
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1963

Interactions between electron beams and fully
ionized plasmas

Cox, Stanley D.
Monterey, California: U.S. Naval Postgraduate School

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



N PS ARCHIVE
1963
COX, S.

INTERACTIONS BETWEEN ELECTRON
AND FULLY IONIZED PLASMAS

STANLEY. D. COX

NBi



LIBRARY

U.S. NAVAL POSTGRADUATE SCHOOL
MONTERFY. CALIFORNIA











fo

INTERACTIONS BETWEEN ELECTRON BEAMS

AND FULLY IONIZED PLASMAS

*****

Stanley D. Cox





INTERACTIONS BETWEEN ELECTRON BEAMS

AND FULLY IONIZED PLASMAS

by

Stanley D. Cox

Captain, United States Marine Corps

Submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE
IN

ENGINEERING ELECTRONICS

United States Naval Postgraduate School

Monterey, California

1963





S
-

N* VAl POSTGRADUATE SCHOOT^°NT«Ey, CAL,FORN,A

INTERACTIONS BETWEEN ELECTRON BEAMS

AND FULLY IONIZED PLASMAS

by

Stanley D. Cox

This work is accepted as fulfilling

the thesis requirements for the degree of

MASTER OF SCIENCE

IN

ENGINEERING ELECTRONICS

from the

United States Naval Postgraduate School





ABSTRACT

Interaction between an electron beam and a fully ionized plasma has

been studied with a view towards its application in a structure-less

traveling wave tube. Three basic approaches, of varying degree of rigor,

to the problem have been pursued and analytical solutions for the circularly

symmetric case obtained. Comparisons between the methods of analysis

are made.

The writer wishes to express his appreciation for the assistance and

encouragement given him by Professor Glenn A„ Gray of the U. S. Naval

Postgraduate School in this investigation.
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1 . Introduction

Investigations into wave propagation in plasmas have been conducted

by a number of workers (1), (2), (3) with a view towards employment in

plasma diagnostics and traveling wave tubes. Extensive bibliographies are

contained in these works and the reader is referred to these for previous

work in the field.

Basically, the problem is a boundary value problem in cylindrical co-

ordinates (r,9,z) as depicted in Fig. 1 with a static magnetic field parallel

to the z-axis. Throughout this paper, the case of coupling to a helix will

be considered as this is a common method of coupling into or out of a

traveling wave tube. The mathematical model used for the helix is the

simplest of those that have been developed, that of the "sheath helix".

The reader is referred to any standard work, such as Pierce (4) for details

on this point. The results will be used without comment in this paper,

The mathematical model used for the plasma will be that customarily

used in studies of this nature unless specifically stated otherwise. This is

the "cold" plasma wherein effects of collisions, recombinations, neutrals,

and thermal motion are ignored and the electrons are considered as forming

a "cloud" against a background of positive ions which provide overall (DC)

neutrality of charge, but do not otherwise appreciably contribute to the

problem due to the relatively large mass of the ions which renders them

practically stationary.

Three approaches to the problem are presented and compared. These





0<r <a Electron Beam

a < r < b Pla sma

b < r < c Free Space

r = c Helix

r> c Free Space

Figure 1

Geometry of the Problem





are presented in order of increasing complexity, if not rigor, and the results

are compared using the third method as the standard of comparison

The first method is an extension of the works of Boyd, Gould and

Trivelpiece and has, as the major distinguishing features., the assumptions

that the magnitude of the longitudinal propagation constant is much greater

than that of free space and that the electric field may be represented as

derived from a scalar potential. This is Trivelpiece' s "slow wave' 1

or

"quasi-static" approximation, This method has the advantage of simplicity

albeit at the price of rigor, but the extreme simplicity alone is of considerable

practical value provided, of course, that the results provide a reasonable

approximation to the true case. A feature of this "slow wave" approximation

is that a TE mode of propagation is denied by the first assumptions . While

of no great consequence when dealing with drift tubes or waveguides, this

is troublesome when one attempts to derive expressions for interactions with

a helix. Matching boundary conditions at the "sheath helix" requires both

TE and TM types of solutions as is stated in Hutter (5) and can quickly

be demonstrated. Thus, a dilemma presents itself. In attempting to extend

this simple method, a free space TE solution will be assumed within the

electron beam and plasma regions and the inconsistency ignored

.

The second method is an extension of the works of Rigrod and Lewis 16)

,

and Brewer (7), the latter being essentially a generalization of the former,

This method, as developed for electron beam studies, solves Maxwell's

equations in a region containing charge, and, through a perturbational





approach, takes the effect of the charge into consideration in the boundary-

value problem by replacing the rippled beam by an equivalent smooth beam

with a surface current density. Brewer's model for the electron beam is

simply a beam of electrons and does not postulate positive ion neutrali-

zation of the beam as some other common analyses do, The plasma, in

this type of analysis, is treated as the limiting case of an electron beam

in a plasma with zero charge density. Brewer, in his paper on the subject

(7), obtains only a TM solution although a TE solution is not negated as

in Trivelpiece's analysis. In this paper, an approximate TE solution is

obtained, and interestingly, is shown to be coupled to the TM solution

in such a manner that, if the TE solution is identically zero, then the TM

solution is also zero, with the converse not necessarily true

The third method of analysis is considered the most rigorous and is the

most complex, mathematically. It consists of solving Maxwells equations

in an anisotropic media using Kales' (8) method of solution. This method

provides an exact solution of the mathematical model as described above

and further amplified in appendix A. Interesting features of this method are

the requirement of coupled TM and TE modes of propagation which cannot

be zero independently, and a mode degeneracy with non-orthogonal modes,

In this paper, the subscript o will be used to denote dc (static)

quantities and the subscript 1, time varying quantities. Unless noted to

the contrary, all quantities will be assumed to vary as

4





with a z-dependence such that

5F_
**

-*lj(~> 9)}) «12 »

| oct
Following the usual procedure, the factor e will be understood and not

written explicitly.





2. Method I, Trivelpiece !

s "Slow Wave" Approximation

Following Trivelpiece (1), it is assumed that

VXE, =-^w£,^ (2,1)

which then allows us to represent the electric field vector as derived from

a scalar potential, i.e.

