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ABSTRACT

The finite-amplitude standing wave behavior of air within

several tubes was experimentally investigated near standard

conditions of temperature and pressure for frequencies below 3000

cps. The sound pressure levels obtained were large enough to

generate shock waves of 0.10 atmospheres. The air in the tube

was driven by means of a vibrating piston. The motion of the

piston was measured by an accelerometer while the pressure at the

rigid end was measured with a condenser microphone. It was found

that the wave forms for different tubes would be the same if the

following quantities were made equal: 1) the ratio of the driver

acceleration to the acoustic attenuation constant, and 2) the phase

angle between the acceleration and the pressure at infinitesimal

amplitudes. Values of the attenuation constant were determined by

several different methods including measuring the decay of

pressure after clamping the driver piston and by determining the

ratio of acceleration to pressure. Observed attenuation constants

-4 -1
were of the order of 10 cm . The resonant frequency for

infinitesimal amplitude was observed to be the frequency maximizing

both the average rectified pressure and the shock strength only for

the stronger shocks. However, for weak shocks the shock strength

became a maximum at lower and lower frequencies as the pressure

decreased. This tendency, as indicated by the amount of second

harmonic distortion, continued in the weak finite amplitude region.
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1. Introduction.

The purpose of this research is to investigate the parameters

that effect the behavior of high intensity standing waves in air

contained in tubes. In many practical instances the sound

pressure levels within cavities are found to be of such large

magnitude that infinitesimal amplitude theory no longer applies.

The investigations reported here were carried out in air-filled

tubes each terminated with a rigid boundary at one end and driven

by a vibrating piston at the other.

The acoustic pressure at the fixed end (x = L where L is the

tube length) predicated by the theory of infinitesimal amplitude

waves with no dissipation is given by the equation:

Where
A = acceleration amplitude of

the driver piston at x =

P — A (% COS aJc k = wave number to/c

H S /Vi K

L

° ~ l°ca l speed of sound

fio = density of the gas

The resonant frequencies are given by kL = nTT, and at resonance

the predicated pressures are infinite.

If dissipative terms are introduced into the acoustic wave

equation, then the pressure at x = L becomes:

P = Afr r 2.

_(*LCO& KLy + Sin^HL
COS OJ't





Where o( is the attenuation constant depending on viscosity, heat

conduction, molecular relaxation of the gas, and the wall effects.

This solution is still not complete: although it eliminates the

singularities at resonance, it is still a linear theory predicting

continuous pressure-time behavior near resonance. This is an

inadequate description since experimenters have observed that

shock waves are present in the tube near resonant frequencies.

In the region between infinitesimal amplitude waves and

shock waves several things are happening. As the amplitude

increases the sinusoidal pressure wave begins to distort as a

result of increased inportance of non-linear effects in the gas.

These non-linearities generate harmonics of the fundamental

which lead to an apparent distortion of the observed waveform. As

the strength of the fundamental is increased, the distortion grows

until a shock wave finally developes.

Most investigators of finite amplitude effects have confined

their studies to traveling waves (2, 5, 8, 19, 20). There have,

however, been a few investigators of finite amplitude standing

waves (1, 4, 17).

In this study a tube terminated at one end by a rigid piston,

and driven at the other by an oscillating piston was used to

investigate finite amplitude standing waves. The use of a piston

as a sound source in a tube is no new concept (11, 12, 18). How-
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ever, most pistons in the past have been driven by some sort of

reciprocating mechanical driver. The space program has created

the need for vibration exciters to test missile parts, and out of

this need has come the machine used in this experiment as a

piston driver. Reichwein (13) first used a driver of this type with

a capability of 16 g acceleration to drive the piston in a tube.

The tube was terminated by a plug containing a condenser

microphone to monitor the pressure at the terminal end. He

investigated threshold behavior of periodic shock waves in

resonating gas columns and reached the conclusion that in a

given tube the waveform was a function only of the acceleration

of the driver piston and the "distance" off resonance as measured

by the phase angle between the shock front and the piston

acceleration.

Sanders later observed that the waveform depended markedly

on the "tightness" of the tube enclosure. He found that if there

were leaks at either end of the tube shock waves would not

develop until the acceleration was much higher than for a "tight"

tube, and that the waveform in a rectangular cross section tube

was different from that in a round cross section tube. It was

Sanders, J. V. ,
private communication.





postulated that the tube attenuation was an additional parameter

affecting shock wave development.

The attenuation of infinitesimal sound in a tube has been

treated by a number of people both theoretically and experi-

mentally (6, 7 , 13, 16, 21). It turns out that the attenuation

constant in a tube is proportional to the square root of frequency

due to the wall effects, plus other terms attributable to free

space attenuation, etc. In this experiment tube effects are

about four orders of magnitude greater than the other effects. All

of the investigators have been able to verify theory to reasonable

accuracy, but all have measured an attenuation constant higher

than the theoretical one. Different explanations have been

advanced for the discrepancies, but none have been proven.

The experimental set-up used in the present experiment is

essentially the same as that used by Reichwein. However,

the 16 g vibration exciter was replaced by one of 50 g capability.

The original experimental set-up was further modified by the

addition of a water jacket on the tube to stabilize tube temper-

ature. This arrangement enabled the experimenters to study

standing waves from the infinitesimal amplitude region to the

finite amplitude shock region without any equipment changes.

