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^ , IR ABSTRACT

The application of digital computers for the simulation of physical

systems has become widespread. This paper describes a program designed

to measure the frequency response of the simulation model of a linear

system.
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I. INTRODUCTION

The application of digital computers for the simulation of physical

systems has become widespread. Computer programs have been developed

that simulate mechanical, electrical, and electro-mechanical systems,

circuits, chemical processes, biomedical problems, traffic control, and

so on

.

One of the most important groups of programs for the simulation of

continuous systems is that which employs digital-analog simulators;

i.e., programs which simulate the elements and organization of the

analog computer.

The purpose of the investigation presented in this paper is to

develop a technique -- a digital computer program -- for measuring the

frequency response of the simulation model of a system. While such a

program should be applicable to any digital simulation language, the

program description presented in this paper utilizes International

Business Machines Company's DSL/360 Digital Simulation Language.

DSL/360, a System/360 FORTRAN IV program for the digital simulation

of continuous system dynamics, employs the building-block approach of

digital-analog simulators while providing the power of logical and

algebraic equation notation.

DSL/360 provides a basic set of function blocks from which a

physical system may be modeled: integrators, limiters
,
pulse generators,

function generators, and so on. In addition, FORTRAN library functions

and functions from the Scientific Subroutine Package (SSP) may be

utilized. In the event none of these satisfies the user's needs, the

user may provide his own function blocks or subroutines.



A digital computer program to determine the steady-state response of

a system to a sinusoidal input is a useful adjunct to a digital simulation

language. With it, non-linearities in an ostensibly linear system may

be detected and evaluated.

Reference 1 describes in detail the use and operation of DSL/360.



II. DISCUSSION

This chapter contains a discussion of the response of a linear

system to a sinusoidal excitation and the basic concepts utilized in

the development of a digital computer program to determine such response

A. SYSTEM RESPONSE TO A SINUSOIDAL INPUT

When a system is linear, its response to a sinusoidal input is a

sine wave of the same frequency (the higher harmonics are negligible).

The magnitude ratio and phase of the response depend on the forcing

frequency but not on the input magnitude [Ref. 2]. The condition that

magnitude ratio and phase be independent of the input amplitude is a

condition for the linearity of the system.

The steady-state frequency response of a stable, linear system to

a sinusoidal input can be determined analytically from the system

transfer function [Ref. 3]. The response to an input A sin cot is

given by

y = A| P(jco)
|
sin (cot + $)

where
|
P(jco)

|
is the magnitude of P( jco) , $ is the argument of P(jco)

,

and the complex number P(jco) is determined from the system transfer

function P(s) by replacing the s with jco. The system output has the

same frequency as the input and can be obtained by multiplying the

input by P(jco) and shifting the phase angle of the input by the argu-

ment of P(jcd) . | P( jco)
|
and $ for all co constitute the system frequency

response, where P(jco) is the gain of the system for sinusoidal inputs

with frequency co.



B. RESONANCE IN A SYSTEM AND STABILITY

The maximum value of the magnitude of the closed-loop frequency

response of a system is a measure of the stability of the system

[Ref. 3]. The frequency at which this maximum occurs is the resonant

frequency of the system.

It often occurs in reality that a linear system's response will

contain non-linearities under certain conditions. As an example, a

second-order system may experience system gain non-linearity as a

result of resonance if the excitation frequency is at or near the

system's natural frequency. Such non-linearity and any resultant

effect on system stability are of interest to a design engineer, for

instance, since the performance of the system with which he is con-

cerned may be vitally affected. Being able to utilize a computer to

determine system non-linearity during the design stage may result in

savings of both time and money.

C. DEVELOPMENT OF THE PROGRAM

A program to determine the frequency response of a system to a

sinusoidal input must first determine attainment of the steady-state

condition upon application of the excitation and then calculate values

of the steady-state response magnitude and phase.

D. ASSUMPTIONS

Several ^assumptions are made regarding the system, its excitation,

and its response.

Assumption 1. The system is linear and stable.

Assumption 2. The system may be described in DSL/360 format.

Assumption 3. There are no initial conditions; i.e., all initial

conditions are zero at time zero.
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Assumption 4. The excitation is described by

A sin (cut + 9)

where A is the peak amplitude , co is the angular frequency in radians

per second, and 9 is the phase (input phase is zero throughout this

paper).

Assumption 5. The steady-state output of the system is periodic

with the same frequency as the input and may be described by

B sin (cut + $)

where B is the peak amplitude, co is the angular frequency in radians

per second, and $ is the phase of the output with respect to the input.

E. DETERMINATION OF THE STEADY-STATE CONDITION

In any digital simulation language, the independent variable is

time. The computational process is an iterative one, performed at

intervals of time specified by the user. Attainment of the steady-

state condition is determined by a mechanical, value -comparing process

rather than by the solution of an equation, such as that discussed

earlier

.

The steady-state condition is determined in the program discussed

in this paper by permitting the system to respond to the sinusoidal

input until certain steady-state criteria are met. Ten cycles of input

are permitted to pass before attempting any steady-state testing, by-

passing computations involving the more wildly fluctuating transients

and, thereby, decreasing computation time. The figure "ten" is an

arbitrary choice, based on the assumption that the output will have

settled to a condition approaching the steady state after ten cycles

of input.

11



The steady-state determination is accomplished by comparing the

value of the output magnitude at each iteration point on one cycle

with the value at the same point on a later cycle. When these values

are reasonably close, steady state is considered to have been attained.

To reduce the possibility of chance satisfaction of the steady-state

criteria while the output is still in the transient or settling phase,

comparison of output magnitude values is made in the program with not

one but two later cycles, the third and the tenth. Again, these figures

are arbitrary choices.

F. DETERMINATION OF OUTPUT PEAK MAGNITUDE AND PHASE

Once the steady-state testing commences, the program simultaneously

computes the peak magnitude of the output and its phase with respect to

the input.

The peak magnitude of the output is nothing more than the highest

steady-state value computed for the output magnitude.

The phase is computed from the times at which an input cycle and

its resultant output cycle cross their respective zero-value points.

The equations used in the program are:

R

2n(t.-t )
1 o

360(t.-t )
' 1 o

where $ is the phase in radians, $ is the phase in degrees, t. is the

time at which the input cycle crosses its zero-value point, t is the

time at which the resultant output cycle crosses its zero-value point,

and T is the period of both the input and the output.

