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ABSTRACT

Digital computers presently in production are all binary logic

machines, in that they are built with elements that have two stable

states „ Greater efficiency in computer speed and hardware would be

obtained if elements with other than two states were usedc Attempts

are now in progress to find devices that have this property » The next

logical step beyond binary would be ternary o A study of ternary alge=

bras is made with emphasis on computer applications o Functional

completeness and expansion theorems are introduced to show their

usefulness in computer design. An adder circuit using three level

logic is described and a measure of effectiveness using cost and

complexity as criteria is made. It can be predicated that, as the

binary computer approaches its ultimate in speed, more attention will

be placed on N-valued logic machines.
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1 . Forward

Binary digital computers have been in use now for several decades,

and as the evolution from vacuum tubes to semiconductors for circuitry-

took place, extremely fast switching times were realized o As more uses

are found for computers, ever faster computers are desired. Switching

times seem to be approaching a plateau which is in the order of nano-

seconds and it appears that a major scientific breakthrough will be necessary

before a further reduction will take place „ With this in mind, most research

at the present time is centered around getting more efficient use of the

computer by improving the input/output interface „ As a limit is approached

in this field, new methods will be soughto It seems logical that the next

step would be to go to a system other than the relatively inefficient binary

number system. Using one particular criteria of goodness, it can be shown

that the base three number system may be the most efficient since it is the

closest whole number to the number "e" [7]. One might argue that the

base ten system should be used since it is the system that is in most

common usage. In any case, digital computers that operate on a basis

other than the off-on or high-low system of binary computers do not appear

to be too far from realization.

Present work in the field of ternary switching devices has not been

caused by a necessity in the computer field, but rather by the desire to find

uses for elements that have three stable states as their characteristic

»

Research is also attempting to find more elements that have three stable

states. Once a device having desireable characteristics has been dis~





covered or invented, further research is necessary to see how it can be

combined with devices having different characteristics „

2 , Terminology

Ternary logic is logic that has three possible levels « These levels

can be denoted by various methods such as high, medium, low or positive,

zero, negative. Since a device that will do modular three addition will

be discussed, the base three system of "0, 1, 2" will be used, with the

zero to indicate low and the two to indicate higho A ternary device is an

operator that transforms a number of inputs, each input having the value,

"0, 1, or 2" into an output having a value "0, 1, or 2'"o A device that

has three levels is referred to as a three- valued device and a device that

has two inputs is referred to as a two-place device „ A truth table relates

any combination of input values to the corresponding output values of a

device. Only two-place, three-valued devices will be discussed since

any N-place device can be sub-divided into a combination of two -place

devices by an iterative process .

Two-valued Boolean algebra will be used extensively for examples,

references, and comparison purposes. An example of a two -place, two-

valued device would be the OR operator. Capital letters will be used for

operators as they are defined to distinguish them from common gramme "icai

usage. The truth table for the OR device, using one for the high value,

is given below-

X2

1

1

1 1





The truth table can be simplified to just show the possible outputs

o

This is called a composition and in this case is denoted as (Olll)o

There are many methods of illustrating a logic circuit » Using standard

symbology, the circuit below can be completely defined by any of the

following equations or expressions"

\y

^
(1)« Y = X1X2 + X1X2

(2) . Y = (Xl AND NOT X2) OR (NOT XI AND X2)

1

1

1

(3). Y =

(4). Y = (0100) OR (0010)

(5). Y= (0100)

(6). Y= (0110)

(7)« Y 1

1

1 1

OR

1

1

1 1 1

1

1 1

(0010)





For binary work, equation (1) has been by far the most popular forrrio

But, this method means that all operations must be described in terms of

the basic three Boolean operations of AND, OR and NOTo There are several

reasons for this, the primary being that most computers are built with diodes

and transistors that have these compositions as their characteristics o If

a device were available that had two inputs, XI and X2 , and one output,

Y, and if this device did all of the three operations in one easy step, the

algebraic expression could be simplified to:

(8). Y = X1 ® X2

(9) . Y = XI EXCLUSIVE OR X2

(10)„ Y = X1 (0110) X2

(1 1) , Y = 1

1

1 1

which is basically the same as equations (6) and (7)„ If one were not

familiar with the standard notation of © and "EXCLUSIVE OR", then the

next simplest form, other than reverting to the Boolean functions, would

be equations (10) and (11). In ternary logic, many com.positions are not

named and also the Boolean operations of AND, OR and NOT lose their

meaning, therefore, algebraic expressions are often placed in the form of

equations (4), (5), and (6).

It is important to stress the point that the terms: composition, operator,

device, and function may all be used interchangeably without loss of

meaning.





3 o Introduction

In order to become familiar with ternary logic, one must have some

idea of what is to be gained by using it„ The fastest approach appears to

be that of comparing numbers. Below are tabulated some representative

numbers written in base ten,, base two, and base threes

base 10 base 2 base 3 base 10 bas_e_2 base 3

000 000 15 01111 0120

1 001 001 20 10100 0202

2 010 002 25 11001 0221

3 Oil 010 30 11110 1010

4 100 on 35 100011 1022

5 101 012 40 101000 nil

6 110 020 45 lOliOl 1200

7 111 021 50 110010 1212

8 1000 022 60 111100 2020

9 1001 100 70 ioooiio 2121

10 1010 101 80 1010000 2222

11 1011 102 90 1011010 10100

12 1100 110 100 1100100 10201

13 1101 111

Looking at the number 100, it is noted that it takes three digits to

represent it in base ten, five digits in base three, and seven digits in

base two. From this, two things are pointed out; there is a sizable

decrease in digits when going from base two to base three; but, it is





necessary to increase the base number quite a bit before getting any-

corresponding improvement o There is actually e 59% Improvement in base

three versus base two.

Unfortunately, the complexity of the algebra for base three systems

does not increase by a mere 59%; but rather, it increases many-^foid. Truth

tables for the binary and ternary situations will point out the increased

complexity o

1

a b

1 c d

1 2

a b c

1 d e f

2 g h i

In the binary case, "a" can take on two values, zero or one, as can

"b", "c", and "d". Therefore, there are 2x2x2x2 = 15 possible composi-

tions or operations. In the ternary case, "a "can take on three values,

zero, one or two, as can "b", "c", "d", etc. There are now 3x3x3x3x3x

3x3x3x3 = 19,683 possible compositionSo This points out the first major

drawback in using ternary systems.

When confronted with such a large number of compositions, each

representing a possible state or output, it is realized that some method

must be employed to put them in a workable order. There are two primary

methods used to approach this problem. One is to categorize the com---

positions based on algebraic properties and the second is to test groups

of compositions for functional completeness. They will be discussed in

the following sections.

Before going into specific detail on the two-place three-valued





functions, several interesting and useful features of ternary algebra will

be pointed out^

There are several methods of representing the NOT composition in

binary o One method shown below Is the normal truth table form,. Another

method is a modified or shortened truth table also shown below. This

device operates on one input only giving one output « This is commonly

called a permutation of the input.. There are 27 possible permutations of

one input in ternary „ One example ternary permutation is shown below

in normal form and in shortened form..

1

1

1 1

in out

1

1

1 2

1 2

1 1 2

2 1 2

in out

1

1 2

2

Just as truth tables are extendable to any number of inputs in binary,

so are truth tables extendable to any number of inputs in ternary o Figo (1)

shows two truth tables; the first truth table is for four inputs in binary and

the second for four inputs in ternary. The ternary truth table could be

extended to more inputs with the size of the table increasing by a factor

of three for each additional input,

Venn diagrams are also extendable to three level logic. In order to

have three levels, two circles are required; inside the inner circle is





considered a two, inside the outer circle but not the inner circle is

considered a one, and outside the outer circle is considered a zero.

Fig. (2) shows several examples of the binary Venn diagram and also

shows several examples of the ternary Venn diagram

„

4„ Algebraic Properties

The first method that attempts to put the compositions in some sort

of order is by grouping various compositions into classes according to

properties ofs commutativity, associativity, idempotency, truth values^

and isomorphism,. Once this is done, then one can discuss a class of

compositions which may contain upwards of six compositions, rather than

each composition separately. A good deal of work has been done with

ternary compositions in this regard » Ref. [9] lists ail commutative

compositions by class and no attempt is made here to duplicate this work.

However, the procedure used there will be used here on binary compos i^

tionSa By comparing the algebraic properties of the compositions and

functional completeness which is discussed in the next section, several

conclusions can be made that will hold for ternary also„

Commutativity

From the completely general truth table shown below, a composition

would be denoted as (p, q, r, s)o Each of these letters would take on the

value of "0" or "1" thus giving a total of 16 possible compositions o These

compositions are listed below the truth table with their most common name.

1

p q

1 r s





(0000) ZERO

(0010)

(0100)

(0110) EXCLUSIVE OR

(1000) NOR

(1010) NOT XI

(1100) NOTX2

(1110) NAND

(0001) AND

(0011) X2

(0101) XI

(0111) OR

(1001) COINCIDENCE

(1011) X2 IMPLffiSXl

(1101) XI IMPLIES X2

(1111) ONE

The commutative property is defined as XloX2 = X2oXl , where "o" re~

presents some arbitrary operation. Using standard notation of X = 1 and

X = 0, and using the OR operation as an example, the commutative property

would state that;

0+1=1+0

Looking at the truth table, the commutative property states that it

should make no difference by interchanging inputs to the device » Thms it

should be possible to redraw the truth table except with the inputs, XI

and X2, reversed and the truth table should not be changed. The (0100)

composition is one that does not fit this criterion, for it states that if

XI = 1 and X2 = a "1" will result, but if X2 = 1 and Xi = a 0" will

results A constraint has therefore been placed on the general truth table =

For a composition to be commutative, "q" must equal "f „ By making this

constraint, only eight compositions are commutative-

(000'!) (0001) (0110) (0111)

(1000) (1001) (1110) (nil)

9





Associativity

The associative property is defined as (XloX2):oX3 =• Xlo(X2oX3)o To

check thiri property, two devices with the same composition would be

needed; the first operating on XI and X2 and the second operating on X3

and the output of the firsto To be associative, the same result should be

accomplished no matter how the inputs are interchanged. An example of

this would be the OR operation where (1 + 0) + = 1 + (0 + 0) = + (0 + l)o

Looking at the modified general truth table below, we can stafe the con--

straints that have to be met for associativity^

1

P q

1 q r

(1) (1 + 0) + = 1 + (0 + 0)

{ q ) + = 1 + ( p )

q + = 1 + p

(2) (1 + 1) + = 1 +(1 + 0)

( r ) + = 1 + ( q )

r + = 1 + q

Several other constraints could be listed, but since the commutative

property is now assumed, any other constraints would, be redundanto For

the present discussion, strictly the union (OR) is being used, but the

same constraints hold true for intersections (AND) as welL

By assigning values to p,q, and r and checking the constraints, the

compositions can be tested for associativity

»

Case .0 (0001) For this composition, p = 0, q = 0, and r = 1.

10





Testing the left side of the first constraint"

q+0=0+0=p=0
The right side of the constraint must give the same result"

l+p=l+0=q=0
So the first constraint is satisfied <, Testing both sides of the second

constraint,"

lefts l+q=l+0 = q=0

righto r+0=l+0 = q=0

Both constraints are satisfied therefore the composition (0001) is associativeo

Case2: (1000) For this composition, p = 1, q = 0, and r = 0„

A test is made on the first constrainto

lefts q+0=0+0 = p=l

righto l + p=l+0 = q=0

The two sides of the constraint do not give equal results, therefore the

composition (1000) is not associativeo

Checking all commutative compositions, there are only two that are also

associativeo

(0001) AND

(0111) OR

Idempotency

By definition, idempotency is where XloXl = XI o Using unions, the

constraints can be established:

0+0=0

1+1 = 1

The letter q can take on either value and not affect the test, therefore,

11





there are two satisfactory compositions:

(0001) AND

(0111) OR

Uni"Ltruth _.value

By definition, a unit truth value, (e) , is when Xlo(e) = XI for all

values of XI „ For a unit truth value of '"0'\ r can take on values of either

"0" or "'!•':

XI = 0° 0+0 = p =

Xi = 1: 1 + = q = 1

Thus, two compositions have unit truth values of "''0"', namely (0110) and

(0111); u For a unit truth value of "r\ the following constraints are set up°

XI = 0: 0+l = q=0

XI = Is 1 + 1 = r = 1

This leaves p to take on values of either "0" or "l'\ The two compositions

that have unit truth values of "I" are (0001) and Cl00i)o The four com-

positions that have unit truth values are listed below

„

(0001) AND (0110) EXCLUSWE OR

(0111) OR (1001) COINCIDENCE

Zero, truth, value

A zero truth value (z) is when Xlo(z) = z for all values of XI » The

constraints for a zero ti'uth value of "0" and "1" are respectively:

z = 0: + = p=0

1 + = q =

z=lc 0+l = q=l

1 + 1 = r = 1

12





For e zero truth value of either "0" or "1", the following compositions

are satisfactory"

(0000) ZERO (0001) AND

(nil) ONE (0111) OR

Igomorphism

Isomorphism is a one to one transformation where the algebraic prop-

erties (commutativity, idempotency, etCo) are preserved „ An isomorphic

class is defined as the collection of ail compositions which are isomorphic

to a given composition and therefore to each cihero A composition that is

isomorphic to another composition is said to be its conjugate o In Boolean

algebra, all that is necessary to find a composition's conjugate is to

change O's to I's and I's to 0"s.

