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ABSTRACT

Dynamic programming is employed to obtain a solution to the problem
of controlling a nonlinear system in an optimal fashion, subject to a

quadratic performance index. The technique used is similar to that given

by Merriam and Kalman fur Linear systems.

For some special nonlinear systems, the solution can be computed
by direct application of this technique. As an example, the optimal

control system tor a freely spinning body is determined.

For more general nonlinear systems, the solution cannot be obtained

directly. However, it is possible to obtain a solution indirectly. This is

done by first Linearizing the vector-State equations representing the

nonlinear system. Next, dynamic programming is used to obtain an

approximate solution based on the linearized state equations. Then an

rative procedure for improving the solution is presented. It can be

shown that it the iterative procedure converges, it converges to the

t of the optimal nonlinear control problem.

Computer example problems are given to illustrate the method, and

to indicate the convergent, e that is usually achieved. In addition, the

performance oi the optimal control system is compared with the perform-
ance of a simple sub-optimal control system for some of the example
probl( ins given.

Thesis Sup' <r: Leonard A. Gould

lit! Associate Professor of Electrical Engineering
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CHAPTER I

SUMMARY

1. 1 Introduction

During the past decade, a new approach to automatic control has been

developed principally as the result of work by Bellman and Kalman

in this country, and Pontryagin8
in the U. S. S. R. This approach, which

is now commonly called the ''theory of optimal control systems," differs

from the now classical approach to automatic control of Newton, Gould,

and Kaiser, 9
for instance, in that it uses a vector differential equation

description of the system instead of a transfer function description, and

it concentrates on the time domain methods of analysis and synthesis,

instead of frequency domain methods. The theory of optimal control has

made use of the calculus of variation, 7,10 and the new but related

"dynamic programming" of Bellman, ' as well as the "maximum

principle" of Pontryagin.

Useful results of the application of these methods to optimal control

problems have been obtained primarily for linear systems. Useful results

have been obtained for nonlinear systems in only a few very special cases. 13,14

It is the objective of this work to extend to nonlinear systems some

techniques that have been successiul in the design of controls for linear

systems.

1. 2 Notation and Terminology

An attempt has been made to keep the notation and terminology con-

sistent with current literature. In particular, the notation used by Kalman

has been used wh( never practicable.

Vectors are designated by underlined lower case letters. All vectors

are understood to be column vectors. For example, the vector x denotes

i (1. 1)





Similarly, matrices are designated by underlined upper case letters.

For example, the matrix A denotes

'11 12

*21 *22*

In

2n

a . a .... a
n

1

n 2 nn

(1.2)

The transpose of a vector or a matrix is designated by a prime. Thus

«'-U,* a
. . .*j (1.3)

and

A'-

i '21 n 1

32
" ' nj

a. a. ... a
n 2n nn

(1.4)

The inner product of two vectors is denoted by x'y_, and is given by

n

l y

i«i

Consistent with this, the square of the Euclidian norm, denoted by

£ ||

2

, is given by

Mill -«'• (1.6)

The quadratic form of a vector with respect to a symmetric matrix

A, is given by x' Ax. For convenience, it is often indicated by

ii nlm A -*Ai (1.7)

The derivative of a vector or a matrix with respect to the scaler

variable, time, is indicated by the notation,





dlj/dt

d*
2
/dt

x = dx/dt

dx /dt

(1.8)

and

A =dA/dt =

da,,/dt da,,/dt . . . da, /dt
11 12 In

da
21

/dt da
J2

/dt . . . da
Jn

/dt

da ,/dt da ,/dt ... da /dt
nl n2 nn

(1.9)

The gradient of a scalar function of x is denoted by

V
M
(x)-*rad V(x)-

"(9V( s)/(9x
l

dV(x)/dx
2

d\(x)/dx
n

(1. 10)

Similarly, the Jacobian matrix of a vector function of x is denoted by

'„<5)

df
l
( l)/dx

l
df

l
(t)/dx a

. ..di
l
(ti/dxa

df
2
(x)/dx df

2
(j)/di

2
. . . d(

2
(j$/dx

n

d(J l)/dx
l

df
n
(x)/dx

2
. . .df

n
(x)/dx

n

(1. 10a)





1. 3 Problem Statement

Consider the system described by the vector differential equations

i(t) ~f_(x(t), u(t), t); x(0) = c (1.11)

y(t) =h(x(t), t) (1.12)

where x(t) is the system state vector and y_(t) is the system output

vector. For this system, it is desired to find the control vector, u (t),

such that a performance index, J (t), is a minimum. In particular, we

will assume that J (t) has the quadratic form,

J«"/
]\

]

'

Z- {T) -l (T)l,
lJ r )

+ \^{rK lr\
dT (1.13)

where z (t) is the system desired output, and Q (t) and R(r) are

positive definite matrices weighting the system error and control effort,

respectively. We will require that the control, u (t), be expressed as

u(x(t), z (t)) so that it can be realized in a feedback configuration.

It is mathematically convenient to consider first the discrete time

version of the same problem for the theoretical development. Actually,

the discrete time version is a meaningful problem in its own right. It

is this version that applies when a digital computer is used to synthesize

the controller.

For the discrete time problem, the equations

x(k + l) -!(*(k), u(k), k); x(0)-c (1.14)

y(k)-h(*(k), k) <h 15)

replace equations (1. 11) and (1. 12), and

j«o-£ \ "^-tom
1

,,,,* V jllt<i)li;
0)

(i.i6)

j=w
-

j=k

replaces equation (1. 13).





1.4 Solution of the Discrete Time Problem

The solution of the discrete time nonlinear optimal control problem

is sketched here. For a detailed solution, see Chapter II.

In order to proceed by dynamic programming, we define the value

function

Wi«>%
(10 ,.

M ' n

UJNV ,(t)l <>- 17
>

Then by the "principle of optimality, " it follows that

Min ( 1 2 1 )

v-' ,i<k))
%j k),i

ll2-(k) -^ )ll
o<M

t jii"-< k )ii;
( . )

+v»-' <i(k+i))

(
d.i8)

An approximate solution to this equation can be obtained by assuming

l(k+l)-i(i*(k),E*(k), k) + f d°(k), u*(k), k) (x(k) - x'(k)l + f^(x*(k), u*(k),k)[u(k) - u* (k)]
(
le 19

)

y(k)- h(x*(k), k) +fc (K*(k), k) lx(k)-x'(k)] (1. 20)

and

V
N _k

(x(k)) --||«(k)|!p
fc

+ x'(k) x(k) + a(k) (1.21)

where P (k), x (k), and a (k) are a parametric matrix, vector, and

scalar to be determined, and where x (k) and u (k) are as yet

unspecified points about which we linearize.

The approximate solution obtained by combining equations (1. 18),

(1. 19). (1. 20), and (1. 21) is given by the equations

u(k) «-[R(k) f T P(k+l)fJ"
1

r|P(k^l)f
x
x(k) + P(k+1) b(k) + x(k+l)| (1. 22)

ECkJ-h^QWh, tf;g(k)£(k+l) t
M (1. 23)

x(k) - V M(k) [P(k+1) h(k) +x(k+l)l -h' Q(k) lz(k) -c(k)| (1. 24)

a(k) =a(k + l) +- ||z(k) -c(k)||* +-||b(k)||
2

+b'(k)s(k+I)
2 QOO 2 P<k*l> ~

-jl|P(W)t(k) + ^k+l)||
((

, ,-l
f
.

£ u — u — u u

(1.25)





where

-

1

and

M(k)-I-P(k+l)f
£
[R(k) + rP(k+l)fJ f„ (1.26)

k<k)-£-f, I* <*•)-*„*(*) (1.27)

c(k)=h -h
E
x*(k) (1.28)

In the above equations the- arguments for f, f . f h, and h have
A ° X U X

been omitted for simplicity. They are understood to be evaluated at

x (k), u (k) and k, as appropriat

The boundary conditions for equations (1. 23), (1. 24), and (1. 25) can

be obtained from equations ( 1 . 1 6) and (1.21). They ar

P(N+l)-ft (1.29)

»i)=0 (1.30)

^l)-0 (1.31)

Notice that equation a (1. - 1), (1. 24), and (1. 2S) must be solved

backward In time , starting at time, N+l, where the boundary conditions

known, and working ba< rd to the present time k. This implies

that the desired output, /. (k), must be known in advance so that the

pararru -t« rs P and x can be pre-computcd. Once these parameters are

known, the control sy can be synthesized. Figure 1.1 shows a

block diagram of the control system for the discrete time nonlinear

optimal i

From figure 1.1 u < an b< that the controller for the system

corisi .i time varying linear feedback portion, and a director

portion. The feedback portion oi the controller will insure that the

system will be r< Lativi Ly ii to state or p Leter perturbations

o( i urring in the systi >< Lng < ontrolled.

il on of stability, which paramount importance in any

control system, can be- answered by th< of the second method ol

ipunov. By using th >d, it can b wn ti a1 the control syst< ms
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designed from the theory presented here are always stable. A more

detailed discussion of stability is contained in Appendix B.

The theory outlined above provides an approximately optimal

solution, only. How near optimal the solution is depends on how near

the vectors x*(k) and u* (k), which must be given beforehand, are to

the actual state and control vectors, x (k) and u (k). An exact solution

to the nonlinear control problem can be obtained by solving the equations

for the approximately optimal solution in an iterative fashion.

At each iteration, the x (k) and u (k) determined on the previous

iteration are used for the x*(k) and u* (k). If convergence is achieved

by this procedure, the solution obtained is the exact solution to the

nonlinear control problem. The question of under what conditions the

iterative procedure com B is still unanswered, but experience

using this algorithm on a digital computer indicates that convergence

occurs for a broad range of problems, and that convergence is usually

achieved in three or four iterations.

The theory presented In this >n can be extended to systems with

stochastic disturbances by minor modifications. However, the iterative

algorithm does not produce an exact solution in this case. Details for

the problem when stochastic disturbances are present are given in

section 2. 7.

1. S Solution ol the Continuous Time Problem

The equations specifying the solution to the continuous time problem

may be obtained by dynamic programming in a manner analogous to that

used for the- discrete time problem. These equations are

u(t) -- -R"'(t) rlLMO x(t) fx(t)] (1.32)

P(t) - P(t) f
u
R,x

(0 fa P(t) -h;Q(t)h
a
-P(t) f,-f^P(t) (1. 33)

i(t) - l.

x Q(0 U(t) -eul I 4 P(t)f
u
IT l (t)r x(t) -P(t)b(t) -f

s
x(t) (1. 34)

8





a( t)=-L!!z( t)-c(t)!^
(t)

+ i||i(t)||
f

2

^. 1(t)r+
x(t)b( t ) (1.35)

with the boundary conditions

P(T)=0 (1.36)

k(T)=0 (1.3 7)

a(T)=0 (1.38)

Chapter III contains a full development of the theory for the continuous

time problem. The question of system stability is discussed with reference

to the continuous time problem in Appendix B.

1. 6 An Analytic Example

Consider the equations of motion of a freely spinning body about

three mutually perpendicular axes,

xi- fl
.

5,

:
x

3
u

i
x

1

(0)=c
1

(1.39)

ia"*a*i lt 3
+ u

tJ
*

2
(°)- c

2
(1.40)

'.-•a*i»a + u
a' *3< >" c

a
( K41 >

where x,, x
2

, and x are the angular velocities, where Uj, u
2

, and

u
3

are controls proportional to torques, and where

a,+a
2
-fa

3
=0 (1.42)

These equations are nonlinear and coupled.

We wish to determine x , x , and x such that the performance

indi

T

j = f [jq(t)[«* «; + **] +ir(i)[«J + u; + u|]j dl (1.43)

o

is a minimun .

The solution to this problem can be obtained exactly and analytically,

it turns nut, if we
|

ed in the same manner as that Indicated In the

previous section, ["he solution is





where

and where

Ul (t)= -MOx^t)

u
2
(t)= -k(t)x

2
(t)

u
3
(t) = -k(t)x

3
(t)

k(t)=p(t)/r(t)

p(t) =p 2
(t)/r(t) -q(t); p(T)=0

for r (t) and q (t) constant, that is

r(t) =r

q(0 =q

the solution of equation (1. 48) is

p(T) =rlc(T) =ra
1 -e 2 IT

1 +e

where

and

fl-Vq/r

T-T -t

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

A block diagram of this c ontrol system is shown in figure 1. 2.