12



III. THE PROGRAM

This chapter presents a description of the program evolved to

determine the response of a linear system to a sinusoidal excitation.

A sample program of a single-run job is shown in Figure 3.1. Reference

to this program is made in the explanations in the paragraphs that

follow. The explanations presuppose some familiarity with DSL/360 on

the part of the reader.

A. THE SYSTEM

The system used in the sample program of Figure 3.1 is second-order,

with a natural frequency of ten radians per second, but any linear

system would have served as well. The system is described, from its

closed-loop form, as having a forward-loop transfer function of

100/s(s + 1) and a negative unity feedback-path transfer function.

The system might also have been modeled in its open-loop form.

The system modeled in this manner is shown in Appendix A.

B. CONSTANTS, PARAMETERS, AND PROGRAM CONTROLS

Constants, parameters, and program execution controls are shown in

the sample program following the title and general system description

(in DSL/360, asterisks in column 1 indicate a comment card).

The one constant, PI, is self-explanatory.

The parameters must be determined by the user and are:

OMEGA - the input frequency, in radians per second

A the input peak magnitude

FGAIN - the feedback-path gain

13



TITLE LINEAR SYSTEM RESPONSE TO A SINE WAVE INPUT
* FORWARD-PATH TRANSFER FUNCTION: 100/S(S+1)
* FEEDBACK-PATH TRANSFER FUNCTION: -1
CCNST PI=3. 1415927
PARAM OMFGA=2C, A = l. ,FGAIN=1.
CONTRL FINTIM=!C0O0.,DELT=O.015 7O7964
INTEG RKSFX
INITIAL REGION

PERIOD=2.*PI/OMEGA
DELINT=3.*PERIOD
DILINT=10.*PERIOD
E RG=PI *(. 5 -DELT/ PERIOD)
EPS1=1.E-03*A
EPS2=C.
EPS3=C.
XIN=0.
XOUT=C.
XTDIFF=0.
RPHASE=0.
DPHASE=0.
MAXOUT=0.
DERDUT=1C.

DERIVATIVE REGION
IN=A*SINF(C. ,OMFGA,0. )

ERPOP=IN-FGAIN*OUT
OUT=TRNFR(0.,2. t IC , NUM , DEN, ERROR

)

STORAG IC<2) tNUM(l) tDENm
TABLE IC(1-2)=C. ,0.,NUM( 1)=100. , DEN (1-3>=1. ,1. tO.
DYNAMIC RFGION
* DETERMINATION OF STEADY-STATE CONDITION

DELOUT=DELAY(60 5,DELINT,OUT)
DILOUT=DELAY(2 005, DILI NT, OUT)
IF(TIME.LE.DELINT) GO TO 2
IF(ABS(DELOUT-OUT).LE.EPSl) GO TO 1

MAXOUT=C.
GC TO 2

* DETERMINATION OF OUTPUT STEADY-STATE PEAK MAGNITUDF
1 IF(OUT.GT.MAXOUT) MAXOUT=QUT
DEROUT=OMEGA*MAXOUT*COS( ARG)
EPS2=C.0Ol*MAXOUT
EPS3=OMEGA*MAXOUT*COS( ERG)

* DETERMINATION OF OUTPUT STEADY-STATE PHASE
2 AXIN=CRCSS(TIME,IN,C. )

IF(AXIN.NE.O.) XIN=AXIN
AXOUT=CRCSS(TIME,OUT,0.

)

IF(AXOUT.NF.O. ) XOUT=AXOUT
IF(XIN.GT.XOUT) GO TO 3
XTDIFF=XIN-XOUT
RPHA SE =2*P I *XTD IFF /PERIOD
DPHASE=36C.*XTD IFF /PERIOD

3 ARG=OMEGA*TIME+PPHASF
IF(TIME.LE.DILINT) GO TO 4
IF(ABS( DEL OUT-OUT ).LE.EPS2. AND. ABS( DI LOUT-OUT. .

.

).LE.EPS2.AND. ABS ( DEROUT. .

.

).LE.EPS3.AND.OUT.GT.O..AND.MAXOUT.GT.O. ) CALL ENDRUN
4 CONTINUE

TERMINAL REGION
PRINT OMEGA,MAXOUT,RPHASE,DPHASE

CALL PRINT
END
STOP

FIGURE 3.1

SAMPLE PROGRAM FOR DETERMINING SYEADY-STATE RESPONSE TO A
SINUSOIDAL EXCITATION
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The program execution controls must also be determined by the user

and are :

FINTIM - the maximum simulation value for the independent
variable, time

DELT the simulation interval; the unit of time for the

integration routine to accomplish an integration step

INTEG RKSFX - the fixed integration routine with an integration
interval equal to one-half of the simulation interval, DELT

FINTIM must be expressed numerically in DSL/360 and, in this program,

is set arbitrarily at 10,000 seconds to ensure sufficient time for the

response to attain the steady-state condition. Once steady-state is

attained and the output peak magnitude and phase are calculated, the

run is automatically terminated by a CALL ENDRUN statement.

In this program, the execution control DELT is directly related to

OMEGA, the input frequency. Since DSL/360 requires that DELT also be

expressed as a numerical value, the DSL/360 user must calculate the

value of DELT from the equation

1 2 x PT
DELT = - x PERIOD = *

fItZ„ A
seconds.

N N x OMEGA

The first iteration calculation is made at time zero, and an iteration

calculation is made at discrete intervals thereafter, the length of the

intervals depending on the integration scheme being used [Ref. 1].

Since the output phase is not known in advance, assurance that an

iteration calculation will be made at or reasonably near the peak-

value point of each output cycle is made by setting a high value for

N. Since the basis for steady-state testing is the comparison of values

at each iteration point on one output cycle with the values at the

corresponding point on two other output cycles, N should be an integer.

It has been determined empirically that the value of N should be an

15



integer no less than about twenty; this figure provides a trade-off

between acceptable accuracy and reasonable computation time. A program

for generating a table of DELT versus OMEGA, for N equal to twenty, is

shown in Appendix B.

C. THE INITIAL REGION

The INITIAL REGION encompasses calculations, input and output

operations, and initializations that must be made once only at the

beginning of a run. The values and equations shown in the sample

program apply to all systems and need not be changed by the user.

All variables shown in the INITIAL REGION in the sample program

are either self-explanatory or explained more appropriately elsewhere

in this chapter.