1

1

1 1 1

1

1 1

The above example shows that the OR and AND compositions are isomorphic

o

The other commutative isomorphic classes are listed beiow°

1) (0111) =• (0001) OR-AND

NOR-NAND

ZERO=ONE

EXCLUSB^E OR=COMGIDENCE

2) (1000) " (1110)

3) (0000) - (nil)

4) (OilO) - (1001)

Pis tributivity

DiEtributivity is much more difficult to check than the other properties o

In algebraic form, it is defined as Xlo(X2®X3) = (XloX2)©CXioX3) , where

13





"o"' and. '©"' denote different and arbitrary operators., An example that is

quite familiar is the AND distributing over the OR, e„go , {XI) (X2 + X3) =

(XI) CX2) + (XI) (X3 L Other examples of diste-ibutivity are given below-

1) (XI) (X2 + X3) = (Xl) (X2) + (Xi) (X3) AND-OR

2) XI + CX2) CX3) = (XI + X2) (XI + X3) OR-AND

3) (XI) |X2 © X3) = (XI) (X2) e (XI) (X3) AND-EXCLUSWE OR

4) XI + (X2 oX3) = (Xl + X2) o (XI + X3) OR-COINCIDENGE

5o Functional Completeness

Ao Binary

In order for a set of compositions to be functionally complete, it

must be possible to generate all other compositions given only those com-

positions being tested o There are only two compositiions that are function-

ally complete within themselves, namely the NOR (1000) and the NAND

(1110) compositions. From either one of these compositions, all other

compositions can be derived. The NOR can be used as an illustrations

(1000) NOR (1000) = (0111)

Thus, by NORing the NOR composition with itself, the OR (0111)

composition is formed. To review the algebra, the first elements of the

two compositions, namely "1" and "1" are NORed giving "O". The second

elements, "0" and "0" result in a "1", as do the third and fourth elements.

Now, by NORing the OR composition and the NOR composition, the ZERO

composition is formed

°

(0111) NOR (1000) = (0000)

Several compositions can be used together in order to form a

14





functionally complete set. The AND (0001) and the NOT (1010) are two

such compositions. Appendix I contains a computer program that will

check a set of two-valued (binary) two-place functions for functional

completeness o The AND and NOT compositions are used as an example and

all 16 compositions are generated from these basic two. There is now a

means of finding out what affect the algebraic properties discussed in the

last section has on a set of compositions. Table I is a listing of the 16

two-place functions produced by the iterative operations of the AND and

NOT compositions o The iterations are shown in the table for comparison

purposes only and were easily obtained from the computer program outputc

It is pointed out that 42 operations were required to produce the 16 output

compositions. Table II is also a listing of the 16 two=place functions,

but in this table, they were produced by iterative operations of the NOR

composition which is functional complete within itself. Note that now 88

operations were required to produce the 16 compositions with the NOR

functiono This is twice as many as for the AND/NOT set. The following

conclusions can be drawn from the discussion in the last two sections"

(a) Before a set of compositions is useful in computer logic, (or

any other logic for that matter), it must form a functionally

complete algebra.

(b) In a mathematical sense, the most useful functionally complete

set of compositions are those that have the most of the

algebraic properties listed earlier. Since the AND composition

is commutative, associative, and idempotent and has a unit

15
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truth value and a zero truth value while the NOR composition

is only commutative, the functionally complete set of com-

positions containing the AND composition is better than the

functionally complete NOR composition since less devices

would be required to build on arbitrary function^

(c) A composition need not have any of the algebraic properties

to be useful. The NOT composition isn't even commutative,

but it does have one useful and necessary characteristic.

Notice that a "0" and "0" in the NOR composition gives a "1"

output and that a "1" and a "1" gives a ""0" output „ Before

a set of compositions is functionally complete, one of the

set must have this characteristic. Since the AND composition .

does not invert a zero, some other composition must be

included that does. The NOT composition has this characteristic

and therefore is included even though it has no useful algebraic

properties

,

(d) Additional compositions often help make the set even more

efficient. Table III is a list of the 16 two-=place functions

generated by the AND, NOT, and OR compositions » 28 oper=

ations are required with this set compared with 42 when only

the AND and NOT were used. Thus, redundant compositions

can be used to good advantage.

Although the expansion theorem will not be discussed until later, it

is worth mentioning at this time that all of the above comments can be

16





put into more concise language by stating that the simpler the expansion

theorem the better.

Everything that has been discussed thus far carries over into the ter-

nary situation as well.

Bo Ternary

The test for functional completeness of ternary devices is somewhat

more complicated than for binary devices o In 1939, Slupecki proved that

a collection of compositions is functionally complete in n-valued logic

(n greater than two) if and only if the following two conditions are satisfied,^

(1)„ It must be possible to express all one-valued functions in

terms of these compositions

»

(2)0 It must be possible to express at least one particular two-

place function F(a,b) in terms of these compositions for

which the following is true;

a). For every truth value, i, in the system, there exists a

pair of truth values j and k such that Fij.^) = i-

b) o A set of truth values (a,b,c,d) exists such that

F(a,c) ^ F(a,d), F(a,c) ^ F(b,c), and F{a,d) 7^ F(b,c),

In Refo [10] , the saturable Hall element is discussed and ihe re-

sulting compositions (0 , , 1 ; 1 , 2 , 2) and (2,2,1,1,0,0) are shown to be

functionally complete « Only six digits are used to represent compositions

which are commutative, i.e. , where F(0,1) = F(1,0), F(0,2) = F(2,0), and

F(l,2) = F(2,l). The second condition stated above is easily satisfied

as follows:
^j^ F(j,k) = i for (0.0,1 , 1 ,2 ,2)

17





F(0,1) = F(0,2) = 1 F(l,2) = 2

Actually, either of the compositions would satisfy this requirement„

The same holds true for the requirement of (2b), so the first composition,

(0,0,1,1,2,2) is used:

b „ Letting a = 2, b=0, c=0, andd = 2^

F{a,c) 1^ F(a,d)

F|2,0) = 1 7^ F(2,2) = 2

F(a,c) 7^ F(b,c)

F(2,0) = 1 ^ F(0,0) =

F(a,d) ^ F(b,c)

F(2,2) = 1^ F(0,0) =

The first condition can be satisfied only by physically trying to

construct the 2 7 one-place functions by use of the given compositions

»

Certain obvious requirements have to be met before the 27 functions can

be generated. For example, at least one of the compositions must have

the characteristic that a "0" and a "0" gives an output other than zero.

The same holds true for a "1" and "1", and a "2" and "2". Other condi-

tions could be specified that would insure the constructabiiity of the 27

functions. However, Appendix II contains a computer program that

attempts to generate these functions by a straight brute force method

o

If one were checking the functional completeness of only one particular

set of compositions, it would naturally not be advantageous to write a

computer program for this one triaL Bu: if a check is being made on

a series of compositions, the time saved once the program is written

18





would definitely be worth while,

6. An Experimental Ternary Adder

There are many compositions that are functionally complete <, Swift

[3] and Martin [4]have shown that there are 3774 three-'valued Sheffer

functions (functions that are functionally complete by themselves) o It is

easy to imagine that there are many more when several compositions are

combined. But, building devices that behave like these functions is not

always possible. In the binary case, no simple device has yet been built

that has the characteristics of the NOR or NAND functions „ Even when

such a device is available, it may be necessary to combine many such

devices in a complex manner to accomplish a particular task„ In fact,

this is probably one of the basic reasons why an actual computer has not

been built that operates in ternary.

Several devices have been proposed that seem to be approaching the

point v\*iere they may be useful. In some cases these can be combined

with existing devices to create an even more useful seto But, it is possible

that certain properties may make two devices incompatible, such as

different voltage levels

.

An attempt was made here to find a functionally complete set of com=

positions by the use of diodes and transistors. It seems that the inverter

action of a transistor and the AND and OR action of the diode could be

utilized in ternary in a fashion similar to binary to create a usable system.

The Zener diode was added because its characteristics were found

to be quite useful „ There are four compositions in the set. The AND and
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the OR gates are exactly the same as for binary; the AND output assumes

the lowest value cf the inputs and the OR output assumes the highest

value of the inputs

»

AND

Z = XY

OR

Z =X+ Y

K^—w-

i
1 T

1 2

1 1 1

2 1 2

1 2

1 2

1 1 1 2

2 2 2 2

The transistor is also used in a manner similar to binary o It is quite

easy to demonstrate one method in which the transistor can be used. Let

"0" be zero volts, "1" be five volts and "2" be ten volts/ If the para-

meters are picked that will make zero volts input have the transistor
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cutoff to give ten volts output and three volts input drive the transistor

into saturation to give zero volts output, then a "0" in will give a '2" out

and a "1" or a "2" in will give a "0" out» Depending en how the parameters

are picked there are several possible compositions that can be formed » The

inverter device is represented as below:

INVERTER
(INV X)

IX

\

2

1

2

A Zener diode with five volt breakdown would allow zero volts output

for zero or five volts input, and five volts output for ten volts input o This
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device could be called a limiter because it limits the amount of voltage at

the outputs

LIMITER
(LIM X)

-n-

1

2 1

These four compositions when used in conjunction with a constant

"1", have proven to be a functionally complete set„ The computer program

included in the appendix on three-valued devices shows how the 27 one-

place functions were derived from this set» For the second requirement

set forth by Zupecki, either the OR or the AND compositions have all three

values listed as outputs (condition 2(a)) and letting a = 0, b=2, c=l,

d = 0, the OR compositions can be used to satisfy condition 2(b).

F(a,c) ^ F(a,d)

F(0,1) = 1 ?^F(0,0) =

F(a,c) 7^ F(b,c)

F(0,1) = 1 7^F(2,1) = 2

F(a,d) ^ F(b,c)

F(0,0) = 7^F(2,1) = 2

This proves that the set is functionally complete <>
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To see just how useful this set is, a ternary half adder, full adder and

carry were designed and the design compared to other suggested designs.

The procedure used in the design is similar to the "sums of products" in

binary design » First, the desired end result for the half adder could be

expressed as the AND product of six other compositions, where each

possible commutative output is derived separately

o

1 2

1 2

2 1

2 2

2 2 2

2 2 2

2 1 2

1 2 2

2 2 2

2 2 2

2 2 2

2 2 2

222 222 222
222 ° 220 ° 222
222 202 221

The constant "2" outputs are redundant and can be ignored <> Com=

bining the first two compositions into one composition and the last two

into one simplifies the construction

o

12 12 2 2 2

120 = 122 " 220
2 1 2 2 2 2 1

These two compositions are constructed as follows:^

1 2 = (XI OR X2) OR (INV(INV(X1 AND X2)))

1 2 2 = (012122) + (INV(INV(000112)))

2 2 2 = (012122) + (INV(222000)

= (012122) + (000222)

= (012222)
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2 2

2

1

(INV(LIM(X1 OR X2)}) OR (LIMfXl AND X2))

OR (INV(X1 AND X2))

= (INV(LIM(012122))) + (L1M(0001 12)) + (INV(0001 12))

= (INV(OOlOll)) + (000001)+ (222000)

= (220200) + (000001) + (222000)

= (222201)
A diagram of this circuit using the symbols defined earlier is given

below;
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For the design of a full adder, one simple minded approach is to add

one to the half adder output when the previous carry equals one and to

add zero when the previous carry is zerOo There are several approaches

possible in adding one. The method chosen here was to subtract one twice

»

X Y

2

1

2 1

-44-

-!=#-

X Y

1

1 2

2

:^^

-N-

p

The previous carry acts as a gate and can be defined as

Z (output) = (C AND (X plus Y)) OR (C AND (X plus Y plus 1))

The next carry is generated by the two compositions"

When previous When previous

carry = carry = 1

1 2

1 1

2 1 1

1 2

1

1 1 1

2 1 1 1
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Carry = (C AND ((XI AND X2) AND (LIM(X1 OR X2)))) OR

(C AND ((LIMfXl ORX2)) OR (LIM{X1 plus X2))))

= (CAND ((000112) AND (LIM(012122)))) OR

(CAND ((LIM(012122)) OR (LIM(012201))))

= (CAND ((000112) AND (001011))) OR

(CAND ((001011) OR (001100)))

= (CAND (000011)) OR (CAND (001111))

The logic circuit for the ternary full adder is shown in Fig„ (3)„

7 , Expansion Theorems

The design of the half and full adders just described was done on an

intuitive basis » This procedure would not be satisfactory if more compli-

cated circuits were required. For every functionally complete set of

compositions there exists an expansion theorem. An expansion theorem

relates a function of N variables to a function of N--1 variables. The

twO"valued Boolean expansion theorem, f(Xl ,X2 , . .XM) = (Xl)f(l ,X2 , . .XM)

+ (xi)f(0,X2,. . . ,XM) is well known.