Figure 1. 2

L0





A detailed derivation of the control equations for this system, as well as

a comparison of this control system with a sub-optimal one that uses

constant gain linear feedback, is contained in Chapter IV.

1. 7 Computer Examples

Consider the system described by the nonlinear equations

xfk+1) = x(k) -0.05 x
3
(k) +0.05 u(k); x(l)=1.0 (1.54)

y(k) = x(k) (1.55)

We wish to determine u(l), . . . , u(99) such that the performance index

100 .
99

! ^ - Q|z(k)-x(k)]
2
+ ^- Ru 2

(k) (1.56)
2 *—* 2

k = 1 k = 1

is a minimum.

The equations that form the basis for the iterative solution to this

problem are given by equations (1. 1 9). (1. 22), (1. 23), and (1. 24). In

this problem, all the variables appearing in these equations should be

interpreted as scalars. Figure- 1. 5 shows the results of the computer

solution of this problem for the case when R = 0. 01, Q = 10. 0, and

z (k) = for k < 50, but /. (k) =1.0 for k > SO. The iteration

procedure converged (based on a convergence criterion of a 1 percent

change in the performance index) in three Iterations. The performance

index on the- third iteration was 12. 272.

A sub-optimal controller, with the control determined by

u(k)-G[z(k)-x(k)] (1.57)

Where G was equal to a constant gain of IS. 0, when operated with

the same nonlinear system gave a performance index of 13. 845.

As a second example consider the system described by the equations

Xjdt + l) -z
t
(k) + 0.01s

a
(k); 1,(1) -0.0 (1.58)

i
a
(k+l) -s

3
(k) - 0.02

x

t
(k) -0.03 |*

a00| *
2
(k) + 0.05 u do, *

a
(l)-3.0 (1.59)

>r,(k)-*,(k) (1.60)

y a
(k)-i

a
(k) (1.61)

1 I
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Again, we wish to control this system such that the performance index

100 ^99
J-^|-Q I

[a
1
(k)-K

1
(k)]

a
+ iQ

a
[z

a
(k)-x

a
(k)]H+ ^ - Ru 2

(k) (1.62)

k=

1

k=l

is a minimum.

The two-dimensional version of equations (1. 19), (1. 22), (1. 23),

and (1. 24) form the basis for the iterative solution procedure.

Figure 1.4 shoves the results of the computer solution of this problem

for the case when R = 0. 01, Q, = 1. 0, Q 2
= 1. 0, z

l
(k) = and

z 2 (k) = 0. Convergence was achieved in four iterations, and the

performance index on the fourth iteration was 29. 29.

The sub-optimal controlled with u (k) determined by

(k)-G
1
[x

1
(k)-«

1
(k)] + G

a
[*

a
(k)-E

a
(k)] (1. 63)

with G, - 8. 50 and G
2
- 4. 75, when operated with the same nonlinear

system gave a performance index of 31. 32. Chapter V contains the

results of several additional i ompuUr examples.
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CHAPTER II

DISCRETE TIME SYSTEMS

2. 1 Introduction

The theory for the control of discrete time systems can be developed

more simply than that of continuous time systems. In particular, the

discrete time theory avoids some questions about the existence of limits,

etc. For this reason, the discrete time theory is presented first.

This chapter first considers linear discrete time systems thoroughly.

Then, using the linear results as a guide, the theory is extended to include

nonlinear systems. The exact solution of the nonlinear problem is

presented in the form of an iterative algorithm. The final section of the

chapter considers the problem when stochastic disturbances are present.

2. 2 Linear Systems

The theory for the optimal control of deterministic linear systems

has been worked out by Kalman,4 " 7 Merriam, 15,16 and others. 17" 19 For

this case, the system con.si 1 can be d< i< ribed by the equations

K<k+l)-E(k)i(k)+£(k)&(k); i(0) = c (2.1)

£(k)-H(k)i(k) (2.2)

where x (k) is the n-di Lonal system state vector, u(k) is the

r-dimensional system control vector, and y_(k) is the m-dimensional

system output vector.

The perfoi e Index is

w-Sjlliw-rwC+2 i««<»lij« (2-3)
k

-
j=k

where z(j) is the desired output vector

is





To find the optimal control sequence, u (k), u(k+l), .... u(N-l),

the method of dynamic programming is used. For this purpose, we

define the value function,

Min

Vk
(x(k))- |j(k)| (2.4)

u(k),..., u(N-l)

We then invoke the " principle of optimality," which states:

"an optimal policy has the property that, whatever the

initial state and the initial decision are, the remaining

decisions must constitute an optimal policy with regard

to the state resulting from the first decision. 1 '
3

Thus, it follows that

Min

u(k)

A solution for VN . k
(x(k)) and u(k), (k - 0, 1, . . . , N-l), can be

obtained by assuming

Min
I 1 2 I 2 )

Vk( - (k)) " um I 7 " -(k) "^ (k),,
Q(M

+
~2 " a(k)l,

IW +V̂ -« ( -(k+1))
f

(2< 5)

V
N- k

f i (k)) r "7 I'ifk)!!^
k

f x'(k)x(k)+a(k) (2.6)

where P (k), x (k), and a (k) are a parameter matrix, vector, and

scalar, respectively, to be determined. By combining equations (2. 5)

and (2. 6), we get

(2.7)

+ i||*(k+l)||
2

+ x'(k+l)x(k+l) 4 *(k+I)!

The vector variable x(k+l) can be eliminated from this equation by

using equation (2. I). This gives

i 2
Mm

I 1 1

-||x(k)|r »-l'(k) £(k)+»(k)- J-i!z(k)-y(k)ir +a(k+l)
2 E(") ~ " u(k) (2 " QW

(2.8)

f i 'lF(k)x(k) +Ci(k)ii(k)||
2

+[F(k)x(k) +G(k)u(k)|' i(k+l)l
2 "P(k + 1) ~

|

e minimizing value of u (k) for the expression on the right-hand

side oi equation {£. H) can h< rmined by ordinary methods of calculus.





This value is

jl,. (k) = ~[R(k) +G'(k)P(k+l)G(k)]"
1

G'(k) [P(k+1) F(k)x(k) +x(k+l)] (2. 9)
i-i

By substituting the expression for the minimizing value of u(k) into

equation (2. 8), we get

- lll(k)!|
J

+ x'(k)x(k) + a(k) =1 l'z(k) -fj(k)r(k)||
2

2 ~ P(k) ~ 2 Q(k)

-l||P(k+l) F(k)x(k) + *(k+l)|!
2

r i-i , (2,10)
2 G(k)lR(k)+G (k)P(k + l)G(k)J G (k)

+ 1 ||
F(k)x(k) ||' + x '(k) F '(k)x(k+l) + a(k+l)

2 P(k+ 1)

This equation will be satisfied for all x (k) if and only if the following

recursion equations are satisfied.

P(k) -H'(k)Q(k)H(k) + F'(k)M(k)P(k+l)F(k) (2. 11)

x(k) - F'(k)M(k)x(k + l) -H'(k)Q(k)z(k)
(
2 . 12)

a(k)-a(k +l)--rz(k)||
2

--'Ix(k +l)|!
2

,
. „ v

i-i . (2.13)
2 0(k) 2 "G(k)lR(k)+G (k)P(k + l)G(k)| G (k)

V '

where

M(k) =1 -E(k+l)g(k) (R(k) + S'(k)P(k+l)g(k)r
l

G'(k) (
2 - 14

)

The boundary conditions for this set of equations can be determined from

equations (2. ^) f (2.4), and (2.6) evaluated at k = N. Thus

P<N'+1) -0 (2. 15)

xfN + 1) =0 (
2

-
l6

)

a(N+l) =0 (2. 17)

rm the appropriate boundary conditions.

Notice that equations (2. I 1), {I. 12), and (2. 13) must be solved

backwards in time. For this reason, the system must be ''deterministic' 1

in the sense that /- (j ) must be known on the entire interval,

j = k, k+1, . . . , N, in order to compute the optimal control vector at

ue j - k. Also notice that a (k) is required to determine V
N

(x_(k)),

is not required to determine u (l<). Thus, L£ we wanl to synthesize
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the optimal control system and are not interested in computing the

minimum value of the performance index, we need not compute the a (k)

sequence. A block diagram of the optimal linear control system is shown

in figure 2. 1.

As can be seen from the block diagram, the controller consists of a

time varying linear feedback portion and a feed-forward or director

portion. The feedback signal is simply the system state vector amplified

by the time varying gain matrix P(k+l)F(k). The feed-forward signal,

x(k), may be interpreted as a modified desired output. In other words,

the closed loop portion of the system tries to follow x (k) instead of

z (k) because it is more economical.

From equation (2. 12), it can be seen that x(k) is derived from z (k)

by the feedback system shown in figure 2. 2. As has been stated previously,

this system operates backward in tim<

lOO

H'OOQ(k)

x(k)
UNIT

ADVANCE

x(k+l)

J
i

P(k)M(k)

Figure fttem tor x(k)

II the output of the system shown above follows the input reasonably

welli using -H'(k) Q (k) z (k) in place of x (k) for the feed-forward input

to the control system oi figure 2 1 should give nearly optimal performance.

This would eliminate the objectionable requirement of having to know z(j)

entire interval in advance.

The computational procedure for determining the optimal control is

at from the nature of the equations. The matrices P (N), P(N-l), . . . ,

P (o ), and the vi x (N), x (N-

1

),..., x (0) must be pre-computed

by backwards recursion of equations (2. 11) and (2. 12). These quantities
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would then be used along with x (k) to determine u (k) as the actual

control system evolves forward in time.

Another consideration concerning the optimal control system is that

of the measurement of state variables. For the preceeding development,

we have tacitly assumed that the state variables are exactly measurable.

This frequently is not a reasonable assumption. For the linear problem,

20 2 1

Gunckel has shown that the optimal control system for the case when

the state variables are not exactly measurable consists of the control

system derived above with an optimum filter inserted in the control loop

to estimate the state variables. When the state variables are not exactly

measurable in the case of nonlinear control systems, we have no

assurance that an optimal filter to estimate the state variables inserted

in the control system will result in optimal performance. In this case,

22however, as Cox has pointed out, if the state variables are not exactly

measurable, we have no alternative to determining the optimal control

system by assuming the riables are exactly measurable and then

inserting an optimal filter in the control loop. In all that follows, we will

assume that the state variables are exactly measurable. Cox 22 has

treated the problem of estimating state variables in noisy nonlinear

systems.

2. 3 Nonlinear Systems

The theory for the optimal control of deterministic linear systems

is extended to a fairly general class of nonlinear systems in this section.

Actually the solution derived in this section is only approximately

optimal. Section 2. 1 presents an iterative procedure based on this

approximate solution that leads to the exact solution.

r the nonlinear case, the system considered can be described by

the state equations

«(k+l) -i(z(k), n(k), k); x(0) = c (2. IK)

y(k+l) -h(i(k), k) (2. 19)
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The performance index is

N- 1

jw. £i|l*«>-i<<
(n

* El" 51811
!,. < 2 - 20 >

We follow the procedure of the previous section and define

Mm
V
N .(x(IO)= |j(k)| (2.21)

l(k) u(N-l)

By the principle of optimality, it follows that

VN -" ( - (k)) =

u k {2 " " (k) " " (k)
"oc)

+
2

l,l(k),,
ic»

+ V
N- k-,(l(

k+1
))} (2- 22)

We cannot solve this equation by direct methods; so we resort to

linearization.

The approximations an

l(k+l)-i(|*(k),t*0'), k) + f_d*(k), i*(k), k)[x(k)-x*(k)l + yx ,
(k).i/(k),k)[u(k)-u'(k)] (2. 23)

and

y(k+D- h(x*(k),k) +h
i
(x*(k),k)[x(k)-x

,
(k)| (2. 24)

As before, we assu

V
N . k

(x(k)) - i ||i(k) ||"^ + i'(k)ik) + a( k) (2. 25)

By combining equations (2. 22), (2. 23), (2. 24), and (2. 25) we obtain the

single equation

1 a .
Mm

\i 7
-|lx(k)

I fi'(k)i(k) + aik) -
II
z(k) - y(k)

!

