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ABSTRACT

This thesis investigates continuous-spatial dynamic models of
the composition "behavior of binary plate distillation columns. These
partial differential equation models are developed from basic distil-
lation column principles and the discrete-plate models by treating
the plate number as a continuous-spatial variable. Linearized
continuous-spatial models are investigated in detail.

The central purpose of this thesis is the development, pres-
entation, suggested analytical solution technique, and example column
evaluation of the Linear Polynomial-Coefficient Model (LPCM) which
is a linearized continuous-spatial model in which the coefficients
in the partial differential equation are n-th degree polynomials in
the spatial variable, A general analytical solution technique is
proposed in which the spatial differential eigenvalue problem
resulting from separation of variables is transformed to a Liouville
Normal-Form equation which is then converted to a homogeneous
Fredholm II integral equation. Several simple examples of the model
are solved in complete detail, and the proposed solution technique
is applied to a model with first-degree polynomial coefficients.
An analytical and a computational analysis giving the details of
each step of the solution technique is presented. It is suggested
that greatly reduced computation times compared to discrete models
will result from application of the proposed solution technique,

A bibliography of 352 references, 202 of which pertain directly
to distillation column dynamics and control, is presented and related
to the areas of the thesis.

Thesis Supervisor: Lawrence B. Evans

Title: Associate Professor of Chemical Engineering
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This diagram represents a combination of reading path and

application relationships. The arrows from one box to the next

imply reading direction and dependence direction. For example,

the main reading path through the thesis has been designed as II,

12, Ml, M2, M3, M4, LI, SI, S2; the other chapters which consider

subcases and solutions of these are shown leading into the main

reading path which is in double black lines.
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SECTION 1

INTRODUCTION TO DISTILLATION (i)

11 BASIC PRINCIPLES OF BINARY DISTILLATION

12 THE BINARY PLATE DISTILLATION COLUMN

13 PHILOSOPHY AND DISTILLATION

Ik A BRIEF REVIEW OF THE LITERATURE OF DISTILLATION

THE FUNDAMENTAL AND UNIVERSAL ABSOLUTE:

"EXISTENCE, REALITY, THE EXTERNAL WORLD, IS WHAT IT IS, INDEPEN-

DENT OF MAN'S CONSCIOUSNESS, INDEPENDENT OF ANYONE'S KNOWLEDGE,

JUDGMENT, BELIEFS, HOPES, WISHES, OR FEARS - THAT FACTS ARE FACTS,

THAT A IS A, THAT THINGS ARE WHAT THEY ARE."

NATHANIEL BRANDEN (B-28)

THIS SECTION PRESENTS THE BASIC PHYSICAL AND MATHEMATICAL IDEAS

OF BINARY DISTILLATION ORIENTED TOWARD FORMING A MATHEMATICAL MODEL

OF A BINARY PLATE DISTILLATION COLUMN. THE GENERAL PROBLEM OF OBSERV-

ING AND MODELING PHYSICAL SYSTEMS IS DISCUSSED AND THE HISTORY AND

GENERAL LITERATURE OF DISTILLATION ARE REVIEWED BRIEFLY. SEVERAL

OPINIONS ON THE PHILOSOPHY OF OBSERVING REALITY AS RELATED TO MODELING

A DISTILLATION COLUMN AND ON THE DESIRE TO ACHIEVE PROFIT AS RELATED

TO THE COST OF SEPARATION OF COMPONENTS ARE PRESENTED.

THE CENTRAL PURPOSE OF THIS THESIS IS THE DEVELOPMENT, PRESENTATION,

SUGGESTED SOLUTION TECHNIQUE, AND EVALUATION OF THE LINEAR POLYNOMIAL-

COEFFICIENT MODEL (LPCM) OF THE DYNAMIC BEHAVIOR OF A BINARY PLATE

DISTILLATION COLUMN. THIS SECTION PRESENTS THE BASIC PRINCIPLES LEADING

UP TO THE COMPLETE DEVELOPMENT OF THE LPCM IN SECTION 2(m) AND THE

PRESENTATION OF AN INTEGRAL EQUATION SOLUTION TECHNIQUE IN SECTION3(L).
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CHAPTER II

BASIC PRINCIPLES OF BINARY DISTILLATION

The purpose of Chapters II and 12 is to present the basic

principles behind the separation of binary mixtures and to develop

the techniques for describing mathematically and graphically the

steady state characteristics of a distillation column. These topics

are presented for several reasons:

1. Some readers may not be acquainted with the basic theory,

which is necessary for the developments which follow.

2. This is a convenient method for developing a consistent

notation for use throughout this thesis.

3. Presentations of those basic principles specifically

used in this thesis are not often found in the existing literature

in forms easily understood by readers without some background in

the subject.

There are many available techniques for describing binary

distillation in quantitative or qualitative terms. Most of these

techniques are oriented specifically toward one of these two outlooks.

The technique to be described in Chapters II and 12 is the use of the

McCabe-Thiele diagram which has the unique advantage of a quantitative,

qualitative, and, in a sense, visual insight into binary distillation.

The theory developed in this chapter represents a combination

of the developments available in the literature. The textbooks used

in this presentation of the theory in this chapter are listed below

in the order of decreasing pertinence to this chapter.

Gould (G-3)
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Bennett and Myers (B-l)

Van Winkle (v-i)

Holland (H-2),(H-7)

Some of the other textbooks which present the basic principles of

distillation are: (T-l), (S-l), (H-l), (C-l), (R-17), (C-5), (H-6),

(H-5), (R-21), and (M-2).

II. 1 DEFINITION OF BINARY DISTILLATION AND RELATIVE VOLATILITY

Binary distillation is defined as a process which separates a

mixture of two components by utilizing mass transfer between the

liquid and vapor phases of the components. The essence of this sep-

aration lies in the fact that when the vapor and liquid phases of a

binary mixture are in equilibrium, the vapor is richer in the lighter

component than is the liquid. The process by which the vapor phase

becomes richer in the component which boils at the lower temperature

"(lighter component) is called mass transfer. Although the term

distillation is occasionally used to describe the removal of volatile

materials from solids, the term as used in this thesis will apply only

to the separation of volatile components found in liquid solutions.

The equilibrium mentioned above is a phase equilibrium in which

the properties of the two phases depend upon the physical characteristics

of the two components which are present. The primary physical char-

acteristic of interest in this thesis is the relative volatility ot.

If the concentration of the lighter component in the liquid phase is

defined as u and the concentration of the lighter component in the

vapor phase is defined as f(u), then the relative volatility is given

by equation II. 1. This expression is only valid when a does not vary

-15-





1-u . f(u)

u l-f(u)
11.1

with composition, which is a valid approximation for a large number

of liquids. Equation II. 1, then, defines equilibrium between the two

phases in terms of the constant relative volatility a*

11.2 THE EQUILIBRIUM CURVE

The assumption that ct is constant is essential to the develop-

ments of this thesis because it allows a specific equilibrium function

to represent the characteristics of the phase mixture. Thus, an

equilibrium phase diagram can be drawn as in Figure II. 1 and a specific

equilibrium function f(u) can be expressed in Equation 11.2.

f(u) ecu

1 + (a-l)u

11.2

1

>
*(«J

{iu)
jC /

c

c
o
•H
+»
tt

u
+>
C!
0)

o
c
oo

u
o

/ ' y^

u a

v :

u
o

- 1s u u
Concentration in Liquid

Figure 11. 1 - THE EQUILIBRIUM CURVE
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In Figure II. 1 the curved line (equilibrium curve) represents

a graphical plot of equation 11.2. If the relative volatility is not

assumed to be constant, then this curve may have a significantly

different shape and be represented by a different functional relation-

ship. In trying to understand the meaning of the equilibrium curve

it is helpful to consider a point u in Figure II. 1,

Given a binary mixture which has liquid and vapor phases at

equilibrium, then the concentration of the lighter component in the

liquid is given by u , and the concentration of the lighter component

in the vapor is given by f(u ). Thus, going from the liquid to the

vapor in the two phase mixture corresponds to going from the u line

to the f(u) line on the equilibrium curve. The fact that the relative

volatility is such that f(u) > u in this case implies that a partial

separation of the mixture can be accomplished by separating the vapor

from the liquid.

11.3 USING THE EQUILIBRIUM CURVE TO DESCRIBE SEPARATION

If the vapor is separated from the liquid in a two phase binary

mixture, then condensing the vapor produces two separate liquids of

different compositions, the one having been condensed being richer in

the lighter component. This method of separation is the key to binary

distillation.

This separation method can be visualized by using the equilibrium

curve in Figure 11.2. The original liquid at composition u is boiled

and part of it becomes vapor at composition f(u ). If the vapor at

f(u ) is then separated from the liquid at u and then condensed, the

liquid condensate is of composition u-^ • f (u )» T^ie new liquid at

-17-





composition u, can now be boiled to produce vapor of composition

f(ui)> where f(u_) > a,. Thus, by successively boiling and condensing

the liquids and vapors, a desired degree of separation in terms of

the upper and lower (on the graph of Figure 11.2) liquids can be achieved,

f(u)-l

f(u^
r^^77-/

?(kYs^ \ /
^5

^ ui
~f Condense \s

Concentration

in

Vapor

o

/ « w !

1 ^y '

•Hi / '

pq /

f (u)=0 1

u=0 u u, u*l
O 1

Concentration in Liquid, u

Figure 11.2 - DESCRIBING SEPARATION ON THE EQUILIBRIUM CURVE
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11.4 PHYSICAL SEPARATION OF VAPOR AND LIQUID

The next problem to be considered Is that of the physical equip-

ment necessary to separate the vapor of f(u ) from the liquid at u ,

while at the same time allowing the liquid-vapor contact between the

vapor at f (uQ ) and the liquid at u.. • There are two commonly used

types of equipment for accomplishing this: packed columns and plate

columns, both of which have innumerable variations.

Packed columns use a form of continuous contacting of liquid

and vapor phases. This is accomplished by use of many small devices

in the form of rings, saddles, spheres, etc., which are randomly

"packed" into the column. This arrangement is designed to provide a

very large surface area for a given tower volume because the contacting

and mass transfer occur at the surfaces of the particles. The

mathematical models (Section M) of packed columns are usually partial-

differential equations. Packed columns will not be investigated

specifically in this thesis, but it is expected that the developments

of this thesis could be applied to packed columns.

Plate columns accomplish vapor-liquid separation and vapor-liquid

contacting by allowing the liquid at composition u, to flow over the

top of a plate, which is designed to let the vapor at f(u ) pass

through into the liquid flowing over it. There are a multitude of

different plate designs which accomplish this efficiently, such as

bubble-cap, perforated, and sieve plates. Figure 11.3 shows the basic

physical characteristics of a bubble-cap plate. The concentrations

shown in Figure 11,3 correspond to those on the equilibrium curve of

Figure 11.2. Using these two figures one can see both physically and

-19-





i
Vapor f(i^)

Liquid u-^

Vapor f(u
Q )

t
Liquid u

Figure 11.3 - OPERATION OF A BUBBLE-CAP PLATE

conceptually how separation is achieved.

Physically, the liquid at u^ enters the plate of Figure II. 3 from

the left-side downcomer of the plate above. The u, liquid then flows

across the plate, in this case left to right, and is mixed (contacted)

with the vapor f(u
Q ) coming from beneath the plate. These two phases

reach an equilibrium such that the liquid leaving the plate is at uQ

and the vapor leaving the liquid is at f(u^). Since f(u^) > u., a

partial separation of the components results. Conceptually, following

these same arguments on the lines in Figure 11,2 reveals the properties

of the mechanism of separation in terms of the mathematical expressions
-20-





describing equilibrium.

This chapter has presented the basic principles of binary

separation using distillation. This separation has been described

conceptually in terms of the relative volatility and the resulting

equilibrium curve and physically in terms of the operation of a

bubble-cap plate. The next chapter puts several of these plates

together and presents the physical and conceptual descriptions of

a complete distillation column.
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CHAPTER 12

THE BINARY PLATE DISTILLATION COLUMN

The particular binary separation device chosen for study in this

thesis is the plate distillation column. A plate distillation column

is a vertical cascaded arrangement of individual plates (Figure 11.3)

supported in a tower or column. The distillation column alone cannot

perform separation but requires auxiliary equipment for its operation.

This chapter presents a very brief description of the physical operation

of a distillation column and its auxiliary equipment, a graphical

description of its operation in terms of the McCabe-Thiele diagram,

and a steady-state mathematical model of its operation.

12.1 PHYSICAL OPERATION OF A BINARY PLATE DISTILLATION COLUMN

The physical separation of a binary mixture by an individual plate

was described in Chapter II. In general, one plate is usually in-

adequate to achieve the desired degree of separation of the mixture,

thus many plates are combined in cascade to achieve greater output

purity. An arrangement of eleven such plates is shown in the column

of Figure 12.1. On any given plate in this column the liquid and vapor

mix and reach equilibrium, with the vapor rising in the column plate-

by-plate through the bubble caps and with the liquid flowing back and

forth down the column.

Two of the auxiliary equipments necessary to the operation of the

column are the condenser and the reboiler. The vapor flowing out of

the top of the column enters the condenser where it is liquified and the

resulting liquid is partially fed back to the top tray and partially

removed as tops product. Similarly, the liquid flowing out the bottom

-22-
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Cooling
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Figure 12.1 - A BINARY PLATE
DISTILLATION COLUMN
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of the column is divided into that portion removed as bottoms product

and that portion which is vaporized in the reboiler and fed back to the

bottom plate. The other auxiliary equipments, such as pumps to cir-

culate the fluid, valves for control, structural supports, and many

others, are not shown in Figure 12.1 but are, nevertheless, essential

to the operation of the system.

Having described the operation of the internal cycling of the

fluids in the column, the overall operation of the system can now be

discussed. The input mixture to be separated is fed to that tray

designated as the feed tray and enters the fluid cycle. The separated

outputs are then taken off as the top and bottom products. Energy for

operation of the system is supplied by the reboiler, steam heated in

the case of the column of Figure 12.1, and energy is removed from the

system by the condenser, water cooled in Figure 12.1.

There are innumerable types, arrangements, designs, and sizes of

distillation columns, just as there are many different aspects of any

given column which can be studied, such as chemical, thermal, structural,

fluidic, economic, and environmental aspects. The central purpose of

any column is to separate a binary mixture and the main criterion of

"goodness" of the operation of the column is how well it performs this

separation. Distillation columns are usually designed to separate the

mixture to desired purity in such a way as to maximize the economic

profit derived from the sale of the separated products.

Output variations in the product purity greatly affect the profits

derived from such sales. If the output is overly pure, then the revenue

resulting from the sale of material thought to be of lower purity will
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not be as high as it could have been. If the output is lower than the

desired composition, then it cannot be sold at the price set for

material of higher quality and profits will be reduced. Thus, composi-

tion variations in distillation column inputs and outputs are rather

important, and mathematical models for the interaction between feed

composition changes and output composition changes will be developed

in this thesis for the purpose of studying such variations.

12.2 THE MCCABE-THIELE DIAGRAM

One of the best graphical techniques for describing the steady-

state operation of a binary plate column is the McCabe-Thiele diagram

(M-IO). A technique for describing the steady-state operation of the

column is important to considerations involving variations in composi-

tions, especially when composition variations are to be interpreted

as upsets or deviations from an initial steady state to a final steady

state. The basis of the McCabe-Thiele diagram is the equilibrium curve

presented in Figure 11.2 for the operation of one plate. For the eleven

(ll) plate column of Figure 12.1 the McCabe-Thiele diagram for a - 3.0

(M-15) is shown in Figure 12.2.

The graphical expression of the individual plate compositions

presented by the McCabe-Thiele diagram gives both a qualitative and a

quantitative view of the steady-state operation of the column. Qualita-

tively, it shows how the individual plates act to increase the purities

of the output streams by operating in cascade with each step up the

diagram representing a plate corresponding to a step up the actual

column. Quantitatively, the individual plate steady-state compositions

and the operating line slopes can be read directly from the diagram.
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AN ELEVEN FLATE COLUMN (M-15)





The actual operating characteristics of the column are evident

from the McCabe-Thiele Diagram. The amounts or percentages of liquid

and vapor reflux flows determine the slopes of the two operating lines,

the upper and lower lines in Figure 12.2. Each point of intersection

on the operating lines represents the liquid composition of a plate,

and thus the number of liquid points equals the number of plates in

the column. Each point of intersection on the equilibrium curve repre-

sents the vapor composition between two of the column plates. The

intersection of the two operating lines is determined by the q-line

which depends upon the properties and condition of the feed at u„. All

of these properties are represented by quantities and equations in the

steady-state model of the distillation column.

12.3 A STEADY-STATE MODEL OF A BINARY PLATE DISTILLATION COLUMN

This subsection begins the developments leading to mathematical

equations describing the operation of a binary plate distillation column.

A mathematical model of the steady-state operation is to be presented

and explained. Since most of the detailed developments of steady-state

models are well covered in the literature (See B2.1 - Steady-State

Analysis and McCabe-Thiele Diagrams), the discrete-plate steady-state

model and its symbols will merely be presented, not derived in detail,

in this section. The format of this presentation will be to present

the description of the symbols to be used, present the model, and give

a brief explanation of the model and the assumptions behind it.

The presentation of the discrete-plate steady-state model begins

by listing and describing the mathematical symbols to be used in the

model. This list of symbols is found in Table 12.1. The symbols are
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En " f'K) - un 12.1

Where f
'
(u ) is a non-equilibrium state

u - Concentration of the lighter component in the liquid (lbm
mole lighter corap./lbm liquid)

f(u) - Concentration of the lighter component in the vapor (lbm
mole lighter comp./lbm vapor)

a - Relative volatility (dimensionless) ; assumed constant

F - Feed rate (lbm liquid/hour)

D - Distillate rate (lbm liquid/hour)

W - Withdrawal rate of Bottoms Product (lbm liquid/hour)

,L - Liquid rate in the upper section (lbm liquid/hour); assumed
constant

L, - Liquid rate in the lower section (lbm liquid/hour) ; assumed
constant

V - Vapor rate in the column (lbm vapor/hour) ; assumed constant

Bu - Upper reflux ratio (lbm liquid/lbm vapor), Lu/V

B, - Lower reflux ratio (lbm liquid/lbm vapor) , L^/V

k - Feed plate index (number); integer

n - Internal plate index (number) ; integer 1 < n < N

q - Portion of the feed which adds to the lower liquid rate;

Ln
= L + qF

1 u u

Table 12.1 - LIST OF SYMBOLS USED IN DISTILLATION
COLUMN STEADY-STATE MODELS
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fairly standard throughout the literature with one important exception.

Usually, in the literature, the composition of the lighter component

in the liquid is represented by x and that in the vapor by y. In this

thesis x will be used in Sections M and L to represent a continuous-

spatial variable or continuous-plate-number variable; and y is not used,

but the term f(u) is used instead. The term f(u) is standard in most

of the literature. The symbols in Table 12.1 also apply to the corres-

ponding symbols placed on Figure 12.1.

Figure 12.3 presents the discrete-plate steady-state model of a

binary plate distillation column. This model is merely a combination

of the conservation-of-mass equations (inflow Outflow) for each plate

and a listing of the end, feed, and equilibrium description. These

equations say mathematically what the McCabe-Thiele diagram says graph-

ically. Solving these equations mathematically for the plate composi-

tions is also equivalent to "stepping offH the compositions on the

McCabe-Thiele diagram. The amount of mathematical manipulation involved

in solving for the plate compositions when there are many trays is

rather large when compared with the ease of stepping off these numbers

on the McCabe-Thiele diagram.

Several very significant assumptions are implicit in the model

statement of Figure 12. 3» The upper and lower liquid rates, the

column vapor rate, and the relative volatility have all been assumed

to remain constant. In addition, the Murphree (M-8) efficiencies E

defined in equation 12.1 have all been assumed to be unity, or equiv-

alently, the assumption is made that each plate operates at complete

equilibrium.
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Model Equations

Rectification !Section (Upper)

f(u .) -
v n-l y B u

u n * ^'\K k + 1 < n *N

Stripping Section (Liower)

«V }
" VlTf (l-Vw ISSL n £*

Where B ,

u
-Lu/V and B, =» LA

Equilibrium

.*/„ \ ^ 'i
f(u

" )

1+<W*>«n

End Conditions

f(^N ) - ud Top n . n

\ = Uf Feed n = k, q = 1

u
l

=
"w Bottom n - 1

Feed Condition

L
x

= Lu + qF or B-, = B +
1 u

qF/V ; q » 1 in this case.

Figure 12. ? - DISCRETE-PLATE STEADY-STATE MODEL

To summarize briefly, Chapters II and 12 present the basic

principles and mathematical descriptions for the operation of a binary

plate distillation column. This presentation takes the form of a

graphical description in terms of equilibrium curves and the McCabe-

Thiele diagram, a brief physical description, and a set of mathematical

equations forming a discrete-plate model for the steady-state operation.
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The mathematical developments of this thesis in terms of distilla-

tion column dynamics or transient models continues in Section M. In

that section, the discrete-plate steady-state model in Figure 12.3 is

seen to be a subcase of the discrete-plate dynamic model, and a continu-

ous-spatial steady-state model (not presented) is seen to be a subcase

of a continuous-spatial dynamic model.
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CHAPTER 13

PHILOSOPHY AND DISTILLATION

This chapter is purely opinion and will be written using the

first person. It seems to me that some comments can be made about

two very general philosophical desires as applied to the process of

distillation. The first of these is the desire to observe and explain

reality and the second is the desire to achieve profit. Philosophy

is the study of the principles of reality, and distillation is a

process for separating components; these two would seem to be almost

completely unrelated, but, on the contrary, I think a definite and

crucial relationship exists and propose to present it in this chapter.

13.1 EXISTENCE EXISTS !

The fundamental axiom of reality is that existence exists, or as

Aristotle stated, "A is A" (B-28). I exist in this reality as a being

of volitional consciousness with only two choices open to me: to live

or to die. I choose to live. I cannot live except by acquiring knowledge

of one form or another. My only means of acquiring knowledge is through

my senses. The only tool which I have for the thinking required to

acquire knowledge from the inputs of my senses is the ability to reason.

Reason requires the use of logic which is "the art of non-contradictory

identification1
' (Atlas Shrugged - Ayn Rand), Thus, I wish to acquire

knowledge about reality by observing it and applying logic to those

observations.

One of the many questions I might ask is, "Does there exist a

defined limit to the amount of knowledge attainable from the observations
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of my senses and any devices which I may design to aid them?" If

I wish to observe the operation of a distillation column, can I say

beforehand that I'll never be able to understand completely the exact

mechanisms or motions undergone to achieve the desired separation of

components? I think that there are several practical resaons why

the answers to these questions for an individual must be YES, even

though the philosophical axiom A = A implies that the answers must

be NO.

The first practical constraint that I run into is my limited

physical capacity for knowledge in terms of my limited lifetime for

acquiring it. But suppose for a moment that I am granted an infinite

lifespan in which to observe and apply logic to distillation columns.

I might then attempt to make more specific models of the column based

upon more accurate observations of its operation. At some point,

however, I run into another practical constraint: my act of observing

the operation of the column begins to affect the operation which I'm

trying to understand. This would be some form of "uncertainty principle"

applied to distillation column measurements.

Suppose I don't accept uncertainty; after all, I'm certain that

A A. This supposition means that I can eventually determine a model

of the operation of a distillation column that tells me to N -* oo decimal

places exactly what each molecule, atom, or even sub-atomic particle

is doing within the column at any time, including the effects of my

observations. Thus, philosophically, the axiom A = A implies that

unlimited reason is competent to define reality.
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The certainty of limited life spans of individuals imposes a

practical constraint on the amount of knowledge about distillation

attainable by any one man. The assumption that human life will

propagate forever through time implies that unlimited reason exists.

Accepting this assumption one can say that man, now and future, has

the unlimited reason necessary to define reality. What, then, deter-

mines the portion of the limited facilities of an individual which will

be applied to the study of distillation? This, then, gets into the

area of the second philosophical desire, or necessity: to achieve profit

in order to live.

13.2 INDIVIDUAL PROFIT MAXIMIZATION

The amount of effort devoted by any person to the study of distil-

lation will be in proportion to the benefit (or profit) returned to

that individual as a result of his efforts. For some this benefit

may be derived by placing high value upon the self-satisfaction of

explaining, even partially, the operation of a complex physical system,

i.e. knowledge for the value of knowledge. Knowledge contains no life

sustinence, and one who places a very large personal value in knowledge

must have other means of attaining that profit convertible to life

sustinence, either by selling that knowledge for food or by devoting

a portion of his efforts, which could have been spent on studying

distillation, to the acquisition of food by some other endeavor.

It is my opinion that each individual attempts to maximize the

value to him (profit) of the use of his intellect. The individual who

receives a small (but adequate for life support) income and devotes

the remainder of his life to watching television is maximizing his
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value implicitly "by placing high value on the endeavor of watching

television. However, in order for such an individual to have received

that income necessary for life support, he must have devoted energies

to some endeavor in which the profits are transformable into food.

Thus, the conclusion can be made that no matter how an individual

seeks to maximize the returns from his endeavors some portion of his

life must be devoted to endeavors which produce something which can be

transformed into food.

The question of whether or not there will definitely be people

throughout time who will devote a portion of their life to studying

distillation then becomes equivalent to asking whether or not distil-

lation is an endeavor which produces something which can be transformed

into food. If distillation is a profitable endeavor, then the relative

question of how much of an individual's life will be spent studying it

is answered by defining just how profitable distillation is to the man

who studies it.

13.3 PROFIT IN CERTAINTY

A distillation column has an input, which is a mixture of two com-

ponents, and two outputs each of which, one is certain, contains a

higher concentration of a given component of the mixture. It is a

fact that in the present world the total value of the two outputs is

greater than the sum of the mixture value and the value given up to

perform the separation. Thus, distillation IS a profitable endeavor.

WHY?

Distillation is profitable because certainty is of very high

value. The operation of a distillation column produces two outputs
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of greater certainty than the input. The fact that the composition

of the outputs is certain is directly transformable into values

equivalent to food and, as such, is a profitable endeavor for an

individual to use for life support. The existence of profit from

some endeavor Implies that the benefits derived from it are greater

than the costs incurred.

What is the cost of certainty? Suppose that I knew a microscopic

man capable of distinguishing between the two different molecules of

a binary mixture and capable of deflecting one type of molecule In one

direction and the other type in another direction. My microscopic

friend could then be the Maxwell's Demon of distillation if I let him

stand in the inlet of the feed pipe to the distillation column and

bat the lighter molecules upward and let the heavier ones fall, sepa-

rating the mixture for me. I could then shut down the reboiler and

condenser and sell the resulting pure outputs with no cost to me in

terms of energy supplied to the distillation column. In fact, I could

reason that the only effort involved in the entire process is the intel-

lectual effort exerted by my small friend in recognizing which molecules

are which. Thus, the cost of certainty is the information supplied by

my friend.

A supposed fallacy of this argument is often presented as follows.

The second law of thermodynamics states that entropy is always increas-

ing in a real, physical process; entropy is then equated to average

uncertainty, and uncertainty is defined as loss of information. So,

somewhere down the line, someone loses out; in this case it was,

according to this argument, my small friend. The Demon's information
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was being transformed into my profit. The cost of certainty is

increased uncertainty, if one accepts the concept of average uncer-

tainty.

Suppose, once again, that I state that my concept of existence

denies uncertainty the right to exist for all time. The concept NOT

is the negation of reality and, as such, cannot exist. No-one will

ever observe the color Not-Blue because it cannot exist as such.

The use of the concept of average uncertainty is a denial of the

statement A = A and can only be rejected as false if A = A is accepted

as true. The average uncertainty argument implies that uncertainty is

always increasing; A = A implies that certainty is increasing. The

two are diametrically opposed. I accept A = A and deny that the

universe is running down.

What then is the cost of the separation achieved by my small

friend if I reject the concept of average uncertainty? The cost is

the certainty used by my friend in separating the mixture. The profit

which I derive from the sale of the two separated components results

from the fact that the two separated components have greater certainty

and therefore greater value than the value of the certainty used by

ray friend in separating the mixture. Thus, I can pay my friend for

his services and we'll both be better off as a result of the process.

Thus, all profit is the result of certainty.

13.4 CERTAINTY AND KNOWLEDGE

The only route to certainty is through knowledge. The only route

to knowledge is through observation and reason utilizing logic. If

I desire certainty about the operation of a distillation column, then
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I must turn one on (or read about someone who did), watch it, and apply

reason to my observations to acquire knowledge about it. My limited

physical capacity and lifespan dictates that my optimum acquisition of

knowledge about distillation occurs during the time span up to the

point where my marginal acquisition of certainty for expenditure of

concentration begins to become negative. Beyond that point I would be

better off studying some other profitable venture. Thus, constraints

must be imposed on the acquisition of knowledge about distillation.

The physical capacity constraints of an individual are realisti-

cally applied to the study of distillation through judicious approxi-

mation. I realize that given enough time and intellectual capacity

I could explain distillation to any desired completeness. However, in

order to acquire any knowledge about distillation to use in deriving

profit from my study, without already understanding it completely, I

must make simplifying approximations and build up a hierarchy of

knowledge pertaining to the subject. This is exactly what is done,

and the following sections in this thesis present a theory which over-

flows with simplifications and approximations. The final test of any

theory based on approximations must be that the revenue resulting

from application of the theory is greater than the expenditure of

effort in developing it. Such a test has yet to be applied to the

theories presented in this thesis.

13. 5 WHAT'D HE SAY?

This chapter has presented my opinions concerning the relation-

ship between my concept of philosophy and the study of distillation.
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The chapter begins with arguments which position me as a human being

within the framework of reality as a being who must know to exist.

The reason I must know is that I must acquire profit (food) to live.

Distillation is shown to be profitable by arguments which show that

distillation increases certainty (value) and by arguments which show

that uncertainty cannot exist if one assumes that existence exists.

The same arguments are used to invalidate the uncertainty principle

and the concept of average uncertainty. Finally, the use of simplifi-

cations and approximations in the study of distillation is justified

on the basis that a man has limited facilities for use in studying it.
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CHAPTER 14

A BRIEF REVIEW OF THE LITERATURE OF DISTILLATION

The volume of literature available pertaining to the study of

distillation is completely overwhelming! It is easy to see why there

can be no "Renaissance Man" in modern times. The bibliography pre-

sented in Chapter Bl of this thesis contains 352 references of which

202 pertain to distillation column dynamics and control. The 352

references are minute in number compared to the total literature.

The 202 references represent a significant percentage of the total

material available pertaining to column dynamics and control. By

far the greatest proportion of the total literature of distillation

deals with column operation, design, and steady-state analysis.

Distillation is such a general area and has so many inter-

actions with other areas that it is easy to see why so much can be

said about it. The areas listed in Chapter B2 represent, in themselves,

an extensive collection of knowledge, and the list is far from complete.

In this thesis the term "lixerature" will refer to this infinitisimal

subset of 352 references.

The purpose of this chapter is to present descriptions, comments,

and notes pertaining to some of the references in Chapter Bl. With

the exception of some of the theses, each entry in the bibliography

was very cursorily inspected by the author, and some notes and comments

were made where deemed worthwhile. This chapter is a connected

listing of those notes presented in the format of Table B2.1. No

attempt has been made to list complete descriptions, and the author
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has chosen to use abbreviated language (incomplete sentences, minimum

articles, etc.) to increase the densite of information with, hopefully,

minimum loss of comprehension.

Many of these comments represent this author's opinions and should

be evaluated as such by the reader. Those references in Chapter B2

under each area about which no information is given were most likely

i

a. Dynamic response or control theses not read (not available)

b. Poorly written or invalid (author's opinion)

c. Not understood by the author after reading, but seemingly

applicable

d. Those presenting material covered better in other references

(author's opinion)

e. Partially explained by the title

f. Not really significant to the area but containing pertinent

material

g. Discussed under another area in which case the area will be

listed.

The last name of the first author of each reference is listed for the

mnemonic convenience of the reader. In the interest of space conserva-

tion without loss of meaning all area titles and subtitles in Table

B2.1 have been numbered and brought to the margin.

14.1 GENERAL THEORY OF DISTILLATION

1. Textbooks

(B-l) Bennett & Meyers - covers heat, mass, momentum transfer,

binary and multicomponent distillation, stagewise operations -

primarily chemical engineering presentation; good presentation
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of basic principles of distillation and steady-state analysis.

(G-3) Gould - very general process control text; presents detailed

mathematical methods, models, and analysis for the dynamic

behavior and control of a large number of chemical processes,

including packed and plate columns.

(H-10) Henley & Staffin - very clear presentation of basic principles

of distillation.

(R-23) Reid & Sherwood - presents in great detail the equilibrium,

diffusion, thermodynamic, and thermal properties of liquids

and gases.

(R-21) Robinson & Gilliland - detailed presentation of basic principles

and steady-state analysis.

(V-2) Van Winkle - guide to fractional distillation design; considers

hydraulics, multicomponent aspects, all sites of distillation

design of plate and packed columns; discusses history of distil-

lation; see also 3«

(A-19) Aris - steady-state distillation analysis.

(B-15) Bodman - presents Fortran IV program for optimum design of

stagewise - ethylbenzene vacuum distillation reactor; economic

optimization.

(M-14) McCabe & Smith - recent text presenting basic principles.

(0-2) Oliver - recent text presenting basic principles.

(H-2) Holland - uses Thiele-Geddes calculational procedure and Q

method of convergence; mostly steady-state; "Instead of seeking

exact analytical solutions for models that roughly approximate

the actual system, researchers have put a vast amount of effort
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into the development of iterative procedures in which

progressively better initial values of the independent variables

are selected for each successive trial."

(H-9) - 8.

(H-18) Hengstebeck - Considers many aspects of column design; pre-

sents basic principles and steady-state analysis; practical

text.

(L-26) - 9.

(C-l) Campbell - steady-state analysis; dynamic analysis using

signal flow graphs, frequency analysis; process control.

(P-3) Peters - plant design using detailed plate and bubble cap

design equations; economics of distillation; optimum reflux

design.

(P-10) Pratt - recent text presenting basic principles, steady-state

analysis, and column design principles.

(R-22) - 6.

(R-17) Rosenbrock & Storey - extensive coverage of practical mathemat-

ical techniques for process dynamics.

(S-8) Shreve - large number of industrial processes described in

detail, with diagrams and non-technical descriptions, very little

mathematics; book represents a lifetime of experience in the

chemical industry; chemical engineering - unit processes

(chemical changes) + unit operations (physical changes).

(S-9) - 30.

(S-3) Sawistowski & Smith - steady-state analysis and calculation.
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(S-l) - 30.

(T-l) Treybal - steady-state analysis and column design principles.

(B-12) Bird - mass transfer in terms of general conservation and

diffusion equations; some transient analytical analysis.

(H-5) Henley & Bieber - steady-state example, 3 tray column, a 2.5,

benzene - toluene.

(C-7) Chilton - cost analysis of distillation columns, y cost

$ installed per plate or foot, x = diameter squared, then the

approximate equations for column cost are:

Plate Columns - stainless - y = 6.47 x0, °3

Packed Columns - stainless - y = 9.82 x ;

distillation column maintenance 5-50 $/ft3 bubble-plate,

3-10 $/ft3 sieve plate, 5-15 $/ft3 for packed columns per

year in I960 $.

(M-2) - 43.

(V-3) Vilbrandt & Dryden - steady-state design of columns; "In

distillation columns, the pivot point in design is the reflux

ratio (B in this thesis), which can vary between minimum and

total reflux. Higher reflux ratios require greater quantities

of steam and cooling water and a larger column diameter, but

the column height requirements are lowered. The economic

reflux ratio is usually 1.1 to 1.2 times the minimum for most

cases."

2. Extensive Bibliographies and Literature Surveys

Literature Surveys from Industrial and Engineering Chemistry

Process Control

(W-16) (W-9) (W-15) (W-8) (W-19)
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(W-10) (W-12) (R-25) (W-17) (P-6)

(W-ll) (W-13) (W-18) (G-10) (W-23)

Distillation

(B-17) (B-18) (B-19) (F-8) (G-9) (F-7)

(R-12)-l4.; (R-8)r21.; (H-7)-12. ; (R-l8)-l6.j (H-8)-10.;

(R-17)-1.J (W-26)-4l.; (Z-3)-19.

(G-14) Geddes - gives outline of developments that contribute to

present knowledge of fractionator design in historical sequence;

gives comments on present status and future problems; "If

long-term funds were available for basic research on bubble

plates, a substantial part of these should be assigned to

scientific study of the fluid dynamics of plates."

References of Historical Interest

3. General Distillation

(L-19) Lewis - very early (1909) presentation of basic principles;

uses equilibrium and phase diagrams.

(M-10) McCabe & Thiele - the most referenced paper in the literature;

original (L(25)McCabe-Thiele graphical diagram of steady-state

column behavior; all previous methods (Sorel's was the first

in 1899) analytical; algorithm for stepping off tray concen-

trations on the equilibrium diagram.

(L-25) Lewis - early (1922) presentation of stagewise steady-state

calculations.

(M-9) Murphree - explains McCabe-Ihiele Diagram in equation form.

