

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1964

Economic analysis of recovery by cycling of a gas condensate reservoir.

Butterfield, Ossian R.

University of Texas

https://hdl.handle.net/10945/12046

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1964 BUTTERFIELD, O.

Ossian R. Butterfield

ECONOMIC ANALYSIS OF RECOVERY BY CYCLING OF A GAS CONDENSATE RESERVOIR

Thesis B9515 Library U. S. Noval Postgraduate School Monterey, California

ECONOMIC ANALYSIS OF RECOVERY BY CYCLING OF A GAS CONDENSATE RESERVOIR

ECONOMIC ANALYSIS OF RECOVERY BY CYCLING

OF A GAS CONDENSATE RESERVOIR

Ъу

OSSIAN R. BUTTERFIELD Bachelor of Civil Engineering

THESIS

Presented to the Faculty of the Graduate School of The University of Texas in Partial Fulfillment

of the Requirements

For the Degree of

MASTER OF SCIENCE IN PETROLEUM ENGINEERING

THE UNIVERSITY OF TEXAS August 1964

NPS ARCHIVE 1964 BUTTERFIELD, O.

Library U. S. Naval Postgraduate School Monterey, California

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance received from others in the process of acquiring knowledge of Petroleum Engineering while at The University of Texas and particularly in preparation of this thesis. To Dr. Ben H. Caudle, Dr. Sylvain J. Pirson, and to Dr. Kenneth Gray, the author extends his appreciation for such a comprehensive introduction to Petroleum Engineering as was possible in the limited time available.

Particular appreciation and thanks is due the personnel of the Gulf Coast Division of the Union Oil Company of California, and in particular to J. Donald Clark, Chief Reservoir Engineer, for making available to the author the necessary data for the study. Without the data furnished by, and the assistance and direction of, Mr. Clark in the formulation of this problem, this thesis could not have been either practical or realistic. The knowledge drawn from the experience and skill of Mr. Clark and the Engineering Staff of the Union Oil Company of California is invaluable to the author.

To his supervising professor, Dr. Kermit E. Brown, for assistance, direction, and encouragement throughout the study. and to the members of the thesis committee, Dr. Ben H. Caudle and Dr. Sylvain J. Pirson, for timely and pertinent criticism, is due the author's sincere appreciation.

iii

- - - - - - - - - -

Appreciation to the United States Navy for providing both the opportunity and financial support for the author's postgraduate education is acknowledged.

Finally, in token appreciation for the love and understanding tendered, and of the time and personal desires set aside so that this effort could be fruitful, this thesis is dedicated to Ann, Marcia, and Brian.

> Ossian R. Butterfield Commander, Civil Engineer Corps, U.S. Navy

Austin, Texas August, 1964

TABLE OF CONTENTS

																					Page
ACKNOWLE	DGEMEN	NTS .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		iii
LIST OF	TABLES	5 . . .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
LIST OF	FIGURE	es.	•	•	•	•	•	•	•	•	•	•	•	•		٠		•		•	vii
Chapter																					
I.	INTROD	DUCTI	ЛС	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
II.	DISCUS	SSION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
	Α.	Natu	сe	οf	G	as	С	or	n d e	ns	at	te	Re	ese	erv	oi	rs	3	•	•	4
	В.	Retro	ogr	a d	е	Lo	s s	C	of _	Сс	no	ler	nsa	ate	9	•	•	•	•	•	/ 7
	С.	Expe	rie	nc	e	in	G	as	i C	уc	:11	Lng	3	•	•	•	•	٠	•	•	/
III.	DEFINI	TION	OF	Т	ΗE	F	ΙE	LI) 5	Τl]D]	EEI)	•	•	•	•	•	•	•	11
	А	Deve	lon	πе	nt	0	f	tŀ	ne	Fi	e I	l d									11
	в.	Strue	tu.	re	 a	n d	R	les	er	ve	e s			÷		÷	÷		÷		11
	с.	Rese	cvo	ir	F	1 u	id	l C	ha	ra	ict	tei	:is	sti	Lcs	-					26
	D.	Confo	orm	an	ce		•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
IV.	PERFOF	RMANC	ΕP	RE	DI	СТ	IC	N	•	•	•	•	•	•	•	•	•	•	•	•	37
	Δ	Pres	5 11 r	P	De	n 1	еt	ic	n	Мe	>+}	100	1								37
	В.	Pres	sur	e	Ma	in	te	e n a	. n c	e	tł	nra	- Dug	z h	Ga	s	Ċ	vc]	lir	ig	39
	с.	Cycl	ing	w	it	h	Pr	es	ssu	ire	e]	Dep	>1e	eti	Lor	1	•	•	•	•	42
V	CONCLU	JSION	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4 5
	٨	Comp	a m i		5	o f	T	11+	- i n		- 0	P	200	- 	or i	00					45
	В.	Econ	omi	c	An	a1	y s	is	5 C	o f	A	lt.	eri	nat	i\	ves		•	•	•	47
VI.	RECOM	MENDA	ΓIΟ	NS		•	•	•	•	•		•	•		•	•	•	•	•	•	5 5
BIBLIOGE	RAPHY .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	56
DEFINIT	ION OF	SYMB	OLS		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	58
APPENDI	х т	ΜΔΤ	ERT	AT	R	AT.	AN	IC F	3 0	: A 1	LC I	UT.,	۹T.	101	V						73
ILL LAND LZ	ТТ	FLU	TD	DA	TA			.01													84
	III.	VOL	UME	TR	IC	S	W F	E E I	?-(U	r i	PRI	ED	ICT	FIC) N					96
	IV.	FUT	URE	P	ER	FO	RN	1A1	IC E	5 1	PR I	ED	IC	FI	ON						101

and the second se

LIST OF TABLES

Table				Page
I.	Economic Summary	•	•••	50
II.	Calculation of Initial Gas in Place by Volumetric Method	•		59
III.	Monthly Past Production	•	•••	61
IV.	Pressure Drawdown-Buildup Test		• •	62
ν.	Present Worth of Pressure Depletion Case .		• •	67
VI.	Present Worth of Pressure Maintenance Case ,	•	• •	69
VII.	Present Worth of Normal Gas Cycling Case .	•	•••	70
VIII.	Capital Expenditures	•		7 2

LIST OF FIGURES

Figure	Ра	ge
1.	Discovery Frequency of Oil and Gas Reservoirs versus Depth	1
2.	Pressure Temperature Phase Diagram	5
3.	Structural Reservoir Map	12
4.	Well Log Correlation Diagram	14
5.	Results of Pressure Drawdown Test	16
6.	Isopachous Map	18
7.	Production History	22
8.	Potential Distribution Map	35
9.	Predicted Cumulative Condensate Recovery	48
10.	Annual and Cumulative Cash Flow for Pressure Depletion Case	52
11.	Annual and Cumulative Cash Flow for Pressure Maintenance Case	53
12.	Annual and Cumulative Cash Flow for Normal Gas Cycling	54

CHAPTER I

INTRODUCTION

The frequency of discovery of gas condensate reservoirs, as well as their importance to the industry, has increased greatly in recent years with the trend toward drilling into the deeper environment of higher temperatures and pressures. Craft and Hawkins¹ point out well test data confirm this trend as shown in Figure 1. This graph shows the discovery trend for 17 parishes in southwest Louisiana. The reservoirs were separated into oil and gas or gas-condensate types on

Fig. 1. Discovery frequency of oil and gas or gas-condensate reservoirs versus depth. (Craft and Hawkins, <u>Applied Petroleum</u> Engineering.)

the basis of well test gas oil ratios and the API gravity of the produced liquid. While oil discoveries predominate at depths less than 8000 feet, gas and gas-condensate discoveries predominate below 10,000 feet. The decline in discoveries below 12,000 feet is due to the fewer number of wells drilled below that depth rather than a drop in the occurrence of hydrocarbons.

Many of these high pressure condensate reservoirs are discovered in conditions above their dew points. With pressure reduction, when placed on production, they allow retrograde condensation of the valuable heavier hydrocarbons within the reservoir rock. Once condensation has taken place within the reservoir, this liquid cannot be produced without considerable expense. The mechanisms by which this condensation may be retrieved is either by revaporization or by repressurization by injected dry gas. However, several pore volumes of dry gas must usually be injected before sufficient revaporization occurs, making this process costly. Even then, the dry gas may not sweep all the volume in which condensation has taken place. In order to retrieve this condensate, which is many times more valuable than the gas itself, or to prevent its condensation within the reservoir, it is necessary to investigate the possibility of dry gas cycling and pressure maintenance.

Cycling of the dry residue gas may act to maintain the pressure in the reservoir at or near the dew point, thereby

- - - - - - -

preventing the occurrence of the retrograde condensation phenomena. It may also tend to revaporize the condensate and sweep it, along with the cycled gas, out of the reservoir.

Even though it is apparent that cycling a reservoir which is susceptible to the retrograde phenomena will produce more of the valuable hydrocarbons in place, the economic factors involved are all important in deciding whether to invest in this procedure. Roughly, a reservoir that contains as much as fifty barrels of condensate per million standard cubic feet of gas is a good prospect for gas cycling. On the one hand, the dry gas sales will be postponed until the cycling is practically complete, resulting in decreased present value of the However, it is generally possible to produce the congas. densate faster, hence earlier, when cycling is adopted and more dollars are generally obtained due to the increased ultimate recovery. The purpose of this thesis is to evaluate whether or not these advantages are worth the greater investment involved for the field studied.

Data are obtained from an actual field on the Gulf Coast of Louisiana containing approximately 600 billion SCF of gas. The size of the reservoir was determined from geologic data and from production data to date. Future prediction of reservoir performance was made for pressure depletion, normal cycling and pressure maintenance methods of exploitation. An economic comparison of the cases studied is presented.

CHAPTER II

DISCUSSION

A. Nature of Gas Condensate Reservoirs

Gas reservoirs are defined as having a lean gas, containing a minimum amount of the heavier hydrocarbons, where the composition of this produced gas does not change with pressure reduction as the reservoir is depleted. Oil reservoirs range in gas content from zero, or dead oil, to a gasoil ratio of a few thousand cubic feet per barrel. In gas reservoirs, on the other hand, the liquid may be vaporized into 100,000 cu. ft. per barrel or more. Gas condensate reservoirs are classified between these two extremes. Gas condensate reservoirs, or distillate reservoirs as they are sometimes called, usually produce light colored or colorless stock tank liquids with gravities above 45 degrees A.P.I. at gas-oil ratios in the range of 3,000-100,000 SCF/bbl. The production from these reservoirs is predominately gas from which some liquid is condensed in the surface separators, which phenomenon gives them the name gas-condensate.

Another definition of the three types of fields described can be derived from an interpretation of the pressure-temperature phase diagrams. (See Figure 2 for a typical diagram.) Whenever a reservoir fluid is discovered at a temperature above the

the second se

- - -

cricondentherm, or maximum two phase temperature for the fluid, the composition of the produced fluid will not change as the reservoir is depleted since the reservoir temperature can be expected to remain fairly constant (Path A-A₁ on the diagram).

Fig. 2. Pressure-temperature phase diagram of a reservoir fluid. (Craft and Hawkins, <u>Applied Petroleum Reservoir</u> Engineering.)

There may, however, be liquid produced as the fluid flows up the well bore and into the separators if temperature reduction below the circondentherm occurs within the tubing string (Path A-A₂ on Figure 2). If, on the other hand, the reservoir is

found to be at a temperature below the critical temperature (T_{c}) and pressure above the bubble point, the reservoir would be in a one phase liquid state. This is called a bubble point reservoir and the fluid will remain a liquid although as the bubble point pressure is reached, with pressure depletion in the reservoir, gas will come out of solution in the oil and will be produced along with the oil in an ever increasing quantities (Path C-C, in Figure 2). In dew point or retrograde gas condensate reservoirs the reservoir fluid exists at a temperature between the critical temperature and the cricondentherm and at a pressure above the dew point pressure of the In this situation, when the pressure declines, composifluid. tion of the reservoir fluid, which may be termed gas in this state, will remain the same until the dew point is reached. At this point as the fluid expands isothermally, a liquid begins to condense out of the gas and will adhere to the walls of the rock, tubing, etc., leaving a gas leaner in the heavier hydrocarbons to be produced. The term retrograde is given to this phenomenon since one would expect vaporization to take place with a pressure decline rather than condensation. At some intermediate pressure, between the dew point and abandonment, this retrograde phenomenon will reach a maximum, below which pressure the condensate will revaporize into the gas. (Pressure-Temperature phase relationships for gas-condensate reservoirs are shown on Figure 2 by the path from B to B_3 .)

B. Retrograde Loss of Condensate

Liquid that is condensed inside the reservoir rock remains immobile in the usual case and therefore is lost to production unless or until revaporization can take place either by further pressure decline, repressurization, or by sweeping with a dry gas. The alternative to revaporization of this condensed liquid is to prevent it from condensing in the first place and this possibility leads to the investigation of pressure maintnenace by injection of dry gas into the reservoir.

C. Experience in Gas Cycling

In general, the gas with the greater condensate content exhibits the greater condensate loss upon pressure depletion so usually it proves to be the more profitable reservoir to cycle with gas. In gas cycling the condensed liquid is separated from the wet (produced) gas in a gasoline plant or other surface facilities. The residue or dry gas is then re-injected into the reservoir where it maintains the reservoir pressure and also serves to drive the wet gas toward the producing wells. This procedure is continued until the dilution by dry gas at the producing well renders the operation unprofitable at which time the reservoir is blown down, or allowed to produce normally through pressure depletion. During this pressure blowdown not only will the lean gas in the reservoir be produced

but also additional liquid may be recovered from both the dry gas invaded zone and the uninvaded portion of the reservoir.

Bowers² has shown that cycling in the Grapeland Field, Houston County, Texas, resulted in a recovery of seventy-five per cent of the initial butanes and heavier hydrocarbons in the reservoir, while straight pressure depletion would have recovered only thirty-nine per cent of the initial butanes-plus. The liquid that could have been recovered by pressure depletion, then, was only fifty-two per cent of that which was actually produced by the cycling process. In this example it was shown that the ultimate liquid recovery was reached in approximately eleven years but twenty-one years would have been required by straight depletion, thereby making the present worth of the liquid products much greater with gas cycling.

In a study of the Krotz Springs Field, St. Landry Parish, Louisiana, Robertson³ predicted that twenty per cent more condensate could be recovered by cycling, resulting in a gross cash gain after taxes of \$2,000,000 for the twenty-five year period studied.

T. W. Brinkley⁴ concluded that benefits in improved recovery of stock tank condensate by pressure maintenance methods may be as great as 300 per cent in rich condensate reservoirs but grade progressively downward to negligible benefits for the lean condensate reservoirs with GOR's greater than 300,000 cubic foot/bbl.

Although cycling may appear to be the ideal solution to the retrograde condensation problem there are other factors that may make this procedure uneconomical. The deferred income from the dry gas sales may prove to be a significant factor in the economic analysis of the field. Another economic consideration is the added investment required for additional injection wells, gas compression and distribution system to return residue gas to the wells and for a liquid recovery plant. Also, it must be remembered that even with gas injection at a pressure above the dew point all of the liquid hydrocarbons may not be recovered.

Three different recovery factors must be applied with gas cycling. The microscopic displacement efficiency is approximately 70 to 90%. The volumetric sweep efficiency, or the per cent of initial pore volume invaded by the sweeping gas to abandonment of the producing wells can vary from 50 to 90%. Finally a permeability stratification factor must be applied to take care of the problem of gas sweeping through the more permeable strata and reaching the producing wells before the tighter stringers can be swept. The overall condensate recovery factor for a gas cycling project is the product of these three factors. On the plus side of recovery by cycling is the fact that additional liquid is produced during blow-down from the less permeable or unswept portions of the reservoir as these products bleed into the
more permeable streaks and ultimately to the wells. Also the efficiency of extracting condensate from the wet gas is higher with the type of separator plant that is generally used in a cycling project.

Any reservoir exhibiting retrograde properties and having a richness of 50 bbls/MMSCF of condensate is a good prospect for cycling of the dry residue gas to improve recovery. Each reservoir, however, is an individual case and, as such, requires a separate study. Variables such as permeability stratification, reservoir geometry, gas properties, and market availability can team up to make one reservoir an extremely profitable enterprise while another may prove entirely infeasible. This thesis presents the study of one field based on the fluid properties and geologic structure of that one field.

CHAPTER III

DEFINITION OF THE FIELD STUDIED

A. Development of the Field

Production from this field began in January, 1961 and from that time two to three wells have produced continuously as shown in Table II. The pool is one in which higher than normal pressures are encountered. It has been obvious from the low gas-oil ratios measured that the produced gas was rich in condensate. By January 1, 1964, a total of 20 billion standard cubic feet of wet gas had been produced from the two wells completed in the zone studied. The pressure had dropped from an estimated initial pressure of 8838 psia to 8100 psia as shown in Figure 7. Based on these production data, calculation of the initial gas in place yielded the value of 606.9 billion standard cubic feet. These values form the basis for future performance predictions from the base date of January, 1964.

B. Structure and Reserves

Interpretation of available geologic data indicates a deep-seated salt domal structure. Producing depths at which this study was conducted were from approximately 11,300 to 11,600 feet. A structure contour map of the top of the producing formation is presented as Figure 3. The productive

×

_ _ _ _ _ _

interval is taken to be a shaly-sand with intergranular porosity.

There are a total of nine wells drilled through the formation studied and from which data are available from various kinds of logs. Porosity was determined using micrologs from some wells and sonic logs from others. The porosity throughout the formation is fairly constant, varying from 25% to 29% in the pay zone. Although shaly streaks were noted, this fact was taken into consideration in counting sand, wherein the shale sections were discounted. For purposes of the material balance calculations an average uniform porosity of 28% was used.

Electric logs or induction-electric logs were available from all nine wells. Three of these logs are shown in Figure 4. These logs were used to compute formation water resistivity using the Spontaneous Potential Curve. Water saturation was calculated from the induction log or lateral curve as available. Water resistivity was found to be approximately .03 ohmmeters at formation temperature and this value was used throughout the field. Computed water saturation tended to vary from 8-10% near the top of the gas zone to about 25% nearer the bottom of the pay and it grades to 100% water saturation in those wells where a gas-water contact is observed. A value of 20% water-saturation was used for the entire formation as being the weighted average value.

.