XI

X2

1

1 1

1 1

1 1

X3

In the example given above, f(Xl ,X2 ,X3) = XiX2X3 + X1X2X3 . From
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the theorem, we have f(Xl,X2,X3) = (Xl)f(l ,X2 ,X3) + (Xl)f(0,X2 ,X3).

For the output when XI, X2, X3 = 0, then f (0,0,0) = CO)f (1,0,0) +

(l)f (0,0,0) = f (0,0,0) as is desired. For the output when XI = 1 , X2 and

X3 = 0, then f(l,0,0) = (l)f (1,0,0) + (0)f (0,0,0) = f(l,0,0)o Thus, if the

value of XI is known, the expansion theorem simplifies the original

function of three variables into a function of two variables » These functions

could then be reduced even further into functions of one variable if desired

»

In the ternary case, a somewhat similar formula can be madei

XI

X2 1

1 2

1 2

1 1 2

2 2 1

For the example truth table above, it is noticed that when X2 equals

zero, a permutation; "0" to "0", "1" to "1", and "2" to "2" of XI takes

place o Also, when X2 is one, the permutation is "0" to "1", "1" to "2",

and "2" to "0", and when X2 is two, the permutation is "0" to "2", "1"

to "0", and "2" to "1". One method of writing a formula for this particular

composition would be to write in general, f (XI ,X2) = gl(X2)f(0,Xl) +

g2(X2)f(l,Xl) + g3(X2)f(2,Xl)» This is explained as follows: If the X2

input is zero, then it is desired that glCX2) = gl(0) equal two and g2(0)

and g3(0) equal zero. At the same time, it is desired that f(0,Xl) gives

the first permutation ("0" to "0", "1" to "1", "2" to ""2"). In equation
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form then, it is desired that when X2 equals zero, fCO.Xl) = {2)f(0,Xl) +

(0)f(l,Xl)+ (0)f(2,Xl) = (2)f(0,Xl)„ For X2 equal to one, the first and last

factors must equal zero, thus gl(l) and g2(l) must be constructed with

this in mind. The second factor must insure the permutation "0" to "1",

"1" to "2", and "2" to "0" and thus g2{l) should be made equal to two„

When X2 equals two the same type of procedure holds true and gl(2) and

g2(2) should equal zero while g3(2) should equal two while f{2,Xl) is

constructed to do the third permutation.,

gl(X2), g2(X2), and g3(X2) were determined with these restrictions in

mind from the available compositions and matched to the correct permutation

»

gl(X2) = (INV(X2))

g2(X2) = {INV(INV(X2))) AND (INV(LIM(X2)))

g3(X2) = (INV(INV(LIM(X2))))

f(0,Xl) = (XI)

f(l,Xl) = (INV(INV(Xl)OR LIM(Xl))) OR (LIM(INVCXl) OR LIM(X1)))

f(2,Xl) = (INV(X1)) OR (LIM(Xl))

f(Xl,X2) = ((INV(X2)) AND (XI)) OR

((INV(INV(X2))) AND (INV(LIM(X2))) AND {INV(INV(X1)

OR LIM(X1))) OR (LIMflNVCXl) OR LIMCXl)),)) OR

((INV(INV(LIM(X2)))) AND (INV{X1))AND {LIM(X1)))

This still is not an expansion theorem for the four compositions, but

it is a good example of how an expansion theorem is constructed and this

particular composition will also be of use later in the section. The half

adder just constructed is only slightly more complicated than the one
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constructed on an intuitive basis „ This one contains five inverters, three

limiters and eight OR/AND gates compared to three inverters, two limiters

and five OR/AND gates o

The truth table for the full adder sum is given below o The same type

of permutations take place on XI , but now, which permutation is used

depends upon two variables, X2 and C. Permutation number one, (f(0,Xl)),

now takes place when X2 and C are both zero or when X2 equals two and C

equals oneo

XI

1 2

1 2

1 2 1

1 1 2

1 2 1 1

2 2 1

2 1 2 1

X2

The full adder thus has the formulae

fCXl,X2,C) = (((INV(C)) AND (INV(INVCX2)))) OR ((INV(INV(C))) AND

(INV(X2)))) AND ((INV(INV{X1) OR LIMfXl))) OR

(LIM(INV(X1) OR LIMCXl}))) OR

(((INVaNV(X2))) AND (INV(INV(G))) AND (INV{LIM(X2))))

OR ((INV(C) AND (INV(INV(LIM(X2 )))))) AND

(INV(X1) OR LIM(X1))) OR

29





((((INV(INV(LIM(X2))) AND ;X2) AND 1INV(INV(C)))) OR

((INV(X2)) AND (INV(C)})) AND (XI))

For comparison purposes, this full adder not including the next carry

would contain eight inverters, three iimiters , and sixteen OR/AND gates

compared to seven inverters, four limiters , and nine OR/AND gates for the

full adder described earlier.

With the procedures just used in constructing the half and full adders,

the actual derivation of the expansion theorem is not too complicated o For

the derivation of the expansion theorem, six functions are defined?

(1) 000 = hO(a) = hO = LIM(LIMCa))

(2) 111 = hl(a) = hi = 1

(3) 222 = h2(a) = h2 = INV(LIM(LIM(a)))

(4) 200 = gO(a) = INV(a)

(5) 020 = gl(a) = INV(LIM(a)) AND INV{lNV(a)}

(6) 002 = g2(a) = INV(INV(LIM(a)))

The first three functions are constants „ Whatever the value of a,

the input, the output is constanto These constants would normally be

available in the form of voltage sources o The next three functions are

permutations of the input a and have the characteristic that only one value

of a will give a two output while any other value of a will give a zero

outputo As an example gO(a) is the permutation, "0'" to "2 ", "1" to "0",

and "2" to "0". Any one-place function can be expressed in terms of

these given functions by the theorem-

f(x) = {gO(X) AND h(f(0))) OR (gl(X) AND h(f(l))) OR (g2(X) AND h(f(2)))
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For example, to obtain the one-place function (210), them

f(0) = (gO(0) AND h(f(0))) OR (gl(0) AND h(f(l5)\ OR (g2(0) AND h{f(2)))

= {(2) AND h(2)) OR ((0) AND h(l)) OR ((0) AND h{0))

= (2) AND (2)

= 2

f(l) = ((0) AND h(2)) OR ((1) AND h(l)) OR {(0) AND hCO))

= (1) AND (1)

= 1

f(2) = ((0) AND h(2)) OR ((0) AND h(l)) OR ((2) AND h(0)5

= (2) AND (0)

=

The general expansion theorem for the four compositions under dis-

cussion can now be written down directly,

f(Xl,X2,. . , ,XM) = (gO(Xl) AND f(0,X2,X3, . _ ,XM)) OR

(gl (XI) AND f (1 ,X2 ,X3 , _ „ ,XM)) OR

(g2(Xl) AND f(2,X2,X3, „ .. ,XM))

This expansion theorem is very similar to the Boolean expansion

theorem as one might expect because it was derived in almost exactly the

same fashion. In fact, Post [ 1 ] developed an expansion theorem for a

set of three compositions; the AND and the OR as defined here, and a

third called the SUCCESSOR OF X, The SUCCESSOR OF X is the permutation of

"0" to "1", "1" to "2", and "2" to "0". Since the SUCCESSOR OF X is

obtained from a combination of several of the compositions used above,

^UCCESOR OF X = INV(INV(X) OR LIM(X)) OR LIM(INV(X) OR LIMCX))), then
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there can expect to be a close similarity between the two sets. Post's

algebra holds for any N-valued system and Rosenbloom [2] showed that

for N - 2, the Post algebra degenerates into the Boolean algebra. Thus,

it is apparent that the similarity between the Boolean expansion theorem

and the one developed above is not purely coincidence . If the set of

compositions under study do not contain the AND and OR compositions, the

similarity ends although the methods used are still perfectly general

»

The full adder that was developed using permutations can now be

explained as one particular example of the use of the expansion theorem

„

In simplified form, the full adder equation iss

fCXl,X2,C) = (fl(X2,C)) AND (Permutation #1) OR

(f2(X2,C)) AND (Permutation #2) OR

(f3 (X2 , 0) AND (Permutation #3)

fCX2,C) represents g(X) and Permutation (X) represents f(Xl,X2-a,

C=b) where a function of three variables is being related to a function of

one variable. Thus, in developing the full adder, two steps were taken

at once. In the more general case, one would say that, for example,

when X2 equal zero, then the permutation of XI would depend upon the

value of Co This would give a function of three variables expressed in

relation to a function of two variables. The end result could be synthe=

sized to the same full adder.

8. Experimental Results

To prove the compatibility of the four compositions, an experimental

half adder using actual transistors and diodes was built. Zero volts was
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used for a "0"; five volts for a "l'\ and ten voltis for a "2". The simplest

possible design was used and no attempt was made to optimize such

things as power supply voltages, transistor types, resistance values, etc

The circuit used is given in Fig. (4) and the desired and actual results are

given below in truth table form.

Desired

1 2

1 2

1 1 2

2 2 1

5 10

5 10

5 5 10

1.0 10 5

Actual

5 10

2„4 4.8 8.2

5 4,8 10.0 2.8

10 8.2 2.8 5.0

If the voltages actually measured were now rounded off in the range,

zero equals zero to three, five equals three to seven, and ten equals

seven to ten, then the circuit can be considered to work satisfactory,

thus proving the feasibility of this set of compositions.

The voltages were not exactly as desired for two primary reasons.

First, the Zener diodes used were of low quality with a fairly low forward

resistance. When connected in series with the base resistance of the

inverter which was approximately 13K ohms, the Zener diode did not

develop its full voltage drop as desired. Second, the circuit was inter=

33





connected in such a way that various feedback loops existed which pre=-

vented the transistors from being fulJy cut-^off of from being in complete

saturation., These two problems could be dealt with, with an actual circuit

of higher quality Zener diodes and by either allowing for the feedback or

preventing it from affecting the results » Since the object of this experi--

ment was to prove the compatibility of the devices, it was not considered

necessazy to try and correct the above deficiencies

»

There are two types of comparison possible on the set of compositions

studied One can compare the complexity of the adder circuits to other

suggested adder circuits, or one can compare the complexity of the ex-

pansion theorems of various sets of compositions „ Each will be dealt with

in turno

A comparison of the half adder built here and one proposed by Vacca

[6] shows that the half adder here would require three transistors and 12

diodes compared with five inverters and 12 diodes » There is a slight

improvement here plus the fact that Vacca proposed three different inverter

configurations compared with one hereo

A comparison of the full adder developed here and one proposed by

Vacca shows that the full adder here would require seven transistors and

36 diodes compared with 14 transistors and 30 diodes » Since the cost of

construction of the inverter devices would be quite large compared to the

or/and gates, there is a good improvement in design here.