2. Equipment Description

Oscillator The Hewlett-Packard Model 205 AG Audio Signal
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Generator was found to be a very stable oscillator. In the

frequency range of 20-20,000 cps there is a drift of two per cent

or less, and if allowed to warm up for thirty minutes the drift was

less than 0.01 cycle in the frequency range of interest.

Piston driver The MB Model O10 VB Vibration Exciter was

selected for the wide range of accelerations attainable. The

electrically driven piston is preferable to a mechanical or electro-

mechanical device because the acceleration of the electrical

driver can easily be controlled and there is enough power to

drive a 0.5 lb load with 50 g acceleration or a 30 lb load with 25

g acceleration. The dynamic range for the loads imposed was

from a maximum of 50 g acceleration to a minimum of 0.5 g where

60 cps noise made the signal to noise ratio unfavorable.

Microphone The Bru'el and Kjp^r Condenser Microphone

Type 4136 was used for the pressure pickup. Since the

microphone was embedded in the rigid end of the tube it was

necessary to use a microphone of small diameter so as to

produce as small perturbation of the boundary conditions as

possible. For this reason the 0.25 in microphone was selected.

In addition, for the investigation of finite amplitude waves a

microphone was needed with a relatively short rise time. The

rise time of this microphone is 4,5 micro seconds and the

frequency response is essentially flat from 25 cps to 80,000 cps.
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Frequency counter Hewlett-Packard Electronic Counter

Model 522B was used for frequency determination. The time

interval unit on a ten period average was used for frequencies

below 1000 cps and the frequency unit on a ten second count was

used for frequencies above 1000 cps so that a 0.1 cps accuracy

in frequency determination could be obtained.

Accelerometer Endevco Model 2215 Accelerometer was

bolted to the driver face plate. This accelometer had been cross

calibrated by Sanders yielding a sensitivity of 4.82 rms mv/peak g,

Oscilloscope A Tektronix Type 565 Dual Beam-Dual Time

Base Oscilloscope was used with plug in units 2A60 and 3A72.

With these plug in units three traceis, could be viewed simult-

aneously. The dual time base permitted the expansion of any

portion of the waveform, and in particular the shock front for

detailed inspection. The delay feature incorporated in this

scope also allowed phase between two traces to be read directly

from a dial.

Tube enclosure Several tube arrangements were used to

investigate a set of different boundary conditions. The basic

arrangement is shown in Fig. 1-1 and is considered to be the

most practical set-up since the tube length can be readily varied.

The tube was of aluminium, length 5 ft. 11 in. , wall thickness

of 0.20 in. , and an inside diameter of 1. 75 in. Early in the
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experiment it was found that driving the piston at large

amplitudes caused the temperature of the air in the tube to

increase thereby changing the resonance frequency. Therefore

the tube was fitted with a double wall so that water could be

circulated between the walls to stabilize the temperature. This

water-jacket kept the temperature in the tube constant at 14.5°C

by absorbing the heat from the inside of the tube and also

shielding the inside from the heat produced by the electronic

equipment in the room.

The microphone was mounted in a movable piston eight

inches long with its head flush with the face of the piston. The

microphone piston and the driver piston were placed in the tube

with "O" rings and vacuum grease to produce an air tight seal.

The driver piston was connected to the face of the driver plate by

means of a short threaded shaft.





3. 1 Theory of Infinitesimal Amplitude Plane Waves in a

Dissipative Fluid

The standard form of the linearized plane wave equation

using particle displacement ~f as the acoustic variable is

g x ~ r7
- "k ~S A solution of this equation is

where is the complex displacement amplitude of a plane wave

of frequency c*> and wave length constant K, traveling in the

positive x direction with velocity c; and D is the amplitude of a

similar wave traveling in the negative x direction. The

subscript tilde will be used to denote complex quantities.

This solution and the wave equation for which it is a

solution are based on the assumption that there are no

acoustical energy losses, either in the medium or at the

boundaries of the medium. Appropriate mechanisms have been

developed to deal with these losses, some of which will be

discussed in section 3.2. Assuming that these losses exist and

that they are a function of the distance traveled by the plane

wavethrough the medium, it is possible to modify the plane

wave equation to account for these losses. If the expression

K = 0>/c is modified to /< - ^/c where C is a complex velocity

and K is considered a complex wave length constant with real

part K and imaginary part -je< then it can be shown that the

plane wave equation may be re-written as 2—3L- - C ^ T





with a solution
-J

*
JJ
^* '«

f g fi
Jr«* *« »0

which may also be written
J = R £**£*(** "^.^e** £*(">* + **)

This solution is similar to that for the unattenuated wave except

that the displacement amplitude is attenuated in accordance with

the term £ i" ot *
. The acceleration of the particles for infinite-

simal waves may be found by taking the second derivative of

particle displacement with respect to time, a.= ^ X. ~-cJ* "£

The pressure of the wave can be expressed as

-t - -78 S* £X

= ^ft^'
K-j* L

rGe-ou
e
^/-">o ^ ^x^^***5 *x^tf^* K>0 1

Let us now consider a plane wave of this form being

propagated in a tube closed at one end and driven at the other by

a piston moving with an acceleration Ae^ T* where A is the real

acceleration amplitude. We take the piston rest position to be

at x = and the rigid end to be at x = L.