Side wall cores were available from one well. The porosity values obtained from the sidewall cores checked precisely the values obtained from the sonic logs and micrologs. The permeability, however, did not appear uniform, nor did these values check well against the effective permeability calculated from a pressure draw-down test or against permeability calculated from a resistivity gradient observed in some of the wells. The six values obtained from side-wall cores were 84, 134, 50, 512, 131 and 116 millidarcies. The effective permeability to gas obtained in the pressure draw-down test proved to be 50 millidarcies and this was the value used in the material balance calculations since the method of taking side-wall cores tends to result in fractured, nonrepresentative samples of the reservoir. A plot of the data taken from the pressure draw-down test is shown in Figure 5.

For volumetric sweep-out calculations, 50 millidarcies was used for permeability while the effective thickness of pay was allowed to vary over the field. This gave a value of flow capacity for each point in the reservoir which was used in the sweep efficiency program.

Connate water saturation was found to be 20 per cent. This was an average value based on water saturation in the lower portion of the gas zone. Residual gas saturation to water is estimated to be 30 per cent. This is justified by the gas saturation near the top of the water column which, it

Figure 5

16

can be assumed, has encroached into the reservoir to some extent during a recent producing time.

Determination of net effective thickness in this formation was very difficult because of the shalyness of the sand and because of the meager geologic information. Only nine wells have penetrated the 2000 acres of estimated pay forma-The locations of the two faults--one thought to have a tion. closure of about 100 feet in the northern extremity of the pool, the other with an estimated closure of about 120 feet in the south--are by no means exactly defined. An error of the position of the fault to the north of only a few feet would produce a substantial error in the estimated reserves because of the great thickness of pay adjacent to this fault. Calculation of reserves based on the volumetric method is presented in. Table II. The east and west boundaries of the field are located at a gas-water contact which has shown little or no encroachment during the current gas production.

An isopach map produced from the nine control wells is presented as Figure 6.

A volumetric gas balance was made using the production data to date and bottom hole pressure tests taken in 1961 and 1963. A bottom hole pressure was obtained from the draw-down and build-up pressure test conducted in connection with this study. This gas balance was calculated on a Control Data Corporation 1604 high speed computer using a program developed by the Union Oil Company of California.

J. Donald Clark, Chief Reservoir Engineer for the Gulf Division of the Union Oil Company of California, has developed and applied or supervised the application of a very simple transient energy balance equation to numerous natural water drive gas reservoirs found in the Gulf Coast area.¹² A primary requirement of this equation is the derivation of the gas formation volume factor, B_g , to convert standard cubic feet of gas to reservoir barrels. This conversion for any particular reservoir is presented mathematically as follows:

1.
$$B_g = \frac{15.025 T_f}{520(5.61)} \times \frac{Z}{P} = .0051505 T_f Z/P$$

Where: 15.025 is base pressure for Louisiana (psi)
520 is standard temperature ^OR
5.61 converts cubic feet to barrels
T is reservoir temperature, degrees Rankine
Z is gas deviation or compressibility factor
P is the reservoir pressure, psia
i as a subscript will denote initial or
original conditions

The cumulative reservoir barrels of gas produced or withdrawn is equal to the cumulative reservoir barrels of gas expansion in the reservoir, or

2. $G_{pw} B_g = G(B_g - B_{gi})$

Where: G_{pw} is cumulative standard cubic feet of wet gas produced G is standard cubic feet of original gas in place

In the case of water drive reservoirs and water production the statement of the equation then becomes: (Cumulative Net

Reservoir Withdrawals) - (Cumulative Reservoir Expansion) = (Cumulative Water Influx), or

3.
$$(G_{pw} B_g + W_p) - G(B_g - B_{gi}) = W_e$$

4. $(G_{pw} B_g + W_p) - G(B_g - B_{gi}) = A\Sigma \triangle PQ_r$

The water influx equation, $W_e = A\Sigma \Delta PQ_r$, is a simplified method of writing the equation presented by Hurst⁵ in his paper entitled "Water Influx into a Reservoir and Its Application to the Equation of Volumetric Balance." Details of solving the water influx equation were presented by van Everdingen and Hurst.⁶ The "A" is the water influx constant which encompasses conversion factors, porosity, radius of reservoir, effective reservoir thickness, effective compressibility of reservoir fluid, viscosity of reservoir fluid and fraction of reservoir perimeter exposed to water drive. The above parameters are constant for any particular reservoir and when used with the volumetric balance equation can be solved as an all encompassing constant for that particular reservoir.

The true simplification is in the manner of arriving at the value of $\Sigma \triangle PQ_{r}$ for various balancing periods.

The dimensionless time equation, $t_D = KT/\phi_{\mu}C_w r_b^2$ is derived from the hydraulic diffusivity factor, $\alpha^2 = K/\mu\phi C$ presented by Hurst¹³ in 1933. The K, or permeability factor, actually is the one most difficult to measure since it is

- ----

effective permeability to water, which we seldom if ever obtain. This value could be found by running draw-down tests in salt water wells, but actually it can be estimated to a sufficient degree of accuracy. Viscosity of water can be obtained from various sources to a reasonable order of magnitude. Therefore, it becomes important only to establish an order of magnitude value of t_p , in order to extract reasonable values of the corresponding Q_r , the dimensionless water influx, from the tables.

Experience has shown that a proper time period should not exceed three months or approximately a 90-day producing period when attempting to strike a balance, especially if one plans to calculate future predictions. The constant "A" becomes an over-all correcting constant of transient flow, and allows us to solve very simply a satisfactory value of original hydrocarbons in-place and the total water influx at any time in the producing life of the reservoir.

Cumulative Production and Pressure History

Production from the reservoir is tabulated on a monthly rate and cumulated on a three-month basis. These data are broken down between oil, gas, condensate and water (both fresh and salt water). When rates of production have considerable variation, a monthly production rate should be plotted as shown on Figure 7. This plot is important in order to show the effect of rate on pressure when natural water drives exist.

100 A.

Figure 7

Production History

Bottom hole pressure measurements are plotted versus time on the same graph as production rate. The length of shut-in time prior to each pressure measurement should be approximately equal and the individual pressures should have reasonably close values. If not, build-up or drawdown tests should be run to determine the cause of pressure variation. A pressure curve is then constructed through these evaluated pressure points. Experience and ingenuity are of tremendous value in constructing a reasonable curve. The production rate graph must be studied in order to prepare the most logical pressure-time curve. Pressure for uniform periods of production are taken directly from this graph.

Water Influx Data and Basic Calculations

The next step requires the gathering of basic information to approximate dimensionless time data and corresponding dimensionless rates.

$$t_{\rm D} = \frac{\rm KT(86,400)}{\rm u\phi(0.5 \times 10^{-4}) \ r_{\rm b}^{2}(930)}$$

Here geological data can be used to help determine the radius of the hydrocarbon reservoir. Only a close approximation is necessary. Compressibility of salt water can be found in the literature. Viscosity of salt water can be approximated by using chemical handbooks, available texts, and various publications; porosity is approximated from core analyses or logs

and permeability to water can be estimated from air permeability of cores analyzed.

Dimensionless time values are calculated for cumulative three-month periods. The corresponding Q_r values are taken from the table. Integration of the values for $\triangle P$ times Q_r over the cumulative time intervals yields the value which, when multiplied by the constant A, provides the cumulative water influx.

Gas Conversion to Reservoir Barrels

The vapor equivalent of the distillate and fresh water produced must be added to the amount of dry gas produced. The constant for converting liquid water to the vapor state is 7368.48 cubic feet per barrel. The distillate conversion factor was calculated from the hydrocarbon analysis of the separator liquid shown on page 89, Appendix II. This factor was found to be 768 standard cubic feet of vapor per barrel of distillate.

Method of Least Mean Squares for Striking an Energy Balance

The method of least mean squares is used for striking an energy balance for the natural water drive gas reservoir.

$$(G_{pw} + W_{ps}) - G(B_g - B_{gi}) = A(\Sigma \triangle PQ_r)$$

The two unknowns are G, the original wet gas in-place, and A, the water influx constant. The method herein presented

-

requires the solution for single values of A and G to meet all periods of past producing time. We, therefore, can arrive at two equations with two unknowns and place proportional weight to the length of production time:

$$[\Sigma(G_{pw} + W_{ps})(\Sigma \triangle PQ_{r})] - G[(B_{g} - B_{gi})(\Sigma \triangle PQ_{r})] = A[(\Sigma \triangle PQ_{r})^{2}]$$
$$[\Sigma(G_{pw} + W_{ps})(B_{g} - B_{gi})] - G[(B_{g} - B_{gi})^{2}] = A[(\Sigma \triangle PQ_{r})(B_{g} - B_{gi})]$$

These two equations can then be solved for A, the water influx constant, and G, the original wet gas in-place.

In order to check the validity of the values of A and G obtained by this method, multiply the LMSA value of A times $\Sigma \triangle PQ_r$ and solve for the apparent value of G. This is called "periodic check of balance for G assuming LMSA values of A as constant." The van Everdingen and Hurst solution to the diffusivity equation is here applied to single-phase fluid transient flow into a well bore for determination of the rate and volume of encroachment of water. The gas field is assumed to be embedded into an aquifer of large extent. In this instance, the reservoir is taken to be a large well, the radius of which is the equivalent field radius, and the aquifer is considered to be the reservoir from which fluid is withdrawn and water is expelled.⁸

The computer program, indicating method of computation, reservoir conditions, initial gas in place, and cumulative

water influx from past production data, is included as Appendix I.

Since the available geologic information is considered isufficient to describe the reservoir accurately enough for calculation of reserves, the results obtained from the volumetric gas balance were used for estimating original gas in place and water encroachment. These results were also the basis for the future performance prediction and economic analysis of alternate methods of exploitation. The original gas in place was found to be 606.9 billion cubic feet measured at standard conditions (15.025 psi at 60°F). Water influx was found to be negligible.

C. Reservoir Fluid Characteristics

Samples of both the separator liquid and gas were obtained in March, 1964, and recombined in accordance with the measured gas-liquid ratio (stock-tank) of 17,150 SCF separator gas per bbl. stock tank liquid. It was difficult to obtain constant gas-oil ratios for the purpose of getting a representative sample and flowing at a constant rate for about three days was required before a steady GOR was achieved. Analysis of the recombined sample indicates a dew point pressure above the present bottom hole pressure. Retrograde condensation was taking place and two phase flow occurring near the well bore caused the fluctuating producing gas-liquid ratio. Reservoir temperature at time of sampling was 240 degrees farenheit.

Primary separation temperature was 125 degrees farenheit and primary separator pressure was 1020 psig. Dew point pressure was found to be 8260 psia and gas richness was 66.07 bbls. of stock tank liquid per million standard cubic feet of well stream effluent. Detailed results of the P-V-T investigation are included as Appendix II.

Samples of separator gas and separator liquid were analyzed by the conventional low temperature distillation method. The results are reported showing both the composition of each sample and the computed analysis of the well stream based on the gas-liquid ratio of the primary separator. The separator liquid production was calculated from the measured stock tank production by applying the determined shrinkage factor.

Following the compositional analyses, portions of the primary separator liquid and gas were physically recombined in their produced ratio in a variable volume, glass-windowed equilibrium cell. Determinations on this mixture were divided into the following two main categories:

I. Dew point pressure determination and pressurevolume relations on a constant weight of reservoir fluid at the reservoir temperature: The procedure consisted of establishing equilibrium between gas and liquid phases at a low pressure and measuring the volumes of liquid and gas in equilibrium at that pressure. The pressure was then raised by the injection of mercury into the cell and

phase equilibrium established again at the higher pressure. This procedure was repeated until all of the liquid phase had vaporized, at which point the saturation pressure was observed. The cell pressure was then raised above the dew point pressure in order to determine the supercompressibility characteristics of the single phase vapor. As a check on all readings and particularly to verify the dew point, the cell pressure was incrementally reduced, equilibrium established and volumetric readings made. Reported in Appendix II are the relative volume relations and specific volumes of the reservoir fluid over a wide range of pressures as well as deviation factors of the single phase vapor above the dew point. (Also reported in Appendix II are the dew point pressures resulting from recombinations at gas-liquid ratios above and below the ratio measured at the time of sampling.)

II. Compositions of the produced well stream and the amount of retrograde condensation resulting from a stepwise differential depletion: This procedure consisted of a series of constant composition expansions and constant volume displacements with each displacement being terminated at the original cell volume. The gas removed during the constant pressure displacement was charged to the low temperature fractional distillation equipment for analysis.

1

-

D. Conformance

The description of the simultaneous flow of fluids through porous media in terms of relative permeability and capillary pressure has been adequately discussed in the literature. For example, Muskat⁹ in Chapter VII briefly discussed the dynamical effects associated with capillary phenomena. He also outlined the theory of potentiometric models and illustrated the application of the potentiometric model to cycling systems. Douglas, Peaceman, and Rachford,¹⁰ presented a method for calculating multi-dimensional immiscible displacement based on a numerical solution of a finite difference analogue describing the displacement process. This technique insures that at any point in the sand, the flow of oil per unit area across the direction of flow can be represented by a vector $\vec{\mu}_{0}$ which is given by

$$\vec{\mu}_{o} = -K \frac{K_{ro}}{\mu_{o}} (\nabla p_{o} + \rho_{o} g \nabla h).$$

The operator, ∇ , equals $\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y}$; \vec{i} , \vec{j} are unit vectors in the x and y directions, respectively; k is the local permeability, k_{ro} is the relative permeability to oil, μ_{o} the oil viscosity, p_{o} the pressure in the oil phase, ρ_{o} the oil density, and g the acceleration of gravity. Similarly,

$$\vec{u}_{w} = -k \frac{k_{rw}}{\mu_{w}} (\nabla p_{w} + \rho_{w} g \nabla h)$$

Fluid densities are assumed constant and oil and water

potentials are defined

$$\Phi_{o} = P_{o} + \rho_{o} gh$$

$$\Phi_{w} = P_{w} + \rho_{w} gh$$

The author proceeds to solve the problem by a system of difference equations.

In solving this reservoir a technique demonstrated by Dr. S. J. Pirson at The University of Texas is followed. In this method the reservoir is divided into a grid and each intersection of the grid is treated as a point (I, J) within the reservoir where Darcy's law may be applied. The flow across the grid between these points, q, is now analyzed. The rate of flow over a distince Δx across an area open to flow, Δy , can be determined by Darcy's law:

$$q_1 = 1.127 \frac{Kh}{\beta\mu_0} \Delta x \left[\frac{P(i-1,j) - P(i,j)}{\Delta y}\right]$$

In order to satisfy the continuity equation the vector sum of the flow in all four directions must equal zero unless

there is fluid withdrawal or fluid injection at the point

$$Q = q_{1} + q_{2} + q_{3} + q_{4}$$

$$A = \frac{1.127}{\beta \mu_{0}} [K_{h_{av}}(P_{i-1,J} - P_{i,j}) + K_{h_{av}}(P_{i,j+1} - P_{i,j}) + K_{h_{av}}(P_{i+1,j} - P_{i,j}) + K_{h_{av}}(P_{i,j-1} - P_{i,j})]$$

It is seen that without injection or production from the point studied Q=O and the $K_{h_{av}}$ is the average flow potential between adjacent points. This equation is now solved for $P_{i,j}$ and we find:

$$P_{i,j} = \frac{\frac{2Q\beta \mu_{o}}{1.127} + [K_{i+1,j} + K_{i,j})P_{i+1,j} + (K_{i-1,j} + K_{i,j})(P_{i-1,j}) + (K_{i,j+1} + K_{i,j})(P_{i,j+1}) + (K_{i,j-1} + K_{i,j})(P_{i,j-1})}{K_{i,j+1} + K_{i,j-1} + K_{i+1,j} + K_{i-1,j} + 4K_{i,j}}$$

The boundary conditions are those restrictions on the limits of the connected region and the position and magnitude of the imposed flows or pressures. At the boundary of the permeable sand, the velocity of flow perpendicular to the boundary is zero, so it is sufficient to establish equal potentials across the boundary. Since $(\nabla \Phi) = 0$ across the boundary, no flow occurs. This same condition occurs at a fault boundary. As the water saturation increases near the water table, the relative permeability to water increases greatly while that to oil diminishes. By assigning these relatively high

values of flow potential in the equation aquifer pressure is maintained in the advancing flood front and movement of the front is regulated across this boundary.

In solving this potential equation for an oil reservoir, the term $-2\beta\mu_0/1.127$ is treated as a constant. However, since the flow equation depends on pressure, the constant for a gas field is augmented by a variable pressure term:

q = -1.127
$$\frac{K}{\mu} \frac{dP}{dx} = \frac{(q_{sc})(P_{sc})(T)(z)}{(5.615)(T_{cc})(A)(P)}$$

For Oil For Gas

Volumetric sweep efficiency was investigated by this technique with the aid of a mathematical model which was run on the CDC 1604 high speed computer. This' computer program is included as Appendix III. The program assumes steady-state flow at a point, and sequentially at each point in the reservoir in order that Darcy's flow equation may be applied. Using an alternating direction iteration procedure, the computer then reduces the total flow at each point in four directions to zero and by many iterations establishes each potential from the adjacent four potentials in order to achieve a balance. At each point selected on the model the quantity of flow into or out of the reservoir is assigned in the event a well is located at that point. The flow potential, or the product of effective permeability times the thickness of effective pay, is also assigned to each point. By applying Darcy's law in each of

four directions, by summation of these directional flow rates to zero, and by solving this equation for the potential at each point, a potential distribution map of the reservoir is produced. Isopotential contour lines are now drawn on a scale map of the reservoir. The primary criterion for equivalence between the model and the actual reservoir is the creation of geometrically similar potential fields which are determined only by the thickness, permeability, and boundary conditions. Flow lines were superimposed on the potential map and the method of squares utilized by Seba¹¹ is used to define the flow tubes through which a constant quantity of reservoir fluid would be expected to flow.

Flow lines of a fluid in a porous medium, as defined in Darcy's law, are everywhere orthogonal to the isopotential lines. The method of squares employs the fact that if a family of curves is constructed such that they are orthogonal to one member of another family of curves, then the second family of curves may be drawn orthogonal to the first. This is done by constructing them such that adjacent distances between the streamlines are equal to adjacent distances between the isopotentials. A stream tube is a two-dimensional flow system defined as the area between two consecutive stream lines. Flow rate can be defined by the following:

Q = (h) (-
$$\frac{k}{\mu}$$
) (Δx) ($\frac{\Delta \Phi}{\Delta s}$) av

In any one square $\Delta x = \Delta s$ and Q is constant so:

$$\Delta t = (constant) \frac{\mu}{k h} \frac{(\Delta s)^2}{\Delta \Phi}$$

The increment of time can now be calculated for each of the squares within each flow tube so that the position of the front in each flow tube can be drawn at any selected time period. This procedure is repeated for various injectionproduction well combinations until the maximum volume of the reservoir is swept. Rearrangement of the well positions in the reservoir matrix is achieved simply by changing the quantity of flow into or out of that point in the reservoir. Sweepout patterns were predicted with one, two and three injection wells and by using four producing wells. The locations of existing wells were used as much as possible but alternate new locations were also tried. The optimum combination was found to be two injection wells and four producing wells.