(V-2) Van Winkle - brief history of distillation - first recorded

distillation in Egypt 50 BC, expect earliest unrecorded
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distillation 2000 BC, fresh water distilled from sea water

300 AD, beverage alcohol process first industrial distilla-

tion process during ll-l4th centuries, first books on

distillation l6th century, stills were differential batch

type with little reflux up until 19th century, 19th century

began using steam (1800), bubble caps (1822), continuous

still (1830), late 19th century first recorded mathematical

discussions of distillation by Sorel (1899) and Hausbrand

(1893) t then 20th century began mathematics and improved

distillation (L-19), (M-IO), etc.

(U-l) Underwood - the best single presentation of the history of

distillation in the literature, many pictures and diagrams of

ancient methods.

(R-29) Rodebush - early (1922) plate-by-plate graphical technique;

preceded McCabe-Thiele analysis.

(E-3) Egloff - review and diagrams of 15th-l6th century distillation

methods and apparatus.

(C-14) Cope - early (1932) graphical method using McCabe-Thiele

stepping type design on the lower part of the equilibrium

diagram.

(P-12) Peters - plate-by-plate calculations on the equilibrium diagram

(1923) shortly after McCabe-Thiele.

(T-6) Thiele & Geddes - referenced many times in the literature,

graphical and mathematical steady-state analysis and calcula-

tion method.

(G-14) - 2.
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(i-l) IBM 705 Program - (1959) steady-state computer program to

perform Thiele-Geddes calculations; one of the first industrial

programs.

(A-17) Acrivos & Amundson - presents history, basic principles of

distillation, steady-state analysis using numerical methods

and eigenvalues.

4. Dynamic or Transient Analysis

(M-8) Murphree - (1925) first presentation in the literature of a

discrete-plate dynamic equation; derives .holdup equation, 1

ordinary differential equation, solves as an exponential.

(B-29) Berg & James - (19^+8) early column transient behavior consid-

erations; mainly concerned with startup problem, early presenta-

tion of continuous-spatial model with partial differential

equations, boundary conditions, and solutions, solves using

linear equilibrium f(u) = mu + b, experimentally verified results.

(L-2) Lapidus & Amundson - (1950) early transient analysis; general-

ized the results of (M-l) for countercurrent absorption, showed

how outlet concentrations could be predicted from the time

course of the two inlet compositions, assumes f(u) » mu + b

equilibrium, uses Laplace transforms, poles & zeroes, linearized

CSE, difference equations, entirely mathematical; calculates

several transient responses.

(B-7) Bartky & Dempster - (19^8) early solution to the transient

system of plate equations, analogous to the classic start-up

problem except that top reservoir has some holdup as individual

stages, solution only approximate since compositions derived

using a « 1*0.
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(R-2) Rose & Johnson - (1953) early development of "binary system model;

relative volatilities, total flow rates, and holdups indepen-

dent of time, discrete-plate equations solved by Euler predictor

method.

(R-12)-14. ; (J-1)-21.; (F-5)-19.

5. Steady State Analysis and McCabe-Thiele Diagrams

(E-4) Eekhart & Rose - steady-state prediction, discrete-plate

equations, linear equilibrium f(u) * mu + b.

(H-26) Hartland - analytical, steady-state comparison, boundary

conditions.

(C-9) Cichelli - steady-state analysis, relates number of plates

and reflux ratio to the sharpness of separation in binary

batch distillation, graphs and equations for operation at any

desired separation are given, many curves, sharpness of separa-

tion defined in terms of the "pole height," Rayleigh equation

used.

(M-18) Mills - List of steady-state computer programs for equilibrium,

enthalpy, etc., calculations.

(P-8) Prausnitz - steady-state computer subroutines for column cal-

culations for bubble temperature, dew temperature, bubble

pressure, and dew pressure.

(S-15) Surowiec - ideal cascade requires twice the minimum number of

stages.

(S-20) Strand - good development of discrete-plate steady-state

equations.

(Z-2) Zuiderweg - general steady-state comparison of device charac-

teristics and plate efficiencies.

-48-





(F-3) Friday & Smith - discusses mathematically the formulation of

a solution method for the equilibrium stage steady-state model;

develops procedure for solving the concentration matrix equa-

tions which avoids truncation error build up, does not require

mesh points, works equally well for any number of feeds and

side streams, and handles nondistributed components.

(F-4) Furzer - nonuniform vapor distribution causes reduced efficiency,

investigates plug flow model and perfectly mixed model, shows

that maximum reduction in efficiency is halfway between these

two models.

(H-30) Himmelblau - general, recent process mathematical modeling

text, block diagrams, frequency analysis, matrix analysis.

(j-7) Jenson & Jeffreys - steady-state distillation analysis and

mathematics, numerical methods for solving ordinary and partial

differential equations, matrix methods, orthogonal function

theory; primarily a mathematics text.

(L-12) Lowenstein - uses normal (Gaussian) probability distribution

scaled graph paper to greatly increase the accuracy of the

McCabe-Thiele diagram at the ends, i.e. at very high and very

low separations.

(A-IO) Amundson & Pontinen - discrete-plate numerical steady state

calculations, uses cubic equilibrium relationship, quadratic

expression for enthalpy, temperature distributions, 4-5

iterations on 15 plate column; results cited in (M-15).

(B-26) Barker - efficiency, design, experimental analysis of bubble-

cap trays.
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(S-12) Sargent - steady-state multicomponent column numerical technique

and digital computer design; considers individual plate

efficiencies and equilibrium curve; no dynamics.

(D-2) CEP Reprints - collection of steedy-state distillation

papers; articles covering heat and mass transfer, vapor-

liquid equilibria, packed columns, tray column steady-state

performance.

(R-30) Rose - experimental evaluation of column steady-state.

(S-24) Surowiec - steady-state column design using McCabe-Thiele

diagrams and discrete-plate equations.

(S-23) Stanislas - general steady-state characteristics; plate

efficiencies, equilibrium, etc.

(S-29) Sujata - plate-by-plate, steady-state calculations.

(F-9) Floyd - locating feed trays for lowest cost operation,

steady-state,

(E-l) Edmister - true boiling point (TBP) defines distillation

curve, distillation curve considered continuous and steady-

state solved by graphical integration technique.

(T-?) Treybal - graphical technique for finding plate efficiencies

based upon McCabe-Thiele diagram, operating lines and equil-

ibrium curve,

(S-l6) Srygley - optimum steady-state design in the sense of minimum

number of plates for desired product purity; uses Thiele-

Geddes 9-method of convergence, sequential search for optimum.

(B-l)-l.; (M-10)-3.{(H-10)-l.j (H-18)-1.; (M-8)-4. ; (M-9)-3.;

(B-10)-30.; (C-l)-l.; (V-2)-l.; (G-3)-l. ; (H-5)-l.J (H-2)-1.j
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(A-17)-3.l (C-l4)-3. ; (0-2)-l.j (T-6)-3.i (R-5)-l6.
; (R-2l)-l.;

(T-l)-l.j (S-3)-l.j (H-2l)-19.i (l-l)-3.l (L-25)-3.l (A-19)-l.i

(P-12)-3.; (R-1)-16.| (R-29)-3.
! (S-l)-30.| (S-?)-20. ; (R-l8)-l6.

6. Structural Design

(L-13) Lowenstein - design of plate sizes using a nomograph and plate

size "slide rule."

(R-22) Rose - minimum cost structural design considerations including

wind loads, dead weight stresses, longitudinal stresses,

thickness formulas, numerical examples, drawings of industrial

columns.

(j-3) Jones & Van Winkle - experimental analysis of 3 inch perforated

plate column to determine plate thickness effects on column

properties.

(M-ll) Manning - structural screens introduced to provide better

mixing and increase column efficiency.

(L-12)-5,5 (D-ll)-l6.

7. Economics and Operations Analysis .

(M-13) Mitten - economic optimization of distillation by dynamic

programming.

(B-15)-l.; (S-8)-l.i (F-9)-5*i (C-7)-l.i (V-3)-l.

8. Thermodynamics

(H-9) Hougen - Covers, very extensively, thermodynamics applicable

to distillation,

(R-23)-l.

9. Hydrodynamics or Fluid Mechanics

(F-4)-5.j (V-2)-l.| (B-12)-1.| (R-23)-l.
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(L-26) Levich - analytical solutions to convection and diffusion

equations including chemical aspects.

(H-14) Holm - concludes that vapor flow effects can sometimes cause

Murphree efficiencies to be greater than unity.

(F-5)-19.i (T-7)-5.

(B-4) Bernard - considers sieve tray mixing, foam density, flow

properties.

(S-19) Sakata - time for mixing, analytical equipment, mixing pools,

plug models, and tray efficiencies.

10. Chemistry

(B-l6) Black - simplified approach to phase equilibria, large number

of phase equilibria for various compounds presented.

(H-8) Hala - extensive list of chemical compounds referenced to

entries in a large bibliography; many phase diagrams presented,

(B-l)-l.j (H-lO)-l.j (F-9)-5.l (T-6)-3.

(H-17) Harper & Moore - experimental paper showing a small still for

measuring vapor - liquid equilibria lines, several lines given

as examples.

(H-20) Howard - concludes that any unsteady-state distillation cal-

culations should include plate, condenses, and reboiler

holdups in order to include enough degrees of freedom.

11. Philosophy

(A-13) Aris - oftentimes engineer's rules of thumb are the only tools

necessary to solve problems adequately, gives examples.

14.2 DISTILLATION COLUMN DYNAMICS

12. Textbooks
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(M-l) Marshall & Pigford - beginning of quantitative ajialysis of

unsteady-state operation; many simplifying assumptions used

to obtain analytical solutions using Laplace transforms,

assumed equilibrium relationship f(u) - mu + b with m, b

depending only upon the identity of a component, assumed total

flow rates and holdups independent of plate number and time;

considers startup problem.

(H-7) Holland - uses numerical methods to solve process differen-

tial equations; uses Q-method for distillation discrete-

plate equations, example step response of 3-tray column cal-

culated; good literature survey; book emphasizes numerical

methods and matrix methods.

(G-3)-l.

(F-l6) Franks - modeling of chemical processes for the purpose of

control, plate equations, partial differential equations.

13. Theses

(M-15) Mohr - considers each of two sections of a column independently,

determines step response for each input stream using IBM 705

and discrete-plate equation, each of the response curves is

then fitted with a two-time constant exponential expression,

these expressions manipulated into general transfer function

using Laplace transform variable p, time constants and gain

factors of the column are then correlated with steady-state

parameters from McCabe-Thiele diagram; analysis based on linear

equilibrium f(u) = mu + b; assumes binary mixtures, constant ct,
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constant fluid rates, total condensation, negligible holdup,

constant liquid holdup each plate, reboiler holdup equivalent

to that on each plate, q = 1, perfect mixing, unity plate

efficiencies; found that major time constant was independent

of the type of disturbance, gains and secondary time constants

vary with disturbance type and with initial steady-state,

predicted responses of large columns more sensitive to changes

in values of selection parameters than small columns; column

time constants increase with H/L, degree of separation, degree

of nonlinearity of equilibrium curve, number of plates.

(fi-6) Romagnoli - hybrid simulation of discrete-plate equations;

butadiene distillation plant, 2 towers of 49 trays each of

bubble type, constant pressure, constant holdups, water

ignored, vapor holdup ignored, constant Q, E = 0.7, Francis-

weir formula, micro assembly language and PDP-1 used; con-

clusion was that hybrid setup worked faster than purely digital

computation.

(B-32) Brosilow & Tanner - develops and analyzes methods for computing

and optimizing countercurrent staged processes using distil-

lation as an example; formulates models in terms of both

discrete and continuous spatial equations; solves continuous

models using economic cost criterion using gradient and

Lagrangian non-linear programming methods; found equations

much easier to solve when models were not restricted to

integral values of stages, allowing more general optimization

methods to be used such as Lees' method; two-point boundary
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value problem solved by imbedding it into an initial value

problem in time; found that when Lees* algorithm was modified

to generate tridiagonal matrices the rate of convergence

increased substantially.

(G-5) Gaydos - develops generalized digital computer program and

model for a single bubble-cap plate; model includes multi-

components, hydraulics, non-ideal vapor-liquid equilibrium,

heat transfer to and from each stage, provisions for feed and

take off streams; computation time limitations were encountered

in the simulation.

14. Reviews, Bibliographies, and Literature Surveys

(A-3) Archer & Rothfus - presents survey of the 1955-1960 dynamic

behavior literature; discrete-plate equations developed,

startup and transition between steady states, batch operation

of plate and packed columns, and process control are all

discussed in terms of their respective literature; frequency

analysis.

(R-12) Rosenbrock - surveys the history and present developments of

discrete and continuous distillation and heat exchanges

models; best presentation of this material in the literature.

(H-7)-12.; (R-8)-21.; (Z-3)-19.; (L-3)-15.l (T-2)-l6.

(S-33) Lehigh Symposium - discrete-plate models, transient response,

and control of distillation columns; extensive bibliography of

149 references on column steady-state, dynamic, and control

aspects; frequency response analysis.

Additional surveys, see 2.
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Dynamic Models or Solutions

Discrete Plate Equations

15. Frequency Analysis or Laplace Transform Solution

(A-3)-l4. ; (R-12)-l4. ; (H-7)-12. ; (R-8)-21.

(z-3)-19.; (S-33)-14.j (T-2)-i6.

(L-3) Lamb, Pigford & Rippin - oscillations in tray compositions

resulting from input oscillations in either feed composition

or reflux flow are calculated using analog computer for 16-

tray column; found frequency response at low frequencies like

simple first-order process and at high frequencies having

interference patterns and large phase lags; equations linearized

about steady-state, E = 1, frequencies from 0.001 to 1 radian/

tray holdup time, 5-tray column frequency response also obtained.

Transient or Time Analysis

Numerical Solution

16. Digital Computer

(D-2+) Distefano, May, & Huckaba - (1967), discrete-plate dynamic

model solved for a sequence of upsets in which the next step

occurs before the transients of the previous one have died out;

solves large system of equations by Adams-Moulton-Shell (AMOS)

finite difference technique on IBM 709 , computation time was

12 min. , expect hybrid steup would speed this up, 12-plate

column, spacing 1 ft, 10" diameter, samples of every 3rd

plate, 7 runs for different types of steps and pulses;

oriented toward prediction for feedforward control; transient

times 40-80 min. , experimental data agreed with computer

-&-





calculations to within 5%» error blamed on truncation in

predictor-corrector methods.

(B-32)-13.; (M<)-4. ; (H-20)-31.

(D-8) Distefano - numerically solves discrete-plate equations by a

large number of different methods and then compares them,

(D-10) presents stability aspects.

(H-3) Huckaba - numerical solution by IBM 650 of transient response

to binary 12-plate column, experimentally confirmed; uses

nonlinear discrete-plate equations, inputs are step changes in

heat input to the reboiler, feed composition, and simultaneous

changes in feed composition and reflux ratio? computation time

5 min. using fourth-order Runge-Kutta for starting and fifth-

order modified Adams for continuing.

(L-5) Luyben - uses set of linear perturbation type differential

equations for characterizing dynamic behavior; experimental

results verified for acetone-benzene system, 1.8 ^ a < 2.2; types

of disturbances were changes in feed composition, feed rate,

top tray reflux rate, bottom tray vapor rate, equations

solved by analog computer,

(D-15) Duffin & Gamer - defines model for multicomponent distillation

which includes secondary effects due to column hydraulics,

holdup, and delay effects in boundary conditions; errors in

generated system response at low values of elapsed time

usually due to inadequate models; used general discrete-

plate model and numerical integration scheme, conclude that

model is valid.
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(R-16) Rosenbrock - surveys available solution methods for the discrete-

plate equations, decides to use digital computer for speed and

generality; describes numerical method and program, computa-

tion time 5 min. for 5 plates up to 100 min. for 300 plates.

(R-9) Rosenbrock - develops discrete plate equations, discusses

possible methods of solution, almost identical to (R-l6).

(R-10) Rosenbrock - discusses relative advantages of two computer

programs for solving the equations in (R-9) ; first program

has f(u) fed in as table of 101 values, linear interpolation,

forward integration used, first program finally rejected due

to limitations; first program required solution of large

system of simultaneous equations, second program developed to

eliminate this by solving step-by-step by equating slopes;

routine included to evaluate df(u)/du at discrete-points.

(R-ll) Rosenbrock - discusses the accuracy of computer programs in

(R-10), extends application to multicomponent systems; used

equilibrium curve as f(u) - u + 0.02, E = 1.0; concludes that

the most promising method for calculating transient response

is digital computer.

(A-4)-40.i (R-17)-l.i (S-33)-l*M (S-l6)-5.j (S-20)-5.

(M-3) Mah, Michaelson, & Sargent - dynamic behaviour of multistage

systems described by large sets of non-linear first-order

differential equations; discrete-plate equations then linearized

but shown to be inconsistent due to linearization, step-by-

step procedure using exponential function is proposed,

numerical integration technique, reviews all standard numerical
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procedures, uses tridiagonal matrix, finds eigenvalues, shows

that use of linear equilibrium f(u) « Ku also leads to physical

inconsistency.

(T-2) Tetlow, Groves, & Holland - develops a generalized model

which accounts for the effects of channeling, transfer lag,

mixing, and mass transfer in unsteady-state, multicomponent

,

discrete-plate distillation; model tested on a large number

of numerical examples; considers plug flow and perfect mixer

holdups, large tridiagonal matrix results, 9-method of con-

vergence used; use of the generalized model in the analysis

of control systems is discussed.

(W-l) Wood & Armstrong - derives a linearized model of the discrete-

plate equations using f(u) « mu + b equilibrium; solves for

step response of feed composition; comparison with experimental

results shows that the model is only valid for moderate values

of time after the step and cannot be used as the column

approaches final steady state.

(P-2) Peiser & Grover - presents a model similar to (H-3) including

the effects of heat and mass transfer and tray hydraulics;

predicted that unsteady-state prediction can be used to solve

several significant problems in multicomponent distillation

which are not evident from steady-state analysis; numerical

computations carried out on a digital computer simulating

column open and closed loop control.

-59-





(D-9) Davison - solves large systems of x = Ax + Bu equations;

calculates the poles and zeroes of the system, then solve

for a few of the more significant variables in terms of poles

and zeroes.

(L-18) Luyben - discrete-plate equations solved for transient

response for use in feedforward control.

(D-6) Davison - discrete-plate equations solved using matrix methods

for the transient response of a column due to pressure varia-

tions for use in control.

(S-6) Sargent - discrete-plate equations solved numerically using

matrix methods.

(T-9) Thorogood - discrete-plate equations solved using Runge-Kutta

methods.

(y-1) Yesberg & Johnson - demonstrates use of a resistance network

analog to solve the absorber problem of (A-l) and (L-2)

,

discrete-plate equations linearized, time derivative represented

by a backward finite difference to produce a set of simul-

taneous algebraic equations which are solved on an IBM 650 by

matrix inversion.

(G-4) Greenstadt - discrete-plate equations solved by Newton's

method.

(R-5) Rose, Sweeney & Schrodt - solves startup problem for ternary

mixture using discrete-plate equations, Lewis-Matheson method

used.

(D-ll) DiLiddo & Walsh - pulse column considered as a series of

stages, 3 plate ideal model, 9 plate real model, numerical

solution on IBM 605.
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(R-l) Rose, Johnson & Williams - (1950 ) discrete-plate equations

solved "by Euler predictor method; model assumes relative

volatilities, flow rates, and holdups independent of time.

(R-19) Rose, Johnson & Williams - (1951) similar to (R-l), early

papers showing pictures of IBM cards, plate equations solved

by numerical methods.

(L-27) Lowe - discrete stage equations solved on digital computer, no

distillation.

(W-4) Waggoner & Holland - discrete-plate equations solved using

Simpson's rule, 3 point corrector to approximate the integrals

in the component material balances, results presented in table

form.

(R-18) Rose & Williams - (1950 ) early plate-by-plate solution of

discrete model, similar to (R-19) (R-l). shows wiring of

computer control panels.

17. Hybrid Computer

(F-l) Pranks - solves several countercurrent problems, several of

these were for distillation.

(F-13) Prank & Lapidus - discrete-plate equations solved by hybrid

computer using one integrator for each plate.

(R-6)-13.j

(F-12) Prank & Lapidus - hybrid simulation particularly useful for

nonlinear partial differential equations, uses repetitive

analog operation, memory, and first-order lags.
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18. Analog Computer

(B-23) Bowman & Clark - uses linear equilibrium f(u) =» ku which was

found to be valid near the top of the column where volatile

component concentration is small, discrete equations for 20

and 30 plate columns wired up on analog computer; when column

was switched from total reflux to finite reflux ratio, an

almost instantaneous drop in overhead composition occurred,

from this point on the overhead was independent of the time

on total reflux and dependent only on the stillpot composi-

tion at the end of the total reflux period; this suggests that

column can be divided into two independent sections, first

would be period on total reflux, second would be behavior at

finite reflux; linear equilibrium does not provide exact rep-

resentation of real column, provides guide to the degree and

direction of change within the column.

(P-l) Pigford, Tepe & Garrahan - solves unsteady-state equations for

batch distillation of a binary mixture using a mechanical

analog computer called the "differential analyzer" ; assumes

constant relative volatilities, vapor & liquid flow rates.

(R-3) Rose & Williams - demonstrated use of an analog computer to

obtain transient response and design a controller for a 5-plate

column, uses analog computer with Pade delay circuits; large

number of problems solved to determine the best controller for

maintaining the composition of the distillate constant under

composition and thermal variations of the feed.

(G-12) Grover & Peiser - analog computer solves plate equations for

control, stability aspects considered.
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19. Analytical Analysis

(D-3) Davidson - uses mechanical analog and Rayleigh's method

to determine eigenvalues for finite series representation of

plate column transient behavior; plate-type stripping column

fed at top, no bottoms takeoff, assumes linear equilibrium;

equilibrium concentration on any plate proportional to

exp (-3T), where (3 depends upon ex and number of plates N;

Rayleigh method used to give approximate 3; solves example

model of Taylor Diffusion type, found that first term in

series was most important.

(G-2) Gilliland & Mohr - analytical analysis of discrete-plate

equations using two-time constant exponential model of (M-15)

;

digital computer solves for transient response, then the two

time constants are determined from the results and used to

develop transfer functions; by use of transfer functions,

the responses of several columns to step changes in feed

composition were predicted and compared with the responses

calculated by numerically solving the discrete-plate equations.

(A-3)-l4.; (M-8)-4.; (M-l)-12. ;
(R-8)-21. ; (S-3l)-^3.

(R-7) Rosenbrock - funcamental "disturbance trapping" paper; char-

acterizes the departures of a distillation column from its

steady-state by a quantity D which measures the rates of change

of composition on all the plates and increases whenever the

column is disturbed from its steady-state; result is generalized

n '
n n>

D » 2 JcldCH^uJ/dtl
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to multicomponent systems; disturbances become " trapped i In

the column at points where equilibrium curve slope equals

operating line slope, rates of change of composition do not

decrease as would be expected, numerical computation of behavior

in these cases is difficult; presents an electrical analog

to the discrete-plate equations.

(R-32) Rosenbrock - discrete-plate equations, matrix methods, energy

considerations

.

(W-2) Wilkinson & Armstrong - considered response of a column at

total reflux to a change in bottom vapor composition, used

binary mixture, linear equilibrium curve; response predicted

by analytical analysis was in good agreement with that observed

experimentally.

(F-l6)-12. ; (G-3)-l.; (H-20)-10.; (B-7)-4. ; (B-12)-l.

(B-27) Balasubramanian - analytically solves one differential equation

for a one-plate still.

(C-2) Cullinan - considers transient start-up problem using matrix

methods for analytical solution, uses f(u) = mu + b.

(Z-3) Zykov - analytical solution of discrete-plate equations for

transient analysis of multicomponent column; good bibliography

of Russian literature.

(F-5) Foss, Gerster & Pigford - assumptions of complete mixing or

no mixing lead to inaccuracies in distillation, paper attempts

to establish the nature and extent of mixing and to develop

calculational methods to account for its effect on plate

efficiency; mixing experimentally determined by use of

tracers and measurements of residence times; simplified calcu-
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lation procedure presented which affords a rapid means of

computing plate efficiency under all mixing conditions.

(H-21) Hassett - solves for transient behavior using equilibrium,

steady-state, and McCabe-Thiele diagram.

Continuous Spatial Equations

20. Frequency Analysis or Laplace Transform Solution

(j-6) Jafri, Glinski & Wood - continuous system transient response

with control using time constants and transfer function analysis.

(M-27) Majumdar - solves CSE using Laplace transforms and lineariza-

tion, applies to Clusius column.

(H-4) Hoerner & Shiesser - frequency and time responses using Laplace

transforms, linearized CSE, linear equilibrium; gives model of

Taylor Diffusion type.

(S-7) Sellers & Augood - transients in a liquid hydrogen separator,

uses Laplace transforms, exponential characterizations, rate

of approach method.

(W-5) Ward - uses Laplace transforms and frequency analysis to cal-

culate the time behavior of dynamical systems.

(D-l) Douglas & Hippin - uses linearized equations and sinusoidal

inputs, considers system in terms of chemical oscillators.

21. Transient or Time Analysis

(j-l) Jackson & Pigford - (1956) digital computer solution of linear-

ized CSE model for startup problem, plots of composition

throughout column as a function of reduced time are presented;

linearized CSE and linear equilibrium f(u) - Au gives equation
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of Taylor Diffusion model type; took 3 hours of computation

time on IBM 701 to solve for transient curves on several trays,

(H-4)-20.; (D-3)-19.; (M-l)-12. j (C-2)-19. J (L-26)-9.

(K-2) Koppel - solves heat exchanger/chemical reactor equation of a

form possibly similar to CSE;

9u = [1 + r(t)] 3u + p[l + br(t)] u
n

.

at ^x

(0-1) Osborne - linear equilibrium f(u) mu + b used, equations

considered continuous in time and differenced in theoretical

stage; concludes that the real cause of numerical instability

problems is in theoretical stage direction differencing;

numerical solution obtained with very large theoretical stage

step, one theoretical stage, and very small time steps, this

took care of instability problems; Fortran IV computer program

for max. 6 components, max. 60 trays described.

(R-8) Rosenbrock - calculates transient responses; describes labor

needed to solve CSE models; describes control aspects and

theory; presents good bibliography.

(S-13) Stone & Brian - detailed numerical methods described for

solving CSE type equations; solves Taylor Diffusion model

equation as an example; CSE is a subcase of equation (2)

which is a general form of convective transport equation;

B [D(x,t,u) £u] - <L_ [V(x,t f u)f(u)] = Bu
§x" 0x £x 0t

several different types of numerical methods discussed and

compared; analysis derived applies only to linear equations;
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recent results indicate that the desirable features of

solutions obtained by the new equations for linear problems

are to a large degree found in solutions of nonlinear problems.

(M-28) Montroll & Newell - exact solution of nonlinear differential

equations which describe the time dependent behavior of multi-

stage cascade separating processes of two very similar non-

linear species, Rayleigh separation law postulated for each

stage; linearization of nonlinear second-order portion differ-

ential equations is discussed; analytical expressions in terms

of exponentials and eigenvalues are developed; equilibrium

curve is approximated by f(u) = u + cu(l - u).

(K-3) Kermode & Stevens - several nonlinear continuous models

solved on an analog computer.

(P-7) Powers - numerical solution to Taylor Diffusion type partial

differential equation with two-point boundary conditions and

one initial condition.

(R-14) Ruckenstein - analytical analysis of convective diffusion

(Taylor Diffusion) type equations; extensive analysis of

applicable transformations and linearization methods.

(B-29)-4.; (G-3)-l.

(T-5) Tsang - solves heat equation using eigenfunction expansion

(orthogonal) , evaluates 1st 3 values numerically; other

analytical solutions presented also, Bessel functions,

(H-25) Herron & Van Rosenberg - uses a mesh and centered difference

method to numerically solve convective transport equations with

two-point boundary conditions.

-67-





(j-2) Jury - solves heat equation using analog computer, uses

memory, solves repetitively.

(j-5) Jackson - numerical solution and optimization of partial

differential equation models.

(L-20) Lapidus - transient response and control of chemical reactors

using continuous models.

(B-20) Bedingfield & Drew - heat and mass transfer expressed by the

same equations.

(W-l^) Woodle - analogy between distillation and heat transfer, some

equations.

(B-25) Brian - transient response using a continuous, Taylor

Diffusion type model.

(C-8) Crank - diffusion in different geometries with different

boundary conditions, finite difference methods, diffusion

and chemical reaction; use transformations for equations with

variable diffusion coefficients.

Experimental Transient Behavioi

22, Frequency Response

(H-15) Henley - frequency response techniques for experimental

analysis of transient behavior.

(H-23) Hutchinson & Shelton - frequency response techniques using

correlation functions.

(A-6) Armstrong & Wilkinson - carried out experimental work to verify

theoretical computations and methods of (R-l6) and (R-9)

5

studied behavior of 21 plate CH^ - CCl^ separator subject to
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step changes in feed and reflux on column composition} long

time agreement was better than short time after disturbance}

results summarized by transfer functions having the form of

pure time delay followed by a linear log, both time constants

are functions of plate number.

(H-2^) Haagensen - experimental results derived from frequency

response using matrix techniques.

(W-28) Woods - experimentally determined controller settings for a

continuous system operating dynamically.

23. Time Response

(H-3)-l6.; (L-5)-l6.| (R-30)-5.

(B-5) Baber & Gerster - determines experimental transient response

of column to changes in liquid and vapor rate, demonstrate

the applicability of discrete-plate equations for predicting

measured response} responses to step inputs presented in

tables and graphs; equations solved by analog computer;

results confirmed validity of model; linear perturbation types

of equations predict satisfactorily the transient behavior.

(B-3) Baber - similar to (B-5) but earlier; experimental response

of 5-tray, 2 ft. bubble-cap column; tests made over a range of

gas and liquid rates nearly up to the flooding point and for

tower pressures up to 5 atmospheres; average difference between

predicted and experimental results was 13$, indicating that

simple perturbation equations are valid models,

(R-15) Rademaker - tested an ethylene-ethane splitting column to

provide data for checking a general theory of column dynamics}
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data summarized in graphs and experimental accuracy discussed.

(D-12) Davies - "hidden transients" can have significant effects on

tray efficiencies.

24. Cyclic Distillation

(A-14) Atkeson - one of the first papers (1957) to indicate that

cycling or nonequilibrium operation can increase mass transfer

rate greatly; attempts to explain physically.

B2.3 DISTILLATION COLUMN CONTROL

25. Textbooks

(A-12)-40.; (G-3)-l. ;(C-l)-l.

(B-13) Buckley - very practical, industrially oriented process control

text.

(K-5) Koppel - matrix theory, optimal control, sampled-data control.

(A-ll) Athans & Falb - mathematical theory of optimal control; many

examples and problems; very clear presentation; extensive

bibliography.

26. Theses

(B-2) Beecher - presents method of dynamic control system synthesis

using calculus of variations; provides extensive Fortran program;

example is 100 plate butadiene/butiene-2 column.

(B-32)-13.

(G-l) Gordon-Clark - uses matrix theory to adjust dynamic response

of process to some required response before applying conven-

tional control; uses linearized model of a 5-plate binary

column, control and measure composition on each plate; main

computation difficulty is finding eigenvalues of matrix;
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Fortran program, form matrix, form into tridiagonal matrix,

obtain complex roots of real polynomial by Bairstows' s method,

iteration using quadratic factor, obtain roots of quadratic

factors, return; major drawback is large number of variables

required.

27. Extensive Bibliographies and Literature Surveys

(A-3)-l4. ; (R-8)-21.
; (R-12)-14. ; (S-33)-14.

Conventional Control Systems

28. Digital Control

(H-29) Hanson, Duffin & Somerville - provides extensive Fortran

computer programs for control.

(B-6) Buster - closed loop control applied to oil fractionating

system, required large memory and cleyer programming to

complete calculations in real time.

29. Hybrid Control

see 17.

30. Analog Control and Instrumentation

(H-l6) Haines - large number of diagrams of possible column control

configurations with explanations.

(G-3)-l.l (B-13)-25.5 (C-l)-l.j (G-12)-18.

(B-22) Buckley - basic column control strategy, diagrams of control

loops, linearized models.

(B-10) Bauer & Orr - uses McCabe-Thiele diagram to derive best

operating lines for control.

(B-3l) Boyd - mostly nonmathematical and non-diagramatical discussion.

(P-6) Pink - describes control using analog computer, no mathematics.
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(S-l) Shinsky - process controls based upon time response analysis;

distillation columns hard to control because (l) many trayed

towers slow to respond to control action, (2) separation

requires many variables, (3) on-line analysis not always

available, (4) distillation units are usually last in the chain

of processing operations, and (5) factors affecting separation

not readily interpreted in terms of control system requirements.

(L-^0 Lupfer & Parsons - describes a control system designed to reduce

the effects of changes in flow rate and feed composition on

column operation, uses predictive or feedforward control,

dependent outputs of the process are controlled by measuring

one or more inputs (which generally cannot be controlled),

and then the controlled parameters are changed as required

to achieve the desired output.

(C-12) Ceaglske - comparison of transient and frequency response

methods for control of linear chemical process systems.

(T-ll) Tivy - control discussion, no mathematics.

(M-29) Moczek - discusses effect of transient behavior and dead time

on control, very little mathematics.

(P-14) Phillips - control descriptions, no mathematics.

(R-13) Rijnsdorp - discusses feedforward & feedback control with

distillation column as an example.

(S-9) Strobel - describes in detail theory of optical and electrical

measuring devices; great deal of theory presented, photometers,

spectral analysis, wave theory, etc.

(H-l) Harriott - transient and frequency analysis used for column

control.
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Control Systems Using Dynamic Models

31. Digital Computer Control

(A-12)-40.; (D-4)-l6.; (L-l8)-l6. ; (D-6)-l6.

(R-20) Rosenbrock - application of automatic control theory to

chemical processes has not led to the same improvement of

performance as it has in the control of mechanical and elec-

trical systems, paper attempts to explain why; complexity of

chemical processes, lack of suitable measuring equipments,

remote objectives i.e. out of 1000 variables only 10 are of

interest, modes not always easily separated; proposes matrix

method in which important modes are picked out for control.

(S-33)-lA.

(C-ll) Cadman, Rothfus & Kermode - uses matrix methods and frequency

response techniques for design of multicomponent feedforward

control system.

32. Hybrid Computer Control

(D-13) Dahlin & Nelson - uses hybrid computer and matrix maximum

principle for optimal control.

33* Analog Computer Control

(j-6)-20.; (K-2)-21. 5 (L-3)-15.l (R-3)-l8.| (H-15)-22.

(L-14) Lupfer & Oglesby - elaborate analog controller described,

instrumentation and feedback schemes.

(L-6) Luyben & Gerster - studies effectiveness of feedforward

control for 10 and 40 tray columns, performance of overhead

and bottoms controller determined by analog simulation and by

experimental tests on a 10 tray - 2 ft. column; concludes that
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relatively simple feedforward controllers appear adequate for

distillation; for small input disturbance, a linear model can

be used to determine controller transfer functions.

(W-27) Williams & Harnett - uses frequency response analysis, plate

equations, first order lags; describes various control schemes.

34. Optimal Control

(L-9) Lapidus - nonlinear optimal control, quadratic performance

criteria, Riccati equation and solution, etc.

(B-ll) Brosilow & Handley - optimal control of the overhead composi-

tion of a distillation column, integral squared error criterion

on disturbances; experimental analysis on 5 inch column with

15 trays and 3 bubble caps per tray} control system behaved

well in spite of model inaccuracies.

(B-32)-X3.i (A-ll)-25.j (D-13)-32.; (K-5)-25. i (S-33)-0A.i

(j-5)-21.

35. Distributed or Modal Control

(D-9)-l6. ; (J-6)-33.l (S-3l)-^3. J (F-l6)-12.

(G-13) Gavalas - eigenvalue solutions for distributed parameter

steady state.

B2.4 MATHEMATICS AND COMPUTATION

36. Ordinary Differential Equation Theory

(H-ll) Hartman - $20.00 text, ordinary differential equations in

all aspects from a pure mathematics standpoint, theorem-proof

presentation.

(B-14) Birkhoff & Rota - very good presentation of transformations and

eigenfunction expansions for two-point boundary-value problems

and Sturm-Liouville problems.
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(1-2) Ince - if one were ever restricted to only one look on ordinary

differential equations, this would have to be the one.

(H-12) Hildebrand - very practical applied mathematics text, useful

theory of infinite series expansions to solve DE's.

37. Partial Differential Equation Theory

(G-7) Garabedian - theory of 1st and 2nd order PDE's, basics of

integral equation theory, very few examples or problems.

(P-ll) Porsythe & Wasow - practical numerical methods text, useful

for solving PDE's.

(B-21) Berg & McGregor - very clear presentation of basic principles

and solution techniques for PDE's.

(0-l)-21.j (P-12)-I7.j (F-16)-12.

(G-6) Gurel & Lapidus - extensive discussion of stability of ODE's

and PDE's.

(W-7) Webster - large number of practical example-problems solved.

(H-28) Hildebrand - newest Hildebrand text, seems to be as practical

and understandable as the previous texts; numerical methods

for solving PDE's.