Two boundary conditions are imposed: that the particles be

stationary at x = L, and that they be moving with acceleration

9





AeJwt atx =

At x = A z.^* = - J* [g eJ™* * D <£
JaJ>

]

Solving for B and D in terms of A

8
-^ e""^

When these values of g and g are substituted in the pressure

equation, pressure becomes

Evaluating this expression at x = L

The amplitude of the pressure at the rigid end, p ^ nf

I

is

P = dA -ii

For the range of experimental values investigated ot is of

order 10 , K of order 1 , and L of order 1 . Since KL 3 1

and «t.L«KL, the approximations can be made that sinh oCL = o(L,

cosh crtL = 1. Using this and the fact that o(/ << /

P - ka r ' ]*
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This equation for P is correct to first order in o< L. Finally «^>

may be expressed as Pe ' where 9 is

- -TT _<

9 - ~-g" + +* n -$ - ten'* (co+h o(l ian >fL)

To investigate the acoustic behavior of the system as the

frequency or length is varied, the derivative of P with respect

to either variable is taken and set equal to zero.

ForP= fiA- C(*L coitrif + $>r>* hlY*>

setting ^£ - o leads to

.^COS KL[-KUL)Z SmKl +-o(
l
L Cos XL ^KS/nKLj sQ

When cos KL = 0, P is a minimum. The requirement for cos KL =

is that KL-(m-i*)7? or L = (HLZJL^JL
K

Pm>n - &JL or P'Al
x (m^Yyrp

This leads to the conclusion that the same value of minimum

pressure will be observed at lengths of the tube corresponding

to \
m ~ * ' u where m is an integer greater than or equal

K r

to one. The maximum value of pressure /occurs when-"'

&##> HI ' fr L^ .that is xl - n TT to first order in * L.

The value of P is £>a A

Taking the partial derivative of P with respect to frequency

and setting it equal to zero leads to a determination of the

resonances and antiresonances of the system, but the result is

more complex since the parameter o\ is also a function of

11





frequency but not of length.

Fig. 3-1 illustrates the dependence of P on length of the

tube at a fixed frequency, and Fig. 3-2 illustrates the

dependence of P on frequency at a fixed length. The frequency

dependence of * is taken into consideration in Fig. 3.2.

3.2 Attenuation of Sound Waves in Tubes

Acoustic waves being transmitted in a medium must undergo

losses of acoustic energy. These losses are of two types,

losses due to dissipation in the medium itself and losses

associated with conditions at the boundary of the medium.

Losses in the medium may be viscous losses, heat losses and

losses due to molecular exchange of energy. For dry air at

standard conditions these losses in the medium may be

represented by an attenuation coefficient * of the approximate

-13 2
value 2 x 10 f where f is the frequency of the acoustic wave

in cycles per second and the units of et, are cm . For the size

of tube and frequency range dealt with in this experiment these

losses in the medium are several orders of magnitude smaller

than the losses due to boundary conditions and may be safely

ignored

.

Losses associated with boundary conditions may arise from

the direct absorption of acoustic energy by the walls. The

requirement of zero particle velocity at the walls leads to a

12





velocity gradient from the center to the walls and thus to

dissipative forces which are related to the shear viscosity of

the medium. In addition, since temperature is essentially

constant at the walls, there is a tendency for heat to be

conducted to the walls from the medium during a condensation

and from walls to medium during rarefaction, resulting in a

dissipation of acoustic energy.

The theory of attenuation in a tube of circular cross section

has been developed by Helmholtz, Kirchoff and Lord Rayleigh £l4j.

A simplified exposition of this theory may be found in

"Fundamentals of Acoustics" by Kinsler and Frey ffj. The

attenuation in a tube due to boundary effects is shown to be

o( = -~z—7^ Co where a is the radius of the tube, >£ is

an effective coefficient of shear viscosity, & is radian

frequency, c is free field speed of propagation in the medium,

and p is density of the medium. The speed of propagation in a

tube is slower than in an infinite medium and is given by the

expression c' cfl " 2cT X^*" ) •
Tne use of an

effective shear viscosity rather than an actual coefficient of

shear viscosity is a technique developed by Kirchoff and later

Rayleigh to take into account the effect of heat conduction to

the walls. The relationship between 1/ and // is

^/t a J/T
i + (?- \) K 1 where k is the thermal





conductivity of the gas, / is the ratio of specific heats, and c

is the specific heat at constant pressure. Investigators have

stated that in a tube of rectangular cross section the attenuation

due to wall effects is directly proportional to the ratio of the

perimeter to the cross sectional area, in place of the

reciprocal of the radius in the case of the cylindrical tube [4,16J.

The derivation of the theory for attenuation in a rectangular

tube is complicated by the fact that it must be accomplished

using rectangular coordinates, and an extra dimension must be

considered which was not necessary in the cylindrical tube due

to its circular symmetry. The simplest means of approach to

the rectangular case is to consider the case of a plane wave

being propagated between two parallel flat plates in a direction

x parallel to the plates. Consider an element of volume

between these plates of length dx in the direction x, of unit

width in the direction parallel to the plates and perpendicular

to the direction of propagation, and thickness dy in the

direction perpendicular to the plates. This element, of volume

dxdy, has exerted on it a force due to the gradient of pressure

in the x direction of magnitude -^^ Jy^vt . In addition, due
ax J

to the boundary condition of zero particle velocity at the walls

there will be a particle velocity gradient in the y direction.