D. THE DERIVATIVE REGION

The DERIVATIVE REGION encompasses those calculations involving

integration and derivatives of the state variables being integrated.

The basic interval in the independent variable, time, for each pass

through this region is the calculation interval. In this program, the

interval is determined by INTEG RKSFX and is one-half the simulation

interval, DELT.

In the program, the DERIVATIVE REGION contains equations describing

the input and system transfer functions and input-output relationships.

While the DSL/360 function block TRNFR is used in the sample program,

representing the system in either its closed-loop or open-loop form,

the system could also have been represented by a set of ordinary dif-

ferential equations [Ref. 1]. The use of ordinary differential

equations does not alter the remainder of the program in any way.
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STORAG, a DSL/360 translator command, and TABLE, a DSL/360 data

input, are both associated with the use of the function block TRNFR.

SINE() is the DSL/360 function block that models the input.

E. THE DYNAMIC REGION

The DYNAMIC REGION encompasses all time-dependent algebraic calcu-

lations, other than derivative calculations for the integration routines

in the DERIVATIVE REGION, plus all other operations which must be per-

formed at each discrete value of time; i.e., all those operations which

must be performed each iteration. It is in this region, in the sample

program, that steady-state testing and response magnitude and phase

calculations are accomplished.

The variables in the DYNAMIC REGION of the sample program are:

OUT the value of the output magnitude at the point on the output
cycle at which the current iteration calculations are being made

DELOUT - the value of OUT, to be saved for comparison with the value
of OUT at the same point on the third cycle following

DILOUT - the value of OUT, to be saved for comparison with the value
of OUT at the same point on the tenth cycle following

EPS1 the allowable difference between DELOUT and OUT (the differ-
ence between the current value of the output magnitude and the value at

the same point on the third cycle preceding) within which DELOUT and OUT
are considered to be equal

MAXOUT - the maximum value of OUT; the peak value of the output
magnitude

DEROUT - the value of the slope of the output at the iteration point

EPS2 the allowable difference between DELOUT and OUT and between
DILOUT and OUT within which DELOUT, DILOUT, and OUT are considered to

be equal

EPS3 --- the maximum allowable value within which the slope of the

output, DEROUT, may be considered to be at the peak of an output cycle

AXIN the time at which the input cycle crosses its zero-value
point

17



XIN the value of AXIN saved until the input cycle next crosses
its zero-value point

AXOUT -- the time at which the output cycle crosses it zero-value
point

XOUT the value of AXOUT saved until the output cycle next crosses
its zero-value point

XTDIFF - the time elapsed between XIN and XOUT

RPHASE - the value of the output phase in radians

DPHASE - the value of the output phase in degrees

ARG the value of the argument for the calculation of the output
slope, DEROUT

ERG the value of the argument for the calculation of EPS3

EPS1 is relatively coarse and is the criterion to be met by the

output magnitude before the program will permit steady-state testing

during any given iteration. EPS2 is a refined criterion for determining

whether or not the train of cycles is sufficiently similar for the out-

put to be considered in the steady-state condition. The run is continued,

however, even after the EPS2 criterion is satisfied, until the peak value

of the output magnitude has been attained, determined, in part, by EPS3.

The numbers 605 and 2005 appearing in the arguments of the equations

for DELOUT and DILOUT represent the maximum number of sampled values of

OUT stored in the delay intervals DELINT and DILINT, respectively.

Reference 1 states that these .-riumbers , which must be coded explicitly

as numerical, integer constants, should be less than or equal to the

delay interval divided by DELT. In practice, however, it was found

that these numbers must be greater than the delay interval divided by

DELT. For an N of twenty, then, in the case of DELOUT, this number is

DEI LINT
>

3 x PERIOD
DELT ' 1/20 x PERIOD

18



For DILOUT, the number is

DILINT 10 x PERIOD _ -

DELT ' 1/20 x PERIOD

It can be seen, therefore, that the sample program will handle a pro-

gram for any DELT where N is 204 or less. If more than this number of

iterations per cycle is desired, the integer numbers to replace the

numbers 605 and 2005 may be determined from the above equations.

ERG is the argument, in radians, for the slope of the output at

the point on the cycle most remote from the maximum point which can

possibly be obtained for the DELT specified. Ideally, an iteration

calculation will occur at the maximum, and the slope will be zero.

However, because the process is an iterative one and the phase is

shifted by an indeterminable amount, an iteration calculation may occur

as far away, in time, as one-half of DELT; i.e., the maximum point may

be exactly half-way between two iteration calculation points. To

ensure that the slope criterion, EPS3, will be no greater than the slope

at this point, ERG is determined as follows:

Nr. of radians/iteration
2 x pi

Nr . of iterations/cycle

2 x pi

PERIOD/DELT

_ 2 x pi x DELT
PERIOD

ERG = JEi - 1 2 x pi x DELT
PERIOD

DELT
= pi 0.5

PERIOD

J

Phase is calculated in the program so as to produce the result

always as a lag indication by XTDIFF, else both the true phase angle

and its supplement would be calculated. For a phase angle from zero

degrees to 180 degrees, the program is satisfactory. However, because

19



all attempts to limit phase computations only to times at which the

input and output cycles crossed their respective zero-value points in

an upward (increasing value) direction failed, phase lag angles from

180 degrees to 360 degrees (phase lead) are calculated as supplements

of the true phase angle. To determine whether the program has calcu-

lated true phase or its supplement, the user may either sketch the

asymptotes of the phase plot on a Bode diagram or, if the system

description does not readily lend itself to this method, have the pro-

gram provide a time graph of a few cycles each of the input and the out'

put, from which phase lag or lead may be determined visually.

F. THE TERMINAL REGION

Entry into the TERMINAL REGION is made at the termination of a run

for purposes of performing input and output operations, testing

terminating conditions, processing results, changing parameter values

and requesting a rerun, or terminating the job. In the sample program,

the values of the variables and parameters desired in the printout are

caused to be written in the TERMINAL REGION.

If it is desired to make several runs in one job, each run at a

different value of OMEGA, say, it is within this region that new

values for the parameter OMEGA and the simulation interval DELT may

be specified. Appendix A contains an example of such a multi-run job.

A method for programming a multi-run job with different values for

OMEGA for each run, calculated by the program, and for which DELT need

not be changed for each run is discussed in Chapter IV.
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IV. CONCLUSIONS

This chapter presents a discussion of the results obtained, several

limitations of the program as evolved, and recommendations for exten-

sions of investigation.