B, = - V $ (2.2)

From Maxwell's equations, we have

\7-A = W4'E,)= V-I 'Vi>, =

where I is the tensor dielectric constant given by

(2,3)

e = £,

-II i ei&

-fax

O

-//

O

o

(2.4)

A simple derivation of equation (2.4) is given as Appendix A although it is

worth noting, in passing, that the same result for the case of a plasma

alone may be obtained from the Boltzmann transport equation (10) with far

fewer restrictions upon the derivation.

Proceeding formally, one then obtains

t &r*"!£ + ***&} +im?>^^±tk\
(2.5)

+ ^ - J

^S J
^3 5#1=02





If a product type of solution is assumed,

<j>, -/?(«) $(©U
-*V

(2.6)

the following differential equation is then obtained

£/5
iA +J.44 +_/_£& +^a.y»(4 -o (2.7)

the solution of which is

4= [4£fpg+£A{ 1

('&) Cco^mfi) +[)4m,Q>>&) #̂ (2.8)

where A, B, C, and Dare arbitrary constants. Following the usual pro-

cedure in waveguide type propagation problems this will be expressed as

tf>,= \hJ„(TA+B^(Tj\j[t
~Ajy\&-

where

7~* r ft*
6**

:u

We then have

In,
[ATtfOk) + 8TA^(VCl\ JL

-j-mb-fy

(2.9)

(2 . 1 0)

.11'

5.= (2,12)





E„ = AYjL(Tn) + 8rAC(T^)lti>(r<^.

-^0-<$-

,13}

where the prime indicates differentiation with respect to the total argument

While it is implicit in the assumption behind equation (2.2) that the

time varying magnetic field is essentially zero with respect to the electric

field, the curl H equation

VKH, = f^VB, 14]

will be used to obtain approximate values of the magnetic field componen's

H will be set equal to zero, otherwise the existence of another mode of
z

propagation would be allowed which would contradict the basic assumption,

equation (2.2). Taking the components of equation (2.14), one obtains

i-^L-^M*- .UJtt
A, d£ \

*//4u f j$^9 {2 as;

^-^-^[-^t^J5
I

a. i6)

£feM»)-^_*«/^fy (2.17)

We then obtain (where the primes again denote differentiation with respect

to the total argument)





fl
/a
= - i^Mo [t^iATT^T^i-BTftitV,)) + , 18

%i^ (ATm (T~) +Bjit»(Tn))

%i^ [ATJT*) i-BNm (T-)
A,

(2.19)

From this point on, only the axially symmetric case (n=0) will be considered

Also, only the time varying field quantities are involved so the subscript 1

will be omitted to simplify the notation.

E* = AirX(T^) +BXN (T^ (2.20)

£A = ATJ-
t
(T^) + BT^ (T+.)

(2.21)

H* ~ $<aJ*o 'eJATT^Tsj tBTtyfrA (2.22)





Hln = ~*^ -fa(ATj;(T^^STA/i(r^ 23

Equations (20) through (23) are the field quantities derived from equations 1

and (14), to be used in the boundary matching problem.

As was mentioned in the introduction, it is impossible to match a TM

solution alone to the "sheath helix" using the standard boundary condi-

tions as given by Pierce (4) or Beck (9)„ Some form of the TE solution must

also be used. For this analysis, a free space TE solution will be assumed,

with more to be said upon this assumption later. It is to be noted that , up

to this point, no assumptions, other than those made by Trivelpiece (1)

have been made. For a detailed justification of these assumptions, the

reader is referred to Trivelpiece *s work. Extracting, the appropriate TE

solution from Beck (9) , the boundary value problem then becomes {refernr:}

to Fig. 1)

Region 1 g r ^ a (Electron beam within a plasma)

From Appendix A

,

t^
6 = 6 "V^

o

o
(2.24]
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Ei.-A,irr,(T,*) l*z= *>V,H

P

25]

Region II a ^ r g b (Plasma region)

From Appendix A

6 =£.

O

-as

Hz = *ax f/^g

r

Region HI b g r g c (Free space)

^^ C, *<,(/>A.) +CXK (pn.)

r H

(2„26)

(2.27)

(2 .,28]
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(2,29)

(2.30)

Region IV _r_^_,.c (Free space)

P

The boundary conditions at the helix are;

Hi +H£coTf =HZ + HZcoty

As the general problem is rather complex, several simpler cases will

be considered first. These are:

Case I, the case of an electron beam completely filling the interior of the

plasma and the helix, i.e. , a region I and IV problem.

Case II, the case of an electron beam of radius §__, less than the diameter

of the helix, with the plasma filling the helix, i.e. , a region I, II., and

IV problem.

Case III, the case of an electron beam of radius b, passing through a plasma

of radius b, surrounded by a free space region and a helix at radius ^„

with free space outside the helix, i.e. , a region I, III and IV problem.

Case IV, the case of an electron beam of radius a passing through a plasma

12





of radius b surrounded by free space and a helix at radius c with free

space outside the helix, i.e. , a region I, II, III, and IV problem.

Determinantal relationships are obtained for all four of these cases

with the algebra relegated to Appendix B The determinantal relationships

are given below.

Case I

(2.31:

ire +-
/>*

K (pc) , #%*, TAc)
J~oC>IC) J

! =

13
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3. Method II, (Extension Of Brewer's Method)

This method is an extension of the method of Rigrod and Lewis (6) and

Brewer (7). Attention is also invited to Beck's (9) excellent treatment from

which this presentation proceeds.

