/45X,15H COMTO, ON SHEFT,1X,T1./) 905 FORMAT(/45X,15H COMTO, ON SHEFT,1X,T1./) · nEVL JW, AVGATW K= K + 1 ND = 2 00000 00000 00000 030 933

FORMAT(15X,3A2) FORMAT(F5.3) FORMAT(11) FORMAT(8(215)) RETURN RETURN END

		REFERRED SPEED	10559 4414 120970 6172 13057 7539 14008 4258 14823 4258 16725 3359 16725 3359
HORSEPOWER	440 440 442 8028 808	REFERRED	855911 939921 939921 939921 939921 93992 93932 9
0.009 PRESSURE RATIO	200288 200288 200280 20028 20005 20000 20000 20000 20000 20000 20000 20000 20000 200	E PARAMETERS Referred Torque	1156 1156 1156 1123 112 112
250 TIP CLEAR. RPM	$\begin{array}{c} 11320\\ 129800\\ 129800\\ 129800\\ 000000\\ 000000\\ 17930\\ 000000\\ 000000\\ 0000\\ 000\\ 0000\\ 000$	NLESS PERFORMANC Referred Flow Rate	111111111111 0001736600 000136691600 000136691600
2 SPACING 0. FLOW RATE	1.4920 1.4920 1.448334 1.44760 1.44760 1.447760 1.447760 1.447760 1.447760	DIMENSIO I SENTROPIC	20046908 2009466 2009466 2009275 2009663 2004663 2004663 20142245 20142245 20142245 20142245 20142245 20142245 20142245 20142245 201425 2014555 201455 201455 201455 201455 2014555 2014555 2014555 2014555 2014555 2014555 2014555 2014555 2014555 2014555 2014555 2014555 2014555 2014555 20145555 20145555 20145555 201455555 2014555555 2014555555555555555555555555555555555555
RUN NUMBER 3. POINT	-NW4NOF@0	POINT	909400F00

H

TURBINE CIRCULAR ARC STATOR I

		U2	423 423 4823 4823 486 16211 5962 5962 5962 5964 548 4048 71 4 5963 59739 74 59749 74 59739 74 74 59739 74 59739 74 59739 74 74 74 74 74 74 74 74 74 74 74 74 74			
		UI	418.85059 4448.01099 4880.27197 518.38306 556.12402 589.01587 663.42676 705.9778		TOTAL DISCHARGE	515.50854 513.715854 512.00757 512.07690 509.61108 509.57922 509.57920 510.47778 510.47778 510.47778
		W2	575.14404 581.46729 564.04712 615.91431 6555.281431 6555.2480998 631.34473		ISENTROPIC FROM TI	499.51709 499.80786 498.53223 509.37891 507.71973 5124.27661 513.559888 509.25195 509.25195
		MI	678.67090 636.31982 602.89697 4497.84912 448.06494 376.859494 3216.41597 282.91382 256.61719		ROTOR DI SCHARGE	510.63477 509.263477 508.10937 508.19019 505.86572 505.65419 506.65405 097905 097905
	ES (FT/SEC) ER (32	٧2	242.01395 2342.013995 2166.144083 2112.155552 2112.8155552 2110.8864365 2414.3686302 2414.36365 2435553 27753	JRES (DEG R)	STATOR DISCHARGE	459 459 503 503 86333 86333 86353 86353 86353 8632 852422 722422 722422 722422 722422 722422 722422 722422 722422 722422 700 700 700 700 700 700 700 700 700 7
RESULTS	VELOCITI RUN NUMBE	V1	1077.36328 1058.29004 979.92944 961.74756 9061.74756 876.186539 848.35034 848.87915	TEMPERATI	PLENUM TOTAL	595 595 595 595 595 595 595 595 595 595
GENERAL		POINT			POINT	