Wells marked "Well 4" and "Well 10" on Figure 8 are to be recompleted as injection wells. Two new wells are required at the locations marked "Well 5" and "Well 11." An existing well at location "Well 9" is to be recompleted in the pay zone studied since it is now producing from a deeper zone. "Well 6" is producing from this formation and will continue to be used for this project.

A machine print-out of the potentials has been reduced to a map shown in Figure 8 picturing the isopotential contour lines and on which the frontal position has been drawn at one

and the second sec

time just after breakthrough of the injected residue gas. The volume of the reservoir swept at this breakthrough time was found to be 65%.

The ability of the dry absorber gas to vaporize the condensate in the sand was determined by pressure-volumetemperature tests run on a recombined sample of the gas. Results of these tests are given in Appendix II. The overall displacement efficiency of the residue gas was found to be 92%.

The effect of bypassing on a local scale, due to permeability variations, was analyzed as demonstrated by Standing,⁷ by arriving at a permeability variation for the sand. Although insufficient data are available to establish firmly the permeability variations throughout the reservoir, a variation .30 was assigned. This value gives a sweep efficiency at breakthrough of 87%.

Using the product of these three conformance factors, the overall volume of the reservoir swept out at breakthrough was 51%, with the dry gas cut after breakthrough increasing in the manner calculated by Standing⁷ in the paper mentioned before. Cycling of gas was discontinued when proportion of reservoir gas produced was reduced to 67% by dilution with cycled residue gas, due to the cycling economic limit having been reached.

CHAPTER IV

PERFORMANCE PREDICTION

A. Pressure Depletion Method

Past production has averaged 25 million standard cubic feet per day from the reservoir studied. Until this time no firm estimate had been made on the reserves nor had any analysis been made to predict the future performance and probable life of the reservoir. From the past production figures the initial gas in place was estimated and the pressure decline and water influx was analyzed. From these data it is possible to predict the future performance of the field. This was done through the use of the computer program included in Appendix IV.

Because of insufficient pressure decline and the lack of back pressure data it is not possible to predict deliverability deterioration with declining pressure. It is anticipated that as liquid saturation around the well bore increases with static pressure reduction and with more severe pressure drawdown, deterioration of deliverability will result. For the purposes of this study, in absence of definitive data, the rate of production of dry gas was assumed to remain constant and at the current rate. The water influx constant obtained from the volumetric gas balance program was used to obtain future performance prediction as well as the calculated quantity of

initial gas in place and the adjusted pressure decline figures.

The amount of condensate produced, by year, was calculated from the P-V-T data obtained in the material balance calculations performed on the recombined gas sample placed in the equilibrium test cell. In this cell the pressure was depleted by removing successively small quantities of gas from the cell. Thermodynamic equilibrium was established, material balance calculations were made, and retrograde liquid volumes and the gravity of the effluent gas were measured at each step. The gas removed in each depletion step was charged to the low temperature distillation equipment for analysis. The produced volumes of reservoir gas, the determined compositions, computed gallons per thousand standard cubic feet (GPM) content and respective deviation factors are presented in Appen-The volume of retrograde liquid resulting from this dix II. depletion study is also shown in Appendix II, both in terms of barrels of reservoir liquid and per cent of hydrocarbon pore space. Shown also are the compositions of the gas and liquid remaining in the reservoir after depletion to abandonment pressure. The amount of condensate calculated to be produced with the well stream at each pressure decrement in the future prediction was tabulated. The value of gas sold under the terms of the present contract is \$.20 per MCF and condensate is sold for \$2.95 per barrel. These prices are assumed

to be firm for future sales. Operating costs are averaging \$.00423 per MCF produced and product transportation charges for the condensate sold are averaging \$.1375 per barrel. Application of these values to depletion of the reservoir over a fifty-year period with net income discounted at 6% results in a present worth of \$38,749,249. It is seen that in this case of pressure depletion to 1500 psi only 73.51 per cent of the initial gas in place was produced. Since the gas is to be delivered to a pipeline at a pressure in excess of 1000 psi, further recovery would require recompression to the sales gas line. This secondary recovery process was not considered in this study because the value of gas recovered 50-odd years hence is not relevant for a study of possible investments now.

It is significant to note that the condensate recovered by pressure depletion amounts to 15.4 million barrels which is scarcely 38% of the more than 40 million barrels of recoverable oil initially in place.

B. Pressure Maintenance through Gas Cycling

A program of gas cycling was considered wherein gas sales from the reservoir would be terminated and all gas produced from the reservoir, together with enough make-up gas to allow for compression and other gas losses, would be reinjected after extraction of all condensable heavier hydrocarbons. As determined by the sweep efficiency model studies, two wells

.

should be recompleted as injection wells and four wells would be used as producing wells as shown in Figure 8. Since the installation is located off shore the wet gas would be processed in low temperature units on platforms near the producing wells. The residue gas would be piped from the separators to the injection platform which would be located at one of the injection wells. Double extra heavy pipe would be necessary to carry the compressed injection gas to the other injection wells since injection pressures in excess of 8000 psi will be encountered.

Condensate produced in the separator units would be metered and then reinjected into the gas sales line of the gas company where it would be transported with other wet gas to the on-shore extraction plant for processing.

Under pressure maintenance it is assumed that the reservoir will continue to produce a gas of the richness measured in the most recent flow tests until breakthrough of the injected dry gas into the first producing well. From this point in time the produced gas would decline in richness in direct proportion to the residue gas cut produced. When the amount of injected dry gas obtained through the production wells reached 1/3 of the total gas processed it was found uneconomical to continue gas injection. Injection would be discontinued and gas sales would begin to deplete the reservoir to about 1300 psi or until compression was necessary to charge the sales

_

gas line. Production past this point was not considered part of this study.

It was assumed that the wet gas produced would be in equilibrium at the pressure and temperature produced in the same proportion as that indicated by the equilibrium cell tests. In the equilibrium cell the recombined gas sample was allowed to expand at constant composition with each pressure decrement and then gas was extracted at constant pressure, thus simulating reservoir withdrawals. The material balance calculations resulting from these tests are believed to depict more realistically the actual reservoir performance than calculation of the material balance by means of equilibrium constants.

Based on a permeability variation of .30 as defined by Standing⁷ the dry gas cut at the producing wells was estimated from the first breakthrough at a producing well until the economic limit of injection was reached.

Extraneous gas is available in excess of present available market in a reservoir below the zone studied and consequantly at a higher pressure. This gas would be used as make up gas in the pressure maintenance case to compensate for losses due to fuel consumption and condensate production.

After the economic limit is reached it is assumed that gas sales will begin again at the present rate and that prevailing prices would still be applicable.

Since the field is just beginning to enter the retrograde condensation phase considerably more condensate will be

produced by pressure maintenance if this procedure can be started at once. The greater the decline in pressure before injection commences the greater will be the losses in the reservoir and the higher will be the value of extraneous gas injected.

Because of the loss in gas sales during the period of pressure maintenance this procedure does not appear economically attractive unless market availability for present gas sales can be filled from another source of gas. The ultimate recovery of condensate through pressure maintenance is excellent from a conservation point of view since over 90% of the available condensable hydrocarbon is expected to be recovered through the combination of dry gas injection to maintain pressure, to be followed by reservoir blowdown to depletion.

C. Cycling with Pressure Depletion

Return to the reservoir of available gas from the high pressure separator constitutes normal cycling. Since a net voidage situation exists as a result of shrinkage and fuel losses from the produced gas, normal cycling results in only partial pressure maintenance. However, the pressure reduction would be little more than 40% during the full economic cycling life.

As in the case studied for full pressure maintenance, two wells would be used for injection of residue gas and four wells would be used for production of the wet gas effluent as indicated in the sweep model study. (See Figure 8.)

In this analysis gas sales are continued at the present rate which is dictated by the available gas market. Provision is made for compressors adequate to compress 40 million standard cubic feet of residue gas per day for injection. All wet gas produced is processed through the low temperature units on offshore platforms. The sales gas and all the condensate produced is charged to the sales gas line provided by the gas company.

The amount of condensate produced will be governed by the equilibrium saturation at the prevailing producing bottom hole pressure until breakthrough of detectable dry gas. From this point onward the increasing dry gas cut will be governed by the permeability stratification as well as by the areal sweep pattern. As the cycling reaches its economic limit, the compressors will be shut down and sales gas production will continue to deplete the field. Production below 1300 psi was not considered in this study, since compression would be required to charge the sales gas line which is maintained in excess of 1000 psi.

It is predicted that normal cycling to .67 reservoirgas cut followed by pressure blowdown will result in the recovery of 26,876,000 stock tank barrels of condensate or 67% of the available condensable hydrocarbons. Although the total amount of condensate produced through normal cycling is considerably less than for the pressure maintenance case, the

present worth of the income from early gas sales tended to make normal cycling more attractive economically. The advantage of normal gas cycling, then, is continued income from the available market for gas while producing more condensate than would have been produced through normal pressure depletion and by producing this condensate earlier in the life of the field and in excess of available market for residue gas.

CHAPTER V

CONCLUSIONS

A. Comparison of Ultimate Recoveries

In a condensate reservoir, income is derived from the sales, not only of the residual gas produced, but also the liquids produced from the reservoir gas by mechanical separation or other type of plant processing. The ultimate quantity of these fluids produced is of importance as well as the rate of this production.

The original gas in place is the same in any case. The ultimate produced quantity of this gas, however, is governed by the amount of fuel required in its production, or in the production of its condensate, and also by the reservoir pressure at abandonment. The time at which this gas will be produced is dependent, of course, on the rate at which it is produced which in turn is dependent on the available marketing possibilities. In each of the alternatives studied the ultimate quantity of gas recovered was essentially the same, while the timing of the recovery of the gas was dependent on the method of field exploitation.

The amount of condensate recovered is dependent on the pressure within the reservoir while being produced, since the retrograde properties of the reservoir fluid causes much of the heavier liquid hydrocarbon to remain within the reservoir
rock. By producing the reservoir at a pressure at which retrograde condensation will not occur or where it approaches some minimum value the quantity of condensate ultimately recovered is increased.

The rate at which condensate is produced is dependent upon the rate of gas production unless some extraordinary means is provided to extract the condensate in advance of gas sales. This is the case in most gas reservoirs since pressure depletion without gas cycling is generally the method used for recovery.

By cycling a part or all of the gas produced back into the reservoir not only can the condensate be extracted in advance of a gas market, but also the pressure can be maintained at a level where little or no retrograde loss will occur in the reservoir. In the pressure maintenance case the rate of condensate recovery is limited only by the size of compressor plant installed. In the normal cycling case the rate is determined by the sum of the available gas market coupled with the capacity of the compressors. Under pressure maintenance essentially all, 95%, of the condensate is ultimately recovered and through normal cycling 67% is recovered. When compared with recovery of condensate by pressure depletion of only 38% of the liquid, it is apparent that cycling is an important conservation measure.

A comparison of ultimate recovery for both gas and condensate is presented in Table I. A plot of predicted

cumulative condensate recovery versus time is presented as Figure 9.

B. Economic Analysis of Alternatives

Since the quantity of gas ultimately to be recovered is essentially the same by any method of exploitation, the only factor in gas production contributing to its present value, and hence important in an economic analysis, is the time at which this gas is produced. In order to obtain maximum value from this valuable resource, the gas should be produced in as great a quantity as can be marketed. In the case of pressure depletion and in the case for normal gas cycling, gas was sold at the maximum rate limited only by the market obtainable. In the case for pressure maintenance the sale of gas was postponed for thirty years and this fact contributed to the reduced present worth for this alternative.

Through pressure depletion 15,430,000 barrels of condensate would be produced which is 38.6 per cent of the liquid originally in the reservoir. Should cycling while continuing to market gas be adopted, 26,876,000 million barrels of condensate would be recovered. This is possible because increased condensate recovery while the reservoir pressure is still relatively high is made possible by the larger quantity of gas passing through the separators. Under the pressure maintenance program nearly all of the condensate, 38,090,000 barrels, can

Years

be expected to be recovered, since the retrograde condensation caused by drop in reservoir pressure will not occur.

A summary of the economic comparison of the three alternative studies is included as Table I. From this summary it can be seen that the normal cycling program has the greatest present worth to an investor. This results from maximizing the value of gas in place by making use of the available market and combining this income with increased condensate recovery through retrieval at elevated pressure. Earlier retrieval of this condensate further contributes to its present net worth.

Pressure maintnenace results in the maximum ultimate recovery of both the residue gas and the condensate. The postponement of gas sales until the economic limit of the cycling of the injection gas is reached, however, makes this procedure unattractive economically. Only if there was no market for gas at the present time, or if the available market could be satisfied by gas from another pool, could investment in pressure maintenance prove feasible. In this event, pressure maintenance would be the logical choice since the gas would have no present value for any of the alternatives and extraneous gas injection to maintain pressure would result in valuable recovery of condensate not otherwise obtainable.

The pressure depletion of the reservoir proves to be the least attractive program both from the conservationist viewpoint of quantity of hydrocarbons recovered and from the investor's

TABLE I

ECONOMIC SUMMARY

	Pressure Depletion	Pressure Maintenance	Normal Cycling
Project Life	50 years	80 years	50 years
Condensate Production, M-Barrels	15,430	38,090	26,876
Total Sales Gas Production, MMMSCF	492.7	492.7	492.7
Ultimate Condensate Recovery, % of original	38.6	95.0	67.2
Gross Working Interest Income, M-\$	114,934	175,367	142,860
Operating Expense, M-\$	4,100	16,367	11,760
Operating Income, M-\$	110,834	159,000	131,100
Capital Investment, M-\$		4,000	5,000
Total Cash Flow, M-\$	110,834	155,000	126,100
Present Value, M-\$	38,750	30,000	47,784

approach to maximizing profit from the invested dollar. From market data available pertaining to recovery from this field, some steps toward increasing condensate recovery by gas cycling should be taken at the earliest possible time. Since the reservoir is entering the retrograde phase now, time is of the essence if losses from this phenomenon are to be prevented.

Graphs of the Annual and Cumulative Cash Plans versus time are shown for the three alternatives studied in Figures 10, 11, and 12.

Capital expenditures required for gas cycling are given in Table VIII, page 72.

Annual and Cumulative Cash Flow Straight Pressure Depletion

at Current Rate

Annual and Cumulative Cash Flow

Figure 12

Annual and Cumulative Cash Flow

Normal Gas Cycling with Pressure Depletion

CHAPTER VI

RECOMMENDATIONS

Based on the conclusions determined by the investigation of the supplementary condensate recovery programs studied, it is recommended that the following course of action be undertaken by the field operators:

1. Organize an active operators committee for the express purpose of working toward the unitization of the reservoir.

2. Charge the technical subcommittee with the responsibility of a detailed engineering design for a successful normal cycling program.

3. Charge the appropriate subcommittee with the preparation of unitization and operating agreements.

4. Dedicate the manpower necessary to complete the engineering design at the earliest possible time to gain the advantage of the highest reservoir pressure attainable during recovery.

5. Commence normal cycling of the residue gas to increase condensate recovery at the earliest practicable date.

BIBLIOGRAPHY

- B. C. Craft and M. F. Hawkins, "Applied Petroleum Reservoir Engineering," Prentice Hall Publishing Co. (1959).
- Bowers, Marion Clark, Master's Thesis, University of Texas, "The Comparison of Cycling versus Straight Pressure Depletion of the Grapeland Field, Houston County, Texas," 1950.
- 3. Robertson, Lake, Jr., Master's Thesis, University of Texas, "An Economic Comparison of the Partial Cycling and Full Pressure Depletion Methods of Producing the Krotz Springs Field, St. Landry Parish, Louisiana," 1954.
- 4. Brinkley, T. W., "Calculation of Rate and Ultimate Recovery from Gas Condensate Reservoirs," AIME 1028-9-.
- Hurst, W., "Water Influx into a Reservoir and Its Application to the Equation of Volumetric Balance," Trans. AIME (1942) 146, 263.
- 6. van Everdingen, A. F., and Hurst, W., "The Application of the Laplace Transformation to Flow Problems in Reservoirs," Trans. AIME (1949) 186, 305.
- Standing, M. B., et al., "Calculated Recoveries by Cycling from a Retrograde Reservoir of Variable Permeability," AIME Tech. Pub. No. 2207, May 1947.
- 8. Pirson, S. J., "Oil Reservoir Engineering," McGraw-Hill Publishing Company, New York (1958).
- 9. Muskat, M., "Physical Principles of Oil Production," McGraw-Hill Publishing Co., New York (1949).
- Douglas, J., Peaceman, D. W., and Rachford, H. H., "A Method of Calculating Multi-Dimensional Immiscible Displacement," Trans. AIME (1959), Vol. 216, 297.
- 11. Seba, R. D., Doctoral Dissertation, The University of Texas, "Oil and Gas Recovery and Reservoir Performance in Relation to Permeability Variation," January 1961.

- 12. Clark, J. Donald, "Analysis, Performance, and Prediction of Gas Reservoirs," paper presented at The University of Texas (November, 1963).
- 13. Hurst, W., "Unsteady Flow of Fluids in Oil Reservoirs," Physics, Vol. 5 (1934), 20.