,i;,u(k)||
a !

||f + f lx(k)-x'(k)l f f [u(k)-u*(k)l||
2 (2.26)

2
' - R(k) 2 - ~ " ~ P(k + i)

+ [i+ f
M
(x(k)-x*(k)) i-f

u
(u(k) -ji*(k))]'i(k+l) +»(k+l)[

(When the arguments oi 1, t , and f an I, tlu-y are understood— — a.

to b< evaluated at x* (k), u* (k), and k. Similarly, when the arguments

oi h and h
x

are omitted, they arc- understood to be evaluated at x* (k)

and k.

)





The minimizing value of u (k) can be computed by the ordinary-

methods of calculus, and is given by

u„
ln
00 = -[R(k) + ^P(k+l)f„]'

1

^[P(k+l)f
x
x(k)+P(lc+l)b(k) + x(k+l)] (2. 27)

where

k<k)-i-f,l*(k)-fBE
# (k) (2.28)

When the minimum value of u (k) from equation (2. 27) is substituted into

equation (2. 26), it becomes

- kOOll! + x'(k)x(k)+a(k)-i|'z(k)-h (k)-c(k)|l
2

2 £(>«) 2 - 9( k >

- l\\P<k>iu,*lk) I P(k +l)b(k> + i(k +l)ti;
[R(k)^P(k + 1) , fV (2. 29)

* u — u— u^ u

+ -||f x(k) + b(k)||
2

+ [f x(k) +b(k)fi(k+l)+a(k+l)
2 a. p(w + d *.-

where

t(k)- a -ta i»(k) (2.30)

Thia equation will be satisfied for all x (k) if and only if the following

set of equatioi

E(k)-h^g(k)h +f'M(k)£(k+l)f
i

(2. 31)

x(k) - f
m
'M(k) [£(k+l)b.(k) • x i k I l I

- h
;
Q(k) ! ?(k) - c(k)| (2. 32)

(2.33)

«(k)-a(k4l) | - ,(k> -Ilk(k)||
a

+b'(k)x(k+l)
2

~
ij(w*i)

- -||P(k+i)b(k) + x(k + n|l
2

. , ,-i ,

M(k)-i-P(k+l)f
a
[R(k) + r P(k+1) f^r'f. (2.34)

The boundary values for thia set of equations can be obtained in the

Line manner as for th<- Linear problem. rhe boundary values are

I'iN+D-O (2.35)

i(N»i> (2. 36)

»(N+l)-0 (2.37)
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Once the sequence of points, x* (k) and u* (k), are given, the

sequences P(k), x (k), and a (k) may be computed by backward

recursion of equations (2.3 1), (2.32), and (2.33). After these quantities

have been pre-computed, the system may be operated forward in time

under the approximately optimal control given by equation (2. 27). The

problem is, of course, to determine a sequence, x* (k) and u* (k),

about which to linearize such that the approximation is a good one. This

is the subject of the next suction.

Figure 2. 3 shows a block diagram of the nonlinear control system.

Notice that although the system being controlled is nonlinear, the

controller is time varying linear.

2.4 Solution by Iteration

The development oi the theory in this section requires us to attack

the optimal nonlinear control problem from a different point of view.

Consider again the syst<

l(k+l) -i(i(k), jt(k), k)j x(0)=- L (2.38)

y(k) -h(x(k). k) (2.39)

ubject to the pi < riterion

,. £ i|ltW-i«»ll'w 4 g illlWli;,,, (2.40)
=0 ~

We wish to choose u (k) such that the performance criterion is a minimum.

Th< minimization can be performed by calculus techniques using

;e multipliers. 1 For tins purpose we define the function

N N- 1

1
, .. . , ,,3 \~> 1

I - V -
! /.k»-h(x(k),k)!l

2
+ V i||u(k)||'

Li =0

(2.41)
N -1

+ ^ A'(k) I x(k + !) -l(x(k), u(k), k)| + A(-l)lx(0) -c

1 Thi • approa< h is aimilar to that used by Kipiniak28 and the entire

elopment oi this section, Ln< Luding the iterative procedure, is cloa

Lated nonlinear smoothing problem treated by Cox.
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By equating partial derivatives of I with respect to u(k), Mk), and

x (k) to zero, we obtain the following set of equations which define the

optimum control system.

u(k) =R" 1 (k)f^(x(k) ) u(k), k) A(k) (2.42)

x(k+l) =i(x(k), u(k), k) (2.43)

A(k-l) -r(x(k), u(k), k) A(k)+h^Q(k)[z(k)-h(x(k), k)] (2.44)

The boundary conditions are

x(0) = c (2.45)

and

A(N)=0 (2.46)

This set of equations is nonlinear, and an analytic solution is not

known. However, we can obtain an approximate solution by using the

linearizations

x(k+l) -i(x'(k), u'(k), k) + f d?(k), u»(k), k)[x(k) -x*(k)]

f (x«(k), u'(k), k) |u(k) -u«(k)l
(2.47)

and

y(k)- h(x»(k), k) +h
K
(x«(k), k)[x(k)-x*(k)l (2.48)

When we use these approximations instead of equations (2. 38) and (2. 39),

the equations for u (k), x(kfl), and \(k-l) become

u(k) =R" , (k)f
i;

A(k) (2.49)

x(k-t-l) -f 4 l
x
lx(k) -x*(k)l + f

u
[u(k) -u»(k)l (2. 50)

A(k-l) -f;A(k) fh^Qdt) U(k) -h -h (x(k) - x*(k) 1

1

(2. 51)

where f, f , and f are understood to be evaluated at x* (k), u* (k),

and k, and h and h
K

are understood to be evaluated at x* (k) and k.

We can solve the above set of equations by assuming

X(k-l) --P(k)i(k)-t(k) (2.52)
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The solution proceeds by combining equations (2.49), (2.50), (2.51), and

(2.52) to eliminate u (k), X.(k), and \(k-l), obtaining

x(k+l) -i + f [*(k)-f?0E)] - f uli*(k ) + f
u
R" 1 (k)^[P(k+l)x(k+l) + x(k+l)] (2. 53)

and

P(k)x(k) + i(k) = f'
x
[P(k+l)x(k+l) +x(k+l)] -h^Q(k) tz(k) -h -h

x
[x(k) -x«(k)]| (2. 54)

These two equations can be combined to eliminate x(k+l), giving

P(k)x(k) + x(k) = f

i
x(k+l) -h^Q(k) |z(k) -h -hjx(k) -x*(k)]|

(2.55)

+ f
x
P(k+l)[i+f

u
R- 1 (k)rP(k+l)]"

1 U + fjx(k) -x*(k)] -f
u
u«(k) - f

u
R/*(k) f ' x(k+l)|

provided the inverse indicated exists. (Section 2. 5 contains a proof that

the inverse required above does indeed exist. )

Equation (2. 55) will be satisfied for all x (k) if and only if the following

set of equations are satisfied.

P(k) -rP(k+l)U + f^R-Vk^PCk+ur'f, + h^Q(k)h
£ (2. 56)

l(k)-ri(k+l)-h^Q(k)[j.(k) - c(k)l - f,;P(L*l)[I + f
u
R-

1

(k)f^P(k+l)l" [f
u
R-'(k)rx(k+l)-b(k)l (2. 57)

We are now in a position to obtain an exact solution to equations (2.42),

(2.43), and (2.44), and hence an exact solution to the nonlinear control

problem. The exact solution is obtained by solving equations (2. 49), (2. 50),

(2.52), (2.56), and (2. 57) iteratively.

First, we denote the state sequence and the control sequence obtained

on the ith iteration as x,(0), . . . , x
(

(N) and u
f
(0), . . . , u

(

(N-l),

respectively. Then, for the i+ 1st iteration we linearize about the points

x (k) and u (k). The procedure for the i+l<r/ iteration is as follows:

Step 1. Solve equations (2. 56) and (2. 57) backward in time using

x*(k) = x
l

(k) (2.58)

and

u*(k)-Ei(k) (2.59)

to compute P (N), . . . , P (0) and x (N), .... x (0).
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Step 2. Solve equations (2.49), (2. 50), and (2. 52) forward in

time using

x«(k)=x
1
(k) (2.60)

and

u'M-u^k) (2.61)

as before, to compute ^+,(0), .... u (N-l) and

x
i+i

(0), . . . , x
i + j

(N).

Steps 1 and 2 are repeated until convergence is achieved, i. e. , until the

norms of the quantities [ x (k) - x (k)] and [u
1+1

(k) - u^k)] are less

than some previously specified convergence criteria. It can be seen by-

comparing equations (2.49)i (2. 50), and (2. 51) with equations (2.42),

(2.43), and (2.44) that if convergence is achieved using the iterative

procedure, that is if

x
1 + 1

(k)=x
t

(k) (2.62)

and

lm (k)- ft| (k) (2.63)

then the solution obtained La the exact solution for equations (2.42),

(2.43), and (2. ill as well. In other words, the solution obtained by

convergence of the Iterative
j

dure is tin- exact solution to the

optimal nonlinear control problem. The question of under what conditions

convi rwence can be assured is .. difficult one, and as yet has not been

answered by the author. This remains a challenging area for possible

future research. However, computer studies using this iteration

procedure indicate that converg< nee usually occurs in a few iterations.

Chapter V contains some of these result

Because the inverse in equations (2. ^6) and (2. 57) is generally more

difficult to compute than the Inverse occurring in the solution of the last

ction, we would prefer to use equations (2.3 1) and (2.32) as the b.tsis

for tl rative algorithm in lieu of equations (2. 56) and (2. ^7). However,

nothing we have shown thus far would permit us to do this and still

irantee that a convergent solution for the iterative algorithm i

i
> the

exact solu' onlinear i ontrol problem.
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We can show that the iteration scheme based on equations (2. 31) and

(2. 32) does lead to the exact solution, and in fact is identical to the scheme

based on equations (2. 56) and (2. 57) by using the following matrix identities.

U+ f
u B"

1
(k)f

u
'P(k+l)r

1

3 I-f [R(k) + rPCk+DfJ"
1

rP(k+l) (2. 64)

and

H+f
ii

R-
, (k)f

i

;P(k +l)r
,

f

ii

R- 1 (k)f^^[R(k) + ^P(k+l)f
u
r

1

^ (2.65)

(Appendix A contains a proof of these identities. ) The application of

identities (2. 64) and (2. 65) to equations (2. 56) and (2. 57) immediately

transforms them into equations (2. 31) and (2. 3 2). In addition, since by

equation (2. 49)

u(k) = R" l (kW
:
;
A(k) (2.66)

or, using (2. 52),

u(k) =-R- l (k)f^[P(k+l) x(k+l) + i(k+l)] (2. 67)

and by (2. 50)

u(k) =-R- , (k)f
i;
|P(k+l)[I+ f

x
(x(k) -i»(k)) + f

u
(u(k) -u»(k))] + i(k+l)| (2. 68)

Solving this equation for u (k) explicitly yields

u(k) = -[ Rfk) + f^P(k+l)f r
1

\* lP(k+l)ll I f
x
(x(k) -?*(k)) -f

u
u*(k)l +x(k+l)| (

2 - 69)

which is identical to equation (2. 27). Thus we have shown the solution

based on the equations derived in this section is identical to the

solution based on the equations of the previous section.

2.5 On P (k) and I 1 . 1 R"'(k)f P (k+l)!"
1

Thia section contains two theorems of importance to the material in

this chapter. The first theorem concerns the i f [ I + f
y
R'

1

(k)f
u
P (k+ 1 ) I ,

and the second theorem concerns the non-negative deiiniteness of P (k).

The proof oi these theorems will require some elementary results from

matrix theory. These ai

a. If the n x n matrix P is non-negative definite, then the matrix

G' PG is non-negative definite, where G is any n r matrix.
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b. The inverse of a positive definite matrix exists and is positive

definite.

c. The sum of a positive definite matrix and a non-negative definite

matrix is positive definite.
,

d. The sum of two non-negative definite matrices is non-negative

definite.

Theorem 1: If R (k) is positive definite, and P(k+1) is non-negative
' i-

1

definite, then the inverse 1 1_ + f u R ' (k) f
u
P (k+ 1 )J exists.

Proof: Consider the matrix expression

I-fjROO+f^Pdc+UfJ"
1

rP(k+l) (2. 70)

If P(k+1) is non-negative definite, then by a., f'P(k+l)f is non-

negative definite. If R (k) is positive definite, then by c. , R (k) + f'P(k+l)f

is positive definite, and hence by b. , [R(k) + f^P(k+l)fJ' exists. Thus

the whole expression exists. But, by the first identify of section 2.4,

(_Ii f R (k)f'P(k+l)l is identical to the expression above and hence

must exist.