•

			STATOR	0.11427 0.114827 0.21491 0.21491 0.21491 0.21441 0.217144 0.217144	
DELTA BETA	135.28575 134.673513 1325.6573513 126.5573553 126.2271655 1122.660858 103.668858 95.888758		α	080000-40	
BETA 2	-67 -68 -68 -68 -68 -69 -69 -69 -69 -69 -69 -69 -72 -71 -72 -72 -71 -58 -72 -71 -58 -72 -72 -71 -58 -72 -68 -72 -68 -72 -68 -72 -68 -72 -68 -72 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68		ZETA RDTO	00000000000000000000000000000000000000	
BETA 1	67.35133 667.35133 666.2378133 666.2378133 569.257167 57016 786.356424 786.356424 786.361767 561794 848 760791 844 848 8484 76731 76741 848 8484 767317 707310000000000		EFFICIENCY TOTAL TOTAL	0.77189 0.80508 0.80508 0.826644 0.826647 0.82079 0.81124 0.81124	
ALPHA 2	- 236. 77655 - 233. 06314 - 29. 55927 - 100. 19390 - 74. 18564 - 4. 32282 10. 26967 29. 51349	S AND LOSSES			
ALPHA 1	75.968136 75.998136 76.19102 75.095389 745.04497 73.989924 73.59124	EFFICIENCIE	TOTAL STATIC	0.73897 0.775891 0.77754 0.77754 0.77887 0.79883 0.79883 0.79391 0.75394	
POINT	このようらてほの		POINT	-100400-00	

FLOW ANGLES (CEGREES FROM AXIAL) 32

RUN NUMBER

	RELATIVE MACH 1	00000000000000000000000000000000000000		
	ABSOLUTE MACH 1	0 9834 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9621 0 9622 0 96734 0 96734 0 0 96734 0 0 96734 0 0 96731 0 0 96734 0 0 0 96731 0 0 96734 0 0 0 0 0 0 0 0 0 0 0 0 0		
	REACTION	0.1398 0.1519 0.2008 0.22088 0.264758 0.28694 0.31694	OR SLOCKAGE FACTOR	91360 91360 90776 90653 903055 903868 903868 903864
r I ON 32	REACTION MEAN	-0.0004 0.0308 0.05833 0.010883 0.11737 0.11737 0.11737 0.11737 0.11737 0.11737	BLOCKAGE FACT	00000000
AND DEGREE OF REAC RUN NUMBER	REACTION HUB		RE RATIO AND THROAT PRESSURE	00000000000000000000000000000000000000
MACH NUMBERS	POINT	-100400-00	STATOR PRESSUN	40m4m0rao

SHFET I OF 1

TURBC PROPULSION LABORATORY USNPGS, MONTEREY, CALIF.

RADIAL ROTOR TIP CLEAR. = .009 IN. AXIAL CLEAR. STATOR-ROTOR = 0.250 IN. DATE OF TEST 5/21/68 DATA REDUCTION WETHOD WF RECUCED PERFORMANCE DATA OF TURBINE FROM TESTS WITH TRANSONIC TURBINE TEST RIG TURBINE TYPE CIRCULAR-ARC I STATCR I TEST RUN ND. 32

DEGREF DF REACTION (TIP)		ATWD= 1.1669
DEGPEE NE PEACTION (H!JR)		CT., PAVG./P
REFERRED SPEED Rom	111111 11110 111110 11110 11110 11110 11110 110 110 110 110 110 110 110 110 110 110 100 110 100 110 1000 1000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1000000	-0.295 P(
PEFERRED POWFR HP	00000014480 0000001440 0000001440 0000001440 00000014400 00000000	0.226 PCT.
REFERRED TORQUE FT-LB	11126 1126 1126 1123 1123 1123 1123 1123	EVIATION +
REFERRED FLOW RATE LBM/SEC		272 , MAX.D
EFFICIENCY TOT-STATIC PERCENT	77777 90 90 90 90 90 90 90 90 90 90 90 90 90	RATIO= 2.0
I SENTROPIC HEAD COEFF. (R=4.240 IN.)	22033445567 699908 699908 6980457 6980457 6980457 6980457 203345 604170 203345 20345 20345 203555 203555 203555 2035555 2035555 20355555 20355555 20355555555 2035555555555	9 AVG. PRESSURE
PRESSURE RATIO	2007365380 2002360580 2002360 2002560 2002560 2002560 2002560 2002560 2002560 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 2005770 200570 20000000000	TS 1 TO
INIDA	-0m400-00	FOR POINT