Since the viscous force on a surface of area dx is u/olx \ M

14





where ^ is the coefficient of shear viscosity, the net force due

to the viscous forces on the element of volume will be

3^-U^^/x ^M. 1 d v ** these forces are equated to the

mass of the medium contained in the volume element multiplied

by the acceleration %M , a partial differential equation in JUL is
77-

obtained as follows

If the motion is assumed to be sinusoidal and of frequency u>

then Jb may be expressed as Pe?
"

anc* u. as

(J e
J^ 7 n v so that *M may be replaced by jw-a.

Then
~£f- =[>

A solution of the equation is tj- ' ^P. a ^^
Applying the boundary condition that U = at 0/2 and -<£7/2

where a is the distance between the plates

The average value of U* over the distance a, since U is

symmetrical about y = may be found by integration as follows

17 - ate & [.-&0-*-*>
15





Since K= (l -«0 J-Sr^-

For ^7*^ ^ /0 which is the case for the experimental

situation, &* 4.< | and can be neglected.

V then is approximately ^p* ££ ^j - -J^N

Solving for -_# , ^ - v"^ " *»)"
which is approximately

Since tf* r -Oj«*L a„4 K K>" ^ /f^F

From this point the derivation follows exactly that of the

cylindrical tube. The reactance term )p& is the normal

reactance term associated with
f> ^44. and the effect of

viscosity is to introduce an additional reactance term j/oo> C^Pf%'M' J

so that the effective density of the viscous medium is p* *pAxJu~na>^/
)

The effect of this effective density on the medium leads to the

expressions for c" and ot, previously given for the cylindrical tube.

The conclusion is that the attenuation of a plane wave between

two parallel plates is inversely proportional to the distance

between the plates, just as it is inversely proportional to the

16





radius in the cylindrical tube. Generalizing to the case of a

rectangular tube, it is apparent that the attenuation due to the

two sets of parallel plates making up the walls should be

additive if comer corrections are negligible. The attenuation

should then be proportional to Q^ * X-\ where a and be are

the dimensions of the cross section of the tube, fa « J~\ can

be expressed as (°*~>
)

which is one half the ratio of the

perimeter to the cross sectional area. This relationship agrees

with the statement previously made that attenuation is directly

proportional to the ratio of perimeter to area. (Fig. 3-10) shows

the comparison of o< obtained using this theoretical development

with the o< actually measured in the rectangular tube.)

In the special case of standing waves in a cylindrical tube

Parker fl3J states that the attenuation due to the wall effects

should be increased to take into consideration the losses at a

rigid end. His relationship is o^j ~diw (it ty\
where R is

the tube radius and L is the tube length. This additional

attenuation is of the order of three per cent for the tube size

used in the experiment.

3.3 Investigation of Attenuation in Tubes

The investigation of attenuation in the infinitesimal

amplitude region carried out in this study consisted of

measuring attenuation by five methods suggested by the theory

17





previously developed. These methods were then checked for

consistency and finally compared with the attenuation predicted

by theory.

The first method of measuring attenuation involved measuring

phase changes of pressure with respect to acceleration by

varying frequency in the vicinity of resonance. In the expression

y* - r* C ' where

9 represents the phase angle between the acceleration of the

piston and the pressure at the rigid end of the tube. If the

same simplifying assumptions made previously are applied to

the equation for it may be solved for ©( with the result

q( = .

-"
Li aUL where f is the frequency for which 9 is Ip

and Z\f is the change in frequency from f necessary to

obtain some phase angle other than 3£ . The method becomes

more accurate as larger values of ^f are obtained, since A f is

a small quantity of the order of a few cycles per second. The

experimental procedure used was to vary the frequency about

the center frequency f , read values of 9 on a dual beam

oscilloscope, calculate values of attenuation for each set of

readings and compare consistency. The accelerpmeter and

microphone voltages were displayed as vertical inputs to a

dual beam, time shared CRO. The Lissajous technique was

also tried but discarded since it introduced additional labor

18





into the method without increasing accuracy. Phase meters

were also tried but the relatively low input impedances of

these meters significantly loaded the circuits and introduced

phase changes. Throughout the experiment an attempt was

made to keep electronic circuitry to a minimum of complexity,

since amplifiers and filters introduced phase changes which

were both amplitude and frequency dependent in an unpredict-

able manner. In the early stages of the experiment it was

discovered that the value of fQ was extremely sensitive to

temperature changes in the medium, a one degree centigrade

change corresponding to a 0.34 cyle per second change in f

at 200 cps. Since A f was of the order of one cps, this was a

significant source of error. The problem was eliminated by

water jacketing the tube to stabilize the temperature, after

which drift in the value of fQ became negligible. Fig. 3-3.

The expression fan** - &A from which <y( = ^° ^
provides a simple and rapid means of determining e( . Since KL

is approximately nTfthe parameters to be measured are accelerf*

ation and pressure, /°9 being obtained from a handbook as a

function of temperature. Assuming proper calibration of both

accelerometer and microphone, this method should produce

accurate results. Since KL may be made any one of many

values of n within the frequency range of the equipment,

19





values of «>(, for many different frequencies may be obtained with-

out varying the length of the tube. Fig. 3-4.