Theorem 2: If R (k) is positive definite, and if Q (k) and P(k+1) are

non-negative definite, then P (k) is non-negative definite.

Proof: Consider equation (2. 56), rewritten here.

P(k) - f^P(k+l) U + f
u
R" , (l<)rP(l<+l)r

l

t
x
+ h

K
'Q(k)h

x
(2. 71)

If Q (k) is non-negative definite, then by a., h'Q(k)h is non-negative

definite. As for the first term on the right of (2. 56), it must be non-

negative definite also if P (k+ 1 ) is non-negative definite. To show that

this is so, let

1 1 + f R-
l (k)('P(k+}.\'

1

f - A (2. 72)

then

f,-tl + f
u !r

l (k>*«£(k+l>] A (2. 73)
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Thus we see that

r P(k+l)[l+f
u
R- 1 (k)f^P(k+l)]"

1

f
x
= A'[l+f

u
R-

1 (k)rP(k+l)]
/

P(k+l) A (2. 74)

or

r P(k+1) [1+ f
u
R- J (k)r Pfk+l)]"

1

f
x
= A'P(k+l)A + A'P(k+l)f

u
R'

1 (k)f^P(k+l) A (2. 75)

But by a. , and d. , the right-hand side of equation (2. 75) is non-negative

definite. Hence for the same reason, the right-hand side of equation (2. 56)

is non-negative definite, completing the proof.

The hypotheses of theorem 2 are satisfied by the original assumptions

of the problem statement. The hypotheses of theorem 1 are satisfied by

the original assumptions in the problem statement, and by the results of

theorem 2. Thus theorem 1 applies to equation (2. 55) in section 2.4.

2. 6 An Alternative Linearization Procedure

There are other possible linearization procedures that can be applied

to the nonlinear control problem. One procedure suggested by Pearson24

has the advantage of being computationally simpler than the methods of

sections 2. 3 and 2.4, but it is theoretically less attractive.

To present th< ry lor this method, we follow the approach used in

section 2. 3. However, instead of the linearization used there, we use the

following Linearizations.

x(k + i) - E(l*(k). H*(k), k) l(k) Kj(x/(k), u'(k).k) u(k) (2. 76)

y(k)^ »_«(*• (k),k) «(k) (2.77)

where F and G are determined such that

!<i(k). u(k), k) F(x(k), u(k),k) x(k) t-G(x(k), u(k),k)u(k) (2.78)

h(«(k), k) H(*(k),k)i(k) (2. 79)

This type ol linearization is not unique, and it is an open question as to

which linearization of this type is best. However, in many instances

there is an obvious Intuitively appealing; way to proceed.
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As an example of such a linearization, consider the scalar nonlinear

function

f(x(k), u(k),k) = -x 3
(lo+v'^(kT (2.80)

One possible linearization is

f(x(k), u(k),k) - -x' 2
(k) x(k) + u'-

2/3
(k) u(k) (

2
-
81

^

Another one, arbitrarily chosen, is

f(x(k), u(k),k)- [-x
,2
(k)-u*(k)l x(k) + [u*-

2/3
(k) + x*(k)]u(k) (2. 82)

The first, of course, is intuitively more appealing.

By using the linearizations outlined above instead of equations (2. 23)

and (2. 24), equation (2. 26) becomes

(2.83)

+ -||Ei(k) + gft(k) ' + [Fx(k) + Gu(k)l'x(k+1) + a(k+m
2 ~ "

f(k + i) ~ - - - -
I

(When the arguments of F, G, and H are omitted, they are understood

to be evaluated at the points x* (k), u*(k), and k).

The minimizing value of u (k) is

u(k) --|R(k) +fi'P(k+l)gr
l
G'lP(k+l)F*(k) + x(k+l)] (2. 84)

When this value of u (k) i s substituted into equation (2. 83), we get

- Ill(k)|l! +i'(k)£(k) +a(k) = -|| L(k)-Mx(k)||
2

2 £<><) 0(w)

-- |!P(k4l)Fx(k) + "x(k + l)"
2

, r i , (2.85)
2 Ik) +£i P(k + 1) g] G

+ -||Fx(k)||
2

+ x'(k)F'x(k+l) + a(k*I)
2 — P(k + i)

This equation will be ied for all x (k) if and only if the following

equations are satisfied.

P(k) -H'Q(k)H + E'M(k)P(k+l)£ (2. 86)

l(k) - K'M(k)x(k+l) -IJ'Q(k)z(k) (2. 87)

«(k)-il|/.(k)l'
2

-i-||x(k+l)||
2

, , ,-l , (2. 88)
2 0(k) 2 GlK(k) + r. P(k+l)Oj £.





where

M(k) =I-P(k+l)G[R(k) +G'P(k+l)G J"

1

G' (2. 89)

The boundary conditions are again

P(N+1)=0 (2.90)

x(N+l)=0 (2.91)

a(N+l) =0 ( 2 *
92 )

As can be seen, these equations are identical in form to the solution

equations for the linear system. The only difference is that the matrices

F, G, and H in this section are functions of x*(k) and u*(k) as well

as of k.

An iterative type solution, similar to that introduced in section 2.4

is possible here also. However, we cannot show that this iterative solution

converges to the exact optimal nonlinear solutions. The reason for this

can b' n by comparing equation (2.44) of the exact optimal nonlinear

solution, rewritten here,

A(k-l)-r(*(k). u(k), k) A(k) +h;g(k)[z(k)-h(x(k), k)l (2.44)

with the equation corresponding to equation (2. SI) when the approximations

of this section are used. This equation would be

A(k-l) - F' A(k) + |}'Q(k) ' /(k) - IU(k)| (2- 93)

It. La obvious that equation (2. 93) will not approach equation (2.44) as

x (k) approaches x*(k). Thus the convergent solution of the iteration

procedure bas • quations of this section will not in general be

thi exact optimal solution. We could only hope that this solution would

be very near the true optimum.

2. 7 Nonlinear Systems with Stochastic Disturbances

This on prest" ique for controlling a nonlinear system

that is subject to stochasti< disturbances. Such a system can be described

by the equations

t(k+l) -i(i(k), u(k), It) +x(k); x (0) = c (2.94)

y(k)-h(x(k), k) (2.95)
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where r (k) is an n -dimensional random vector such that r(j) is

independent of r (k) for j / k. Thus r (k) is essentially the discrete

time equivalent of white noise.

If the nonlinear system we are interested in controlling is disturbed

by a random input that is not independent as described above, but instead

is disturbed by a random vector that can be described by the difference

equation

x(k) - g(x(k), k) + j(k); i(0)-w (2.96)

where w (k) is an independent random sequence, then the system

equations can be transformed into the form of (2. 94) and (2. 95) by

augmenting the state variables. This can best be illustrated by a simple

example.

Suppose the system is described by the equations

x(k+l) = x(k) ufk) r(k) (2. 97)

and

r(k+l)-ar(k) + w(k) (2.98)

where w (k) is an independent tr random variable. We can define an

augmented state vector

""*(kf

r(k)

x(k)

x,(k)

x
2
(k)

(2.99)

and write the system equations as

x(k+l) =!(x(k), u(k), k) +£(k)

where

!(x(k), u(k), k) -

and

r(k)

f «,'U u(k) x
2
fk)

*
a
(k)

" "

_w(k)_

(2. 100)

(2. 101)

(2. 102)

which is in the form of equation (2. 94).





Because the variables involved in equations (2. 94) and (2. 95) are

stochastic, a reasonable performance index will involve an expectation,

Thus we assume the performance index is

J(k>-
]Y Mk<i)-£(j)l \ on +Y i|ll0)1l* J (2.103)

1(k),..., 1(N-i) ^2 - QCJ) Lu 2 50)j

In order to proceed by dynamic programming, we define the value function

Mm
VN .k

(x(k))= tj(k)l (2.104)
a(k) u(N-i)

Bellman 3 shows that when the r_(k) sequence is independent, the

principle of optimality implies

Min F.xp [
i i j

W£(k»- ; i(k)-y(k)|l + -||u(k)!| + vN .k . l(
x(k+i)) (2.105)

u(k) x(k) \
L v v«; z _ <• >

|

As before, if we assume

l(k+l)- l+t (x(k)-x»(k)l + fju(k) -u«(k)l + r(k) (2. 106)

y(k>- h +h
B
[x(k) -x«(k)l (2.107)

and
VM^(l(k))--||i(k)||* fi'(k)£(k)+«(k) (2.108)

then we obtain

i i .
s,in

'
*'

\ I 2 1 2
i lli(k)ll + i'(k)*(k)+a(k)« -|lz(k)-y(k)|| +-||u(k)|l
2 £(") u(k) rlk) i-'

Q(k) 2 - (k)
u(k) im i _

(2> 109)

+ 7 lU.S.tk) + k(k) fl(k)| * +[f,S[k) + f
ji

Jlj(k) + Kk) +l(k)]'i(k+1) +a(k+l)'.

where

k(k)-I-fai
# (k)-f

£
u# (k) (2.110)

Performing the expectation operation and then the minimization operation
Exp

yields, assuming tr(k)l

o(k) -|R(k) I f'P(k+l)f J r lP(k+l) t
m lM • P(k+l)b(k) • i(k+l)] (2. Ill)

and
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Exp
- l(k)!!

2
^r'(k)i(k)+a(k)=I|| 2 (k)-h x(k)-c(k)H

2
+ ' | r'(k)P(k+l)r(k)i + a(k+l)

2 £00 2 ~ -~ Q(k) ^k)

-iiiP(k+i)f
£
x(k) + p(k +i)b(k) + ; ( k +i)!i; , rlf , (2.H2)

^
H. ii. .H ii.

+ -
I !

f„ l(k) b(k)
II

^

M) + [f, x (k) + b (k)l
' £(k+l)

c(k)=h-h
x
x*(k) (2.113)

where

This equation will be satisfied for all x (k) if and only if the following

equations are satisfied:

P(k) -h; Q(k) h
x
+ r M(k) P(k+l) f (2. 1 14)

L(k) -f,'M(k) [P(k+lJ + b(k) *i(k+l)] -h
x
'Q(k) U(k) -c(k)] (2. 115)

a(k) -a(k + l) +-||z(k)-c(k)||
2

+-!|b(k)l
,J

+b'(k)x(k + l) + l/(k) P (k+l) X (k)l

2 QW 2 £(*»)
r (k)

--||P(k+l)b(k) + x(k+l)||
J

, , r i ,

(2. 116)

u u

where

M(k) -1-P(k+1) f [E(k) + f^P(k+l) fj'
1

f^ (2. 117)

The boundary values a

P(N+1) =0 (2. 118)

l(N +l)=0 (2.119)

.(tM)-O <
2 ' 120

>

These equations are identical to equations (2. 3 1) through (2. 37) except for

the additional expe< tation term in equation (2. 116).

In essence, these equations are the solution to the optimal control

problem for the linearized system. This solution differs from the exact

optimal nonlinear solution because the linearized system only approximates

nonlinear system. In section 2.4 we were able to improve this approxi-

mation by a rative technique so that eventually the exai ' tion was

What are the pro milar proci dun is cast





An examination of the iterative procedure of section 2.4 reveals that

the technique was dependent on being able to predict exactly the state at

time k+ 1 which results from the application of a known control signal to

the system in a known state at time k. Unfortunately, because of the

random disturbance, r (k), this is impossible for the system considered

in this section.

We can, however, use the following iterative algorithm to obtain an

approximate solution:

Step 1. Solve equations (2. 114) and (2. 115) backward in time using

*'(,)-«,(.) (2.121)

|.*(i)-l|(l) (2.122)

to compute P (N), . . . , P(k) and x(N) x(k).

Sup 2. Solve equations (2. Ill) and (2. 106) forward in time with

id) 0; }>k (2.123)

and again using

.Ml) -!,«) (2. 124)

U*m) ",(i) (2. 125)

to compute u_m (k), .... u
|+l

(N-l) and x,
+1

(k), ...» x
|h (N).

The i+lsr iteration would then
i

ed using the extrapolated control

ctors, u ,+,(j)» and the extrap d state vectors, Xj
+ i^J)' J ust

computed in place of u* (j ) and x*(j). The procedure would be repeated

until satisfactory conv< rgem e had been achieve. 1.