A comparison of the full adder developed here and one proposed by

Lowenschuss [5] using Rutz transistors shows that the full adder here
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would require 27 devices compared to nine for the Ruiz adder, This is

quite misJeading since each of the nine devices used by Lowenschuss re=

quires two two- collector transistors » With the cost of construction

considered, it could be expected that the 27 device adder may very well be

less expensive than the nine device adder „ It can not be ignored that the

nine device adder would still be a less complicated circuit

»

A method of comparison of expansion theorem's complexity has been

developed by Shannon and Lowenschuss fS] which is a better indication

of the usefulness of a set of compositions than comparing the cons^Tuction

of adder circuits » For three-valued algebras, the upper bound on the

number of switching devices required to implement an arbitrary N-place

function is given by the formula

,

s(n) = (3^"°^^B+ 2s(l)) = B)/2

s(n) = upper bound on number of switching devices

required to implement an arbitrary N-place

function

s(l) = upper bound on number of switching devices

required to implement an arbitrary one-place

function

B = number of compositions in the expansion theorem

The best expansion theorem thus far found is for the Modular Algebra

which has two compositions , the base-three sum without carry, and the

base^three product without carry^ No actual device has yet been discovered
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that has these characteristics. It is interesting to note that the base-

three summer is the half adder output that was constructed with transistors

and diodes

+ 1 2

1 2

1 1 2

2 2 1

X 1 2

1 1 2

2 2 1

The upper limit on the number of devices in this case has been deter-

mined by Lowenschuss to be,

s(n) = 2(3"^ - 1)

For the Rutz transistor compositions proposed by Lowenschuss, the

upper limit is

s{n) = 18(3^"^ - 12

= 6(3^' •= 2)

For the saturable Hall logic element discussed by Kier [10], the upper

limit is:;

s(n) = (3'^"^13 + 2(8)) - 13)/2

= (9(3'') = 13)/2

= 4(3^) " 6

For the four compositions used above, the most difficult one=place

functions to obtain are (021), (120), and (102) „ For each of these, six

operations are required,. Assuming that the constants "0", "1", and "2"

are available as sources, there are ten compositions in the expansion

theorem. Therefore, B = 10 and s(l) = six?
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n Modular Rutz Hall

1 4 6 6

2 16 42 30

3 52 150 102

4 160 484 318

s(n) = {3'^"^10+ 2(6)) - 10)/2

= (3'^"-^
22) - 10)/2

= (3""^(11) -5)

= 3(3") - 5

The upper limit on the number of devices required to generate an

arbitrary function for several values of n are tabulated below for the

various expansion theorems s

Post(the set proposed herein]

4

22

76

238

In the above calculations of s(n), numbers were rounded off, therefore,

the upper limit on the number of devices is not exactly correct <, But, it

can be seen that the set of four compositions proposed here does well for

itself Also worthy of noting is, that this is an upper limit on the number

of devices and not an absolute minimum » For example, v/hen n equals

two, the upper limit on the half adder proposed here is 22, whereas only

10 devices were actually required

»

9. Conclusion

The set of four compositions introduced here has the following

characteristics s

(a) It is a functionally complete set with a fairly simple expansion

theorem,
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(b) The AND and the OR compositions have aigebraic properties

of associativity , idempotency, and commute tivity, and they

have a unit truth value and a zero truth value o This indicates

that they would be very useful in the manipiiiiation of equations,

(c) The three elements required, transistor, Zener diode, and

regular diode, are compatible for hardware installation,

(d) The algebra used is closely related to Boolean algebra and as

such would have a closer relationship to present day computer

design than most other algebras,

(e) With this close relationship to Boolean algebra, it might be

possible to interlace binary and ternary logic At least, the

interface problem would be minimized <>

There is still one major disadvantage to ternary logiCo Ledley [8]

shows a binary full adder made up of one inverter and eight AND/OR gates o

With the advantage that ternary has over binary in digit space, one couid

allow for a more complex ternary circuit, but the seven inveiters and 3 6

diodes is much too oomplex. This could be considered a drawback rather

than a disadvantage. It could be overcome by two methods. The first is

the possibility of finding a suitable minimization procediireo The second

is by using additional redundant compositions., One composition that

appears to have useful properties and that could be built with a d.Co

amplifier arrangement, is the following-
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Another composition that would be useful and that would make a true

Post Algebra, although no simple transistor circuit has been devised for it

is the following^

1

1 2

2

Still a third suggested composition might be the following-

1 2

2

Any or all of these could be used to reduce the complexity of the

adder circuit,, One might argue that too many compositions are being

introduced for the set to be useful, but, this is similar to the binary

situation where the AND and NOT compositions are functionally complete

by themselves and the OR composition is added just for simplification

purposes.

Although the major portion of the discussion herein has been directed

toward a particular set of compositions that are related closely to Boolean

Algebra, there was no intention of underempha sizing the possible use of

other sets of compositions., The Modular Sum and Product Algebra has a

major advantage in its close relation to normal arithmetic » The saturable

Hall logic element discussed by Keir is particularly suitable for computer

design o
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Although no mention was made of uses other than for adder circuits,

almost everything that was stated holds true for other operations » Multipli-

cation by two in binary can be accomplished by a shift register and

multiplication by three in ternary can be accomplished by a shift register

also„ Having three stable states might simplify input/output; the existence

of a zero on an input/output line might be used to indicate "ready to read'\

a one might indicate "ready to write", and a two might indicate "wait'"o

Ternary also leads to the possibility of a built-- in "IF" instruction where

greater than, less than, or equal to could ail be done in one inst„'uctiono

It does not appear appropriate to predict if a ternary computer will

ever be put into operation. With the advent of microminimization, it m.ay

be a long time before the need to use some other base system exists „

Once a need has been generated, there will still be many problems the

least of which may be the finding of useful devices. Other major problems

that will have to be considered include interface between binary and N-nary

computers and the teaching of the new algebra to engineers. However,

most research in the field of ternary logic is extendable to N-valued logic

and therefore will be useful to any base system studied in the future

»
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Binary and Ternary Truth Ta^bles of Pour Inputs

Binary truth table of four inputs

XI

10 1

X2 1 X4

1 1 o| 1

1 1

11

X2

Output = (xT) (X2) (X5) (X4) + (XI) (X2) (X3) (X4)

Ter-naxy truth table of four inputs

Al Al Al A2 A2 A2 A5 A5 A5

Bl Dl

Bl 6 2 0, D2

Bl 1 2 D3

B2 Dl

B2 1 1 D2

B2 D3

B3 Dl

B5 D2

B3 1 2 D3

CI C2 C3 CI C2 C5 CI C2 C3

"2»s" output = A1B1C3D2 + A2B1C2D3 + A5B5C1D3

"l»s" output = A2B1C1D5 + A1B2C1D2 + A1B2C2D2 + A2B3C3D3
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Venn Diagrams for Binary and Tefnary

Binary

1

1

Ternary

(.(. ,

yyj = "1" output

Vv = "2" output

1 2

1 2

1 1 2

2 2 1

1 2

1 1 2

2 2 2
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Fig. 3

Logic Diagram for Ternary Full Adder
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Fig. 4

Circuit Diagram for Ternary Half Adder
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Table I

Functional Completeness of AND/OR Compositions

OOOOo. ..NOT(X) AND (X)

0001.. „„XAND Y

0010. ,.NOT(X) AND Y

0011.

.

..Y

0100.. ..NOT(Y) ANDX

0101.. ..X

Olio.. . . (NOT{X AND Y)) AND (NOT(NOTCX) AND NOT(Y)))

0111.. . .NOT(NOT(X) AND NOT(Y))

1000.. ..(not(x)) and (NOT(Y))

1001.. . .NOT ((NOT (X AND Y)) AND (NOT(NOT(X) AND NOT(Y))))

1010.. .oNOT(X)

1011.. ,.NOT(NOT(Y) ANDX)

1100.. ..NOT(Y)

1101.. ..NOT (NOT (X) ANDY)

1110.. ..NOT(XAND Y)

nil.. o. NOT(NOT (X) AND (X))
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Table II

Functional Completeness of NOR Composition

0000. o _ „ (X NOR Y) NOR ((X NOR Y) NOR (X NOR Y))

0001. . „ . » ((X NOR Y) NOR (X)) NOR (({X NOR Y) NOR {{X NOR Y) NOR

((X NOR Y))) NOR (Y))

0010«_o.{X NOR Y) NOR (Y)

0011„ « . . .Y

0100_„oo(X NOR Y) NOR (X)

0101=ooooX

0110_ _ „ CCCCX NOR Y) NOR (X)) NOR ((X NOR Y) NOR (Y)))) NOR (X NOR Y)

01 1 1 » . . o CX NOR Y) NOR (X NOR Y)

1000.o„.„X NOR Y

1001» o . „ „ (CX NOR Y) NOR (X)) NOR ((X NOR Y) NOR (Y))

1010. _ , o ((X NOR Y) NOR ((X NOR Y) NOR (X NOR Y))) NOR (X)

101 K „ „ » o ((X NOR Y) NOR ((X NOR Y) NOR (X NOR Y)}) NOR ((X NOR Y)

NOR (Y))

1100. o . . o {(X NOR Y) NOR {(X NOR Y) NOR (X NOR Y))) NOR (Y)

1 101 . „ . . (CX NOR Y) NOR ({X NOR Y) NOR (X NOR Y))) NOR ((X NOR Y)

NOR (X))

1110. o o o o ((CX NOR Y) NOR (X)) NOR (({X NOR Y) NOR ((X NOR Y) NOR

(X NOR Y))) NOR (Y))) NOR ({X NOR Y) NOR ({X NOR Y) NOR

(X NOR Y)))

1 11 1 . „ . . 40c NOR Y) NOR ((X NOR Y) NOR (X NOR Y))) NOR ((X NOR Y) NOR
((X NOR Y) NOR (X NOR Y)))
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Table III

Functional Completeness of AND/OR/NOT Compositions

0000»o _oNOTCX) ANDX

0001.. _ XAND Y

OOlOoo,, .„NOT(X) AND Y

0011_.,.,Y

0100_., .„NOT{Y) ANDX

0101_<.o.X

0110_<. _ (X OR Y) AND (NOT(X AND Y))

0111_<, _X OR Y

lOOO.o., _NOTCX ORY)

1001_,, . , (NOTCX OR Y)) OR (X AND Y)

1010_., _NOT(X)

1011_<. ooNOTfX) ORY

llOO.o,, _NOT(Y)

llOl.o., _NOT{Y} ORX

1110_<,_ NOT(XAND Y)

UlLo,, .,NOT(X) ORX
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APPENDIX I

Derivation of Two-place Two-valued Functions

The computer program that follows checks to see if a set of composi-

tions is functionally complete. The method used is similar to the way the

OR and ZERO compositions were generated in the section on functional

completeness, It takes two given or generated compositions forms a new

composition by use of one of the desired operations. It then checks to see

if the newly formed composition is unique from those already generated,

In addition, the program computes a comparative cost for constructing

a particular composition if a cost factor for each of the compositions being

tested is included.

The output not only gives a direct answer as to whether the given

compositions are functionally complete, but also can be used to determine

exactly how each new composition is generated.. By noting the values of

"i" and "j", the two compositions used, Y(i) and Y'j) can be determined

and by noting the value of "L" , it can be determined which operation was

performed on these compositions.

The results of testing the AND and NOT set of compositions is

included and can be used to illustrate the above. In testing the AND/NOT

compositions, four in,, ut compositions (NCOMPS) are used, !,0000) , (1010),

(1100). and (0001). The ZERO composition is included for ease of

programming. The (1010) composition is NOT XI , the (1100) composition

is NOT X2 , and the (0001) composition is XI AND X2 . Three actual opera-





tions (NFUNCS) are used. The A1(L) through A4{L) give the desired results

from these operations » Al(l) represents the desired result of two inputs,

"0" and "0"= In the case of the AND, A1{1) is « -'O-^ A2{1) is the result

of a "0" and "l'\ A3(l) is the result of a ""'I'''' and '0"', and A4U) is ^he

result of a "1" and "l". Thus for the AND operation, Al(l), A2(l), A3(l),

and A4(l) are respectively, "0", '"0"\ "0"', and ''I'V, The operation for L

equal to two is the NOT XI and gives Al{2) through A4 (2) values of "1",

"0'\ "l'\ and "0" respectlvelyo Similarly, NOT X2 gives values of '"I'',

"1", "0", and "0" respectively for A 1(3) through A4(3)

.

From the printout for the AND/NOT test, the f.ii'St new composition tc be

formed was obtained with "i" = 1, ''j" = 1, and "L" = 2= Hoting that Y-f:'.
=

Y(l) = (lOlOi and Y(j) = Y(l) = (1010), and that L = 2 iadicates that the second

operation (1100) was performed, the new composition can be reconstructed

„

The first elements, "1" and "1", result in a '0", as do the third elements

o

The second and fourth elements of "0" and ""0" result in a "i"o The new

composition is (0101) which checks with the result printed as V;'5)c Continu-

ing to the second new composition, "L" = 1 indicates that the AND operation

(0001) was performed on Y(i) = Y(l) = (1010) and Yij) = Y(2) = (liOO).

(1010) \
1 (1100) = (iOOO)

:

Hoi
Thus, the (1000) composition is formed and printed as Y{6) . All 16

compositions are generated and a final printout is made. In ^his example,

$2.00 was used as a basis of cost for an AND operation where two diodes
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are necessary, and $2 .,00 was used for the NOT operations where one

transistor is necessary » The cost of constructing Y'( ^
') is the cost of Yfl)

plus the cost of Y(l) plus the cost of the operation „ This gives a total

of $2.00+ $2o00+ $2.00 = $5.00

o
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Appendix I, Pig. 1

Plow Chart for Derivinc Two-valued Two-place Functions

NPINIS flag set to one
when all 16 functions
have heen generated,
NTRIAL = # of times I

and J have been cycled
through 16.

will operate on Y(I)

and Y(J) with each of

the given compositions
to create new composi-
tions, Y(17).

expedite do loop
if finished.

Yd) and Y(J) will be

I

operated on by each

;

giv .n composition in
I the subroutine . NFUNCS '

I

is the // of times nec-
i essary to enter the
subroutine to have all

Y(I)s and Y(J)s operated^
* on be each given com-

: position.
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oubroutine Derivl

& & 1 1 & 1 & 1
then then then then

X(17,K) X(17,K) X(17,K) X(17.K)
.=A1 L) =A2 L) =A3 (•1) =A4(L)

1
56 1

\ continue !