The < obtained by measuring P and A should be the same at

all the modes n obtained by varying length and holding frequency

fixed. The product KL P should be a constant for all n for ar max

given A. The experimental results of plotting nP as ordinate
max

against n for a fixed value of A was not the expected straibht line

but a curve which asymptotically approached a horizontal line for

high values of n. Fig. 3-7. The explanation of this phenomenon

comes from a consideration of the losses making up o( . The

theoretical value of o( was derived assuming a boundary condition

of a rigid end at x = L. If there are leaks around the gaskets

there will be significant increases in the value of attenuation

measured. By using a single parameter p< the losses at the ends

have been treated as though they were distributed over the whole

length of the tube. A more appropriate treatment would be to treat

attenuation of pressure amplitude for a wave traveling down a tube

and striking an end as attenuation of the form fr - P £ f a
/

where £ is the loss in amplitude due to the end. If the

length of the tube is increased the attenuation due to the end does

not increase but the attenuation due to the walls is increased. As

tube length becomes greater the losses at the end become less

significant. Thus at higher values of n the end losses will be

20





proportionally less significant and the measured values of •<

should approach asymptotically the value of «< for ideal end

conditions. Fig. 3-8.

By comparing the value of o< for n = 1 with the value of

for a higher value of n at the same frequency an indication of the

tightness of the system is obtained. As a result of these

comparisons a greatly improved rigid end piston was designed and

installed. With this piston the system became so leakproof that it

was difficult to change the tube length. It took several minutes

in each case for pressure equilibrium to be established after a

change in tube length.

The expression /"mm * P°A leads to the conclusion that
K

Pmin is a ^unction °f frequency but not of length, that is, for a

given value of frequency the values of P . obtained by varying L

through different values\of KL = (m-l/2) TT will all be the same.

This conclusion was verified within the limits of experimental

accuracy.

If the expressions for P_, and P are combined, the resultmax min

j . i Prwin is obtained, where L is the length of the tube at

which Pmax was obtained. Since o( may be found using a ratio of

pressures this method of determining c^ is considerably less

sensitive to calibration errors. One objection to the method is that

at the small values of Pmin involved, system noise becomes significant.
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An additional method of determining o< is to determine the

frequency or length change necessary to reduce the value of P to

0. 707 of its maximum value, that is to reduce it be three decibels.

In this "bandwidth" method

P»*l+t»wtrJ
*

(^ L )*

In the vicinity of resonance KL may be assumed to be some small

value A(kL) away from nTT and e< may be assumed constant

2
for the small range of frequencies involved. Sin KL may be

approximated by V& OOJ ' or ' with L held constant, by l*^/f)
a

.

2
Cos KL may be approximated by 1. Then

In practice it will be simpler to measure the change in frequency

between down 3 db points on both sides of the resonant peak. In

terms of frequency ©< r 7T Af where ^ f is defined as the
C

frequency change necessary to go from one of the half-power points

to the other, and c is the speed of propagation in the tube. This

relationship was used by Parker [l3^ to determine attenuation in a

tube filled with oxygen.

The bandwidth method is a simple method with the advantage

of employing a ratio of pressures, thus eliminating calibration
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errors. Since the A f in the above expression is only of the order

of a few cycles per second, and the determination of the driver

piston frequency was only to the nearest tenth of a cycle per

second, this method was not particularly consistent. A more

accurately controllable system and a more accurate frequency

counter would improve this method considerably. Obtaining the

half-power points accurately on a voltmeter is also difficult and

not consistent.

A method of measuring ^ independent of the previous methods

is to measure the attenuation of the plane wave in the tube after

the driving piston is stopped. When the power to the piston is cut

off the piston stops in one or two cycles, leaving the plane wave

to decay in a tube with rigid stationary ends at x = and x = L. A

picture of this exponential decay can be taken with a Polaroid

camera mounted on the oscilloscope with the sweep time base

adjusted to display 3 or 4 time constants of the decay. (Figure 3-5)

If the magnitude of the pressure is plotted againipt time on semi-

log paper a straight line is obtained, from which a decay constant

is calculated. (Figure 3-9). This decay constant is in units of

sec but it may be converted to o( in units of cm by dividing

it by the speed of propagation in the tube.

The objections to this method are first that it is only

appropriate for KL = 1 IT , since for higher values of n beats occur
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which make analysis of the exponential decay more difficult.

(Figure 3-5, 3-6). Second, it is slower. Third, non-linearities

in the display system of the oscilloscope become significant.

Fourth, the different end condition at x = may result in a slightly

different value of •(, than existed when the piston was moving.

Even with all these objections, this method proved quite

consistent and on a par with the other methods.

The investigation of attenuation in the acoustic region in a

tube of rectangular cross section was carried out in a similar

fashion as in the round tube. The equipment used made it

impossible to vary the length of the tube more than a few centi-

meters. All methods of determining o( could be used with the

exception of the method involving the ratio Pm in/Pmax- Trie results

of the four methods of obtaining attenuation used on the rectangular

tube were consistent and in agreement with theory. Figure 3-J.O.

Table 1 illustrates the comparison of theoretical values of

attenuation for both the cylindrical and rectangular tubes with the

attenuation measured by the five methods discussed. These

results illustrate the consistency that can be obtained by making

measurements under identical conditions.
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4. Investigation of Finite Amplitude Waves in Tubes

As discussed in the introduction, when a piston is

sinusoidally driven with large amplitude in a rigid ended tube,

the pressure at the end of the tube is not. sinusoidal when the

frequency is near resonance. It is observed that the pressure

wave at the rigid end of the tube contains a discontinuity. A

pressure discontinuity of the type observed is characteristic of

a shock wave.