38. Integral Equation Theory

(T-3) Tricomi - best text on integral equation theory in literature,

complete, readable, very few examples.

(P-4) Petrovskii - good presentation of separable kernel theory and

use of algebraic equations to approximate integrals several

classifying examples and problems.

(L-8) Lovitt - very clear presentation of basic theory with large

number of easily worked and instructive examples and problems.
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(H-13) Hildebrand - very explicit presentation of methods to convert

from IE's to DE's with examples.

(D-5) Davis - large number of methods and equations solved which

are not found anywhere else in the literature.

(M-6) Mikhlin - very readable text, terminology sometimes different

from standard U.S., coveres about same material as (L-8).

(S-ll) Smithies - rigorous text, presents theory of IE's in terms

of Lebesgue integration and L spaces; Riemann integration

and R
?

spaces are subcases of L^spaces.

(V-4-) Volterra - original classic in theory of integral equations.

(G-7)-37.i (W-7)-37.

(W-6) Whittaker & Watson - very clear, but abbreviated, presentation

of IE theory; extensive presentation of infinite series

expansions,

39. Mathematical Transformations

(T-4) Tranter - basic theory and application of different types of

integral transforms.

(Z-l) Zemanian - recent text, extensive theory of transformations

and integral transforms.

(S-3l)-43.; (M-l6)-44.; (R-14)-21.| (C-8)-21.

40. Matrix Mathematics

(A-4) Acrivos & Amundson - transient solution to column discrete

equations by matrix methods, eAt solution; this paper refer-

enced very often in the literature; paper originally brought

the subject of matrices to the attention of chemical engineers,

wide variety of chemical engineering problems solved in this
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paper by matrix methods including the absorber problems of

(A-l) and (L-2).

(A-12) Amundson - good presentation on eigenfunction expansions;

matrix theory.

(H-13)-38.; (J-7)-5.

41. Numerical Solution Techniques

(B-30) Berry & DePrima - develops iterative procedure for the

determination of the eigenvalues and eigenfunctions associated

with the solution of Sturm-Liouville problems in a finite

interval? presents and discusses convergency of an iterative

scheme different from "sweeping" or Rayleigh-Ritz; presents

numerical example,

(R-24) Ralston - very practical and widely referenced text, many of

the programs in the Scientific Subroutine Package (l-3) use

methods of this text.

(D-8)-l6. ; (h-28)-37. ; (P-ll)-27. ; (B-32)-13.

(F-2) Fox - somewhat dated but clear presentation, verified with

many numerical examples, of methods for finding boundary-

value solutions and eigenvalues.

(K-l) Kenneth & McGill - gradient methods, general numerical methods,

some theorems on existence and uniqueness of boundary-value

solutions.

(L-10) Liu - numerical solution by finite-difference method; shown

to be explicit, stable, more accurate than Crank-Nicholson;

solves heat equation and several nonlinear examples.
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(M-22) McGinnis - solves Taylor Diffusion type equations using

Runge-Kutta techniques; describes numerical methods for BV

problems.

(S-13)-21.; (C-8)-21.j (A-10)-5. 5 (P-8)-5.

(H-19) Hamming - very practical and extensive numerical methods text.

(M-4) McCracken & Dorn - application of numerical methods, flow

charting, basic Fortran, programming principles, ODE's and

PDE's numerical methods, etc.

(R-4) Rose, Johnson & Williams - used both analog and digital

computer to solve plate equations for a 7 plate binary column;

found that the time required for the column to change from one

steady-state to another after an abrupt change in feed composi-

tion is a strong function of the magnitude of change, a, reflux

ratio, N, feed tray location; numerical methods used described

briefly.

(R-29)-3.J (P-12)-3.; (H-25)-21. ; (J-7)-5. ; (a-17)-3.

(L-ll) Lee - invariant imbedding approach; classical methods use

quasi-linearization; invariant imbedding considers a family

of problems from zero to the duration of the original problem,

by imbedding, solve for the missing conditions for 2-point

BV problem; solves Taylor Diffusion type equation as an example.

(D-9)-l6. ; (M-2)-43.; (R-17)-l.? (J-5)-21.

(N-l) Naylor - numerical solution techniques.

(W-26) White - method for numerically calculating eigenvalues and

eigenvectors of large dimension matrices; good bibliography.

(D-15)-16.
; (S-12)-5.
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42. Boundary Value Problems

(B-8) Boyce & DiPrima - basic text on practical solution techniques

and theory of boundary and eigenvalue problems.

(B-9) Beltrami & Wohlers - very theoretical presentation; existence

and uniqueness theorems for boundary value problems.

(V-l) Villadsen & Stewart - new collocation methods given for

solving symmetrical boundary-value problems using orthogonality

conditions to select collocation points; accuracy is shown to

be comparable to least squares or variational methods,

calculations are much simpler; applications given to one-

dimensional eigenvalue problems and to parabolic and elliptic

PDE's; collocation methods are special techniques for solving

integral equations numerically.

(L-11)-41. | (H-ll)-36.; (K-l)-4l.j (B-l4)-36. ; (M-22)-4l.;

(B-32)-13. ; (F-2)-4l.; (H-12)-36. ; (H-25)-21.

43. Bigen-Values , Vectors 8 and Functions

(S-3l) Singer - state variable transformations and matrix methods

to select significant modes and eigenvalues of multivariable

systems.

(M-2) Mickiey, Sherwood & Reed - numerical solutions of PDE's

using finite differences applied to stagewise processes;

orthogonal functions and infinite series solutions of PDE's.

(B-30)-4l.; (A-12)-40.; (G-13)-35. J (H-ll)-36.

;

(H-13)-38.; (l-2)-36. ; (B-l4)-36.j (D-3)-19.

I

(S-13)-21.j (V-l)-42.j (W-26)-41.; (B-5)-22.

;

(H-12)-36.; (J-7)-5.
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i|4. Special Functions

(A-18) Abramowitz & Stegun - complete and extensive analytical,

numerical, and graphical presentations of special functions.

(L-23) Lebedev - practical user's text showing mathematical properties

of special functions and examples of usage.

(M-l6) Magnus, Oberhettinger & Soni - states and proves many of

the mathematical properties of special functions.

(R-28) Rainville - similar to (L-23).

45. Computation and Computer Programming

(0-4) Organick - basic principles of Fortran IV in textbook form

with large number of examples.

(1-3) Scientific Subroutine Package - set of over 250 subroutines

for performing standard numerical manipulations such as

matrix inversion, integration, differentiation, expansion in

functions, least squares curve fitting, roots of polynomials,

etc. ; (l-3) is in Fortran IV but recently (19&9) a reduced

package in PL/l has been released.

(M-4)-4l. ; (P-8)-5. ; (H-29)-28. 5 (M-l8)-5. 5 (B-15)-l.
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SECTION 2

MODELS OF BINARY DISTILLATION COLUMNS (m)

Ml THE DISCRETE-PLATE EQUATIONS (DPE)

M2 THE CONTINUOUS-SPATIAL EQUATION (CSE)

M3 SOLUTION TECHNIQUES FOR THE CSE

M4 LINEAR APPROXIMATIONS TO THE CSE

"I HAVE HARDLY EVER KNOWN A MATHEMATICIAN WHO WAS CAPABLE

OF REASONING." - PLATO

"PLATO WAS A FOOL!" - JACKIE GLEASON

THIS SECTION PRESENTS DISCRETE AND CONTINUOUS MODELS FOR THE

COMPOSITION BEHAVIOR OF A BINARY PLATE DISTILLATION COLUMN. THE

CONTINUOUS-SPATIAL EQUATION (CSE) IS DEVELOPED FROM THE DISCRETE-

PLATE EQUATIONS (DPE) BY CONSIDERING THE PLATE NUMBER TO BE A

CONTINUOUS VARIABLE. SOLUTION METHODS FOR THE CSE ARE PRESENTED,

INCLUDING TRANSFORMATIONS, GENERAL SOLUTION TECHNIQUES, NONLINEAR

APPROXIMATIONS, AND LINEAR APPROXIMATIONS. AS A FINAL RESULT THE

LINEAR POLYNOMIAL-COEFFICIENT MODEL (LPCM), WHICH IS THE SUBJECT OF

SECTION 3, IS DEVELOPED AS A LINEAR APPROXIMATION TO THE CSE.
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CHAPTER Ml

THE DISCRETE-PLATE EQUATIONS (DPS)

The development of the discrete dynamic model of a binary plate

distillation column is the subject of this chapter. The development

begins by defining the symbols to be used in the derivation. Then

the individual plate equations will be developed by considering com-

ponent mass balances on a typical plate. Finally several comments are

made referencing the literature pertaining to the discrete-plate

equations. The developments of this chapter are a simplified version

of those presented in reference (G-3),

The symbols to be used in the derivation of the individual plate

equations are presented in Table Ml.l. These symbols are to be

applied to the characteristics of the idealized, typical plate of the

lower or stripping section of the column as shown in Figure Ml.l.

The derivation of the equation for the rectification or upper section

are identical except that the upper flow constants must be used. The

author has attempted to keep these symbols consistent with those used

in Chapters II and 12 and especially in Table 12.1.

The dynamic model is a system of equations developed for each

plate by utilizing the basic principle of conservation of mass stated

in Equation Ml.l, The four possible mass balances which can be applied

Accumulation - Inflow - Outflow Ml.l

to the plate of Figure Ml.l are listed below. Three of these mass

balances, numbers 2, 3» and k are satisfied by the assumptions stated

in Table Ml.l for the individual variables. These assumptions restrict
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u - Concentration of the lighter component in n-th plate liquid
n

(lbm mole lighter component/lbm liquid)

f(u
n ) - Concentration of the lighter component in the n-th plate vapor

(lbm mole lighter component/lbm vapor)

oc - Relative volatility (dimensionless) ; assumed constant

F - Peed rate (lbm liquid/hour) ; assumed constant

D - Distillate rate (lbm liquid/hour) ; assumed constant

tf - Bottoms withdrawal rate (lbm liquid/hour) ; assumed constant

H - Liquid holdup on the plate (lbm liquid) ; assumed constant

h - Vapor holdup above the plate (lbm vapor) ; assumed constant

L - Liquid rate in the rectification section (upper section)
u

(lbm liquid/hour); assumed constant

L - Liquid rate in the stripping section (lower section)
(lbm liquid/hour) ; assumed constant

V - Vapor rate in the column (lbm vapor/hour) ; assumed constant

B - Upper reflux ratio, L /V, (lbm liquid/lbm vapor)

B
1

- Lower reflux ratio, L /V, (lbm liquid/lbm vapor)

k - Feed plate index (integer)

n - Internal plate index (integer), 1 < n < N

N - Total number of plates in the column (integer)

E - Murphree plate efficiency (dimensionless), defined by
Equation 12.1, E 1 assumed for all plates

q - Portion of the feed which adds to the lower liquid rate;

L » L + qF ; further developments use q = 1, saturated
liquid feed

Table Ml.l - LIST OF SYMBOLS USED IN DISTILLATION
COLUMN DYNAMIC MODELS
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1. Liquid phase mass balance of the lighter component.

2. Liquid phase overall mass balance.

3. Vapor phase mass balance of the lighter component.

if. Vapor phase overall mass balance.

the overall validity of the model greatly but are utilized to simplify

the developments which follow in later chapters. It is eventually

expected that the generality of the Linear Polynomial-Coefficient Model

(LPCM) presented in Section 3 can be utilized to generate solutions

which are nearly as accurate in representing the essential nature of

the column transient behavior as would be a completely general model

using four equations per plate.

"XG=





The mass balance of the lighter component in the liquid phase

gives equation Ml. 2 for the upper section and Ml. 3 for the lower

section. The steady-state portions of these equations are seen to

be equivalent to the discrete-plate steady-state equations in

Figure 12.3. "

H d^
dT - v CfK-i> - fK)l + L

ui\+i-vl ^-.Z

H du
n

dT " V Cf (un-1> " fK)l + LlK+l^n] "1.

3

The overall binary distillation column dynamic model utilizing

the discrete-plate equations can now be presented as Figure Ml. 2,

where the effects of the condenser and reboiler have not been included.

It can be seen that this model consists of N-nonlinear ordinary differ-

ential equations with boundary conditions. This particular model is a

highly simplified version of the more general models (using all k

equations with varying holdups and flow rates) usually considered in

the literature (See B2.2 - Discrete Plate Equations). The solution

techniques to be applied to the continuous-spatial equation developed

in later chapters can also be applied to more general models; but for

the purposes of presenxing the LPCM and its solution techniques, the

model of Figure Ml. 2 is sufficient. When accurate quantitative behavior

is desired, the discrete-plate model is almost always the model

employed in the control system applications described in the literature

(B2.3 - Digital Computer Control).

The reader is referred to the very extensive literature in

Chapters Bl and B2 for further information pertaining to discrete-

plate models and solutions. This chapter has presented a very brief
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development of the discrete-plate model (DPM) for the purpose of

utilizing it in the development of the continuous-spatial model (CSE)

which is subsequently to be linearized to the linear polynomial-

coefficient model (LPCM) for which an analytical solution procedure

is developed. The next chapter presents the development of a contin-

uous-spatial model (CSE) from this discrete-plate model.

Model Equations

Rectification Section k + 1 < n < N

dt CfK-i> - *K>] + Lu K+r unl

Feed Tray n k

dt [fK-i) - f(u
k)]

+ Vk+1 " Ll\ + Fuf

Stripping Section 1 < n < k - 1

H dun
dt"

= V PK-i) - f(nn)] + L
i Dw n J

Equilibrium

tin) - aun
n

1 + ,a-l)un

End Conditions

f(u ) - u,
n d

Top n = N

u
l " % Bottom n = 1

Feed and Flow Conditions

Lt = L + qF
1 u

or B1
= • Bu + qF/V

V - L + D
u

W - L, - V

Figure Ml. 2 - THE DISCS
PLATS LIE

tETE-PLATE EQUATIONS FOR A BINARY 1

ITILLATION COLUMN
1
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CHAPTER M2

THE CONTINUOUS-SPATIAL EQUATION

This chapter presents the steps in the procedure used to transform

the discrete-plate equations of Figure Ml. 2 to the continuous-spatial

equation (CSE) which is a continuous dynamic model of the concentration

behavior of a binary plate distillation column. In general this con-

version represents a significant step away from the quantitative accuracy

of the discrete models because of the series expansions and approxima-

tions involved. Usually, however, the solutions of the discrete models

require comparatively large amounts of time to calculate, often on the

order of half (about 15 minutes) of the major concentration time con-

stant (B2.2 - Digital Computer). This makes such models of limited

usefulness in control systems which utilize the model to predict

transient response in order to correct for transients ahead of time.

For these reasons a model is sought which requires less computation

time to predict the dynamic response of the distillation column.

The continuous-spatial equation (CSE) may be such a model. The

remainder of this thesis will be devoted to developing, investigating,

approximating, and solving models of the continuous-spatial type. These

models are not expected to behave quantitatively as near to the actual

column response as do the discrete models, but it is anticipated that

some sacrifice in numerical accuracy will result in a great savings in

computation time and therefore better prediction for use in control.

The literature pertaining to continuous models is somewhat limited.

The best single presentation on this subject in the literature of

Chapter Bl is by Rosenbrock (R-12). It would seem that the most general
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form of continuous model solved analytically in the literature is the

Taylor Diffusion Model (Chapter IA) which results from approximations

which, for the case of distillation, have been shown not to represent

accurately the behavior of the column (G-3) (R-7). The most general

form of continuous model solved numerically in the literature is the

polynomial-class nonlinear model (Chapter M3)» This model is solved

by numerical methods which treat the continuous variable as a set of

discrete points, and therefore the solution takes nearly as much time

as solving the discrete equations (B2.2 - Transient or Time Analysis).

It can be expected that most of the time savings resulting from solving

continuous models will be a direct result of extensive analytical

analysis and judicious approximation. This will be the objective of

the following chapters in this thesis.

The development of the continuous-spatial equation begins with

the representation of the plate number n by a continuous-spatial

variable x given in equation M2.1. The variable x is continuous from

x « gn M2.1

Where: n - plate number

g - plate spacing (ft.)

bottom to top of the column. The general discrete-plate equation is

represented here from Chapter Ml as equation M2.2. The transformation

H dun » Vf(u
n-1 ) - Vf(un ) + Lu

n+1
- Lu

n
M2.2

dt

Where: u = u
n
(t)

from plate number to spatial variable means that u
n

is redefined as
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in equation M2.3 and M2.4. Using these functions, equation M2.2 now

becomes the partial differential equation of M2.5.

u
n
(t) = u(x,t) M2.3

un+1 (t) = u(x+g,t) M2.4

H ^u(x,t) = Vf [u(x-g,t)] - Vf [u(x,t)] M2.5

+ Lu(x+g,t) - Lu(x,t)

The continuous-spatial equation M2.5 is as exact as the discrete-

plate equation M2.2, only it is in a different form. Equation M2.5 is

too general for any analytical solution, thus, the terms in x-g and

x+g are each expanded in a Taylor Series (G-3) , and up to the second

order terms are retained as in equations M2.6 and M2.7. If these are

now substituted into equation M2.5 the result is given by equation M2.8,

Vf [u(x-g,t)] - Vf [u(x,t)] - gv3_ f [u(x,t)"]

3 X

+ £sv d-

2 2^ f [u(x,t)] M2.6

Lu(x+g,t) - Lu(x,t) + gL 2f [u(x,t)]

+ g*L 2 s u(x,t) M2.7

2 g^

H h. - fii 5
3 [Lu + Vf(u)] + g d_ [Lu - Vf(u)]

at 2 5x^ ax9
M2.8

Equation M2.8 can be written in a somewhat neater form with the

use of several variable changes. Dividing through M2.8 by V
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and considering t in all of the above equations to be t t , where

t is the column time variable, then the transformation to a new time
c

variable t is given by M2.9. Similarly the continuous spatial variable

t = V t M2.9
H

°

of the column is considered to be xc , and the change of variable on

x is given by equation M2.10. If the condenser and the reboiler are

x - x
c/g

M2.10

now considered as the O'th and N + l'st plates respectively, then the

ranges of the variables can be scaled as in M2.ll and M2.12, with the

column height represented by C, (ft.) in M2.13 for equally spaced plates.

< x < C, M2.ll— c — h

< x < 1.0 M2.12

C
h

- (N+l)g M2.13

If all of these operations are applied to equation M2.8, the result

is equation M2.14.

?u = l3 3 [Bu + f(u)] + \_ [Bu - f(u)] M2.14

£t 2 Jx^ %VL

The complete model of the distillation column composition dynamic

behavior using continuous spatial equations (CSE) can now be presented

as Figure M2.1. This chapter has presented the steps in the procedure

used to convert the DPE model of Chapter Ml to the CSE model of Figure

M2.1. The CSE model is a highly nonlinear partial differential equa-

tion of second order with nonlinear boundary conditions and as such
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requires that approximations be made before any analytical results

can be expected. Linear approximations to this model are the main

subjects of the remainder of this thesis. The next chapter describes

possible solution techniques applicable to the CSE and develops the

Linear Polynomial-Coefficient Model (LPCM).

Model Equation

3u - 1 5 2 [Bu +
0t 2 $x3

f(u)l + 3 [Bu -

ax
f(u)]

Where: B !

u
* L

u/
V Upper Xf < X < 1.0

V vv Lower < x < x~

x
f

-

Equilibrium
= feed tray location

f(u) - flU

l+(a-l)u

Boundary Conditions

0u - f(u) - u

ax

X = 1.0 Top

B £u - 9f(u) = F

ax jx v

(u-uf)
X = x

f
Feed

For: B = L
yu u'
N and B - I^/V

B 3u - f (u) - u

ax

X - 0.0 Bottom

Figure M2.1 - thf; CONTINUOUS-SPATIAL EQUATION (CSE)

DYNAMIC MODEL

.
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CHAPTER M3

SOLUTION TECHNIQUES FOR THE CONTINUOUS-SPATIAL EQUATION (CSS)

This chapter presents a discussion of possible solution techniques

applicable to the CSE
f with particular emphasis on a nonlinear approx-

imation to the LSE. The basic equation of the CSE is here repeated

for convenience as equation M3.1. The CSE is a second-order, nonlinear,

partial-differential boundary-value problem with nonlinear boundary

conditions. An outline of possible techniques for solving the CSE

is presented in Figure M3.1. In this chapter Parts A, B, C, and E

of Figure M3.1 are discussed very briefly, and Part D is examined with

the aim of developing the Linear Polynomial-Coefficient Model (LPCM),

which is examined in detail in Section 3(l).

9u = 1 3 2 [Bu + f(u)] + ?_ [Bu - f(u)] M3.1

3t 2j? 0x

As stated previously, any distillation column model would consist

of two separate CSE's of the form M3.1: one for the rectification or

upper section of the column and one for the stripping or lower section.

The two separate CSE's are connected by the boundary condition at the

feed tray, which represents the dividing point between the lower and

upper sections of the column. Any complete solution for the dynamic

composition behavior of a distillation column would therefore involve

combining the solutions from two CSE's and their appropriate boundary

conditions. The central problem to be considered now is that of

solving the CSE.
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In order for the reader to get some idea of how complicated the

CSE really is, the equation is presented in expanded form as equation

M3.2. Considering Part E of Figure M3.1, the general theory of

partial differential equations (B2.4 - Partial Differential Equation

Theory) provides little help in finding the solution to the CSE.

Ihe general theory presents extensive and valuable results pertaining

to existence of solutions, characteristic analysis, and methods of

solution for linear, semi-linear, and quasi-linear equations, none of

which can "be applied to the completely nonlinear CSE.

3u - 1 [B + 3f(u)l 3 2u + [1 3 2f(u) . 9u
3FE 2 3u OP 2 £u3 3x3x2 2 0u3 0x M3.2

- 3f(u) + B] 9u
#u ^x

Where: u - u(x,t) , B - constant = L/V

f (u) - m
1 + (a-l)u

0u [1 + (a-l)uj 3

lu*^ [1 + (a-iOuJ*

Concerning Part A of Figure M3.1, it would seem to be equally

difficult to simulate the entire set of discrete-plate equations as to

simulate the CSE by any of the three methods listed. In fact, since

the CSE is a partial differential equation, use of digital, hybrid,

or analog equipment to simulate it requires that the CSE be broken up

into discrete-spatial parts. Some time savings might result in appli-

cation of an analog computer for the nonlinear spatial portion evaluated

at discrete times. _q?_





A. Computer Simulation of the CSE

1. Digital Simulation

2. Hybrid Simulation

3. Analog Simulation

B. Application of Transformations to the CSE

1. General Transform Theory

a. Frequency Transforms; Laplace, Fourier, etc.

b. Integral Transforms

2. Change of Variables in the CSE to produce:

a. More Easily Solved Nonlinear Equation

b. Linear Equation

c. More Easily Approximated Equation

C. Application of Some Results in Pure Mathematics to the CSE

1. Contraction Mappings and The Fixed Point Theorem

2. Techniques for Finding the Fixed Point

D. Approximation Techniques for the CSE

1. Nonlinear Polynomial Approximations

2. Linearization and Linear Polynomial-Coefficient
Models (LPCM) of the CSE

E. Application of the Theory of Partial Differential
Equations to the CSE

Figure M3.1 - POSSIBLE SOLUTION TECHNIQUES FOR THE CSE MODEL

J

Solution of the CSE by application of some form of transforma-

tion to the variables, Part B in Figure M3.1. is one area which might

offer rewards with further investigation. Of course, frequency
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transforms such as Laplace or Fourier can be eliminated from consider-

ation immediately in the case of the general CSE because they depend

upon linearity properties. However, these techniques might be effec-

tively applied to the linearized CSE, and in fact, they are used for

analytical and numerical solutions in the literature (B2.2 - Continuous

Spatial Equations - Frequency Analysis.)

In the application of a general transformation, an equation of the

form M3.3 is sought which will make the CSE a more easily solved non-

linear equation, a linear equation, or a more easily approximated

nonlinear equation. In addition, a variable transformation of the form

F(s) = / f(u)K(s,u)du M3.3
o

of equation M3.^ could be applied to the CSE. The resulting complete

set of possible transformations on dependent variables is then given

by M3.5* Transformations of this type are often used successfully for

u » h(v) M3.^

F(s) = / f[h(v)] K(s,v)dv M3.5

solving problems in fluid mechanics and heat transfer. A search of

these areas for transformations applicable to the CSE or some nonlinear

approximation to the CSE might prove rewarding.

Part C of Figure M3.1 presents an area of analysis which may

possibly apply to a theoretical examination of the CSE. The major

consideration here is the use of the Fixed Point Theorem of Brower

(S-2l) (H-ll) to prove such properties as existence, uniqueness, and
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continuity of solutions to the CSE. A description of the Fixed Point

Theorem depends upon the concept of a contraction mapping. The appli-

cation of a contraction mapping to the CSE depends upon considering

the CSE as a nonlinear differential equation of the form of equation

M3.6 at each instant of time.

du « f(x,u) M3.6
dx

The next step in applying the Fixed Point Theorem is the conver-

sion of M3.6 to an integral equation (B2.4 - Integral Equation Theory)

presented in equation M3.7. Then the right hand side of M3.7 can be

u(x) « u(x
Q ) + J^ f[z,u(z) jdz M3.7

o

considered as a general functional transformation (mapping of

functions) A(v) given by equation M3.8. Equation M3.7 can next be

written as a functional mapping of the function v onto the function

u as in M3.9.

A(v) - v
q
+ J* f(z,v)dz M3.8

x
o

A(v) = u M3.9

Now, any functional transformation A(u) which satisfies equation

M3.10 for any two functions u_ (x) and u? (x) is defined to be a contrac-

tion mapping. The Fixed Point Theorem of Brower (1912) then guarantees

| A(u
1

) - A(u
2 ) | < M | u

x
- u

2 |
M3.10

Where: < M < 1

for any contraction mapping that there exists a function u, the fixed
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point in the mapping, such that M3.ll is satisfied. In other words

the function transforms to itself. Equation M3.ll is equivalent to

A(u) = u M3.ll

equation M3.7 f and thus the Fixed Point Theorem proves existence of

a solution to this special case of the CSE if the CSE when written as

a transformation can be shown to be a contraction mapping.

The answer to the question of whether the CSE represents a con-

traction mapping or not could only be determined by further detailed

investigations of the CSE. However, since in the original column the

variable u represented the concentration of the lighter component in

the liquid, it could certainly be expected that u(x,t) would always

remain in the range of M3.12. Any distillation column model which

has negative or greater-than-unity concentration solutions cannot be

valid. In addition, all of the analytical solutions to approximate

versions of the CSE in Chapter Lk satisfy equation M3.12.

< u(x,t) < 1.0 M3.12

The Fixed Point Theorem offers valuable information concerning

the existence of a solution to a general nonlinear differential equa-

tion, but it says nothing about the techniques for finding that solu-

tion. It is expected that general solution techniques for an equation

involving transformations and contraction mappings would have to be

found in the mathematics literature (general topology) and applied

to the CSE as a special case. It is highly unlikely that any such

techniques could be applied to the CSE without some simplifying
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assumptions or approximations being made.

Thus, the analysis of the CSE now proceeds to Part D of Figure

M3.1, beginning with nonlinear polynomial approximations to the CSE.

The essence of nonlinear approximations lies in the assumption that

the equations generated by approximating the coefficients of equation

M3.2 using the initial steady-state distribution will be valid for the

transient behavior of the column. The validity of this assumption

can only be determined by solving specific examples by numerical

methods and comparing them to the CSE numerical solutions.

One possible nonlinear approximation technique would be the use of

n-th degree polynomials to represent the coefficients of equation M3.2,

The steady-state equation would then be a polynomial class (D-5, Ch.8)

nonlinear ordinary differential equation of the form of equation M3.13.

The resulting nonlinear approximate model of the CSE would be given

by equation M3«l^» where the p. and q. are determined by approximating

the coefficient functions of u and the equilibrium relationship by

polynomials of sufficient degree for desired accuracy.

A(u) dfu + B(u) du + C(u) / dm 3 + D(u) = M3.13
dx2 dx * dx'

/ \ m i
Where: A(u) = £ A^u

i«o

/ % n i
B(u) - 2 B u

1

C(u) - £ C iU

i=o

1=0

D(u) - Z D u
i=o x

A. , B. , C, . D. are functions of x
i' i

f i* i
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h. -^ [Pi(u)i + a_ [p2(u)i M3.u
3t p ax

2

Where: P. (u) £ p.u1
1 i-o x

P
2
(u) - S q.u

1

The nonlinear approximated version of the CSE presented in M3.14

is an analytically unsolvable equation in general. That M3.1^ can

be solved using less computation time than that necessary for the CSE

is very doubtful. It may be that M3.14- for specific cases might be

more easily programmed on an analog computer, but further investiga-

tion for specific cases would be required to determine so.

This chapter has presented a brief discussion of a variety of

different methods which could be applied to the CSE. The results of

the investigation are as expected; in order to proceed with any

analytical analysis of the CSE, the equation must be linearized.

The development of linearization techniques is presented in the next

chapter (M4),
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CHAPTER m

LINEAR APPROXIMATIONS TO THE CONTINUOUS-SPATIAL EQUATION (CSE)

This chapter presents the steps in the linearization procedure

to convert the CSE to a linear partial differential equation with

spatially varying coefficients. The spatially varying coefficients are

then approximated by n-th order polynomials in x, forming the Linear

Polynomial-Coefficient Model (LPCM). The most important characteristic

of linearized models is that the variable u(x,t) in the linearized

model represents the incremental distribution resulting from the

linearization about steady-state operation.

The CSE is written in equation M4.1 in terms of uc (x,t) f
where

u (x,t) is the column concentration of the lighter component in the

liquid. If M4.1 is linearized about the initial steady-state operation

using equation M4.2, then the resulting linearized CSE model for u (x,t)

representing the column deviation from the initial steady-state distribu-

tion resulting from transient boundary condition variations is given by

M4.3. The details of the linearization procedure are presented in

Figure M4.1. Equation M4.3 can then be written as a linear partial

du l33 [Bu +f(u)~j+3 [Bu-f(uc )l Mfc.l

^=23? L c c
'

fc
L c

u
c
(x,t) = Ui (x) + u(x,t) m.2

differential equation of second-order with spatially varying coeffi-

cients by expanding the terms as in equation M4.4.

du - 1 3f_ [Bu + m(x)u] + 3_ CBu ~ *(x)u] M^.3

at 2 3^ a*
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Development of the Linearized CSE

A(u) - 1 3* [Bu + f(u)] + 3_ [Bu - f(u)l - 2u
zd*5 a* jt

A(u ) = A(u.) + 3a
3*

(u)

u — u - u.
c i

A( Ui ) = A(u
c ) =

3a

a*

3a
3»

(u) =

Uj

- l^L [(B + m(x))u] + 3_ [(B - m(x))u] - 3u =

^ 2 %X* 0x

Development of the Boundary Conditions

A
t (u ) " (8- " 1) f(u) + u -

Expanding similarly to above:

/3_ - 1\ (m(x)u) + u =

^x ;

fdm(x) - m(x) + l~j u + m(x) Cj_u =
' d* 3x

A (u) - B 9_ [u - f(u)] - F (u - uf ) -

ax v

Expanding as above:

-[B dm(x) + Fj u + [l - m(x)] 3u » -F uf(t)
dx v $x V

at

x = 1.0 Top

x = 1.0 Top

x = Xn Feed

Where: u
f
(t) = u

f
(t) - ufi

Ab(u) = ( Bi L + 1) « - f(u)

a*
Expanding as above:

[l - m(x)"] u + B,, 3u =

a*

x - x~ Feed
Upper and Lower

x = 0.0 Bottom

x = 0.0 Bottom

Figure M4.1 - DETAILS OF THE CSE LINEARIZATION

-101-





?u - 1 [B + m(x)]2fu + [B - m(x) + dm(x)"| du
£t 2 3X2 dx dx

+ [1 d3m(x) - dm(x)] u M4.4
2 dx3 dx

It is very Important to realize the nature of the function m(x).

The function m(x) is defined in equation M4.5 and represents the slope

i(x) - 3f(u)

a*

M4.5

u = Uj_(x)

of the equilibrium curve as a function of x. In equation M4.3 the

constant B represents the slope of the operating lines on the McCabe-

Thiele diagram of Figure 12,2 in the upper and lower regions. The

function m(x) represents the slope of the equilibrium curve in those

same regions. Almost all approximation techniques applicable to

equation M^.3 use these characteristics and assume that m(x) is given

by an equation of the form of M4.6 or M^.8 (R-12) (G-3) (B2.2 -

Analytical Analysis). With the assumption of equation M4.6 equation

M4.3 becomes equation M4.7 which is the Heat Equation.

m(x) = constant = B M4.6

9u - B Jfu M4.7

at ax2

It is rather obvious that assumption M^.6 reduces the linearized

equation M4. 3 to the simplest diffusion equation, thereby neglecting

most of the behavior which is unique tc distillation. Distillation

is a diffusion process, and it is somewhat reassuring to find that

the model M4. 3 reduces to a diffusion model. However, it is certain
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s

that a model of the form of VU,7 could not be used to accurately

predict column behavior for the purpose of controlling the column.

Equation M4.7 is solved analytically and numerically for B m 1.25 in

Chapter L4 and represents the "bottom of the ladder" in any hierarchy

of approximate models of the CSE.

The next step upward in complexity results from assumption M4.8

resulting in equation M4.3 becoming M4.9. Equation M4.9 is the Taylor

Diffusion model equation and is discussed in detail in Chapter Lk.

This equation is still too approximate to use for any control applica-

tions and so, a more sophisticated representation of equation M4.3 is

sought.

m(x) = constant ^ B M4.8

Bu = Px3
3u + P^u

J' 17 ¥ M4 - 5

Where: P = (B + m)/2

P
2

= (B - m)

Suppose the spatially varying coefficient functions in equation

M4.3 are approximated by n-th degree polynomials in x. Then the

resulting complete model would be the Linear Polynomial-Coefficient

Model (LPCM) presented in this chapter as Figure M4.2 and in

Chapter LI as Figure Ll.l. The boundary function constants k^. in

Figure Ll.l are equivalent to the coefficient functions, evaluated at

the boundaries, in Figure M4.2.

The central purpose of this thesis is to suggest that the LPCM of

Figure M4.2 can be used as a distillation column dynamic model of

sufficient accuracy and rapid solution as to be useful in controlling
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the column and to present an analytical solution technique for it.

This is the subject of Section 3(L).

Model Equations

*u

a*

= a*

a*
3
Pi(x)u] + a

a

_ [P
2
(x)u]

K

Where : P (x) = £ ^x1
- [B + m(x)]/2

/ N n
P
2
(x) - 2c

i=<

q.x
1

= [B - m(x)]

Upper and Lower Equations, One for
of the Column

Each Section

Boundary Conditions

[dm(x) -

dx
m(x) + l"] u 1- m(x) du = (

a^

) x = 1.0 Top

-[B dm(x)
dx

+ F] u + [1
V

- m(x)"] au -

ax
z£ u-(t)
V

z

x = x~
(Upper

Feed
and Lower)

[1 - m(x)} u + B du -

a*

x = 0.0 Bottom

Figure M4.2 - THE COMPLETE LB'EAR POLYNOMIAL-
COEFFICIENT MODEL (LPCM)
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SECTION 3

THE LINEAR POLYNOMIAL - COEFFICIENT MODEL (L)

LI ANALYTICAL SOLUTION OF THE LPCM BY INTEGRAL EQUATION TECHNIQUES

L2 THE PARTIAL LINEAR POLYNOMIAL BOUNDARY VALUE PROGRAM (PLPBV)

L3 DETERMINATION OF THE LPCM FOR EXAMPLE DISTILLATION COLUMNS

L4 ANALYTICAL SOLUTIONS TO APPROXIMATED COLUMN EQUATIONS

L5 OTHER SOLUTION TECHNIQUES APPLICABLE TO THE LPCM

"DAZZLED BY THEIR ABILITY TO DO ELEMENTARY THINGS AT TREMENDOUS

SPEEDS AND TO PUT THESE TOGETHER IN STRUCTURES OF DAUNTING COM-

PLEXITY, SOME HAVE ALLOWED THE TERM 'GIANT BRAINS* TO GAIN

CURRENCY AND, SEDUCED BY THE SIREN SONG OF SO SENSELESS A

SOBRIQUET, HAVE SURRENDERED THEIR BIRTHRIGHT OF RATIONAL THOUGHT

FOR A POTTAGE OF PUNCHED CARDS." - R. ARIS (A-13)

THE CENTRAL PURPOSE OF THIS THESIS IS THE DEVELOPMENT,

PRESENTATION, SUGGESTED SOLUTION TECHNIQUE, AND EVALUATION OF

THE LINEAR POLYNOMIAL - COEFFICIENT MODEL (LPCM) OF THE DYNAMIC

BEHAVIOR OF A BINARY PLATE DISTILLATION COLUMN. THE FUNCTION

OF THIS SECTION IS THE PRESENTATION AND UTILIZATION OF THIS MODEL

AND THE DEVELOPMENT OF AN INTEGRAL EQUATION SOLUTION TECHNIQUE

FOR IT.
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CHAPTER LI

ANALYTICAL SOLUTION OF THE LPCM BY INTEGRAL EQUATION TECHNIQUES

The purpose of this chapter is to present a somewhat involved

analytical solution of the Linear Polynomial-Coefficient Model (LPCM)

defined by equation Ll.l with "boundary conditions LI. 2, L1.3» and

LI. 4. The LPCM is a linear, second-order, parabolic, partial-

differential, two-point, boundary-value problem and, as such, cannot

be solved analytically or numerically with complete generality (B-8).