Let us consider an electron beam with no angular variation in charge

density, fields or electron motion, i.e. ,

We may then write the Lorentz force equation in cylindrical coordinates as

(3.1)
/i-Ji.b^-=-^ pB^^/i©

±£tf« =-1 [~Y ^4] (3,2)

(3.3)

provided we assume as does Beck and Brewer, that the contribution of

E to the right side of (3.2) is small with respect to B r. More will be
1 tr Z

said of this approximation later. Using Busch°s theorem from electron

optics, we may write

^=^[^-44,] (3.4)

Where r is the initial radius of each electron and B„ the z-directed
c

16





magnetic field at that point (assumed constant). This may be stated as

e-i[^-«4]

Substituting this into (3.1), one obtains

Let us now perturb (3.5) by letting

(3.6)

to obtain

4
Ofc^
/u£

3,

Next, assuming that the DC ripple or scallop on the beam is small, let

V* —7*.** ^\/
(3.8)

Perturbing this expression as before yields

A, = 1±L
(3

Perturbing (3.2) and disregarding the effects of AC magnetic fields on

electron motion compared with electric field effects

%• ^
Applying the continuity equation

(3,10)

17





to the AC charge density, one obtains

^«tr ~ (u+jw,) ^ a^L v
' a

i- j

13. 12)

At this point, let us examine what has been donee The equilibrium

relation (3,8) has been perturbed to obtain (3 9) As stated in the intro-

duction , electrons are assumed to interact only through the electric field

and the above relations are derived as if the individual electrons compose

a stream with continuity of charge in this stream maintained through

equation (3.11). If a second group of charged particles were present, such

that the DC equilibrium condition remained valid, comparable expressions

for the time varying quantities could also be written for the second group

of charged particles. The model of the plasma set forth in the introduction

fits these conditions quite well since overall DC neutrality from the plasma

ions and electrons is maintained. Assuming that the continuity equation

holds (which it must as no mechanism for loss of charged particles has

been assumed in the model), one can write expressions comparable to

(3.9), (3.10), and (3.11) (with U =0) for both ions and electrons, but,
o

since the mass of the ions is so much greater than that of the electrons,

their effects are extremely small at any frequency considerably above one

megacycle per second and will be ignored . Designating the beam electrons

18





by subscript band the plasma electrons by subscript a_and dropping the

subscript 1 from field quantities since only ac fields are to be treated, the

following relations are obtained.

(out^o) (3,13;

/?„
=

tCL #{x h*"***
+ *?* [3.14]

-V= (3.15)

^~ Wr̂i^T (3.161

ftt
^

(MjX%)* (3.17)

(3.18)

(3.19)

19





/JV <L U)*-SV^ (3.20)

Assuming that

and, from Maxwell's equations in a media containing charge

From (3 . 13) , (3.14), (3 . 19) and (3 . 20)

It will be convenient to write

From (3.22) and (3,23)

(3.21)

(3.22;

'A. (3.24)

At this point, Beck shows that the second term of the last relationship is

small with respect to the first for electron beams and may be ignored

,

This approximation is not as clearly well taken in this analysis and wiil

not be made. Comment on the effect of making it will be made later,

Solving for E

20





E = ^
K r+}W/ ^ yiL (3o26)

Small DC beam scalloping has already been assumed and since the

assumption that the magnitude of the perturbation is small is inherent in

the perturbational approach, r #r. Further, if we assume that the dc

magnetic field strength is everywhere constant and the cathode is not

shielded, B v B and
o z

J? * w?
(3.27)

Making this approximation and writing

%i
= /W f /2'3-

rj« .ATTo*
d*- '/*

+ ah> (3 28)

one obtains

^7a ~ & t^+i*/u+ */uw
UJ

+ 4-
u
'0fr

<^*P% f^f^rp^

(3.29)

Writing this as

?, = ".
(3,3 0)

and

21





V I ^ (p*-+^fj) J- A. 13 31

and from Maxwell's equations in a media containing charge

there results

± 1

where

hfrig) +&e*=o 33

(A^^(^^o^/5)-^ (3 ° 34)

The solution of this equation is,

5Z = C,T(k) +ClN {fo) ,3.35)

The notation at this point has become rather cumbersome, For clarity of

presentation and ease of manipulation, some arbitrarily defined constants

must be usedo Although the use of the components of the dielectric tensors

as derived in Appendix A, is objectionable in that an equivalent dielectric

is not being used in this analysis, these quantities are familiar to worker

s

in the field and their use will facilitate comparison of this method with the

other two methods presented in this paper. Introducing these expressions

and a quantity

22





/f = />V #*M" (3,36)

the significance of which will appear later, we have

F, = iwtofc-Q+Wofartife (3.371

L = j,w%(t
3
~i)

(3.38)

/|= W,^(V6„)
A

(3.39)

sS- i^li
i^^P^P^o^r^) 7^ (3,40)

At this point, a convenient check on the development exists . If we

let p ,
go to zero and make all the substitutions indicated in (3.34),

ob

we obtain

(JU<

SL A ^^KmA 1

/ +
U^ (3.4i:

u/*-^
The second term in the second bracket in the numerator can be shown to

be absent if, in equation (3.22), the term containing J is ignored as

23





negligible. If this term is omitted, the result is then identical to that

obtained by Method 1 (Trivelpiece's "slow wave" approximation}, It is

obvious that this term is not always negligible,, even for very slow waves

(|o |>>k ). Similarly, if the term containing J is ignored in (3,22)
JLX

and if we let p =0, the results can be shown to agree with Beck's (9)
oa

confined beam development.

Thus far, the TM solution has been obtained with the principal approxi-

mation being that E is negligible with respect to B f-B z in (3,2)
1 (t z r

This, in effect states that the coupling of the TE mode, from which E
n

_.

i rs

is obtained, to the TM mode is negligible,, An approximate TE solution

which does not ignore the coupling of the TM to the TE mode will now be

derived. From Maxwell's equations in a region containing charge, we

obta in

ikhm+^^-^v 13 .42)

H ~
" y

'A. V»J_ A\n-A- (3.43!

C<?
y "*• (3.44

and, from Appendix 1

24





"£.. - '1 (3 4'

1 fou +*YV.)* -U£(to+fMo)
3 46

Assuming

£ = Z^^. "*" /&/%* [3„47:

we obtain

^ =
£*)<*£(*

£
71.

iJs^J^M^d,1

_ wc* - w* fou^c4)a-6Lt

which, for brevity, will be written

VX.

(3,481

(3 .,49:

Substituting (3.44), (3.2 6), (3.3 6), into (3.49), we obtain

T* =

We now have

4-i 3^ "*"

pjf
<^

3

25





L 1_(^)-A - E J- i_
A. <H

»*^^(6,-/) i 2_( if,

tf
>T. <}n,\

' 3 x"t.