REPORT

0	
ш	007UL00
Ω.	NNONNONN
20	000 001-mu
шш	NAMENOMO
ШШ	
шo	1000- + 2000-
25	0000000000
	20001++100

HORSEPOWER	556.3838 57.0580 57.0580 50.7277 51.02346 51.02346 51.02346	REFERRED POWER	4441 4442 4442 4442 4442 4442 4442 4442
	$\phi \phi \phi \phi u u u u u$		

0.009	PRESSURE RATIO	00000 0000 0000 0000 000 000 000 000 0	PARAMETERS	REFERRED TORQUE	188.73 177.337382 166.055255 166.06420 194.00420 194.00420 194.00420 194.00400 194.00400 194.00400 194.004000000000000000000000000000000000
50 TIP CLEAR.	RPM	12640.0000 13670.00000 14600.00000 14980.00000 17920.00000 17720.00000 17920.00000	LESS PERFORMANCE	REFERRED FLOW RATE	11. 3668 37203 566211 334810 3368810 588211 11111111111111111111111111111111
SPACING 0.2	FLOW RATE	1111111 0000000 0000000 0000000 0000000 000000	DIMENSION	I SENTROP I C	
33					
NUMBER	POINT			POINT	
RUN					

TURBINE CIRCULAR ARC STATOR I

-

1.30

	POINT		POINT	
VELOCITIES (FT/SEC) RUN NUMBER 33	V1	1289, 63599 1287, 03613 1230, 52713 1228, 33325 1268, 18994 1236, 12891 1236, 00073 1236, 00073	TEMPERATU Plenum Total	615.26172 616.41113 614.933113 614.27563 629.63452 631.74341 631.74341 631.77312
	٧2	279.42017 271.74951 2666.791999 2668.32153 2688.32153 273.99576 300.95093	RES (DEG R) STATOR DISCHARGE	476.86694 478.86694 488.93403 488.72534 488.72534 488.72534 504.59448 504.59448 504.59448 506.07361 519.79565
	M	840.54761 823.098164 738.53198 698.32300 703.86011 635.50928 605.22388 607.01172	ROTOR DI SCHARGE	502.93848 503.93848 500.932860 500.932860 508.41797 508.41797 508.57446 508.841797 508.841797
	W 2	631.35254 620.63771 638.63477 631.50928 593.65674 581.53101 581.53101	ISENTROPIC FROM TI	4699.948779 4699.948053003 470.5541999 476.42822 480.958720 4883.662822 4883.662822 4883.662822 4883.6603 4882 4883.60034
	U1	467.69165 5183.602165 5548.01294 5554.273394 5530.165504 165583 2631.97583 2633.4035683	TOTAL DISCHARGE	509.43530 506.85571 502.03979 514.40894 516.611338 516.611338 516.611338
	02	473 473 524 561 561 6332 70 7153 70 7153 729 729 729 24316 739 729 24316		

GENERAL RESULTS

	ZFTA STATTR STATTR -0.01596 -0.051697 -0.051993 -0.05235 -0.05235 -0.05455
DELTA BETA 135.46509 132.22075 132.22075 133.78825 133.78825 133.95834 124.03841	с <u>-18950190</u> 5
BETA 2 BETA 2 BETA 2 BETA 2 655.055991 1-655.055991 1-653.055491 1-653.03308 853308 853308 853308 853304 0441 1-1000 853308 853000 853000 853000 853000 853000 853000 853000 853000 853000 853000 853000 853000 853000 853000 85300 850000 850000 850000 850000 850000 8500000000	8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 8000000 80000000 800000000
BETA 1 69.80518 69.37848 66.256337 66.256337 66.4457333 58.18478 58.18478	FFICIFNCY DTAL TOTAL 0.76941 0.77207 0.81750 0.81694 0.838866 0.84482
ALPHA 2 -21.36789 -15.653952 -4.140319 13.740319 13.740319 30.210100 31.74139 31.74139	S AND LOSSES
ALPHA 1 76.99704 76.98311 77.46126 77.461333 77.633234 77.08605	EFFICIENCY TOTAL STATIC 0.73678 0.74121 0.74121 0.78863 0.78863 0.79527 0.79523 0.80323