The best that can be done analytically is to develop a solution

technique which allows reasonable assumptions and approximations to

greatly simplify the analytical manipulations leading to a simplified

solution. The best that can be done numerically is to develop and

employ programs specifically related to specialized cases of the LPCM

and then to utilize those programs on digital, hybrid, or analog

equipment to compute a simplified solution. In either case, the

solution may or may not truely represent the behavior of the distilla-

tion column from which the model was developed.

Equations of the form of the LPCM are usually solved numerically

by a variety of different techniques. Numerical solutions to the

LPCM are described in Chapter L5 and a survey of the literature in

the Bibliography, Chapter Bl, pertinent to solving the LPCM is

presented there. No attempts have been made to solve the LPCM in a

purely numerical fashion in this thesis, although the suggestion can

be made that such attempts might prove to be exceedingly profitable

in terms of greatly reduced solution computation time when using the

LPCM as part of a column control system.
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The solution technique to be desoribed in this ohapter is a

sequence of analytical manipulations which lead to an expression

which is then to be evaluated numerically. The technique begins with

expressing the response in terms of steady state and transient

portions. The technique of separation of variables is then employed

for the transient partial differential equation. The spatial

differential equation portion resulting from the separation of

variables is then solved by converting it to a Liouville Normal-

Form equation and then to a homogeneous Fredholm II-integral equation.

The total solution is then expressed in terms of the eigenvalues and

eigenfunctions resulting from the solution of the integral equation.

The anticipated advantage occuring from these analytical manipulations

is that the final numerical evaluation in this technique may take

much less computation time than solving the LPCM purely numerically.

Ll.l TRANSIENT AND STEADY-STATE EQUATIONS FROM THE LPCM

The Linear Polynomial-Coefficient Model is defined by equation Ll.l

with boundary conditions LI. 2, L1.3* and LI. 4. This model represents

the deviation from steady state of the concentration of the lighter

component in the distillation column subject to step changes in the

end-point compositions. The complete presentation of the development

of this model has been given in Section 2(M).

The first step to be taken in the analytical solution of Ll.l

is the realization that, at any given instant of time, there are

three separate spatial concentration distributions implied by the

model. First of all, there is the initial steady state distribution

u.(x) in the column prior to the step inputs. Since the LPCM
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IL C^OOu] + Li>2
(x)u]-3u

4 X Ll.l

Where* u - u(x,t)

P
x
(x) - S P.x

1

" i»0 -»

P2<x> 'Jo V*

Anu(b,t) + A-^u^b.t) . A^ + A^U^Ct) L1.2

A21u(a,t) + A22ux(a,t) - A
£3

+ A^U^t) LI. 3

^1*22 " A
12

A21 ^ ° LI. k

Figure Ll.i - THE LPCM

represents an approximation to an equation which has been linearized

about an initial steady state, this portion should be zero if the

model is to be valid, but cannot be assumed zero for any general

model. Thus, u^(x) must satisfy equation LI. 5 with boundary conditions

given by LI. 6 and LI. 7.

3 3
fP^x^Cxn + §_ [P

2
(x)Ui (x)] - L1.5

9^ dx

AujU^b) + A^u^b) - A^

A
2-jU^(a) + A

22
Ujj (a) » A^

LI. 6

LI. 7

The second distribution implied by the model is the final steady

state u
s (x). This represents the lighter component concentration in

the column after the step inputs and after all transients have had
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time to die out. The final steady state u
s
(x) must also satisfy

equation L1.5t out with the boundary conditions given by LI. 8 and

LI. 9.

A^jUgCb) + A12us (b)
- A

13
+ Al4 L1.8

A21us(a )
+ A

22us(a) * A23 + A2^ L1 ' 9

The third concentration distribution is the transient response

u(x,t) - (Note: the same notation is used for the transient

response as was used in Ll.l for simplicity) - which must satisfy

equation Ll.l, but with the boundary conditions LI. 10 and LI. 11

and the initial condition LI. 12. In the interest of having a com-

pletely defined problem and also from the practical constraint of

proper model behavior, the final condition LI. 13 must also be

included.

Auu(b,t) + Al2ux (b » t ) " ° L1 * 10

A
21

u(a,t) + A
22
ux(a,t)

- LI, 11

u(x f0) - u
Q
(x) - u^x) - us (x) LI. 12

u(x,oo) = L1.13

The net result of considering these three spatial distributions

is that the LPCM solution now is seen to be the solution of three

separate problems* two ordinary differential problems LI. 5 with

different boundary conditions and one partial differential problem

Ll.l with conditions LI. 10 - LI. 13.
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The general usefulness of the LPCM must lie in the capability

of using step response solutions to approximate the response to any

arbitrary input functions of time. In utilizing the model in this

general manner, the initial steady state u. (x) cannot be assumed to

be zero and the model must be solved as the three separate problems

described previously.

For the purposes of presenting and solving the LPCM in terms of

single step inputs, however, the assumption will be made in this

thesis that A-jo and A23 are both zero and, thus, that the initial

steady state distribution u.(x) is zero throughout the column, i.e.

that the initial deviation from steady state is zero. Solution of

the general problem implies solving for u. (x) in LI. 5 and using it,

along with u (x), in the transient boundary condition LI. 12.
s

The assumption that u^(x) - for the purpose of evaluating

the model reduces the solution to one partial differential problem

Ll.l in the transient response u(x,t) and one ordinary differential

problem LI. 5 in the steady state response u (x) with boundary con-
s

ditions given by LI. 14 and LI. 15. Once the transient and steady state

solutions have been determined, the total model solution u (x,t) for
m

Anu
s
(b) + A

12us (b)
- A

l4
11.1ft

A^UgCa) + A
22
u
s
(a) A^ L1.15

step inputs can be expressed as LI. 16. Then u
m
(x,t) will satisfy

the LPCM with A,~ * A
?
- - 0. The development of these solutions

begins with the application of the technique of separation of

variables to the transient partial differential equation Ll.l.
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ujx.t) - u
s
(x) + u(x,t) LI. 16

LI. 2 SEPARATION OF VARIABLES APPLIED TO THE LPCM

The method of separation of variables rests on the assumption

that the solution u(x,t) can be separated into a product of two

functions X(x) and T(t) as in eq. LI. 17. This assumption is the

u(x,t) - X(x) • T(t) L1.17

single most universally used analytical technique for solving

partial differential equations. If this expression for u(x t t) is

then substituted into the LPCM, the resulting expression is

equation LI. 18, where P^ and P^ are defined in LI. 32 and LI. 33*

••

P
1XT + P^XT + P^XT - XT LI. 18

If this expression is divided by XT, then the resulting expression

in equation LI. 19 represents a function of x equated to a function

of t for all values of x and t. Thus, the two expressions must

equal a constant - K3 .

The applicability of this technique to a given partial

differential equation rests on the capability of separating the

P
X
X + P

3
X + P^X - T m _Ka

L1.19

X
T

resulting equation, as in equation LI. 18. This step is, in general,

not possible when the given partial differential equation is non-

linear as are, for example, the continuous-spatial equation and

polynomial-class partial differential equations (Davis, D-5, p.213).
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The general condition for separability of a partial differential

operator of the form of LI. 20 has been shown by Murray-Lasso (M-5)

to be the commutation of the operators H and H expressed in eq.

L1.21. In this case H
x , h^., and L

x t
are partial differential

operators in x, t, and both x and t, respectively. In the case

Lx,t W*tt)] - H
t

[u(x,t)] + Hx [u(x,t)] L1.20

H
x [H

t
(u)] - H

t
[H

x(u)] L1.21

of the continuous-spatial equation H^ and H are defined by

equations L1.22 and LI. 23, where f(u,u , u ) is a nonlinear function.

H
t
[u]=3u

3t L1.22

HxCul " f^u »ux» uXx) U ' 23

That these two operators do not commute is shown in eq. LI. 2k and

therefore the continuous-spatial equation is not separable. The

LPCM, however, does satisfy eq. LI. 21 and is separable, as has

been shown in eq. LI. 19,

The application of the separability assumption then results

in the transformation of the partial differential equation in two
.

variables to a set of two ordinary differential equations, each

of which depends upon the separation constant -K2 . The two

resulting ordinary differential equations are presented as the

spatial equation LI. 25 and the time equation LI. 26,
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• •

RjX + PyC + P^X - -K3X LI. 25

T - -K»T LI. 26

LI. 3 SOLUTIONS OF THE TIME EQUATION

The time equation LI, 26 is an eigenvalue problem whose eigen-

function solutions are easily found. Since u(x,t) in equation Ll.l

represents the transient portion of the desired solution, the

separation constant has been chosen as -K3 in order that each

eigenfunction of the transient response approach zero for large

values of time as in equation LI. 13. The eigenfunctions which satisfy

equation LI. 26 are shown as functions of the eigenvalues -K 3 in

equation LI. 27,

T
n
(t) - expC-K^t) LI. 27

LI, 4 SOLUTIONS OF THE SPATIAL EQUATION

The eigenvalue problem presented by the spatial equation LI. 25

and its associated boundary conditions is much more difficult to

solve than the time equation problem. In fact, statements about

the existence, uniqueness, and continuity of solutions for this

problem cannot be made in general (B-8). Statements of this nature

require restrictions on the equation or the boundary conditions.

There are some existence and uniqueness theorems for restricted

cases presented in the literature (B-9) (K-l) (H-ll), however, the

existence, continuity, and completeness of eigenfunction solutions

to regular Sturm-Liouville problems will be assumed and utilized in

this section (B-1*0 (l-2).
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Several very simple cases of the spatial equation LI. 25 can

be solved analytically. These simple cases are for P, , P~, and P^

set equal to constants, and examples of these are solved in Chapter L4.

In all of these simple cases and, in fact, for the problem LI. 25 in

general, the final steady state distribution in the transient solution

boundary condition LI, 12 is expanded in terms of the eigenfunctions of

problem LI. 25. For reasonably well behaved systems, such as a binary

distillation column, it is expected that only the first few, say ten

(ID) or less, of the eigenvalues are really crucial to the transient

behavior of the distillation column. The reason that only the

smallest eigenvalues -Kn
a are important to the total transient

behavior is that the time-eigenfunctions in equation LI. 27 approach

zero for very small values of time when the eigenvalues -K 3 become

larger. As mentioned in Chapter L4, the analytical solution eval-

uations of the simple cases of the LPCM always required less than

ten (10) eigenfunctions for three-decimal-place accuracy.

These considerations offer promise of greatly simplified

solution expressions for the LPCM if an analytical technique can be

developed which offers a solution in terms of the first few eigen-

values and eigenfunctions. As mentioned in Chapter L5, there are

numerous analytical and numerical procedures which offer this rep-

resentation; however, conversion of LI. 25 to an integral equation and

then solution of the integral equation either by separation of the

kernel (Appendix A2) or by approximating the integral equation by a

system of linear algebraic equations (Appendix A3) will be investigated

in this thesis.
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The integral equation technique consists of converting the

differential equation to the Liouville Normal-Form equation and then

converting the Liouville Normal-Form equation to a Fredholm II-

integral equation. The first conversion procedure begins with a

test for self-adjointness and a transformation of LI. 25 to a regular

Sturm-Liouville equation LI. 40. The end result of these manipula-

tions is the set of spatial equation eigenvalues K in equation LI. 49

and the set of eigenfunctions W (z) in either equation A2.15 or

A3. 10 with the transformation relations LlJ+4, LI. 45, LI. 37, and

LI. 39 leading to the eigenfunction solutions X (x). The following

sections present the development of these transformations and the

equation solution procedures.

LI. 5 SELF-ADJOINT CONDITIONS AND TRANSFORMATIONS

If the spatial equation LI, 25 can be shown to be self-adjoint,

then the spatial eigenvalue problem is a regular Sturm-Liouville

eigenvalue problem. If the spatial equation is not self-adjoint,

then the variables can be transformed into a self-adjoint equation

which then represents a regular Sturm-Liouville problem. In an

analytical analysis such as employed in this chapter, it is essential

that at some step the equations be expressed in a format for which

real eigenvalues and complete eigenfunctions are guaranteed. The

regular Sturm-Liouville problem is such a format (B-14) (l-2).

The necessary and sufficient condition that the spatial equation

LI. 28 be self adjoint is expressed by equation LI. 29. When this

P
1
(x)^C + P

3
(x)X + [P

4
(x) + K3] X - L1.28

^(x) - P
3
(x) L1.29
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condition is applied to the coefficient polynomials in equations

LI. 30, L1.31t LI. 32, and L1.33» the polynomial coefficient relations

LI. 34 and LI. 35 result. The self-adjoint form of equation LI. 28

is then given by equation LI. 36.

n+1
P-iU) » S p xJ~ = g p.x

1
LI. 30

J- j»i J x i=0 i

« / \
n+1 i-1 n i

P
2
(x) " §-i

qJ-l
X " ?.

Q
i
x *•*

B >1P
3
(x) " % + JLn^Pj + <ljX)xJ

"1
L1.32

P^(x) - qx + |j
(J+l) [JP^ + ^j+ii*]^"

1
L1«33

qj-l
+ jpj

= ° j = 1, ••*, n L1.34

qn " ° LI. 35

d_ [PiCx)^] + P
4
(x)X - -KSX LI. 36

dx

If the spatial equation LI. 28 turns out to be non-self-adjoint

,

then the transformation relations LI. 37, LI. 38, and LI. 39 (M-2)

result in the self-adjoint equation LI. 40, This transformed

P(x) = exp Qf
X
P3(x) dx] LI. 37

a
plSr

Q(x) - Pfr(x) , P(x) LI. 38

RM - PCx) LI. 39

PlTx)

d. [P(x)X] + Q(x)X - -KsR(x)X LI. 40
dx

equation LI,40 is then seen to be of the same form (Sturm-

Liouville) as the self-adjoint equation LI. 36. The spatial
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eigenvalue problem thus reduces to a regular Sturm-Liouville problem

with the differential equation expressed by LI. 40 and the boundary

conditions by LI. 41, LI. 42, and LI. 43.

A^b) + A^Xfb) - L1.H1

A
21

X(a) + A
22

X(a) « L1.42

AUA
22 ' A

12
A
22 * ° L1,43

The next step in the solution procedure is to convert the

regular Sturm-Liouville equation LI. 40 to the Liouville Normal-Form

equation LI. 46. Equation LI. 25 could have been converted directly

to an integral equation but this was not done for several reasons.

Firstly, the analytical manipulations in the conversion procedure

did not lead themselves to the approximation techniques so necessary

for finding the final solution. Secondly, and much more importantly,

there is no guarantee that a direct transformation would produce an

Integral equation with a continuous kernel. In fact, in most cases

it would not. If either the kernel separation method in Appendix A2

or the linear algebraic method of Appendix A3 were employed for

solving an integral equation with a discontinuous kernel, there would

be no guarantee that the eigenvalues would be real and distinct. Such

a guarantee can be given if the kernel is continuous and symmetric.

LI. 6 TRANSFORMATION TO THE LIOUVILLE NORMAL-FORM EQUATION

Transformation on both the dependent and independent variables

of equation LI. 40 can be used to greatly simplify the regular Sturm-

Liouville equation (B-14) (1-2). If new variables W and z are defined
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as in equations LI. 44 and LI. 45, then the equation LI.40 is transformed

to that of equations LI. 46 and LI. 47, where the primes are derivatives

* -
, . .

W
. . L1.44

V(x)R(x)

z - /* VKXET" <** L1.45

with respect to x and the equations are expressed as functions of z.

d3W
dp" + [X - M(z)]w - L1.46

11 11 o 1 ;

«(«) = L. [(f) + (§-> + } (f

)

+ 1 (£)(£.) - 1(£)
2

] + $L L1.47

Whereas the original equation LI. 40 was defined over the interval

a < x < b, the transformed equation LI. 46 is valid over the interval

< z < c, where c is defined in equation LI. 48 and X in equation LI. 49.

m
X - K2 LI. 49

The boundary conditions of LI. 41 and Li. 42 are also transformed to

the new boundary conditions on W(z) expressed in equation LI. 50

through LI. 56, where the dot is d/dz and the prime is d/dx.

DnW(c) + D
12

!f(e) - LI. 50

D
21¥(0)

+ D^WCO) - LI. 51
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°12 " A12 V RpQ LI. 53
P(b)

D
2i ' A

2i - A22 /^ial + §ifel\ n.5*
-5- \P(a) R(a) ^

D22 - A
22 /EST L1 -35

Ha?

DHD
22 " D

12
D
21 ^ ° L1 -*>

LI. 7 SOLUTION OF THE LIOUVILLE NORMAL-FORM PROBLEM

Now that the spatial differential equation LI. 28 has been

transformed to the Liouville Normal-Form, the next step in the

solution of the LPCM consists of finding the eigenvalues X± and the

eigenfunctions W
i
(z) for equation LI. 46 with the boundary conditions

LI. 50 and LI. 51. As discussed in subsection LI. 4 the technique to

be used is that of converting LI. 46 to an integral equation and then

solving the integral equation.

The conversion procedure is presented in Appendix Al and two

alternative solution procedures are presented in Appendices A2 and

A3. The separable kernel procedure presented in Appendix A2 could

be employed for specialized cases of the LPCM. The solution procedure

in that case would be to approximate the kernel A1.17 by a finite

series A2.2 and then to apply the techniques of Appendix A2. This

would involve a great deal more analytical analysis for any given

LPCM, but it is anticipated that the resulting solutions would be

more accurate than those obtained by the methods of Appendix A3.

The relative merits of these two solution procedures in terms of

solution accuracy and computation time would have to be examined for

any given LPCM.
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The second integral equation solution procedure in Appendix A3

consists, in essence, of approximating the integral by a finite sum.

The procedure is easily programmed on a digital computer and is a

very direct method. For these reasons, the procedure in Appendix A3

will be used to evaluate the LPCM in this thesis.

Once the eigenvalues K^ and eigenfunctions X(x) of the spatial

equation have been found, the next step in finding the total solution

to the LPCM is to ensure that the initial condition LI. 12 is met.

This requires that the initial distribution u
Q
(x) be expressed in

terras of those eigenfunctions X (x).

LI. 8 THE EIGENFUNCTION EXPANSION

The eigenfunction expansion begins by expressing u (x) in equation

LI. 12 as a sum of constants c^ multiplied by each eigenfunction X.(x)

as in equation LI. 57 i when n is the number of eigenfunctions. Since

u
Q
(x) =

f
e^x) LI. 57

the integral equation solution technique only gives n eigenfunctions,

then equation LI. 57 can only be satisfied for n points x. in the

interval a < x < b. Thus, equation LI. 57 must be discreticed to

equation LI. 58. Equation LI. 58 then represents n-siraultaneous equations

in n-unknowns which can be expressed as the matrix equation LI. 59.

The solution to LI. 59 is then given by L1.60. Once the matrix C has

U
Q
- XC LI. 59

C - X
-1
U LI. 60
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been found, the total solution can be expressed in terms of the

transient and steady state portions.

LI. 9 THE TOTAL SOLUTION TO THE LPCM

The total solution to the LPCM can now be expressed in terms of

known functions u
s
(x) and u(x,t). The steady state problem LI.

5

with boundary conditions LI. 14 and LI. 15 is a standard linear boundary

value problem for which solutions and, in fact, computer subroutines

exist. The steady state solution is determined in this thesis by

Scientific Subroutine Program - LBVP in reference (l-3) and is

described in greater detail in Chapter L2.

The major portion of the LPCM, for which computer programs have

not been developed, was the solution to the transient boundary value

problem. For this reason, this portion of the LPCM received the

greatest portion of solution effort in this thesis. It is expected

that the steady state equation could be solved by the same integral

equation techniques (leading to a final matrix inversion rather than

an eigenvalue problem) as were used for the spatial equation portion

of the transient response. The conversion would be more involved

because the boundary condition constants A.^ and A
?

. in equations

LI. 14 and LI. 15 are not zero. The conversion of both the steady state

equation and the spatial equation of the transient response, and the

incorporation of the solution technique for both of these problems

in the same program would undoubtedly result in a great savings of

computation time over that spent using the LBVP subroutine and the

integral, equation techniques separately. This could only be determined

from further studies.
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The efforts of the previous sections of this chapter have led

to the transient solution to the LPCM due to step inputs. The total

solution was given in equation L1.16; the transient portion of that

solution can now be given as equation LI. 61. The total solution to

u(x,t) -
f

OjX^x) expC-K^t)

the LPCM is then given by equation LI. 62.

LI. 61

u^x.t) * u
s (x) +

|_
CjX^x) expC-K^t) LI. 62

The next chapter (L2) develops a digital computer program for

performing these manipulations and calculating the solution to a

special version of the LPCM,
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CHAPTER L2

THE PARTIAL LINEAR-POLYNOMIAL BOUNDARY VALUE PROGRAM (PLPBV)

The very general solution technique developed for the LPCM in

Chapter LI is based upon mathematical transformations whose analytical

expressions, for general n order polynomial coefficients, are too

complicated to use in a numerical solution evaluation. This chapter

presents an application of the integral equation technique of

Chapter LI to the first-degree polynomial model ( PLPBV) and a digital

computer program for evaluation of the solution.

L2.1 PRESENTATION OF THE MODEL ( PLPBV

)

The Partial Linear-Polynomial Boundary Value (PLPBV) model is

presented in Figure L4.1. Tnis model is a subcase of the LPCM of

Figure LI. I in which ^2^ is a linear polynomial and P-^x) is a

constant. This model represents one step upward from the simplified

LPCM examples of Chapter Lk and, at the same time, the simplest form

of the LPCM which still has a spatial varying coefficient.

[P, (x)ul + 9_ [P2(x)u] - 3u

Where: u - u(x,t)

P
x
(x) =» PQ j PQ

>

p2<x) " % + V
A^uCb.t) + A12ux

(b,t) = A-^U^t)

A
21
u(a,t) + A2£Ux(a,t)

» A^U.-j^t)

Figure L2.1 - THE PLPBV MODEL
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The development of the solution to this model now parallels that of

Chapter LI for the general LPCM except that the transformation

relations can be expressed specifically in terras of the polynomial

coefficients,

L2.2 THE TRANSIENT AND STEADY-STATE EQUATION FROM PLPBV

The first step in solving the PLPBV model is the expression of

the separate transient and steady-state problems as in subsection Ll.l

and equation L1.16. The transient and steady-state problems are

presented in detail in Figure L2.2, where u^Xjt) is the total solution

to PLPBV.

u
m
(x,t) - u

£
,(x) + u(x,t) L2.4

Transient Portion t

P..U 4
1 XX

• ?
3
U
*
+ P^u - u

t
L2.5

where

:

p
l

a

P
3

=

*>o

% + ql
x

*1

A^jUCb, t) + A
12
u
x
(b,t) -

A
21

u(a, t) + A
22
u
x
(a,t) -

u(x,o) " "u
s
(x)

u(x,oo) m

Steady-State ! Portion:

1 s
P
3
Sa

+ P,,u -
4- S

L2.6

where

:

p
i

=

V
P
O

% + qi
X

P4- *1
(Continued on next page)
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A^b) + A
12is (b)

- A^

A
21
u
s
(a) + A

22
u
s
(a) « A^

Figure L2.2 - TRANSIENT AND STEADY-STATE
PROBLEMS OF PLPBV

L2.3 SOLUTION OF THE STEADY STATE PROBLEM

The solution of the general LPCM steady state has been discussed

in subsection LI. 9. The subroutine LBVP, Linear Boundary-Value

Problem, and the associated subroutines applicable directly to the

general LPCM are presented in Appendix A5 for completeness and for

the convenience of the reader. Subroutines LBVP and GELG are taken,

less comment cards, directly from the literature (l-3)» whereas

subroutines AFCT, DFCT, and FCT have been written specifically for

the general LPCM. The user must supply his own output subroutine

OUTP as per reference (l-3).

Once LBVP is called in the main portion of PLPBV then it calculates

the steady-state values u„(x.) for use in equations LI. 58, for the
s J

final transient eigenfunction expansion, and in LI. 62, for the total

solution evaluation at the discrete points x.. The user OUTP sub-

routine must be set up to return u (x.) values to PLPBV at exactly
s 3

the desired x,.

Some comments concerning the efficiency of LBVP in the applica-

tion must be made. It is obvious that since both FCT and DFCT return

zero values that a simpler version of LBVP for this special case

could be written or possibly found in the existing literature by
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further searching. As mentioned in L1.9 t the integral equation

techniques might also be applied here.

For the initial purposes of evaluating the LPCM and testing the

transient portions of PLPBV, the steady state constants were fed in

as Column 9, Matrix 3, in Appendix A4. Subroutines LBVP, AFCT, DFCT,

and FCT have all been compiled, tested, and shown to operate properly.

L2.4 SOLUTION OF THE TRANSIENT PROBLEM; ANALYTICAL ANALYSIS

The solution to the transient portion of PLPBV defined in

Figure L2.2 will be obtained by applying the transformation rela-

tionships to L2.5 to convert the spatial equation equivalent to LI. 25

to the Fredholra II-Integrai Equation A1.21. This analysis will be

divided into an analytical analysis in which the specifics of the

transformations will be presented and a computational analysis in

which subroutine PLPBV will be explained and presented.

The analytical analysis of the transient portion of PLPBV begins

with separation of variables. The time equation eigenfunctions

resulting from the application of the separation-of-variables

technique are the same in PLPBV as they were for the general LPCM

in equation LI. 27. The resulting spatial equation is given below as

equation L2.7.

P-Jx + P~X + [P^ + Ks] X = L2.7

where; P. p^1 o

p
3

= % + hx
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The next step in the analysis of the spatial differential

equation L2.7 is a test to see if the equation is self adjoint or not.

If it is self adjoint, then no transformations are necessary because

then the equation can be written directly in the form of LI. 36.

Application of the self-adjoint test conditions LI. 34 and LI. 35

results in equation L2.8 which shows that equation L2.7 is not self

adjoint and that transformations will be required. It is interesting

qx
- , but qx ^ in PLPBV L2.8

to note at this point that q, » is satisfied for the simplified

version of the LPCM solved analytically in Chapter L4 showing that

it is already self adjoint.

Since equation L2.7 is non self adjoint, the transformations

LI. 37, LI. 38, and LI. 39 can be applied, as in equations L2.9, L2.10,

and L2.ll, resulting in the self-adjoint equation LI. 40. With these

functions defined, the second transformation, to the Liouville Normal-

Form equation, can be utilized as in equations L2.12 and L2.13

resulting from equations LI. 44 and LI. 45. Application of transformation

?(x) ~ exp [(x-a) qo/pQ
+ (x8-a»)

qi/2p ] L2.9

Q(x) - P(x)q
1/pQ

L2.10

R(x) - P(x)/p
Q

L2.ll

X(x) = W(x) V^ exP |>(x-a)q
o/2po

-

(x*-a2 ) qi/4po]
L2.12

z = (x-a)/ V1T L2.13
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relations LI. 47, LI. 48, and LI. 49 results, after some manipulations,

in equations L2.14, L2.15, and L2.16. Inverting L2.13 and substitut-

ing for x in equation L2.14 gives M(z) in L2.17.

M(x) «* q^
s + 2q^q x + q,

ax3 3q-,

4^
' + T" L2-^

c - (b-a)/p
o

L2.15

X - K8 L2.16

M(z) =» qQ
8 + 2qoqi ( ^ z + a) + q^ ( Jj£ z + a )

a

^o
3ii

+— L2.17

The next step in the transformation to the Liouville Normal-

Form equation is the evaluation of the boundary conditions in LI. 50

through LI. 55* These relationships are given in equations L2.18

through L2.22.

°L1 " \L " A12^o
*

*l
b>/2po

L2 ' 18

^2 " A12/ S% «*"

D
21

= A
21 ' A

22 (qo
+

*L
aV2P L2 ' 20

D
22 -V^ L2 ' 21

D
11

D
22 - D12D21 " ^11^2 " tzj&zV VX

- A
12

A
22q1

(b-a)/2p/ f L2.22
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The final transformation which must be made is the conversion

of the Liouville Normal-Form equation to the Fredholm II-Integral

Equation following the steps in Appendix Al. However, all of the

functions and constants in equations A1.20 through Ai.2^ are now

known in terms of PLPBV, so the transformation is complete. With

these known transformation relationships and with the solution

technique of Appendix A3, a digital computer subroutine can be

written for computation of the solutions X (x), the eigenfunction

expansion, and the computation and plotting of the final solution

u
m
(x,t).

L2.5 SOLUTION OF THE TRANSIENT PROBLEM; COMPUTATIONAL ANALYSIS

Once a complete analytical analysis of any specific subcase of

the LPCM has been accomplished, the next step is to write a computer

program to evaluate the solutions utilizing analytical transformations

and integral equation solution techniques. Such a computer program

will require a significant amount of work to write and computation time

to check out. However, it is expected that, in the end, the program

will require far less computation time than currently available programs

which solve the discrete-plate equations. It is expected that a

further significant savings in time would result from the design of a

special purpose computer to solve a model of sufficient degree to

attain desired accuracy for a specific column or type of column.

All computer programs utilizing the methods of this thesis will,

by the nature of the method, follow a certain format. This subsection

presents a description of the computation steps, in flowchart form,
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which this solution method uses. This flowchart is presented in

Figure L2.3» and a Fortran IV program listing the details of the block

steps in Figure L2.3 for the special case of PLPBV is presented in

Appendices A5 and A6.

The PLPBV subroutine presented in Appendix A6 is intended as a

description of the steps necessary for solving LPCM problems. Sub-

routine PLPBV was compiled and executed for several very simplified

cases but would require a great deal of work to be useful in general.

It is estimated that PLPBV would require between 100 and 200 man-hours

of programming time and 1 to 2 hours of computation time to perfect,

to consider all special cases, and to debug. The primary benefit

from this labor would be the fact that PLPBV only requires about 15

seconds of computation time, and thus, complete column solutions using

PLPBV could be generated in less than one minute for 20 spatial points

and 9 times.

This chapter has presented a detailed description of the steps

necessary to practically apply the general integral equation solution

technique developed in Chapter Li to a special subcase, PLPBV, of the

LPCM. These steps are described analytically by applying the trans-

formation relations to PLPBV and are described numerically by a flow-

chart of the necessary computation steps and by a very basic Fortran IV

digital computer subroutine showing some of the details of the computa-

tion steps. The next chapter describes the steps necessary to determine^

the LPCM for a specific distillation column.
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Figure L2.2
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CHAPTER L3

DETERMINATION OF THE LPCM FOR EXAMPLE DISTILLATION COLUMNS

The Linear Polynomial-Coefficient Model (LPCM) has been developed

and solved in this thesis as a continuous-spatial model of the transient

composition behavior of a binary plate distillation column. The purpose

of this chapter is to show the steps required to determine the LPCM

for given distillation columns and to discuss the approximations

involved in developing the LPCM. Two columns having the same feed and

output compositions but different reflux rates and numbers of plates

are used as examples to show the development of the LPCM. This chapter

represents an equating of Figure M4.2 to Figure Ll.l in terms of the

two example columns.

L3.1 GENERAL STATEMENT AND DISCUSSION OF THE MODELING STEPS

The first step in the determination of the LPCM for any distilla-

tion column is to determine the slope of the equilibrium curve, m(x),

as a continuous function of x. The function m(x) is defined in equation

M4.5 and is presented here in detail as equation L3.1. Based upon the

m(x) - 3f(u)l - a L3.1
"^

J

[1 + (a-l)u.(x)p
u-u^x)

initial steady-state u. (x.) represented by the McCabe-Thiele diagram,

the function m(x) can be expressed exactly at only a discrete number

of points. The major approximation involved in determining the LPCM,

aside from the original linearization of the CSS, is the expressing

of m(x) as an n-th degree polynomial in x, as in equation L3.2.
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/ \ n i -.

m(x; =2 m. xx - ni + ran x + m xa + ••• L3.2
1=0 -* o ± c.

The continuous-spatial steady-state model has not been explicitly

emphasized in this thesis because the direct approximation of the

discrete steady-state equilibrium curve slope seems to offer a more

direct approach. The continuous steady-state model is equivalent to

Figure M2.1 with all time derivatives set equal to zero. If this model

were solved for the continuous steady-state u.(x), then the continuous

m(x) could be found from equation L3.1. This is impractical for the

LPCM determination because the approximations necessary to develop and

solve the continuous steady-state model introduce more error than the

direct determination of m(x) from the discrete steady-state model.

Thus, continuous steady-state models are not used in this thesis and

are very seldom found in the literature.

The accuracy of the LPCM is expected to depend directly upon the

accuracy of ra(x). Theoretically m(x) can be determined to any desired

accuracy using a polynomial in equation L3.2 of sufficiently high

degree and using either point-by-point or least-squares techniques.

The integral equation solution technique of Chapter LI is valid for

any degree polynomial, but as the degree gets higher than one the

transformations become overwhelmingly complicated and the programming

time necessary to implement the transformations and consider all of

the special bases becomes an order of magnitude larger. Surprisingly

enough, the computation time, once the proper programs are written,

is not expected to increase significantly over that for PLPBV in

Chapter L2 because the basic steps of Figure L2.3 remain nearly the
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same and all of the special cases are parallel paths for computation.

It is expected that models of degree one or two will prove to be

adequate to specify the column behavior sufficiently for the purpose

of control.

Once the continuous function m(x) has been determined, the model

derivation is essentially complete. All that remains is to calculate

the polynomial coefficients p. and q. and the boundary condition

constants A .. The complete expressions for evaluation of these

constants in terms of a second degree m(x) are given in Figure L3.3.

L3.2 APPLICATION OF THE MODELING STEPS TO TWO EXAMPLE COLUMNS

The McCabe-Thiele diagram for a five-plate binary distillation

column is presented in Figure L3.1 and the corresponding diagram for

an eleven-plate column is presented in Figure 12,2 in Section l(l).

These two diagrams have been designed to have the same input and output

compositions to simplify the calculations and to provide for easy

comparison. The discrete values of m(x) have been calculated using

equation L3.1 and are presented numerically in Table L3.1 and Table L3»2

and presented graphically in Figure L3.2.

x .0.0 0.2 0.4 0.6 0.8 1.0

n 1 2 3 4 5 6

ui 0.07 0.1? 0.36 0.60 0.82 0.94

m(x) 2.31 1.67 1.01 0.62 0.43 0.36

Table L3.1 - THE DISCRETE m(x) FOR A FIVE PLATE COLUMN
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f(u)-

Lighter Component

Operating Conditions

Plates - 5

L./V =0.89
iJjyv = 1.06

Of - .50
uw - .07
ud = .94
q = 1.0

Composition In the Liquid , u

Equilibrium Curve

a - 3.0

Figure L3.1
MCCABE-TKI^LE DIAGRAM FOR

A FIVE PLATE COLUMN
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.1 .2 .3 A .5 .6

Spatial Variable, x

A Five Plate Column, Figure L3.1
© Eleven Plate Column, Figure 12.2

.3 .9 1.0

Figure L3.2 - EQUILIBRIUM CURVE SLOPES, m(x), FOR EXAMPLE COLUMNS
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Model Equation
————————

2l_[P1 (x)u] + ?_[P (x)u]=au
fa

3
ax at

Where:

^(x) = P + Px
x + p2

x2 = [(B +m ) + m-jX + m
2
xs]/2

Thus: p « (B + m )/Z

p2
= m

2/2

p2(x ) = <lo + ^x + <L2
x2 - [(B - m<) ) - n^x - m

2
xa]

Thus: qQ
= (B - m

Q )

q
2

- -m
2

Both P.. (x) and P
2
(x) must be expressed for both the upper

and lower sections of the column using B and B..

.

Boundary Conditions

Upper A
11

= fdm(x) - m(x) + 1

b=1.0
a=x.