__ .L__'.

Z(17) = cost to build
compositions = cost
of operations + cost
of Yd) ^ Y(J)

i

V

retun
)

55





returnD
: build y(17) from

\

X(17,1),X(17,2),
iX(17,3),X(17;4).

KNEW =

I

do 14
K=1,16

\y(17X ^. ._>J<

\y MEw=i
no

I

I

j

miK'! flag set to 1 if
Y(17) is found equal to

^

one of the alrcbady gen-
erated T(I)»s,

compare Y(I) to Y(17)

NCOI',!PS=NCOI.a>S+l ,Y (NCOI.IPS

)

=Y(17). rrint I,J,L,Y(I),
. NCO!.!PS ,NFINIS , NTRIAL





IcGRAf' TESTS BINARY CO.y PCS I T IONS FOR FUNCTICN/^L
SS. IT WILL TAKE AS INPUTS ANY NUMBER OF GIVEN
INS SUCH AS THE (AND) AND THE (NOT), OENCTEC AS
1 I ^ rt 1 r \ amii noroATc pm TutQP TMOiiTC rw Ciru a

..JOB FRI ICi-Tci^ICHT PCX 126
PROGRAM rc

C THIS PRCG
C COf^PL: TENGSS. . .

C COMPOSITIONS SUCH
C (CCCl) ANn (ICIC)
C Vr/AY THAT N'EU CCNPCSITIONS ARE GENERATED.
C PCSSIPLC CCMFCSiTICNS ARE THUS GENERATED,
C AND MOST DIFFICULT TEST FOR FUNCTIONAL COf-

C THESE PARTICULAR INPUT C O.^POS I T I CNS IS C0^
C
C THE INPUT CARDS ARE AS FOLLOWS,
C FIRST, NCCMFS NU.^DER OF INPUT COVPCSITl
C COMPOSITION SHOULD ALWAYS BE INCLUC
C ' TWO (NOT) CCMPCSI TIGNS, NAMELY (101
C . NFUNCS NUMBER OF DIFFERENT OF
CV PERFORI^ED. FOR EXAMPLE, TESTINC
C«' THE (NOT), THEN NFUNCS EQUALS TWO.
C SECOND, YCI) LIST CF ALL THE GIVEN INPUT COMPOSITIONS.

C
C

C INDIVIDUAL"ELeMENTst
C FIFT" ' ....^......

SECOND, YCI) LIST CF ALL THE GIVEN INPUT COMPOSITIONS.
THIRD, Yd) CONTINUATION OF SECOND IF MORE THAN NINE

COMPOSITIONS ARE GIVEN. IF NOT, INSERT A BLANK.
FOURTH, X{I,J) ALSO A LIST OF GIVEN CCMPCSITIONS BUT

NOW EACH INPUT CGf^POSITION IS BROKEN UP INTO FCUR
INDIVIDUAL ELEMENTS.

FIFTH, Z(I) AN APPROXIMATE RELATIVE COST OF GENERATING
C EACH ^EW CCMPGSITICN CAN BE OBTAINED EY INCLUDING
C THE CCST OF EACH INPUT COMPOSITION.
C SIXTH, Zd) CONTINUATION OF FIFTH IF
C
C
c
c
c
C . R
C
C

C BE ZERC, AND A3( 1 ) WOULD BE ONE

KLbULI ULblKtU WMt^ L K t K fl I 1 N L UfN fl Z.LKL ONL fi Ul\t
AND A3{I)" IS THE DESIRED RESULT FROM A ONE AND A
CNE. FOR EXAMPLE, IF AN (AND) OPERATION IS TO BE
PERFORMED, THEN Aid) WOULD BE ZERO, A2(l) WOULD
BE ZERC, AND A3( 1 ) WOULD BE ONE.

^.GHTH, EACH ADDITIONAL CARD IS USED TO DENOTE A NEW
C OPERATION. THE NUMBER OF CARDS GREATER THAN SIX
C MUST MATCH THE NUMBER CF NFUNCS.
C
C THE OUTPUT WILL GIVE A NEW LISTING EACH TIME A NEW
C
C
C
C
c
C . v>.,v, . .^. ,«>... v.^. ......
C OF THE COST INVCLVEO.

DIMENSION XdP, U ),Y( 18), Z(18)
DIMENSION Al ( 16 ) ,A2( 16), A3( 16),AU{16)
COMMON X,Y,Z,A1 ,A2,A3,COST
READ 1 ,NCCMPS, NFUNCS

1 F0RMAT(2I3)'
READ 2, (Y{ I ) ,1 = 1 ,9)

2 FCRMAT{9n6)
READ 2, (Y( I ) ,1 = 10,16)

3 FORMAT( 706) .

READ U, ( {X{ I ,J)

,

J=1,U) ,1 =1,8)
U FCRMAT(3202)

READ 5, (Zd ) ,1 = 1 ,9)
5 F0RMAT(gF6.2)

READ 6, (Zd ) ,1 = 10, 16)
6 FCRMAT(7F6.2 )

READ 7, (CCSTd ) ,A1 ( I ),A2 (I),A3(I), 1 = 1, NFUNCS)
7 F0RMAT(F6.2,2C3)

NFINIS =0
NTRIAL =0

8 DO IOC 1=1,16
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DO ICC J = 1,U
IF(NFINl.S) KC,9,1C0
DC 23 L=1,NFLNCS
CALL TtRI VU I, J,17,NCCMPS,L)
s=x(rr,i)
T=X( 17,2)
LCAIS) LOC(T)
QLS{U5) LLS(3)
STA(R) ENKO)
S=X(17,3)
LDA(R) LnC(S)
QLS(H5) LLS(3)
STA(R) CM IC) •

S = X{17,l|)
LDA{R) LDCCS)
QLS{U5) LLS(3)
STA(T> ENKO)
Y{17)=T
NNEVv = C '(

DC ]U K=l ,16
IF(NNEW) 12,12,1U

12 IF (-( <Y^^7)*Y(KJ ) + ((-Y(l7) )«(-Y(K) ) ) )) 1U,13,U
13 NNEV» =1
lU CONTINUE

IF(NNEW) 15,15,23
15 NCOMPS = NCOr'PS +1

Y(NCONPS)=Y( 17)
PRINT 16

16 FCRMAT(M2H I J NCCNPS NFINIS NTRIAL L)
PRINT 17, I, J, NCCMPS, NFINIS, NTRIAL, L

17 FCRyAT(6I7/)
PRINT la

18 FCRyAT(X30H V(C1) Y(C2) Y(C3) Y(OU) Y(05),
12t4H Y(06) Y(C7) Y(Ofi) Y( 09) )

PRINT 19,(Y(?'),N = 1,9)
19 FCRyAT(X,9{2X,GM)/)

PRINT 20
20 F0RyAT(X2UH Y(1C) YCll) Y(12) Y(13),

1214H Y( li») Y( 15) Y( 16) Y( 17) )

PRINT 21 , (Y(N) ,N=1C, 17)
21 F0RMAT(X,R(2X,01<)///) »

IF (NCnyPS-U) 23,22,22
22 NFINIS=1
23 CONTINUE

TOO CONTINUE
NTRIAL=NTRIAL+1
IF{NFINIS) 2l<,2U,2C2

2U.IF (NTRIAL-i) 8,200,200
200 PRINT 201
201 F0RyAT(U2HC0NP0SITI0NS ARE NOT FUNCTICNALLY CCKPLETE)

GO TO 210
202 PRINT 203
203 FCRr'AT(36HALL COMPOSITIONS HAVE BEEN GENERATED//)

PRINT 2CU
20U F0R^AT(X30H V{01) Y(C2) Y(03) Y ( OU ) Y{05),

12i4H Y(06) Y(C7) Y(C8) Y(C9) )

PRINT 205, (Y(y) ,K=1 ,9)
205 F0RyAT{X,9(2X,0i^)/)

• PRINT 2C6, {Z(f') ,1^=1,9)
206 FCRMAT(9(F5.2, 1F$)/)

PRINT 207
207 FCR^'AT{X2UH V(1C) YCll) YI12) Y(13),

1 leH Y{ lU) Y{ 15) Y( 16) )

PRINT 208, {Y(r') ,yi=lC,16)
208 FORf'AT{X,7(2X,0'4)/)

PRINT 2C9, (ZCI^) ,1^=10,16)
209 F0RMAT{7(F5.2, 1H$)

)

210 END
SUBROUTINE DER I V 1 ( I , J, NT EN . N ,L

)

DIMENSION X( 18,1* ),Y( 18), Z( 18)
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DIM Hfvj SIGN A1(16).A2(16),A3(16),AJ4(U)
coM^'o^ x, y,z,ai ,a2,a3,cost
DO 56 K=1 ,U

50 IF{X ( I ,K) ) 51 ,51 ,514
51 IF{X( J,K) ) 52,52,53
52 X{NThF,K)=Al (L)

X(M+1 ,K)=A1 (L)
GC TC 56

53 X{NTEr,K)=A2{L)
X(M+1 ,K)=A2(L)
GG TC 56

5U IF{X(J,K)) 52,53,55
55 X(NTEN,K) =AML)

X(M+1 .K)=A3(L>
56 CONTINUE

Z(M+n=COST(L)+Z{ I ) + Z( J)
RETURN
END
END
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NOT/AND CCyPOCITIONS

INPUT DATA CARDS

OU 02
1010 ncc 0001 CCCO
0000

1 1 C 1 1 C C 1

2.00 2. CO 2. CO COO
0.00
2.00 C 1

U.OO 1 1
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l..JOe FRI ICHTENICHT BOX 126
I J iNCOKPS NFINIS NTRIAL115

Y(01) Y(02) Y(03) Y(OU) Y(05) Y(06) Y(07) Y(08) Y(09)
1010 1100 0001 0000 0101 0000 0000 0000 0000

YCIO) Yd!) Y(12) Y(13) YdU) Y(15) Y(16) Y(17)
0000 0000 0000 OCOO 0000 0000 0000 0101

J NCONPS NFINIS NTRIAL

Y(01) Y(02) Y{03) Y{CU) Y(05) Y{06) Y(07) Y(08) Y(09)
*1010 1100 0001 0000 0101 1000 0000 0000 0000

YdO) Yd!) Yd2)'Y{13) YdU) Y(15) Y(16) Y(17)
0000 0000 0000 0000 0000 0000 0000 MOOO

J NCONPS NFINIS NTRIAL

Y{01) Y(02) Y(03) Y(G4) Y(05) Y{06) Y ( 07

)

Y(08) Y(09)
1010 1100 0001 0000 0101 1000 0111 0000 0000

YdO) Ydl) Yd2) Yd3) YdU) Y{15) Yd6) Yd7)
0000 0000 0000 OCOO 0000 0000 0000 0111

J NCOKPS NFINIS NTRIAL

YCOl) Y(02) Y(03) Y ( OU ) Y(05) Y(06) Y{07) Y(08) Y(09)
1010 1100 0001 0000 0101 1000 0111 nil oooo

YdO) Ydl) Y(12) Y(13) YdU) Yd5) Yd6) V{17)
0000 0000 0000 0000 0000 0000 0000 1111

1

J NCOMPS NFINIS NTRIAL

Y(01) Y(02) Y(03) Y(OU) Y(05) Y(06) Y(07) Y(08) Y(09)
1010 1100 0001 0000 0101 1000 om iin ooio

Y{10) Ydl) Yd2) Yd3) Y(1U) Y(15) Y(16) Y(17)
0000 0000 0000 0000 0000 0000 0000 0010

J NCOMPS NFINIS NTRIAL
7 10

Y(01) Y{02) Y{03) y{Ok) Y(05) Y(06) Y{07) Y ( 08 ) Y(09)
1010 1100 0001 0000 0101 1000 0111 nil ooio

YdO) Ydl) Yd2) Y(13) YdU) Yd5) Y(16) Yd7)
1101 0000 0000 0000 0000 0000 0000 1101

J NCOr'PS NFINIS NTRIAL
2 11
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Y(01 )

1010
Y(02)
HOC

Y(0?5) Y(OU) Y(05)
0001 0000 0101

Y(06)
1000

Y(07)
0111

Y(08)
nil

Y(09)
0010

'\\°o\
Yd! )

0011
Y( 12) Y(13) YCIU)
0000 0000 0000

Yd5)
0000

Y(16)
0000

Yd7)
0011

2
J NCOMPS NFINIS NTRIAL
5 12 'r

Y(01)
1010

Y(02)
1100

Y(05) Y(0i4) Y(05)
0001 0000 0101

Y(06)
1000

Y(07)
0111 '\m Y(09)

0010

Y( 10)
*1101

Yd!)
0011

Y( 12) Y( 13) YdU)
0100 0000 0000

Y( 15)
0000

Yd6)
0000

Y(17)
0100

I

2
J NCONPS NFINIS NTRIAL
5 13

L
2

Y(01 )