A. RESULTS

Overall, the results of testing several linear systems were satis-

factory. The response data provided by the program were consistently

accurate, signifying that the steady-state testing scheme worked

satisfactorily and consistently avoided chance satisfaction of the

steady-state criteria during the settling phase.

Programs and results for several of the systems tested are shown

in Appendix A.

B. LIMITATIONS

There are several limitations on the use of the program evolved,

some inherent in DSL/360 and some a function of the value of parameters

selected.

Limitation 1. DELT must be calculated by the user and expressed in

the program numerically. This could be eliminated if DELT could be

expressed as a variable function of OMEGA, but this requires an altera-

tion of DSL/360, beyond the scope of this paper.

Basically, a new value for DELT must be calculated for each value

of OMEGA used. However, the number of calculations for values of DELT

may be reduced in a multi-run job by starting with a high value for

OMEGA and a corresponding value for DELT (equal to, say, one-twentieth
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of the period) and including in the program a scheme to halve the pre-

ceding value of OMEGA each run. DELT need not be changed, then, since

each time OMEGA is halved, the number of iterations per cycle is

doubled, and the criteria for DELT are satisfied (N remains an integer

no smaller than twenty, doubling each successive run; the program as

shown in the sample will accept any value of N to a maximum of about

204). Appendix A contains an example of this method.

Limitation 2. Since the independent variable is time, only time

plots may be obtained without modification of DSL/360. Such plots may

be desired if the user wants to determine whether phase lags or leads.

Limitation 3. Use of too small a value for OMEGA, as compared to

the value for the natural frequency of the system, may result in no

program output. This is caused by the fixed integration called for by

INTEG RKSFX. If this card is removed from the deck, the integration

interval automatically defaults to that called for by the variable-

step integration routine RKS . However, DELT then varies with the

integration interval [Ref. 1], and the conditions required for steady-

state testing may not be met because integration points on different

cycles may not correspond. It was attempted to begin a run with the

variable-step routine RKS and, after some relatively short interval,

to impose the fixed-step routine RKSFX. These attempts were unsuccess-

ful, however, because no matter where the INTEG RKSFX card was located

-- even within a NOSORT region [Ref. 1] -- it was employed from the

outset

.

C. RECOMMENDATIONS FOR EXTENSIONS OF INVESTIGATION

There are several recommendations for logical extensions of this

investigation.
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Recommendation 1. Determine a method for calculating phase that

will not result in computing the supplement of the phase angle, rather

than the true phase angle, whenever the phase is leading (or, as

written in the program, whenever the phase lags from 180 degrees to

360 degrees)

.

Recommendation 2. Alter DSL/360 to permit the designation of DELT

as a variable function of OMEGA rather than as a numerical constant.

Recommendation 3. Alter DSL/360 to permit graphing a variable

versus some other parameter than time; specifically, it would be

desirable to graph both MAXOUT and the phase versus OMEGA.

Recommendation 4. Apply the basic concept of this paper to the

measurement of frequency response for a non-linear system.

23



APPENDIX A

This appendix presents six examples of systems used to test the

program evolved for determining the frequency response. For each

example, the system description, the program, and the frequency response

is given.
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EXAMPLE 1

The system used in this example is identical to the system used in

the sample program of Figure 3.1. This example shows one method of

obtaining the response to more than one frequency in one job. DELT

must be calculated and specified within the program for each OMEGA.

The program is shown in Figure A.l, and the frequency response is

shown in Figure A. 2.

For this example, the simulation time varied from 3.65 seconds to

8.11 seconds for runs for nine different frequencies, or an average of

6.05 seconds per run. The total execution time was 58.49 seconds.
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TITLE LINF
* FORW
* FEED
CJNST PI=3.1
PARAM QMEGA=
CONTRL FINTI
INTEG RKSFX
INITIAL REGI

PERITD
DELIN T

DILINT
ERG=F!
EPS1=1
EPS2=0
E^S3=0
XIM=0.
XOUT=0
XTDIF C

RPHASF
OPHASE
MAXOUT
OEROUT

DERIVATIVE R
IN=A*S
ERROR=
OUT=TR

STORAG IC(2)
TABLE IC( 1-2
DYNAMIC REGI
* DETERMINA

DELOUT
DILOUT
IF(TIM
IF( ABS
MAXOUT
GO TO

* DETERMINA
1 IF(OUT
OEROUT
EPS2=0
EPS3=0

* DETERMINA
2 AXIN=C

IF< AXI
AXOUT=
IF( AXO
IP( XIN
XTDIFF
RPHASE
DPHASu

3 APG=OM
IF( TIM
IF(ABS
) . L E . E
J.LE.E

4 CQNTIN
TERMINAL REG
PRINT OMEGA,

CALL P
END
PARAM OMEGA=
CONTRL DELT=
END

AR SYSTEM RE
APD-PATH TRA
RACK-PATH TR
*15S27
6. ,A = 1. ,FGAI
M=1000C. ,DEL

ON
=2.*PI/OMEGA
=3.*PERIOD
=10.*PERIOD
*< .5-DELT/PERIOD)
.E-0^*A

= C.
= C.
= 0.
= 0.
= 10.
EG I ON
INE<0.,
IN-FGAI
N<=p(Q. ,

,NUM( 1)
)=0.,0.
ON
TION OF
=DELAY{
=DELAY(
E.LE.DE
(DELOUT

SPCNSE TO A SINE WAVE INPU T

NSFER FUNCTION: 100/SCS+l)
ANSFER FUNCTCN: -1

N=l.
T=0. 05235936

OMEGA
N*OUT
2. ,IC
,DEN(
,NUM(

,0. )

,NUM t DtN, ERROR)
3)
1)=10C.,DE^<1-3)=1.,1.,0.

= 0.