This algorithm should provide ti( arly optimal performance when the

P(j) and x(j) obi in thi hion rate the control

the real s\ As tim< i on, and the true state deviates more

and more from the extrapolated state, the peri e will slowly
I

ided.

One way to overcome partially this degradation of prrh.nuance is to

update the solution periodi< .i Uy by measuring the currenl I ite oi the

system, an< using tliis state as the starting poinl for a recomputation





of P(j) and x(j), using the same iterative procedure as before. Of

course, this would require that the iterative algorithm be executed in

much faster time than the real system evolves.

Some computer results using this approach are presented in

Chapter V.

37





CHAPTER III

CONTINUOUS TIME SYSTEMS

3. I Introduction

Even a cursory examination of the results of Chapter II shows that

the control systems required by the theory are of such complexity that a

high speed digital computer will generally be required to investigate or

to synthesize the control system. However, for the few analog control

system applications that may be possible, and for a few special nonlinear

control problems that can be solved analytically, a continuous time theory

is required.

The purpose of this chapter is to develop the theory for the control

of continuous time nonlinear systems. This theory is developed in a

manner analogous to that used in Chapter II for the discrete time systems.

It should be mentioned here that Kalman 7 and Merriam 15
-
16 have developed

theory for Linear continuous time systems.

3. 2 Linea r Systems

Consider the linear control system described by the equations

i(t) = Flt)x(t) - (_,(t)u(t); x(0)=c (3.1)

y(t)-M(t)£<t) <
3

'
2

)

where x (t) is the ii-dimensional system state vector, u(t) is the

r-dimensional control or input vector ( and y_(t) is the m-dimensional

system output vector. As indicated by the notation, the transformation

matrices F(t), G (t), and H (t) as well as the vectors x(t), u(t), and

y_(t) can vary continuously with time. For this system we wish to find

the control u (v ) on the interval t < t < T such that the performance

ind'

J(0- j [jlli<r)-^r>l|

2

Q(T)
+ jlla<rHlg

(r)
««t (3.3)

is a minimum. Hen, /.
(
i ) is the desired output of the system.

J 8





We define the value function

Mm
V(x(t),t) = u(r) |j(t)|

t < r <T

By the principle of optimality, we have

V(x(t),t)= ujr) / i||£(r)-y(r)||* + i||u(r)||^

t .< r .< t + At f
J

\ L - " -

(3.4)

(It + V(x (t+At), t+At)' (3. 5)

If we expand V (x (t+At), t+At) in a Taylor series about the point

[x (t), t] , we get

Mir,

V(x(t),t) - llzC-) -y(T) |l ' +-||u(r)
OCO 2

U(T)

t < T < i -f A t ' "t

+ V(x(t),t) + V (x(t),t) At + V'(x(t),t)lx(t+At)-x(t)l+0(At)l

\

dT

(3.6)

When we take the limit as At approaches zero (provided it exists, etc. ),

equation (3. 6) becomes

Min
v,+

u(c)

, -iw "im +
;
,,lW,,i»*

v
* it0 = (3.7)

or

Mm
V

u(t)
E(t)-y(c)||' l--||a.(0||? + V F(t)i(i) + v;G(t)u(t)

<V(t)) R(t) _ _
(3.8)

The mini mi za' be p< r'ormed by ordinary methods of calculus

yieldini^

aMto(0--g
,1
(06'(«)v

j
(3.9)

Substituting tins value of u (t) into equation (i. 8) yields the Hamilton-

Jacob ii,

v
t
+ i E<c)-H(«)*(o||

a

o
-i||vj|» .m - +v;e(Oi(«)-o

The solution ior this equation can be obtained by assuming

Het

V(x(t). t )--||x(t)||^
t)

4x'(t)x(t) + a(t)

V, --||i<0||] +£'(t)t(t) • i(t)
2 £(*>

V -P(t)ft(0 «(t)

(3. 10)

(3. 11)

12)

(3. I )





After substituting these expressions into equation (3. 10), we obtain

rll£<0|l? +£ (t)i(O +a(t)+-||z(t)-H(t)x(t)l|
2

2 P(»)
2 Q(»)

(3.14)

-5-!!P(t)x(t)+x (t)
||

2 +[P(t)i(t) + x(t)]'F(t) £(t)=0
2 2(')R (t)G (t)

This equation can be satisfied for all x (t) if and only if the following

equations are satisfied:

P(t) = P(t)G(t)R-Vt)(,'(t)P(t)-P(t)F(t)-F'(t)P(t)-H'(t)Q(t)H(t) (3. 15)

i(t) = [P(t)G(t)R- 1 (t)G'(t)-F'(t)l x(t) + H'(0Q(t)z(t) (3. 16)

(3. 17)a(t)=I||x(t)!|
2

,
,

-I||2( t )||

2

2 " 'G(t)R-'(t)G (t) 2 Q(«)

The boundary conditions for these equations can be obtained from

equations (3.3) and (3. 11). They are

P(T) -0 (3. 18)

i(T)-0 (3.19)

a(T)-0 (3.20)

Here again, these equations must be solved backwards in time, but they

do not depend on the State ol the system. Therefore, they can be pre-

computed, as in the discrete time case if the desired output, z ( r), is

known on the interval t < r < T. The control can be realized in the form

of the block diagram shown in figure i . 1.

G(t)
I K~)—

Figure 3. 1 - Continuoiu I Lme Optimal Linear Control Syiti
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3. 3 Nonlinear Systems

The nonlinear systems we consider here can be described by the

equations

i(t)=!(x(t),u(t),t); x(0) = c (3.21)

y(t)=h(x(t),t) (3.22)

where x (t), u_(t), and _y_(t) are state, control, and output vectors, as

before, and where f(x(t), u (t), t) and h(x(t), t) are continuous time

vector valued functions. It is necessary to assume that f and h

satisfy certain differentiability conditions in what follows. Whenever

derivatives of these functions appear, we will tacitly assume that they

exist.

For the system just described, we wish to find the control, u(r),

on the interval, t < t < T, such that the performance index

"*-/ [jHiW-tMllJcn + jll+ -!lu(r)!'
J

(T) 2 5 en
At (3.23)

is a minimi.

We define the value function

Mm

V(i(0.0- u(T) Ijfol

t < T <T
(3.24)

Then by the principle of opt i mality,

Mm t ft*- I

V(x(t),t)

r < t + Ae \ « L

)-I<r)|i; |n+ |llE(r)ir*
<fJ

(It

(3.2S)

+ V(x(t+ At). t+ At) i

By expanding V (x (tf At), t+At) in a Taylor series about x(t) and t,

and then taking the limit as At approaches 0, we get

Mm
v

,
+

u(t)
jlllW-tWll^ + illiWH^+v^w

R(t)
= (3. 26)

Since the system Is nonlinear, we cannot solve this Ha milton-Jacobi

tion directly in general. So, as in Chapter II, we resort to

.i ri/.at'.on. We use the approximations

41





x (t) i !<«• (t), u" (t), t) + fjx* (t), u« (t), t) [ x(t) - x» (t)] + f (^ (t), u« (t), t) [ u(t) - u* (t)] (3.27)

and

y(t)- h(x«(0,t) + h (x«(t),t)[x(t)-x*(t)] (3. 28)

With these approximations, equation (3. 26) becomes

In 2 I

Mia |V -lli«-l<Oll f -Mu(i)|| + v;i + v;fjx ( t)-x-(t))
u(t) / 2 (,) 2 aw -

j3< 29)

+ v* i [u(t) -u*(t)r -o

The minimization operation yields

I.M.C0—rw.;va (3.30)

and

V + I |i

E(t)-h iJL
(«)- t (i) I!

" - ill V,'i; + V
£
'[f^(t) + fe(t>]-0 (3.31)

* — u ~ u

where

wo-i-f.i'w-i^srw (3.32)

and

c(t)=h-h
i
x*(t) (3.33)

A solution for equation (3. 31) can be obtained by assuming

V(i(t),t)--||i(t)||' +x'(t)x(t) + a(t) (3.34)

which implies

V(i(t),t)-- t(t)||J +£(t)x(t) +a(t) (3.35)
« ~ > P(t)J(t)

and

V (i(t),0-P(t)i(t)+i(t) (3.36)

Combining equations (3. Jl), (3. i5), and (3.36) yields

-||*<0||J *-&'(t)StO + *"> ^;!lz(t)-h
5
xft)-c(t)|jJ

)(t)
-il|P(t)x(t) + x(t)l!

f

2

rl(t)f/

t-[P(t)t(t)+i(t)]'[f s.(t) + fe(t)l -
(3.37)
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This equation will be satisfied for all x (t) if and only if the following

equations are satisfied:

tW-EWyWI^fiW-PWI^-IiEW-kigWh, (3. 38)

x(t) = [P(t)f
u
R-

1

(t)r-f'J i(t)-P(t)b(t)+h^Q(t)[z(t)-c(t)] (3. 39)

a(0 = \ !lk(t)|i;
R . ,

- l
- ||z(t) -fi«ll" + b'(t)x(t) (3. 40)

The boundary conditions are the same as for the linear case.

If we are given x (t) and u (t), we can compute P (t) and x (t) in

advance. Then these parameters can be used to determine a near optimum

control for the system. Of course, how near optimal the control system

is depends on how good the approximations (3. 27) and (3. 28) are.

Computationally, we can proceed in a manner analogous to the discrete

time iterative procedure. To do this, we can use x (t) and u (t)

determined by the itb iteration as x*(t) and u*(t) for the i+ls/ iteration.

Similar to the iterative algorithm of section 2.4, this algorithm can be

shown to yield the exact solution to the continuous time nonlinear control

problem.

The control system can be synthesized in the form of the block

diagram of figure 3. 2. As can be seen from figure 3. 2, the continuous

time control system is almost identical in form to the discrete time

nonlinear control system.

Some additional insight into the problem of optimal control can be

gained by examining the nature of the equations for P (t) and x(t). As

the quantity, T-t, approaches zero, P (t) and x (t) approach zero.

Hence, the optimum control signal approaches zero as the terminal time

nears. On the other hand, when T-t is very large, and the system

being controlled is linear time invariant, P (t) is very small. We would

expect that when T-t is very large, and when the time variations and

nonlinearities of the system being controlled are not severe, P (t)

should be small, also. The director part of the input, x (t), is derived

from the desired output, z (t), by the feedback system shown in

f
i
gure 3. 3.
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b(t)

£(t) PW

«W + \r-
h;?(t) _j + /*U * }~ —(

+

<(0
;(t)

P(t)f R-'OJf'-f
U — U X

Figure 3. 3 - Block Diagram of System for x (t)

If the output of this system follows the input reasonably well, the

system synthesized using h^Q (t) z (t) in place of x (t) might perform

near optimally, provided b (t) and c (t) are reasonably small in

magnitude.

The comments above have been imprecise, and were meant only

to convey some insight into the problem beyond the bare mathematical

statements.
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CHAPTER IV

CONSERVATIVE SYSTEMS

4. 1 Introduction

A special class of nonlinear systems which we shall call "conservative,"

can be treated analytically and exactly by the methods introduced in

Chapters II and III. The purpose of this chapter is to study this class

of nonlinear problems by means of two examples. Often, as much can

be learned from the study of one analytic example as from a hundred

numerical examples.

4. 2 General

Consider the nonlinear system

i = l(x) + u; i(0) =c (4. 1)

If the performance criterion is

J | U*.") dt (4. 2)

then the loss equation, equation (3. 26), is

[L(x,u) + V f(x) + V'ul =0 (
4

-
3

)

u(t)

If the term, VJ f (x), in equation (4. 3) vanishes identically for all x,

it is possible for a great simplification to result. Of course V, and

hence V , depend strongly on the form of L (x, u). Thus V'f(x) will

vanish only if L (x, u) has a special form. Fortunately, this is sometimes

th< case in practical problems. Th< nple problems which follow will

serve to illusl the nature of the special form L (x, u) must have to

permit this simplification. In addition, the example problems will permit

us to study the analytic solutions of some optimal nonlinear control

problems, and compare them with some sub-optimal solutions.
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4. 3 Spinning Body Problem

The equations of motion for the angular velocities of a freely spinning

body about three mutually perpendicular axes can be written as

)

where x
x

, x
2

, and x are the angular velocities, and where

*x
m
*xx** x

i
(0)

J,—,*,** ^o)-*- <
4 - 4 >

--3*1*2 X
3
(0)=C

3
x, •= a ,x .x

.

a, +a
2
+a

3
-0 (4. 4A)

These equations of motions are coupled and nonlinear. If we wish to

control the spin of this system by exerting torques about each of the

three axes, the equations of motion become

x
i

~ fl

i

x
2
x

3
+ u

>

; *i<°>- c tJ

k
2
= a

2
X

.
X

3
+U

2;
X

2
(0) ^ C

2,
(4>5)

X3" a
3
X

1

X
2
+ U

3
; X

3
(0) - C 3*

where u , u , and are the control variables proportional to the12 3 r r

torques.