(3.51:

where

*i = A ^M *^ fW (3.52)

Equivalently , let us write

(3.53'

where the primes denote differentiation with respect to r.

A solution to this inhomogeneous Bessel equation may be obtained

by letting

Hz - A Uf(^) +- #^6^) (3.54]

^= C^f/u)
55;

Making these substitutions in (3o53)

26





:t
M

MSk

^-f-^^,-/)

" 6/: j..

-f

Aff+au&fa-i)
u*+ ^ - '̂j. = o

(3.56)

For brevity, this will be written

/^J + {(«*) = <>
(3.57;

If we require that

/>M
n

ft,
L ^

t - t (3.581

as we must to be consistent with (3.55), f(U ) will then be identically

zero. We may, without loss of generality, set B=C=lo We then have

J

<4" +<± flu*. ?0 (3o59)

the solution of which is

% =«M +Wa>) (3,60)

which then furnishes the reason for the somewhat peculiar choice of

constants made in (3.3 6) and

(3.61)

27





The complete solution is then

HZ = C, FX%(&) + C&HKl) t Cjl (^) + Cff^Ol*) (3 . 62)

As was stated earlier, the plasma alone is considered as the limiting

case of zero electron beam charge density, Hence we may write expressions

for the plasma region alone which are identical in form to the preceding

2
with 02 , =0. The additional subscript p_ will be added to distinguish

between the two regions

.

As stated in the introduction, a distinguishing feature of this method

of analysis is the replacement of the rippled beam with an equivalent

cylindrical beam with a surface current density. Expressions for the

surface current density will now be developed. Following Beck's procedure,

we write (at r=d)

*6 7+*° C3.63'

^ /oa, /a. -|— T- fo /j.
-J2.

Using (3 » 15) and (3.16), we obtain

(3 o 64)

^ ^o^(6rQEJJ) (3.65:

28





*,
= i^tew) (3 .66 )

From Maxwell's equations, we obtain

_ }«>> i

H»- V^^ f T^- (3.67)

(3 . 68)

Using (3.50), (3.24), (3.2 6) and manipulating the various constants

U - I

(3o69!

6

~^*
+ fr^frfo-/) 3fi

dsi V 3/V_
(3.70)

H& = -*̂
/«/•

%

4wo +ww 71
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£9
= -^-[w^)-wr) -f

(3,72)

ifwc ^(er/)
£
VT- w^ +/u^;

All the field quantities required for the boundary value problem have

now been obtained. Now we shall establish the boundary conditions.

From Stratton (11), we obtain the requirements that tangential E must be

continuous and that

/AX H„ " /"/jr
'U

= <5 (3.73)

which then provides the following set of boundary conditions

£-->_

.

t-->C3L

^= IkT <>e

The boundary value problem is then*

Region I (beam and Plasma)

(3.74)

B^ A,T (^) (3.75)

"* =
"A.

fW/4

a

/+£ A W*) .76]

30





H2
=A

l

F^T{^ fA^U*.) (3 77)

Be = Sg*f l£$^4W--^AW (3.78)

Region II (Plasma)

e,= W*» + Wl/1
)

H
L

r
,

d 1 +
rhp

B,wif) t- wo/)

79 -

(3,80)

H2 = 3«(</i)+/U/(^) +W^ +W^) (3-81

(3,82)

0£ ^(L^-BMa/)

Region III (Free space)

fi^W^t C^fH (3.83)

31





tt>
=

4*>%

•e p <WH-<W/^) (3.84)

nz = qx,(H +c
q K (^)

(3.85]

fcr - _^f C31,(H-^K,(H (3o86]

Region IV (Free Space)

(3.87)

He ^-^0,K(P^ C3,88»

H*- %* (H (3.89)

E* = 2pDxK,(p*)
(3.90)

As in Section two, the same four cases will be considered with the details

contained in Appendix C. It must be noted that, since this method calls

32





for a rippled beam, space for the ripple must be allowed. Cases one and

two must then be considered as limiting situations where the free space

region has shrunk to zero.

33





4. Method III, Solution of Field Equations by Kales Method

In Appendix A, tensor dielectric constants have been derived which

take into account the effects of the electronic motion in an electron beam

and plasma. Using the tensor dielectric constant, we may then solve

Maxwell's equations

V/E = -^caj/mH
w. i:

VXW - T-h^coD
(4.2)

V-B =
.31

V*D -/o
(4 4)

for a region with zero charge and current density, since the effects of

electronic motion are already taken into account by the tensor dielectric

constant o It will be convenient to change the notation slightly so that

6 =

h ^ e/&

/€* e
n

o %3

D* §-E (4,5:

34





the net effect of which is to include the factor £ in each of the 64 .

Kales (8) developed a method for the solution of Maxwell's equations

in anisotropic media such that the dielectric constant was isotropic but

the permeability, \i , was a tensor of the same form as (4„5)<, This

method has been used by Stafford (13) to study resonance phenomena in

a plasma column, and by Johnson (14) for the case of a plasma in a cylin-

drical drift tube. In the presentation that follows, Stafford's notation

will be generally followed.

Proceeding, we may write

7^ . ssVXB^^XE +^XH0£

^ = £*4+^x£

vx// = \2/// + KU^)H

-A

Separating transverse and longitudinal components

(4.6)

.7)

(4.8)

(4,10)
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4xK4-^4) =-^^

£x(-^ -Wi) =*^£ +-«w*4x£

solving (4.11) for fi^X JE^

and noting that, if F =0
z

4x^^} =(%•%- C4-^)r—

F

we may obtain

11:

\£X /£ ~ ^<^%£z^2 (4.12)

(4.13!

4*4 = *^£ + ^/S§&. «..u

.15!