STEADY-STATE CONDITION
605,DELINT,PUT)

DILINT ,OUT)
GO TO 2
.LE.EPS1 ) GO TO 1

2005,
LINT)
-OUT)

TION OF OUTP
.GT. MAXOUT)
=PMEGA*MAXOU
.001*MAX0UT
MFOA*MAXOUT*
TION OF OUTP
epSS(TIME ,IN
N.NE.O.) XIN
CFOSS(TIME,0
UT.NE.O.) XO
.GT.XOUT) GO
=XIN-X0UT
=?*PI*XTDIFF
=36Q.*XTDIFF
FGA*TIME+R?H
E.LE. DILINT)
(DELOUT-OUT)
PS2.AND.ABS(
FS3.AND.0UT.
UE
ION
MAXOUT, RPHAS
PINT

7.
0.04467989

UT STEADY-STATE PEAK MAGNITUDE
MAXOUT=OUT
T*CCS( ARG)

CCS(ERG)
UT STEADY-STATE PHASF
,0.)
=AXIN
UT,0.

)

UT=AXOUT
TO 3

/PERIOD
/PERIOD
ASE
GO TG 4

. L E . E P S2 . AND. ABS ( D IL CUT- JUT . .

.

DEPOUT.. .

GT.O. .M\ID. MAXOUT. GT. 0. ) CALL ENDRUN

E,DPHASE

FIGURE A.l

PROGRAM FOR SYSTEM OF EXAMPLE 1
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PARAM
CONTRL
END
PARAM
CQNTRL
END
PARAM
CONTRL
END
PARAM
CONTRL
END
PARAM
CONTRL
END
PARAM
CONTRL
END
PARAM
CONTRL
END
STOP

OMEGA=8.
DELT=0. 03926991

0MEGA=9.
DELT=0. 03490659

OMEGA=10.
DLLT=0. 031415927

OMEGA=ll.
DELT=0. 02855993

OMEGA=12.
DELT=C. 02617994

OMEGA=13.
DELT=0. 02416609

0MEGA=14.
DELT=0. 02243995

FIGURE A.l (CONTINUED)
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EXAMPLE 2

The system used in this example is identical to the system used

in the sample program of Figure 3.1. This example shows a second

method, a variation of that shown in Example 1, whereby the response

to more than one frequency may be obtained in one job. For this method,

DELT need not be recalculated for each OMEGA, which is halved each run,

since halving OMEGA results in doubling the number of iteration inter-

vals per cycle for a given DELT. To ensure that the criteria for DELT

(and N) are always met, the highest value for OMEGA for which a response

is desired in the job is specified in the PARAM card.

The program is shown in Figure A. 3. The frequency response,

identical to that obtained for Example 1, is shown in Figure A. 2.

Since the number of iterations per cycle doubles each run, simu-

lation time for this method is greater than for the method of Example

1, where the number of iterations per cycle remains constant for all

frequencies (so long as the same value for N is used). For a maximum

allowable simulation time of ten minutes (a local ruling specified for

the computer on which these examples were run), the responses for a

maximum of only six frequencies were obtainable on any single job, an

average of 100 seconds per run. The method of Example 1 is, therefore,

in general less costly. In general, simulation time may vary consider-

ably from one system to another and, for any given system, from one

frequency to another.
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TITLE LINEAR SYSTEM RESPONSE TO A SINE WAVE INPUT
* FORWARD-PATH TRANSFER FUNCTION: 100/S(S+1)
* FEEDBACK-PATH TRANSFER FUNCTION: -1
CONST PI=3. 1415927
PAR AM 0MEGA=40.,L0MEGA=1.,A=1.,FGAIN=1.
CONTRL FINTIM=10COO. ,DELT=0. 015707964
INTEG RKSFX
INITIAL REGION

0MEGA=0MEGA/2,
PERI0D=2.*PI/0MEGA
DELINT=3.*PERI0D
DILINT=10.*PERI0D
EPG=PI*(.5-DELT/PERI0D)
EPS1=1.E-C3*A
EPS2=0.
EPS3=0.
XIN=0.
XCUT=0.
XTDIFF=0.
RPHASE=C.
DPHASE=0.
MAXOUT=C.
DER0UT=10.

DERIVATIVE RFGION
IN=A*SINE<0. , OMEGA, 0.

)

E RROR= I N-F GM N* OUT
0UT=TRNFR(0.,2., IC , NUM , DEN, ERROR

)

STORAG IC(2) ,NUM(1),DEN(3)
TABLE IC(1-2)=C. ,0.,NUM( 1 ) = 100. ,DEN< 1 -3) =1. ,1 . ,0.
DYNAMIC REGION
* DETERMINATION OF STEADY-STATE CONDITION

DEL0UT=DELAY(605,DELINT,0UT)
D I LOUT = DEL AY (2005 .DILI NT, OUT)
IFCTIME.LE.DELINT) GO TO 2
IF(ABS(DEL0UT-0UT).LE.EPS1) GO TO 1

MAXOUT=0.
GO TO 2

* DETERMINATION OF OUTPUT STEADY-STATE PEAK MAGNITUDE
1 IF(OUT.GT.MAXOUT) MAXOUT=OUT
DEROUT=OMEGA*MAXOUT*COS( ARG

)

EPS2=0.001*MAX0UT
EPS3=0MEGA*MAX0UT*C0S(ERG)

* DETERMINATION OF OUTPUT STEADY-STATE PHASE
2 AXIN=CROSS(TIME,IN,0. )

IF(AXIN.NE.O.) XIN=AXIN
AXOUT=CROSS(TIME,OUT,0, )

IFUXOUT.NE.O. ) XOUT=AXOUT
IF(XIN.GT. XHUT) GO TO 3
XTDIFF=XIN-XOUT
RPHASE=2*P I* XTD IFF/ PERIOD
DPHASE = 36C* XTD IFF /PERIOD

3 ARG=OMEGA*TIME+RPHASE
IF1TIME.LE.DILINT) GO TO 4
I F< ABSCDELOUT-OUTJ.LE.EPS 2. AND, ABS( DI LOUT-OUT. . .

).LE.EPS2.AND. ABS ( DEROUT. .

.

).LE.EPS3.AND.OUT.GT.O..AND.MAXOUT.GT.O. ) CALL ENDRUN
4 CONTINUE

TERMINAL REGION
PRINT OMEGA, MAXOUT,RPHASE,DPHASE

CALL PRINT
IF(OMEGA.GE.LOMEGA) CALL RERUN

END
STOP

FIGURE A.