If we wish to reduce the angular velocities to a minimum, subject

to a constraint of the control effort expended, an appropriate performance

criterion might be

j-J
Iq(t)

[«J + *J + «;] + If (t)
[« 1 +»J+«j]| dt* (4.6)

Optimal Control

The control which minimize a J can be found by the method of

Chapter III. The loss equation is

Kh " U ... r , , ,i i

+ V a,x
2
x
J

V «
2
x lV,

I V I^I. + V B, - V », + V «
1 2 3 12 11

(4.7)

The spinning body control problem has been treated by Athan s

and Windeknechti21 bul beir methods differ from that used here Ln

_',niticant i 3.
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If we assume

V=Ip(t)[xJ + x^x 2

3
]

then the optimal control is

where

u =-k(t)x.

k(t) = p(t)/r(t),

(4.8)

(4.9)

and equation (4. 7) becomes

- lp(l) -p 2
(t)/r(t) + q(t)l [x

2
+ x

2 + xf)

(4.10)

(4. 11)

But since this equation must be true for all x , x , and x , we must

have
p(t)-p 2

(t)/r(c) + q(t)=0 (4.12)

From the definition of V, the boundary condition is

p(T)-0

If q and r are constant, the solution for equation (4. 12) is

p(r) =rk(r) = ta
1 -c -2 (IT

1 +C -2 ar

where

and

a - \>\ r

T = T - t

(4. 13)

(4. 14)

(4. 15)

(4. 16)

A plot of p ( t) is shown in figure 4. 1.

p(r)/ra

.0 2.0 3.0

ire 4. 1 - Plot of p(r)/ra V(





Notice that the optimal controller is linear with time varying gains

even though the system controlled is nonlinear. Also notice that the time

varying gains reach 76 percent of their steady- state value in r = l/a

seconds, 95 percent in t = 2/a seconds, and 99. 5 percent in

t = 3/a seconds. As is evident the quantity, l/a, plays the role of

a time constant.

The controller may be realized in the form of the block diagram of

figure 4. 2.

Figure 4. J - Spinning Body Control System Block Diagram

Sub-optimal Control

It is instructive to compare the optimal control system of the last

tion with the sub-optimal control system which simply uses constant

gains. In order to make this lomparison, the- performance criterion

must be computed for the optimal and sub-optimal controls on the time

interval [0, T].

For the optimal control th<- per] rite rion is

r-V(c,n> (4.17)

or i for thi )li m,

J
„- M

-2 aT"

1 +C
[«;+«!«;] (4. 18)





For the sub-optimal control with

u
2
= -kx

2

u
3
" " kx

3

the performance criterion is

-rM/R2 2 2
dt

or

where

J -r
2 L

q +

'f
T

Wit) Ht

W(t) = xj(t) + x]{t) + xjt)

(4.19)

(4. 20)

(4.21)

(4. 22)

It is possible to compute W(t) from equation (4. 5) in the following

manner:

•|*1 - a
i

X
2
X

3
X

l
" kX

* .* - a,x ,x x , - kx
,

2 2 2 13 2 i

X 3* '

V

.

X
2
X 3- LX

3

1

:
(4.23)

Adding,

[«;«;«•] --k[«; +,; + «»]

or
2 . „2 j „2Witt l Jk W ( r )

- W(0) - c( + c* + c*

(4. 24)

(4.25)

The solution of equation (4. 25) is

W(t) - c
2M

W'(0) (4. 26)

From this the sub-optimal performance criterion may be computed. This

gives

I ^(.-.-'"l[cj ••] ,4.27,

For k = a = vq/r, J aes

I
Til

I
1 - C

2
*][«; + (4. 28)





The ratio, j/j , is then simply

J/J* - 1 +e-
2aT

A plot of j/j* is shown in figure 4. 3.

J'J*
2.0

(4. 29)

1.0

\ k = a

. 1

k = - a ->.

2

?
—

0.0 1.0 2.0 3.0 al
Figure 4. a - ]']' versus a T

The maximum value of j/j* is 2 when T, the- control interval, is

infinite d, and the ratio tends to unity as T increases. In fact, when

T is just l/a seconds, the ratio is only 1. 13.

To get an Lnd n of the sensitivity of the performance index, we can

compute the sub-optimal control with k = ~ a and compare the results with

those for k = a.

The value of the performance index for k - ra is given by

I

M
la

in -*«][«:+«;«;]

or, since a = V q/r ,

j-l r«[i- e
-T ][c; + c;H

(4.30)

(4.31)

C this ease-, the ratio, j/j , is

. 5 fl -e aT
|[l ^-iaT

)

A plot ot thifl ratio is also shown in figure 4. 3.

(4.32)
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We can see trom figure 4. 3 that the constant gain sub-optimal control

provides a nearly optimal system. The gain setting with k = a would be

better if the control interval is much greater than l/a and k =- a

would be better if the control interval is much less than l/a. In any case

the system is relatively insensitive to variations in the gain setting, and

this is the reason that the optimal control system is little better than the

constant gain sub-optimal systems.

Terminal Control

If we desire to reduce the angular velocities of the spinning body to

a minimum at the terminal time only, subject to a constraint on the

control effort expended, an appropriate performance criterion might be

j-jq [«;cn+«j(T)+«;(T)] +j Lr [;•;]* (4.33)

The results of the sub-section on optimal control apply directly to

this problem if we let

q(0 =qu
o
(t-T) (4.34)

where U (t) is the unit impulse- function.

The equation for p (t) then is

p(t)-p a(t)/r-0; P (T)=q (4.35)

The solution of equation (4. J5) is

i_ (4.36)
1

-

where again

p(0-
1 + aT

r-T-i (4.37)

and

« = q/r (4.38)

Thus the optimal value of the performance index is

r 1 q*(0> (4.39)

i li«T
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A plot of p (t) is shown in figure 4. 4,

.0 2.0 3.0

Figure 4. 4 - Plot of p(t)/q versus at

4.0 a r

Again, it is interesting to compare the optimal controller with

a sub-optimal constant gain linear controller. In terms of the

constant gain, k, the performance criterion for the sub-optimal

controller is

j =IqW(0) re-
2kT -irke-2kl7q + -rk/q

2 L 2 2
(4.40)

If the gain, k, is set equal to a, the sub-optimal performance

criterion, J, approaches the optimal performance criterion, J ,

for very short control intervals. In this case, the ratio, j/j ,

is

j/j« =L(i +aT)(e-2aT + I)

2

(4.41)

A plot of J/J is shown in figure 4. 5,
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2.0

1.0

,
J/J*

k - a —

V

^^^^

. 1

k = - a —

\

k .1. J
4

0.0 4.0 aT1.0 2.0 3.0

Figure 4. 5 - Performance Ratio, J/J*, for Terminal Control

It should be noted that the value for k in this example was chosen

to give near optimal performance over relatively short control intervals.

Better performance could be achieved over longer control intervals with

a lower gain setting. For instance if k - - a, the value of the performance

criterion is

J --qW(O)
2

rui.-* (4.42)

The ratio, j/j* , then is

J/J* -1(1 +aT)(l +3e'
aT

) (4.43)

A plot of this is shown m timire 4. 5 also. A plot is also shown for

k = \ a .

As can be seen from the plot, there exists a constant gain for any

particular value of control interval which will give very nearly optimal

tormance. For instance, with a control interval of l/a , k = ^ a

will give pi pformance index of about 1. OS times the true optimal

rformanci I rxd<
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4.4 Nonlinear Spring Problem

The equation of motion for a mass attached to a cubic spring can be

written as

i + x
3 =0 (4.44)

or if control is exerted, i. e. , the system is forced, the equation is

X * X = u (4.45)

This equation can be written as the system of first order equations

*»-*, +

where

and

2 12

X l' X

U " U
1

+U
2

(4.46)

(4.47)

(4.48)

The state variable, x , is not as easily identified with the original

system variables, but this is of little consequence.

Suppose that we wish to control the system (4.46) such that

'-/[•(K-H) •(«*,! j-T dt (4.49)

is a minimum. The loss equation for this system is

Mm
V

,
+

u r u
2

q(r«*H)
f r

(
i

?
u

'
+

r') +Vi
.

(X2+u,)+Vi
J
("x;+Ua

)
~° (4 - 50)

If we assume

then the optimal conti

u
,
- — p(t)x,/r(t)

j

»
2
- -p(t)x

2
/r(t) \

and equation (4. SO) b< COmi

|

P (t) - P
a
(o/r(t) + q(o"j Uj+-«;l-o

(4.51)

(4.52)

(4. S3)
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Since this equation must be satisfied for all values of x and x , we

must have

p(t)-p 2 (t)/r(t)+q(t)=0 (4.54)

The boundary condition is

P (T)=0 (4.55)

This equation is identical to equation (4. 12), and the results of

section 4. 3 of this chapter, including the sub-optimal control results,

are equally applicable to this problem.

Since

u=i
1
+ u

2
(4.56)

the control, u, may be expressed as

u =-- P (t)i
1
/r(t) -

P (t)x
2
/r(t) (4. 57)

For the actual synthesis of the controller, however, this expression

for u is unsatisiactory because the state variable, x , has not been

id< d with the original system variables. We can get around this

by <
, in terms of x

t
and u , thus

, «i - u (4. 58)

or

z
a
-k

l
+ -p(t)x

l
/r(t) (4.59)

The control, u, then is

B-3p(0i, 2r(t) +^ P
:
(«)x

I

/r
2
(t) (4.60)

The block diagram for this control system is shown in figure 4.6.





CONTROLER NONLINEAR SPRING SYSTEM
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1
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r- 1

1

*

I

|
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*
2

/
1

X

3r

s

i i_

1

1

J

Figure 4. 6 - Nonlinear Spring Control System Block Diagram

Admittedly, the nonlinear systems and the performance criteria

used in this example problem and the previous one are very special.

However, because we are able to obtain analytical solutions, a great

dual of insight can be gained from them about the nature and behavior

of optimal controllers Ln nonlinear systems. In particular, we have

found that Bimple constant gain linear controllers can provide very

ne. timaJ performance over a wide range of conditions.
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CHAPTER V

COMPUTER RESULTS

5. 1 Introduction

The results of several computer problems illustrating the methods

of Chapter II are presented in this chapter. Several variations of each

problem are presented in order to show the effect of changes in the

initial state and changes in the performance index. It should be borne

in mind that since the system being controlled is nonlinear, the

controller parameters depend on the initial state of the system.

In addition, the results of controlling some of the nonlinear systems

with simple sub-optimal linear controllers are presented and compared

with the optimal results.

The results of this section were obtained on the IBM 7090 computer

at the MIT computation center. The Fortran programs used to obtain

the solutions for the two state-variable deterministic problems are

given in Appendix D. In all cases, the change in the performance index

from one it. ration to the next was used as a convergence criterion.

When the magnitude of this change was less than one per cent of the

value of the performance index, the iteration procedure was terminated.

5. 2 One State-Variable Example

The system considered tor this example can be described by the

equations

x(k + l) = x(k) -0.05x 3
(k) +0.05u(k); x(l)=c (5.1)

y(k) -z(k) (
5

-
2

)

The system may be thought of as the discrete time approximation of the

continuous time system

i(t) =-x 3
(t)+u(t); x(0)=c (5.3)

y(t) - x(t) (5. 4)
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The performance index used was
too 9 9

J = V - Q(k)[z(k)-x(k)]
2
+ V- R ( k ) u

:

(k) (5.5)

The equations used as the basis of the iterative procedure for this problem

may be determined from equations (2. 23), (2. 27), (2. 31), and (2. 32).