(4 „ 16]

Substituting (4.14) and (4,15) into (4,13) and manipulating somewhat,,

we may obtain

£4„17)

+^^EZ -y/4-^/4
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Taking the cross product of a with both sides of (4„13!
z

A
Vt Hz +YHt = $wen (a\ X ^) -u/e,^ £4.18}

and substituting (4.14) and (4 C 15) into (4 „ 18), we obtain

w rr _ ts ,

V* t wV/, ^XW
Jt )

= ^X[^-^ lt^
.a.-^^ + ^y f

/t/fe

(4,19)

At this point, it will be convenient to define

(4,20)

^
/S ~ u/V 6

/a,

(4,21)

from which follows

/< u>e.
)%
-A' cue

ft
K
%
U>6^

.22;

Using (4,17) and (4.19) through (4.22), we obtain

(4.23;

i-% ru/6
l9
,E1 1 K

a
w/Z1
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A
Solving (4.11) for H , taking the cross product of a with both sides

and substituting in (4.13), we obtain

^^Ak^^ V̂ -^^^^6^ Xt (4,24

Substituting (4.11) into (4.18) and then using (4.24) and (4.20) through

(4.22) we may obtain

j$zWt(V^z +^z)
(4,25;

If the divergence of both sides of (4.25) is taken, the divergence of the

second term on the right side of (4 25) can be shown to be zero by vector

identities. We then have

(4,26)

Performing a similar operation on (4.23) yields

We may write D = 6» E in the following manner

D = %$ -j-W^x $) + ^%£ <4
•

28 '

(4 .,27)
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If we take the divergence of D and note that (from (4„10))

^'^x^-^M (A .29)

we obtain

5|
A.

^aWiL_ 1m
6„

fC* .3i

writing

V*£ = \7-£>. - ye. [4.31)

and making the necessary substitutions results in

V^-^^^ r pL^r
'U '/

(4,32;

Let us now write

V'H =0 =• V'Hjt -VH^ .'33]

If we now substitute (4.32) and (4.33) in (4„2 6) and (4,27), we may

after some lengthy but routine algebra obtain

(4,34)
€
It

Vh7
- *u//'e* u + K*hL E7 =0

Htl
€11

(4.35;
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For brevity, let these be written as

V^H^ +CLHZ +£E^ = (4.36]

^£ + C£ tflf/t= o (4.37':

In order to obtain a solution to this pair of simultaneous equations

the artiface of assuming that both E and H may be expressed as
z z

linear combinations of two other functions of r and €• shall be used
,

The constraints between the constants that must exist to permit a solu-

tion for the two new functions will then be determined. Having found

these two functions, we may then solve for E and H and use the
z z

uniqueness theorem to state that these are the solutions

.

We shall now let

E;. ~ f,^\ + /^ (4-38!

H* = ^. + %^ (4.39)

Substituting these two relations in (4.36) and (4.37) and manipulating

we obtain
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w«, + <«

t- yi = o

(4,40)

Vt\ i- itx

f 4 = O

(4.41)

If we require the coefficient of U„ in (4.40) and the coefficient of U.

in (4.41) to be zero, we will have two equations of the form

\j*F t^F = (4.42)

the solution of which may be written

F - CiJ„&») +<->MU«ljm fa
£7)9

(4.43)

Setting these coefficients equal to zero and manipulating we may obtain

A
* - c

/°, + «
fy — H> "^

Ft «l (4-44)
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A51
z:

C
fb..^U ~ H* +*&

I u (4.45]

Equations (4.38), (4 39), (4,44) and (4 ,45} comprise a system of six

equations in eight unknowns leaving two relationships which we may

specify arbitrarily . We could let p =p =1. However the choice

P,**,
X 1-4 46)

will result in a more compact notation, Making this choice, we find that

(4.47)

where the upper sign is to be taken with subscript one, In terms of the

dielectric tensor (4.5)

kY^s)-A* [(*V%>-^W
A,A

-¥0r>\±€33)
^A (4.48)

It is also found that

I

a, 9

4
.49]

Before proceeding to find the field quantities themselves , it is to be

noted that the method breaks down when the expression in the denominators
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in (4,40) and (4.41) is zero It can readily be shown that this occurs when

(4.50)
(4-cf = -<{JrJl

which yields the following requirement on q for this condition to exist

*r ^33
y= ?A -**iS^ ± ^%-fe-%ferv^)-^ ((4.51)

This condition will be discussed in Section five and for the present we

shall only note that it occurs for certain particular combinations of the

system parameters and that when it does we must examine the problem

more closely,

Using (4,38), (4.39), (4.46) and (4.49), we may write

"z -jk fei>^m^y^
as the most general expressions for E and H with the time and z

dependence suppressed . We shall now limit our consideration to the

axially symmetric case.

Using (4.23) and (4.25), we may obtain the remaining field components

After some routine operations, we obtain
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s

1

ctf

MJ

*

I

4-

II

^

+•

Mi

«4lT

I

2

M>

I

I

*

•u»£

(I

5̂ S
>?

,

v»»

«< >»•
^r

3
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We may now proceed to solve the boundary value problem as was done

in Appendix B for Method L Since the procedure is the same, only the

results will be given and the details dispensed with„

For case I, (beam and plasma filling a helix of radius c, we obtain

equation (4.58) as the determinantal relationship „ Before proceding to the

remaining cases it is convenient to define

(4,59)

.A,

r1>
_ YK*-<*>M' %4

*
A"

v--//¥ <4 - 60

r**& —A^-kW,,
Ll ~ IC-Jf (4.61)

The additional subscript p will be attached to denote these quantities

for the plasma region,, Using these parameters, the determinantal relation-

ships for cases II, III, and IV are given by equations (4.62), and (4,63)

and (4.64), respectively.
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5, Comparison of the Methods

Trivelpiece's "slow wave" approximation is obviously the simplest of

the three methods even though it is still so complicated that computer

results are required for a clear insight into the system, a fact which de~

creases the value of its comparative simplicity greatly. It has several

shortcomings. First, it neglects the ac magnetic fields in its basic

assumption, which later has the effect of denying the possible existence

of a TE type of solution „ This leads to difficulties when attempting to

match a field solution obtained from this method to any case where a TE

solution is required, as at a helix „ Equation (4,53) shows that a TE

solution does exist and that it has poles, indicating that, regardless of

how small the arbitrary constants, the fields associated with the TE mode

will become appreciable in the vicinity of these poles; hence this approxi-

mation cannot be used in these areas, One of these poles is a zero of €^

as given by equation (A. 23) and indicates that the extension of Trivelpiece's

method fails in an area not predicted by itself. Equation (3.41.) also

brings out a significant difference with method II.