3

PROGRAM FOR SYSTEM OF EXAMPLE 2
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EXAMPLE 3

This example, too, uses the system shown in the sample program of

Figure 3.1 and in Examples 1 and 2. In this case, however, the system

is modeled in its open-loop form, rather than the closed-loop form

employed in the sample and Examples 1 and 2. The program is shown in

Figure A. 4, and its frequency response, identical to those obtained in

Examples 1 and 2, is shown in Figure A. 2.
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TITLE LINEAR SYSTEM RESPONSE TO A SINE WAVE INPUT
* FORWARD-PATH TRANSFER FUNCTION: 100/ (S2+S+100 )

* FEEDBACK-PATH TRANSFER FUNCTION: ZERO
CONST PI=3. 1415927
PARAM 0MEGA=160.,L0MEGA«1. ,A=1.
CONTRL FINTIM=10000. ,DELT=0. 003926989
INTEG RKSFX
INITIAL REGION

0MEGA=0MFGA/2.
PERI0D=2.*PI/0MEGA
DELINT=3.*PERI0D
DILINT=10.*PERI0D
ERG=PI*( .5-DELT/PERIOD)
EPS1=1.E-03*A
EPS2=0.
EPS3=0.
XIN=0.
XOUT=0.
XTDIFF=0.
RPHASE=0.
DPHASE=0.
MAXOUT=0.
DER0UT=10.

DERIVATIVE REGION
IN=A*SINE<0. ,OMEGA,0.)
OUT=TRNFR<0.,2. , IC ,NUM,DEN ,1 N)

STORAG IC(2),NUM(1),DEN(3)
TABLE IC(1-2)=0.,0.,NUM(1)=100.,DEN(1-3)=1.,1.,100.
DYNAMIC REGION
* DETERMINATION OF STEADY-STATE CONDITION

DEL0UT=DELAY(605,DELINT,0UT)
DIL0UT=DELAY(2005,DILINT,0UT)
IF(TIME.LE.DELINT) GO TO 2
IF(ABS(DEL0UT-0UT).LE.EPS1 ) GO TO 1
MAXOUT=0.
GO TO 2

* DETERMINATION OF OUTPUT STEADY-STATE PEAK MAGNITUDE
1 IF(OUT.GT.MAXOUT) MAXOUT=OUT
OEROUT=OMEGA*MAXOUT*COS(ARG)
EPS2=0.001*MAXOUT
EPS3=0MEGA*MAX0UT*C0S( ERG)

* DETERMINATION OF OUTPUT STEADY-STATE PHASE
2 AXIN=CR0SS(TIME,IN,0.)

IFUXIN.NE.O.) XIN=AXIN
AXOUT=CROSS(TIME,OUT,0.)
IFCAXOUT.NE.O.) XOUT=AXOUT
IF(XIN.GT.XOUT) GO TO 3
XTDIFF=XIN-X0UT
RPHASE=2*P I *XTD IFF /PERIOD
DPHASE=360.*XTD IFF /PERIOD

3 ARG=OMEGA*TIME+RPHASE
IF(TIME.LE.DILINT) GO TO 4
IF(ABS(DEL0UT-0UT).LE.EPS2.AND.ABS<DIL0UT-0UT...
I. LE. EPS2. AND. ABSfDE ROUT...
).LE.EPS3.AND.OUT.GT.O..AND.MAXOUT.GT.O.) CALL ENDRUN

4 CONTINUF
TERMINAL REGION
PRINT OMEGA, MAXOUT,RPHASE,DPHASE

CALL PRINT
IF(OMEGA.GE.LOMEGA) CALL RERUN

END
STOP

FIGURE A.

4

PROGRAM FOR SYSTEM OF EXAMPLE 3
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EXAMPLE 4

The system used in this example is open-loop, with a transfer

function of 10/s (s+1) (s+5) . The program is shown in Figure A. 5, and

the system response is shown in Figure A. 6.
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TITLE LINEAR SYSTEM RESPONSE TO A SINE WAVE INPUT
* FORWARD-PATH TRANSFER FUNCTION: 10/ ( S3+6S2+5S- 10)
* FEEDBACK-PATH TRANSFER FUNCTION: -1
CONST PI=3. 1415927
PARAM 0MFGA=2C0. ,L0MEGA=0.01 , A=l.
CONTRL FINTIM=10000. , DELT=0. 001 5707964
INTEG RKSFX
INITIAL REGION

0MEGA=0MEGA/2.
PERI0D=2.*PI/0MEGA
DELINT=3.*PERI0D
DILINT=10.*PERIOD
EPG=PI*(.5-DELT/PERI0D)
EPS1=1.E-03*A
EPS2=0.
EPS3=0.
XIN=0.
XOUT=C.
XTDIFF=0.
RPHASE=0.
CPHASE=C.
MAXOUT=0.
DER0UT=10.

DERIVATIVE REGION
IN=A*SINE<0. , OMEGA, 0.

)

0UT=TRNFR<0.,3.,IC,NUM,DEN, IN)
STORAG IC(3) ,NUM<1 ),DEN<4)
TABLE IC( 1-3) =C. ,0. ,0, ,NUM(1)=10. ,DEN(1-4)=1, ,6, ,5.,0.
DYNAMIC PEGION
* DETERMINATION OF STEADY-STATE CONDITION

DEL0UT=DFLAY(605,DELINT,0UT>
DILOUT=DELAY(2 005,DILINT,OUT)
IF(TIME.LE.DELINT) GO TO 2
IF(ABS(DEL0UT-0UT).LE.EPS1) GO TO 1

MAXOUT=0.
GO TO 2

* DETERMINATION OF OUTPUT STEADY-STATE PEAK MAGNITUDE
1 IF(OUT.GT.MAXOUT) MAXOUT=OUT
OFPOUT=OMEGA*MAXOUT*COS(ARG)
EPS2=0.0Cl*MAXOUT
EPS3=0MEGA*MAX0UT*C0S(ERG)

* DETERMINATION OF OUTPUT STEADY-STATE PHASE
2 AXIN=CROSS(TIME,IN,0. )

IFUXIN.NE.O.) XIN=AXIN
AXOUT=CPOSS(TIME,OUT,0. )

IFUXOUT.NE.O. ) XOUT=AXOUT
IF(XIN.GT. XOUT) GO TO 3
XTDIFF=XIN-XOUT
RPHASE=2*PI*XTD IFF /PERIOD
DPHASE=360.*XTD IFF /PERIOD

3 ARG=OMEGA*TIME+RPHASE
IF(TIME.LE.DILINT) GO TO 4
I F(ABS( DEL CUT-OUT ).LE.EPS2. AND. ABS( DI LOUT-OUT. .

.