Saenger and Hudson (1960) developed a finite amplitude wave

theory based on the assumption that the solution to the problem

is the sum of a continuous part, which is calculated as a power

series, and a discontinuous part, which satisfies the shock

conditions. This theory is that used by Reichwein (1962) in his

investigation of threshold behavior of shock waves in a tube using

similar equipment to ours. Saenger and Hudson also did some

experimental work and reported fair agreement with their solution

based on a minimal number of observations. Two other

theoreticians in the field of finite amplitude waves are Betchov

(1958) who also constructed his solution from an assumed sum

of a continuous part, and a discontinuous part, and Chester (1962)

who refines a collection of the previous theories.
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Effects of attenuation on waveform Figure 4-1 is a montage

of oscillograms illustrating the growth of shock waves as a

function of piston acceleration, and phase angle away from

resonance in two tubes of different cross sections. The resonance

frequency in both tubes was 89 cps, and the phase angle between

pressure at the rigid end and acceleration of the piston was

measured in the infinitesimal amplitude region with pressure

having the leading phase. The normalizing factor AQ was 81.3

2 2m/sec in the round cross section tube and 93.8 m/sec in the

rectangular cross section tube, and was the acceleration necessary

to produce an undistorted wave of 1.57 x 10~3 bars rms pressure.

It is clear from these oscillograms that there is an intermediate

region between the infinitesimal amplitude and shock regions.

This intermediate region is characterized by an increasing

distortion of the infinitesimal amplitude wave as the acceleration

of the driver is increased until a discontinunlty appears and will

be called the weak finite amplitude region. Saenger and Hudson

predict a sudden appearance of the shock wave which was not

observed. Instead there is such a gradual growth of distortion

that there was considerable disagreement between observers as to

when a shock was actually present or to when the wave was

merely badly distorted. From the rise times of the measuring

instruments it was calculated that the rise time of the fully
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developed shock wave was less than 4 micro seconds. Saenger

and Hudson further predicted that a shock could not exist below a

piston acceleration which is ten times larger than that observed

at 100 cps.

The fact that it was necessary to water-jacket the tube in

order to keep the resonant frequency the same for high amplitude

work yielded some experimental evidence that the air temperature

in the tube was rising as predicted by Saenger and Hudson. The

tube resonance conditions were not observed to change when

infinitesimal amplitude waves were present in the tube.

With the available frequency counter, frequency could not be

determined with an accuracy greater than 0.1 cps. This presented

difficulties when it was required to reproduce measurements at a

given frequency. Phase angle, wh^ich can be measured to 1.0°,

is a more sensitive parameter than frequency as can be seen on

the montage where two cps correspond to approximately 60 phase

angle near resonance. Phase angles were adjusted by keeping the

tube length constant and changing the frequency of the driver

until the desired phase angle was observed. It was necessary,

however, to measure phase angles in the infinitesimal amplitude

region because, if the upgoing crossing of the axis is chosen as

the point at which to measure phase, this point is not fixed as the

amplitude of the piston is increased to the point of pressure wave
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distortion; i.e. , the weak finite amplitude wave phase angle must

be defined in a different manner than the infinitesimal amplitude

phase angle and will not be defined in this report. The definition

of phase angle used in the shock region is the phase angle

between the shock front and the upgoing axis crossing of the

piston acceleration.

Data for the montage were limited to 60 off resonance by the

acceleration capability of our equipment since observations that

were made at phase angles further from resonance revealed no

shock wave development at the maximum acceleration of the

equipment. If more powerful equipment had been available shock

waves might have been observed at frequencies further from

resonance, but just how far off resonance shock waves will

develop cannot be reckoned. From the shape of the montage it

might be expected that if unlimited acceleration was available

shock waves could be produced for any frequency away from

resonance; however, the above mentioned theories predict the

shock condition only at resonance and frequencies near resonance.

The similarity of the waveforms in the two tubes is remarkable

since the tube cross sections were so different. The reason for

this similarity lies in the process o^ normalizing the acceleration.

In the infinitesimal amplitude region pressure is proportional to

the acceleration of the driver and inversely proportional to the

28





attenuation constant. (Refer to section 3.3) If the acceleration

required to produce a given infinitesimal amplitude pressure is

taken as anormalizing factor in one tube, and the acceleration

required to produce the same pressure in a second tube is taken as

the normalizing factor in that tube, then the effect of the different

attenuations in the two tubes is negated by this normalization

process. Even though the attenuation measurements made in the

infinitesimal amplitude region do not apply in the finite amplitude

region it is remarkable that the wave forms in the different tubes

are similar in both regions when the accelerations are normalized

in the infinitesimal amplitude region. Had the acceleration itself

been used as a parameter (as predicted by Reichwein) the wave-

forms would not have been in such close agreement. The

attenuations within the tubes used were nearly the same, but

tubes with quite different attenuations can be expected to produce

identical waveforms if the accelerations are thus normalized.