The extension of Brewer's method appears to improve the situation

somewhat at a great increase in complexity . This method, by neglecting

E$ in equation (3.2), in effect, neglects the effect of the TE mode upon

the TM mode but does predict a TE mode which is a function of the TM„

The starting assumption in the analysis is that (neglecting the B^ z term

in (3.2))
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BzA >) £& 5 1

Using the relations developed within Section 2 this requires that the ratio

be small Examination of this relation shows that it has a second order

pole at

LU = -£%(J

a*
without corresponding zeroes . It is to be noted that, for /$ // Jt cixxd

the values of Cii andW. usually found in traveling wave tubes the ratio

(5„2) will remain small, Also, the B^ z term in (3„2) has been neglected

since B^ is very small. Looking at this term again shows that z has a

pole at the frequency given by (5«3). The situation is not clear and ?he

determining factor is believed to be losses which have not been included

in the analysis . Examining (5.2) further shows the possibilities for failure

particularly for fast waves. However no simple statement of these condi=

tions reveals itself

,

In general, this method is believed to be an improvement over Method I

but, due primarily to the complex boundary conditions, it leaves Little li

anything to recommend itself in preference to method

Method III, the Kales" solution has several interesting features Firs!
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coupled modes are predicted, l,e> , TE and TM modes are related to each

other by a constant and neither can be zero independently at other than

special combinations of the system parameters. Second, a two-fold mode

degeneracy is predicted since we may take either of two values for the

radial propagation constants This aspect presents complications in the

boundary value problem

,

Suppose that we try to match the boundary conditions using only one

of the two possible modes. We would then find that only one arbitrary

constant would appear in the field equations for region I and matching

boundary conditions would give us four equations in three unknowns . The

problem would then be over specified and would allow solutions for, at

most, particular combinations of the system parameters. By taking both

modes of each degenerate pair, we may match any physically realizeable

boundary conditions „

Very closely related to the above is the fact that the degenerate (^ }

modes are not orthogonal. From Churchill (12), we may state the general

requirements for orthogonality as

(5 4)

where U is a solution of a Sturm- Liouville system. Since these are

precisely the relations which exist between E and H^ and H and

E
fi

for each of the modes individually, it is obvious that the azimuthal
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modes {ft) ) are orthogonal for the same s.„ Since each of the s is

associated with a separate Sturm- Liouville system the degenerate (s.)

modes are not necessarily orthogonal . Evaluating an integral of the form

J

^n. J (<*-a) ^{/3^)oln. (5.5)

will demonstrate that, except for unusual combinations of the constants,

the modes are not orthogonal.

In summary, it may be stated that the attempted extension of a rela-

tively simple method (Trivelpiece's) develops inconsistencies with the

exact solution of the model and, until numerical results can prove to the

contrary, must be used with caution. The extension of Brewer's method

appears to improve the situation somewhat but the complexity of the

boundary conditions deprives the method of any advantage of simplicity

and hence, has little to recommend itself in favor of the Kales' solution

The Kales 1 solution, while complicated in its derivation, is not more

difficult to handle afterwards than any other „ It has the distinct advantage

of being an exact mathematical solution of the model, the only limiting

assumption being the derivation of the dielectric tensor itself* It is

readily demonstrated that the method fails at the poles and zeroes of the

components of the dielectric tensor, and at a few other special combina-

tions of the parameters such that the problem degenerates into a much

simpler one. The failure at the singularities of the dielectric tensor is of

no great improtance since the model also fails under these conditions, i.e.
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infinite fields and propagation constants are not found in nature. This

method also has the advantage that it offers the possibility of extenstion

to include the effect of collisions between charged particles since the

conductivity of a plasma is a tensor quantity of the same form as the

dielectric tensors
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APPENDIX A

DERIVATION OF TENSOR DIELECTRIC CONSTANT

It is permissible to treat a plasma as described in the introduction as

an equivalent charge-free dielectric whose characteristics vary as a

function of frequency. Further, the equivalent dielectric constant for a

plasma in a magnetic field is a tensor quantity because the electric field

vector and the displacement vector are no longer related by a single multi-

plicative constant. The elements of this tensor are calculated by adding

the convection current density to the free space displacement current

density and setting the sum equal to the displacement current of the

equivalent charge free region. Two cases shall be treated, first, that of

a plasma alone, and second, that of a plasma with an electron beam

through passing through it.

PLASMA

Neglecting aiO'vr term as a second order quantity, one obtains

Using the equation of motion and neglecting effects of AC magnetic

fields on electron motion

the following are then obtained

„
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nII
= -£>**,-w*

P»% =-^H/e-h^c^ ,4)

4^ = ~™ E
$ 55

Solving for the components of velocity yields

(A, 6]

^=^ -i«/fw utf/

5
=-?^ (A. 8)

Substituting these components of velocity in equation (A..1) and solving

for the tensor

,

*** V^ 6
// *

Qi.9!