).LE.EPS2.AND. ABS ( DEROUT. .

.

J.LE.EPS3.AND.OUT.GT.0..AND.MAXOUT.GT.0. ) CALL ENDRUN
4 CONTINUE

TERMINAL REGION
PRINT OMEGA, MAXOUT, RPHASE ,DPHASE

CALL PRINT
IF(OMEGA.GE.LOMEGA) CALL RERUN

END
STOP

FIGURE A.

5

PROGRAM FOR SYSTEM OF EXAMPLE 4
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EXAMPLE 5

The system used in this example is open-loop, with a transfer

function of (s+1)/ (s+10) . To meet DSL/360 criteria for system

modeling [Ref, 1], the division was carried out, yielding 1 - 9/(s+10)

The system was then modeled from the diagram shown in Figure A. 7.

FIGURE A.

7

Block Diagram of System for Example 5

The program is shown in Figure A. 8, and the frequency response is

shown in Figure A. 9.

The phase of the output in this system leads the input. One

limitation to the program, discussed in Chapter IV, is that the pro-

gram computes the supplement of the phase angle rather than the true

value of the phase whenever the output leads the input, as in this

example. True phase is used in the plot of Figure A. 9.
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TITLE LINEAR SYSTEM RESPONSE TO A SINE WAVE INPUT
* FORWARD-PATH TRANSFER FUNCTION: (S+1)/(S+10) =
* 1 - 9/<S*10)
* FEEDBACK-PATH TRANSFER FUNCTION: ZERO
CONST PI=3. 1415927
PARAM OMEGA=160..LOMEGA=1. ,A=1.
CONTRL FINTIM=10000. ,DELT=0. 003926989
INTEG RKSFX
INITIAL REGION

0MEGA=0MEGA/2.
PERI0D=2.*PI/0MEGA
DELINT=3.*PERI0D
DILINT=10.*PERI0D
ERG=PI*< .5-DELT/PERI0D)
EPS1=1.E-03*A
EPS2=0.
EPS3=0.
XIN=0.
XOUT=0.
XTDIFF=0.
RPHASE-O.
DPHASE=0.
MAXOUT=0.
DER0UT=10.

DERIVATIVE REGION
IN=A*SINE<0. , OMEGA, 0.)
0UTA=TRNFR(0.,1. , IC ,NUM,DE N, I N)

STORAG IC(1),NUM( 1),DEN(2)
TABLE IC( 1)=0.,NUM(I)=-9.,DEN<1-2>=1.,10.

OUT=OUTA+IN
DYNAMIC REGION
* DETERMINATION OF STEADY-STATE CONDITION

DEL0UT=DELAY(605tDELINT,0UT)
DIL0UT=DELAY(2 005,DILINT,0UT)
IF(TIME.LE.DELINT) GO TO 2
IF( ABS(DEL0UT-0UT).LE.EPS1 ) GO TO 1
MAXOUT=0.
GO TO 2

* DETERMINATION OF OUTPUT STEADY-STATE PEAK MAGNITUDE
1 IF(OUT.GT.MAXOUT) MAXOUT=OUT
DEROUT=OMEGA*MAXOUT*CCS(ARG)
EPS2=0.001*MAXOUT
EPS3=0MEGA*MAX0UT*C0S( ERG)

* DETERMINATION OF OUTPUT STEADY-STATE PHASE
2 AXIN=CPOSS(TIME,IN,0.)

IFUXIN.NE.O.) XIN^AXIN
AXOUT=CROSS (TIME, OUT, 0.)
IF(AXOUT.NE.O. ) XOUT=AXOUT
IF(XIN.GT.XOUT) GO TO 3
XTDIFF=XIN-XOUT
RPHASE=2*PI*XTDIFF /PERIOD
DPHASE=360.*XTD IFF /PERIOD

3 ARG=OMEGA*TIME+RPHASE
IF(TIME.LE.DILINT) GO TO 4
IF (ABS(DEL0UT-0UT).LE.EPS2. AND. ABS(DI LOUT-OUT...
). LE. E P S2. AND. ABS(DE ROUT...
).LE.EPS3.AND.OUT.GT.O..AND.MAXOUT.GT.O.) CALL ENDRUN

4 CONTINUE
TERMINAL REGION
PRINT OMEGA, MAXOUT,RPHASE,DPHASE

CALL PRINT
IF(OMEGA.GE.LOMEGA) CALL RERUN

END
STOP

FIGURE A.

8

PROGRAM FOR SYSTEM OF EXAMPLE 5

37



PHASE

a
E
CO

Xw
U-l

o

6
<u
4-1

<J^ CO

>^
<3 en

W
D

w
C
o
Q.
CO

O
c
a)

3
a"
CD

aanxiNOvw

38



EXAMPLE 6

The system modeled in this example is a magnetic tape transport

mechanism which employs a vacuum column for tape loop control. The

equations representing the system have been linearized for use with

the program.

The input is an AC signal to a DC motor, and the output is the

velocity of the tape before it passes over the capstan.

A diagram of the system is shown in Figure A. 10, and the program

containing the system modeling equations is shown in Figure A. 11.

The frequency response of the system is shown in Figure A. 12.

It will be noted that a resonance peak occurs at a frequency of

approximately 20,000 radians per second. All attempts to determine

frequency response at or near this frequency were unsuccessful because

the steady-state criteria were not met within ten minutes, the maximum

simulation time available locally on the computer on which these

examples were run.
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FIGURE A. 10

Diagram of System for Example 6
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TITLE LINEAR SYSTEM RESPONSE TO A SINE WAVE INPUT
* SYSTEM--LINEARIZED CYBERNET CAPSTAN MOTOR, TAPE, AN
CONST PI=3.1415927,...

M4=19. 245F-06,K4=119.8,C4=8.5E-03,RCAP=.75 f ...
LM=20.0E-06,RM0T0R=0.6,KBEMF=.0397,M0=2.115E-06,...
K3=13 5. ,C3 =.0092,KO=1091.,Cn=„0255,M3=14.15E-06, ...

J 2=22. 5E-C6,K1 2 = 6000. ,C 12=0. 008 , Jl = 50. E-06 ,. .

.

KT=0.353,Cl=14.F-06,...
FM=C.0,F0=0.0,F3=0.0,F4=0.0,T0RK=0.0

INCON ICM=C. , ICC 1 = 0. ,IC02 = 1.E-30,IC11=0. , IC 12=1 . E-30,..