Ldx
x - 1.0

A,, m - ni + 111 z ,
o

At <-> = m + jt1t + m

A.
1

^
- 0° X 2

A
21

- -[3U ( mx
+ 2m

2
xf) + P/v]

A
22

= l - m - mlXf - m
2
x
f
a

41 : -fa
Lower A^ = -[^(n^ + 2m

2
x
f) + p/v]

*"fo ^.2
=

* ~ m
o " Vf " m

2
xf

2
"

a=»0.0 A,~ =

A£iJ - -F/V

a
21 : b

"
m
°

22 1
A =3

?23 p

Peed Condition P/v = (B., - B )/q

Figure L3.3 " THE COMPLETE LPCM WITH SECOND DEGREE POLYNOMIALS
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X 0.0 0.1 0.2 0.3 0.4 0.5

n X 2 3 4 5 6

u
i

0.07 0.14 0.24 0.34 0.42 0.48

ra(x) 2.31 1.83 1.38 1.06 0.89 0.78

X 0.6 0.7 0.8 0.9 1.0

V /
n 7 8 9 10 11 Yu
i

0.53 0.60 0.71 0.83 0.94 A
m(x) 0.71 0.62 0.51 0.42 0.36 /\

Table L3.2 - THE DISCRETi2 m(x) FOR AN ELEVEN PLATE COLUMN

The next step in the modeling procedure to develop the LPCM for

these two columns is to determine the coefficients of a polynomial,

m(x) , of sufficient degree to meet accuracy requirements based upon

the discrete points given for m(x). In the case of ;he 5-plate column

a polynomial of degree 5 could be found which would exactly match each

of the 6 points given, and for the 11-plate column a similar polynomial

of degree 10 could be found. However, for both of these columns a

2nd-degree polynomial is expected to be accurate enough. Two second

degree polynomials have been found as examples using the points,

x = (0.0, 0.2, 1.0), for the 11-plate column and the points,

x - (0.0, 0.6, 1.0), for the 5-plate column. The resulting m(x)

polynomials are given by equation L3.3 for the 5-plate column and
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L3.4 for the 11-plate column.

m(x) - 2.31 - 4.17x + 2.22x3 5-plate L3.3

m(x) - 2.31 - 5.32x + 3.37x2 11-plate L3.4

Once the function m(x) has been determined to the desired accuracy,

the complete LPCM for the column can be calculated from the equations

of Figure L3.3. The 2nd-degree m(x) polynomials in equations L3.3 and

LJA result in the complete LPCM for the 5-plate column in Figure L3.4

and the complete LPCM for the 11-plate column in Figure L3.5. It should

be emphasized that the approximations and calculations used to obtain

equations L3.3 and L3.4 were chosen to greatly simplify the calcula-

tions. Normally, the polynomial coefficients for m(x) should be deter-

mined specifically for the region of application of the model equation

instead of using an overall m(x) as was done in equations L3«3 and

L3.^« The column may also be modeled using more sections than the

upper and lower sections used in this thesis.

L3.3 GENERAL COMMENTS AND SUMMARY

The real utility of the LPCM results from the fact that as the

number of plates in the column increases, the model complexity remains

nearly constant for realistic approximations of m(x). The computation

time and complexity of discrete models, however, increases rapidly as

the number of plates increases because the dimensions of all of the

matrices in the model increase with the number of plates. The LPCM is

valid for components with non-constant relative volatilities as well

as for constant relative volatilities, but only the comstant relative

volatility equilibrium curve has been used in this thesis. Also, the
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5-PLATE COLUMN

Model Equation

dj_ [P!(x)u] + 3_ [P
2 (x)u]

= hx

Where: ^(x) = Pq + j^x + p2x
3

Upper Section Lower Section

Po " 1,6° ^ " -1 ' 42 Po = 1 ' 6^ <U - -1.25
p = -2.09 qj = 4.1? p° =» -2.09 q? = 4.17
P2

= 1.11 q2
= -2.22 p£ = 1.11 q

2
= -2.22

boundary Conditions

(b,t) = A
13

+ A
l4

U
-X

(t)A^uft.t) + AjljjU^

A
2L

u(a f t) + A2
2
u
x
(a,t) = A

23
+ A

2^
U
-:L

(t)

Upper Section b=1.0. a=0.5

*!! = °' 9i A12
= °'^6 ^3 " °'° A^ = 0.00

A
21

= 1.57 A
22

= 0.22 A
23

=0.0 A
24

= -°' 17

Lower Section b=C.5. a=0.0

An = 1.90 A12
= 0.22 ky, = 0.0 A

l4
= -0.17

A
21

= -1.31 A
22

= 1 * ^ A
23

= °'° A^ = 0.00

Feed Condition

F/V = 0.17

Figure L3.4 - THE COMPLETE LPCM FOR THE 5-PLATE COLUMN OF FIGURE L3.1

kPCM can be used for multiple feed and sidestreams and can be applied

in any manner desired to smaller sections of the column. Each sub-

section of the column can then be modeled using the LPCM.
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11 -PLATS COLUMN

Model Equation

t* Pi«u] + L [P
2
(x)u] - inP jx

2
a t

Where: P (x) = p + p x + p xa

P*(x) = q° + qjx + q^x2

Upper Section 0.5 £ x £ 1.0 Lower Section 0.0 £ x £ 0.5

p - 1.40 q = -1.82 p = 1.92 q^ - -0.79
P = -2.66 q° - 5.32 p = -2,66 q? - 5.32

p£ = 1.69 q2 = -3.37 P
2

= 1.69 qt> = -3.37

Boundary Conditions

Anu4b f t) + A12ux(b,t)
= A

13
+ A

l4 U_
x
(t)

A
21

u(a,t) + A
22

u
x
(a,t) = k^ + A^ IK^t)

Upper Section b^l.O, a=0. 5

A
11

= 2.06 A
12

= °' 36 A^ = 0.0 Al4 - 0.00

A
21

= ~0,07 A22
= °* 51 A

23
= 0.0 A

24
- -1.03

Lower Section b=0.5 e a»0.0

An - 1.93 A12 = 0.51 A
13

= 0.0 A
l4

- -1.03

An - -1.31 A
22

- 1.52 A
23

- 0.0 A
24

= 0.00

Feed Condition

f/v - 1.03

Figure L3.5 - THE COMPLETE LPCM FOR THE 11-PLATE COLUMN OF FIGURE 12.2

The two models in Figures L3.4 and L3.5 are not solved in this

thesis. Their solution will require the development of a computer

program, based upon the integral equation solution technique of Chapter LI

and using the computation steps of Chapter L2. This will require an
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extensive amount of analytical analysis, computer programming, and

testing. The result of this labor is expected to be a general, very

fast, solution program for the transient behavior of a large class

of distillation columns which describes the column behavior accurately

enough for control applications. Extensive research would be required

to justify this, however.

This chapter presents the steps necessary to derive the LPCM for

general distillation columns. The details of these steps are then

applied to a 5-plate and an 11 -plate column and the resulting LPCM's

presented. The next chapter solves analytically and computes numeri-

cally the solutions to some simplified LPCM's in which m(x) - m
Q , a

constant.
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CHAPTER L4

ANALYTICAL SOLUTIONS TO APPROXIMATED COLUMN EQUATIONS

The purpose of this chapter Is to analytically solve and numer-

ically calculate the total solutions to four simple subcases of the

Linear Polynomial-Coefficient Model (LPCM) defined in Figure Ll.l.

The reason for doing this is to provide some examples of simpler

solutions upon which to base an understanding of solutions to more

sophisticated versions of the LPCM. The procedure to be followed

will be to define a simplified version of the LPCM, state the

problems to be solved, present the analytical solutions to the

problems, present a computer program used to sum the series, and,

finally, to present graphically the simplified model solutions.

IA.1 A SIMPLIFIED LPCM

A greatly simplified LPCM is presented in Figure IA.1 by

equations L4.1 through L4.5. Ihis model represents one step below

the more complicated model presented in Chapter L2. This simplified

LPCM appears in many places in the literature, only it is known by

the different names and uses listed in Table L4.1, for a representative

sample of the literature. This model is usually solved by analytical

methods in the literature and used as an example of the application

of the method of separation of variables.

L4.2 APPROXIMATE EQUATIONS TO BE SOLVED

There are four specific problems involving the simplified LPCM

which will be solved analytically in this chapter. These problems

are presented in Figure L4.2 and Table L4.2. Two of the problems

involve the solution for the top step response of the heat equation
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for the two cases of zero bottoms composition and zero bottoms outflow.

The other two problems solved are the Taylor Diffusion Model (TDM)

equation for positive and negative values of the center constant a .

A visualization of what is happening in terms of distillation

column concentration or, by analogy, temperature in a rod is presented

in Figure L4.1. If the response desired is the total response to a

step change in feed composition, then the equations solved in this

chapter apply directly to the bottom half of the column in the range

< x £ 1, where x - 1 is the location of the feed tray. The heat

analogy would be to visualize a rod with length in the range < x < 1

with a step change in temperature at the top.

u]

27 at

U.l

Pi(x) - p
c>

L4.2

P
2
(x) -

*c>

L4.3

Anu(b, t) + A
12

ux (b,t) - Ai^u .i<*>
Lk.k

Anu(a, t) + A
22ux

(a,t) = IA.5

Figure L4.1 - A SIMPLIFIED LPCM
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AUTHOR (S)

Crank

Gould

REFERENCE EQUATION NAME OR USE

C-8 Diffusion Equation

G-3 Taylor Diffusion Model (TDM)

Jackson and Pigford J-l

Lee

Pollock, Brown
and Dempsey

Stone and Brian

L-l?

Transient-Diffusion Equation

\ Convective Transport Equation

Heat Equation

Table IA.1 - LITERATURE NOMENCLATURE AND USAGE
OF THE SIMPLIFIED LPCM
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X - 1

Bottom

Column or Rod

Visual

Bottom

u - u u - 1

Column Concentration Chart
Transient Distributions

Graphical

Figure L4.2 - VISUAL AND GRAPHICAL SOLUTION FORMAT

Name Equation
Equation
Name Po *0

Boundary
A
ll

A12

Conditions
A21 A22 A

]A

UA1 a3u u^
XX t

Heat a3 1 1 1

UA2 a3u u.
XX t

Heat a3 1 1 1

UB1 aau - u u^
XX x t

TDM tt
3 -1 1 1 1

UC1 aau + u u,u XX x t
TDM a

3 +1 1 1 1

Table L4.2 - LPCM PROBLEMS TO BE SOLVED ANALYTICALLY
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L4.3 ANALYTICAL SOLUTIONS TO THE SIMPLIFIED LPCM EXAMPLES

This subsection develops the infinite series representations

of the analytical solutions to problems UA1, UA2, UB1, and UC1 which

have been summarized in Table L4.2. The manipulations leading to

these solutions represent no more than a series of mathematical

exercises. The details of these solutions are included in this

thesis for the sake of completeness and for the convenience of a

reader who may want to relate the solution techniques used for the

general LPCM solution in Chapter LI to the much more familiar

techniques used in this chapter.

L^.3.1 SOLUTION OF UA1

The total solution to UA1 is given by equation L4.1; the

development is presented in the steps below.

Statement of Problem:

oc^ - u -
XX t

u(l,t) = u^Ct)

u(o,t) -
-

u(x,o) -

Transient plus Steady State:

u(x,t) » u
g
(x) + UpCx.t)

Step L4.1

1
X
A u-U.i(t)

u>=0

u=0" ^t

Step L4.2

a 5^
sxx

u
s (0)

-

a'Sxx" uTt

u
T
(o,t) =

u
s
(l) = 1 u^l.t) »

Steady State Solution:

u„(x) « x
s '

u
T
(x,o) - -u

s
(x)

UpCx.oo) -

Step L4.3
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Transient Solution

:

Step L4.4

u^x.t) - X(x) • T(t)

T
n
(K) - exp (-Kat)

X
n
(x) - A^os K x + A

2
sin K x

a a
u.pCo.t) - gives A^-

u
T
(l,t) - defines eigenvalues sin K

a
gives K

n
- mm

Eigenfunctions are:

a^ sin (n-nrx) exp (-K
n
at)

Expanding to meet the initial condition:

OjXx.O) » -u
s
(x) - -x = g a^ sin (nrrx)

Using the orthogonality property of eigenfunctions:

j (-x) sin (ratrx)dx - 2 a
n J~ sin (m-nx) sin (n-nx)dx

KIT 2

Eigenfunction constants

:

nrr

Transient Solution:

u™(x,t) -22 ,(-l) sin(n>nrx) exp ["-(nna)
3
t")

Total Solution to UA1:

u(x,t) =» x + 2 E n (-l) sin(rvnx) exp r-(i*na) at"|
n^i _ w

nrr

IA.1
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L4.3.2 SOLUTION OF UA2

The total solution to UA2 is given by equation L4.2, the

development is presented below.

Statement of Problem: Step IA.1

a3uxx " H
u(l.t) - U.^t)

ux(o,t)
-

u u-i(t)

u

u(x,o)

Transient plus Steady State:

u(x,t) - u
g
(x) + VbpCx.t)

ux
-0 -»t

Step L4.2

ot
2u =a sxx S3uTxx " UTt

u
s
(l) - 1 u

T
(l,t) = UpCx.o) - -us (x)

usx(0)
- uTx(o f t) = U^X.oo) .

Steady State Solution Step L4.3

u
s
(x) = 1

Transient Solution: Step IA.4

u
T
(x,t) - X(x) • T(t)

T
n
(t) - exp (-Kat)

X (x) « A. cos K x + A
2

sin K x

a a
uTx(o,t)

- gives A2

uT(l,t) - defines eigenvalues cos K
gives K„ » rma, a

Eigenfunctions are:

a^ cos (rmx) exp (-Kn
3t)

2

Expanding to meet the initial condition:

UpCx.O) - -us(x)
- -1 - S^an cos (rmx)
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Using the orthogonality property of these eigenfunctions

t

J* (-1) cos (mnx) dx - Z a^ f~ cos ( nmx) .

n^o

cos ( ntrx) dx-j> sin (mTT/2) "-a
2 imt/2 p*

Eigenfunction constants:

a -2 sin (bwt/2)
n

mjf?

Transient Solution:

00

u-,(x,t) »-2Z . sin (niT/2) cos (niTx/2) exp r-(n-na/2) 3t]
1 n"1

ntr/2

Total Solution to UA2:

00

u(x,t) » 1 - 2 E sin(nTr/2) cos (mix/2) exp [-(nno/2) at]
nml

nrr/2

L4.2

L4. 3. 3 SOLUTIONS OF UB1 and UC1

The total solutions to problems UB1 and UC1 are given in

equations L4.3 and Lk,k t respectivexy. The development of the UB1

solution is presented below; the UC1 solution development is identical

to UB1 except for the obvious sign change.

Statement of Problem UBlt

a^xx - u
x " u

t

u(l.t) » o.
x
(t)

u(o,t) »

u(x,o) »

Step IA.1

u U.i(t)

u =

u -
-^ t
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Transient plus Steady State: Step L4.2

u(x,t) - u
s (x)

+ u.pCx.t)

u
s
(o) =» u

T
(o,t) = u

T
(x,o) - -u

s
(x)

u
s
(l) - u^l.t) = u

T
(x,oo) -

Steady State Solution: Step L4.3

u
s
(x) » A + B exp (x/cc

a
)

u_(o) « gives A + B -

u
s
(l) =» 1 gives A + B exp (l/ct

a
) - 1

Solving the two A, B equations gives

u (x) = 1 - exp (x/af)
S

1 - exp (l/aa )

Transient Solution: Step L4.4

u^x.t) - X(x) • T(t)

T
n
(t) = exp (-Kat)

X
n
(x) (A^os Dx + A

2
sin Bx) exp (x/2aa )

uT(o,t)
gives A- =>

u^ljt) defines eigenvalues sin B =» gives D » nrr

where: D 8 = ^Kn 3 - 1 - (mr) 8

2as

solving for the eigenvalues

K a " L_ + (htri)
3

n %8

Eigenfunctions are:

a^ sin (nrrx) exp (x/2aa ) exp (-K
n
at)

Expanding to meet the initial condition:

u^x.o) - -u
g
(x) - - [1 - exp (x/aa)]/C

5 a_ sin (ntrx) exp (x/2aa )
n=l "

where: C » 1 - exp (l/aa )
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Using the orthogonality with weighting function property

of the eigenfunctions j

£ [exp (x/a8 ) - l] exp (-x/2qa) sin(mTTx) dx
C

88 E &£~ sin (mnx) sin (mix) dx »*.
n-1 n °

L(ran)
3 + (l/2ot3 )

3
] 2

Eigenfunction constants:

a,, - 2(
r
l)%TT) exp (-l/2a3

)

L(nTT)
3 + (i/2a3 )

3
J

Transient Solution

i

u^x.t) - 2 £ ( :
l)

n
(mr) exp [(x-a)/2tt3 "| sin (nroc) '

nS1
[(nrr)

2 + (l/2a8 )
3
J

exp [-(lAa3 + as nV) t]

Total Solution to UBli

u(x•* }

-fH exp (l/a3 )1

2 exp [-t/^ta3 + (x-]•)/2a
3>

oo , v n.

A[(nn) 8
w),

e35P xC; (anTT) 3t]
+ (l/2a) 3

]

sin (nrrx)

L4.3

Total Solution to UC1:

u(x,t) - [1 - exp (~x/g3)l + 2 exp [- t/4a 3 + (l-x)/2a3]'
[l - exp (-l/a3)J

Ei^lMLexp [- (anTT)
3t] sin (nnx)

nS1
[(nTr}

3 + (l/2a) 3]

UhJi
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IA.4 NUMERICAL CALCULATION AND GRAPHICAL PLOTS OF THE SOLUTIONS

Each of the solutions to the four problems of Table L4.2 contains

an infinite series in eigenvalues and eigenfunctions. This section

describes briefly a digital computer program which was written and

utilized to numerically calculate the values of u(x,t) for ct
- 1«18

at ten spatial points and nine time points. These values were

determined for the purpose of making graphical plots of the solutions.

The computer printouts and description of the program are given

in Appendix A4. The computer output plots have been used to make the

following graphical presentations of the four solutions which are

presented in Figures L4.3 through L4. 6. It is helpful to visualize

these solution curves in terms of Figure L4.2. Each solution curve

from left to right represents a spatial distribution at a given time.

The curves can be seen to approach -their steady state values as, for

example, the linear distribution in UA1 or the curved exponential

distribution in UC1.

The digital computer program in Appendix A4 computes all four

of the solutions to three decimal place accuracy. It was found that

at all spatial points and time points the number of eigenvalues and

eigenfunctions, i.e. terms in the series, necessary to achieve three

decimal place accuracy was in all cases less than ten (10).

L4.5 SIMILARITIES BETWEEN CHAPTER LI SOLUTIONS AND CHAPTER L4 SOLUTIONS

It is interesting at this point to investigate the similarity

between the standard analytical solution methods of this chapter and

the general solution technique presented for the LPCM in Chapter LI.

This relationship can best be seen by relating each Step in this

chapter to the corresponding equations in Chapter LI.
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The problem statement Step IA.1 or, more generally, Figure L4.1

corresponds to Figure Ll.l, the statement of the LPCM. The transient

and steady state conditions are similar to equation LI. 15 and the

boundary conditions LI. 8 through LI. 13. In both cases, the steady

state solution, Step L4.3 or L1.5t LI. 8, and L1.9 t represents the

solution to a two point boundary value problem. This is easily

found in the simplified equations but requires a computer program

(such as LBVP) for the general case.

The transient solution Step L4.4, is, of course, the major step

in solving the simplified examples as it is, also, in solving the LPCM

in general. In the simplified examples, the eigenfunctions X (x)

are expressible as closed-form functions with very obvious properties

which can be used to satisfy the boundary conditions and to immediately

solve for the eigenvalues K . In the general LPCM, however, once the

equation LI. 25 has spatially varying coefficients, the eigenfunctions,

in almost all cases, cannot be expressed in closed form but must be

represented by infinite series. The infinite series representations

of the eigenfunctions can be found by a number of techniques, such as

the power series Method of Frobenius (H-12, Ch. ^), but these methods

have several major disadvantages in this application.

The first major disadvantage to infinite-series eigenfunction

representations is that their properties in terras of satisfying

boundary conditions are usually not obvious. Secondly, these methods

lend themselves best to specific example solutions and become very

difficult to talk about in terms of a general analytical solution

technique because of the Mspecial cases" involved. Finally, the
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eigenfunctlon expansion to meet the initial condition is analytically

difficult, in general, when these infinite-series eigenfunctions are

involved. For these reasons, two other analytical techniques for

finding the eigenvalues and eigenfunctions have been investigated.

These two techniques are the Prufer Substitution (B-14, Ch. 11)

and Fredholm II - Integral Equation theory (Appendix Al). The Prufer

Substitution technique is a transformation applied to the second-

order differential equation LI. 25 which results in two first order

ordinary differential equations whose solutions define the eigenvalues

and eigenfunctions. The resulting first order equations are very

useful in showing the properties, such as existence, ordinality,

separation, orthogonality, etc., of the eigenvalues and eigenfunctions,

but the differential equations are analytically untractable in terms

of specific solutions and did not seem to lend themselves to consistent

approximations. For these reasons the Prufer Substitution has been

discarded as a possible analytical solution technique and the integral

equation technique has been developed in this thesis.

The final part of the transient solution Step lA,k is the eigen-

functlon expansion to meet the initial condition LI. 12. The key to

success in this expansion for the simplified cases is the orthogonality

of the elgenfunctions with respect to a weighting function over the

same interval as the boundary conditions are applicable. This

orthogonality condition is expressed by equation L4.-5. Of course, the

sine and cosine functions of the simplified LPCM examples satisfy L4.5»

The real utility of the eigenfunction orthogonality condition in the

simplified examples lies in the fact that the constants A
R

can be each

explicitly expressed in terms of n.

-161-





J* w(x) X (x)X
n (x)dx = 6 C L4.5

a m n mn n

where j C
n
- constants ^

6m„ - for ra ^ n
mn '

6„^ 1 for in « n
mn

One may well wonder why the orthogonality condition was not

utilized in solving for the constants C in equation LI. 57, when this

is one of the most important properties of these functions. The reason

is that the functions X
n
(x) are the result of transformations LI. 44

and LI. 45 applied to the solutions W^z) obtained from Appendix A2

or Appendix A3 and, as such, are not easily expressed in general

form, let alone integrated. For specific cases of the LPCM, if the

functions X (x) are expressible in a form easily evaluated by inte-

gration, then the set of equations L1.59» only with the orthogonality

constants instead of the functions evaluated at points x., will be

individually solvable because the matrix X will be diagonal. In that

case, a better solution technique would be to use the orthogonality

condition rather than the discrete-point approximate solution technique

employed in equation LI. 58*

The fact that the functions X (x) satisfy the orthogonality

condition, in the general case, is a result of the characteristics

of the original eigenvalue problem LI. 25. If the transformation

relations used in subsections LI. 5 and LI. 6 satisfy continuity con-

ditions and result in the regular Sturm Liouville problem LI. 40, then

the kernel (A1.17) of the integral equation is guaranteed to be con-

tinuous. In addition, it has been shown by Lovitt (L-8, pp. 181-182)

that for the special case of R(x) - 1 in equation LI. 40, the kernel
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A1.17 is symmetric and satisfies equation IA.6. The kernel symmetry

K(z,s) - K(s,z) L4.6

guarantees the existence and reality of the eigenvalues and the

orthogonality of the eigenfunctions. Of course, in the simplified

LPCM examples of this chapter the function R(x) ic always one (l).

In summary, this chapter presents analytical and graphical

solutions to four simplified cases of the LPCM. The techniques for

finding these solutions is then related to the general, integral-

equation solution technique for the LPCM presented in Chapter LI.

The next Chapter L5 presents a brief discussion of several alterna-

tive solution techniques which might be applied to the LPCM.
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CHAPTER L5

OTHER SOLUTION TECHNIQUES APPLICABLE TO THE LPCM

This thesis presents the LPCM as a dynamic model of the composi-

tion behavior of a binary plate distillation column and suggests an

integral equation solution technique for it. The speed and precision

of the integral equation solution technique has not been demonstrated

completely in this thesis, however. Therefore, this chapter describes

briefly the basic principles behind several other numerical methods

for the solution of parabolic partial differential equations which

might be applied to the LPCM for the purpose of comparing numerical

solution accuracy and speed with the integral equation method.

Numerical methods for the solution of ordinary and partial

differential equations are extremely useful in the study of distilla-

tion columns since both the discrete-plate and the continuous-spatial

equations are impossible to solve analytically except in the simplest

cases. Even when analytic methods are applicable, it is often the

case that the solution is expressed in the form of an infinite series

rather than in closed form. When this is the case, it may sometimes

be less time consuming to apply a numerical method directly than to

evaluate a series to some desired degree of accuracy at each point

of interest. This was not true in the simplified cases of Chapter Lk

because each of the series converged so rapidly, i.e. less than ten

terms.

There are a large number of numerical methods which can be applied

to any particular distillation column model, such as the LPCM. The

choice of a particular one may depend on the form of the LPCM for any
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particular column. This chapter presents the basic principles behind

the explicit numerical methods used for solving parabolic partial

differential equations, applies these methods to the LPCM, and presents

the resulting recursion relations.

L5.1 NUMERICAL SOLUTION TECHNIQUES FOR PARABOLIC PARTIAL DIFFERENTIAL
EQUATIONS

Parabolic partial differential equations are usually solved by

the use of step-by-step finite difference methods (B2.4 - Numerical

Solution Techniques). This method consists essentially of defining

a regular (usually rectangular) mesh and replacing the differential

equation by a difference equation defined on the nodes of the mesh.

Most of the variations in types of methods result from different

derivations of the difference equation from the differential equation.

In the distillation column models described in Section 2 (m),

the solution sought is a function u(x,t) where both u and x are in

the to 1 interval and t is greater than zero, A possible mesh for

use in equations of this type is presented in Figure L5.1. In this

mesh the solution domain is divided into intervals of width h in x and

1 in t. The two increments h and 1 need not be the same and in some

cases may be changed over different portions of the domains. The

ratio of these two increments is constrained by stability requirements

for any particular equation and method of solution.

Once the mesh is set up the next step is to consider u(x,t) only

at the mesh junction points as in equation L5.1. The parabolic LPCM

u(x,t) « u(ih, jl) = u
±

. L5.1
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- TIME-SPACE MESH FOR NUMERICAL SOLUTIONS

can be solved by either explicit or implicit methods. Explicit methods

use only previous and present values of u, such as u. ., u* • -, ,
• • •,

to compute the future value u^
^+-|_. Implicit methods use previous,

present, and future values of u to approximate the derivatives at the

present point (ih, jl) which are then used to refine the present value

of u. Both methods are applicable to the LPCM, but only explicit

methods will be discussed here. It is expected that explicit methods

would be adequate for solving most cases of the LPCM, but if not,

then implicit methods (B2.^ - Numerical Solution Techniques) could be

employed. Explicit methods are generally easy to implement and rapid

to execute but are relatively unstable compared to implicit methods.

Most finite difference approximations are derived from a Taylor

Series expansion of u about the value \i
±

.. Only as many terms in

the series are retained as necessary for an accurate solution. A

Taylor Series expansion in t with only the first order terms retained
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is presented in equation L5.2. Similarly, Taylor Series expansions

in x with up to the second order terms retained are presented in

equations L5.3 and L5.4.

u. j, . * u. . + On
i.J+1 I.J

fi

V.J""i,rJ|

U-.^-> • « U^ • + 3u
i+l»J i.J r—

3 X

i.j

i.j

i.J

h + £ 3u

h + y 3u

3^

i.j

i.j

L5.2

h3/2 L5.3

h 3/2 L5.4

L5.2 APPLICATION OF EXPLICIT METHODS TO THE LPCM

The basic idea is to use stepwise expressions for u and its

derivatives in the LPCM equation, here presented in expanded form is

L5.5» In that case the above expansions must be solved for the

P. (x) 3 3u + P~(x) 3u + P
Zi
(x)u - du L5.5

1
a^ a* a*

approximated derivates of u in terms of the previous and present

values of u. These solutions will depend upon how many terms of the

expansion are used. For the above expansions the approximated values

of u and its derivatives are given by equations L5.6 through L5.9.

u » u. .

i.j

Hi,,
U4 4 - Ui,j - ai-l t j

L5.6

L5.7

?fu
3x3

- ui+l,j " 2u
i..i

+ ui-l.j

i.j h3

L5.8

-167-





in " U
i.J " U

i.-KL L5 ' 9

i.j 1

Substituting these approximate relations into the LPCM equation and

then solving for u
i+1

. gives the recursion relation L5.10 for the

LPCM, where the polynomial coefficients are evaluated at x = ih.

u
i+i,j - (1 " A* - B

i
+ ciK j - Vi-i, J

L5.10

" C
i
U
i,J-l

Where: A. - 1 - P^h/P,
i 3 ' 1

B. = P
/+
h2/P

1

c
i

= hV^l)

P.(x) are defined in equations LI. 30

through LI. 33

Using L5.10 and the previously derived equations a numerical iteration

scheme can be set up for solving the LPCM along the mesh.

L5.3 BRIEF SUMMARY OF SECTION 3(L)

Section 3(L) concentrates on the Linear Polynomial-Coefficient

Model (LPCM) which is derived in Section 2 (m) to represent the

transient behavior of a binary plate distillation column. Chapter LI

presents an integral equation procedure for analytical solution of the

LPCM in general using Appendices Al, A2, and A3. Chapter L2 applies

the solution technique to a reduced form of the LPCM having one spatially

varying coefficient and one constant coefficient. A suggested scheme
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for a computer program PLPBV to evaluate the solution is presented

using Appendices A5 and A6. Chapter L3 evaluates the LPCM for several

cases from the steady-state representation of an example column.

Chapter L^ solves analytically and evaluates numerically using Appen-

dix A4, four simplified examples of the LPCM: two cases of the best

equation and two cases of the Taylor Diffusion Model. The analytical

solution steps for the simplified examples are then related to the

analytical steps of the integral equation technique of Chapter LI.

Chapter L5 discusses briefly several possible numerical methods for

solving the LPCM and derives the detailed recursion relations to

solve the LPCM by an explicit numerical method.

-169-





SECTION k

SUMMARY AND CONCLUSION (S)

51 SUMMARY AND CONCLUSIONS

52 AREAS FOR FURTHER STUDY

THE PURPOSE OF COMPUTING IS INSIGHT, NOT NUMBERS" - R. W. HAMMING
(H-19)

THE CENTRAL PURPOSE OF THIS THESIS IS THE DEVELOPMENT, PRESENTA-

TION, SUGGESTED SOLUTION TECHNIQUE, AND EVALUATION OF THE LINEAR

POLYNOMIAL-COEFFICIENT MODEL (LPCM) OF THE DYNAMIC BEHAVIOR OF A

BINARY PLATE DISTILLATION COLUMN. THIS SECTION SUMMARIZES THE MAJOR

ARGUMENTS PRESENTED IN THIS THESIS RELATING TO THE LPCM AND EMPHASIZES

A LARGE NUMBER OF AREAS FOR FURTHER STUDY USING THE LPCM AND THE

INTEGRAL EQUATION SOLUTION TECHNIQUE PRESENTED IN THIS THESIS.
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CHAPTER SI,

SUMMARY AND CONCLUSIONS

This thesis is summarized in the format of the Chapter and

Appendix Relationship Diagram presented in Chapter C2.

Sl.l THE MAIN READING PATH OF CHAPTER C2

Starting from the basic principles of distillation this thesis

develops a discrete-plate dynamic model for the composition behavior

of a binary plate distillation column. The fact that discrete models

characteristically have large solution times leads to the search for

a faster model and to the investigation of a continuous-spatial

dynamic model derived by treating the plate number in the discrete

model as a continuous variable. An investigation of possible solution

techniques for the continuous-spatial model leads to the conclusion

that for any hope of an analytical solution, the nonlinear continuous-

spatial model must be linearized. The representation of the spatial

coefficients of the linearized continuous model by general n~th degree

polynomials defines the Linear Polynomial-Coefficient Model (LPCM).

The basic equation of the LPCM is presented here as equation Sl.l.

a*
2 ax

P?2
(x)u] S3 (7\1 Sl.l

Wheres P,(x) and P (x) are polynomials in X.

Two-point boundary conditions and step initial

conditions are specified for u and u .

The steady-state solution u (x) of the LPCM is obtained by solving the
s

two-point boundary value problem. The transient solution is derived
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by converting the spatial ordinary differential eigenvalue problem

resulting from separation of variables to a Liouville Normal-Form

equation and further transforming to a homogeneous Fredholra II integral

equation. The solutions of the integral equation then define the

eigenvalues K and the eigenfunctions X
i
(x). An eigenfunction expan-

sion to meet the initial condition then defines the eigenfunction

constants C , The total solution to the LPCM is then given by equation

SI. 2.

u(x,t) = u (x) + £ C.X.(x) expC-K^t) SI.

2

s ±ml l i i

The integral equation solution technique used to develop equa-

tion SI. 2 is described in detail by applying it to a first-degree

polynomial model (PLPBV) and by suggesting the type of computer

program which must be used to evaluate the solution. The individual

steps in the solution technique are described analytically by applying

the transformation relations to PLPBV and are described numerically

by a flowchart of the necessary computation steps and by a very basic

Fortran IV digital computer subroutine showing some of the details of

the computation steps. Preliminary tests with the PLPBV program

suggest that it may be possible to generate complete column solutions

in less than one minute for 20 spatial points and 9 time points.

The complete model of a binary plate distillation column using

the LPCM consists of two equations of the form of Sl.l and their corres-

ponding two-point boundary conditions. The steps necessary to derive

the LPCM for general distillation columns are presented. The details

of these steps are then applied, for a second degree model, to a
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5-plate and an 11-plate column and the resulting models are presented

as examples.

Four simplified versions of the LPCM in the form of the heat

equation and the Taylor Diffusion Model are defined as simplified

versions of the LPCM. These models are then solved analytically, a

computer program used to sum the series is developed, and the solutions

are presented graphically and numerically. The standard analytical

solution methods for the simplified models are then compared to the

general solution technique for the LPCM.

There are a large number of numerical methods which can be

applied to any particular distillation column model. Several possible

numerical methods for solving the LPCM are discussed, and the detailed

recursion relations to solve the LPCM by an explicit numerical method

are derived.

The thesis is summarized briefly, and a discussion of a large

number of areas for further study is presented.

SI. 2 THE AREAS OF OVERALL PERTINENCE OF CHAPTER C2

A bibliography containing 352 references of which 202 pertain to

distillation column dynamics and control is presented. These references

are then related to four major areas pertinent to the thesis. Some

1. General Theory of Distillation

2. Distillation Column Dynamics

3. Distillation Column Control

k. Mathematics and Computation

general notes, descriptions, and comments pertaining to most of the

references are included.
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Several opinions on the philosophical aspects of observing

reality as related to modeling a distillation column and on the desire

to achieve profit as related to the cost of separation of components

are presented.
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CHAPTER S2

AREAS FOR FURTHER STUDY

This chapter presents, in the form of suggestions, a list of

possible topics for further study or areas for further research in

the order in which they are encountered by following the main reading

path of Chapter C2. It must be emphasized that the LPCM and the

integral equation solution technique are suggested by this thesis

to be valuable tools for modeling distillation columns, but the vali-

dation of this suggestion can only come from further study.

S2.1 SECTION M

1. Using the general discrete equations developed from considering

all four (or part) mass balances per plate, develop continuous-spatial

models and then LPCM models for the general binary plate column.

2. Investigate other methods of converting discrete models to continu-

ous models which may give continuous models of greater accuracy.

3. Investigate analog computer solution techniques for the CSE and

the nonlinear polynomial-class CSE.

k. Find in the literature or develop transformations applicable to

the CSE..

5. Apply the Fixed Point Theorem to the CSE,

a. Show that the CSE is a contraction mapping,

b. Investigate techniques for finding the fixed point for the CSE.

6. Investigate solution techniques for polynomial-class partial dif-

ferential equations to see if nonlinear approximated CSE's are more

easily solved and less accurate than the general CSE.
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7. Investigate the validity and accuracy of models linearized about

operating points other than the initial steady-state.

S2.2 SECTION L

8. Investigate the validity of the LPCM as a distillation column

model . using programs developed and based upon the integral equation

solution technique of this thesis.

a. Complete PLP3V including all special cases.

b. Develop main modeling program to start from the equilibrium

curve and the column physical characteristics and to end up

with complete LPCM and solutions using PLPBV.

9. Develop the digital computer programs for the second-degree (and

higher) versions of the LPCM and use them to compute column solutions.

10. Develop numerical solution program for the LPCM and compare

solution time with the analytical solution programs.

11. Extend the step solution capability of the LPCM to approximate

the response to any arbitrary input function of time.

12. Investigate the relative magnitudes of the eigenvalues for several

variations of the LPCM in the interest of seeing how many are really

necessary to completely characterize column behavior.

13. Apply separable kernel solution procedure to the integral equa-

tion resulting from the LPCM and evaluate the accuracy.

1^. Investigate in detail the properties of the function M(z) for

several variations of the LPCM,

15. Apply the integral equation solution technique to the two-point

steady-state boundary-value problem and combine with the transient

portion.
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16. Develop an LPCM modeling technique for the case when the relative

volatility is not constant.

17. Develop an LPCM modeling technique for the case when the Murphree

plate efficiencies vary and are not necessarily unity.

18. Investigate in detail the symmetry and continuity properties of

the integral equation kernel K(z,s) for various functions M(z).

19 » Investigate implicit numerical methods for solving the LPCM and

compare solution times to the analytical methods.

20. Investigate the possibilities for partially analytical - partially

numerical solutions to the LPCM (hybrid solutions).

S2.3 EXTENSIONS

21. Develop distillation column control schemes particularly suited

to using the LPCM.

22. Investigate the possibilities for partially discrete - partially

continuous models for distillation columns (hybrid models).

23. Extend the application of the LPCM techniques to packed columns.

24. Extend the application of the LPCM to continuous models of multi-

component distillation columns.

25. Combine spatial LPCM and time LPCM solution techniques to solve

partial differential two-point boundary-value problems in which the

partial differential equation is second order in both time and space.