DEFINITION OF TERMS

We Water influx

- C_{ew} Effective water compressibility (taking into account rock expansion into pore space because of geostatic compression of the reservoir rock
- R_b Equivalent field radius
- G_{pw} Cumulative wet gas produced (SCF)
- G Initial gas in place (SCF)
- K Permeability in darcies
- p Porosity
- μ_w Viscosity of water
- he Effective pay thickness
- ev van Everdingen and Hurst water influx constant
- Qsc Flow rate for well tests
- T_f Temperature of formation (degrees Rankine)
- µg Viscosity of gas
- m Slope of drawdown curve (psi/cycle)
- P Reservoir pressure (psia)
- Bg Gas formation volume factor
- Z Gas deviation or compressibility factor
- i Subscript denoting initial value
- △P Reservoir pressure decrement
- Qr Infinite aquifer values of dimensionless water influx for values of dimensionless time, t_D
- tp Dimensionless time
- A Water influx constant
- T Real time
- VB Bulk volume of the reservoir

TABLE II

Area	Planimeter (sq. in.)	Area (acres)	Ratio of Areas	Interval ft.	Equation	∆V acre-ft.
A ₀	21.60	1983.46				
A 1	15.15	1391.18	.70	20	Trap	33746
A 2	12.65	1161.61	.83	20	Trap	25528
A ₃	10.23	939.39	.81	20	Trap	21010
A ₄	8.44	775.02	.83	20	Trap	17144
A 5	6.80	624.42	.80	20	Trap	13994
A 6	5.35	491.27	.79	20	Trap	11157
A ₇	. 52	47.75	.096	20	Pyr.	4613
A 8	.14	12.86	.27	20	Pyr.	569
A 9	0	0	.00	15	Pyr.	64

CALCULATION OF INITIAL GAS IN PLACE BY VOLUMETRIC METHOD

 $1 \text{ in}^2 = 91.827 \text{ acres}$

Pyramidal formula: $\Delta V_{B} = \frac{h}{3}(A_{n}+A_{n+1}+\sqrt{A_{n}A_{n+1}})$ Trapezoidal formula: $\Delta V_{B} = \frac{h}{2}(A_{n} + A_{n+1})$ $V_{B} = 127,825 \text{ acre-ft}$ $G = 7758 \times V_{B} \times \phi \times (1 - S_{w}) \times B_{G}$ $G = 7758(.28)(.8)(1862.2)(127,825) = 415 \times 10^{9} \text{ scF}$ $\phi = .28$ $S_{w} = .20$ $B_{g} = .000537 \text{ bbl/cu.ft. or } 1862.2 \text{ scF/bbl}$ Calculation of Flow Capacity $K_{he} = \frac{(0.819)(Q_{sc})(T)(Z)(\mu_{g})}{(m)(P)}$

TABLE II--Continued

$$K_{h_e} = \frac{(0.819)(9400)(700)(1.327)(.034)}{(34.5)(8000)} = .880 \text{ darcy-ft.}$$

 $K = \frac{.880}{17.5} = .050 \text{ darcies}$

TABLE III

MONTHLY PAST PRODU	CT	1(JN
--------------------	----	----	----

	MCF GAS	BBLS DISTILLATE	BBLS WATER
1/61	76,227	3,733	8
2/61	250,783	15,098	368
3/61	211,234	16,196	399
4/61	409,576	27,841	130
5/61	538,319	42,100	86
6/61	543,289	42,403	282
7/61	388, 364	28,872	143
8/61	263, 335	18,530	35
9/61	217,357	15,133	84
10/61	433,201	30,583	138
11/61	553,913	39,992	300
12/61	729,040	54,549	217
1961	4,614,638	335,030	2,190
1/62	750,948	54,465	279
2/62	696,327	52,138	112
3/62	758,887	57,031	465
4/62	741,272	56,523	420
5/62	756,234	55,536	434
6/62	618,763	45,731	322
7/62	675,888	52,441	319
8/62	696,371	47,460	465
9/62	721,975	49,439	348
10/62	712,711	49,682	496
11/62	787,513	60,470	420
12/62	788,886	60,725	527
1962	8,705,775	641,641	4,607
1/63	723,591	61,729	465
2/63	626,203	49,738	28
3/63	697,915	51,312	31
4/63	610,953	49,704	300
5/63	514,623	40,434	243
6/63	358,040	31,177	108
7/63	625,669	47,156	280
8/63	620,714	49,127	424
9/63	665,982	45,531	
10/63	666,848	46,491	
11/63	686,364	43,249	
12/63	691,439	49,899	
1963	7,470,341	565,547	1,879
TOTAL	20,790,754	1,542,218	8,676

TABLE IV

PRESSURE DRAWDOWN-BUILDUP TEST

Offshore, Louisiana

		Pre	essure Drawdown	
Date	Time	Elapsed Time Days	Bottom Hole Press. Psig.	Remarks
3-24-64	9:00 A.M.			Wound 72 hour clock
	9:10			Engaged clock & stylus
	9:15			Pressured lubricator
	9:35		8236	Bomb placed at 11,745'
	10:45	0	8236	Started opening well
	10:52-1/2	.0052	7943	Well flowing 9400 MCF
	11:00	.0104	7892	
	11:07-1/2	.0156	7884	
	11:15	.0208	7884	
	11:30	.0313	7876	
	11:45	.0417	7876	
	12:00 noon	.0521	7867	
	12:30 P.M.	.0729	7867	
	1:00	.0938	7859	
	1:30	.1146	7867	
	2:00	.1354	7867	
	2:30	.1562	7867	
	3:00	.1771	7867	
	3:30	.1979	7867	
	4:00	.2187	7867	
	4:30	. 2396	7867	
	5:00	.2604	7867	
	5:30	.2812	7867	
	6:00	.3021	7867	
	6:30	. 3229	7859	
	7:00	. 3437	7859	
	7:30	.3646	7859	
	8:00	.3854	/859	
	8:30	.4062	7859	
	9:00	.4271	/859	
	9:30	.4479	/859	
	10:00	.4687	/851	
	10:30	.4896	/851	
	11:00	.5104	/851	
	11:30	.5312	/851	
	12:00 midnt.	.5521	7842	

		Pre	ssure Drawdown	
Date	Time	Elapsed Time Days	Bottom Hole Press. Psig.	Remarks
3-25-64	12:30 A.M. 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 noon 12:30 P.M. 1:00 1:30 2:00 2:30 3:00 5:30 6:00 10:00 10:30 11:00 11:30 12:00 noon 12:30 P.M. 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 5:30 6:00 5:30 6:00 5:30 6:00 5:30 6:00 5:30 6:00 6:30 5:00 5:30 6:00 6:00 6:30 5:00 5:30 6:00 6:00 6:30 5:00 5:30 6:00 5:30 6:00 5:30	Days . 5729 . 5937 . 6146 . 6354 . 6562 . 6771 . 6979 . 7187 . 7396 . 7604 . 7812 . 8021 . 8229 . 8437 . 8646 . 8854 . 9062 . 9271 . 9479 . 9687 . 9896 1.0100 1.0310 1.0520 1.0730 1.0940 1.1150 1.1350 1.1560 1.1770 1.1980 1.2190 1.2400 1.2600 1.2810 1.3020	Press. Psig. 7842 7843 7825 7825 7817 7813 7809 7809 7800 7800 7800 7800 7800 7800 7792 7792 7792 7792 7792 7792 7792 7792 7788 7788 7788 7784 7784 7784 7784 7784 7784 7784 7784 7780 7780 7780 7780 7780 7780 7780 7776 7776 7776 7777 7767 7767 7767 7763 7759 7759 7759	Remarks
	7:00 7:30 8:00 8:30	1.3440 1.3650 1.3850 1.4060	7755 7751 7751 7746	

TABLE IV--Continued
.

		Pres	sure Drawdown		
Date	Time	Elapsed Time Days	Bottom Hole Press. Psig.	Remarks	
3-25-64	9:00 P.M.	1.4270	7746		
(Cont.)	9:30	1.4480	7742		
	10:00	1.4690	7742		
	10:30	1.4900	7738		
	11:00	1.5100	7738		
	11:30	1.5310	7734		
	12:00 midnt.	1.5520	7734		
3-26-64	12:30 A.M.	1.5730	7734		
	1:00	1.5940	7734		
	1:30	1.6150	7734		
	2:00	1.6350	7734		
	2:30	1.6560	7730		
	3:00	1.6770	7730		
	3:30	1.6980	7725		
	4:00	1.7190	7725		
	4:30	1.7400	7725		
	5:00	1.7600	7721		
	5:30	1.7810	7721		
	6:00	1.8020	7717		
	6:30	1.8230	7717		
	7:30	1.8650	7717		
	8:30	1.9060	7709		
	9:30	1.9480	7709		
	10:30	1.9900	7700		
	11:30	2.0310	7692		
	12:30 P.M.	2.0520	7688		
	1:30	2.0730	7683		
	2:30	2.1560	7680		
	3:00	2.1770	7680		
	4:00	2.2190	7675		
	5:00	2.2600	7675		
	6:00	2.3020	/671		
	7:00	2.3440	7671		
	8:00	2.3850	/6/1	(0.1	01 . 11
	9:00	2.4270	/6/1	60 hrs.	Shut well in.

TABLE IV--Continued

			Pre	ssure Buildup		
Date	Time	Elapsed Hours	Time Days	Surface DWT Press. Psig.	Bottom Hole Press. Psig.	Remarks
3-26-64	9:00 P.M.	0	0	4745	7671	Shut well in.
	9:01	-	.0007	6480		
	9:02	_	.0014	6510		
	9:03	_	.0021	6530		
	9:04	_	.0028	6535		
	9:05	_	.0034	6542		
	9:07-1/2	.125	.00.52	6547	7960	
	9:10	.167	.0069	6551		
	9:15	. 2.50	.0104	6552	7977	
	9:22-1/2	. 370	.0156	6556	6985	
	9:30	. 500	.0208	6555	7989	
	9:37-1/2	. 620	.0260	6555	7994	
	9:45	. 750	.0312	6554	7994	
	10:00	1.000	.0417	6554	7994	
	10:15	1,250	.0521	6552	7994	
	10:30	1.500	.0625	6551	7994	
	10:45	1.750	.0729	6550	7994	
	11:00	2,000	.0833	6548	7994	
	11:30	2.500	.1042	6548	7994	
	12:00 A.M.	3.000	.1250	6548	7994	
	12:30	3.500	.1458	6548	7994	
	1:00	4.000	.1667	6549	7994	
	1:30	4.500	.1875	6550	7994	
	2:00	5.000	. 2083	6552	7994	
	2:30	5.500	. 2292	6555	7989	
	3:00	6.000	. 2400	6562	7985	
	3:30	6.500	.2708	6566	7977	
	4:00	7.000	. 2917	6570	7977	
	4:30	7.500	. 3125	6575	7977	
	5:00	8.000	. 3333	6578	7977	
	5:30	8.500	. 3542	6579	7973	
	6:00	9.000	. 3750	6580	7968	
	6:30	9.500	. 3958	6583	7968	
	7:00	10.000	.4167	6585	7968	
	7:30	10.500	.4375	6586	7968	
	8:00	11.000	.4583	6586	7968	
	8:30	11,500	4792	6586	7968	
	9:00	12.000	0.5000	6586	7968	Started out of hole.

TABLE IV--Continued

		Static Pressures 15,000# Element	
Depth	Bottom Hole Press. Psig.	∆P	Gradient (Psi/ft.)
0	6627		
10,500	7993		
11,000	8018	25	.050
11,500	8068	50	.100
11,780	8102	34	.121
11,835			

TABLE V

PRESENT WORTH

STRAIGHT DEPLETION OF PRESSURE

AT CURRENT RATE

Year	Condensate Bbls	Wet Gas MMSCF	Gross Income	Oper. Costs	Undeferred Net Income	Deferred Net Profit
_						
1	617490	9346	3052287	124439	2927848	2842940
2	585247	9346	29/362/	120005	2853622	2616770
3	54/395	9346	2881280	114801	2/664/9	2390240
4	511/8/	9346	2794409	109904	2684505	2190556
5	482908	9346	2023993	100059	2010001	2013290
6 7	4261/8	9346	2020/42	102238	2226484	17000/0
/	429440	9340	2090002	90393	2494949	1591370
0	380447	9346	2343770	93084	2447944	1/656/0
10	272718	9346	2495945	9078/	2402000	1359500
10	2/2/10	9540	2455150	90784	2004040	1339300
11	356082	9346	2414540	88494	2326046	1263040
12	342718	9346	2381940	86658	2295282	1175185
13	333745	9346	2360050	85424	2274626	1098645
14	318231	9346	2322200	83291	2238909	1020940
15	311502	9346	2305784	82364	2223420	953850
16	300 380	9346	2278650	80836	2197814	890150
17	295987	9346	2267933	80234	2187699	835700
18	289259	9346	2241420	79307	2172213	784170
19	282623	9346	2235330	78394	2156936	733360
20	278137	9346	2224385	77778	2146607	689060
21	273744	9346	2213668	77174	2136494	647360
22	271501	9346	2208195	76864	2131331	609460
23	267015	9346	2197250	76249	2121001	572670
24	262623	9346	2186533	75644	2110889	563165
25	2 60380	9346	2181064	75334	2104730	505375
26	258136	9346	2175589	75028	2100561	474725
27	255893	9346	2170117	74719	2094398	448415
28	255893	9346	2170117	74719	2095398	423875
29	253650	9346	2164646	74411	2090235	397145
30	251407	9346	2159172	74102	2085070	375310

Year	Condensate Bbls	Wet Gas MMSCF	Gross Income	Oper. Costs	Undeferred Net Income	Deferred Net Profit
31 32 33 34 35 36 37 38 39 40	250 380 249258 2481 36 2447 70 2447 70 2447 70 2447 70 2447 70 2447 70 2447 70 2447 70	9346 9346 9346 9346 9346 9346 9346 9346	2146667 2153930 2151190 2142980 2142980 2142980 2142980 2142980 2142980 2142980 2142980	73961 73807 13653 73190 73190 73190 73190 73190 73190 73190 73190	2082706 2080123 2077537 2069790 2069790 2069790 2069790 2069790 2069790 2069790	347810 330740 313710 293910 277351 262860 246300 233890 219400 206979
41 42 43 44 45 46 47 48 49 50	244770 244770 244770 244770 244770 244770 244770 244770 244770 244770	9346 9346 9346 9346 9346 9346 9346 9346	2142980 2142980 2142980 2142980 2142980 2142980 2142980 2142980 2142980 2142980 2142982	73190 73190 73190 73190 73190 73190 73190 73190 73190 73190 73190	2069790 2069790 2069790 2069790 2069790 2069790 2069790 2069790 2069790 2069790	$195180 \\ 184830 \\ 173860 \\ 164340 \\ 154820 \\ 146334 \\ 140124 \\ 130600 \\ 123150 \\ 115910 \\ 12510 \\ 115910 \\ 184800 \\ 184800 \\$
TOTAL	15429856	467300				38749249

TABLE V--Continued

TABLE VI

PRESENT WORTH

PRESSURE MAINTENANCE WITH GAS CYCLING

40 MMSCF PER DAY

Years	Condensate Bbls	Wet Gas MMSCF	Gross Income	Oper. Costs	Undeferred Net Income	Deferred Net Profit
1 2 3 4 5 6 7 8	$ \begin{array}{c} 1000000\\ 100000\\ 100000\\ 100000\\ 100000\\ 100000\\ 100000\\ 100000\\ 100000\\ 100000\\ 0000\\ 0000\\ 00000\\ 00000\\ 000\\ 0000\\ 00$		2439650 2439650 2439650 2439650 2439650 2439650 2439650 2439650	441500 441500 441500 441500 441500 441500 441500	1998150 1998150 1998150 1998150 1998150 1998150 1998150 1998150	(-2059800) (-227497) 1498900 1630490 1536600 1450660 1368700 1290800
9 10	1000000 1000000		2439650 2439650 2439650	441500 441500 441500	1998150 1998150 1998150	1218900 1149000
11 12 13 14 15 16 17 18 19 20	$\begin{array}{c} 1000000\\ 1000000\\ 1000000\\ 1000000\\ 1000000\\ 1000000\\ 1000000\\ 1000000\\ 1000000\\ 1000000\\ 920000 \end{array}$		2439650 2439650 2439650 2439650 2439650 2439650 2439650 2439650 2439650 2439650 2244500	$\begin{array}{r} 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 441500\\ 430500\end{array}$	1998150 1998150 1998150 1998150 1998150 1998150 1998150 1998150 1998150 1998150 1814000	1085000 1023000 965100 911160 857200 809250 763300 721300 679370 641400
21 22 23 24 25 26 27 28 29 30 UBTOTAL	890000 860000 830000 780000 750000 730000 710000 690000 670000 27640000		2171300 2098100 2024900 1976100 1902900 1829700 1780900 1732200 1683400 1634600	426375 422250 418125 415375 411250 407125 404375 401625 398875 396125	$1744925 \\ 1675850 \\ 1606775 \\ 1560725 \\ 1491650 \\ 1422575 \\ 1376525 \\ 1330575 \\ 1284525 \\ 1238475 \\ 1238$	605440 571500 539500 507500 479560 451580 427600 403630 379650 359670 24325760
RESER	VOIR BLOWDOWN	N				
80 TOTAL	10450000 38090000	482.3 482.3	105625267	3446150	102179117	5687293 30013053

TABLE VII

PRESENT WORTH

GAS CYCLING WITH PRESSURE DEPLETION

GAS SALES AT CURRENT RATE

Year	Condensate Bbls	Wet Gas MMSCF	Gross Income	Oper. Costs	Undeferred Net Income	Deferred Net Profit
1	1605475	03/5 6	5462600	564295	4909315	(2/ 3735)
2	1521642	9345.0	5258100	552760	4090313	(-243735)
2	1423230	9345 6	5018000	539230	4705540	3869660
4	1330646	9345 6	4792100	526500	4265600	3480730
5	1255560	9345.6	4608950	516175	4092775	3147350
6	1186062	9345.6	4439400	506620	3932780	2855200
7	1116565	9345.6	4269860	497065	3772795	2584360
8	1064565	9345.6	4143000	389913	3653086	2359900
9	1012562	9345.6	4016130	482765	3533365	2155350
10	969067	9345.6	3910000	476785	3433215	1974100
11	925813	9345.6	3804500	470835	3333665	1810180
12	891067	9345.6	3719700	466055	3253645	1665870
13	867737	9345.6	3662800	462845	3199955	1545600
14	744660	9345.6	3362540	445925	2916615	1330000
15	688420	9345.6	3225330	439193	2787137	1195700
16	632300	9345.6	3088420	430475	2657945	1076467
17	588720	9345.6	2982100	424485	2557615	977000
18	545253	9345.6	2876060	418535	2456525	887170
19	510700	9345.6	2791760	413755	2378005	808521
20	477280	9345.6	2710244	409165	2301079	738810
21	273744	9345.6	2213670	77175	2136495	647360
22	271500	9345.6	2208200	76865	1231335	609560
23	267015	9345.6	2197250	76265	2120985	572670
24	262623	9345.6	2186540	75645	2110895	536170
25	260380	9345.6	2181060	75335	2105725	505375
26	258136	9345.6	2175600	75025	2100575	474730
27	255893	9345.6	2170120	74720	2095400	448415
28	255893	9345.6	2170120	74720	2095400	523270
29	253650	9345.6	2164650	74410	2090240	397145
30	241407	9345.6	2149170	74105	2085065	375310