POINT

FLOW ANGLES (DEGREES FROM AXIAL)

33

RUN NUMBER

-10/07/00-00

-10104100-00

132

POINT

	ABSOLUTE MACH 1	11111111111111111111111111111111111111		
	REACTION	0.1698 0.1780 0.2012 0.2191 0.2355 0.2779 0.2779	OR LOCKAGE FACTOR	91140 91372 914832 914882 90823 90885 90885 90885
3 3	REACTION MEAN	0.0516 0.05716 0.1281 0.14281 0.14438 0.17441 0.17441	T BLOCKAGE FACT	00000000
NU VEGREE UF KEA RUN NUMBER	REACTION HUB		RATIO AND THROA PRESSURE RATIO	000000 00 00 00 00 00 00 00 00
MACH NUMBERS A	POINT	-10104100F00	STATOR PRESSURE POINT	-NW4N9-00

RELATIVE MACH 1 0.7852 0.7852 0.68145 0.668145 0.664444 0.554449 0.557449 0.557449 0.557749

133

.

REPORT

TURBO PROPULSION LABCRATORY USNPGS, MONTEREY, CALIF.

RECUCED PERFORMANCE DATA OF TURBINE FROM TESTS WITH TRANSONIC TURBINE TEST RIG

TURBINE TYPE CIRCULAR-ARC I STATOR I RADIAL ROTOR TIP CLEAR.= .009 IN. AXIAL CLEAR. STATOR-POTOR= C.250 IN. TEST 5/22/68 DATA REDUCTION METHOD ME POINT PRESSURE ISENTROPIC FEFICIENCY REFERRED REFERED REFERED REFERENCE OF

	110 200 200 200 200 200 200 200 200 200	ATMD= 1.2499
REACTION (HUR)	000011111 0000041875 0041875 00423641 00423641 0042366 143568 145668 145668 145668 145668 14566868 1456686868 14566868 14566868686868686868686	T., PAVG./P
SPEED RPM	119805 119805 12857 13857 13857 13857 15475 15475 15618 17607	-0.912 PC
bower HP	444444 9444 9444 9444 9444 9444 9444 9	0.656 PCT.
FT-LB	11111 04545 04555 04545 045550 0455500000000	EVIATION +
FLOW RATE LBM/SEC	1	250 , MAX.DI
PERCENT C	822336 832336 832336 832336 832336 833236 833236 83323 8332 83323 8332 83323 8332 832	RATIO= 2.5
HEAD COEFF. (R=4.240 IN.)	148000000000000000000000000000000000000	8 AVG. PRESSURE
RATIO	00000000000000000000000000000000000000	TS 1 TO
	-NW420-0	FOR POINT

		REFERRED SPEED	11914.5898 11971.5898 12009.71488 12022.57422 12172.3242
HORSEPOWER	56.9356 56.9356 56.9355 56.1222 56.1028	REFERRED POWER	41.4678 41.4311 41.7377 41.9466 41.6982
0.009 Pressure ratio	2.5368 2.5000 2.5170 2.5377 2.5130	E PARAMETERS Referred Torque	18.2834 18.25699 18.2567 17.9957
250 TIP CLEAR. RPM	13080.0000 13080.0000 13070.0000 130570.0000 13050.0000	VLESS PERFORMANC REFERRED FLOW RATE	1.3727 1.3663 1.3669 1.3667
+ SPACING 0.2 FLOW RATE	1.5638 1.55638 1.55651 1.557551 1.557551 1.557551 1.557551 1.557551	DIMENSION	7.4897 7.3174 7.28555 7.1124
RUN NUMBER 34 POINT	-015 JUF	POINT	-NW4N