The sub-optimal system used is given by the same equations except

that u (k) is given by

u(k) = G(k) [z(k) -x(k)l (5.6)

where G is a constant gain factor. Block diagrams of the optimal and

the sub-optimal control systems are given in figure 5. 1.

1
b(k)

POc+1)

(R(k) + f
2 P(k + l)]-'f

u(k)
x(k) -0.05x 3

(k)

+ 0.05u(k)

T
J

(k+1)
UNIT
DELAY

P(k + 1) I

Optimal Control System

x(k)

x(k) -0.05x 3
(k)

+ 0.05u(k)

x(k + l)

^

I

UNIT
DELAY

(k)

Sub-optima] Control System

Figure >. I
- Oni Sratc-Variable Control Syitemi

Figures S. 2 through 5. 10 give thr plotted results from several data sets

ii. Comments on each ol the figures are given below.
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Figure 5. 2: For this data set, R(k) = 0.01, Q(k) = 1. 00, x(l)=1.00,

and z(k) = 0. 0. Convergence was achieved in three iterations. The

linear sub-optimal control system with a gain equal to 7. 5 gave a

performance index of 1. 1951, just 0. 1 per cent higher than the optimal.

Figure 5.3: For this data set, R(k), Q(k), x(l), and z(k) are the

same as for the previous data set except that z(k) =1.0 for k> 50.

Convergence occurred in three iterations. The plot clearly shows

that u(k) anticipates tht- step in z(k) indicating the sense in which

this control system is "unrealizable. " The sub-optimal control

system, which is non-anticipative, with a gain of 7. 5 had a performance

index of 3. 238, about 30 per cent higher than the anticipative optimal

system.

jure 5.4: For this data set, R(k) = 0.0 1, Q(k) = 10.0, x(l) = 1.0,

and z(k) - 0.0. Coir as achieved in three iterations. Notii

that since output error is relatively more important in this case, the

control effort used is hi md the system response is faster. Tin

sub-optimal control for this set had a gain of 15.0 and gave a perform-

ance index of 6. 5k6, about 0. 1 per cent higher than the optimal.

Fij .5: For this t, R(k) = 0.01, U(k) = 10. 0, x(l)=1.0,

'1 z(k) - 0. for k < 50, but z(k) =1.0 for k > 50. Convergence

wa leved in two i\ . With a gain of 15.0, the sub-optimal

system gave a perfori x of 13. 845, which is 1 i per cent

higher than the performance index for the optimal system. When the

ntrol system respoi i relatively fast, as Ln this case, anticipation

the optimal system does not improve the system performance as

mu< h

.
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I'igure 5. 6: For this data set, R(k) = 0. 01, Q(k) = 10. 0, x(l) = 10. 0,

and z(k) = 0. 0. When the initial state is as large as it is in this case,

the system is open loop unstable. (The continuous time system, x + x3 = 0,

is always stable, but the sampling introduced to make the discrete time

approximation causes the system to be unstable for x (l) greater than

about 6. 0. The closed loop control system is, nevertheless, stable, at

the expense of a very large performance index. Because the discrete

time system is unstable, it is not a good representation of the continuous

time system for this case. For this reason figures 5. 7 and 5. 8 have

been included.

Figure 5. 7: For this data set, the sampling interval has been decreased

by a factor of 10 and the number of steps has been increased by a factor

of 10. This makes the system open loop stable, and once again a

reasonable discrete time approximation to the continuous time system.

Here R(k) = 0.01, Q(k) ^ 1.0, x(l) = 10.0, and z(k) = 0.0. Convergence

occurred in six iterations.

Figure 5. 8: For this data set, the comments of the previous set apply

except that Q(k) = 10. 0. Convergence occurred in four iterations.

Figur. i data set, R(k) = 1.0, Q(k) = 1.0, x(l) = 1.0,

and z(k) = 0.0. Convergence occurred in three iterations. Because

the cost of control is so hi^h relative to the cost of output error, the

control effort expended is small and the system response is slow. As

a matter ol fa< t, it can be shown that for the one state-variable system

the speed of response is proportional to the ratio, Q(k)/R(k). In general,

xpect the spied of response to depend on the ratio of the norm

the Q(k) matrix to the R (k) matrix.
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Figure 5. 10: The data for this set is the same as for the last set except

that z(k) = 0.0 for k < 50 and z(k) = 1.0 for k > 50. Convergence

occurred in four iterations.

5. 3 Two State- Variable Examples

The system considered for the first two state-variable example can

be described by the equations

K
1
(k+l)-x

1
(k)+0.01x

a
(k); i^D-c, (5.7)

x
2
(k+l) - x

2
(L)- 0.02 x,(k)- 0.03 |x

2
(k)| x

2
(k)+0.01u(k); K,(l)-C

a
(5. 8)

yi
(k)»x,(k) (5.9)

y 2
(k)=x

2
(k) (5.10)

A block diagram of this system is shown in figure 5. 11. The system

0.03'x
2
(k);x

2
(k)

Figure .S. 11 - Two State-Variable Nonlinear System

described above may be thought of as the discrete approximation for

continuous time system

x(t) f3 |i(t)| i(t) 2x(t) -a(t)

y ,(t) - *(t)

y 2
(t) -i(t)

(5. 11)

(5. L2)

(5. 13)

Th> mance Index used was

j . V" -iQ/lolz/k) -x
t
(k)f +y

2
(k)[z

2
(k)-x

2
(k)|

2

| + J^ - R(kju 2
(k) (5. 14)

w - I U = 1
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The equations that form the basis of the iterative routine follow from

equations (2. 23), (2. 27), (2. 31), and (2. 32). The equations for the

sub-optimal systems are the same except that

u(k) =G, [2l (IO -XjOOl + G
2

[z
2
(k) -«

2
(k)l (5. 15)

where G
1

and G are constant gain factors.

Figures 5. 12 through 5. 21 give the plotted results from ten data

sets for this example. Comments on these figures follow.

Figure 5. 12 - 5. 14: For these data sets, R(k) = 0.01, Q^k) = 1.00,

Q 2
(k) = 1.00, x,(l) = 0.0, Zj(k) = 0.0, and z

2
(k) = 0.0. In figure 5. 12,

x
2
(l) = 1.0, in figure 5. 13, x

2
(l) = 3.0, and in figure 5. 14, x

2
(l) = 10.0.

For each of these convergence occurred in three or four iterations. The

sub-optimal control with G
J

= 8. 5 and G
2

= 4. 75 gave performance

indices of 5.360, 31.32, and 158.62 for x,(l) = 1. 0, =3.0, and

= 10.0, respectively. The sub-optimal control system performance

indices were 17. 5, 7. 0, and 7. 5 percent higher than the optimal

performance indices.

Figures 5. 15 - 5. 17: For these figures, the data were the same as

for figures 5. 12 - 5. 14 except that z
f
(k) = 0.0 for k < 50 and

Zj(k) =1.0 for k > 50. In each case convergence occurred in three

iterations.

Figure 5. 18: For this data set, R(k) = 0.01, Q (k) = 1.0, Q (k) = 0.0,

Xj(l) = 0.0, x
2
(l) = 1.0, z,(k) = 0.0, and z

2
(k) = 0.0. Convergence

occurred in five iterations. The sub-optimal control system with

G, =11.0 and G = 2. gave a performance index of 1. 305,

ahout 5 pei- ( «nt higher than the optimal system performance index.
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Figure 5. 19: The same data applies here as in the previous figure

except that z^k) = 0.0 for k < 50 and z ,(k) = 1.0 for k > 50.

Convergence occurred in five iterations.

Figure 5. 20: For this data set, R(k) = 0.01, Q
i

(k) = 10.0, Q
2
(k) = 1. 0,

x (1) = 0.0, x (1) = 1.0, z (k) = 0.0, and z (k) = 0.0. Convergence

occurred in four iterations. The sub-optimal system with G
i

= 28.

and G = 10. 7 gave a performance index of 5. 71, or less than

one per cent higher than that for the optimal system.

Figure 5. 21: The same data applies here as in the previous figure

except that z ^k) =0.0 for k < 50 and z
t
(k) = 1.0 for k > 50.

Convergence was achieved in three iterations.

The system considered for the second two state-variable example

can be described by the equations

k ,(1+1) - 1,00 + 0.01 x,(k)/(l+|s,(k)|); b^D-c, (5.16)

i
2
(k+l) -x

2
(k) -0.01 1,0c) +0.01 u(k); I

a
(l)-C, (5.17)

yi
(k)-x,(k) (5. 18)

r a
(k)-x,(k) (5. 19)

This system can be thought of as the discrete approximation to the system

described by the block diagram below

i

The performance index for this example is the same as that for the

previous example, and the equations used in the iterative procedure are

the same except for the system equations.

Figures 5. 22 through 5. 25 give the plotted results from four data

sets for this system.
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Figures 5. 22 - 5. 24: For these data sets, R(k) = 0.01, Q
l

(k)=1.0,

Q
2
(k) = 1.0, x (1) = 0. 0, z (k) = 0. 0, and z (k) = 0. 0. In figures 5. 22,

5. 23, and 5. 24, x (1) = 1. 0, 3. 0, and 10. 0, respectively. The number

of iterations required for convergence was three, two, and two.

Figure 5. 25: For this data set, R(k) = 0.01, Q
1
(k)=1.0, Q (k) = 0. 0,

x (1) - 0.0, x (1) a 1.0, z (k) = 0.0, and z (k) = 0.0. Four iterations

were required for convergence.

One additional variation of this problem was run in an effort to get

some indication of under what conditions the iterative routine might not

converge. For this purpose, the nonlinearity was made more violent by

changing the system equations to

xj(k+l) =x
1
(k)+x

J
(k)/(1.0 + 10.0 |*

a
(k)|); x

1
(D=c

1
(5.20)

x
2
(k+I) = x

2
(k)-0.01x

1

(k)+0.01u(k); x
2
(l) = c

2
(5.21)

y 1
(k) = x

1
(k) (5.22)

y 2
(k) = x

2
(k) (5.23)

For each of these data sets, R = 0. 01, Q
t

= 1. 00, Q
2

- 1. 00,

and x (1) - 0. 00. For the data set with x (1) = 10. 0, convergence

occurred in five iterations. For the data set with x
2
(l) = 3.00,

convergent e occurred in four aerations. For the data set with x (1) = 1.00,

convergence occurred after some rather severe oscillations in the con-

vergence criterion, and then only after 19 iterations.

Tl rgence was slower when a small initial condition was used

probably because in this case the system spent more time operating in

the highly nonlinear regions.

We can conclude from this variation of the example problem, that

when ti i nonlinearity is severe, the iterative routine may converge

slowly or not at all.

F< i of compai rates, the value of the

pi rfoi J, computed on ea< h Iteration has been included





in most of the preceding figures. The value of the performance index

computed on the convergent iteration is denoted by J .

5.4 Stochastic Examples

The results of three stochastic examples are presented in this

section. In each of these examples, the nonlinear system being

controlled is disturbed by a random input.

The computer algorithm that was used is outlined below.

Step 1. Using P (k) = 0, x (k) = 0, and r_(k) = 0, the control and

the state variables are extrapolated ahead to determine u_(l), . . . ,

u(99) and x(2), .... x(100).

Step 2. Usin^ the u (k) and the x (k) just determined, P (99). . . . •

P(ll) and x (99), .... x(ll) are computed by backward recursion.

Step 3. The control, u (1), . . . , u_(10), and the state, x(2), . . . ,

x(ll), ar< iputed with r(l), .... r(10) taking on random values,

simulating the actual evolution of the nonlinear system.

Step 1 Using P (k) and x (k) previously determined, and

r (k) a 0, the control and the state variables are extrapolated ahead

to determine u(ll), . . . , u(99) and x(12), . . . , x(100).

Step 5. Usin^ the x (k) and the u (k) just determined, P(99), . . . ,

^(21) and x (99)i • . . , x(21) are computed.

Steps J, 4, and 5 are then repeated, starting at k = 11, k - 21, etc.,

until the actual simulation has evolved to k = 100. The system should

be visuali/.ed with steps, 4 and 5 simulating the controller in fast time,

and step 5 simulating the a< tual evolution of the nonlinear system in

:1 tune.

Figure 5. 26: Th< resull en in this figure are for the example using

the system <>i S< i tion 5. 2, but with an independent random disturbance,

r (k), added. For this data set, R(k) = 0.01, Q(k)=1.0, x(l) = 1.0,

(k) 0.0. '
.