1010
Y(02)
1100

Y(03) Y(CU) Y{05)
0001 0000 0101

Y(C6)
1000

Y(07)
0111 '\rA

Y{09)
0010

Y(IO)
1101

Y(ll)
0011

Y(12) Y( 13) Y(1U)
0100 1011 0000

Yd5)
0000

Yd6)
0000 Mill

][

5

J NCONPS NFINIS NTRIAL
3 1 14

L
,
2

Y(01 )

1010
Y(02)
1100

Y{03) Y{OU) Y(05)
0001 0000 0101

Y(06)
1000

Y(07)
pill

Y(08)
nil

Y(09)
0010

Y(IO)
1101

Y(ll)
0011

Y(12) Y{13) Y(14)
0100 1011 1110

Yd5)
0000

Y{ 16)
0000

Yd7)
1110

1
J NCOMPS NFINIS NTRIAL

14 15
L
1

Y(01 )

1010
Y(02)
1100

Y(03) Y(CU) Y(05)
0001 0000 0101

Y(06)
1000

Y(07)
0111

Y(08)
nil

Y{09)
0010

Y( 10)
.1101

Y(ll)
0011

Y(12) Y{13) YdU)
0100 1.011 111D

Yd5),
0110

Yd6)
0000

Yd7)
0110

I

7
J NCONPS NFINIS NTRIALU 16

L
2

Y(01) Y(02) Y(03) Y(OU) Y{05) Y(06) Y(07) Y(08) Y(09)
1010 1100 0001 0000 0101 1000 0111 nil ooio

Y{10) Yd!) Y(12) Y(13) Y(1U) Yd5) Y(16) Y(17)
1101 0011 0100 1011 1110 0110 1001 1001

ALL COMPOSITIONS HAVE BEEN GENERATED

Y(Oi) Y(02) Y(03) Y(0U) Y{05) Y(06) Y(07) Y(08) Y(09)
1010 1100 0001 0000 0101 1000 0111 nn ooio
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2.00$ 2.00$ 2.00$ .00$ 8.00$ 6.00$ 8.00$ 8.00$12.00$

Y(10) Yd!) Y{12) Y(13) Y(1U) Y{15) Y{16)
1101 oon 0100 1011 1110 0110 looi

1U.00$ 8.00tl2.00$lU.00$ 8 . 00$ 1 8.00$20.00$
TIME, MINUTES AND 23 SECONDS
1..END
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APPENDIX II

Derivation of Three'-valued One'=-pldce Functions

Ihf toliowing computer program tests to see if all 27 one-^place functions

can. be generated from a set of given iriput compositions. The method used

is simiia' to that used in Appendix 1, except with fewer inputs. In this case

the on.]y exiernai inputs are the number of compos'itions being tested (NFUNCS)

and the comcoisitions themaelveSo For the Saturable Hall, Logic EJement

discussed in the section on functional compteteness , NFUXC = 2 and the

first composition is (0,0,1,0,1 , 2 ,1,2,2). The second composition is

(2 , 2 , 1 , 2 , i , , 1 , , 0) o The more genera I non- commutative , compositional

form is usea in the pirogram to make it more useful. For the above composi-

tion. f the A's are assigned values as folJowsc

& gives Al(l) = 1 & 2 gives A6|l) - 2

& 1 gives A2(i) ^ 2 & gives A7(l) = 1

&. 2 gives A3(l) = 1 2 & 1 gives A8C1) - 2

1 &. gives A4(l) ^ 2 & 2 gives Ag(l) - 2

1 & 1 gives AS (1) - 1

Similarly, the second composition has Ai(2) through A9 (2) assigned the

values (2,2,1,2,1,0,1,0,0), respectively o These compositions operate on

the three internal constants (000), (ill), and (222), and one other one'-piace

function, iVl2]o The f.irst three could be generated d„c, power sources and

since they are included, must be considered as part of the set of composi-

tions being tested . The program, could be modified quite easily to take out
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these constants and have them generated by the program itself if so desired.

The fourth internal input represents the one input to the devices in question.

Looking at the printout, it is noted that, for the first new one-place function,

Y(i) = Y(l) = (000) and Y(j) = Y(4) = (012) , Now, with L = 1 indicating the

first operator, (0,0,1,0,1,2,1,2,2), was used, the first new one-place

function can be determined^

(000) 1 2 (012) = (001)

1

1.012
2 12 2

This function is recorded as Y(5)o For the second function, i = 1,

j = 4, and L = 2^

(000) 1 2

2 2 1

1 2 1

(012) =(221)

2
I

1

In this manner all 27 one-place functions are formed.

A print-out of a second set of compositions is included. This set is

used in the section on an experimental adder circuit.
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Appendix II, Fig, 1

Plow Chart for Deriving Three-valued One-place Functions

___x
J

read 'in

NCOMPS,NPUNCS
Aid) - Ad)

NFIWIS=0,N^RIAL
=0,NC0!TS=4,Y(1)
=000,Y (2) =111,

Y(3)=222,Y(4)=012,
X(l,l)=OthruX(4,3)=2

'r^^
NPINIS flag' set to 1

when all 2? compQsi-
tions have hoen gen-
erated. NTRIAL = ,7

of times I ojid J have
been cycled thru 27*
NCOMPS = # of given
constant functions,
Y(I) = constant func-
tions; X(I,J) = Yd)
broken into elements.

expedite do loop
if finished.

Yd) and Yd) will be
operated on by each given
composition in the sub-
routine, NFUNCS gives the
# of times necessary to
enter subroutine for Y(l) and\
Y(J) to be operated on by all
given compositions.
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subrouti:me derivi
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( return
J

i
build Y(28) from

|

JX(28,1),X(28,2), p'
I

and X(28,3).

I
NNEW =

H v.lim flsiQ set to 1 if
|Y(28) is found to be =

i to one of the already
I generated fxmdstions.

corapaxe Y(I) and Y(J).

\

\i2Qy .

,\/ |nnew=i

no , ±:rrr;

NC01.!PS==NC0IiPS+l , Y (NCOI.'J>S)

=Y(28), Print I,J',L,Y(I),

NCOMPS ,KFINIS , NTRIAL

-jtes-

print compositions are
not functional complete

print completed
list of functions Y(I)

C end )
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..JOB FRIICHTE^MCHT . BCX 126
PROGRAM FCT

C THIS PRClGRAf^ TESTS TC SEE IF ALL TWENTY-SEVEN THREE-
C VALUHC, GNE-PLACE FUNCTICNS CAN BE DERIVED BY OPERATING
C ON CONSTANTS WITH CESI?iED INPUT CCMPCS IT IONS . THIS IS
C THE FIRST ANC THE MCST DIFFICULT TEST TC CHECK OF THE
C TWO CCNIHTICNS STATED BY SLUPEKI THAT ARE NECESSARY TC
C BE SATISFIED FOR A GIVEN NUMBER OF COMPOSITIONS TO BE
C FUNCTIONALLY COVPLETE.
C
C THE INPUT DATA CARDS ARE AS FOLLOWS,
C FIRST, NFUNC5 THE NUMBER Of COf'POSI TIONS TC BE TESTED.
C SECOND, SIX NUMPERS REPRESENTING THE DESIRED OUTPUT FROM
C A DEVICE, WITH IHEM LISTED IN ORDER AS FOLLOWS, THE OUT-
C PUT, Al, THAT RESULTS FRCM INPUTS OF A ZERO AND A ZERO.
C OR A1=(0.0). ALSO A2=(0,l), A3= ( ,2 ) , AU= ( 1, 1) . A5={1,2)
C* AND A6={2,2) .

C* THIRD, ADCITICNAL CARDS ARE REQUIRED IF MORE THAN ONE
C. COMPOSITION IS BEING TESTED. THE FORMAT ' IS THE SAME AS
C THE SECOND CARD AND A NEW CARD MUST^BE ADDED FCR EACH
C ADDITIONAL CCMPOSITICN.
C
C THE OUTPUT WILL GIVE A LISTING OF ALL ONE-PLACE FUNC-
C TIONS AS THEY ARE GENERATED. THE FUNCTIONS Y(I) AND Y(J)
C AND THE OPERATION L CAN RE USED TO DETERMINE EXACTLY HOW
C EACH NEW FUNCTION WAS GENERATED.

DIMENSION AT (10) .A2( 10), A3( 10) ,AU(10),A5( 10) ,A6(10),
1Y{28),XFUNC(29,3)
COMMON Al ,A2,A3,AU,A5,A6,Y,XFUNC
READ 1,NFUNCS

1 F0RMAT(1I3)
READ 2, (Al (I),A2(I),A3{I ) ,Al4(I),A5(I),A6{I), I = 1,NFUNCS)

2 F0RMAT(6O3)
NFINIS=0
NTRIAL=0
NCOMPS=U

B Y(1)=C00
B Y(2) = ni
B Y(3)=222
B Y(U)=C12
B XFUNC(1,1)=0
B XFUNC(1,2)=0
B XFUNC(1,3)=0
B XFUNC(2,1)=1
B XFUNC(2,2)=1
B XFUNC(2,3)=1
B XFUNC(3,1)=2
B XFUNC(3,2)=2
B XFUNC(3,3)=2
6 XFUNC(U,1)=C -

B XFUNC(U,2)=1
B XFUNC(4,3)=2 ,

3 DC IOC 1=1,27
DC 100 J=l,27
IF(NFINIS) ICO, 14,100

U DO 20 L=l ,NFLNCS
5 CALL DERIVl ( I, J,NCCMPS,L,28)

B 6 S=XFUNC(28,1 )

B T=XFUNC(28,2)
LDA(S) LDQ(T)
QLS{i45) LLS(3)
STA(R) ENKO)

B S=XFUNC{28,3)
LCA(R) LDC{S)
QLS(U5) LLS{3)
STA{T) ENKO)

B Y(28)=T
NNEW=0
DO 9 K=l,27
IF(NNEW)7,7,S
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B 7 IF(-{ (Y.'2.^)«V(K) )+( (-Y{2S) )*(-Y(K) ) ) ) ) 9,8,9
8 NN'EX=1
9 CGNTINUh

I F ( K N ^; W ) 1 , 1 C t ^1

10 NCCf^PS = NCONPS+l
B Y(NCCMPS)=Y(28)

PRINT 11
n F0RKAT(//U2H I J NCOMPS NFINIS NTRIAL L)

PRINT 12»I , J, NCCrPS, NFINIS, NTRI/iL,L
12 FCRNAT(6IT/)

PRINT 13
13 FCRKAT(X30H Y{01) Y{C2) Y{03) YCOU) Y{05),

I214H Y{06) Y{C7) Y(CR) Y(09) )

PRINT. lU, ( Y(N) ,N = 1 ,9)
lU F0RyAT(X,9(3X,C3)/i

PRINT 15
* 15 FCRyAT(X30H Y{1C) Y(ll) Y(12) Y(13) Y(1U),
•* 1214H Y(15) Y( 16) Y{ 17) Y{ 18) )

PRINT 16, ( Y(N) ,^=10, 18)
16 FCRyAT{X,9{3X,03)/)

PRINT 17
17 F0RyAT(X30H V(19) Y(2C) Y(21) Y(22) Y(23),

1214H Y(2U) Y{25) Y(26) Y{ 27) )

PRINT 18, (Y(N) ,N = 19,27)
18 FCRyAT(X,9{3X,C5)/)

IF(NCCMPS-27) 2C.,19,19
19 NFINIS=1
20 CONTINUE

100 CONTINUE
NTRIAL=NTRIAL+1
IF( NFINIS) 21,21,2 02

21 IF(NTRIAL-3) 3,200,200
200 PRINT 201
201 F0RMAT(U2HCCNP0SITI0NS ARE NOT FUNCTIONALLY COMPLETE)

GO TO 210
202 PRINT 203
203 F0RMAT{36HALL CCMPCSITIONS HAVE BEEN GENERATED//)

PRINT 20U
20U FCRr'AT(X30H Y(01) Y ( 02 ) Y(C3) YCOU) ¥(05),

}2kH Y{06) Y(C7) Y(C8) Y(09))
PRINT 2C5, (Ytr') ,K=1 ,9)

205 FORf'ATI X,9(3X,0:5)/)
PRINT 206

206 FCRyAT(X30H Y(1C) Y(ll) Y(12) Y(13) Y(1U),
121<H Y{15) Y( 16) Y( 17) Y( 18) )

PRINT 207, (Y(V) ,M=10,18)
207 F0RKAT{X,9(3X,G5)/)

PRINT 208
208 FCRMAT{X30H Y(19) Y(20) Y{21) Y{22) Y(23),

12i4H Y(2U) Y(25) Y{26) Y( 27) )