REFERRED SPEED

TURBINE CIRCULAR ARC STATOR I

	U2	489.00747 489.90747 489.53320 488.78369 488.78369			
	111	483.97217 483.97217 483.60205 482.86230 483.23193		TOTAL DISCHARGE	517.83643 512.04346 507.75366 499.38428 493.60400
	W2	596.26221 626.52783 641.655601 678.17187 704.95728		ISENTROPIC FROM TI	473.18994 472.223399 473.24316 475.66357 477.04297
	IM	853.65870 814.51025 794.72070 752.07837 697.10840		ROTOR DISCHARGE	511.87354 505.994338 501.43115 492.29102 485.91309
S (FT/SEC) R 34	v 2	267.65214 269.61963 275.64624 291.96460 304.01587	RES (DEG R)	STATOR DISCHARGE	480.33618 482.97217 482.65601 483.01636 486.34937
VELOCITIE RUN NUMBE	V1	1318.88477 1279.49170 1257.67358 1210.93018 1153.45264	TEMPERATU	PLENUM	625.07959 619.19824 614.27563 605.03418 597.05884
	POINT	-0.04-0		POINT	-N-0-4-10

GENERAL RESULTS

				ZETA STATOR		
	ηείτα Βετα	133.72940 135.48318 135.06030 134.06330 134.063332		œ	nwaau	
	BETA 2	-63.72823 -65.78130 -66.33249 -67.74727 -68.98868		ZETA ROTO	0.55665 0.55883 0.4513 0.3028 0.1766	
	BETA 1	70.00117 69.70180 68.72781 66.80083 65.07465		FFICIENCY OTAL TOTAL	0.79010 0.78259 0.78065 0.78452 0.79010	
34	ALPHA 2	-9.62638 -17.58957 -20.86003 -28.40329 -33.75546	ES AND LOSSES	Ψ		
RUN NUMBER	ALPHA 1	77.21069 77.24178 76.74695 75.83826 75.24397	EFFICIENCI	EFFICIENCY TOTAL STATIC	0.73465 0.753465 0.74804 0.74744	
	POINT	-0100450		POINT	-10/04 L	

FLOW ANGLES (DEGREES FROM AXIAL)

13.7

		ABSOLUTE MACH 1	1.2276 1.1877 1.1678 1.1678 1.0670			•
		REACTION	0.1770 0.1765 0.1791 0.1823 0.1813	R	LOCKAGE ACTOR	911529 91100 91146 90968 91131
TION	34	REACTION	0.0496 0.07661 0.0659 0.0507 0.0507	BLOCKAGE FACTO	8	00000
D DEGREE OF REACT	RUN NUMBER	REACTION HUB		RATIO AND THROAT	PRESSURE RATIO	0.41544 0.42569 0.41579 0.41579 0.41573
MACH NUMBERS AN		POINT	-10640	STATOR PRESSURE	POINT	-1010-410

RELATIVE MACH 1 0.7946 0.7561 0.7380 0.6981 0.6449

		2			10
		0.250 = 0.250	DEGREE GE REACTION (TIP)	.17750 .17655 .17655 .18731 .1815	ATWD= 1.2525
	TEST RIG	AP . STATOP-R	DEGREE DE REACTION (HUR)		T PAVG. /P
CAL IF.	VIC TURBINE	AXIAL CLE	REFERRED Speed Rpm	11914 11914 12009 120822	-0.830 PC
ANTEREY, C	TH TRANSON	ATA REDUCTI	REFERED POWER HP	41.468 41.631 41.738 41.738 41.698	-0.669 PCT.
USNPGS, M	M TESTS WI	3/68 ***	REFERRED TORQUE FT-LB	18.283 18.269 18.257 18.237	EVIATION +
LABCRATORY	TURBINE FRC	L RUTOP TIP DF TEST 5/2	REFERRED FLOW RATE LBM/SEC	1.3727 1.3663 1.3669 1.3669 1.36643 1.3667	209 , MAX.D
C PROPULSTON	VCE DATA DE	I RADIA 34 DATE	EFFICIENCY TOT-STATIC PERCENT	73.46 75.13 74.80 74.74 74.86	E RATIN= 2.5
TURB	CUCED PERFORMAN	RC I STATCR TEST RUN NO.	I SENTRCPIC HEAD COEFF. (R=4.240 IN.)	7.1124 7.3174 7.3174 7.28555 7.1124	5 AVG. PRESSURE
	RE	CIRCULAR-A	PRESSURE RATIO	2.5368 2.5170 2.5170 2.5170 2.5130	TS 1 TO
		TURBINE TYPE	POINT	-10m4n	FCR PCIN