: that by the time k = 21, tin 1 ' and x van a hies
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arc well determined with no more jumps, indicating that despite the

random disturbance, the control system is operating near optimally. In

this example and the others of this section, r(k) is a zero mean, unit

variance, independent random sequence.

Figure 5. 27: The results given in this figure are for the example using

the same system as the first example in section 5. 3, but with an independent

random disturbance, r(k), added to the x component. For this data set,

R(k) = 0.01, Q^k) = 1.0, Q
2
(k) = 1.0, Xi(l) = 0.0, x^(l) = 1.0, z^k) = 0.0,

and z
2
(k) = 0. 0.

Figure 5. 28: The rcbults given in this figure are for a nonlinear system

disturbed by dependent noise. In this example, x (k) represents the

dependent noise which is obtained froin independent noise by the system

ijOc+1) -0.95 x,(k) + 0.05 r(k); x,(l)=0.0 (5.24)

where r(k) is an independent random variable. The state of the nonlinear

system being controlled is represented by x (k), and is determined by

the equation

K
a
(k+l)-x

a
(k)-0.03sJ(k)+O.OSu(k)+0.03x

1
(k); x

2
d) = l.o (5.25)

Together x (k) and x (k) make up an augmented two-dimensional state

vector. For this data set, R(k) -0.01, Q (k) = 0.0 (as we have no

control over the noise), Q (k) =1.0, z (k) = 0.0, and z (k) = 0.0.
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CHAPTER VI

CONCLUSIONS

The major contribution of this work has been the presentation of a

theory along with an iterative algorithm for the solution of optimal

nonlinear control problems subject to quadratic performance criteria.

In addition, the results of the computer examples presented in Chapter V

have demonstrated the feasibility of the method.

A by-product of the theory has been the analytic solution of the

problems of Chapter IV. In Chapters IV and V, comparisons of sub-

optimal systems with the optimal ones determined by the theory have

shown that often near-optimal performance is possible with simple

linear controllers! a possibility that has been suspected but not

demonstrated previously.

All is not rosy, however. Appendix C shows that the method is

essentially limited to problems of no more than five state variables

and control intervals of no more than 1000 steps by the size and speed

of
|

r itly available digital computers.

Many questions have been raised, but not answered. Of prime importance

among these is the question of under what conditions can the convergence

of the iterative algorithm be guaranteed. Further research on the problem

with stochastic disturbances is required in order to determine under

what conditions the control procedure presented in section 2. 7 is

isonali

It would be highly desirable to be able to rephrase the problem in such

a way that the- optimal control system determined by the theory would be

ed to be non-antit lpative. This problem has been worked on

briefly by the author, but without results.

Finally, although it is conceivable that actual control systems may be

-I by this method, it is far more likely that the main use for the

theory will be to establish ultimate performance figures for comparison

purpo tudi( s. Further research in this direction seems

rranted,
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APPENDIX A

TWO MATRIX IDENTITIES

Theorem Al: If R 1 and [R+G'PG)" 1

exist, then

[I + GR-kTP]"
1

GR-'G'h G [R + G'PG]'
1

G' (A. 1)

Proof : The proof uses a method of matrix manipulations given by Cox. 22

This method views a matrix as a linear transformation and shows that

such transformations obey all the rules for block diagram manipulation

provided order of blocks is preserved. In other words, block diagram

manipulations may be used to prove matrix identities.

For tlif proof of this theorem, it is easy to show that the expression

on the right-hand side of equation (A. 1) can be represented by the block

diagran

\ R-' C;

G P G

R"' and [ R I G'PG]" 1

exist.

By moving G into the loop we get

->l R-
1 GJ

I

-

G P
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Then moving R"
1 and G back out the other side of the loop gives

But this block diagram is equivalent to the expression

[I +GR- 1 G'P]"
1

GR-'G' (A. 2)

which proves the theorem.

Theorem A2 : If R» and [ R -t- G'PG I'

1 exist, then

[I +(.R-'r,'pr
1

I -(, |r + G'PG I"

1

G'P (A. 3)

Proof: The proof proceeds by using the definition of an inverse.

Thus if the right-hand side of (A. 3) is truly the inverse of I + GR* G'P

then we must ha

[j > U< ' (_,'!_'
i U -G [R + g'PGj G'P I = I

or

i .., -' ,-

(A. 4)

I + GR''(_/P -G |R G'PG I G'P -GR-'G'PG [R + G' PG ]" G'P-

I

(A. 5)

By regrouping terms we get

,-i i

J.
G IK 1 -| R > G'PGl* -r'g'pg [R + G'PG|" I G'P -i

But since I R + G'PGf ists, we can wntr

I+G |R_I [R +G'PG]- 1 -R'g'PG I lR tG'PG]"
1

G'P - I

(A. 6)

(A. 7)

The bracketed term ia the zero matrix, hem <

I I
(A. 8)

.mil; that t- G[R+ G'PGf G'P is Indeed the Lnv< i [iveri Ln (A. J
>).

96





APPENDIX B

STABILITY

In the design of any control system, the question of stability is of

paramount importance. For this reason, the stability of control systems

synthesized using the theory of Chapters II and III is considered here

briefly. For simplicity we shall consider first the continuous time system

and use the second method of Lyapunov.

For the unperturbed control system (i. e. , z(t) = 0), the value

function (3. 2.4 ) is positive definite, provided f = and h = when

x(t) - 0_ and u(t) - 0_. In addition V(x(t), t) approaches infinity as x(t)

approaches infinity.

The derivative of V with respect to time along an optimal trajectory

is given by

\'ix(t).t) -V
f
+ \£ i (t )

(B. 1)

or, by (3. 19),

*<i(t),t)--I i!h,x«t),t)|;^
t)

-L|| i,ta
(0||*

(|J
(B.2)

The right-hand Bid* quation (B. I) is non-po.sitive definite. A function

which posses these properties is called a Lyapunov function, and the

second method of Lyapunov states that when a Lyapunov function exists

n, the .^ l is stable.

As a matter of fact, V (x (t), t) is usually negative definite, although

it is difficult to give general conditions under which this is true. In this

cast the Becond method of Lyapunov guarantees that the Bystem will be

as'
; illy atable.

For the discrete time control system, analogous results can be

drawn using a discreti version of the second method of Lyapunov.
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APPENDIX C

COMPUTATIONAL CONSIDERATIONS

C. 1 Computer Storage Requirements

The discrete time problem is analyzed in this section to determine

computer storage requirements, and in the next section to determine com-

puter time requirements. Because we are attempting to get approximate

answers, many simplifying assumptions will be made.

The first assumption we will make is that we are interested in

computing the optimum control only. For instance we are not interested

in computing a(k). By considering equations (2.23), (2.27), (2.31),

.uid (2. 32), we can determine the computer storage requirements for

the iterative algorithm of section 2.4. These requirements are given

in Table I.

Tabic 1

ibles

P(k)

x(k)

fc(k)

U(k)

Total

\ umber of Kt-^i sk rs

K ci|iiired

-n(n + l)N
2

oN

n\

rN

-n(n+5)+r N

Assuming a sin>;l< Input .system, that is, r - 1, and for a conipuli'r

with 50,0i)i) ri gist< rs ( the dimension of n must be less than 5 and

N = 1000 in order to lit the problem on the computer. For the saim

nputer with N = 100, the dimension of n must be less than 20.

Even from tins quick look into the storage requirements aspect oi the

problem, w»- can Immediately sec that the method La going to be severely

r< itricted by the size oi presenl day computers.





C. 2 Time Requirements

For computer time requirements, we will determine the total number

of mathematical operations involved in one iteration of the algorithm. We

will assume that all operations require the same amount of time. The

total time required can then be determined by multiplying the total number

of operations by the average time required per operation. In addition, to

simplify matters more, we will assume that the input u (k) is a scalar

(i. e. , r = 1), and enters in only one component of _f.

Table II was determined by examination of the same equations as

were used in determining Table I,

Table 1

1

Variables Number of Operations

L'< k ) In(n + l)(7n 2
+3m 2 )N

2

x(k) D(7n a
43iB

ayN

x(k) 2n(n+ni)N (estimated)

u(k) nn 2+2n)N

[OCA] Un 2 +2n(mfl)+i-n(n+3)(7n 2+.W) N

As an example, suppose N = 1000 and n = m = 10. The total number

of opt rations would be on the order oi 6 x 10 . If the computer could

process, on thi one operation every ten microseconds, the total

time require <1 for one iteration would be about ten minutes. Again ti

Limitations of this algorithm using present day comput ecomes

plainly evident.

As a secoi tmple suppose N - 1000 but n - m 5. rhen the

total number of opt rations required for one iteration would be on

the order of 4. 5 x 10
6

. At a computer sp< £ one operation every

mdSi tins would require about 15 seconds per Iteration.
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These figures are somewhat conservative because they neglect the

time saving possible when repeated factors are encountered. Neverthe-

less, the figures agree in order of magnitude with the times observed on

actual computer problems. (The actual computer times are about one-

half to two -thirds of that predicted. )

From these example problems, we can conclude that a problem with

5 state variables and N = 1000 steps, represents about the largest

size problem that can be handled by this algorithm with presently

available computers.

100





APPENDIX D

FORTRAN PROGRAMS FOR TWO STATE- VARIABLE EXAMPLES

i9

- ' It ZK 1000) , Z2I 1000) . U(lOOO) ,

• p H ( : » P12< lnonj , P22( 1O0O)

• l1, <£2. PH. P12« P.1 J. Fli F2i FXlli

. R. 01. 02. I

•o i 11*1 tic

• "Ml, ZKIJ. Z2C1), R, 01, . , • • .
I TYPE

DRfAT (7F5. •

»1«CZ1 C J
. ( i ) - xi l i ) ) + Q2« IZ2(1) - X2( 1) )»

L ( Z? ( 1 J i ) )

• III

• -ill

•

<)

• in |

Ml

<HKJ «

1
'

•
i

|
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X2TEM = FX21*X1(<) + FX2^*X2K) + FU*U(K) + R.J

< V = V 31* ilM/liMli-MUMI + Q2* ( Z2 ( K+l )-X2TtM)«

M /'(>.
: )

-- • I ) + R*U ( K ) *U ( K

I

; = (V - T t ST ) /v

i

•

r ) - o . o l j

b TEST = V

INT 6. V

6 • =lPt 15.4)

DO 7 J

< • F 4 1 - J

NL IN

F ] - F X 1 1 * X 1 ( K I - F X ] • » 2 < K )

.!•) -i

• »

I

•
I • F U

)

PIF

: l

•

i *p ; -('*]))

i
• • •

i i i

•
•

•
i i > i j

•
: )

•

|

L ( K I . • • • •
'

!

•

'
I 2(K + 1 1

- IP12JK + 1 >«

I I 1«IP11IK+1|»F) i ,

...
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H 1 ? • I T YPE i 1 1 . : . Q2 « v , iaIUI. •
) » Z 2 ( K. ) i U ( K. ) »

i P 1 ] • Pl2(«.)«P22(K)»l 1 » t )

• llnl. .. •• .-. rATt-VMWlAbLt <» 2&HTHIS IS No

ITY TYPE 1

5

• . • . • .2///15X. VHFINA

^L V = 1

1

. ( . • - • , \
m •

. , , . • , . (, 1HU»
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SUBROUTINE: NONLIN

0)* X2(1000), ZKlOOOli Z2(lPOO)» U(10OO)»

lXEKlOOOli XE2(10CO)» Pll(ioro), P12(in00)» P22(in0O)

COMMON XI i • • Li . Ui XElt XE2i Plli Pl2i P22. Fl» F2i FXH,

1FX12i FX21» FX22. FUi R. 01 i Q2i K

HI = X 1

(

K ) * • 1 *X2 ( <

)

• IK) - . . F(X2(K) )*X2<M + 0«01»U(K)

'
1 = :

.

<?1 « -Oi

: . - . - ) )

• 01

IF (I ...

! ( I ) = 0.0

I (• )

Rt
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SU MON L 1 N

» ': !» £1(1000) • 72(1000)« uuonoii

• 0)« Pll(1000)( P1?MO"0). p,','iinnni

• • . • » PI 1* P12« Vi7 • Fl i H?, FX11 .

. • , • , )1, . . •

) )

•
. ( • ) > . •')..

K ) - . 01 «X 1 ( K ) + 0.

• J

)

- •
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