PRINT 209, (Y(y ) ,f'=19,27)
209 FCRNAT(X,9(3X,C3)/)
210 END

StBROUTINE DERIVl (I, J,NCCNPS,L,NTEM)
DIMENSION Al {1C),A2{ 10),A3(10),AU(10) ,A5(10) ,A6{ 10),
1Y(28) ,XFUNC(29,3)
CCMNQN Al ,A2,Ad,AU,A5, A6, Y,XFUNC
DO 6U K=l ,5

B XFUNC{29, 1 )=2
B 50 IF(XFLNC{ I ,K ) ) 51,51 ,56 '

B 51 IF{XFUNC( J,K) ) 52,52,53
B 52 XFUNC(NTEM,K> =AUL)
B XFUNC(NCGMPS+1 ,K)=A1 (L)

GO TO 6*4

B 53 IF{XFUNC( J,K)«XFUNC(29,1 ) ) 5U,5U,55
B 5U XFUNC{NTEM,K)=A2(L)
B XFUNC{NC0MPS+1 ,K)=A2(L)

GO TO 6U
B 55 XFU"NC(NTEM,K)=A5(L)
B XFUNC(NC0MPS+1 ,K)=A3(L)
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GC TO 6;=

B 56 IF{XFLi\C( I ,K)*XFU\C(29,1 ) ) 57,57,61
B 57 IF(XFL\C{ J,K) ) 5U,5U,58
B 58 IF{XFLNC( J,K )«XFUNC(29,1 ) ) 59,5<5,60
D 59 XFUNC(NTt^',K)=Ai4 (L)
B XFUNC(NC0NPS+1 ,K)=AU (L)

GO TC 6U
B 60 XFUNCtNTCMfK ) = /i5{L)
B XFUNC{NCO^^PS+^ ,K)=A5(L)

GC TG 6U
6 61 IF{XFUNC(J,K)) 55,55.62
B 62 IF(XFUNC( J,K )*XFUNC(29,1 ) ) 6C, 60,63
B 63 XFUNC(NTEM,K)=Ad{L)
B XFUNC(NC0MPS4l ,K)*/i6{L)

6U CONTINUE
RETURN
END
END
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HALL EFFECT COi^POSI TICNS

INPUT BATA CARDS

2
1 12 2

2 2 110
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1..J0B FRIICHTL^3ICHT BOX 126

I J NCOr'PS NFIMIS ATRIAL L
1, i+ 5 1

Y{On Y(02) Y(03) Y{CU) Y{05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 000 000 000 000

YClO) Y(ll) Y{12) Y(13) Y(1U) Y{15) Y{16) Y{17) Y{18)
000 000 000 000 003 000 000 000 000

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
000 000 000 000 000 000 000 GOO 000

I J NCOVPS NFINIS NTRIAL L
1 1+ 6 2

Y(01) Y{02) Y(03) Y(OU) Y(05) Y(06) Y{07) Y(08) Y(09)
000 111 222 012 001 221 000 000 000

Y(10) Yd!) Y{12) Y{13) YCIU) Y(15) Y(16) Y(17) Y{18)
000 000 000 000 000 000 000 000 000

Y(19) Y(20) Y(21) Y(22)' Y{23) Y(2U) Y(25) Y(26) Y{27)
000 000 000 000 000 coo 000 000 000

I J NCOPPS NFINIS NTRIAL L .16 7 1

Y{01) Y(02) Y(03) Y(GU) Y(05) Y(06) Y(07) Y{08) Y(09)
000 111 222 012 001 221 110 000 000

YllO) Yd!) Y{12) Y{]3) YdU) Y(15) Y{16) Y(17) Y{18)
000 000 000 coo 000 000 000 000 000

Y(19) Y{20) Y(21) Y(22) Y(23) Y(2M) Y(25) Y(26) Y(27)
000 000 000 000 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L16 8 2

Y(01) Y(02) Y(03) Y(0U) Y{05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 000

Y(10) Yd!) Y(12) Yd3) Y(IU) Yd5) Y(16) Y(17) Y{18)
000 000 000 coo 000 000 000 000 000

Y(19) Y{20) Y{21) Y(22) Y(23) Y{2U) Y(25) Y(26) Y(27)
000 000 000 000 000 coo 000 000 000

1 J NCONPS NFINIS NTRIAL L
2 4 9 2'

Y(01) Y(02) Y{03) YiCk) Y{05) Y{06) Y(07) Y{08) Y{09)
000 111 222 012 001 221 110 112 210

YdO) Ydl) Y(12) Yd3) YCIU) Yd5) Y{16) Y{17) Yd8)
000 000 000 coo 000 000 000 000 000

Yd9) Y{20) Y(21) Y{22) Y{23) Y(2U) Y(25) Y(26) Y(27)
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000 000 000 coo 000 000 000 000 000

I J NCOMPS NFINIS ATRIAL L
3 U 10 1

Y(On Y(02) Y(03) Y(GU) Y(05) Y{06) Y(07) VtOS) Y(09)
000 m 222 012 001 221 110 112 210

Y(10) Y(ll) Y{12) Y(13) Y(1U) Y(15) Y(16) Y'{17) Y(18)
122 000 000 000 000 000 000 000 COO

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
000 000 000 000 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
3 4 11 0-2

Y(01) Y(02) Y(03) Y(04) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

Y(10) Y(ll) Y(12) Y(13) Y(IU) Y(15) Y(16) Y(17) YdS)
122 100 000 COO 000 000 000 GOD 000

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y ( 27

)

000 000 000 000 000 000 000 000 000

I J NCOFPS NFINIS NTRIAL ' L
3 11 12 1

Y(01) Y(02) Y{03) YCOU) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

YCIO) Ydl) Y(12) Y{13) Y{1U) Y(15) Y(16) Y(17) YCIB)
122 100 211 000 000 . 000 000 000 000

Y(19) Y(20) Y(21) Y(22) Y(23) Y{2U) Y(25) Y(26) Y{27)
000 000 000 COO 000 000 000 000 000

I J NCO^^PS NFINIS NTRIAL L
3 1113 2

Y(01) Y(C2) Y(03) Y(OU) Y(05) Y{06) Y(07) Y{08) Y(09)
000 111 222 01-2 001 221 110 112 210

Y(10) Y(ll) Y{12) Y(13) YdU) Y{15) Y(16) Y(17) Y(18)
122 100 211 Oil 000 000 000 000 000

Y(19) Y(20) Y(21) Y(22) Y{23) Y{2U) Y(25) Y(26) Y(27)
000 000 000 000 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
U 5 lU 1

Y(01) Y(02) Y(03) Y(OU) Y ( 05

)

Y(06) Y(07) Y^08) Y(09)
000 111 222 012 001 221 110 112 210

YIIO) Y(ll) Y(12) Y(13) Y(IU) Y{15) Y(16) Y(17) Y(18)
122 100 211 Oil 002 000 000 000 000

Y{19).Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y ( 27

)
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000 000 000 000 000 000

I J NCONPS NFINIS NTRIAL L
U 5 15 2

Y(On Y{02) Y(03) Y(0U) Y(05) Y(06) Y(07) Y(08) Y(09)
000 m 222 012 001 221 110 112 210

YdO) Yd!) Y(12) Y(13) Y(1U) Y(15) Y(16) Y(17) Y(18)
122 100 211 Oil 002 220 000 000 000

Y(19) Y(20) Y(21) Y(22) Y(23) \{2U) Y(25) Y(26) yC27)
000 000 000 coo 000 000 000 000 000

I J NCO^^PS NFINIS MTRIAL * L
U 10 16 1

Y(01) Y(02) Y(03) Y(04) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

YdO) Y(ll) Y(12) Y{13) Y(1U) Y{15) Y(16) Y(17) YdSJ
122 100 211 Oil 002 220 022 000 000

Y(19) Y{20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y{26) Y(27)
000 000 000 000 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
U 10 17 2

Y(01) Y(02) Y(03) Y(0U) Y{05) Y{06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

YdO) Y(ll) Y(12) Y(13) YdU) Y(15) Y(16) Y(17) Y(18)
122 100 211 on 002 220 022 200 000

Y(19) Y(20) Y{21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
000 000 000 000 000 000 000 000 000

I J NCONPS NFINIS NTRIAL L
4 15 18 1

Y(01) Y(02) Y{03) Y(.GU) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

YdO) Y(ll) Y(12) Y(13) Y{1U) Y(15) Y.( 16 ) Y(17) Y(18)
122 100 211 Oil 002 220 022 200 121

Y(19) Y(20) Y(21) Y{22) Y(23) Y{2U) Y{25) Y(26) Y(27)
000 000 000 coo 003 000 000 000 000

I J NCO^'PS NFINIS NTRIAL L
U 15 19 2

Y(01) Y(02) Y(03) Y(0U) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

YdO) Y(ll) Yd2) Y(13) Y(U) Y(15) Y(16) Y(17) Y(18)
122 100 211 Oil 002 220 022 200 121

Yd9) Y{20) Y(21) Y(22) Y(23) Y{2U) Y(25) Y(26) Y ( 27

)
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I J NCOMPS NFINIS NTRIAL L
7 13 20 1

Y(01) Y(02) Y(03) Y{OU) Y(05) Y(06) Y{07) Y(08) Y(09)
000 m 222 012 001 221 110 1^2 210

Y{10) Y(ll) Y(12) Y(13) YdU) Y(15) Y(16) Y(V7) Y(18)
122 100 211 on 002 220 022 200 121

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2l+) Y(25) Y(^6) Y{27)
101 010 000 000 coo 000 000 000 000

I J NCQNPS NF^INIS NTRIAL L
7 13 21 2

Y(01) Y{02) Y(03) Y(Ci|} Y ( 05

)

Y{06) Y(07) Y{08) Y(09)
000 in 222 012 001 221 110 112 210

Y(10) Y{n) Y(12) Y(13) Y(1U) Y(15) Y(16) Y{17) Y(18)
122 100 211 Oil 002 220 022 200 121

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y{27)
101 010 212 000 000 000 000 000 000'

I J NCOMPS NFINIS NTRIAL L
7 16 22 1

Y(On Y(02) Y(03) Y(0U) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

YdO) Ydl) Y(12) Y(13) Y(1U) Y(15) Y(16) Y(17) Y (. 1 8

)

122 100 211 on 002 220 022 200 121

Y(19) Y(20) Y(21) Y{22) Y(23) Y(2i4) Y{25) Y(26) Y(27)
101 010 212 021 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
7 16 23 2

Y{01) Y(02) Y(03) Y(0U) Y(05) Y(06) Y(07) Y(08) Y{09)
000 m 222 012 001 221 110 112 210

YdO) Ydl) Y(12) Yd3) Y(l»+) Yd5) Y(16) Y(17^ Yd8)
122 100 211 Oil 002 220 022 200 121

Y{19) Y(20) Y(21) Y(22) Y{23) Y{2U) Y{25) Y(26) Y(27)
101 010 212 021 201 COO 000 000 000

I J NCOyPS NFINIS NTRIAL L
7 18 2U 1

Y(01) Y{02) Y(03) Y(CU) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 C12 001 221 110 112 210

YdO) Ydl) Yd2) Yd3) YdU) Y(15) Y(16) Y(17) Yd8)
122 100 211 on 002 220 022 200 121

Yd9) Y(20) Y{21) Y(22) Y(23) Y(2U) Y(25) Y{26) Y(27)
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101 010 212 C21 201 120 000 OOQ COO

I J NCONPS NFINIS NJTRIAL L
7 18 25 2

Y{01) Y(02) Y(03) Y(C4) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

Y(10) Y(ll) Y(12) Y(13) Y{1U) Y(15) Y(16) Y(17) Y(18)
122 100 211 on 002 220 022 200 121

Y(19) Y(2C) Y(21) Y(22) Y(23) \{2H) Y(25) Y(26) Y(27)
101 010 212 021 201 120 102 000 000

I J NCOMPS NFINIS NTRIAL L
7 22 26 1

Y(01) Y(02) Y(03) Y(04) Y(05) Y(06) Y(07) Y(08) Y(09)
000 111 222 012 001 221 110 112 210

YdO) Y(ll) Y(12) Y(13) Y(1U) Y( 1 5 )' Y ( 1 6) Y( 1 7 ) Y{18)
122 100 211 Oil 002 220 022 200 121

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) YC25) Y(26) Y { 27

)

101 010 212 021 201 120 102 020 000

I J NCOMPS NFINIS NTRIAL L
7 22 27 2

Y(01) Y(02) Y(03) Y(CU) Y(05) Y{C6) Y(07) Y(08) Y(09)
000 111 222 012 001 • 221 110 112 210

YdO) YCll) Y(12) Y(13) Y{1U) Y(15) Y(16) Y(17) Y(18)
122 100 211 Oil 002 220 022 200 121

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
101 010 212 021 201 120 102 020 202

ALL COMPOSITIONS HAVE BEEN GENERATED

Y(01) Y(02) Y(03) Y(0U) Y(05) Y(06) Y(07) Y{08) Y(09)
000 111 222 012 001 221 110 112 210

Y(10) Y(ll) Y(12) YI13) Y(1U) Y(15) Y(16) Y(17) Y(18)
122 100 211 Oil 002 220 022 200 121