O ^33
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Where

UU^
£
/;
- / +* ujzZuji (A. 10)

aft

633~l '

U/p

(JO*-

(A. 11)

.12]

PLASMA AND ELECTRON BEAM

Assuming that the interaction between beam electrons and plasma

electrons takes place only through the electric field (in keeping with the

model described in the introduction), one may solve the force equation,

and equation (A. 2) for the beam electrons and the plasma electrons separ-

ately,, Equations (A. 6), (A„7), and (A„8) are the solutions for the plasma

electrons . For the beam electrons,, assuming all ac quantities vary as

the force equation may be written

#r^w+**4)^ --£-|> *"•**]
(A. 13;

from which, the following are obtained
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_ JL
}(U+tMoH. = ~^E,o +^^ CA.15]

^"/+^)/^ = -4rf

Solving for the components of the ac velocity yields

^ = -^7 (a, 1?:

^=-^
(A* 18)

o^ = -97_^a
4.((aj+}Mo)

IAA9)

The convection current density is now written as the sum of the current

densities due to the beam and plasma electrons and one then obtains

JoUeoE, */o^ +foA% =^|'5 (A. 20)

Solving for the components of the tensor

:

l f ^
£ ^e. *** £ 21:

o o
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where

w£ - OU* +
<4*

cv* -(uo^ru )& CA.22)

6> =
Uf

LUi?~^00^
-f-

UJr

(W^(Ja ) ^a-(V^H)*
2.3)

uj; UJ,

6
3
=

' 0/* (i^^H)^ (A. 24)
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APPENDIX B

SOLUTION OF BOUNDARY VALUE PROBLEM, METHOD I

CASE I (Region I and IV)

Extracting the appropriate field components from Section two, we have

Region I

te.i:

VA
iW Wo

Region IV

-A^I,(p<-)^B^K,(pc)

[B.21

E =B.K
n
(pr) H =B.Kn (pr)

z 1 z I

H
&
=~ B

i

]J

i
6oK

i
{pi) E ^^ K

i

(pr)

With the boundary conditions at the helix (r = c)

pi - C*

£J = -Efcorr
(B 3)

/£ t ///corf - H2 + H?cotY

Matching these boundary conditions

A,XT (T
t
c) ^BtK (pc) cb.4)

(Bo 5)
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A^T (-nc)^-CoTf -Ax*?**,M [B.6]

AxI (/>t) + corf

B*K (pc) f corf

*nrMWV)l y

-dt^pK^pc) t&.7)

Solving (B.4), (B.5), and (B.6) for A , B , and A
2
and substituting in

(B.7); one obtains, after some manipulation

/

pcK
t
(pc)

+ COT*T'jfe(Pc)

P£
- (B.8)

Making the approximation that

y^-UV/^-Y* />*->

and using equation (2.10), the determinantal relationship

I
bur #

PcK,(f>c)
I

coT% f'Jrzt (pc)

f
r0 (b„ 9)

is obtained

o

CASE II (Region I, II, and TV)

The appropriate field components, from section two, are
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Region I

Ez = A,*T (t,a.) Hz = AiX (/>*•)

H
B
p t^ArfWn) EG * -4 *T, (H

i.10)

Region II

At = /^ :r<, f/>-*.)

Region IV

*z = &, K (/"<.) Hz = Cj K (/>«.)

(Bo 11/

m,i2:

Matching tangential E and H components at the boundary between the

beam and the plasma (r = a)

4
f
t3l(T,cL) = fi/^ftga) +B}W (T}*)

iBois:

*<f$7t T,(W= ^[e,W,«W>W)] 14)

and eliminating the A coefficients, one obtains
n
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B,
T Clj<0 £nT*LT,ni<x)

T Ci,d) */ 77^(7; a) -f-fi5-
M (m e^HMOjaj
Ji(T,a) 6,7707(7;^

r <? (b.15]

At the helix, boundary conditions (B„3) apply

B^T^T^c) +8tW(nc) =&,/<,(/><)
16)

^4yLl, (/,c)*Dx 4pK<P<)
1.171

5/ <c j; ^v) f ^.rAj p£0 - 4 ceo-/ /fJS-r, 00 (Bo 18)

A^ (P<0 tC0Tf t^fa T^TJc) +^7i^c)j

^/r />c) -tycoTt^ldM
(Bo 19]

Solving the first three of these equations for D , A , and D and substituting

in the fourth; one obtains, after some manipulation
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8, 'n'r cric)xa (fic) , Ka (pc) YTa gc) __ cor'rSt,, TTyT „
X, (pc)

+
K, (fc) 1? l/»W>

' P^j Y^c)^] ^^(^fH^mc)
%» A. fr

_ c»ff^g V|M - =£|^W<*V

Again making the approximation that

-
(B.20)

P oe-Vl

one obtains

b, +

*($$W ^Tf-**-
f* *<*> ft$**|

--

(B.21)

Setting the determinant of coefficients of B and B
?
obtained from equations

(B.15) and (B.21) equal to zero, the determinantal relationship is then

obta ined

.
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X

Or(B.22)

CASE HI (Region I, III, and IV)

The appropriate field components, extracted from Section two, are

Region I (Beam and Plasma)

B t^M,

A

T- rr^ B& = -^ J^r^)«9 = TiKW (B.23]

Region II (Free space)

£, = C, Ta Cpn.) i C> A <>'•-)

Region IV (Free space)

Wz = /^V^)

fe =-6,^/fH E* = Dl^Ktipn)P

(B.24]

>. ^5
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Matching tangential E and H components at the boundary between the

beam and free space at r = b

Ax lJ/>-i) = Cs X (/>4-) tC
f Ko(p4)

A, if-l, in) = -
*f- QH,M + *-f-cv K,W

27)

From the two equations immediately preceding, the following is obtained

CB.28)

<> a <3-^
(B„29)

It is then concluded that C is zero and that A = C_ . Matching E

and HB

4,*t,(t;*) * W/>«) +<*KJ/*) (B.3i

*^>UW) - ^£/w)- W/*)
31

and eliminating A , the following relation is obtained

£ iw). r^ i,(p4

hen*) p^t, qftQ
+ £i Kit*) 4 v^KiW ) -0

(B.32:
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At the helix (r = c), boundary conditions (B.3) apply

C,X (f>c)+C^(pc) =D,K (pt) [B.33)

-mc3W *?*,& (B„34)

CXoCfit) +CxK (Pc)= ^C^C/^corf IE.3S)

Cz?o (fit) t corf t^c&w-iyp-c**p S£ '\i<f*\-

% Ko (/><) + corf ^0, l<
t
(Pc) Op*

(B.3 63

Eliminating D , D , and C , the following relation remains (after consi-

derable manipulation)

Ci

^(pc)K
t
(pc) p* KeCpcl

3q (PJ _ -Ka frO*>
*,(pc)IC

l
(fic)

m

(B 37;

Setting the determinant of coefficients of the C obtained from equations
n

(B,32) and (B„37) equal to zero, making the approximation that p^-^X
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and using the relations between the T and Y , the following determinant
n

relation is obtained „

Xo (p c)