.

IC22=C.,IC31=C.,IC3 2=l.E-30,IC4l=0.,IC42=l.E-30,...
IC21=0.

PARAM 0MEGA=450CC.,L0MEGA=1. ,A=1.
CCNTRL FINTIM=10C0O. , DELT=0. 00001 3^62 6
INTEG RKSFX
INITIAL REGION

0MFGA=0MEGA/2.
PERI0D=2. PI/OMEGA
DELINT=3.*PERI00
0ILINT=10.*PERI0D
ERG=P I *(.5-DELT /PERIOD)
EPS1=1.E-03*A
EPS2=0.
EPS3=C.
XIN=C.
X0UT=0.
XTDIFF=0.
RPHASE=0.
DPHASE=C.
MAXOUT=0.
DER0UT=1C.

DERIVATIVE REGION
IN=A*SINF(0.,OMEGA,0.

)

VMOTOR=IN
LMID0T=VM0T0R-RM0T0R*IM-KBEMF*TH1D0T
IMDCT=(1./LM)*LMID0T
IM=INTGRL( ICM,IMDOT>
M0T0RQ=KT*IM-C1*TH1D0T-SIGN(FM,TH1D0T)-K12*...
(TH1-TH2)-C12*(TH1D0T-TH2D0T)
TH1D2=( l./Jl)*MOTORQ
TH1D0T=INTGRL< IC12,THl02)
TH1=INTGPL(IC11,TH1D0T)
SUM4=T0RK-T2-SIGN(F4,X4D0T)
X4D2=< l./M4)*SUM4
X4D0T=INTGRL< IC42,X4D2 )

X4=INTGRL( IC41 ,X400T)
SUMX42=X4-X2
D0TX42=X4D0T-X2D0T
T2=C4*D0TX42+K4*SUMX42
X2D0T=X1D0T
X2=X1
T12=T1-T2
CAPT0P=K12*(TH1-TH2 ) +C12* ( TH1 D0T-TH2D0T )-RCAP*T 12
TH2D2=(l./J2)*CAPTOR
TH2D0T= INTGRL( IC22,TH2D2)
TH2=INTGRL(IC21,TH2DOT)
T1=K0*SUMX0H-C0*D0TX01
SUMX01=X1-X0
DOTX01=X1DOT-XODOT
X1D0T=PCAP*TH2D0T
X1=RCAP*TH2
SUMO=K3*X3*C3*X3DOT+KO*XH-CO*XlDOT-<CO*-C3)*XaDOT-...
(KC+K3)*X0-SIGN(F0,X0D0T)

FIGURE A. 11

PROGRAM FOR SYSTEM OF EXAMPLE 6
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X0D2=(1./M0)*SUM0
XODOT=INTGRL(IC02tXOD2)
XO=INTGRL< IC01 .XODOT)
SUM3=K3*(XO-X3)+C3*<XODOT-X3DOT)-TORK-SIGN(F3,X3DOT)
X3D2=(1./M3)*SUM3
X3DOT=INTGRL(IC32,X3D2)
X3=INTGRL< IC31,X3DOT)
OUT=XODGT

DYNAMIC REGION
* DETERMINATION OF STEADY-STATE CONDITION

DEL0UT=DELAY(605,DELINT t0UT)
DILOUT=DELAY(2 005, OIL I NT, OUT)
IF(TIME.LE.DELINT) GO TO 2
IF(ABS(DELOUT-OUT).LE.EPSl) GO TO 1

MAXOUT=0.
GO TO 2

* DETERMINATION OF OUTPUT STEADY-STATE PEAK MAGNITUDE
1 IF(OUT.GT.MAXOUT) MAXOUT=OUT
DEROUT=OMEGA*MAXOUT*COS(ARG)
EPS2=O.001*MAXOUT
EPS3=OMEGA*MAXOUT*COS< ERG)

* DETERMINATION OF OUTPUT STEADY-STATE PHASE
2 AXIN=CROSS(TIME,IN,0. )

IFCAXIN.NE.O.) XIN=AXIN
AXOUT=CROSS(TIME,OUT,0. )

IF(AXOUT.NE.O. ) XOUT=AXOUT
IF(XIN.GT.XOUT) GO TO 3
XTDIFF=XIN-XOUT
RPHASE=2*P I *XTD IFF /PERIOD
DPHASE=360.*XTD IFF /PERIOD

3 ARG=OMEGA*TIME+RPHASE
IF(TIME.LE.DILINT) GO TO 4
IF( ABS( DEL OUT-OUT) •LE.EPS2. AND. ABS(DI LOUT-OUT...
).LE.EPS2. AND. ABS(DEROUT. ..
).LE.EPS3.AND.0UT.GT.0..AND.MAX0UT.GT.0. ) CALL ENDRUN

4 CONTINUE
TERMINAL REGION
PRINT 0MEGA f X0,0UT t MAX0UT,Xl,XlD0T,X4,X4D0T,RPHASE,DPHASE

CALL PRINT
IF(OMEGA.GE.LOMEGA) CALL RERUN

END
STOP

FIGURE A. 11 (CONTINUED)

42



PHASE

H

a
E
(0

X
w
<4-l

o

E

4-1

co

C/5

o
<4-l

CD

CO

c
o
ex
en

>>
u
c
0)

d
cr
eu

aaniiNovw

43



APPENDIX B

A program for generating a table of DELT versus OMEGA for an N of

twenty is shown in Figure B.l. To generate a table for any other value

of N, the user need only specify the desired value of N in the program.

The program may also be modified to obtain values for DELT for intervals

of OMEGA and a maximum value of OMEGA other than the one radian per

second and the 10,000 radians per second, respectively, shown in the

program.

C GENERATION OF TABLE OF DELT VERSUS OMEGA FOR N=20
C

WRITE (6,1)
1 FORMAT (IX, 'TABLE OF DELT VERSUS OMEGA FOR N=20',//,1X,
*'0MEGA' ,9X, 'DELT' ,/)

PI=3. 1415927

0MEGA=1.
AN=20.
DO 3 1=1,10000
DELT=2 . *PI/ (AN*OMEGA)
WRITE (6, 2) OMEGA, DELT

2 FORMAT(F7.0,E18.7)
0MEGA=0MEGA+1.

3 CONTINUE
STOP
END

FIGURE B .

1

Program for Generating Table of DELT versus OMEGA
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