The result of the application of separation of variables will be a

spatial LPCM and a time LPCM.
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SECTION 5

APPENDICES (A)

Al CONVERSION OF A LIOUVILLE NORMAL-FORM EQUATION TO A
FREDHOLM II - INTEGRAL EQUATION

A2 SOLUTION OF A HOMOGENEOUS FREDHOLM II - INTEGRAL EQUATION
WITH A SEPARABLE KERNEL

A3 SOLUTION OF A HOMOGENEOUS FREDHOLM II - INTEGRAL EQUATION
BY CONVERSION TO LINEAR ALGEBRAIC EQUATIONS

A4 DIGITAL COMPUTER PROGRAM AND OUTPUT FOR EVALUATION OF
PROBLEMS IN CHAPTER Lk

k$ SUBROUTINES USEFUL FOR COMPUTING LPCM STEADY-STATE SOLUTIONS

A6 SUBROUTINE PLPBV

"MATHEMATICS POSSESSES NOT ONLY TRUTH, BUT SUPREME BEAUTY —

A BEAUTY COLD AND AUSTERE, LIKE THAT OF SCULPTURE, • • • SUBLIMELY

PURE, AND CAPABLE OF A STERN PERFECTION SUCH AS ONLY THE GREATEST

ART CAN SHOW." - BERTRAND RUSSELL
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APPENDIX Al

CONVERSION OF A LIOUVILLE NORMAL-FORM EQUATION TO A
FREDHOLM II - INTEGRAL EQUATION

This appendix presents the intermediate steps necessary to the

conversion of the Liouville Normal-Form equation (B-Hj-) and its

boundary conditions to a Fredholm II - Integral Equation (L-8.H-13).

The conversion proceeds via integration of equation Al.l and

application of boundary conditions A1.2, A1.3» and A1.4 to integral

equation of the form of A1.5.

daW - [m(z)-\]w » Al.l

I^wCc) + I^gWCc) m A1.2

D
21

W(o) + D
22

W(o) =0 A1.3

^^22 " ^^l * ° A1^

W(z) - Si K(z,s)W(s)ds A1.5

Integrating Al.l from to Z twice and making a change of

variable in one of the integrals yields A1.6. Application of the

W(z) - J^ [M(z-s)-x]w(s)ds + W(o)z

+ W(o) A1.6

second boundary condition A1.3 to A1.6 then gives A1.7. The

W(z) - f j>(z-s)-\]w(s)ds + [l-D
21
z>(o) A1.7

remainder of the conversion procedure consists of determining
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the constant W(o) and placing the resulting equations in integral

equation form.

The first step in evaluating W(o) is to integrate equation

Al.l from Z to C, giving equation A1.8. Evaluation of A1.8 at Z-0

W(c) - 8(z) + #* [M(z)-X>(z)dz A1.8
z

and of A1.7 at Z « C gives A1.9 and A1.10. Placing the boundary

8(c) - 8(0) + / [M(z)-X>(z)dz A1.9

W(c) - r°[M(c-s)-x]w(s)ds + [l - ^21 c>(o) A1.10
D
22

conditions in the form of Al.ll and A1.12, substituting them into

A1.9 and A1.10, and equating them gives A1.13» an equation solely

in terms of W(0).

D °
W(c) - - _12 W(c) Al.ll

hi

o D
W(o) m - _21 W(o) A1.12

D22

/[M(c-s)-x]w(s)ds + [1 - ^21 c>(o)
D̂22

- - ^2 [- ^21 W(o) + ^[MCzJ-xXzJdz] A1.13

hi D
22

Solving for W(0) gives A1.14 and A1.15.

W(o) - 1 /
C
[(M(c-s) + h2 M(s)) - (l+*k)x]

* ° hi hi

¥(s)ds A1.14
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C
o

- ^^ZL +^-1/0 A1.15
D
11
D22 %2

If equation Al.l*f for W(o) is now substituted back into equation

A1.7» then equation A1.16 is an integral equation in Vf(z). This

equation A1.16, however, is not yet in the desired form of A1.5.

W(z) - S
Z
CM ( Z-S)-X3 W(s)ds + 1_ (1-

D
21 z)

Co D
22

j*[(M(c-s) + ^12M(s)) - (l+5L2)x]
D
ll

D
ll

W(s)ds A1.16

If the kernel function K(z,s) is expressed as the sum in equations

A1.17, A1.18, A1.19, and Al. 20, then the conversion to the integral

equation is complete.

K(z,s) = K^z.s) + K
2
(z,s)

s<z s>z Al.l?

K-^z.s) - M(z-s) + 1_ (D
22-

D21 z )

Cl

(D
11

M(c-s)+C
12

M(s))

-X [l + L. (D22"D21z)(Dll
+D12^ A1 - 18

C
l

K
2 (zts)

« 1_ (D22"
D
21

Z ^ l>nM(c-s)+D
12

M(s)

C
l

-(Dn+D12 )X ] A1.19

C
l

" ^l^o - °12D21 " hlhz + D
11

D
21

^' 20
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Thus, the complete integral equation representation of the

Liouville Normal-Form equation is summarized in equations A1.20

through A1.24.

W(z) » f K(z,s)v(s)ds A1.21
o

K(z,s) - K-^z.s) + K
2
(z,s) A1.22

IC^z.s) . M(z-s) - \ + K
2
(z,s) s < z A1.23

K2 (z,s) - 1_ (D22-D21z) [D
11

M(c-s)+D
12

M(s)
C
l

- (D
11
+ D

12 )X]
s > z A1.24

Now, the kernel given in A1.22 must have two properties in order

for solution procedures to be applied. It must be continuous at s = z

and it must be symmetric. The continuity aspect implies that A1.23

can now be written as A1.25 and A1.26. In this case a new function

K^z.s) - M(z-s) - M(0) + K
2
(z,s) A1.25

K (z,s) - \K
3
(z,s) A1.26

Ko(z,s) has been introduced, where K
2
(z,s) is given by A1.27 and

A1.28. Utilizing once again the continuity requirement and the

K2 (z,s)
» -M(z,s) + M(0) + \K

3
(z,s) A1.27

K
2
(z,s) = \K4(z,s)

A1.28

definition of K^(z,s) given in A1.28, then K^(z,s) can be written

in terms of K~(z,s) as in equation A1.29. The remaining kernel
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K4(z,s) - 1 - M(z-s) + K 3 (z,s) A1.29
mToT

Where: M(O) /

function K^(z,s) cam then be expressed as in equation A1.30, and

a general test for symmetry can be given by equation A1.31.

K
3
(z,s) - M(z.s) - 1 + 1_ (D22

- D2,z)
•

J
M(0) C-l

<dl

[DnM(c-s) + D^s) - (D^ + D^)] A1.30

C
1

[M(zrs) - M(0)] + (D
22

- D
21

z) [D^c-s) + D^s)

- M(0) (D^ + D^)] I (D
22

- D
21

s) [DnM(c-z)

+ D
12

M(z) - (Dn + D
12 ) M(0)] A1.31

The summarized equations for the integral equation representation

are presented in Figure Al.i,

W(z) = \ Si K(z,s)w(s)ds

K(z,s) - K
3
(z,s) + K^(z,s)

s < z s > z

Kk(z,s) - 1 - M(z,s) + K? (z,s) s > z

Ko(z,s) - M(z-s) - 1 + 1_ (D
22

- D z) •

>
M(0) C± " dL

D^c-s) + D^s) - (B^ + D )_ s < z

L m) j

Figure Al.l - THE FREDHOLM II - HOMOGENEOUS INTEGRAL
EQUATION
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APPENDIX A2

SOLUTION OF A HOMOGENEOUS FREDHOLM II- INTEGRAL EQUATION WITH
A SEPARABLE KERNEL

This appendix presents the developments necessary for finding

the solution to a separable kernel integral equation. The integral

equation A2.1 and separable kernel A2.2 are combined and a matrix

solution technique is developed. The technique to be presented is

standard throughout the literature when it is recognized that the

following terms are equivalent to "separable kernel" A2.2.

1. Separable Kernel (H-13) (L-8)

2. Degenerate Kernel (P-4) (G-7)

3. Kernel of Finite Rank (S-ll)

4. Pincherle-Goursat Kernels (T-3)

5. Riesz-Schauder Equations (M-6)

W(z) ~ \ S° K(z,s)w(s)ds A2.1
o

K(z,s) -
i|L

a
i
(z)b

i
(s) A2.2

If A2.2 is substituted into A2.1 and the integral and summation

signs interchanged, then equation A2.3 results. It can be seen that

the integrated terms depend only upon S and are therefore constants

A2.4 after integration. Thus, the solution to A2.1 can be expressed

W(z) - xJ^Cz) S° b
i
(s)W(s)ds A2.3

C
i
- Si b

i
(s)w(s)ds

'

A2.4

in terras of the constants C
i

as equation A2.5t and the problem now

becomes that of finding the C^.
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W(z) - X
igl

a
1
(»)C

1
A2.5

The first step in finding the C
1

is the substitution of A2.5

back into A2.4 giving A2.6. The terms involving the integral of

a.(s) and b.(s) are then recognized as constants A.. of equation A2.7,

which can be calculated from the given kernel function A2.2. The

resulting equation A2.8 is a system of m simultaneous equations in

Q±
= XX

i
C
j
S° b

i
(s)a

j
(s)ds

Aij - S° b
i
(s)a (s)ds

:

i ' XAA
iJ

C
j

the m unknown constants C.

.

A2.6

A2.7

A2.8

Equation A2.8 now represents a matrix eigenvalue problem. This

can be seen by expanding A2.8 and writing it in the form of A2.9,

where a = l/\. Equation A2.9 can then be written in the form of

0-A.
11

-A
ml

*i2 lm

~A
21

a-A
22

"" "A
2ra

-Am2
CJ-A

mm

°1 ~o*~

C
2

=

• •

• •

• •

— — - -

a - l

\

A2.ll, which is a matrix eigenvalue problem.

A2.9

A2.10

(al - A)C - A2.ll
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The matrix eigenvalue problem A2.ll must now be solved. The

first requirement for solutions to exist is that the determinant of

the matrix be zero as in A2.12. This specifies an m - order

polynomial in a which when solved gives the m - real roots or

eigenvalues (J,j i » l,m. For each of these a* there must exist an

eigenvector E, such that A2.13 is satisfied.

det (al-A) » A2.12

(a
i
I-A)E

i
- A2.13

Once these eigenvalues and eigenvectors are known, the first

solution can be expressed by A2,lk. It must be emphasized that there

are m - solutions W. (z) to this problem, one for each eigenvalue.

O-i ; W-,(z) » 2 a, (z)
E
li A2.14

•

1 i-1 i
ax

Thus, the eigenfunction solutions to the equation A2.1 are given

in A2.15.

WAz) =| X a (z)E A2.15
1 j=l i J iJ
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APPENDIX A3

SOLUTION OF A HOMOGENEOUS FREDHOLM II-INTSGRAL EQUATION BY CONVERSION
TO LINEAR ALGEBRAIC EQUATIONS

This appendix presents an approximate solution technique for

determining the eigenvalues and eigenfunctions of an integral equation

A3.1 by dividing the integration interval into equally spaced in-

crements and changing the integral to an algebraic summation. The

W(z) m \ f K(z,s)w(s)ds A3.1
o

integral equation eigenvalue problem is thus changed to a matrix

eigenvalue problem. The approximate solution W(z) can then be

expressed in terras of the eigenvalues and eigenvectors of the matrix

eigenvalue problem. References for this material are: (H-13) (L-8)

(P-*0 (G-7) (S-ll) (T-3) (V-4) (S-14) (D-5) and (M-6).

The first step in this solution technique is to divide the

interval Q),C] into n equal parts of length 6 as in equation A3. 2.

6 = C__ A3.2

n

Next, the functions W(z) and K(z,s) can be evaluated along the

interval as A3. 5 and A3. 6 at each of the points given by A3. 3 and A3. 4.

K(i6,j6) » K^ (i,j - 1, 2, •••, n) A3.3

W(i6) - W
i

(i - 1, 2, •••, n) A3.4

z
L

= i6 (i = I, 2, •••, n) A3.

5

s. = j6 (j = 1, 2, •••, n) A3.6
w

With these relationships established, the integral in A3.1 is

-187-





approximated by a summation over the interval [O.c^ represented by

the indices p-tn] as in equation A3. 7.

W
i " *£, KiiW i6 A3.7

Equation A3. 7 represents a matrix eigenvalue problem similar

to equation A2.8 in Appendix A2. This equation A3. 7 can be placed

in eigenvalue form A3. 9 by defining 9 as in A3. 8, similar to equations

A2.9t A2.10, and A2.ll in Appendix A2.

9 - 1_ A3.8

X6

(9I-A)W » A3.

9

Once the eigenvalues 9. and eigenvectors E, for equation A3.

9

are found, the approximate solution to equation A3.1 can be expressed

as A3. 10.

Wi(z) = \
±
b j^ K(z, j6)E

ij
A3. 10
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APPENDIX A4

DIGITAL COMPUTER PROGRAM AND OUTPUT FOR EVALUATION OF PROBLEMS IN
CHAPTER L4

This appendix presents a listing of the Fortran IV statements

in the program and subroutines used to calculate the numerical values

of the four analytical solutions presented in Chapter Lk, The numeri-

cal results are first listed, then plotted, and finally printed out in

matrix form. Tests made with this program showed that in all cases

less than ten terms in the series were used for three-decimal-place

accuracy.

There are three subroutines used in the program: MXOUT, PLOT,

and LOC. Subroutine LOC was taken, less comment cards, directly from

reference (1-3) , the Scientific Subroutine Package. Subroutines MXOUT

and PLOT, used here, represent significantly modified versions of the

MXOUT and PLOT subroutines described in reference (1-3). The main

program and subroutines are written in Fortran IV, and all runs were

compiled and executed using the WATFOR compiler on the IBM 360/65

computer at the M.I.T. Computation Center. The entire program

compiles in 5.8 seconds and executes in 5*65 seconds.
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C PROGRAM TCTCALCULATE 4 TRANSIENT RESPONSE S , UA 1 , UA2, UB 1 ,UC

1

C PROGRAM TO CALCULATE 4 ANALYTIC SOLUTIONS AS A TEST
DIMENSION UA( 100) ,UAT( 100 ) ,UB ( 100 ) , UC ( 100)

10p_ FOR M A T ( 3_X_fJ X= •_ L3X_»_* J=< ± 7 X ,_«_U_A NE = •_ t_6X_,_« U A T W 0^»_,_6_Xj _
l , UB0NE= , ,6X,»UC0NE= ,

f //)
1_0_2_ FOR M A T (_l_Xj_« U A T WO _NOT_ 1 _ P E R_C_E_NT_ AC C U RATEj XfI t.F_7_._3j

_

1« T=«,F7.3)
103 F0RMATC1X, «UAONE NOT ONE PERCENT ACCURATE , X^ ', F7. 3 ,

1* T=»,F7.3)
_ _1C4_ f C R M A T (_l_Xj • U B N E_ _A_NC_ L) C N E_ _NOJ_ ONE _P_E_RCJEN I _ACCUR A T E j. X = •_,

1F7.3,«T>« ,F7.3)
L0J_FpRMAT_{_lX_,2F5 5.2 f_3_X_,_4E12 i 5)

PI=3. 14159265
0ELTT=0.Q25
0ELTX=0.1
MJN=1_»_0E-.0J
A= 1 . 1 1 8

_Jf p I* p L*A*^_
BN=0.25*B
WRITE(6tl00)

C THIS SECTION IS TO SET UP OUTPUT PLOTS AT 0.1 INTERVALS
C_JH_X.

XP=0.0
"

po_20_p_j^ijig
XP=XP+0ELTX
UA(I)=XP
UAT«I)=XP
yBii.)j^xp
UC(I)=XP

___2_CC_CCNTI_N_UE
1=11
T=C.Q _^___
DO 10 J=l,9
T=TtDELTJ
X=0.0
DC_20__K=_l_,iP
X=X+DELTX

C TIME-SPACE GRID IS NOW SET
C STEADY STATE CALCULATIONS

UACSTj=_X

UATST=1.0
AC=l_._0_/J_A*Ai
UBOSTM 1.0-EXP(AC*X) )/(l .0 -EXP (AC) )

UCCST=(l«Q-EXPf-AC*X) ?/( l.O-EXP(-AC)

)

C TRANSIENT CALCULATIONS
SN=-1.0
UACTR=0.0
UATTR=0.0
UBCTR = C.O~
ATB=2.0*EXP(<-0.2 5*T+0.5*X-0.5 }*AC)

ATO2.0*EXPU-0.2 5*T«-0.5-0.5*X)*ACl

JAO=0_
IAT=0

_-190-





IBO=0
IfJN=0

C USE CM.Y THE FIRST 400 TERVS GR LESS OF THE SERIES
DO 30 N=lt4C0
IF(IFIN-3)53,54,54

A3_ R*z?y±ATI H) _
AN=RN*PI

JF 1 I AT I41j 4 1 ±4 2
41 RTN=FL0AT(2*N-1)

ATN=RTN*PI
.

CCSN=COS(ATN*X*0.5)
EXP BN^.EXPJ - R TN *RJ_N*J * B N 1 _
UATT=UATTR
U AJ TR= UAJ TR* i S N *COS N * E X P 8 N )_/J AJN *0 . 5

J

IF(ABS(UATTR)-MIN)44,4 4,61
61 IF<ABSUUATTR-UATT)/UATTR)-0.01)4 3,4 3,42
44 UATTR=0.0
_4_3_JAT=1L

IFIN=IFIN+1
_Jl2-31h *= SJ_N_( AN * X )

EXP8=EXP<-RN*RN*T*B)
IF( IAC)45,45,46

45 UAO=UAOTR
_ U A T Rj=_U_AJD TR + (_S N *SINjN * E X P B )_/AJN_

IF{ABS(UACTR)-.MIN)43,48,6 2

A2_JfiAJLSJJjyAGTR^Uj^0i^
48 UACTR=0.0
47 IAQ=1

IFIN=IFIN+1
46_IFitBJ^I49f49L5C
49 UBO=UBOTR

SUMSQ^0_.^_5*AC*A^CjtAN*AN
UBOTR=UBOTR+(SN*AN*SINN*EXPB)/SUMSQ
IF{ABS(UBQTR)-MIN)52,52,63

63 IFUBSUUBQTR-UBOJ/UBOTR ) -0.01)51, 51, 50
5_2_UBOTR_^p_.0
51 IE0=1

JflN= J^IN+l
" 50 SN=-SN
30 CONTINUE

IF(IAT>55,55,56
___5 5_WRITE_(_6_,i 021X^1

56 IFUA0)57,57,58
_5J_WRHE_t_6_,ip3iX ?_T

58 IF{ 180)59,59,54
59 WRITE(6,104)X,T
54 ATR^2.C*UA0TR
_U^0NE = UA0_SJ_+ATR
ATTR=2.0*UATTR
i|AjW0=UA_T_SJj-ATTR
BTR=ATB*UBOTR
CTR=ATC*UBOTR
UB0NE=U80ST+BTR

_JJCpNE = UCO_S_Tj«-CTR

C SAVE VALUES FOR PLOTTING
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UMI)=UAONE
uAjm_=u_Ajwo
UB(I)=U80NE
UC(II=UCONE
1=1*1
WJRI T E (6 ,1015_) X t. It_UAQN E _, U A T W f_UB C N E i_U C_0_N_E_

20 CONTINUE
1_C_ CON T I N UE_

"C PLOT COMMANDS
C MATRIX PRINTOUT

N0 = 1

MP = 10_

NP=10
ms=o
LINS=«5
IP0S=65
ISP=1
_NLf46
NS = 1

CALL_PJJ3JJN0,_UA_,_NP_f FPaNL»_NS)
CALL MXOUTCNO, UA ,NP, MP, MS ,L INS, IPOS, I SP

)

NC=N0+1
CALL PLCT<NO,UAT,NP,MP,NL,NS)
CALL _MXOUJi NO LU ATfNf_, M P t_H S_t_L_I N

S

± IPJLS_,_I_S P_)

NC=NO+l
_CALL_P_L_CJJNQ^_UB_,_N_P_,MPjL NL,J^_S_)

CALL MXCUKNO, UB ,NP , MP , MS,L INS, I POS, I SP)
N0=NQ+1
CALL PLCTINO, UC,NP ,MP ,NL , NS )

C A L L _M_X_GUTI NO t _U_C_t_N P, M P LM_S_,_L_I N S ± L?_ S_,_I_Sfl
CALL EXIT

"

END
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SIBROUTINE PLOTTNO , A, N, M, NL , NS

)

C J?V***_* 11*A*_***** JIICHAEL _N ._ _HAY E S_**_***** ** I****?*_** ***
01 MENS ION 0UT<101),YPR< 11), IANG(9),A<1)
INTEGER I0UH/'l , /,IANG/'l ,

,
, 2 , ,'3 t ,'4 , ,'5 , ,'6','7 ,

t

1«8«, «9«/

J NT E G E_R_ _0_UJ_
C THESE LIMITED FORMATS ARE FOR 60 SPACE PRINTOUTS FOR
C JHESLS _U_S_E_.

1 F0RMAT(1H1,28X,7H CHART ,13,//)
2 F0RMATC1H , F8 . 3, IX ,' *' , 51 A 1

, ' * '

)

3 FORMATUH )

7_F 0RMAT(_l_H_jigX^3_6H_*_ _*_ _*_ _*_ _*_ _*_ _*_ _*_,

115H "
*

" * " *)

8_ F RM AT (_1H0_, 8 X , 1.1FJ_. 2J _
"C NTH IS NUMBER CF SPACES TO BE USED, EITHER 101 OR 51

NTH=5 1

NLL=NL
JfiNS)_16, 16_, 10 _

10 DO 15 1=1,

N

_D0_ 1 4 J = I , N
" IF(A(J)-A(I))14,14,11

11 L=I-N
LL=J-N
op_i^_K=_i_,M
L = L + N

irir=L_L_tfi

F=A(L)
A(U-MLL)

12 A(LL)=F
14_C0NTI_NUE
15 CCNTINUE
16_IFiNL_L_)_2_p_,I8 ±2_C

18 NLL=50
20 WRITE(6,UNQ

WRITE(6,7)
BLANK=_0
XSCAL={A(N)-A(1))/(FL0AT(NLL-1))
M1=N+1
YMAX=-1.0E75
YMIN=1.0E75
M2=M*N
Q0_40__J=M_lj,M2
IF (A(J) .GT. YMAX) YMAX=A(J)
IF_LA(_JJ_ J.LI^_YliIjVj_YMI_N=_A_(JJ

40 CONTINUE
YSCAL={YMAX-YMIN)/50.C
XB=A(1)
L=_l

MY=M-1
J-J

45 F=I-1
XPR=XB+F*XSCAL
IF(XPR-A<L) )50,50,70

_^C_J30_55_LX_=_l_tNJH
55 0UT{ IX)=BLANK

-193-





00 60 J=1,MY
_U.fL*J*NL
JP=UA(LL)-YMIN)/YSCAL)*1.0
0UT(JP)=IANGC J)

60 CONTINUE
C_ P R P E R _FORM A T _C ARC_S_ MUST _B_E_ .USE

WRITE(6,2)XPR, (CUT ( I Z ) , I Z=l, NTH)
L=L±1
GO TO 80

70 hRITE(6,3J
8C 1=1*1

Jfi I- N LLJ_45jt 84 ,_g6_

84 XPR=A(N)
G0_T0_50

86 WRITE(6,7)
YPR(1)=YMIN
DO 90 KN=1,9

AQ_ Y P R IK NjHLJ = YfR IK1)_*YS C A L * 5 ._0_

YPR<11)=YMAX
W HI T E (_6_t_8JJ Y PR (_ IPJLfJf31jlLLL
RETURN
END
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SUBROUTINE MXOUT { I CODE , A, N, M, MS , L I NS, I PQS, I SP>
* * * ********* * ** _M_IC_HAE L _N ._ _H_A_Y E S_******** * *** *_*_*_*.* * * * *

DIMENSION A( 1) «B(8)
1 FQRMAT(1HQ,5X, 7HMATRIX ,I5,6X,I3,5H ROWS, 6X, 13,
18H COLUMNS,/)

_

_

2_ fOR MAT f_l_2Xj 8HC C L_U MN_ , 7 ( 3 X_, 13 , 1 X ) )

3 FORMAT* 1H )

__4_f ORMATaj^_ J? 7X i4HRJ3J«_ji3 L 7(_E_16_.6|i
5 F0RMAT<1H0,7X,4FR0W , I 3 , 7< E 16. 6 )

)

6 FCPMATUH1)
7 F0RMATC16X, 13HSTORAGE MODE , 1 1 , 7X , 7HGROUP ,12,/)
WRITE (_6_,_6_)

J=l
_NEND=I_P_0_S/J6-1
LEND=(LINS/ISP)-2 "

IPAGE = 1

10 LSTRT=1
2SL WKITJLL6_»JJJ CODE,LN_,_M

WRITE(6,7)MS, IFAGE
JNT=Jt_NEND-i
IPAGE=IPAGE+1

31 IF{JNT-M)33,33,32
32 JNT=M
J3_C0NTLN_UE

WRITE(6,2M JCUR,JCUR=J,JNT)
IILLSP_-J.J35± 3 5 1/L

35 WRITE(6,3)
4C LTEND=LSTRT*L£ND-1

DO 80 L=LSTRT,LTEND
PC_55__K_=_1_,NEND
KK=K
4I=.±±KrJ.
CALL LCC(L,JT,IJNT,N,M,MS)
B(K)=0.0
IF( IJNT)5C,50,45

4_5_ B1 K ).= AJJ J NJ

1

50 CONTINUE
I F iJTH*) 5 5jt 6 ,_6_0_ _

55 CONTINUE
60 IF(ISP-1)65,65,70
65 WRITE(6,4>L,(B(JW), JW=1,KK)

GO_TO _7_5

70 WRITE(6,5*L,<B( JWJ,JW=1,KK)
J5_IFiN-L_)_8^j8 5 t8C_
80 CONTINUE

LSTRT=LSTRT + LEND
GO TO 20

_8_5_ _I FJ JT- M )_9_0_,_?

5

± 95
90 J=JT*1

g_c_tq_ip_
95 RETURN

END
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SUBB.anaj^LQCLUJUJB*N*JUMSJ

IX^J
JX = J

IFLMSrJj.lQiZQ^JJ
10 IRX=N*( JX-D + IX

GQ_KL_36
20 TF(IX-JX) 22,24,24
22 IRX=IX+(JX*JX-JX>/?

GO TO 36
.24_IR X.= JX+JJJ(*IX.-lXjy.2

GO TO 36
3.G_IRX=a_

IF(IX-JX) 36,32,36
3? IRX=IX
36 IR=IRX

R£IURN_.
END
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XfL 1= UAQNE=l UATWOf= UB_0_NE=_ _U_CONE =

0.10 0.02 0.30595E-03 0.37324E-03 0.212L3E-03 0.43643E-C3
_°_-_2-P_ 0^02 . 1 3 7 3 4 E_-_02_ 0^ 3 5 69_lEr 2 _0 ,_193_C_1 E r P_ 3 _0_._1_8 8 3 7 E -C_2
0.30 0.02 0.50529E-02 0.49801E-02 0.38026E-C2 0.66583E-02~
Q_«_5l°_ 0^0?. _P_?J6. 39 1E_- 0_1_ • L66 C_5_E -01 _ ._ l_28Jt2 E- L _C_._2_0J 5 4 E - 0_1

0.5C 0.02 0.32329E-0L 0.45695E-01 0.264C2E-01 0.39390E-01
0.60 0.02 0.10959E 00 0.10548E 00 0.93069E-01 0.12817E 00
0.70 0.02 0.22939E 00 0.22987E 0C 0.20286E 00 0.25789E 00
_°_«8-°_ • 2_ 0. 4 2 3 7 C E_ _0p_ C . 4 2 3_7_8_E_ _0 ..39023JE_00 _0_._4_5J 9 5 E _0_0

0.90 0.02 0.68921E 00 0.68916E 00 0.66130E 00 0.71638E CO
JL»PP_ 0±0?_ O^IC 0_E_ _0_1_ . 1 00_0_0_E_ (H _ t_l_0_Q0 E_ L _0_._1 E _0_1

0.10 0.05 0.90371E-02 C.12726E-01 0.62542E-02 0.12850E-01
0.20 0.05 0.22954E-01 0.24391E-01 0.16539E-0L 0.313o7E-01
0.30 0.05 0.47477E-01 0.48038E-01 0.35616E-01 0.62355E-01
0._4_0_ J3. C

5

0. 8 96 9 E_tP_1_ ._ 8 9 781E- 01 _0 ._69999 E -0 I _0._U31 3 E _0_0_

O.50 0.05 "0.15644E 00 0.15724E 00 0.1272~7E 00 C.18987E Co"

0.6C_ _0_. 5 0_. 2 5 7 8 7 E_ J)p_ . 2 5 7 8_CE_ _0 ?_2_1_8_5 E_ _0_._3 91 E _C_0

0.7C 0.05 0.39612E 00 0.39612E 00 0.34967E 00 0.44453E CC
0.80 0.05 0.57160E 00 0.5716CE 00 0.52579E 00 0.61703E CC
0.9C 0.05 0.77730E 00 0.77729E 00 0.74534E CO C.80742E 00
_i_.oc_g ._o_5 p . 1go o_e_ _p_i_p± 1 o o_o_ce_pi _p._i_gpgp e_g l _o_._ipppg e _o_i

0.10 0.07" 0.26589E-01 0.48732E-01 0.18346E-C1 0.37694E-G1
_0_._20_ ._0_7_ . 5 9p8_2Ej-0_1_ . 70 247E

-

1 _ ?_4244

5

E- L _0_.JPJO E-Ol
0.30 0.07 0.1C328E 00 0.10809E 00 0.77266E-01 0.13527E 0C~

0.40 0.07 0. 16462E 00 0.167C7E 00 0.12827E 00 0.20731E 00
0.50 0.07 0.24762E 00 0.24873E 00 0.20100E CO 0.29986E CC

_0_.60_0 !Lp7_ p.3553_8_E_J)p_p.355j3JjE_gg_g.^^^
0.70 0.07 0.48832E 00 C.48849E 00 0.43045E 00 0.54721E CC7

Q_. 80_ _0_7_ P . 64 4 1_3_E_ _00_ .. 6 4 41_9J_ 00 _0_ _5_9_19J E _00 _0_._694 6 4 E _C_0_

0.9G 0.07" 0.81735E 00 0.81737E 00 0.78334E 00 0.84859E CO

1.00 0.07 C.1000CE 01 C.1000CE 01 0.10000E CI 0. 10000E 01
0.10 0.10 C.44C50E-C1 0.99654E-C1 0.30318E-01 0.62289E-C1
_Q_._2p_p_ip_ _Pj.93L96_E_-jn_p^!2_5_9JJ_pg_g»A^^^
0.30 0.10 0. 15218E 00 C.17C74E 00 0.11359E 00 0. 19886E 00"

_0_._40_ _ 1 0_ _ _ 0_. 2 2 5 0_1_E_ 00_ _2 _523__ _0_ _1_7__J 6E _00 _0_._2J 2 7 6 E _C_Q

0.50 0.10 " 0.31459E 00 C.31999E 00 0.25489E CO 0.38026E CO"

0.60 0.10 0.42232E 00 0.42507E 00 0.35664E 00 0.49115E CO

C.70 0.10 0.54782E 00 0.54916E 00 0.48231E 00 0.61315E CO

_Q_-jg _ P_ •._?_ _ P • _ 8 884E_ 00_ .6 8_9_45E_ _0._6324 9 E_00 _0_. 7 4 2 2 5 E _C_Q

0.90 0.10 0.84136E 00 0.84159E 00 0.80602E 00 0.87315E 00
_i_pg_g.io_ _p.iggo_^E_pj_g.__Q_o_3E_pi j_^^^
0.10 0.12 0.58303E-01 0.15648E 00 0.40041E-01 0.82266E-01
0.20 0.12 0.12058E 00 0.18421E 00 0.86230E-01 0.16354E CC

0.30 0.12 C.19044E 00 0.23C51E 00 0.14186E CO 0.24837E CC

0.40 0.12 0.27086E 00 0.29536E 00 0.21022E 00 0.33975E CO

0.50 0.12 0.36380E 00 0.37836E CO 0.29428E 00 0.43903E CC

A-JP_p5_2 0.47C07E 00 0.47845E 00 .3_9643E_ 00 _0_.J_4J94E CO

0.70 0.12" 0.58918E 00 0.59381E 00 0.51818E 00 0.65874E 00

0.80 0.12 0.71931E 00 0.72171E 00 0.660C0E 00 0.77452E CO

0.90 0.12 0.85752E 00 0.85853E 00 0.82120E 00 0.88960E OC

L -op. p_. 1 2 _ _c_._i cp

g

oe_ _o_i_ o. 1 ggp_o_E_ o_i _ g _ _Q_o_p o e_ p 1 _o_.jipppp i -9_L

0.10 0.15 "0.69195E-01 0.21407E 00 0.47435E-01 0.97457E-C1
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0.20 0.15 0.14137E 00 0.24144E 00 0.10092E 00 C.19141E 0G~

.°_»_3J?_ 0^15. __• 2JL924E _00_ . 2 86 73E 00_g _l_6_3J)_4E_gg _0_._2_854_ i _C0_
0.40 0.15 0.30495E 00 0.34939E 00 0.23632E 00 0.38193E CC
0.50 0.15 0.39994E 00 0.42846E 00 0.32308E 00 0.48199E CC
0.60 0.15 0.50473E 00 0.52251E 00 0.42516E 00 0.58551E CC
_Q.«J.?_OaL^ 9^^1^ZE-^P_9^^9J 23_oq_o._5^3^gEqo_o_.69i3ZFjio
0.80 0.15 0.74100E 00 0.74692E 00 0.67948E 00 0.79739E OO"

0«5lP_Oil5 J?^86897JE_jP0_0.8 71.59_E_pp_0 !L8_319^E_Cg _0_._90_120E _0_0
1.00 0.15 0. 10000E 01 0.1000CE 01 0.10000E 01 O.iOOOOE Ol"

0.10 0.17 0.77320E-01 Q.26988E 00 0.52922E-01 0.10873E 00
0.20 0.17 0.15685E 00 0.29607E 00 0.11180E 00 0.21204E 00
0.3P_p.l7_ P_.24059E_J)0_P.3 3922E_C0 _P_ ^1_7_866E_00 _0_._3_1_279E _Q_C

0.40 0.17 0.33C13E 00 0.39853E 00 0.25549E 00 0.41291E 00"

0.5 0_ . 1 7 . 4 26 5 E_ J>p_ _4 7 2_8_6_E_ 000 £.34412 E_00 J_._5_l 3 3 9 E _0 Q
0.60 0.17 0.53006E 00 0.56061E 00 0.44606E 00 0.61429E 00
0.70 0.17 0.64048E 00 0.65979F 00 0.56236E 00 0.71491E 00
0.80 0.17 0.75674E 00 0.76798E 00 0.69355E 00 0.81390E CC
.9_0_ 0__ 1

7

JP_?jB7 7 2 5 E_ 0_ . 8 824CE_ 00 _83961 E_00 _0_._9 09 5 5 E CO
1.00 0.17 "O.IOOOOE 01 O.IOOOOE 01 C.10000E 01 O.IOOOOE of
0_10_ Oj.20 P^8332^4^_-p_l_0.32^2 8_l_E_00_0^56_9_58E-01_0_._117C
0.2C 0.20 "0.16828E 00 0.34748E 00 0.11980E 00 0.22720E 00
0.30 0.20 0.25633E 00 0.38803E 00 0.19012E 00 0.33285E 00
0.40 0.20 0.34866E 00 0.4436CE 00 0.26953E 00 0.43560E CO
Q_.50_0 _2_0_ . 446 00_E_ 00_ _ 5 1_297E_ 00_P _3_5951 E_00 _0_._5J3 6 34 E _C_0

0.60 0.20 " 0.54364E 00 0.59455E 00 0.46131E 00 0.63529E CO

0_.JP_g_20 P.6563_0J_pG_p.6 86_4JJ_Pg_P ?_5_7587E_PP_0_._7^_209E _0_O

0.80 0.20 " 0.76825E 00 C.78634E 00 0.70378E CO 0.82590E 00~

0.90 0.20 0.88330E 00 0.89176E CO 0.84521E CO 0.91561E 00
1.00 0.20 O.IOOOOE 01 O.IOOOOE 01 C.100C0E 01 O.IOOOOE 01

0_.iP_0._22_ _P_8_74_Ej_0J_p_372_4JJ_pp
0.20 0.22 " 0.17669E 00 0.39549E 00 C.12565E 00 0.23831E OO"

0_.30_g_2_2 0.26791E_i)p_p_43_^3_3JJ_pp_p_L9_8JiE_PP__0__J4754_,_0__
0.40 0.22 " 0.36228E 00 0.4851CE 00 0.27980E CO 0.45220E 00
0.50 0.22 0.46033E 00 0.5496CE 00 0.37075E 00 0.55311E CO
0.60 0.22 0.56227E 00 C.62531E 00 0.47245E 00 C.65063E CC

0_.J0_ _2 2_ P_ 6 6 7 9_C_E_pp_ _ 7 L_39E_ 00 _0 _5_8_5_74 E _00 _0_.J 4 4 6 3 E _0_0

0.80 0.22 0.77668E 00 0.8C276E 00 0.71124E 00 0.83466E CO"