Year	Condensate Bbls	Wet Gas MMSCF	Gross Income	Oper. Costs	Undeferred Net Income	Deferred Net Profit
	0.50.000					0/-010
31	250380	9345.6	2156670	73965	2082705	347810
32	249248	9345.6	2153930	73805	2080125	330740
33	248136	9345.6	2151190	73665	2077535	313700
34	244770	9345.6	2143000	73190	2069810	293910
35	244770	9345.6	2143000	73190	2069810	277350
36	244770	9345.6	2143000	73190	2069810	262870
37	244770	9345.6	2143000	73190	2069810	246300
38	244770	9345.6	2143000	73190	2069810	233900
39	244770	9345.6	2143000	73190	2069810	219400
40	244770	9345.6	2143000	73190	2069810	207000
41	244770	9345.6	2143000	73190	2069810	195180
42	244770	9345.6	2143000	73190	2069810	184800
43	244770	9345.6	2143000	73190	2069810	173860
44	244770	9345.6	2143000	73190	2069810	164340
45	244770	9345.6	2143000	73190	2069810	154820
46	244770	9345.6	2143000	73190	2069810	146340
47	244770	9345.6	2143000	73190	2069810	140130
48	244770	9345 6	2143000	73190	2069810	1 30 600
40	244770	9345 6	2143000	73190	2069810	123150
50	244770	0345 6	21/3000	73190	2069810	115900
50	244770	3343.0	2145000	/5150	2009010	113,900
TOTAL	26876429	467280				47784138

TABLE VII--Continued

-

-

TABLE VIII

CAPITAL EXPENDITURES

Pressure	Maintenance - Cycling	g without gas sales	5
	Recomplete 9 New Well 11 Recomplete 10 New Well 5 Recomplete 4 Well 6	\$ 70,000 600,000 70,000 600,000 70,000 0	
			\$1,410,000
Platform	I		
	Fabrication Installation	320,000 80,000	
			\$ 400,000
Compress	ors		
	Fabrication Installation	1,116,000 90,000	
			\$1,206,000
Pipe			
	High pressure line Sales gas line	25,000 100,000	
			\$ 125,000
Separati	on Facilities		\$ 971,500
			\$4,000,000
Addition	al Plant Required for	Normal Cycling	
	New well Sales gas line	\$ 700,000 300,000	
			\$1,000,000
Total fo	r normal gas cycling		\$5,000,000

APPENDIX I

MATERIAL BALANCE CALCULATION


```
PROGRAM GASRES
      DIMENSION A(6,6),B(6),T(381),Q(381),DELP(20),P(20),GP(20),DP(20)
      DIMENSION WP(20), GPW(20), WI(20), DELBG(20)
      COMMON A, B, TEMP, PC, TC, T, Q, K, DELP
      PRINT 800
  800 FORMAT(1H1)
      PRINT 101
  101 FORMAT(44H RESERVOIR COMPUTER PROJECT---ENERGY BALANCE,//)
C
      DATA INPUT FOR SUBROUTINE ZCALC CONSTANTS
      DO 1000 J=1,6,1
      DO 1000 I=1,6,1
      READ 200, A(I, J)
  200 FORMAT(13X, F14.11)
 1000 CONTINUE
      DO 1010 I=1,6,1
      READ 201, B(I)
  201 FORMAT(F14.11)
1010 CONTINUE
C
      DATA INPUT FOR SUBROUTINE QFUNCT TABLE
      DO 1020 I=1,381,3
      READ 202 \cdot T(I) \cdot Q(I) \cdot T(I+1) \cdot Q(I+1) \cdot T(I+2) \cdot Q(I+2)
  202 FORMAT(F12.2,F12.3,F12.2,F12.3,F12.2,F12.3)
1020 CONTINUE
C
      DATA INPUT FOR RESERVOIR PROPERTIES
      READ 203, AIWEL
      READ 203, CONV
      READ 203,RI
      READ 203, DEPTH
      READ 203, TEMP
      READ 203, SGI
      READ 203,0
      READ 203,AH
      READ 203,SG
      READ 203,U
      READ 203,AK
      READ 203, TIME
      READ 203, SGR
      READ 203,SWC
      READ 203,PI
      READ 203,PC
      READ 203, TC
      READ 203, BW
      READ 203, CPI
  203 FORMAT(F16.7)
      INC=CPI
С
      DATA INPUT FOR RESERVOIR PRODUCTION
      DO 1030 I=1, INC, 1
      READ 204, GP(I), DP(I), WP(I)
  204 FORMAT (3F20.0)
 1030 CONTINUE
      PRINT 102
  102 FORMAT(19H RESERVOIR DATA FOR,/)
      DATA PRINT OUT FOR RESERVOIR PROPERTIES
C
      PRINT 300, INC
  300 FORMAT(45H INC, CURRENT NUMBER OF PRODUCTION INCREMENTS=, 14)
      PRINT 301, AIWEL
```

301	FORMAT(48H MAX. NUMBER OF PRODUCING WELLS AT ANY ONE TIME=,F6.1) PRINT 302,BW
302	FORMAT(50H BW, FORMATION VOLUME FACTOR FOR WATER IN BBLS/STB=, F6.3) PRINT 303, CONV
303	FORMAT(44H CONV,SCF OF VAPOR PER BARREL OF DISTILLATE=,F7.1) PRINT 304,RI
304	FORMAT(48H RI, RADIUS TO INITIAL EDGE OF RESERVOIR IN FEET=, F8.1) PRINT 305, DEPTH
305	FORMAT(34H DEPTH, DEPTH OF RESERVOIR IN FEET=, F8.1) PRINT 306, TEMP
306	FORMAT(50H TEMP, TEMPERATURE OF RESERVOIR IN DEGREES RANKINE=, F7.1) PRINT 307, PC
307	FORMAT(36H PC, PSEUDOCRITICAL PRESSURE IN PSIA=, F6.1) PRINT 308, TC
308	FORMAT(50H TC, PSEUDOCRITICAL TEMPERATURE IN DEGREES RANKINE=, F6.1) PRINT 309, SGI
309	FORMAT(40H SGI, INITIAL GAS SATURATION AS FRACTION=, F5.3) PRINT 310,0
310	FORMAT(24H 0, POROSITY AS FRACTION=, F5.3) PRINT 311, AH
311	FORMAT(43H AH, AVERAGE THICKNESS OF RESERVOIR IN FEET=, F6.1) PRINT 312, SG
312	FORMAT(44H SG, SPECIFIC GRAVITY OF GAS RELATIVE TO AIR=, F7.4) PRINT 313,U
313	FORMAT(46H U,VISCOSITY OF RESERVOIR WATER IN CENTIPOISE=,F6.3) PRINT 314,AK
314	FORMAT(47H AK, WATER PERMEABILITY OF RESERVOIR IN DARCIES=, F7.4) PRINT 315, TIME
315	FORMAT(33H TIME,TIME INTERVAL USED IN DAYS=,F7.2) PRINT 316,SGR
316	PRINT 317,SWC
317	PRINT 802
802	FORMAT(1H ,/) DATA INPUT FOR RESERVOIR PRESSURE
205	READ 205,P(I) FORMAT(F10,3)
1040	CONTINUE MAIN BODY OF PROGRAM WITH CALCULATIONS PRINT 103
103	FORMAT(16H TIME PRESSURE,9X,1HZ,10X,10HBG,BBL/SCF,8X,6HDEL BG,6X 1,14HRES. WITH.,BBL) DELP(1)=0.0 XW=0.0 YW=0.0 YY=0.0 WY=0.0 WW=0.0 C=0.00514590*TEMP DELTD=1858064.0*AK*TIME/(U*0*RI*RI)
	S=P(1) CALL ZCALC(S,Z)

С

С

BGI=C*Z/S Y=0.0

```
L=0
     X = 0 . 0
     PRINT 400, L, S, Z, BGI, Y, X
400 FORMAT(I5,2X,F10.3,2X,E14.8,2X,E14.8,2X,E14.8,2X,E14.8)
    DO_2 K=2, INC, 1
    L=K-1
    \mathsf{DELP}(\mathsf{K}) = \mathsf{P}(\mathsf{K}-1) - \mathsf{P}(\mathsf{K})
    CALL INFLUX(DELTD,WD)
    WI(K) = WD
    W = WD
     S=P(K)
    CALL ZCALC(S,Z)
    BG=C*Z/S
    GPW(K) = GP(K) * BG + WP(K) * BW + DP(K) * CONV * BG
    X = GPW(K)
    Y = BG - BGI
    DELBG(K) = Y
    XW = X * W + XW
    XY = X * Y + XY
    YW = Y * W + YW
    YY = Y * Y + YY
    WW = W * W + WW
    PRINT 400, L, S, Z, BG, Y, X
  2 CONTINUE
    G = ((XY * WW) - (XW * YW)) / ((WW * YY) - (YW * YW))
     AA = (XW - G * YW) / WW
     PRINT 401,G,AA
401 FORMAT(1H ,//,14H L.M.S. G,SCF=,E14.8,/,23H WATER INFLUX CONSTANT=
   2,E14.8,//)
    PRINT 104
104 FORMAT(16H TIME PRESSURE,6X,5HDEL P,3X,14HWATER INFL,BBL,2X,14HP
   3ERIODIC G CHK, 2X, 12HPERCENT DEV.)
    WE=0.0
    L=0
    PRINT 402, L, PI, DELP(1), WE
402 FORMAT(15,2X,F10.3,2X,F10.3,2X,E14.8)
    DO 3 K=2, INC, 1
    L=K-1
    WE = AA * WI(K)
    GC = (GPW(K) - WE) / DELBG(K)
    PCENT=(GC-G)*100.0/G
    PRINT 403, L, P(K), DELP(K), WE, GC, PCENT
403 FORMAT(I5,2X,F10.3,2X,F10.3,2X,E14.8,2X,E14.8,2X,F10.4)
  3 CONTINUE
    PRINT 801
801 FORMAT(1H ,/////)
    PRINT 800
    CONTINUE
    GO TO 1
    END
```

```
SUBROUTINE ZCALC(S,Z)
  DIMENSION A(6,6),B(6),T(381),Q(381),DELP(20),P(20),GP(20),DP(20)
  DIMENSION PX(6), PY(6)
  COMMON A, B, TEMP, PC, TC, T, Q, K, DELP
  Y=((2.0*TEMP/TC)-4.0)/1.9
  PY(1) = B(1)
  PY(2) = B(2) * Y
  PY(3) = B(3) * ((3 \cdot 0 * Y * Y) - 1 \cdot 0)
  PY(4) = B(4) * ((5 \cdot 0 * Y * Y) - 3 \cdot 0) * Y
  PY(5) = B(5) * (((35 \cdot 0 * Y * Y) - 30 \cdot 0) * Y * Y + 3 \cdot 0)
  PY(6)=B(6)*((((63.0*Y*Y)-70.0)*Y*Y)+15.0)*Y
  X=((2.0*S/PC)-15.0)/14.8
  PX(1) = B(1)
  PX(2) = B(2) * X
  PX(3)=B(3)*((3.0*X*X)-1.0)
  PX(4) = B(4) * ((5 \cdot 0 * X * X) - 3 \cdot 0) * X
  PX(5) = B(5) * (((35 \cdot 0 \times X \times X) - 30 \cdot 0) \times X \times X) + 3 \cdot 0)
  PX(6) = B(6) * (((63.0 \times X \times X) - 70.0) \times X \times X) + 15.0) \times X
  APP=0.0
  DO 1 M=1,6,1
  DO 1 N=1,6,1
1 \text{ APP}=(A(N,M)*PX(M)*PY(N))+APP
  7 = APP
  RETURN
  END
```

```
SUBROUTINE QFUNCT(DELT,QT)
  DIMENSION A(6,6),B(6),T(381),Q(381),DELP(20),P(20),GP(20),DP(20)
  COMMON A, B, TEMP, PC, TC, T, Q, K, DELP
  TT=DELT
  DO 3 I=1,381,1
  IF(TT-T(I)) 1,2,3
1 DQ1 = (Q(I-1)-Q(I-2))/(T(I-1)-T(I-2))
  DQ2 = ((Q(I) - Q(I - 1)) / (T(I) - T(I - 1)) - DQ1) / (T(I) - T(I - 2))
  QT = Q(I-2) + (TT-T(I-2)) * DQ1 + (TT-T(I-2)) * (TT-T(I-1)) * DQ2
  GO TO 4
2 QT = Q(I)
  GO TO 4
3 CONTINUE
4 RETURN
  END
     END
               GASRES
```
```
SUBROUTINE INFLUX(DELTD,WD)
DIMENSION A(6,6),B(6),T(381),Q(381),DELP(20),P(20),GP(20),OP(20)
COMMON A,B,TEMP,PC,TC,T,Q,K,DELP
WD=0.0
DO 1 J=1,K,1
TI=J-1
DELT=TI*DELTD
CALL QFUNCT(DELT,QT)
N=K+1-J'
WI=DELP(N)*QT
WD=WI+WD
1 CONTINUE
RETURN
END
```

RESERVOIR COMPUTER PROJECT -- ENERGY BALANCE

RESERVOIR DATA FOR

INC, CURRENT NUMBER OF PRODUCTION INCREMENTS= 13 MAX. NUMBER OF PRODUCING WELLS AT ANY ONE TIME= 2.0 BW, FORMATION VOLUME FACTOR FOR WATER IN BBLS/STB= 1.030 CONV, SCF OF VAPOR PER BARREL OF DISTILLATE= 768.0 RI, RADIUS TO INITIAL EDGE OF RESERVOIR IN FEET= 2190.0 DEPTH, DEPTH OF RESERVOIR IN FEET= 11450.0 TEMP, TEMPERATURE OF RESERVOIR IN DEGREES RANKINE= 690.0 PC, PSEUDOCRITICAL PRESSURE IN PSIA= 662.3 TC, PSEUDOCRITICAL TEMPERATURE IN DEGREES RANKINE= 387.5 SGI, INITIAL GAS SATURATION AS FRACTION= .800 O, POROSITY AS FRACTION= .280 AH, AVERAGE THICKNESS OF RESERVOIR IN FEET= 64.4 SG, SPECIFIC GRAVITY OF GAS RELATIVE TO AIR= .7975 U, VISCOSITY OF RESERVOIR WATER IN CENTIPOISE = .300 AK, WATER PERMEABILITY OF RESERVOIR IN DARCIES= .0500 TIME, TIME INTERVAL USED IN DAYS= 90.00 SGR RESIDUAL GAS SATURATION AS FRACTION = .300 SWC, CONNATE WATER SATURATION AS FRACTION= .150 TIME RES. WITH., BBL PRESSURE Ζ BG,BBL/SCF 0 8838.000 1.32981926E 00 5.34255563E-04 0 1 8818.000 1.32803329E 00 5.34748162E-04 3.03008359E 05 2 5.36093049E-04 1.14994894E 8764.000 1.32322017E 00 06 3 1.31904095E 00 5.37281226E-04 8717.000 1.64549602E 06 4 5.38821841E-04 2.62736394E 06 8657.000 1.31371808E 00 5 8582.000 1.30708189E 00 5.40785103E-04 3.89883102E 06 6 8509.000 1.30063895E 00 5.42736044F-04 5.12844213E 06 7 1.29456183E 00 6.35037990E 8440.000 5.44616486E-04 06 1.28788050E 00 8 5.46728833E-04 7.69974695E 8364.000 06 8289.000 9 1.28129781E 00 5.48855951E-04 8.91284897E 06 10 8219.000 1.27516200E 00 5.50879758E-04 9.81497565E 06 1.26955778E 00 11 8155.000 5.52762967E-04 1.09665134E 07 1.26474529E 00 5.54406719E-04 1.21921223E 07 12 8100.000

L.M.S. G,SCF=6.06624695E 11 WATER INFLUX CONSTANT=4.0706801*E 00

FIME	PRESSURE	DEL P	WATER INFL,BBL	PERIODIC G CHK
1	8818.000	20.000	C	6.15121449E 11
2	8764.000	54.000	1.0311549*E 03	6.26388336E 11
3	8717.000	47.000	4.5347547*E 03	5.45345143E 11
4	8657.000	60.000	9.5550091*E 03	5.77476619E 11
5	8582.000	75.000	1.6725031*E 04	5.99668013E 11
6	8509.000	73.000	2.6552691*E 04	6.07865842E 11
7	8440.000	69.000	3.8609296*E 04	6.16642836E 11
' 8	8364.000	76.000	5.2608605*E 04	6.21517492E 11
9	8289.000	75.000	6.8905530*E 04	6.15172299E 11
10	8219.000	70.000	8.7297406*E 04	5.95654287E 11
11	8155.000	64.000	1.0748285*E 05	5.98354920E 11
12	8100.000	55.000	1.2918882*E 05	6.11444376E 11

APPENDIX II

FLUID DATA

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS

AND CALCULATED WELL STREAM

	Separa	ator Liquid	Sepa	arator Gas	Wel:	l Stream
Component	<u>Mol %</u>	Liq. Vol. %	<u>Mol %</u>	GPM@ 15,025 PSIA	<u>Mol %</u>	GPM@ 15.025 PSIA
Carbon Dioxide			0.70		0.67	
Nitrogen			0.32		0.30	
Methane	21.59	5.59	93.34		89.90	
Ethane	4.13	1.44	3.53		3.56	
Propane	3.87	1.95	1.24	0.349	1.37	0.385
Iso-Butane	2.05	1.23	0.35	0.117	0.43	0.144
N-Butane	2.29	1.32	0.25	0.081	0.35	0.113
Iso-Pentane	1.47	0.99	0.11	0.041	0.17	0.063
N-Pentane	1.68	1.12	0.05	0.018	0.13	0.048
Hexanes	4.82	3.63	0.07	0.029	0.30	0.126
Heptanes Plus	58.10	82.73	0.04	0.019	2.82	2.233
Totals	100.00	100.00	100.00	0.654	100.00	3.112
Calculated Spec	cific Gra	avity (Air = 1	.00)	0.606		0.7975

Properties of Heptanes Plus:

API Gravity	=	39.9°API	@ 60°F
Specific Gravity	=	0.8256 @	60/60°F
Molecular Weight	=	202	

Basis of Recombination:

Separator Liquid per MMSCF Separator Gas = 66.07 Bbls

λ

PRESSURE-VOLUME RELATIONS OF RESERVOIR FLUID AT 240°F (CONSTANT COMPOSITION EXPANSION)

6

Pressure Volume Volume Volume Factor (PSIA) (V/Vsat) (Cu.Ft./Lb.) (Z) 8680 0.9793 0.04918 1.3111 8600 Original Reservoir Pressure - - 8305 0.9978 0.05011 1.2782 8260 Dew Point Press. 1.0000 0.05022 1.2741 8138 1.0070 0.05057 1.2741 8138 1.0070 0.05057 1.2741 8138 1.0070 0.05057 1.2741 8138 1.0070 0.05244 1.2741 8000 1.0910 0.05479 1.2741 6415 1.1382 0.05716 1.232 5990 1.1856 0.05954 1.1232 6415 1.3767 0.06913 1.468 5295 1.2808 0.06432 1.7555 610 1.2320 0.06914 1.468 1.7555 0.08816 1.7555 1.2708 2190		Relative	Specific	Deviation
(PSIA) (V/Vsat) (Cu.Ft./Lb.) (Z) 8680 0.9793 0.04918 1.3111 8600 Original Reservoir Pressure - - 8305 0.9978 0.05011 1.2782 8260 Dew Point Press. 1.0000 0.05022 1.2741 8138 1.0070 0.05057 1.2782 8255 1.0255 0.05150 1.2741 8138 1.0070 0.05224 1.2741 8138 1.0255 0.05150 1.2741 8138 1.0255 0.05150 1.2741 8138 1.0255 0.05244 0.05244 6930 1.0910 0.05479 1.4182 6415 1.1382 0.05716 1.555 5900 1.1856 0.05954 1.5182 5295 1.2808 0.06432 1.4183 4765 1.3767 0.06914 1.4168 2675 2.2401 0.11250 1.41250 2190 2.7208	Pressure	Volume	Volume	Factor
8680 0.9793 0.04918 1.3111 8600 Original Reservoir Pressure - - - 8305 0.9978 0.05011 1.2782 8260 Dew Point Press. 1.0000 0.05022 1.2741 8138 1.0070 0.05057 - - 7825 1.0255 0.05150 - - 2555 1.0442 0.05244 - - 6415 1.1382 0.05716 - - 5990 1.1856 0.05954 - - 5295 1.2808 0.06432 - - 4765 1.3767 0.06914 - - 4765 1.7555 0.08816 - - 2675 2.2401 0.11250 - - 2190 2.7208 0.13663 - - 1855 3.2067 0.16104 - - 1620 3.6864 0.18513 - -	(PSIA)	(V/Vsat)	(Cu.Ft./Lb.)	(Z)
8680 0.9793 0.04918 1.3111 8600 Original Reservoir Pressure - - 8305 0.9978 0.05011 1.2782 8260 Dew Point Press. 1.0000 0.05022 1.2741 8138 1.0070 0.05057 1.2782 1.2741 8138 1.0070 0.05057 1.2741 1.2782 8250 1.0255 0.05150 1.2741 8138 1.0070 0.05057 1.2741 8138 1.0070 0.05057 1.2741 8138 1.0070 0.05057 1.2741 8138 1.0010 0.05479 1.2741 6415 1.1382 0.05716 1.1382 5990 1.1856 0.05954 1.13767 5610 1.2332 0.06193 1.252 5295 1.2808 0.06432 4765 1.3767 0.06914 4168 1.5207 0.07637 3495 1.7555 0.08816 2675 2.2401 0.11250 2190 2.720				
8600 Original Reservoir Pressure - - 8305 0.9978 0.05011 1.2782 8260 Dew Point Press. 1.0000 0.05022 1.2741 8138 1.0070 0.05057 1.2782 8250 Dew Point Press. 1.0255 0.05150 2555 1.0442 0.05244 6930 1.0910 0.05479 6415 1.1382 0.05716 5990 1.1856 0.05954 5610 1.2332 0.06193 5295 1.2808 0.06432 4765 1.3767 0.06914 4168 1.5207 0.07637 3495 1.7555 0.08816 2675 2.2401 0.11250 2190 2.7208 0.13663 1855 3.2067 0.16104 1620 3.6864 0.18513	8680	0.9793	0.04918	1.3111
Pressure83050.99780.050111.27828260 Dew Point Press.1.00000.050221.274181381.00700.0505778251.02550.0515025551.04420.0524469301.09100.0547964151.13820.0571659901.18560.0595456101.23320.0619352951.28080.0643247651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	8600 Original Reservoir			
83050.99780.050111.27828260 Dew Point Press.1.00000.050221.274181381.00700.0505778251.02550.0515025551.04420.0524469301.09100.0547964151.13820.0571659901.18560.0595456101.23320.0619352951.28080.0643247651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	Pressure	-	-	
8260 Dew Point Press. 1.0000 0.05022 1.2741 8138 1.0070 0.05057 7825 1.0255 0.05150 2555 1.0442 0.05244 6930 1.0910 0.05479 6415 1.1382 0.05716 5990 1.1856 0.05954 5610 1.2332 0.06193 5295 1.2808 0.06432 4765 1.3767 0.06914 4168 1.5207 0.07637 3495 1.7555 0.08816 2675 2.2401 0.11250 2190 2.7208 0.13663 1855 3.2067 0.16104 1620 3.6864 0.18513	8305	0.9978	0.05011	1.2782
8138 1.0070 0.05057 7825 1.0255 0.05150 2555 1.0442 0.05244 6930 1.0910 0.05479 6415 1.1382 0.05716 5990 1.1856 0.05954 5610 1.2332 0.06193 5295 1.2808 0.06432 4765 1.3767 0.06914 4168 1.5207 0.07637 3495 1.7555 0.08816 2675 2.2401 0.11250 2190 2.7208 0.13663 1855 3.2067 0.16104 1620 3.6864 0.18513	8260 Dew Point Press.	1.0000	0.05022	1.2741
78251.02550.0515025551.04420.0524469301.09100.0547964151.13820.0571659901.18560.0595456101.23320.0619352951.28080.0643247651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	8138	1.0070	0.05057	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7825	1.0255	0.05150	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2555	1.0442	0.05244	
64151.13820.0571659901.18560.0595456101.23320.0619352951.28080.0643247651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	6930	1.0910	0.05479	
59901.18560.0595456101.23320.0619352951.28080.0643247651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	6415	1.1382	0.05716	
56101.23320.0619352951.28080.0643247651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	5990	1.1856	0.05954	
52951.28080.0643247651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	5610	1.2332	0.06193	
47651.37670.0691441681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	5295	1.2808	0.06432	
41681.52070.0763734951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	4765	1.3767	0.06914	
34951.75550.0881626752.24010.1125021902.72080.1366318553.20670.1610416203.68640.18513	4168	1.5207	0.07637	
2675 2.2401 0.11250 2190 2.7208 0.13663 1855 3.2067 0.16104 1620 3.6864 0.18513	3495	1.7555	0.08816	
2190 2.7208 0.13663 1855 3.2067 0.16104 1620 3.6864 0.18513	2675	2.2401	0.11250	
1855 3.2067 0.16104 1620 3.6864 0.18513	2190	2.7208	0.13663	
1620 3.6864 0.18513	1855	3.2067	0.16104	
	1620	3.6864	0.18513	

EFFECT OF GAS-LIQUID RATIO UPON DEW POINT PRESSURE AT 240°F

Gas-Liquid Rat					
Dew Point Pressure	(SCF Separator Gas per				
(PSIA)	Bbl Separator Liquid)				
8,090	20,000				
8,260	15,135				
8,360	10,000				

Pressure (PSIA)	Reservoir Liquid (Bbls/MMSCF of <u>Reservoir Fluid)</u>	Retrograde Liquid Volume Percent *
8,600 Original Res. Pressure	0	0
8,260 Dew Point Pressure	0	0
7,500	14.09	2.48
6,500	31.55	5.55
5,500	42.33	7.45
4,500	47.03	8.27
3,000	48.64	8,56
1,500	45.57	6.68

RETROGRADE CONDENSATION DURING GAS DEPLETION AT 240°F

* Percent of Reservoir Hydrocarbon Pore Space

HYDROCARBON ANALYSES OF GAS AND LIQUID REMAINING IN RESERVOIR

AFTER DEPLETION TO 1,500 PSIA at 240°F

	Reservoir Ga		Reservoir Liquid		
		G PM@			
Component	<u>Mol %</u>	15.025 PSIA	<u>Mol %</u>	Liq. Vol. %	
Carbon Dioxide	0.74				
Methane and Nitrogen	92.36		26.74	7.42	
Ethane	3.70		3.22	1.34	
Propane	1.46	0.410	1.74	0.79	
Iso-Butane	0.44	0.147	0.65	0.35	
N-Butane	0.31	0.100	0.65	0.34	
Iso-Pentane	0.17	0.063	0.98	0.59	
N-Pentane	0.11	0.041	0.74	0.44	
Hexanes	0.21	0.088	1.99	1.34	
Heptanes Plus	0.50	0.251	63.29	87.39	
Totals	100.00	1.100	100.00	100.00	

Properties of Heptanes Plus:

API Gravity	=	38.1° @	60°F
Specific Gravity	=	0.8343	
Molecular Weight	=	222	

DEPLETION STUDY AT 240°F HYDROCARBON ANALYSES OF PRODUCED WELL STREAM (MOL PER CENT)

1	Dew Poin	t	Rese	rvoir Pr	essure -	PSIA		
	Fluid							
Component	8260	7500	6500	5500	4500	3000	1500	
Carbon Dioxide	0.67	0.73	0.84	0.78	0.75	0.78	0.74	
Methane and Nitrogen	90.20	91.08	91.92	92.53	92.86	92.88	92.36	
Ethane	3.56	3.41	3.29	3.20	3.24	3.31	3.70	
Propane	1.37	1.24	1.12	1.15	1.15	1.27	1.46	
Iso-Butane	0.43	0.39	0.36	0.35	0.35	0.39	0.44	
N-Butane	0.35	0.31	0.27	0.26	0.26	0.27	0.31	
Iso-Pentane	0.17	0.17	0.16	0.16	0.16	0.15	0.17	
N-Pentane	0.13	0.12	0.12	0.12	0.11	0.11	0.11	
Hexanes	0.30	0.27	0.23	0.21	0.20	0.19	0.21	
Heptanes Plus	2.82	2.28	1.69	1.24	0.92	0.65	0.50	
Totals	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
Properties of Heptane	Properties of Heptanes Plus							
Specific Gravity	0.8256	0.8198	0.8146	0.8058	0.7981	0.7826	0.7665	
Molecular Weight	202	196	186	169	156	137	119	
GPM Content of Produc	ced Well	Stream	(Gal/MSC	<u>(F)</u>				
Propane	0.385	0.349	0.315	0.323	0.323	0.357	0.410	
Iso-Butane	0.144	0.130	0.120	0.117	0.117	0.130	0.147	
N-Butane	0.113	0.100	0.087	0.084	0.084	0.087	0.100	
Iso-Pentane	0.063	0.063	0.060	0.060	0.060	0.056	0.063	
N-Pentane	0.048	0.044	0.044	0.044	0.041	0.041	0.041	
Hexanes	0.126	0.113	0.096	0.088	0.084	0.080	0.088	
Heptanes Plus	2.233	1.764	1.249	0.841	0.582	0.368	0.251	
Totals	3.112	2.563	1.971	1.557	1.291	1.119	1.100	
•								
Deviation Factor "Z"	1.280	1.210	1.126	1.054	0.992	0.927	0.932	
Well Stream Produced								
Cumulative Per Cent	0	4.10	11.07	19.57	29.84	49.56	73.51	

Constituent	Mole Fraction	Mole Weîcht	Pounds	Critical T	emperature	Critical	Pressure
	y			T _c	yT _c	Pc	yP _c
				8 			
Carbon Dioxide	.0067	44.01	. 2949	548.0	3.67	1073.0	7.19
Nitrogen	.0030	28.02	.0841	227.0	.68	492.0	1.48
Methane	. 8990	16.04	14.4200	343.3	308.63	673.1	605.12
Ethane	.0356	30.07	1.0705	549.8	19.57	708.3	25.22
Propane	.0137	44.09	.6040	666.0	9.12	617.4	8.46
Iso-Butane	.0043	58.12	.2499	734.7	3.16	529.1	2.28
N-Butane	.0035	58.12	.2034	765.3	2.68	550.7	1.93
Iso-Pentane	.0017	72.15	.1227	829.8	1.41	483.0	.82
N-Pentane	.0013	72.15	.0938	845.6	1.10	489.5	.64
Hexanes	.0030	86.17	.2585	896.5	2.69	440.1	1.32
Heptanes +	.0282	202.00	5.6964	1235.0	34.83	278.0	7.84
			23.0962		387.54°R		662.30

 $S.G. = \frac{23.0962}{29.0} = .7975$

Pseudo-Critical Temperature = 387.54°R

Pseudo-critical Pressure = 662.30 PSIA

Mol %

PRESSURE-VOLUME RELATIONS OF RESERVOIR FLUID @ 240°F

DURING PRESSURE DEPLETION @ 240°F

GASOLINE CONTENT OF HYDROCARBONS PRODUCED

Pressure (PSIA)

DURING DEPLETION @ 240°F

• Calculated

DURING DEPLETION @ 240°F

DEPLETION @ 240°F

RETROGRADE CONDENSATION DURING

APPENDIX III

VOLUMETRIC SWEEP-OUT PREDICTION

POTENTIAL DISTRIBUTION PROGRAM PROGRAM POTMAP

$$PN = \frac{(-CONST) (Q_{i,j})^{+} (RK_{i+1,j}^{+}RK_{i,j}) (P_{i+1,j})^{+} (RK_{i-1,j}^{+}RK_{i,j}) (P_{i-1,j}) + RK_{i,j}^{+} RK_{i,j+1}^{+} RK_{i,j-1}^{+} RK_{i+1,j}^{+} RK_{i-1,j}^{+} + RK_{i,j}^{+} (P_{i-1,j}) + (RK_{i,j+1}^{+}RK_{i,j}) (P_{i,j+1}^{+}) + (RK_{i,j-1}^{+}RK_{i,j}) (P_{i,j-1}^{+})$$


```
PROGRAM POTMAP
   DIMENSION P(33,38), RK(33,38), Q(33,38)
   DO 40 I=1,31
40 READ 62, (P(I,J),J=1,12)
   DO 42 I=1,31
42 READ 62 , (P(I,J), J=13,24)
   DO 63 I=1,31
63 READ 62, (P(I,J), J=25,36)
   DO 46 I=1,31
46 READ 41, (Q(I,J)
                                .J=1,18)
   DO 48 I=1,31
48 READ 41, (Q(I,J),J=19,36)
   DO 43 I=1,31
43 READ 49, (RK(I,J), J=1,12)
   DO 45 I=1,31
45 READ 49, (RK(I,J),J=13,24)
   DO 61 I=1,31
61 READ 49, (RK(I,J), J=25,36)
   PRINT 8
8 FORMAT (1H1)
  DO 1 I=1,31
 1 PRINT 31, (P(I,J),J=1,18)
   PRINT 8
   DO 2 I=1,31
 2 PRINT 31, (P(I,J),J=19,36)
   PRINT 8
   DO 3 I=1,31
3
 PRINT 13, (RK(I,J), J=1,18)
   PRINT 8
   DO 4 I=1,31
4 PRINT 13, (RK(I,J), J=19,36)
13 FORMAT (1X, 18F5.2//)
   LF = 200
   ERROR = 1.0
   DO 10 N= 1, LF
   FAIL = 0.0
12 DO 29 I=2,30
   DO 29 J=2,35
   DO 15 K=1,13
15 P(10,K) = P(11,K)
   P(10, 14) = P(11, 15)
   P(9,14) = P(9,15)
   P(8,14) = P(8,15)
   DO 19 K= 15,19
19 P(7,K) = P(8,K)
   P(7,20) = P(8,21)
   P(6,20) = P(6,21)
   P(5,20) = P(6,21)
   P(5,22) = P(6,22)
   P(5,23) = P(6,23)
   P(5,21) = P(6,21)
   P(5,24) = P(6,24)
   P(5,25) = P(6,26)
   P(4,25) = P(4,26)
   P(3,25) = P(3,26)
   P(2,25) = P(3,26)
```
```
P(2,26) = P(3,26)
   P(2,27) = P(3,27)
   P(2,28) = P(3,28)
   P(2,29) = P(3,30)
   P(1,29) = P(1,30)
   DO 18 K = 1.17
18 P(30,K)=P(29,K)
   P(29, 18) = P(29, 17)
   P(30, 18) = P(29, 17)
   P(28, 18) = P(28, 17)
   P(27, 18) = P(26, 17)
   DO 16 K=19,26
16 P(27,K) = P(26,K)
   P(27, 27) = P(26, 26)
   P(26,27) = P(26,26)
   P(25,27) = P(25,26)
   P(24, 27) = P(23, 26)
   DO 17 K=27,36
17 P(24,K) = P(23,K)
   CONST = 106000./P(I,J)
   IF (P(I,J)) 51,29,51
51 IF (RK(I,J))52,29,52
520PN=(-CONST *Q(I,J)+ (RK(I+1,J)+RK(I,J))*P(I+1,J)+(RK(I-1,J)+RK
  1(I_{J}) * P(I_{J}) + (RK(I_{J}+1) + RK(I_{J})) * P(I_{J}+1) + (RK(I_{J}-1) + RK(I_{J})) *
  2P(I, J-1))
                 / (RK(I+1,J)+RK(I-1,J)+RK(I,J+1)+RK(I,J-1)+4.*
  3RK(I,J))
   IF (ERROR-ABSF(PN-P(I,J))) 26,27,27
26 FAIL = 1.0
27 P(I,J) = PN
29 CONTINUE
   PRINT 31, FAIL
   IF (FAIL) 33,33,10
10 CONTINUE
   PRINT 8
33 DO 30 I=1,31
30 PRINT 31, (P(I,J),J=1,18)
31 FORMAT (1X, 18F5.0//)
   PRINT 8
   DO 32 I=1,31
32 PRINT 31, (P(I,J),J=19,36)
62 FORMAT (12F6.0)
49 FORMAT(12F6.2)
41 FORMAT (18F4.0)
44 FORMAT (18F4.3)
   END
```