SHEET 1 OF 1

REPORT
APPENDIX II

EVALUATION OF THE FORCE ACTING ON THE STATOR ASSEMBLY BY THE STATOR DISCHARGE PRESSURE

The pressure at the stator discharge P_1 varies between the pressure P_{h1} at the hub and the pressure P_{t1} at the tip. This pressure is not necessarily a linear function of radius r. In the present study the pressure P_1 will be assumed to vary parabolically from P_{h1} at R_{h1} to P_{t1} at R_{t1} such that at the mean radius R_1 the pressure is $(1 + \epsilon) P_{m1}$, where $P_{m1} = (P_{h1} + P_{t1})/2$. The value of the factor ϵ will be determined by comparing momentum results with those from the continuity equation.

Let

$$P_{1} = P_{h1} + \frac{P_{t1} - P_{h1}}{R_{t1} - R_{h1}} (r - R_{h1}) + \Delta P = P_{h1} + S(r - R_{h1}) + \Delta P \quad (64)$$

where

$$S = \frac{P_{t1} - P_{h1}}{R_{t1} - R_{h1}}$$
(65)

and

$$\Delta P = A_0 + A_1 r + A_2 r^2$$
(66)

The constant factors A_0 , A_1 , and A_2 are obtained from the conditions $\triangle P = 0$ at $r = R_{hl}$, $\triangle P = 0$ at $r = R_{tl}$, and $\triangle P = P_{ml}$ at $r = R_{ml} = (R_{tl} + R_{hl})/2$. Thus

$$0 = A_{o} + A_{1}R_{h1} + A_{2}R_{h1}^{2}$$
$$0 = A_{o} + A_{1}R_{t1} + A_{2}R_{t1}^{2}$$
$$E P_{m1} = A_{o} + A_{1}R_{m1} + A_{2}R_{m1}^{2}$$

The above simultaneous equations are solved by Cramer's Rule, with

$$C = \begin{vmatrix} 1 & R_{h1} & R_{h1}^{2} \\ 1 & R_{t1} & R_{t1}^{2} \\ 1 & R_{t1} & R_{t1}^{2} \end{vmatrix} = (R_{t1} - R_{h1}) [R_{m1}^{2} - R_{m1}(R_{t1} + R_{h1}) + R_{h1}R_{t1}]$$

with
$$R_{ml} = (R_{hl} + R_{tl})/2$$

 $C = (R_{tl} - R_{hl}) [\frac{1}{4} (R_{hl} + R_{tl})^2 - \frac{1}{2} (R_{hl} + R_{tl})^2 + R_{hl} R_{tl}]$
 $C = -\frac{1}{4} (R_{tl} - R_{hl})^3$
(67)

Thus

$$A_{o} = 1/C \begin{vmatrix} 0 & R_{h1} & R_{h1}^{2} \\ 0 & R_{t1} & R_{t1}^{2} \\ \epsilon & P_{m1} & R_{m1} & R_{m1}^{2} \end{vmatrix} = \frac{\epsilon P_{m1} \left[\frac{2}{R_{t1}R_{h1}} - R_{h1}^{2}R_{t1} \right]}{C}$$

with Eq. (67)

$$A_{o} = -4 \in P_{ml} \frac{R_{h}R_{tl}}{(R_{tl} - R_{hl})^{2}}$$
(68)

with Eq. (67), in like manner

$$A_{l} = \frac{4 \in P_{ml} (R_{tl} + R_{hl})}{(R_{tl} - R_{hl})^{2}}$$
(69)

$$A_{2} = -\frac{4 \in P_{ml}}{(R_{tl} - R_{hl})^{2}}$$
(70)