0_._9p_g_22__ _P_88 774J_ 0p_C£9CC_lJJ_Pp_g_8A9JPE_gp_J^
1.00 0.22 O.IOOOOE 01 O.IOOOOE 01 O.IOOOOE 01 C. 10000E 01
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CHART 1

* * * * * * * * * * <t

1.000 * 49*

0.900 * 1 2 3 579

0.800 * 2 3 45 79

0.700 * 1 2 3 4 56 89

0.600 * 1 2 3 4 5 6789

0.500 * 1 2 3 4 56 789

0.380 *1 2 3 4 5 6789

C.280 *1 2 3 4 56 89

0.180 *123 4 579

_Q_-J0Q_* 23579 ___ *

0.00 0.1C 0.20 0.30 C.40 0.50 0.60 0.70 0.80 0.90 1.0
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MATRI

X

1 10 ROWS 10 CCLUMNS

STORAGE MODE GROUP t 1

CClUMN "l~
2~~ ~3~

"row i~
_
orrdooooE

_
or

_
~ o^iooodoE~oI~ "oVioooooe dT

ROW 2 0.9Q0000E CC 0.689206E 00 0.777299E CO
RCW 3 0.800000E OC 0.423696E 00 0.571601E 00
ROW _4 Os.lQOOOPJ_00 0__29394E_ P0___J_j_3_?6123E _0_0_

ROW 5 0.600000E 00 0.109590E 00 ' 0.257871E CO
ROW 6 C _5 COO 00 E 00 0^323 2 86E- 1_ _0_._1_5 6 4 4 IE _C_0_

ROW 7 0.400000E CC C.163907E-01 C.896C93E-01
ROW 8 0.300000E 00 0.505292E-02 0.474771E-01
ROW 9 0.2CCOOOE 00 0.137341E-02 0.229545E-01
J?pW__lp_ P__.L°_c_PPOI_°.C P_.305?^l_E_-03___JL-5!P37p8E-C_2_

__*I_i_ i iQ_Rg_s_ _9____k__l_i

STORAGE MODE GROUP , 2

COLUMN 4 5_ 6

_RQ.W_ i_ _Q_LO_o_QppE_p_^ p__ ipooo_o_E_pi____p._i_:pcccE__c_i_
ROW" 2 0.817346E 00 0.841358E 00 0.857519E CO
RCW 3 0.644126E 00 0.688840E 00 0.7193C8E CO
ROW 4 0.488323E OC 0.547825E 00 0.589176E 00

_ROW_ __5_ _Q_3_55377E_p_0 0_. 4 22 32_3_E_0C 0_._470p72E _0_0_

ROW 6 0.247616E 00 0.314594E 00 0.363798E CO
RCW. 7 0__L6_4_62pE_0Q_ 0_. 2 250 1_5_E_0C___ _C_._270 8 56 E__0_0_

ROW" 8 0.103279E 00 0.152181E OC C.190444E CO
ROW 9 0.590816E-01 C.931960E-01 0.120577E 00
ROW 10 C.265891E-01 0.440498E-01 0.583032E-01

MATRfx" T To~ROWS~ ~IQ "COLUMNS
~

STORAGE""MODE
_0" ~GR0UP~~t~3

COLUMN 7~ 8 9

row 1 oTfdb o oo e "of" ~o7Tooodo_~oI~ "~o~.~ioooooe ci

__QW_ _2_ _Q_86896JE_0C_ 0_, 8 77 2_5_3_E_ 00 0_. _3J3 3C5E__C_0_

ROW 3 0.741004E 00 0.756742E 00 0.768246E 00

ROW 4 0.618868E 00 0.640481E OC 0.656300E 00

ROW 5 0.504727E OC 0.530061E 00 0.548636E CO

_*G__ _6_ _P_399944E_pO_ _Q._»2__iIE__QC_ Q^44_>003E_C_0_

RCW 7 0.3C4955E OC "0.330128E OC 0.348656E CO

_B_W_ 8_ _P_2L9237E_pO_ _0_.J_'Q588E__qp_ Q._2_5_J_331E _C0_

ROW 9 0.141373E 00 0.15685CE 00 0.168277E CO

ROW 10 0.691950E-01 0.773195E-Q1 0.833238E-C1

MATRIX 1 10 ROWS _IQjCJ_LUMNS
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STORAGE MODE GROUP , 4

COLUMN 10

ROW
ROW

1 0.100000E 01
2 0.887740E OC

ROW
ROW

3 0.77668CE 00
4 0.667904E OC

ROW
ROW

5 0.562272E 00
6 0.46G333E CC

RCW
ROW

7 0.362277E OC
8 0.267913E CO

ROW
ROW

9 0. 176689E 00
10 0.877451E-01
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CHART 2

* * * * * * *****
1.000 * 49*

0.9CO * 1 2 3 5689 *

_
.80C~* ~ ~l" ~2 3~ 4~5678~9 "~*

_Q_r_7P0_l L 2 3__4_5__6_7_89 *

~(K600~*~ 1
2~~ ~3 4~~5 6~78 ~9~ "~*

_0.50G_*___1 2 3__ 4 5 6__7_8_9 *

0_.3 8C_*1 2 3 4___5 6_7 8_9 *

0.280 *1 2 3 4 5 6~~7 8~~9^ *

0.180 *12 3 A 5 6 7 8 9 *

P_._100_*2_3__4__J 6_JL_JL2 ************
O.CC 0.1C 0.20 0.30 C.4G C.50 0.60 0.7C 0.80 0.90 1.0
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MATRIX 10 ROWS 10 COLUMNS

STORAGE MOOE GROUP , 1

COLUMN 1 2 3

ROW
ROW

1

2

0.1000C0E
0.90G00OE

01
00

C.999999E
0.689158E

OC
OC

0.100000E
0.777291E

01
CO

ROW
ROW
ROW
ROW
ROW
ROW

3

4
5

6

7

8

0.800000E
0.700000E
0.600000E
C.500000E
C.4C0000E
C.3C0000E

00
00
00
OG
00
OG

0.423778E
0.229871E
0. 105476E
0.456947E-
0.166054E-
0.498009E-

00
00
OG
-01
-01
-0 2

0.571596E
0.396115E
0.257800E
0.157242E
0.897810E-
0.480379E-

00
CO
00
00
-01
-01

ROW
ROW

9

10
0.200000E
0.100000E

00
OG

0.356913E-
0.373244E-

-02
-03

0.243909E-
0.127263E-

-CI
-01

MATRIX 2 10 ROWS 10 COLUMNS

STORAGE MODE GROUP t 2

COLUMN 4 5 6

ROW 1 0.100000E 01 0.100000E 01 0.100000E 01
ROW
ROW

2
3

C.817368E
0.644190E

00
00

0.841594E
0.689454E

00
OC

0.858528E
0. 7217C5E

00
CO

ROW
ROW

4
5

0.4884956
0.355814E

OG
00

0.549163E
0.425069E

00
00

0.593811E
0.478449E

CO
00

ROW
ROW

6
7

0.248729E
C.167068E

00
00

0.319994E
0.235234E

00
OC

0.378359E
0.295359E

CO
CO

ROW
ROW

8

9
0.108085E
0.702469E-

oc
-01

0.170740E
0.12598CE

00
OC

0.230511E
0.184211E

CC
CO

ROW 10 0.487320E--01 0.996541E-01 C.156484E CO

MATRIX 2 10 ROWS 10 COLUMNS

STORAGE MODE GROUP , 3

iCOLUMN 7 8 9

ROW
ROW

1

2

0.100000E
0.871591E

01
00

C.1C0000E
0.882398E

01
OC

0. 100000E
0.891763E

01
00

ROW
ROW

3 0.746924E
0.629523E

00
00

0.767981E
0.659794E

00
00

0.786335E
0.686427E

CO
CO

ROW 5

RCW 6
ROW 7

ROW 8

0.522506E CC
0.428458E OC
0.349387E 00
0.286730E 00

ROW 9 0.241436E CO
ROW 10 0.214071E CC

0.560613E 00
0.472858E 00
0.398534E OC
0. 3 3921 7E JD_C

0.296071E 00
C.269883E 00

c,

0,

0,

0,

.594554E

.512968E

.443600E

.388030E

CO
CO
00
CO

0.

0.

347479E
322809E

CO
CO

_MATRI_X 2 IJLBQWS
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10 COLUMNS





storage mode group , 4

"column To

ROW 1 0.100OOOE 01
ROW 2 ^9 0_0_l_l 3 E 00
ROW " 3 ' 0.802758E OC
ROW 4 5_7K)_3_89 E _ C C

RCW " 5 " 0.625308E 00
ROW 6 0.549605E 00
ROW 7 0.485104E CC
ROW 8 O^A^JJLjE-OC
ROW 9 0.395486E CC
RCW 10 0.372433E 00

-204-





CHART 3

* * * * * * * * * * *
1.000 * £~^r

0.900 * 1 2 3479 *

lK800
_*~~

f~ 2 3~45679 "V

_Q_«_7P0_* £ 2 3__J^5_689 *

0^600 ~* 1 2
~3
_
4~5~679 "~*~

0_.50C_*__1 2 3__4__5_6 8<3. *

0_.J80_*_L__2 3_4_5_679 *

0.280 *12 3 A 579
~~

*

0. 180 *2 34589 *

0.J00_*359 ************
0.00 0.10 0.20 0.30 C.4C 0.50 0.60 0.70 0.80 0.90 1.0
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MATRIX 10 ROWS 10 COLUMNS

STCRAGE MODE GROUP , 1

COLUMN I" "f 3"

"row T
_
c7fo~dbbbE~dr~ " 'cT.lOOOOOE "61 !FriOOOCbE~dl~

ROW 2 0.9QQ000E 00 0.661296E PC 0.745336E CO
ROW 3 0.800000E OC 0.390233E 00 0.525795E 00
ROW 4 °_!_IO_QOpOE_gO 0j?2C2 86 1_E__00_ _Qa.34?673E _00_
ROW 5 0.600000E 00 0.930687E-G1 ' 0.218502E CO
ROW_ 6 0«_5(W00pE_g0 0j264024E^0i_ _0_._1_2J2 6?E _C_0_

ROW 7 0.400000E OC 0.128419E-01 0.699988E-C1
ROW 3 0.300000E 00 0.380260E-02 0.356159E-C1
ROW 9 0.2C00C0E 00 0.993013E-03 0.165389E-01
R0W__1_0_ O^l^qOOOOEOC P^212L3_3_E-03 0.625 4 1 6E-C2_

_MAJRI_X 3 Jj9_RQto.S_ LQ.JL°_kyi?NS

STCRAGE MODE GROUP , 2

.COLUMN 4 5_ 6

ROW I 0^1_CppOOE_01_ P-100000E.0J JL-IOOOOOE _0_1_
ROW 2 0.783344E OC 0.806019E 00 " 0.821203E CO
ROW 3 0.591927E OC 0.632494E 00 0.659998E CO
ROW 4 0.430447E 00 0.482313E 00 0.518177E CO
R W_ 5 0_^3_q05 7 2 E _0 0_. 3 5 6 6 3_7_E_ C _0_.J 96 4 2 6 E _0_0_

ROW 6 0.200998E CC C.254890E OC ' C.294283E 00
R CW_ 7 P_t_1282J4 E _0C_ 0_. 1 74 9 63E_ C_ _ _ _0_._2i0 2 2 4E_ _0_0_

ROW 8 0.772659E-01 0.L13586E CC 0.141865E 00
ROW 9 0.424448E-01 0.667886E-01 0.862302E-C1
ROW 10 C.183465E-01 0.303176E-01 0.400413E-C1

matrTx" 3 Tb~RbwY~ ~FdlfoTuMNS~

STORAG"E""MOdE
_
d "GROUP"",

-
^

COLUMN 7 8 9

row I d.~fdbodd e ~oi dT TododbY"dI oTibbb b oe ~di~

_RO_W_ _2_ _P_ !_8_3_1905E_gC_ _g^839613E_0g P_._8452 14E__0_0_

ROW 3 0.679485E OC 0.693550E 00 0.70378CE CO
ROW 4 0.543800E 00 0.562358E OC 0.575874E 00
ROW 5 0.425159E 00 0.446060E 00 0.461308E 00

_ROW_ _6_ _g.323_077E_00_ _P_.344124E_JK)_ ^3_5_9_5^9E_C0

ROW 7 0.236322E 00 "0.255493E OC 0.269533E 00
-RCW- _8_ _0±L6_3_038E_0C_ _0_»JJ8660E__pp_ P_._19p.122E 00
ROW 9 0.100923c 00 0.111804E OC " 0.119797E CO
ROW 10 0.474349E-01 0.529225E-01 0.569578E-01

JIAJRLX- ._?_. .J-P-Rows i9__c_Pi-JJMili!S
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STORAGE MODE GROUP , 4

COLUMN 10

ROW 1 C.ICOOOOE 01
ROW 2 2.8 A9_298 E_ C C

ROW " 3 ' 0.711242E 00
ROW 4 ..5 85739 E_00
ROW 5 0.472445E 00
ROW 6 C.370754E CO
ROW 7 0.279803E 00
row_ 8 0!_i_^8_5_i2E_gg
ROW 9 ' 0. 125652E 00
ROW 10 C.599143E-01
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CHART 4

* * * * * * * * » * *
1 .OOC * 69*

0.900 * 1 2 34589 »

0~.806~* IT" 2~ ~
3 45679

"~*

_0-_70C_* 1 2 3_A_5__6789 *

0^600~*~ I 2 3 4 5~6789 *

0.50g_*__l 2 J 4 5 _ 6789 *

0_.3 80_* _1 2 3_ 4_5 6_7_8_9 *

0.280 *1 2 3 4" 5 6789
""*

0. 180 *12 3 4 5679 *

P_»JPP_*23__46_eS_ ************
O.CO 0.10 0.20 0.30 C.40 0.50 0.60 0.70 0.80 0.90 1.0
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MATRIX 4 10 ROWS 10 COLUMNS

STORAGE MODE GROUP , 1

CCLUMN i 2~
3

row i o.foooooE~or o^Iodoo~o
_
E~ol TTioooooe~oT

ROW 2 0.90000QE PC 0.716376E 00 0.807416E 00
ROW 3 0.800000E 00 0.457947E 0C 0.617032E CO

.
RQW 4 O«.10.QPOOE_gC 0j257891E_O0_ _Q_._A4452 8E__C_0_
ROW 5 C.600000E 00 0.128171E 00 0.300911E 00
ROW 6 P_^5pJDOpOE_CC 0_. 393896EH)1_ _P_«J-_8586 9E _0_0_
RCW 7 0.400000E 00 0.207545E-01 0.113127E CO
ROW 8 0.300000E 00 0.665832E-C2 0.623550E-01
ROW 9 0.200000E OC 0.188375E-02 0.313673E-C1
ROW__1_0_ C^l_C00p0E_g0 0j!^3642_5Er_p3____0_._l_28 5ggE-0_l_

_M_AJRI_X 4 _10_RQWS_ IQ__C_0_LUMNS

STORAGE MODE GROUP , 2

COLUMN 4 _5_ _6_

Ro w_ i P_^io_oo^) o e _gi_ cr. j.ggoop_E_ oj_ _c_._i_p cpg gs_ _o_i_

ROW 2 0.848590E OC 0.873154E OC 0.889603E CO
ROW 3 0.694639E 00 0.742246E 00 0.774522E 00
ROW 4 0.547213E OC C.613148E 00 0.658741E 00
RQW_ 5 0^4J3934E_00 Oj?^^LL4_5E_00____Q_»_5^^^tE _C_Q_

ROW" 6 ' 0.299862E OC 0.380262E 00 " 0.439030E 00
R CW 7 0^2073OJ E_0C 0_. 2 8 2 7 6_1_E_ 0_._3JJ?1 4 8 E_ _0_0_

ROW 8 0.135273E OC 0.198860E 00 0.248368E 00
ROW 9 0.804995E-01 0.126669E OC 0. 163541E CO
ROW 10 0.376939E-01 0.622888E-01 0.822664E-C1

MATRfx 4 1o
_
r6wS~~ ~r6"

_
C0LUMNS~

ST0RAG~E~~MODE~0 GR0UP~T~3~

COLUMN 7 8 9

row I o.To"boooE~oi^ o7Toooooe~oT oVioooooe~~oT
__R P_W_ _ 2 ._9C1_1 96 E _00_ 0_. 9 09 546_E_ 00 0_. 9_1 5 6 I 3 E_ _00_

ROW 3 0.797390E 00 0.813896E 00 C.825901E CO
RGW 4 0.691315E 00 0.7149C8E 00 0.732090E 00
ROW 5 0.585510E 00 0.614294E 00 0.635293E 00
ROW 6 0.481987E 00 0.513387E 00 0.536338E 00
ROW 7 0.381926E CO 0.412908E 00 C.435598E CO

_ RQ* A. _0.285437E OC 0.312787E OC 0.3_3_2854E CO
ROW

"
""

9 0'. 19 140 7
E

" 00
"

0.212042E OC 0.227202E 00
ROW 10 0.974566E-01 0.108731E 00 0.117C22E CO

_MATRI_X 4 1P_RQWS
.

-209-

10 COLUMNS





STORAGE MODE GROUP , 4

COLI) M N 10

ROW 1 C.100000E 01
ROW 2 0?_9 200 38E_0C
ROW " 3

" 0.834659E 00
ROW 4 P_!_I^A3iE_00
ROW " 5 " 0.650631E OC
ROW 6 0.553115E OC
RCW 7 0.452196E 00
ROW 8 2.347543 E _0_
ROW 9 ' 0.238306E OC
ROW 10 0.123096E 00

COMPILE TIME= 5.80 SEC , EXECUT ION TIME= 5.65 SEC
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APPENDIX A5

SUBROUTINES USEFUL FOR COMPUTING LPCM STRADY-STATE SOLUTION

For completeness and for the convenience of the reader, this

appendix present's a listing of the Fortran IV statements in the sub-

routines useful for computing the LPCM steady-state response. As

mentioned previously it is expected that there are easier and more

efficient methods which could be developed and used to find the

steady-state for special cases of the LPCM. These subroutines will

solve the general LPCM steady-state with the subroutine AFCT given

here. Several of the subroutines here are also used directly in PLPBV,

namely EIGEN and GELG.

Four of the subroutines used here are taken, less comment cards,

directly from reference (l-3), the Scientific Subroutine Package.

These are subroutines LBVP, EIGEN, GELG, and LOC. The remaining

three subroutines, AFCT, FCT, DFCT, were written specifically for

the LPCM. One additional subroutine, OUTP, is required for operation

of the subroutine LBVP and must be furnished by the user. All of

these subroutines compile under WATFOR in a total time under 20 seconds.
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P SUBROUTINE L BV P < PRMT , B ,C , R , Y, DERY, Nn I m , T H L F , AFCT , FCT , DFC T , o.jTP ,

1AU*,A)
DIMENSION PRMT(l), B(1),C(1 ),R(1 ),YM ) , DFR Y ( 1 ) , AUX ( 2% 1 > , A ( l)
TF(PRMT(3)*(PRMT(?)-PRMT( 1) >)?,1 ,3

1 IHLF=1?
RFTURN

2 IHLF=13
RFTURN

3 KK=-NDIM
IB=0
IC=0
DO 7 K=1,NDIM
AUX(1S,K)=DERY<K)
AUX(1,K)=1 .

AUX( 17,K)=1

.

KK=KK+NDTM
OH 4 1 = 1 ,NDIM
I ! = KK + I

TF(B( T I) )5, 4,5
4 CONTINUE

IB=TB+1
AUX(1,K)=0.

5 DO 6 T=1,NDIM
IT=KK+T
TF(C( IT) )7,6,7

6 CONTINUE
IC=IC+l
AUX( 17,K)=0.

7 r.HNTINUF
IF( IC-I*)8, 11,11

8 H=PRMT(2)
PPMT(? J=PRMT(1 )

PRMT( 1 )=H
PRMT(3)=-PRMT(3)
DP 9 ?=! ,ND IM

<* AUX{ 17 f 1 *=AUX<1,I)
II=NDIM*NOIM
DO in 1=1,11
H=B( n
B(U»C(I)
c( n = H
X=PRMT(2)
CALL FCT(X,Y)
CALL DFCT(X,DERY)
DO 12 I=1,NDIM
AUX(1B,I )=Y(I

)

12 AUX(19,I)=DERYC I)

K=0
KK =

100 K=K+1
IF(AUX{ l7 f K))lOR f infl f l<M

101 X=PRMT(2)
CALL AFCT(X,A)
SUM=0.
GL=AUX(18,K)
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OGl = AUX( 19,K)
TT=K
DO 104 1=] t NOIM
H=-A( II)
OERY(T)=H
AUX( 2C,I)sR( n
Y(I)=o.
IP( T-KU01,102,103

10? Y(I)=1

.

im 00L=00L + H-*AIJX( IP, T 1

104 1T = !H-NDTM
XFN0=PRMT(1

)

H=.^625*(XEND-X)
I SW=0
GOTH 40^

1">5 IFUHLF-101 106,106,117
106 on io7 i=i,noim

KK=KK-H
H=C(KK)
R(I)=AUX(?C, I )+H*SUM
IT=I
DD 107 J = l f NDIM
8(11 >=8( IT)+H*Y( J)

1^7 II«II*NDTM
GOTH 109

108 KK=KK+NOIM
1^9 IF(K-NOIM)1PO,110,110
]\n x=prmt(4)

CALL GELG(R,B,NOIM t l,X,T)
IFCDlll ,11?, 11?

Ill IHLF=14
RETURN

11? PRMT(5)=n.
IHLF=-I
X=PRMT<1 )

XFN0=PRMT<2)
H=PRMT(?)
nn 11? I=l,NDIM

113 Y(I)=R(I)
ISW = 1

114 ISW?=1?
GOTO ? A ^

115 ISW3=-1
GOTO 30^

116 IF{ IHLFJ400, 400,117
117 RETURN
?00 CALL AFfT( X,A)

IF(ISW)?Ol, ?01,205
201 LL=n

HO ?03 M=1,ND1M
HS=0.
00 20 2 L = 1,N0IM
LL=LL+1

202 HS=HS-A(LL)*Y(L1
?o? OERY(M)=HS
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on* GPTO( ^02, 504,506,407, 415, 418, 60fl ? 6 17,6 3?, 634, 4?l , 115), I SW^
?05 CALL FCT<X,DERY)

OH 207 M=l ,NOIM
LL=M-NDIM
HS=0.
no 20* L=1,NDTM
LL=LL+NOTM

2°6 HS=HS+A(LL )*Y< L)

207 DFRY{M)=HS+OFRY(M)
GOTH 204

™o IF(ISW»301,301»305
301 TALL FCT(X,R)

GU=0.
OGU=0.
OH 302 L=l ,NDTM
GU=GU+Y(L)*R(L)

30? DGU=OGU-»-DFRV( L)*R(L )

CALL HFCT(X,R)
DO 303 L=1,NDIM

3 03 DGU=nOlJ+Y(L )*R<1 )

SUM=SUM+.5*H*{ (GH-GU) + .]666667*H*(DGL-0GU) )

GL-GU
DOL=00U

3^4 I«=(ISW3) 116,4??,618
3^S CALL nUTP(X,Y,DFRY,lHLF,NOIM,PRMT)

1F(PRMT(5) ) 117,304,117
400 N=l

XST=X
IHLF=^
On 401 1=1 ,NOTM
A()X( 16,1 )=C.
AUXH ,T )=Y( I)

401 AllX(8, I)=OERY{ I )

ISW1=1
GOTO 60<^

402 X=X+H
DO 4^3 T = l ,NOIM

403 AUX(?,n=Y(l )

404 IHLF=IHLF+1
X=X-H
DO 405 I=1,NDIM

405 4UX(4,I)=AUX(2,T )

H=.5*H
NJ=1

iswi=?
GOTO 50 n

406 X=X+H
!SW2=4
GOTO 2 00

407 N=2
DO 408 T=1,N0IM
AHXC2, n=V( I)

408 AUX(9, I)=OEOY( 1)

1SW1=1
GOTO ^00

-214-





409 nn 414 I=1,NDIM
7=ABS(Y( I))
I F( Z- 1 .)410,411 ,411

410 z=l.
411 DFI_T=.0 6666667* ABM Y( I )-AUX(4, T) )

IF(TSW)413,413,412
41? DFl T=MJX<15, I )*0EIT
413 IF(DFLT-Z*PRMT(4) 1414,414,429
414 fONTINUF

X = X + H
TSW?=S
GOTH 2 00

41 5 DO 41* I=1,N0IM
A!IX(3 ,T )=Y( 1)

416 AUX(lP,I)=OFRY{ I

)

N = 3

ISW1=4
GOTH SO^

417 N = l

X=X+H
TSW2=A
GOTO 700

41 8 X=XST
on 419 I=1,NDTM
AMXdl ,1 >=DERY( I)

41<?0YU) = AUX(1 , 1)+H*( .375*AiJX(8,I ) + . 79 16667* AUX( 9, I)

1-. 208 ^33 3 *AUX( 10,1)^.0 41 66667*DFRY ( T ) )

470 X=X+H
N=N«-1

TSW2=1 1

GOTO 200
4?1 !SW3=0

GOTO 300
4?? IF(N-4)423, 600,600
4?3 OH 424 1=1 , NOIM

A!IX(N,T)=Y{! )

4?4 AIJX< N+7, T) = DERY(I )

IF(N-3)4?S, 427, 600
425 DO 42* I=1,NDIM

DE1_T=MJX(9, T)+AUX(9,T )

DELT = r>El T4-DEI.T

4?6 Y( 1)=AUX< 1, T )+.3 3333 33*H*( AUX < 8 , I ) 0EIT+ AUX( 10, T ) )

GOTO 4?^
427 On 4?9 1=1, NOT

M

DFL T=AUX(Q, I)+AUX{ 10,1 )

DFLT=DEl T+DFLT+PELT
47 8 Y( n = AUXH , I )+.^75*H*( AUX< 8, I ) +DFL T + AUX ( 1 1 , I)

)

onm 420
479 IF( 1H1 F-10) 404,430,430
430 THLF=11

X= X+ H
IF(TSW) 105, 105, 114

500 Z=X
OH SOI I=1,NDIM
X=H*AUX(N+7, I)
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AUX(5, I) = X

5*1 Yd ) = A(JX(N, I)+.4*X
X=Z+.4*H
I SW?=1
GOTH ?00

5~? on 503 1=1,NDIM
X=H*DCRY( T

)

AUX(6,I)=X
503 YU) = AUX(N|,I) + .?969776*AUX(5,T ). 158 7596*

X

X=Z+.455737?*H
I S W? = ?

GGTH ?00
504 On SOS I=1,N0IM

X = H*nERY(I )

AUX(7, I)=X
5*5 Y(1)=AUX(N, n + .?181"04*A<JX(5 t T)-3.n50965*AUX(6,I) + 3.83?865*X

X = 7+H

GOTO 700
5*6 OH 507 I=1,N0IM
5*70YU)=AUX(N,I)+.1747603*AtJX(5, I )- . 55 1 4 807* AUX ( 6, I)

l+l.?ORS36*AUX(7, I 1+.1711 848*H*0FRY( T)
X=Z
GnTn(40? ,406,409, 417 ), ISW1

6*0 T STFP=3
501 IF(N-8)604 f 60? f 604
50? DO 603 N=?,7

OH 60? T=1,N0IM
AUX(N-1 ,I)=AUX(N, I

)

60? AUX(N+6,I)=AUX(N+7, 1)

N=7
60 4 N=N+1

On 605 I=1,N0IM
AUX(N-1, T)=v{

n

605 AUX(N+6, 1)=0ERY( I )

X=X+H
606 ISTFP=ISTEP+!

00 607 T=1,ND!M
O0FLT = AUX(N-4, I | + 1 . 3 333 33 *H* ( AUX ( N + 6 , I ) » AUX ( N + 6 , T )-AUX(Nf5 t I) +

1 AUXfN+4, T)+AUX(N+4, !)

)

Y( n =0ELT-.92 56198*AUX( 16,1)
607 AUX( 16, T)=DFLT

ISW?=7
GOTO poo

608 On 60O T=T f NDIM
*0Fl.T=.l?5*< Q.*AUX(M-1, I )-AUX<N-3, I)+3.*H*{ OERY( I ) + AUX ( M+6 , T >
1AUX(N+6,I)-AUX(N«-5,I) ))

AUX(16, I)=AUX(16, I )-OELT
ftnq Y( I ) = OELT-»-.0 743 8017*AUX<16,I )

OELT=*.
00 616 I=1,NDTM
7=ARS(Y( I)

)

IF(Z-1. 1610,611, 611
61* 7=1.
611 Z=ARS( AUX(16,I ))/I
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tF(ISW)613, 613*612
612 Z=AUX( 15,T)*Z
613 TF(7-PRMT(4) 1614,614,628
614 TF(0EI.T-Z)615,616,616
615 0FLT=7
616 CONTTNUF

TSW2=P
GOTO ?0r

617 TSW3=1
GOTH ^0°

618 TF(H*(X-XENO) )619, 621,671
619 IF(ABS(X-XEN01-.1*ABS<H) 16 71,6 20,620
670 TF(DE1. T-. 02* PR MT (4)) 677,627,6^1
621 IF(ISW)10S, 1CS,1 17
677 TF( IHLF)601, 601,623
671 IF(N-7)601,674,6?4
674 IF< ISTEP-41601,62%625
675 IMOO= I STEP/7

IF( TSTEP-TMnn-IMnO)60 1 ,6 76,60 1

676 H=H+H
IHLF=IHLF-1
TSTFP=0
DO 677 T=1,NDIM
AUX(M-1,T1=AUX(N-?, T)

AUX(N-2,I)=AUX(N-4, I)

AUX(N-3,I) = AUX(Nt-6,I)
AllX(N+6,n=AUX(N+^,I 1

AIIX(M + 5,I »=AUX(N+3, I)

AUX(N+4, I) = AUX(NH-1, I )

0E1 T=AUX(NH-6,T) + AUX(N*5, T )

DELT=DELT+DELT+DELT
6770AUX(16,1)=8.9 6?96^*(Y( D-AUXCN-3, H 1-3 . 361 11 1*H* ( DERYt Il+'TEL T

l-»-AUX( N+4, I) )

GOTO 601
628 IHLF=IHLF + 1

IF( I HI F-l 0)630, 630 ,6 79

679 TF( ISW)105,105,114
6^0 H=.5*H

ISTEP=0
Dn 631 T=1*N0IM

0Y( I)=.0039C625*(80.*AUX(N-l,T)+135.*AUX(N-2, I H-40 . MUX (M-l , I )+

1 AUX(N-4,I))-.U718 75*(AUX{N+6, I ) -6 .* AUX( N + 5 , T 1-AlJX ( N + 4 , I ) ) *H

0AUX(N-4,T ) = .0039062S*(17.*A!JX(N-1, I) + 1 35 . * AUX (N-2 , T1 +

1 1^8. * AUX (N- 3, IH-AUXCN-4, I) ) -. 234375* ( AUX ( N+6, I ) ! 8 . * AUX ( N+5 , T
1-

29.*AUX(N+4, I) )*H
AUX(N-3, I )=AUX(N-2*I)

631 AUX(N+4, I)=AUX(W+5,I>
0FLT=X-H
X=OELT-(H*H)
TSW2=9
GHTH 200

632 00 633 1=1 .NOTM
AUX(N-2,I )=Y(I)
AUXCN+5, n=OERY{ I >

633 Y{ T) = AUX(N-4, I)
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34

X=X-(
TSW2 =

GOTO
X=DEL
no 63
DELT =

0ELT =

CAUX( I

H-DERX
35 AIIX(M

GOTD
ENO

H+H)
10
?00
T

•5 1 =

AIJX(

OELT
6,T)
(1)1
3,I)=DERY< T )

606

l.NDIM
N+5, I)+AUX(N*4, T)

*-0ELT+nELT
= 8.96?<}6^*( Al)X(N-l , T)-Y( T) ) -3 .^611 1 1 *H* ( AUX( N + 6, I H-OELT
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SIIR ROUTINE GELG(R,A,M,N|,FPS, TFR)
DIMFNSmN A(l ) ,R (1)
T^CM) 23,23,1

1 TFR=C
PTV=0.

NM=N*M
DO 3 \ =1, MM
TR=ARS(A(L) )

IF(TR-PTV)3,3,2
2 PTV=TR

I = L
3 CONTINUE

THL=FPS*PTV
LST=1
nn it k=i,m
IP(PIV) 23,23,4

4 TF(IER)7,5,7
5 IF(PTV-TPL) 6,6,7
6 JFR=K-1
7 PTVI = 1 ./A< I)

J=( T-l ) /M
I=T-J*M-K
J=J+1-K
DO R L=K,NM,M
LL=L+T
TR=PIVI*R(LU
R(LL)=R(L)

R R (U=TR
TF(K-M)P,1R,19

<? LFND=LST+M-K
IF < J) 12,12,10

in ii=j*m
no 11 L=LST,l_FNO
TR=A(L>
LL=L+TI
A(L)=A(IL)

11 A(LL)=TB
12 On 13 L=LST,MM,m

TB=PTVI*A(LL)
A(LL)=A(L)

13 A(L)=TR
A(LST)=J
PIV=0.
LST=L^T+1
J=0
On 16 II=LST,LFND
PTVI=-A{ IT)
IST=IT+M
J = J + 1

On l«5 L=IST,MM,M
LL=L-JL = L-J
. <U = A(U+PTVI*A(LL)
TR=ARS<A(U )
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14

15

16
17
18
19

?n

7\

77

IF(TB-PIV) 15,15,14
PTV=TR
I=L
CONTINUE
DO 16 L=K,NM, \*

LI =L + J

P(LL)=R(LL) +PIV1*R(L)
LST=LST+M
IF(M-1 )?3,??,1P

LST=M+1
00 7\ I=?,M
IT=LST-T
IST=IST-LST
L=1ST-M
L=A(L>*-.5
on 7\ J=IT,NM, M

TR=R(J1
LL = J

00 20 K=IST,M^,M
LL=Lt*l
TR=TB-A(K)*R(LL)
K = J + !

R( J)=R(K)
R(K)=TR
RETURN
1FR=-1
RETURN
FNO
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c

c

c
c

c

c

c

c

c

c

r.

11

1?

20
1*
i?

15

16

14

SURROUTINF AFCT(X,A)
THIS SUBROUTINE IS A PORTION OF PLP*V

THESE DIMENSIONS MUST RF CHANGED IF THP INPUT
POLYNOMIAL DIMFNSIONS OF DLPBV APE CHANGFO.
DIMENSION P (?) ,Q(?)

MATRIX A MUST RF IN VECTOR FOPM

OIMFNMHN A(l)

P,0, AND N ARE POLYNOMIAL COEFFICIENTS AND MUST
MAIN PROGRAM AND PLACED IN COMMON AREA S .

COMMON /S/P,Q,N
FPSILON IS ZERO VALUE FOR THT S SIIRROUTINF

FPS = 1 .OF-07
P1 = P( 1)

P3=Q(1)

IF(N-) )10,ll t 12
P1=P1 +P(2)*X
P4=Q(?)
GO TO 10

Pl=Pl+P(2)*X
P?=P3+?.0*P( 2) +0(2 )*X

P4=Q(2)
XIMM=1 .0
no 20 1=2,

N

xtm=xtmm*x
xi=xim*x
r i=float( t

)

P1=P1+P(I+1)*XI
P3=P?«-?.0*RI*P (1 + 1 )*XIM+Q( H-l )*XI

P4=P4+RI*( (RI-1.0)*P( 1+1 )*XIMM*Q< I+1)*XIM)
XIMM=XIMM*X
CONTINUE
TF(ARS(Pl)-EPS)l?tn,14
A( 2)=0.0
A(?)=O.C
A(4)=o.O
TF(ABS(P?)-FPS)15,15,16
ACD-0.0
RETURN
A ( I ) = - P4 / P?

RETURN
A( l)=r.n
A( ?)=-P4/Pl
A(?)=1.0
A(4) = -P?/P1
RETURN
END
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SUBROUTINE FCT(X,F)
THTS SUBROUTINE IS A PORTION OF PLPBV
DIMENSION F(2)
F( l)=^.n
F(2)=r.c
RETURN
END

SUBROUTINE OFCT(X,DF)
THTS SUBROUTINE IS A PORTION OF Pl.PBV

OIMENSION DF(2>
DF(l)=O.0
DF<?)=0.0
RETURN
ENO

SUBROUTINE LOC ( I , J, I R, N, M, MS)
IX=I
JX=J
IP(MS-l) 10,20,30

10 TRX=N*{ JX-I )+TX
GO TO 36

?0 IF( IX-JX) 22,24,24
72 IRX=TX+( JX*JX-JX)/?