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
101 010 212 C21 201 120 102 020 202

TIME, MINUTES AND 28 SECONDS
1..EN0
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SET OF FOUR COMPOSITIONS
INPUT DATA CARDS

1 1 1 2

1 ;>, I 1 2 2 2 2

i 1 I

1 i 1

2 2 n

2 2 2
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JOB FRIICHTENICHT BOX 126

NCOMPS NFINIS NTRIAL
5

•Y(On Y{02) Y(03) Y(OU) Y(05) Y(C6) Y(07) Y(08) Y(09)
012 111 222 000 001 000 000 000 000

Y(10) Y(ll) Y(12) Y(13) Y(1U) Y(15) Y{16) Y(17) Y(18)
000 000 000 000 000 coo 000 000 000

Y{19) Y(20) Y(21) Y{22) Y(23) Y(aU) Y(25) Y(26) Y{27)
000 000 000 000 000 000 000 000 000

i J NCOMPS NFINIS NTRIAL L
1 16 5

y(01) Y{02) Y{03) Y(0U) Y(05) Y(06) Y(07)
012 222 000 001 200

YdO) Y(ll) Y(12) Y(13) Y(1U) Y(15) Y(16)
000 000 000 000 000 000 000

Y{19) Y(20) Y(21) Y(22) Y(23) Y(24) Y(25)
000 000 000 000 000 000 000

Y(08) Y(09)
000 000

Y( 17) Y(18)
000 000

Y(26) Y(27)
000 000

J NCOMPS NFINIS NTRIAL

YlOl) Y(02) Y(03) Y{0U) Y(05) Y(06) Y(07)
012 222 000 001 200 on

Y(IO) Ytll) Y(12) Y(13) Y(1U) Y(15) Y{16)
000 000 000 000 000 000 000

Y(19) Y(20) Y{21) Y(22) Y(23) Y{2U) Y(25)
000 000 000 000 000 GOO 000

Y(08) Y(09)
000' 000

Y(17) Y(18)
000 000

Y(26) Y(27)
000 000

J NCOMPS NFINIS NTRIAL
2 8

Y(01) Y{02) Y(03) Y(OU) Y(05) Y(C6) Y(07).
012 111 222 000 001 200 Oil

YdO) Y(ll) Y(12) Y(13) YCIU) Y(15) Y(16)
000 000 000 000 000 000 000

Y(08) Y(09)
112 000

Y( 17) Y{18)
000 000

Yn9) Y{20) Y(21) Y{22) Y(23) Y(2U) Y{25) Y(26) Y(27)
000 000 000 000 000 coo 000 000 OOP

J NCOMPS NFINIS NTRIAL
5 9

Y(01) Y{02) Y{03) Y(OM) Y(05) Y(06) Y(07) Y(08) Y{09)
012 in 222. 000 001 200 Oil 112 220

Y(10) Yd!) Yd2) Y(13) YdU) Y(15) Y (1 6) Yd7) Y(18)
000 000 000 000 000 000 000 000 000

Yd9) Y(20) Y<21) Y(22) Y{23) Y(2U) Y(25) Y(26) Y(27)
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000 000 000 000 000 coo 000 000

I J NCOMPS NFINIS NTRIAL L
1 6 10 2

YIOI) Y(02) Y(03) Y(0i4) Y{05) Y(06) Y(07) Y(08) YC09)
012 in 222 000 001 200 Oil 112 220

Y(10) Y(ll) Y(12) Y(13) Y(1U) Y(15) Y(16) Y(17) VCIB)
212 000 000 000 000 GOO 003 000 000

Y(19) Y(20) Y{21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
000 000 000 000 000 GOO 000 000 000

I J NGOMPS NFINIS NTRIAL L
1 6 11 3 .

Y{01) Y(02) Y(03) Y(OU) Y(05) Y(06) Y{07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

Y(IO) Yd!) Y(12) Y(13) Y(1U) Y(15) Y(16) Y(17) Y(18)
212 100 000 000 000 000 000 000 000

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
000 000 000 000 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
1 6 12 5

Y(01) Y(02) Y(03) Y(OU) Y(05) Y(06) Y(07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

YdO) Ydl) Y(12) Y{13) Y(1U) Y{15) Y { 1 6) Y(17) Y{18)
212 100 022 000 000 000 000 000 000

Y(19) Y(20) Y{21) Y(22) Y(23) Y(2U) Y(25) Y{26) Y(27)
000 000 000 000 000 COO 000 000 000

I J NCOMPS NFINIS NTRIAL L
1 9 13 1

YtOl) Y(02) Y(03) Y(0U).Y{05) Y(06) Y(07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

YdO) Ydl) Y(12) Yd3) YdU) Yd5) Yd6) Y(17) Yd8)
212 100 022 010 000 000 000 000 000

Yd9) Y{20) Y(21) Y(22) Y(23) Y(2U) Y(25) YC26) Y(27)
000 000 000 000 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
1 9 11+ 3

Y(01) Y{02) Y(03) Y(OU) Y(05) Y(06) Y(07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

YdO) Ydl) Yd2)Y(13) Y(1U) Y(15) Yd 6) Y(17) Yd8)
212 100 022 010 110 000 000 000 000

Y(19) Y(20) Y{21) Y{22) Y(23) Y(2U) Y{25) Y{26) Y ( 27

)
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000 000 GO 000 000 coo 000 000 000

I J NCOMPS NFINIS NTRIAL L
1 9 . 15 5

Y(01) Y(02) Y(g3) Y(OU) Y(05) Y(06') Y(07) Y(08) Y(09)
012 111 ^22 000 001 200 Oil 112 220

Y(10) Y(ll) Y(12) Y(13) Y(1U) Y(15) Y { 1 6) Y(17) Y(18)
212 100 022 010 110 CQ2 000 000 ' 000

Y(19) Y{20) Y(21) Y(22) Y(23) Y(2i4) Y(25) Y{26) Y(27)
000 000 000 000 000 coo 000 000 000

I J NCOMPS NFINIS NTRIAL L
1 10 16 3

Y(01) Y(02) Y(03) Y(OU) Y(05) Y{06) Y{C7) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

Y(10) Yd!) Y(12) Y(13) Y(14) Y(15) Y ( 1 6) Y(17) Y(18)
212 100 022 010 110 C02 101 000 000

Y(19) Y(20) Y{21) Y(22) Y(23) Y(2i4) Y(25) Y(26) Y{27)
000 000 000 000 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
1 13 17 5

Y(01) Y{02) Y{03) Y(OU) Y{05) Y(C6) Y(07) Y(08) Y{09)
012 1.11 222 000 001 200 Oil 112 220

Y(10) Y(ll) Y(12) Y(13) Y(1U) Y(15> Y(16) Y(17) Y(18)
212 100 022 010 110 C02 101 202 000

Y{19) Y{20) Y{21) Y{22) Y(23) Y(2U) Y(25) Y(26) Y(27)
000 000 000 000 000 COO 000 000 000

I J NCOMPS NFINIS NTRIAL L
1 16 18 5

Y(01) Y(02) Y{03) Y(0U).Y(05) Y{C6) Y(07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

Y(10) Y(ll) Y(12) Y(13) YdU) Yd 5) Yd 6) Y(17) Y(18)
212 100 022 010 110 C02 101 202 020

Yd9) Y{20) Y{21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
000 000 000 000 000 coo 000 000 000

1 J NCOMPS NFINIS NTRIAL L
2 6 19 2

Y(01) Y(02) Y(03) Y(OU) Y(05) Y(06) Y(07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

YdO) Ydl) Yd2) Yd3) Y(1U) Y(15) Y ( 1 6) Y(17) Yd8)
212 TOO 022 010 110 C02 101 202 020

Y(19) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y{26) Y(27)
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211 000 GOG 000 000 COO 000 000 000

1 J r^COMPS NFINIS NTRIAL L
2 9 20 2

YCOl) Y(02) Y(03) Y(OU) Y(05) Y(06) Y(07) Y{08') Y{09)
012 m 222 000 001 200 Oil 112 220

YCIO) Y(ll) Y(12) Yd 3) Y(1U) Y(15) Yd 6) YdTWrdS)
212 100 022 010 110 002 101 202 020

Yd9) Y(20) Y(21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
211 221 ObO 000 000 000 000 000 000

1 J NCOMPS NFINIS NTRIAL L
2 12 21 2-

Y(01) Y(02) Y(03) Y(Oi*) Y(05) Y(06) Y(07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

YdO) Y(ll) Yd2) Y(13) YdU) Y(15) Yd6) Y(17) Y(18)
212 100 022 010 110 002 101 202 020

Yd9) Y(20) Y(21) Y(22) Y(23) Y{2U) Y(25) Y(26) Y(27)
211 221 122 000 000 COO 000 000 000

1 J NCOMPS NFINIS NTRI/M ' L
2 18 22 2

Y(01) Y(02) Y{03) Y(04) Y(05) Y(06) Y(07) Y{08) Y(09)
012 111 222 000 001 200 Oil 112 220

YdO) Y(ll) Y(12). Y(13) Y(IU) Y(15) Y(16) Y{17) Y(18)
212 100 022 010 110 002 101 202 020

Yd9) Y(20) Y(21) Y(22) Y(23) Y(2U) Y{25) Y(26) Y(27)
211 221 122 121 000 000 000 000 000

I J NCOMPS NFINIS NTRIAL L
5 6 23 2

Y{01) Y(02) Y(03) Y(OU) .Y(05) Y{06) Y(07) Y(08) Y(09)
012 -111 222 000 .001 200 Oil 112 220

YdO) Ydl) Y(12) Yd3) Y(IU) Y(15) Y (1 6) Y(17) Yd8)
212 100 022 010 no C02 101 202 020

Yd9) Y(20) Y{21) Y(22) Y(23) Y(2U) YC25) Y{26) Y(27)
211 221 122 121 201 COO 000 000 000

I J NCOMPS NFINIS NTRIAL L
5 18 2U 2

Y{01) Y(02) Y{03) Y(0U) Y(05) Y(G6) Y{07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220

YdO) Ydl) Yd2) Y(13) YdU) Y(15) Yd6) Yd7) Yd8)
212 100 022 010 no 002 101 202 020

Yd9) Y(20) Y{21) Y(22) Y(23) Y(2U) Y(25) Y(26) Y(27)
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211 221 122 121 201 C21 000 000 000

I J NOOMPS NFINIS MTRIAL L
6 13 25 2

Y(01) Y(02) Y{03) Y{0U) Y(05) Y{06) Y(07) Y(08)' Y(09)
012 111 222 000 001 200 Oil 112 220

Y(10) Y(n) Y(12) Y(13) Y(1U) Y(15) Y(16) Y(17) Y{18)
212 100 022 010 no C02 101 - 202 020

Y(19) Y(20) Y(21) Y(22) Y(23) Y(24) Y(25) Y(26) V(27)
211 221 122 121 201 021 210 000 000

I J NCOMPS NFINIS NTRIAL L
8 17 26 1

Y(01) Y(02) Y(03) Y(OU) Y(05) Y(06) Y(07) Y(08) Y(09)
012 111 222 000 001 200 Oil 112 220-

Y(IO)
212

Y{ 1 1 ) Y< 12)
100 022

Y{13) Y( lU) Y( 15)
010 no 002

Y(16)
101

Y(17)
202

Y{18)
020

Y(19)
211

Y(20) Y(21 )

221 122
Y(22) Y(23) Y(2U)

121 201 021,
Y(25)

210
Y(26)

102
Y(27)

000

I J NCOMPS NFINIS NTRIAL
9 21 27

L
1

Y(01)
012

Y(02) Y(03)
111 222

Y(OU) Y(05) Y(06)
000 001 200

Y(07)
Oil

Y(08)
112

Y(09)
220

Y(10)
212

Y(ll ) Y( 12)
100 022

Y(13) Y(1U) Y( 15)
010 no 002

Y(16)
101

Y(17)
202

Y(18)
020

Y(19)
211

Y(20) Y(21)
221 122

Y(22) Y(23) Y(2U)
121 201 021

Y(25)
213 ^"!S1

Y(27)
120

ALL COMPOSITIONS HAVE BEEN GENERATED

Y(01)
012

Y(02) Y(03)
111 222

Y(OU) Y(05) Y(C6)
000 001 200

Y(07)
Oil

Y(08)
112

Y(09)
220

^'1?1 Y( 1 1 ) Y{12)
100 022

Y(13) YdU) Y( 15)
010 no 002

Y(16)
101

Y(17)
202

Y(18)
020

v<i^. Y(20) Y(21 )

221 122
Y(22) Y{23) Y(2U)

121 201 021
Y(25)

210 ^•^g^ Y(27)
120

TIME,
1..END

MINUTES AND 37 SECONDS
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