Weak finite amplitude region It was observed that visual

distortion of the pressure wave appeared when the magnitude of

the second harmonic was 10 per cent that of the fundamental. A

wave analyzer was used to measure the second harmonic as the

acceleration of the piston was increased until the magnitude of

the second harmonic was 10 per cent that of the fundamental.
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These measurements were made in a round cross section tube and

in a rectangular cross section tube and the results are plotted in

Fig. 4-2 and 4-3. The same procedure was repeated for 20 per

cent second harmonic and for the threshold of shock. No

quantative data were plotted for the threshold of shock, however,

since the point at which the shock appears fully developed depends

on the opinion of the observer. It appeared as though the threshold

of shpok was near the point of 30 per cent second harmonic, but

data taken for this region are not presented since the definition of

shock becomes more obscure as frequency is taken away from

resonance. The wave analyzer used introduced a phase change

which was a function of frequency and amplitude which precluded

determination of the phase relationship of the second harmonic to

the fundamental. It is interesting to note that for a given

acceleration or pressure the maximum distortion occurs at a

noticably lower frequency than the infinitesimal amplitude

resonant frequency.

Shock region Reichwein investigated the parameter

defined by Saenger and Hudson to be the phase angle between the

maximum displacement of the piston out of the tube and the

arrival of the shock wave at the piston. He measured velocity of

the piston whereas we monitored piston acceleration resulting in
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our phase angle parameter being 90° out of phase wtyh his A

parameter. Reichwein drove his system at maximum amplitude,

set his desired Amax by varying frequency or length of the tube,

and then reduced the amplitude down by steps until the amplitudes

of the piston acqeleration became so low that shocks could no

longer be observed. The value of ^max for which no change

in A occurred as amplitude decreased was not Amax = as

might be expected but was some value in the vicinity of A max =

-10 dependent on the resonant frequency. He further predicted

that if amplitudes of acceleration were increased above his

maximum available acceleration, that A would remain constant.

We repeated the same procedure using a maximum acceleration

which was approximately three times that of Reichwein. The

curves obtained, and presented as Figure 4-4, have the same

shape as those presented by Reichwein. The ordinate of this

graph is not A, but the phase angle between the shock at the

rigid end and the upward going axis crossing of the piston

acceleration. This phase angle is equal to A + 90 . For

accelerations up to 200 m/sec (the maximum used by Reichwein)

our results were in agreement with his, and as the acceleration

was increased further the predicted trend was followed until about

400 m/sec . For accelerations above 400 m/sec , Reichwein'

s

prediction that phase angle would remain constant could not be
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verified due to piston acceleration distortion problems.

Resonance in the finite amplitude region The definition of

resonance in the infinitesimal amplitude region is that frequency

at which the maximum rms pressure is obtained for a constant

piston acceleration, and it has been shown that this occurs when

the phase angle between pressure and acceleration is 90°. At

the frequency of infinitesimal amplitude resonance, for all but

weak shocks, the phase angle between the shock and the

acceleration is 90 . If the piston acceleration is held constant

and the frequency changed, it was observed that both the shock

strength and the average rectified voltage (as measured on a VTVM)

decreased. This is in complete harmony with the definition of

resonance in the infinitesimal amplitude region. If the shock

strength is plotted for a constant value of acceleration, then the

maxima of the curves obtained for different values of acceleration

lie at the infinitesimal amplitude resonance frequency for high

accelerations as mentioned above, and move to progressively

lower frequencies as the piston acceleration is decreased.

For the weak finite amplitude region where there are no

shocks, Fig. 4-2 leads us to define resonance as that frequency

for which the per cent of second harmonic is a maximum for

constant piston acceleration. With this definition the tendency
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for the resonant frequency to become lower as the acceleration is

decreased continues to follow the same pattern as in the weak

shock region. Unfortunately data were not collected to indicate

whether or not this definition is consistent with the maximization

of the average rectified voltage. The general trend for the

resonant frequency to move to lower frequencies appears to

continue as the infintesimal amplitude region is appfoached,

however, no data were taken to follow this resonant frequency

drift into the infinitesimal amplitude region.
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CONCLUSIONS

The most significant result of this study is the establishment

of the ratio of acceleration to attenuation constant as a similarity

parameter for waveforms in tubes of different cross-sectional

area and shape. Once this ratio is known in two dissimilar tubes,

their waveforms will be found to be the same for any value of

acceleration as long as this ratio and the phase angle off

resonance are the same. This similarity parameter is predicted

theoretically for infinitesimal amplitude standing waves, but it is

shown that the same parameter is applicable for weak finite

amplitude and shock waves. The similarity parameter was

investigated for only two types of tubes, but there is no reason to

expect different behavior for different shapes of tubes with

radically different attenuations assuming that the systems are

"tight" in all cases.

In order to determine ttys similarity parameter, five methods

of measuring attenuation in the infinitesimal amplitude region have

been developed and have, been demonstrated to be consistent with;

each other and with theory. The values of attenuation constants

obtained agreed with the results of other experimenters. These

methods can be effectively adapted to the measurement of

attenuation in a variety of gases under a wide range of

pressures and temperatures.
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In the region of weak, finite amplitude waves the resonant

frequency may be defined as the frequency causing greatest

harmonic distortion for a given acceleration. This resonant

frequency is observed to be lower than the resonant frequency

for infinitesimal amplitude waves. This difference between the

two resonant frequencies decreases as acceleration is increased,

These observations are consistent with the results in the shock

region where resonance is defined as the frequency for maximum

shock strength. As the acceleration is increased in the shock

region, the maximum shock strength occurs closer and closer to

the resonant frequency of infinitesimal amplitude waves.
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Determination of Attenuation at 89 cps Resonant Frequency

Cylindrical Tube

(2.22 cm radius)

1

Rectangular Tube

(3.05 x 6.90 cm
Cross section)

Method Attenuation °VX theor. Attenuation ^/<A. theor.