100

```
END POTMAP
```

APPENDIX IV

FUTURE PERFORMANCE PREDICTION

FUTURE PREDICTION PROGRAM

PROGRAM PREDICT

CALCULATION OF GAS DEVIATION FACTOR

Subroutine Z CALC (S,Z)

CALCULATION OF DIMENSIONLESS WATER INFLUX Subroutine QFUNCT (DELT, QT)

SUBROUTINE PRESS (P1 POZ, P2)


```
PROGRAM PREDICT
      DIMENSION A(6,6),B(6),T(471),Q(471),DELP(999),P(40)
      COMMON A, B, TEMP, PC, TC, T, Q, K, DELP
      PRINT 800
  800 FORMAT(1H1)
      PRINT 101
  101 FORMAT(48H RESERVOIR COMPUTER PROJECT---FUTURE PERFORMANCE,//)
      PRINT 102
  102 FORMAT(19H RESERVOIR DATA FOR,/)
C
      DATA INPUT FOR SUBROUTINE ZCALC CONSTANTS
      DO 1000 J=1,6,1
      DO 1000 I=1,6,1
      READ 200, A(I, J)
  200 FORMAT(13X,F14.11)
 1000 CONTINUE
      DO 1010 I=1,6,1
      READ 201,B(I)
  201 FORMAT(F14.11)
 1010 CONTINUE
      DATA INPUT FOR SUBROUTINE QFUNCT TABLE
С
      DO 1020 I=1,471,3
      READ 202,T(I),Q(I),T(I+1),Q(I+1),T(I+2),Q(I+2)
  202 FORMAT(F12.2,F12.3,F12.2,F12.3,F12.2,F12.3)
 1020 CONTINUE
С
      DATA INPUT FOR RESERVOIR PROPERTIES
      READ 203, AIWEL
      READ 203, CONV
      READ 203,RI
      READ 203, DEPTH
      READ 203, TEMP
      READ 203,SGI
      READ 203,0
      READ 203,AH
      READ 203,SG
      READ 203,U
      READ 203,AK
      READ 203, TIME
      READ 203,SGR
      READ 203,SWC
      READ 203,PI
      READ 203,PC
      READ 203,TC
      READ 203, BW
      READ 203, CPI
      READ 203,WIC
      READ 203,G
  203 FORMAT(F16.7)
С
      DATA INPUT FOR PAST PERFORMANCE
      READ 204, GAS, DIST, WATER
  204 FORMAT(E16.8,4X,E16.8,4X,E16.8)
      INC=CPI
      DO 1030 I=1, INC, 1
      READ 205, P(I)
  205 FORMAT(F10.3)
 1030 CONTINUE
C
      DATA INPUT FOR FUTURE PERFORMANCE
```

```
the representation and the state of an advertise of the second
                        The second states and the second states and the
                                                     N.
```

1	READ 700,KK
700	FORMAT(I3)
	READ 203, GR
	READ 203, WR
	DATA PRINT OUT FOR RESERVOIR PROPERTIES
	PRINT 300, INC
300	FORMAT(45H INC, CURRENT NUMBER OF PRODUCTION INCREMENTS=, 14)
	PRINT 301, AIWEL
301	FORMAT(48H MAX. NUMBER OF PRODUCING WELLS AT ANY ONE TIME=, F6.1)
202	PRINT 3029BW FORMATION VOLUME FACTOR FOR WATER IN BRISISTR-, F6 31
502	PRINT 303.CONV
303	FORMAT(44H CONV,SCF OF VAPOR PER BARREL OF DISTILLATE=,F7.1)
	PRINT 304, RI
304	FORMAT(48H RI, RADIUS TO INITIAL EDGE OF RESERVOIR IN FEET=, F8.1)
	PRINT 305, DEPTH
305	FORMAT(34H DEPTH, DEPTH OF RESERVOIR IN FEET=, F8.1)
306	FORMATISON TEMPERATURE OF RESERVOIR IN DEGREES RANKINE=+E7.11
500	PRINT 307, PC
307	FORMAT(36H PC, PSEUDOCRITICAL PRESSURE IN PSIA=, F6.1)
	PRINT 308,TC
308	FORMAT(50H TC, PSEUDOCRITICAL TEMPERATURE IN DEGREES RANKINE=, F6.1)
200	PRINT 309,561 EORMAT/ADD SCT INITIAL CAS SATURATION AS ERACTION- EE 20
509	PRINT 310.0
310	FORMAT(24H 0, POROSITY AS FRACTION=, F5.3)
	PRINT 311,AH
311	FORMAT(43H AH, AVERAGE THICKNESS OF RESERVOIR IN FEET=, F6.1)
212	PRINT 312, SG
212	PRINT 313.11
313	FORMAT(46H U,VISCOSITY OF RESERVOIR WATER IN CENTIPOISE=,F6.3)
	PRINT 314,AK
314	FORMAT(47H AK, WATER PERMEABILITY OF RESERVOIR IN DARCIES=, F7.4)
215	PRINT 315, TIME
315	PRINT 316.5GP
316	FORMAT(41H SGR, RESIDUAL GAS SATURATION AS FRACTION=, F5.3)
	PRINT 317, SWC
317	FORMAT(42H SWC, CONNATE WATER SATURATION AS FRACTION=, F5.3)
	PRINT 318, WIC
318	PORMAT(45H WIC, WATER INFLUX CONSTANT IN BELS. PER PSIA=,FIU.3,77)
	PRINT 103
103	FORMAT(55H RESERVOIR PRODUCTION FOR FUTURE PERFORMANCE PREDICTION)
	PRINT 104
104	FORMAT(1H)
220	PRINT 319, GR
519	PRINT 320.0P
320	FORMAT(44H AVERAGE DAILY DISTILLATE PRODUCTION IN STB=+F16+1)
	PRINT 321,WR
321	FORMAT(39H AVERAGE DAILY WATER PRODUCTION IN STB=,F16.1,//)

MAIN BODY OF PROGRAM

C

С

С

S = P(1)CALL ZCALC(S,Z) C=0.00514590*TEMP BGI=C*Z/S DELTD=1858064.0*AK*TIME/(U*O*RI*RI) GRB=G*BGI FF=(1.0-SGR-SWC)/SGI FLOOD=GRB*FF PRINT 105 105 FORMAT(19H INITIAL CONDITIONS,/) PRINT 322, PI 322 FORMAT(26H INITIAL PRESSURE IN PSIA=, F8.2) PRINT 323,G 323 FORMAT(29H INITIAL GAS IN PLACE IN SCF=,E16.8) PRINT 400, FLOOD 400 FORMAT(47H MAXIMUM FLOODABLE RESERVOIR VOLUME IN BARRELS=, E16.8) PRINT 401,Z 401 FORMAT(36H INITIAL GAS COMPRESSIBILITY FACTOR=, E16.8, //) PRINT 106 106 FORMAT(1H ,/,18H FUTURE PREDICTION,/) PRINT 107 PRESSURE,9X,2HWE,16X,3HGPW,8X,7HDELTA P) 107 FORMAT(15H TIME DELP(1) = 0.0DO 2 I=2, INC, 1 2 DELP(I) = P(I-1) - P(I)P1=P(INC)WT=WATER DT=DIST GT=GAS W=WR*TIME D=DR*TIME*CONV GDP=GR*TIME K = INC3 K=K+1 L = K - 1WT = W + WTDT=D+DTGT = GDP + GTEKAY=GT+DT DELP(K) = 0.0CALL INFLUX(DELTD,WD) WE=WIC*WD POZ=C*(G-EKAY)/(GRB+WT*BW-WE) CALL PRESS(P1,POZ,P2) DELP(K) = P1 - P2PRINT 402, L, P2, WE, EKAY, DELP(K) 402 FORMAT(15,2X,F8.2,2X,E16.8,2X,E16.8,2X,F8.2) P1=P2IF(WE-FLOOD) 8,4,4 4 PRINT 108 108 FORMAT(1H ,/,27H ALL WELLS HAVE FLOODED OUT,////) CONTINUE 5 IF(KK-1) 6,6,7 6 CONTINUE 7 GO TO 1 8 IF(P1-14.7) 10,10,9

113

9	GO TO 3			
10	PRINT 109			
109	FORMAT(1H	,/,19H	RESERVOIR	DEPLETED,/////)
	CONTINUE			
	GO TO 5			
	END			

```
SUBROUTINE ZCALC(S,Z)
  DIMENSION A(6,6),B(6),T(471),Q(471),DELP(999),P(40)
  DIMENSION PX(6), PY(6)
  COMMON A, B, TEMP, PC, TC, T, Q, K, DELP
  Y = ((2.0 \times TEMP/TC) - 4.0)/1.9
  PY(1) = B(1)
  PY(2) = B(2) * Y
  PY(3)=B(3)*((3.0*Y*Y)-1.0)
  PY(4) = B(4) * ((5 \cdot 0 * Y * Y) - 3 \cdot 0) * Y
  PY(5)=B(5)*(((35.0*Y*Y)-30.0)*Y*Y+3.0)
  PY(6) = B(6) * (((63 \cdot 0 * Y * Y) - 70 \cdot 0) * Y * Y) + 15 \cdot 0) * Y
  X=((2.0*S/PC)-15.0)/14.8
  PX(1) = B(1)
  PX(2) = B(2) * X
  PX(3) = B(3) * ((3 \cdot 0 * X * X) - 1 \cdot 0)
  PX(4) = B(4) * ((5 \cdot 0 * X * X) - 3 \cdot 0) * X
  PX(5) = B(5) * (((35 \cdot 0 \times X \times X) - 30 \cdot 0) \times X \times X) + 3 \cdot 0)
  PX(6) = B(6) * (((63.0 \times X \times X) - 70.0) \times X \times X) + 15.0) \times X
  APP=0.0
  DO 1 M=1,6,1
  DO 1 N=1,6,1
1 \text{ APP}=(A(N,M)*PX(M)*PY(N))+APP
  Z = APP
  RETURN
  END
```

SUBROUTINE QFUNCT(DELT,QT) DIMENSION A(6,6),B(6),T(471),Q(471),DELP(999),P(40) COMMON A,B,TEMP,PC,TC,T,Q,K,DELP TT=DELT DO 3 I=1,471,1 IF(TT-T(I)) 1,2,3 1 DQ1=(Q(I-1)-Q(I-2))/(T(I-1)-T(I-2))

- DQ2=((Q(I)-Q(I-1))/(T(I)-T(I-1))-DQ1)/(T(I)-T(I-2)) QT=Q(I-2)+(TT-T(I-2))*DQ1+(TT-T(I-2))*(TT-T(I-1))*DQ2 GO TO 4 2 QT=Q(I) GO TO 4
- 3 CONTINUE
- 4 RETURN
- 4 RETURN END

```
SUBROUTINE INFLUX(DELTD,WD)
DIMENSION A(6,6),B(6),T(471),Q(471),DELP(999),P(40)
COMMON A,B,TEMP,PC,TC,T,Q,K,DELP
WD=0.0
DO 1 J=1,K,1
TI=J-1
DELT=TI*DELTD
CALL QFUNCT(DELT,QT)
N=K+1-J
WI=DELP(N)*QT
1 WD=WI+WD
CONTINUE
RETURN
END
```
```
118
```

```
SUBROUTINE PRESS(P1,POZ,P2)
   DIMENSION A(6,6),B(6),T(471),Q(471),DELP(999),P(40)
   COMMON A, B, TEMP, PC, TC, T, Q, K, DELP
   S=P1-5.0
 1 CALL ZCALC(S,Z)
   POZT=S/Z
   E = POZT - POZ
   IF(ABSF(E)-5.0) 5,5,2
 2 IF(E) 4,17,3
 3 S=S-5.0
   GO TO 1
 4 S=S+5.0
   GO TO 1
 5 IF(ABSF(E)-1.0) 9,9,6
 6 IF(E) 8,17,7
 7 S=S-1.0
   GO TO'1
             .
 8 S=S+1.0
   GO TO 1
 9 IF(ABSF(E)-0.1) 13,13,10
10 IF(E) 12,17,11
11 S=S-0.1
   GO TO 1
12 S=S+0.1
   GO TO 1
13 IF(ABSF(E)-0.02) 17,17,14
14 IF(E) 16,17,15
15 S=S-0.01
   GO TO 1
16 S=S+0.01
   GO TO 1
17 P2=S
   RETURN
   END
                 PREDICT
      END
```


.

2.1433504 0.083176184 -0.021467042 -0.00087140318 0.0042846283 -0.0016595343 0.33123524 -0.134036140.066880961 -0.027174261 0.0088512291 -0.0021520929 0.10572871 -0.050393654 0.0050924798 0.010551336 -0.0073181933 0.0026959963 -0.052184040 0.044312146 -0.019329465 0.0058972516 0.0015366676 -0.0028326809 0.019703980 -0.026383354 0.019262143 -0.011535390 0.0042910089 -0.00081302526 -0.0053095900 0.0089178330 -0.010894821 0.009559389 -0.00601140170.0031175170

0.7071068 1.224745 0.7905695 0.9354145 0.265165 0.293151

С

C DATA INPUT FOR SUBROUTINE QFUNCT TABLE

00000000	00000000	0000001	00000112	00000005	00000278
00000010	00000404	00000015	00000520	00000020	00000606
00000025	00000689	0000030	00000758	00000040	00000898
00000050	00001020	00000060	00001140	00000070	00001251
00000080	00001359	00000090	00001469	00000100	00001569
00000200	00002447	00000300	00003202	00000400	00003893

00000500	00004539	00000600	00005153	00000700	00005743
00000800	00006314	00000900	00006869	00001000	00007411
00001100	00007940	00001200	00008457	00001300	00008964
00001400	00009461	00001500	00009949	00001600	00010434
00001700	00010913	00001800	00011386	00001900	00011855
00002000	00012319	00002100	00012778	00002200	00013233
00002300	00013684	00002400	00014131	00002500	00014573
00002600	00015013	00002700	00015450	00002800	00015883
00002900	00016313	00003000	00016742	00003100	00017167
00003200	00017590	00003300	00010011	00003400	00010429
00003900	00018845	00003800	00019209	00003700	00019871
00004100	00021298	00004200	00020400	00004300	00022101
00004400	00022500	00004500	00022897	00004600	00023291
00004700	00023684	00004800	00024076	00004900	00024466
00005000	00024855	00005100	00025244	00005200	00025633
00005300	00026020	00005400	00026406	00005500	00026791
00005600	00027174	00005700	00027555	00005800	00027935
00005900	00028314	00006000	00028691	00006100	00029068
00006200	00029443	00006300	00029818	00006400	00030192
00006500	00030565	00006600	00030937	00006700	00031308
00006800	00031679	00006900	00032048	00007000	00032417
00007100	00032785	00007200	00033151	00007300	00033517
00007400	00033883	00007500	00034247	00007600	00034611
00007700	00034974	00007800	00035336	00007900	00035697
00008000	00036038	00008400	00030418	00008500	00037851
00008600	00038207	00008700	00037494	00008800	00038919
00000000	00039272	00000000	00039626	00000000	00039979
00009200	00040331	00009300	00040684	00009400	00041034
00009500	00041385	00009600	00041735	00009700	00042084
00009800	00042433	00009900	00042781	00010000	00043129
00010500	00044858	00011000	00046574	00011500	00048277
00012000	00049968	00012500	00051648	00013000	00053317
00013500	00054976	00014000	00056625	00014500	00058265
00015000	00059985	00015500	00061517	00016000	00063131
00016500	00064737	00017000	00066336	00017500	00067928
00018000	00069512	00018500	00071090	00019000	00072661
00019500	00074226	00020000	00075785	00020500	00077338
00021000	00078886	00021500	00080428	00022000	00081965
00022500	00083497	00023000	00085023	00023500	00086545
00024000	000000002	00024500	000007075	00025000	00091084
00027000	00092089	00020000	00094090	00028000	00100057
00028500	00101540	00029000	00103019	00029500	00104495
00030000	00105968	00030500	00107437	00031000	00108904
00031500	00110367	00032000	00111827	00032500	00113284
00033000	00114738	00033500	00116189	00034000	00117638
00034500	00119083	00035000	00120526	00035500	00121966
00036000	00123403	00036500	00124838	00037000	00126270
00037500	00127699	00038000	00129126	00038500	00130550
00039000	00131972	00039500	00133391	00040000	00134808
00040500	00136223	00041000	00137635	00041500	00139045
00042000	00140453	00042500	00141859	00043000	00143262
00043500	00144664	00044000	00146064	00044500	00147461
00040000	00148826	00045570	00100249	10046000	00151640

					121
00046500	00153029	00047900	00154416	00047500	00155801
00048000	00157184	00048500	00158565	00049000	00159945
00049500	00161322	00050000	00162698	00051000	00165444
00052000	00168183	00052500	00169549	00053000	00170914
00054000	00173639	00055000	00176357	00056000	00179069
00057000	00181774	00057500	00183124	00058000	00184473
00059000	00187166	00060000	00189852	00061000	00192533
00062000	00195208	00062500	00196544	00063000	00197878
00064000	00200542	00065000	00203201	00066000	00205854
00067000	00208502	00067500	00209825	00068000	00211145
00069000	00213784	00070000	00216417	00071000	00219046
00072000	00221670	00072500	00222980	00073000	00224289
00074000	00226904	00075000	00229514	00076000	00232120
00077000	00234721	00077500	00236020	00078000	00237218
00079000	00239912	00080000	00242501	00081000	00245086
00082000	00247668	00082500	00248957	00083000	00250245
00084000	00252819	00085000	00255388	00086000	00257953
00087000	00260515	00087500	00261795	00088000	00263073
0008,9000	00265629	00090000	00268181	00091000	00270729
00092000	00273274	00092500	00274545	00093000	00275815
00094000	00278353	00095000	00280888	00096000	00283420
00097000	00285498	00097500	00287211	00098000	00288473
00099000	00290995	00100000	00293514	00101000	00296030
00102000	00298543	00102500	00299799	00103000	00301053
00104000	00303560	00105000	00306065	00106000	00308567
00107000	00311066	00107500	00312314	00108000	00313562
00109000	00316055	00110000	00318545	00111000	00321032
00112000	00323517	00112500	00324760	00113000	00326000
00114000	00328480	00115000	00330958	00116000	00333433
0011/000	00335906	00117500	00337142	00118000	00338376
00119000	00340843	00120000	00343308	00121000	00345770
00122000	00348230	00122500	00349460	00123000	00350688
00124000	00353144	00125000	00355597	00126000	00358048
00127000	00360496	00127500	00361720	00128000	00362942
00129000	00365386	00130000	00367828	00131000	00370267
00132000	00372704	00132500	00380002	00133000	00375139
00134000	00377572	00135000	0038(070	00136000	00207202
00137000	00200705	00137500	00200170	00158000	0020/282
00139000	00304050	00140000	00392125	00141000	00399343
00142000	0000000000	00142000	00/0/107	00145000	00599575
00147000	00401700	00147500	00410214	00148000	00400000
00149000	00409019	00150000	00416220	00152500	00411410
00155000	00419020	00157500	00434168	00152500	00422214
00162500	00446077	00165000	00452016	00167500	00457945
00170000	00463863	00172500	00469771	00175000	00475669
00177500	00481558	00180000	00487437	00182500	00493307
00185000	00499167	00187500	00505019	00190000	00510861
00192500	00516695	00195000	00522520	00197500	00528337
00200000	00534145	00202500	00539945	00205000	00545737
00207500	00551522	00210000	00557299	00212500	00563068
00215000	00568830	00217500	00574585	00220000	00580332
00222500	00586072	00225000	00591806	00227500	00597532
00230000	00603252	00232500	00608965	00235000	00614672
00237500	00620372	00240000	00626066	00242500	00631755
00245000	00637437	00247500	00643113	00250000	00648781