GO TO 36
24 IPX=JX+{ IX*IX-TX)/2

GO TO 36
30 IRX=0

TF(IX-JX) 36,32,36
3? IRX=IX
36 IR=TRX

RETURN
ENO
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SUBROUTINE FCT(X,F)
THIS SUBROUTINE IS A PORTION OF PLPRV
DIMENSION F(2)
F(1)=0.0
F(2)=C.C
RFTURM
END

SUBROUTINE DFCT(X»DF)
THIS SUBROUTINE IS A PORTION OF Pl.PBV

DIMENSION DF(2)
DF(l)=O.0
df(?j=o.c
RETURN
END

SUBROUTINE LOC ( T , J, I R, N, M, MS)
IX=I
JX=J
IP(MS-U 10,20,30

10 TRX=N*( JX-I ) + IX
GO TO 36

?n IF( IX-JX) 2?, 24, 24
22 TRX=IX+( JX*JX-JX)/?

GO TO 36
24 IRX=JX+( IX*IX-IV)/2

GO TO 36
30 IRX=0

TF(IX-JX) 36,32,36
32 IRX=IX
36 IR=TRX

RETURN
END
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SUBROUTINE EIGEN{ A,R,N,MV)
DIMENSION A(l ), R(l )

5 RANGE=1.0E-6
IE(MV-I) 10,25,10

10 IO=-N
nn 20 j=i,n
IQ=IQ+N
on ?o 1=1, n

IJ=IQ+I
R( IJ)=0.0
IE(I-J) 20,15,20

15 RC IJ) = l.O
20 CONTINUF
?S ANORM=0.0

OH 35 1=1,

N

on 35 J = I,N
I»=(I-J) 3^,35,30

30 IA=I+{ J*J-J )/?
ANORM=ANORM+A(IA)*A( IA)

35 CONTINUE
IF(ANORM) 165,165,40

4^ AN0RM=l.414*SQRT( ANORM)
ANRMX=ANORM*RANGE/FtnAT(N)
INO =
THR=ANORM

45 THR=THR/FLOAT(N)
^0 L = l

55 M=L+1
60 MQ=(M*M-M)/2

LQML*L-L)/2
LM=t+MQ

6? IF( ARS( A(LM) )-THR ) 13^,6^, 6S
65 IN0=1

LL=L+LQ
M.M =M+MQ
X=^.5*(A(LL)-A(MM) )

68 Y=-A(IM)/ S0RT(4(IM)*A(LM)«-X*X)
TF(X) 70 f 75,75

70 Y=-Y
75 SINX =Y/ SQRT{?.0*(1.04-( SQRTfl.O-

SINX2=SINX*SINX
78 0.nsx= SQRT< 1.0-SINX2)

cnsx2=cosx*cosx
SINfS =SINX*COSX
ILQ=N*(L-1)
IM0=N*{M-1)
00 1?S 1=1,

N

rO=(T*I-T)/2
IF(I-L) 80,115,80

RO IF(I-M) 85 t U5 f Q0
85 IM=I-»-MQ

GO TO 95
90 IM=M+IQ
05 IF(I-L) 100,105,105
inn IL=I+LQ
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105
110

115
12*

125

13*
135

140
145

155

160
165

170

175

180
185

GO TO U*
il=l+iq
x=a(iu*cosx-a(im)*sinx
a(im)=a(il)*sinx+a( !m)*cosx
A(Tt)=X
TF(MV-l) 120,125,120
ILR=ILQ+I
TMR=IMQ+1
X=R( ILR)*COSX-R( IMR)*SINX
R(IMR)=R(ILR)*SINX+R( T MR )*COSX
R( ILR)=X
CONTINUE
X=2.0*A(LM)*SINCS
Y=A(Lt )*CnSX2+A(MM)*SINX?-X
X = A(LL )*SINX2*-A(MM)*C0SX?+X
A(LM)=(A{LL)-A(MM) ) *ST NC S+ A( LM ) *< COSX 2-S INX2

)

A(LL)=v
A(MM)=X
IF(M-N) 135,140,135
M=M+1
GO TO 60
IFU-(N-l)) 145,150,145
L=L + 1

GO TO 55
IF( INO-1 ) 160,155,160
TND=0
GO TO 50
IF(THR-ANRMX) 165,165,45
IO=-N
00 185 T=1,N
I0=1Q+N
LL=I + ( !*!-! )/?
JO=N*( 1-2)

DO 18 5 J=I f N
JO=JQ+N
MM=J+{ J*J-J)/2
IF(A(LL)-A(MM) ) 170,135,185
X= A(LL )

A(LL)=A(MM)
A(MM)=X
IF(MV-l) 175,185,175
DO 18* K=1,N
ILR=TO+K
IMR=JQ4-K
X = R{ IIR )

R( ILR)=»( TMR)
R( IMR )=X
CONTINUF
RETURN
END
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APPENDIX A6

subroutine: plpbv

This appendix presents a complete listing of a suggested format

and some of the computation statements necessary to solve the PLPBV

model which is a special case of the LPCM. As stated in the subroutine

description, the program presented here is incomplete and represents

at best a format for further use developing the complete solution to

the LPCM utilizing the integral equation methods of this thesis.

One important result of the use of this subroutine is that the

total computation time necessary for solution is very short. Sub-

routine PLPBV, the MAIN program calling it, and all of the subroutines

used compiled under WATFOR in 12 seconds and executed completely in

15 seconds. More elaborate programs would undoubtedly require more

than 15 seconds computation time, but the fact that a problem as general

as PLPBV can be solved in a time this short is very encouraging for

more general versions of the LPCM. A flowchart of PLPBV is presented

in Chapter L2.

For completeness, the MAIN program used to call PLPBV as a test

is presented at the end of this appendix. In general, this main

program would employ the approximations and combinations of upper and

lower solutions for a complete distillation column modeling using

PLPBV to solve the upper and lower versions of the LPCM.
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SUBROUTINE PLPBV ( PRMT, P, Q, N, BC , F ,US t UT ,U

)

*** NOTE *************************************************
THIS PROGRAM IS INCOMPLETE IN SEVERAL ASPECTS AND
REQUIRES EXTENSIVE WORK TO BE USEFUL IN GENERAL
PURPOSE COMPUTATION.
SLBROUTINE PLPBV IS PRESENTED HERE AS A FORMAT FOR
AND EXAMPLE OF THE STEPS NECESSARY TO APPLY THE
INTEGRAL EQUATION TECHNIQUE OF THIS THESIS.

*** NOTE *************************************************

*********************#** ******************************

SUBROUTINE PLPBV ( PRMT, P, Q,N, BC, F, US ,UT ,U

)

PURPOSE
TO SOLVE A LINEAR,SECCND ORDER, PAR ABOL IC,
PARTIAL DIFFERENTIAL EQUATION WITH BOUNDARY
CONDITIONS AND POLYNOMIAL COEFFICIENTS,
D/DXX{P{X)U(X,T))+D/DX<Qfx>U(X,T> ) =D/DT( U( X , T)

)

WHERE P AND ARE POLYNOMIALS IN X, IN RESPONSE
TO STEP INPUTS, WHERE F IS STEADY STATE AT T=TL.

USAGE
CALL

DESCRIP
F

BC

PRMT

PRMT
PRMT
PRMT
PRMT
PRMT
PRMT
PRMT
PRMT
PRMT
PRMT

PLPBV(PRMT,P,Q,N,BC,F,US,UT,U)

TION OF PARAMETERS
-INPUT STEADY-STATE DISTRIBUTION AT TL
-INPUT BOUNDARY CONDITIONS OF THE FORM

3C(7)U+BC(9)UX=BC( 1) AT X=XU
BC<4)U+BC(6)UX=BC<2) AT X=XL
BC MUST BE AT LEAST OF DIMENSION 10

PLPBV SETS BC{3,5,8,10)=0 FOR LBVP USE
- INPUT VECTOR WHICH SPECIFIES THE PARA-

METERS OF THE X AND T INTERVALS AND OF
THE ACCURACY FOR SUBROUTINES USED BY
PLPBV, MUST BE AT LEAST DIMENSION 10

C 1)- LOWER BOUND XL OF
ID- UPPER BOUND XU OF
(3)- SPATIAL INCREMENT
(4)- UPPER ERROR BOUND
(5)- TERMINATION PARAMETER
(6)- LOWER BOUND TL OF THE
(7)- UPPER BOUND TU OF THE
(8)- TIME INCREMENT OF THE
(9)- ERROR WEIGHT LTE 1.0
(10)

THE X VARIABLE
THE X VARIABLE
OF THE X VARIABLE
FOR X

FOR X

T VARIABLE
T VARIABLE
T VARIABLE

FOR LBVP USE
ERROR WEIGHT LTE 1.0 FOR LBVP USE
BOTH ERROR WEIGHTS ARE USUALLY 1.0
INPUT VECTOR SPECIFYING THE
COEFFICIENTS OF THE FIRST
POLYNOMIAL OF DEGREE N

INPUT VECTOR SPECIFYING THE
COEFFICIENTS OF THE SECOND
POLYNOMIAL OF DEGREE N
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C N INPUT SPECIFYING THE MAXIMUM
C DEGREE OF P AND Q
C THE COEFFICIENTS MUST BE IN THE
C ORDER CF LOW TO HIGH INDEX
C CORRESPONDING TO LOW TO HIGH
C DEGREE IN EACH POLYNOMIAL
C BOTH P AND Q MUST BE AT LEAST OF
C DIMENSION N WITH THE REMAINING
C COEFFICIENTS IN EITHER P OR Q SET=0
C US - OUTPUT STEADY-STATE SPATIAL
C DISTRIBUTION VECTOR
C UT OUTPUT TRANSIENT RESPONSE
C U - OUTPUT U=US+UT OVERALL SOLUTION TO THE
C TWO POINT BOUNDARY VALUE, STEP INITIAL
C VALUE PROBLEM.
C

C REMARKS
C (1) STEADY-STATE PORTION WRITTEN FOR MAX N=3,
C THIS CAN BE EASILY CHANGED BY USING
C DIFFERENT DIMENSION STATEMENTS ON P AND Q
C (2) TRANSIENT PORTION WRITTEN FOR PU),Q(1),
C AND 0(2), CHANGING THIS REQUIRES ANALYTICAL
C APPLICATION OF THE INTEGRAL EQUATION
C TECHNIQUE PRESENTED IN THIS THESIS.
C (3) THIS SUBROUTINE HAS BEEN INITIALLY WRITTEN
C TO EVALUATE AT TEN POINTS IN X AND AT NINE
C POINTS IN T. THIS COULD BE CHANGED TO A
C MORE GENERAL METHOD IF DESIRED.
C (4) THERE ARE SEVERAL ERROR OUTPUTS IN PLPBV.
C (5) SUBROUTINE PLP8V HAS NOT BEEN OPTIMIZED.
C (6) SUBROUTINE PLPBV HAS BEEN WRITTEN MAINLY TO
C DEMONSTRATE THE STEPS NECESSARY TO APPLY
C THE INTEGRAL EQUATION SOLUTION OF THIS THESIS.
C (7) IT IS EXPECTED THAT SEVERAL •BUGS' REMAIN
C IN SUBROUTINE PLPBV AS WRITTEN HERE.
C (8i AS THE AFCT OF APPENDIX A5 IS NOW WRITTEN,
C A STATEMENT, COMMON /S/P,Q,N ,IS REQUIRED
C IN THE MAIN PROGRAM. THIS COULD BE CHANGED
C BY INCREASING THE PARAMETER DIMENSIONS IN
C SUBROUTINE AFCT.
C

C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C SUBROUTINE PLPBV REQUIRES IBM/SSP SUBROUTINES-
C LBVP, GELG, EIGEN, AND LOC
C AND USER FURNISHED SUBROUTINES-
C AFCT, DFCT, FCT, AND OUTP FOR USE IN LBVP
C

c

DIMENSION PRMT(l) ,P{1) ,Q ( 1 ) , BC( 1 ), F CI ) ,US( 1 ) ,UT( 1) ,U( 1)

DIMENSION D (4) ,AK< 100), UZ< 1C ) ,

X

1(100 ),XJ( 100)
DIMENSION AKSC55) ,TH< 10 ) , E IG ( 100 ) , TL AMI 10 ) ,W I ( 100)

C
C INPUT AND PARAMETER SETUP SECTION

NDIM=2
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NV=10
NT=9
CN=10.0
CT=8.0
EPS=1.0E-05
AA=PRMT(1)
BB=PRMT(2)
TL=PRMT (6)

THH=PRMT(7)
IFCABS(P(i) )-EPS) 33, 33,34

33 WRITE(6,35)P(1)
35 FORMATUX,* P(l) INVALID, P(l) = SElS.Tf//)

RETURN
34 SPZ=SQRT(P(1) )

SSPZ=SQRT<SPZ)
C
C STEADY STATE SECTION, USES SUBROUTINE LBVP
C STEADY-STATE VALUES RETURNED THROUGH XPAR

DIMENSION Y(2) ,DERY(2) .AV{4) , AUX( 20 ,2 I

DIMENSION RC2) ,6(4) , C( 4) , TPAR( 15) ,XPAR( 15)
EXTERNAL FCT , DFCT, AFCT, OUTP
DO 55 1=1,5
XPARU) = PRMT(I)
TPAR(I)=PRMTCI+5)

55 CONTINUE
R<1)=BCU)
R(2)=BC<2)
BC(3)=0.0
BC(5)=0.0
BC(8)=0.0
BC{ 10) =0.0
DC 56 1=1,4
B* I)=BC( 1+2)
C(I) = B'C(I+6>

56 CCNTINUE
DERYtl)=PRMT(9)
DERYi2) = PRMTU0)
CALL LBVPiXPAR,8,C,R,Y,DERY,NDIM,IHLF f AFCT,FCT,DFCT,

10UTP, AUX.AV)
C
C TFSTS APPLIED UPON RETURN FROM LBVP

IFUHLF-13) 39,40,41
41 WRITE<6,42)
42 F0RMAT(1X,'LBVP HAS IHLF=14, NO SOLUTION • ,//)

RETURN
39 IF(IHLF-11)44,45,40
45 WRITE(6,46)
46 FCRMATUX.'LBVP HAS IHLF GT 10, NO SOLUTIONS//)

RETURN
40 WRITEC6.43)
43 F0RMAT(1X,«LBVP HAS IHLF=13 OR 12, PARAMETER ERROR 1 ,//)

RETURN
44 WRITE(6,47) IHLF
47 F0RMAT(1X,«LBVP RETURN SATISFACTORY, IHLF=

C
-228-





c

C TRANSIENT SECTION, USES SUBROUTINES EIGEN AND GELG
C

C TRANSFORMING BOUNDARY CONDITIONS
D( 1) = BC(7)-(BC(9)*<Q<1H-Q(2)*PRMT(2)) )/(2.0*P< 1))
D(2)=BC(4)-(BC<6»*(Q(1)+Q(2)*PRMTC1)) )/(2.0*P(l))
D(3)=BC(9)/SPZ
D(4)=BC(6)/SPZ
DTEST=D<1)*D(4)-D(2)*D13>
CONE=D(l)*D(2)-DTEST
IF(ABSCCONE)-EPS)31,31,30

31 WRITE(6,32)CONE
32 FCPMATI1X, • CI IS », E 15 .7 ,• SETTING CI TO l.E-05 •,//)

CONE=EPS
C SET UP INTERVAL FOR KERNEL EVALUATION

30 DELTX=(PRMT(2)-PRMTC1) )/CN
CC=DELTX*CN/P< 1)

C
C PROGRAM RUNS FOR 10 DELTX AND 10 DELTZ
C FOR GREATER ACCURACY MORE INCREMENTS COULD BE USED

DELTZ=CC/CN
C

C BEGIN KERNEL EVALUATIONS
EMZ=1.5*Q(2)+0.2 5*Q( 1)*Q(1J/P( 1)

C
C SEVERAL ALTERNATIVE KERNEL EVALUATION ROUTINES
C MUST BE DESIGNED AND PLACED IN THIS SECTION FOR
C CASES SUCH AS **
C (1) M(0) =
C (2) M(Z)=M(0)
C AND OTHERS.
C THESE ROUTINES MUST USE EQUATIONS A1.23 AND A1.24
C OF THIS THESIS.
C

C TEST M(0)
IF(ABS(EMZ)-EPS)5C,5G,51

50 WRITE{6,52>EMZ
52 FORMAT(1X,»M(0)=0 » INVALID FOR PLPBV, M( )=• t E 15.7, //)

RETURN
51 DK = D(1)«-D{3)

FP=4.0*P(1)
LK=0
LS=0
DO 49 JK=1,NV
DC 48 IK=1,NV

C COMPUTE K4(Z,S)
LK=LK+1
Z=IK*DELTZ
S=JK*DELTZ
XS=SPZ*S+AA
CMS=CC-S
DMDZ= CD ( 4 )-D ( 2 ) *Z ) /CON

E

XCNS=SPZ*CMS+AA
EMS=EMZ+i2.0*0(l)*0(2)*XS+Q(2)*0C2)*XS*XS)/FP
X0=Q(2»*XCMS
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EMCfS=EMZ+(2.0*Q( 1 ) *XQ*XQ*XQ ) /FP
KF=DMDZ*<D{ 1)*EMCMS+D(3)*EMS-DK*EMZ)/EMZ
IFUK-JK)54,54,53

54 AK(LK)=KF
LS=LS+1
AKS(LS)=KF Note: obvious error
GO TO 48 KF should be RKF, real.

53 ZMS=Z-S
XZMS=SPZ*ZMS+AA
X0Z=0(2)*XZMS
AK(LK)=(<2.0*Q(1)*XQZ+XQZ*XQZ)/<EMZ*FP) )+KF

48 CONTINUE
49 CONTINUE

C

C COMPUTE EIGENVALUES AND EIGENVECTORS OF AKS
MV=0
CALL EIGEN( AKS ,E IG, NV ,MV

)

C
C TAKE EIGENVALUES TH( I ) FROM DIAGONAL OF AKSU)

EPTH=1.0E-10
IS=1
DO 60 1=1, NV
TH(I)=AKS(IS)
IS=IS + (H-1>
IF(TH(I»-EPTHJ57,57,58

58 TLAM(I)=1.0/(TH( I)*DELTZ*
GO TO 60

57 WRITE(6,74)TH{ I),I
74 FCRMATC1X,* THETA(I) INVALID, TH( I ) = • ,E15.7, < 1= • , I 31

WRITE<6,59)
59 FORMATUX,' SETTING THI I )=EPTH« ,/)

TLAM(I) = EPTH
60 CONTINUE

C

C THIS PROGRAM HAS BEEN SET UP SO THAT DELTX AND DELTZ
C CORRESPOND. THIS MAKES WI < Z I )=W I < XI ) . IF THIS WERE
C NOT DESIRED, THEN A SECTION UTILIZING EQUATION A3. 10
C WOULD HAVE TO BE EMPLOYED.
C
C CCMPUTE WHX) FROMWKZ), THETAC I )=TH{ I ) ,WI< Z ) = EIG( Z)

IJ =

DO 63 1=1, NV
DO 64 J=1,NV
IJ=IJ+1
WI( IJ)-EIG(IJ)

64 CONTINUE
63 CCNTINUE

C
C TRANSFORM WI(X) TO XKX)

X=DELTX+AA
DO 61 J=1,NV
XMA=X-AA
XPA=X+AA
XFUN=( XMA*QC1 } )/(2.0*P<l) ) ( XMA*XPA*Q( 2 ) )/FP
EXX=EXP(-XFUN)*SSPZ
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X=X+DELTX
DO 62 I=ltNV
JI=J*NV*{ 1-1)
XI(JI)=EXX*WI< JI)

62 CCNTINUE
61 CONTINUE

C

C BEGIN EIGENFUNCTION EXPANSION TO MEET INITIAL CONDITION,
DELTT=(THH-TL)/CT
T=TL

C
C FORM STEADY-STATE VECTOR

DO 65 1=1. NV
UZ< I)=F{ I)-US(I)

65 CCNTINUE
C
C FORM EXPANSION MATR IX, XJ < X ) , AT T=TL

IJ=0
DO 66 1=1, NV
EXT=EXP(-TLAM( I)*T)
DC 67 J=1.NV
IJ=IJ+1
XJCIJ)=XI( IJ)*EXT

67 CCNTINUE
66 CONTINUE

C
C SOLVE SIMULTANEOUS EQUATIONS FOR EIGENFUNCTION
C CONSTANTS USING SUBROUTINE GELG

NG=1
CALL GELGCUZ,XJ,NV,NG,EPS, IER)

C

C TEST IER UPON RETURN FROM GELG
IFUER)36,37,38

36 WRITEC6.68)
68 FORMAT(lX,«NO RESULT, PIVOT ELEMENT=0 IN GELG •,/)

RETURN
38 WRITE46.695
69 FORMATdX,' POSSIBLE LOSS OF SIGNIFICANCE IN GELG',/)

C
C THIS SECTION SETS UP U(X,T) IN A FORM ACCEPTIBLE
C FOR PLOTTING BY SUBROUTINE PLOT OF APPENDIX A4.
C THE FIRST COLUMN OF UCI) IS THE INDEPENDENT
C VARIABLE X, THE SECOND COLUMN IS THE STEADY-STATE,
C AND THE REMAINING 8 COLUMNS ARE RESPONSES.

37 X=AA
DC 70 1=1, NV
X=X+DELTX
um=x
U( I + 10J = F(I

>

70 CONTINUE
C
C CALCULATE TRANSIENT SOLUTION MATRIX UT(X,T)
C

C SET TIME-SPACE GRID
IJK=20
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c
c

c
c

73

72
71

T=TL
NTC=NT-1
DC 71 I = UNTC
T=T+DELTT
X=AA
DO 72 J=1,NV
X=X+DELTX

TIME-SPACE GRID NOW SET

SUM SERIES FOR EACH VALUE
IJK=IJK+1
UT(IJK)=0.0
DO 7 3 K=1,NV
IX=J+NV*CK-1)
EXT=EXP(-TLAM(K)*T)
UT(IJK) =UZ{K)*XI(IX)*EXT+UT( UK)
CONTINUE
U( IJK)=US(J)+UT(IJK)
CONTINUE
CONTINUE
RETURN
END
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$JOB HAYES, KP=29,TIME=2,PAGES=50
C

C MAIN PROGRAM TO USE PLPBV AS A TEST
DIMENSION BC(IO) .U( 100) ,05(10 1 ,UT( 100) ,F( 10)
DIMENSION PC3) ,0(3) .A( 2,4) ,PRMT(20)
COMMON /S/P, Q,M

C
C PLPBV INPUT SECTION

M=3
READ<5,100)(P<I).Q< I) , 1=1 t Ml

100 FORMAT(2F10.5)
READ(5,101) UA(I,J),J = 1,4),I = 1,2)

101 F0RMAT(4FIG.5)
READ(5,10 2) (PRMTC I) ,1=1, 10)

102 F0RMAT12E15.7)
3C(7)=A(1,1)
BC<9)=A(1,2)
BC(1)=A<1,4)
BC(4)=A(2,1)
BC(6)=A(2,2)
BC(2)=A(2.4)

C

C SET UP LINEAR STEADY-STATE AS A TEST
X = 0.0
DO 10 KSS=1,10
F(KSS)=G.O
X=X+0.1
US(KSS)=X

10 CONTINUE
C

C TEST STEADY-STATE INPUT FOR PLPBV FROM UC1, APPENDIX A4
PRMT{11>=0.06
PRMTt 12)=0.126
PRMT(13)=0.200
PRMT(14)=0.27
PRMTf 15)=0.37
PRMT(16)=0.47
PRMT{ 17)=0.59
PRMTil8)=0.71
PRMT{ 19)=0.84
PRMH20) = 1.00
CALL PLPBV(PRMT.P,Q,M,BC,F,US,UT,U)
CALL EXIT
END
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SECTION 6

BIBLIOGRAPHY AND REFERENCING (B)

Bl BIBLIOGRAPHY

B2 BIBLIOGRAPHY REFERENCES LISTED BY AREA OF APPLICATION

B3 BIOGRAPHICAL NOTE

AN UNDERSTATEMENT:

" THE LITERATURE ON DISTILLATION IS VOLUMINOUS - "

R. J. HENGSTEBECK (H-18)

ONE OF THE MAJOR EFFORTS OF THIS THESIS TURNED OUT TO BE THE

COMPILATION OF THE BIBLIOGRAPHY PRESENTED IN THIS SECTION. THE

REFERENCES LISTED APPLY TO FOUR MAJOR AREAS PERTINENT TO THIS

THESIS.

1. GENERAL THEORY OF DISTILLATION

2. DISTILLATION COLUMN DYNAMICS

3. DISTILLATION COLUMN CONTROL

4. MATHEMATICS AND COMPUTATION

THE AUTHOR HOPES THAT UTILIZATION OF CHAPTER B2, BIBLIOGRAPHY

REFERENCES LISTED BY AREA OF APPLICATION, WILL RESULT IN CONSIDER-

ABLE SAVINGS OF SEARCHING TIME AND EFFORT FOR ANYONE INTERESTED IN

THESE AREAS.
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CHAPTER Bl

BIBLIOGRAPHY

This chapter presents a bibliography of 352 references pertinent

to the general area of distillation and to the specific areas of this

thesis. The references consist only of those in English, although

extensive literature on distillation has been published in the foreign

journals, especially in Russian and German. For the most part, the

references were taken from the following journals for the years from

about 1955 to 1969.

1. Industrial and Engineering Chemistry

2. American Institute of Chemical Engineers

3. Chemical Engineering Progress (and Symposium Series)

k. Transactions of the Institution of Chemical Engineers

5. Chemical Engineering Science

6. British Chemical Engineering

7. Canadian Journal of Chemical Engineering

The entries in this bibliography are in the order of the first

letter of the author's last name, for the reader's mnemonic convenience,

but no attempt has been made to subalphabetize within each group for

this author's convenience.

It is this author's intention that Chapter B2 - Bibliography

References Listed by Area of Application be used in conjunction with

this chapter for any given subject or area of research. In each ref-

erence in this bibliography an attempt has been made, especially with

journal articles, to present as complete a description as possible of
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the reference, even at the cost of complete overspecification and

possible redundancy of information.

The criterion of availability of each reference in the M.I.T.

libraries (except for theses) placed a significant constraint on the

number of references which have been listed here. The author chose

this as his stopping point in the compilation of this bibliography.
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CHAPTER B2

BIBLIOGRAPHY REFERENCES LISTED BY AREA OF APPLICATION

The purpose of this chapter is to classify the references in

Chapter Bl, the Bibliography, according to their principal areas of

application. The general format of this classification is presented

in Table B2.1. Many of the references apply to more than one area and

are so listed for the user's convenience. Rather than merely list the

references under each area in alphabetical order, the author has chosen

to present them column by column in the order of decreasing utility to

the study of the subject or of decreasing clarity. In other words, the

first listed in each area seem to the author to be the most important

for anyone researching that area. Recognizing that such a listing is,

indeed, very subjective, the author apologizes to anyone who may find

them "out of order" with respect to his particular slant on the subject.

B2.1 General Theory of Distillation

Textbooks

Extensive Bibliographies and Literature Surveys

References of Historical Interest

General Distillation

Dynamic or Transient Analyses

Steady-State Analysis and McCabe-Thiele Diagrams

Structural Design

Economics and Operations Analysis

Thermodynamics

Hydrodynamics

Chemistry

Philosophy Table B2.1 (Contd.

)
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B2.2 Distillation Column Dynamics

Textbooks

Theses

Reviews, Bibliographies, and Literature Surveys

Dynamic Models or Solutions

Discrete Plate Equations

Frequency Analysis or Laplace Transform Solution

Transient or Time Analysis

Numerical Solution

Digital Computer

Hybrid Computer

Analog Computer

Analytical Analysis

Continuous Spatial Equations

Frequency Analyses or Laplace Transform Solution

Transient or Time Analysis

Experimental Transient Behavior

Frequency Response

Time Response

Cyclic Distillation

B2.3 Distillation Column Control

Textbooks

Theses

Extensive Bibliographies and Literature Surveys

Conventional Control Systems

Digital Control

Hybrid Control m ,, ,
•

*J Table B2.1 (Contd.)
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Analog Control

Instrumentation

Control Systems Using Dynamic Models

Digital Computer Control

Hybrid Computer Control

Analog Computer Control

Optimal Control

Distributed or Modal Control

B2.^ Mathematics and Computation

Ordinary Differential Equation Theory

Partial Differential Equation Theory

Integral Equation Theory

Mathematical Transformations

Matrix Mathematics

Numerical Solution Techniques

Boundary Value Problems

Eigen - Values, Vectors, and Functions

Special Functions

Computation and Computer Programming

Table B2.1 - FORMAT FOR CLASSIFICATION BY AREA OF APPLICATION

-266-





B2.1 GENERAL THEORY OF DISTILLATION

Textbooks

(B-l) (A-19) (H-18) (R-22) (T-l)

(G-3) (B-15) (L-26) (R-17) (B-12)

(H-10) (M-H) (C-5) (S-8) (H-5)

(R-23) (0-2) (C-l) (S-9) (C-7)

(R-21) (H-2) (P-3) (S-3) (M-2)

(V-2) (H-9) (P-10) (S-l) (V-3)

Extensive Bibliographies and Literature Surveys

(W-16) (G-9) (W-13) (W-18) (F-6)

(B-l?) (R-12) (W-15) (W-26) (G-14)

(B-18) (P-ll) (P-7) (Z-3) (W-23)

(B-19) (R-8) (R-25) (W-8)

(W-10) (H-7) (R-18) (W-17)

(W-11) (W-9) (H-8) (G-10)

(F-8) (W-12) (R-17) (W-19)

References of Historical Interest

General Distillation

(L-19) (L-25) (V-2) (E-3) (P-12) (G-14) (A-17)

(M-10) (M-9) (R-29) (C-15) (T-6) (1-1) (u-1)

Dynamic or Transient Analysis

(M-8) (B-29) (L-2) (B-7) (R-2) (R-12) (J-l) (F-5)

Steady State Analysis and McCabe - Thieie Diagrams

(B-l) (H-22) (C-l) (R-21) (S-23) (L-25) (S-7) (R-18)

(M-10) (B-10) (F-3) (H-30) (S-12) (R-30) (S-29) (A-19)

(E-4) (M-18) (F-4) (J-7) (C-14) (T-l) (W-30) (P-12)

(H-10) (P-8) (V-2) (L-12) (D-2) (E-2) (F-9) (T-7)

-267-





Steady State Analysis and McCabe - Thiele Diagrams (Contd.

)

(H-18) (V-2) (F-15) (A-10) (0-2) (S-15) (E-l) (R-l)

(H-26) (S-15) (G-3) (A-17) (T-6) (S-5) (H-21) (R-29)

(C-9) (S-20) (H-5) (B-24) (P-13) (S-3) (i-l) (S-l6)

(M-8) (Z-2) (H-2) (B-26) (R-5) (S-24) (L-24) (S-l)

(M-9) (R-26)

Structural Design

(L-13) (R-22) (F-10) (J-3) (M-ll) (L-12) (D-ll)

Economics and Operations Analysis

(L-15) (M-13) (B-15) (S-8) (F-9) (F-10) (C-7) (V-3)

Thermodynamics

(H-9) (R-23)

Hydrodynamics or Fluid Mechanics

(F-4) (V-2) (R-23) (S-5) (P-9) (B-4) (S-19)

(L-26) (B-12) (H-l^) (G-U) (F-5) (M-24) (T-7)

Chemistry

(B-16) (B-l) (H-17) (T-6) (S-5) (R-23)

(H-8) (H-10) (F-9) (G-8) (H-20) (T-6)

Philosophy

(A-13) (B-28)

.2 DISTILLATION COLUMN DYNAMICS

Textbooks

(M-l) (H-7) (G-3) (F-16)

Theses

(F-14) (W-21) (D-14) (C-10) (B-32) (W-22) (S-27)

(M-15) (M-12) (M-17) (Q-l) (0-3) (G-5) (W-20)

(S-28) (A-5) (R-6) (R-27) (S-22) (M-19) (W-24)

(S-17) (C-4) (A-16) (L-17) (S-18) (M-24)
-268-





Reviews, Bibliographies, and Literature Surveys
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Dynamic Models or Solutions

Discrete Plate Equations
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(R-12) (B-17) (R-8) (W-12) (G-9) (W-13) (T-2)

(W-16) (B-18) (W-10) (W-ll) (B-19) (W-24 (w-23)

Transient or Time Analysis

Numerical Solution

Digital Computer

(D-4) (R-16) (P-2) (T-9) (S-16)

(B-32) (R-9) (R-17) (W-25) (R-19)

(R-2) (A-4) (D-9) (Y-l) (L-27)

(D-8) (M-3) (L-18) (P-5) (S-20)

(H-3) (R-10) (D-6) (G-4) (W-4)
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Hybrid Computer
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Analog Computer
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Analytical Analysis

(D-3) (M-l) (S-31) (B-27) (H-20)

(G-2) (R-7) (W-2) (C-2) (H-21)

(A-3) (R-8) (F-16) (Z-3) (B-7)

(M-8) (R-32) (G-3) (F-5) (B-12)

Continuous Spatial Equations

Frequency Analysis or Laplace Transform Solution

(J-6) (M-27) (H-4) (S-7) (W-5) (D-l)

Transient or Time Analysis

(J-1) (R-8) (M-l) (L-26) (T-5) (J-5) (W-14)

(H-4) (D-3) (M-28) (P-7) (G-3) (L-20) (B-25)

(K-2) (S-13) (K-3) (R-14) (H-25) (B-20) (C-8)

(0-1) (D-14) (C-2) (B-29) (J-2) (B-24)

Experimental Transient Behavior

Frequency Response
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Time Response

(H-3) (L-5) (B-3) (B-3) (R-15) (S-4) (D-12) (R-30)

Cyclic Distillation

(M-19) (A-14) (M-20) (B-17) (B-18) (S-4)

B2.3 DISTILLATION COLUMN CONTROL

Textbooks

(A-12) (G-3) (B-13) (K-5) (C-l) (C-15) (A-ll) (L-l)

Theses

(B-2) (B-32) (M-5) (G-l) (S-18) (M-25)
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Extensive Bibliographies and Literature Surveys

(A-3) (B-17) (R-25) (R-12) (W-10) (W-20) (W-12) (W-21)

(W-16) (B-18) (R-8) (S-33) (w-ll) (B-19) (w-15) (w-23)

Conventional Control Systems

Digital Control

(S-32) (H-29) (B-6) (L-15) (L-24) (T-8)

Hybrid Control

(F-13) (F-l) (F-12)

Analog Control and Instrumentation

(H-16) (L-16) (B-10) (C-15) (0-12) (S-30) (M-29) (S-9)

(R-31) (B-13) (B-31) (P-6) (K-4) (C-12) (P-14) (W-23)

(G-3) (B-22) (C-l) (S-l) (L-4) (T-ll) (R-13) (H-l)

Control Systems Using Dynamic Models

Digital Computer Control

(A-12) (D-4) (R-20) (L-18) (D-6) (S-33) (C-ll) (W-18)

Hybrid Computer Control

(D-13) (A-8)

Analog Computer Control

(J-6) (L-14) (L-6) (W-27) (H-15) (K-2) (L-3) (R-3)

Optimal Control

(L-9) (B-32) (D-13) (A-8) (S-33) (J-5)

(B-ll) (A-ll) (K-5) (W-29)

Distributed or Modal Control

(D-9) (J-6) (M-5) (s-31) (C-4) (S-2) (F-16) (G-13)
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B2.4 MATHEMATICS AND COMPUTATION

Ordinary Dirrerential Equation Theory

(H-ll) (S-21) (B-14) (1-2) (H-12) (S-10) (H-6)

Partial Differential Equation Theory

(G-7) (B-21) (0-1) (F-16) (W-7)

(F-ll) (A-15) (F-12) (G-6) (H-28)

Integral Equation Theory

(T-3) (L-8) (D-5) (S-ll) (V-4) (T-10) (W-6)

(P-4) (H-13) (M-6) (S-14) (S-2) (G-7) (W-7)

Mathematical Transformations

(T-4) (Z-l) (S-31) (M-16) (R-14) (C-3)

Matrix Mathematics

(A-4) (A-12) (H-13) (J-7) (M-26)

Numerical Solution Techniques

(B-30) (F-ll) (M-22) (P-5) (H-25) (D-9) (W-26)

(A-15) (K-l) (D-7) (A-10) (J-7) (D-10) (M-26)

(R-24) (L-10) (S-13) (R-4) (L-ll) (M-2) (J-5)

(D-8) (L-l) (C-8) (P-8) (L-22) (N-l) (D-15)

(H-28) (L-21) (H-19) (R-29) (W) (Z-W) (S-12)

(F-2) (B-32) (M-4) (P-12) (A-17) (T-10)

Boundary Value Problems

(L-ll) (B-8) (S-10) (H-12) (L-7) (M-22)

(H-ll) (B-14) (V-l) (H-25) (B-9) (P-5)

(K-l) (B-32) (F-2) (L-22) (C-6)
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£igen - Values, Vectors, and Functions

(B-30) (H-ll) (B-14) (M-2) (S-31) (C-6) (j-7)

(A-12) (H-13) (C-13) (S-13) (V-l) (B-5)

(G-13) (1-2) (D-3) (S-10) (W-26) (H-12)

Special Functions

(A-18) (L-23) (M-16) (R-28) (H-2?) (S-25) (S-26)

Computation and Computer Programming

(M-4) (1-3) (C-13) (M-18) (B-15)

(0-4) (p-8) (H-29) (S-32) (M-25)
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