Theory 1.17 x 10"4 cm" 1 -4 -1
1.23 x 10 cm

Phase Angle 1.34 *. 20 1.15 1.56 + .20 1.26

Bandwidth 1.28 + .15 1.09 1.37 + .15 1.11

Reverberation 1.29 + .10 1.10 1.45 + .10 1.18

Ratio of

P . to Pmin max

1.76 + .50 1.51

Ratio of

Acceleration

to *max

1.17 + .20 1.00 1.37 + .20 1.11

Table 1

(See Appendix II for error analysis)
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APPENDIX I

THEORY OF STANDING WAVES IN A CLOSED CYLINDER DRIVEN
SINUSOIDALLY

The values of attenuation measured in the round tube were

found to be highly dependent on the tightness of the system. An

excellent way to minimize leakage and at the same time to

minimize alignment problems would be to seal both ends of the

tube rigidly and to shake not just one piston but the whole system,

In this case the only possible source of leaks would be a small

gasket where the probe microphone would be inserted.

Assuming again a dissipative plane wave and applying the

boundary conditions a. = A ^^ at x = and x = L we

obtain

A - - cJ1 OS * S)

A * -c^COe-WDe^e^)
from which o . A [~j _ £** zJ>

HL~ ~|

d . -a ruu^^^: -i

Applying these results to the expression for pressure previously

obtained in section (3. l|and evaluating at x = and x = L

5.4
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Rewriting Aa in terms of transcendental functions

Again making the assumptions previously made,

This expression approaches a maximum for values of KL = (2n-l) TV

and a minimum for KL = 2n TT*

Evaluating P at KL = (2n-l)7T

This expression should provide an experimental method of

obtaining q( for n different values of KL. The coefficient

may also be found by the bandwidth method. The same result,

o( ~ /\ H holds for this system as for the system with only

one end driven.

The advantage of having a very tight system, characteristic

of this system, was offset by several disadvantages. First, the
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system was weight limited, which limited the size of tube to be

shaken and eliminated the possibility of water jacketing the tube.

Second, the length of the tube could not be varied. Third, and

most serious, the microphone mounting could not be satisfactorily

isolated from the vibration of the system. The microphone was

extremely sensitive to vibration and the sensitivity was a very

critical and unpredictable function of frequency.

The prediction that pressure would be at a maximum at odd

integral values of n was verified. The prediction that pressure

would be at a minimum for even integral values of n was not

verified, since relatively weak but still discernable resonance

peaks were found there. These weak peaks are probably the

result of harmonics in the driver input and do not invalidate the

theory. The only value of o( which was closely consistent

with theory was that obtained from the reverberation technique,

which indicated that a tight system had been obtained, but not

significantly tighter than the system with only the driver piston

moving. Under the circumstances, further investigations of this

technique ciid not seem warranted.
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APPENDIX II

ERROR ANALYSIS FOR ATTENUATION MEASUREMENTS

1. Phase Angle Method. Phase angle measurements may be in

error by several degrees due to drift in the vertical position of the

oscilloscope trace. Frequency measurements may be in error by a

maximum of . 2 cps . Although determination of o^ from a single

measurement of 9 and ^f may vary by as much as 50% from the

average value, averaging six readings equally spaced about the

center frequency should reduce the error to less than 20%.

2. Ratio of Acceleration to Pressure Method. This method is

dependent on the accuracy of accelerometer and microphone. Assum-

ing a calibration uncertainty of 1 db in the microphone and 0.5 db in

the accelerometer, the overall systematic error is estimated at 15%.

3. Bandwidth Method. As in the phase angle method the major

source of error is in the determination of frequency, which should

not be in error by more than 0.2 cps. Since the bandwidth was

about 1.5 cps maximum error should be approximately 15% for

frequencies around 100 cps.

4. Ratio of P . to P Method. System noise due to 60 cps hum
min max

increased the value of Pmin by an estimated 20%. Although this

method is dependent on a ratio of pressures which should make it

independent of calibration errors, the large difference between the
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two pressures makes it necessary to read the corresponding voltages

on different scales of the VTVM, thus introducing a possible error in

voltmeter calibration.

5. Reverberation Method. Since the driver piston is stopped for

this method the boundary condition for this end is not the same as

for the other methods, so the actual attenuation is not necessarily

the same. The spread of data points on a semi-log graph for a

single determination of c\ is approximately 3% but separate

determinations of <\ vary as much as 10%, apparently due to

changing end conditions.

An additional problem in comparing these methods for

consistency is that it is extremely difficult to duplicate end

conditions for a series of attenuation determination, even with a

well-designed rigid-end piston. A certain determination of o{ may

be entirely valid, but if the microphone piston is withdrawn from

the tube and re-inserted the attenuation may change due to the

piston being in a slightly different position.

It should be kept in mind that the method of determining c<

which gives results closest to the theoretical value is not

necessarily the best method. Investigations of attenuation have

generally indicated values of attenuation 12 to 18% higher than the

theoretical prediction.
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