00255000	00660093	00260000	00671379	00265000	00682640
00270000	00693877	00275000	00705090	00280000	00716280
00285000	00727449	00290000	00738598	00295000	00749725
00300000	00760833	00305000	00771922	00310000	00782992
00315000	00794042	00320000	00805075	00325000	00816090
00330000	00827088	00335000	00838067	00340000	00849028
00345000	00859974	00350000	00870903	00355000	00881816
00360000	00892712	00365000	00903594	00370000	00914459
00375000	00925309	00380000	00936144	00385000	00946966
00390000	00957773	00395000	00968566	00400000	00979344
00405000	00990108	00410000	01000858	00415000	01011595
00420000	01022318	00425000	01033028	00430000	01043724
00435000	01054409	00440000	01065082	00445000	01075743
00450000	01086390	00455000	01097024	00460000	01107646
00465000	01118257	00470000	01128854	00475000	01139439
00480000	01150012	00485000	01160574	00490000	01171125
00495000	01181666	00500000	01192198	00510000	01213222
00520000	01234203	00530000	01255141	00540000	01276037
00550000	01296893	00560000	01317709	00570000	01338486
00580000	01359225	00590000	01379927	00600000	01400593
00610000	01421224	00620000	01441820	00630000	01462383
00640000	01482912	00650000	01503408	00660000	01523872
00670000	01544305	00680000	01564706	00690000	01585077
00700000	01605418	00710000	01625729	00720000	01646011
00730000	01666265	00740000	01686490	00750000	01706688
00760000	01726859	00770000	01747002	00780000	01767120
00790000	01787212	00800000	01807278	00810000	01827319
00820000	01847336	00830000	01867329	00840000	01887298
00850000	01907243	00860000	01927166	00870000	01947065
00880000	01966943	00890000	01986796	00900000	02006628
00910000	02026438	00920000	02046227	00930000	02065996
00940000	02085744	00950000	02105473	00960000	02125184
00970000	02144878	00980000	02164555	00990000	02184216
01000000	02203861	01250000	02688967	01500000	03164780
01750000	03633368	02000000	04095800	02500000	05005726
03000000	05899508	03500000	06780247	0400000	07650096
05000000	09363099	06000000	11047299	07000000	12708358
07500000	13531457	08000000	14350121	09000000	15975389
10000000	17586284	12500000	21560732	15000000	25380000

- C DATA INPUT FOR RESERVOIR PROPERTIES
- 2.0 768.0 2190. 11450. 690. .80 .28 64.4 .7975 .30 .050 180. .30

122

0.15 8838. 662.26 387.48 1.03 7.0 7.52757 606898622000. 2.07907540E+10 1.54221800E+06 8.67600000F+03 8838. 8764. 8657. 8509. 8364. 8219. 8100. 9 25000000. 1250. 30.

123

RESERVOIR COMPUTER PROJECT --- FUTURE PERFORMANCE

RESERVOIR DATA FOR

INC, CURRENT NUMBER OF PRODUCTION INCREMENTS= 7 MAX. NUMBER OF PRODUCING WELLS AT ANY ONE TIME= 2.0 BW, FORMATION VOLUME FACTOR FOR WATER IN BBLS/STB= 1.030 CONV, SCF OF VAPOR PER BARREL OF DISTILLATE= 768.0 RI,RADIUS TO INITIAL EDGE OF RESERVOIR IN FEET= 2190.0 DEPTH, DEPTH OF RESERVOIR IN FEET= 11450.0 TEMP, TEMPERATURE OF RESERVOIR IN DEGREES RANKINE= 690.0 PC, PSEUDOCRITICAL PRESSURE IN PSIA= 662.3 TC, PSEUDOCRITICAL TEMPERATURE IN DEGREES RANKINE= 387.5 SGI, INITIAL GAS SATURATION AS FRACTION= .800 O, POROSITY AS FRACTION= .280 AH, AVERAGE THICKNESS OF RESERVOIR IN FEET= 64.4 SG, SPECIFIC GRAVITY OF GAS RELATIVE TO AIR= .7975 U, VISCOSITY OF RESERVOIR WATER IN CENTIPOISE - .300 AK, WATER PERMEABILITY OF RESERVOIR IN DARCIES= .0500 TIME, TIME INTERVAL USED IN DAYS= 180.00 SGR, RESIDUAL GAS SATURATION AS FRACTION = .300 SWC, CONNATE WATER SATURATION AS FRACTION= .150 WIC, WATER INFLUX CONSTANT IN BBLS. PER PSIA= 7.528

RESERVOIRPRODUCTIONFOR FUTUREPERFORMANCEPREDICTIONAVERAGEDAILYDRYGASPRODUCTIONINSCF=25000000.0AVERAGEDAILYDISTILLATEPRODUCTIONINSTB=1250.0AVERAGEDAILYWATERPRODUCTIONINSTB=30.0

INITIAL CONDITIONS

INITIAL PRESSURE IN PSIA= 8838.00 INITIAL GAS IN PLACE IN SCF= 6.06898622E 11 MAXIMUM FLOODABLE RESERVOIR VOLUME IN BARRELS= 2.22914288E 08 INITIAL GAS COMPRESSIBILITY FACTOR= 1.32981926E 00

FUTURE PREDICTION

IME	PRESSURE	WE		GPW		DELTA P
7	8009.66	3.01997662E	05	2.54650962E	10	90.34
8	7870.52	3.92764487E	05	3.01378962E	10	139.14
9	7734.90	4.98711813E	05	3.48106962E	10	135.62
10	7602.48	6.17296089E	05	3.94834962E	10	132.42
11	7473.08	7.47733989E	05	4.41562962E	10	129.40
12	7346.57	8.89432311E	05	4.88290962E	10	126.51
13	7222.84	1.04188907E	06	5.35018962E	10	123.73
14	7101.81	1.20466079E	06	5.81746962E	10	121.03
15	6983.39	1.37735030E	06	6.28474962E	10	118.42
16	6867.53	1.55959584E	06	6.75202962E	10	115.86
17	6754.18	1.75105577E	06	7.21930962E	10	113.35

18	6643.27	1.95140676E	06	7.68658962E	10 110.91	_
19	6534.76	2.16034859E	06	8.15386962E	10 108.51	
20	6428.60	2.37757163E	06	8.62114962E	10 106.16	5
21	6324.75	2.60283387E	06	9.08842962E	10 103.85	;
22	6223.15	2.83585730E	06	9.55570962E	10 101.60)
23	6123.75	3.07640675E	06	1.00229896E	11 99.40)
24	6026.50	3.32422979E	06	1.04902696F	11 97.25	5
25	5931.35	3,57910580F	06	1.09575496F	11 95.15	5
26	5838.24	3.84080861F	06	1.14248296F	11 93.11	
27	5747.13	4.10910827E	06	1.18921096E	11 91.11	
28	5657.94	4.38383777F	06	1,23593896F	11 89.19	5
29	5570.63	4.66479429E	06	1,28266696E	11 87.31	
30	5485.14	4.95179404F	06	1.329394965	11 85.49	5
21	5401.40	5.24466308E	06	1.376122965	11 83.74	
32	5310.37	5 54323484E	06	1.422850965	11 82.03	į
22	5238.99	5-84734876F	06	1.469578965	11 80.38	2
34	5160 19	6 15685365E	06	1 516306965	11 78.80	Ś
25	5082 93	6 47160388E	06	1 563034965	11 77 26	(
26	5007 15	4 701/4210E	06	1 600762065	11 75 79	2
20	4022 70	7 11(20(22)	0.6	1.65(400065	11 7/ 2/)
20	4932 • 19	7.110290320	00			>
20	4809.81	7.44598239E	00	1 • 70321096E	11 72.90	2
39	4788.15	7.78039908E	06	I • 74994696E	11 /1.66	>
40	4/1/•/6	8.11943332E	06	1 • 7966 7496E	11 /0•39	,
41	4648.59	8.46297811E	06	1.84340296E	11 69.17	
42	4580.60	8.81092942E	06	1.89013096E	11 67.99	/
43	4513.74	9.16318972E	06	1.93685896E	11 66.86	>
44	4447.97	9.51966598E	06	1.98358696E	11 65.77	ľ
45	4383.24	9.88026859E	06	2.03031496E	11 64.73	3
46	4319.51	1.02449144E	07	2.07704296E	11 63.73	3
47	4256.74	1.06135227E	07	2.12377096E	11 62.77	1
48	4194.90	1.09860180E	07	2 . 17049896E	11 61.84	ł
49	4133.94	1.13623269E	07	2.21722696E	11 60.96	5
50	4073.83	1.17423812E	07	2.26395496E	11 60.11	Ĺ
51	4014.54	1.21261164E	07	2.31068296E	11 59.29	7
52	3956.03	1.25134699E	07	2.35741096E	11 58.51	L
53	3898.27	1.29043838E	07	2.40413896E	11 57.76	Ś
54	3841.23	1.32988022E	07	2.45086696E	11 57.04	ł
55	3784.88	1.36966727E	07	2.49759496E	11 56.35	5
56	3729.18	1.40979449E	07	2.54432296E	11 55.70)
57	3674.12	1.45025730E	07	2.59105096E	11 55.06	5
58	3619.67	1.49105112E	07	2.63777896E	11 54.45	5
59	3565.79	1.53217166E	07	2.68450696E	11 53.88	3
60	3512.46	1.57361517E	07	2.73123496E	11 53.33	3
61	3459.66	1.61537783E	07	2.77796296E	11 52.80)
62	3407.38	1.65745573E	07	2.82469096E	11 52.28	3
63	3355.57	1.69984484E	07	2.87141896E	11 51.81	L
64	3304.23	1.74254188E	07	2.91814696E	11 51.34	ŧ
65	3253.32	1.78554343F	07	2.96487496F	11 50.91	
66	3202.82	1.82884669E	07	3.01160296F	11 50.50)
67	3152.74	1.87244912F	07	3.05833096F	11 50.08	ŝ
68	3103.03	1.91634781F	07	3.10505896F	11 49.71	
69	3053.68	1,96054041F	07	3.15178696F	11 49.35	5
70	3004.67	2.00502457E	07	3.198514965	11 49.01	
71	2955.97	2.04979827F	07	3.24524296F	11 48.70	5
72	2907.60	2.09485976F	07	3.29197096F	11 48.37	7
73	2859.50	2.140206825	07	3,338608065	11 48.10	2
1.5	2000000	20140200020	01	J • J J 0 0 7 0 7 0 E	+0.1(1

	2011 (0	2 105000105	07	2 205/2/0/5	11 (7 00
74	2811.68	2.18583818E	07	3.38542696E	11 47.82
75	2764.11	2.23175214E	07	3.43215496E	11 47.57
76	2716.78	2.27794740E	07	3.47888296E	11 47.33
77	2669.68	2.32442265F	07	3.52561096F	11 47.10
78	2622.78	2 371176725	07	3.572338965	11 // 00
70	2022010	2.61020077	07	2 (100((0))	
19	2516.01	2.41820867E	07	3.01906696E	11 46•/1
80	2529.54	2.46551770E	07	3•66579496E	11 46•53
81	2483.18	2.51310297E	07	3.71252296E	11 46.36
82	2436.96	2.56096366E	07	3.75925096F	11 46.22
83	2390.86	2.6090930E	07	3.805978965	11 // 10
0.0	200000	2.00000000	07	3 85270(0(5	
84	2344.88	2.65750960E	07	3.85270696E	11 45.98
85	2299.05	2.70619420E	07	3.89943496E	11 45.83
86	2253.25	2.75515216E	07	3.94616296E	11 45.80
87	2207.58	2.80438455E	07	3.99289096E	11 45.67
88	2161.95	2.85389026F	07	4.03961896F	11 45.63
89	2116.35	2.90366994E	07	4-086346965	11 45.60
20	2070 82	2 05272202	07	4 133074965	
90	2070.02	2.999729925	07	4 17000204F	11 49.99 11 (5.50
91	2025.29	3.00405193E	07	4.17980296E	11 45.53
92	1979.77	3.05465482E	07	4.22653096E	11 45.52
93	1934.24	3.10553302E	07	4.27325896E	11 45.53
94	1888.69	3.15668727E	07	4.31998696E	11 45.55
95	1843.09	3.20811827F	07	4.36671496F	11 45.60
04	1707 46	2 250027215	07	4 413442965	11 /5 /2
70	1751 40	3.23902721E	07	4.41344290E	11 49.00
97	1/51.76	3.31181457E	07	4.46017096E	11 45.70
98	1705.96	3.36408157E	07	4 . 50689896E	11 45.80
99	1660.09	3.41662966E	07	4.55362696E	11 45.87
100	1614.10	3.46945965E	07	4.60035496E	11 45.99
101	1568.00	3-52257331F	07	4.64708296F	11 46.10
102	1521 77	2 575071945	07	4 693810965	
102	1/75 24	3.97997100E	07	4.07301090E	11 40.23
103	1475.30	3.62965691E	07	4.74053896E	11 46•41
104	1428.76	3.68363065E	07	4.78726696E	46.60
105	1382.01	3.73789519E	07	4.83399496E	11 46.75
106	1335.01	3.79245192E	07	4.88072296E	11 47.00
107	1287.81	3.84730397F	07	4.92745096F	11 47.20
108	1240.39	3.90245323F	07	4,97417896F	11 47.42
100	1102 68	3 057001865	07	5 02000604E	11 / 7 71
110	1166 60	012(E20EE	07	5.02090090E	11 47.000
110	1144.00	4.01365303E	07	5.00763496E	11 48.00
111	1096.38	4.069/095/E	07	5.11436296E	48.30
112	1047.78	4.12607427E	07	5.16109096E	11 48.60
113	998.79	4.18275004E	07	5.20781896E	11 48.99
114	949.48	4.23974101F	07	5.25454696F	11 49.31
115	899.74	4,29704978F	07	5-30127496F	11 49.74
116	8/19-62	4.35468084E	07	5 34800296E	11 50.12
1 1 7	700 07	4. (12(272)	07	J• J4000290E	
	199.02	4.41263/36E	07	5.394/3096E	11 50.60
118	747.99	4•47092427E	07	5.44145896E	11 51.03
119	696.45	4 . 52954528E	07	5.48818696E	11 51.54
120	644.35	4.58850553E	07	5.53491496E	11 52.10
121	591.74	4.64781051F	07	5.58164296F	11 52.61
122	538.51	4.707464555	07	5-62837096E	11 53.22
122	1.8/ 44		07	5 475000045	
120	404.00	4.10/4/3/1E	07	2.07204846E	11 23.85
124	430.14	4.82/84344E	07	5.72182696E	11 54.52
125	374.92	4.88857997E	07	5.76855496E	11 55.22
126	318.93	4.94968966E	07	5.81528296E	11 55.99
127	262.20	5.01117984F	07	5.86201096F	11 56.73
128	204.60	5.07305695F	07	5,90873896F	11 57.60
129	146.12	5-13532948F	07	5,955466965	11 58.49
/	1,0017		01		11 20.40

130	86.70	5.19800526E 07	6.00219496E	11	59.42
131	26.28	5.26109289E 07	6.04892296E	11	60.42
132	-35.20	5.32460162E 07	6.09565096E	11	61.48

RESERVOIR DEPLETED

.

Ossian R. Butterfield was born at Leominster, Massachusetts, on May 12, 1927, the son of Ossian R. and Helen P. Butterfield. He attended public schools in Leominster, graduating from Leominster High School in 1944. He entered the U. S. Navy in June, 1944, was enrolled in the Navy V-12 College Training Program and attended Williams College in Williamstown, Massachusetts. In November, 1945, he was transferred to the U.S. Naval Reserve Officers Training Course Unit at Brown University. In 1947, he was graduated from Brown with the degree of Bachelor of Science in Engineering. Upon graduation, he was commissioned an Ensign in the U.S. Navy Civil Engineering Corps. Duty assignments have included engineering duties at the Naval Proving Grounds, Dahlgren, Virginia; the Naval Air Station, Dallas, Texas; the Naval Stations in Argentia, Newfoundland, and in Bermuda, The West Indies; the Naval Air Station, Patuxent River, Maryland; the Naval Radio Station, Kamiseya, Japan; and the Naval Mine Warfare School, Yorktown, Virginia. In 1955 and 1956 he attended Rensselaer Polytechnic Institute in Troy, New York, where he received the Bachelor of Civil Engineering degree in June 1956. He has served as Executive Officer and as Commanding Officer of U.S. Naval Mobile Construction Battalion Six deployed to Rota, Spain, and other bases in the Atlantic Ocean

VITA

Area. His most recent duty assignment was in the Bureau of Yards and Docks, Navy Department, Washington, D.C., where he was Director of the Construction Division responsible for the management of projects engineered and constructed by the U.S. Navy for other governmental agencies.

He was selected for postgraduate education in petroleum engineering and entered the Graduate School of The University of Texas in September, 1963.

Butterfield was married to Ann Churchill of King George, Virginia, on April 11, 1950. They have two children, Marcia, age 13, and Brian, age 12.

Permanent address: 6600 Willamette Drive Austin, Texas

This thesis was typed by Virginia F. Dailey.