Substituting Eqs. (68), (69), and (70) into Eq. (66)

$$\Delta P = \frac{4 \in P_{ml}}{(R_{tl} - R_{hl})^2} \left[-R_{hl}R_{tl} + (R_{tl} - R_{hl}) r - r^2 \right]$$
(71)

The force on the stator assembly due to the stator discharge pressure is

$$F_{sD} = 2\pi \int P_{l} r dr$$

$$R_{hl}$$
(72)

with Eqs. (64) and (71)

$$\mathbf{F}_{sD} = 2\pi \int_{\mathbf{R}_{hl}} \left[(\mathbf{P}_{hl} - \mathbf{P}_{hl}) \mathbf{r} + \mathbf{P}_{r}^{2} + \Delta \mathbf{P}_{r} \right] d\mathbf{r}$$

$$= \pi (P_{hl} - S_{hl}) (R_{tl}^2 - R_{hl}^2) + \frac{2\pi}{3} S [R_{tl}^3 - R_{hl}^3] + 2\pi \int_{R_{hl}}^{R_{tl}} \Delta P r dr$$

with Eq. (65)

$$F_{sD} = \pi (P_{h1} - R_{h1} \frac{P_{t1} - P_{h1}}{R_{t1} - R_{h1}}) (R_{t1}^2 - R_{h1}^2) + \frac{2\pi}{3} \frac{P_{t1} - P_{h1}}{R_{t1} - R_{h1}} (R_{t1}^3 - R_{h1}^3)$$

$$+ \frac{2\pi 4 \in P_{ml}}{(R_{tl} - R_{hl})^2} \left[- R_{hl} R_{tl} \frac{(R_{tl}^2 - R_{hl}^2)}{2} + (R_{hl} + R_{tl}) \frac{(R_{tl}^3 + R_{hl}^3)}{3} - \frac{R_{tl}^4 - R_{hl}^4}{4} - \frac{R_{tl}^4 - R_{tl}^4}{4} - \frac{R$$

Simplifying

$$F_{sD} = \frac{\pi}{3} P_{hl} \left[R_{t1}^{2} + R_{hl} R_{t1} - 2R_{hl}^{2} \right] + \frac{\pi}{3} P_{t1} \left[2R_{t1}^{2} - R_{hl} R_{t1} - R_{hl}^{2} \right] + 2/3 \pi \frac{\epsilon P_{ml}}{(R_{t1} - R_{hl})^{2}} \left[(R_{t1}^{2} - R_{hl}^{2}) (R_{t1} - R_{hl})^{2} \right]$$

With $P_{ml} = (P_{hl} + P_{tl})/2$, the final expression for the force F_{sD} acting on the stator assembly by the pressure at the stator exit is

$$F_{sD} = 2\pi \int_{R_{hl}}^{R_{tl}} P_{l}r \, dr = \frac{\pi}{3} P_{hl} [(1 + \epsilon) R_{tl}^{2} + R_{hl} R_{tl} - (2 + \epsilon) R_{hl}^{2}]$$
(73)

+
$$\frac{\pi}{3}P_{tl}[(2+\epsilon)R_{tl}^2 - R_{nl}R_{tl} - (1+\epsilon)R_{hl}^2]$$

INITIAL DISTRIBUTION LIST

		Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	20
2.	Library Naval Postgraduate School Monterey, California 93940	2
3.	Commander, Naval Air Systems Command Navy Department Washington, D.C. 20360	1
4.	Commandant of the Marine Corps (Code A03C) Headquarters, U.S. Marine Corps Washington, D.C. 20380	l
5.	Commander, Naval Ship Systems Command Navy Department Washington, D.C. 20360	l
6.	Professor M. H. Vavra Department of Aeronautics Naval Postgraduate School Monterey, California 93940	3
7.	Chairman, Department of Aeronautics Naval Postgraduate School Monterey, California 93940	l
8.	Professor A. E. Fuhs Department of Aeronautics Naval Postgraduate School Monterey, California 93940	l
9.	Professor R. D. Zucker Department of Aeronautics Naval Postgraduate School Monterey, California 93940	l
LO.	Dr. E. S. Lamar (Code 03C) Chief Scientist, Research and Technology Naval Air Systems Command Navy Department Washington, D.C. 20390	1
11.	Commander Naval Ordnance Systems Command Navy Department Washington, D.C. 20390	l

12.	Dr. O. H. Johnson Naval Air Systems Command (Code 330 B) Navy Department Washington, D.C. 20360	1
13.	Head, Department of Engineering Naval Academy Annapolis, Maryland 21402	1
14.	Superintendent Naval Academy Annapolis, Maryland 21402	1
15.	Mr. I. Silver, Code 330 Propulsion Administrator Research and Technology Naval Air Systems Command Navy Department Jashington, D.C. 20390	l
16.	Office of Naval Research Air Programs Office Navy Department Washington, D.C. 20360	1
17.	Capt. A. Bodnaruk, USN Naval Ship Systems Command (Code 6140) Navy Department Mashington, D. C. 20360	1
18.	Office of Naval Research (Power Branch) Attn: Mr. J. K. Patton, Jr. Navy Department Jashington, D. C. 20360	1
19.	Dr. F. I. Tanczos Technical Director, Research and Technology Naval Air Systems Command Navy Department Washington, D. C. 20390	1
20.	Captain Martin J. Lenzini 100 Lakewood Place Highland Park, Illinois 60035	2

UNCLASSIFIED			
Security Classification		0.0	
Security classification of title, body of abstract and indexing	RUL UAIA - K (ntered when the	overall report is classified)
1 ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SE	CURITY CLASSIFICATION
Naval Postgraduate School		UNCI	JASSIFIED
Monterey, California 93940		2b. GROUP	
CALTBRATION OF TURBINE TEST RIG	/TTT		
IMPULSE TURBINE AT HIGH PRESSURE	RATIOS		
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Thesis			
5. AUTHOR(S) (First name, middle initial, last name)			
Martin J. Lenzini, Captain, U. S.	, Marine Co	orps	
and the second se			
6. REPORT DATE	78. TOTAL NO. OI	PAGES	7b. NO. OF REFS
June 1900	T44		9
BA. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT NUME	BER(S)
b. PROJECT NO.			
с.	9b. OTHER REPOR	RT NO(S) (Any of	her numbers that may be assigned
0 0 ·· 1 0 0 - 1			
d. United dist			
Tais document is subject to speed	al export	controls	and seen
transmittal to foreign government	s or fore	ign natic	nals ney be
made only with prior approval of	Naval Post	craduate	School.
11. SUPPLEMENTARY NOTES	12. SPONSORING	ALLITARY ACTI	VITY
Naval Fostgraduate School Monterey, California 93940		ate School	
	Montere	ey, Calif	ornia 93940
13 ABSTRACT	L		
The Transonic Turbine Fest F	lig of the	Turbo-Pr	opulsion
Laboratory, Department of Aeronau School was designed to investigat	itics, of t	che Naval	Fostgraduate
transonic or supersonic rotor in	e the peri	ormance	e test ric bas
provisions for testing single sta	ice axial t	curbines	at high oressure
ratios and at variable axial and	radial cle	earances.	The present
study describes the calibration of	of the turb	oine test	rig with an
impulse turbine at high pressure	ratios.]	he turbi	ne stage consists
of a double circular-arc rotor wi	th sharp]	eading e	dges and a stator
with converging nozzle type bladi	ng. The i	results o	I the How rate
instrumentation necessary to sepa	rate rotor	s are de	tor losses is
also discussed.	10001	and boa	
DD FORM 1473 (PAGE 1)		INCT	ASSTRIC
	7/17	ONOL	

U 1 NOV 65 4 / J S/N 0101-807-6811

UNCLASSIFIED

Security Classification

KEY WORDS		LIN	LINK A		LINK B		LINK C	
		ROLE	wт	ROLE	WΤ	ROLE	Ŵ	
				-			_	
I. dse Furbine								
Transonic Furbine								
fransonic Turbine Test Rit								
					5			
		-						
		-			_			
					_			
						_		
	•							
FORM 1473 (BACK)			UNCL	SSTET	ED			
	148 -		ONOTH	100113				