I, (pc) K, (pc)
ji-

He/**)

%<V4
£,(/>*>)

&%?,(!;+)
(B.38:

*- X
^>(flc) _ Jtcory

*iWKW Plf<o^)

CASE IV (Region I, II, III, and IV)

The field components are as given in Section two for all regions At

r = a, the boundary between beam and plasma, the problem is the same as

for Case II , The result is

a g Tjfc a.l

5*3 T,tt&)
+

Bj

~

M(7fr) __ fei fo M^a)W9 1K/ 6j <W^
r

At r = b, the boundary between plasma and free space

£/W£*) +%)MCri 4) = €,!.(/>*>) +c% K*(/>6)

(B.,39)

(B.40)

^/75l "b^Oib) +fyM,Oi6J] ~-^ w*)-^w

Substituting equation (B.39) in the above and defining
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(B 4?

After some manipulation, the following is obtained

(B.43]

Zo Cpt) ^prJ^iTib) <$ -j;(t7 6)h) -x*!, (pitying -

TolWH) + Q* l<o(pt>)£np\U (T
t b)ei -TjCT^H)+

^KtfpbMiT^b-T^b)^ =0
.,44)

At the helix (r = c) , the situation is the same as for Case III. We then

have

+ Q X (f c)

= [B.45)

If the determinant of coefficients of the C obtained form equations |B,44,
n

and (B.45) is set equal to zero and the approximation that p '-* -^«

is made and the definitions of the T used, the determinantal relationship

may be expressed as
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X

vj VJ

VJ

VU

I

VJ

vo

70





APPENDIX C

SOLUTION OF BOUNDARY VALUE PROBLEMS, METHOD II

Case I (Region I and IV)

Extracting the appropriate field quantities from Section three

Region I (Beam and Plasma, ^ r ^ c)

E z.=^,^ (W (c, 1)

He = !+ A,Z(fa) (Co 2)

t = 4/>^(^ C
) f^ X//I^ (C.3)

#Ip?+£) fk
(C„4)

Region TV (Free Space, r ^ c)

£2 = /?, a-, ^j CC 5]

He^-^tyW
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W* - D%K (p c ) (c.7)

*b= ^D^(pc)P "»"/*/—' (c.8)

The boundary conditions are derived from the basic conditions (3 » 74)

and the boundary requirements of the "sheath helix" model,, Brief comment

has already been made that this case must be considered as the limiting

situation of what amounts to case three (to be considered) with the free

space region shrinking to zero thickness . If we view the problem in this

light, the boundary conditions are found to be

E2X - Ezm (C9)

H
&r: " £% (C 10}

£*X
~ E97L

C0T ^ (CAY

Forming the quantities required by the last two relations, using (3,2 6),
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(3.65), (3.66) and the relations given above for region I, we obtain

ffc-^M/ ^cCc-,(t,-0K
T,(i, c) + fj.

T

(M H£ 6j c) (c . 1

3

M 8

H*+Gz=A,'^(^.g^
</"^"5

Applying the boundary conditions given above, we obtain

DiKo(/>c)=A,fyi,c)

CC.14]

(Co 151

^^^U^c)-*^W= *^<M (C ,

/?(/?+£) fl.

A a; o»<>
=• -

â
#-^ coti^ /c, r/oc) c.17

4/

. Ma
J

Using the same method as used in Appendix B, the determinantal relation-

ship is found to be
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^0 +

V^U/c C6l,(Jr')37(^<-) + F^To&c)

M*
(C.191

-1_
(j
XHAHtre*) +£+ Aj<£r) err +

i
wHPf

$<yt corf K, (pc) P K (/> c)

-

It is believed obvious, at this point, that the complexity of this

method is considerably greater than that of Method X. It is also believed

that nothing is to be gained by writing lengthy, complex expressions from

which no insight into the nature of the problem can be obtained by in-

spection. The method of presentation of the determinantal relationships

will, therefore, be changed to expressing the relationship in the form of a

determinant set equal to zero.

Case J! (Region I, II, and IV)

Extracting the appropriate field quantities from Section three
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Region I (Beam and Plasma, ^ r ^ a)

Ei = *, 37(*ii)
(C.2I

H> =-
^"A '4

W<,n)
(C.21:

#Z = /^ Â-) tAjZefftl) (C.22!

(C23;

Region II (Plasma, a ^ r ^ c)

Ez= ^K/A) y-z^V^ (C.24

Ha ~-¥%
t
w
fi

B,Mty.") +W^ (C.25!

M«/^^(V)^WMW *H<V> <
c - 2«
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Wtytf^M

i2L
fhp
W0-W/1/) (C.27)

Region IV (Free Space, r ^ c)

Ez = D, *,(/><.)
(C.28)

(C.29:

(C.30)

5* Wf-KW (c.3i;

The boundary conditions for this case must be examined, At the

helix (r = 0) , the same considerations apply as were discussed in

case I with the simplification that G is zero. At the boundary be-
z

tween the beam and the plasma, the situation is more complex. The

boundary conditions expressed as equations (3.74) apply, but we must

examine the expression for Gq . We can write an expression simi-

lar to (3.66) for the beam and also one for the rippled inner surface of

the plasma region. Somewhat heuristically, the surface current

arises due to the difference in the two media. Therefore, if we
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let the difference between the two media approach zero in a smooth manner

this surface current must also approach zero, G^ must then be

9 ~a 5 * (C.32)

After some manipulation, we obtain at r = a

V^ =j4
'

HzT^Q ~"^l

i1
^/4 Pf [ LU

^A^-Q^At^

F&(te) 1- *m*<h(e>-i) 3$.a.)
~iW

+

(C.33:

4
3
Tt foci) + B, tMifa-ferUa) -t

'4fi (C 34]

% M^w&C&.rOe. MM'a)
0-PT^ rhp

and at r = c

HzrG& - B/ fyXULQi- *C^6o(6iri) X(lr c)

Hi
*> 4- (c.35;

% hpNoit/) f l^tCtoCtn-lM^C)
*#

+

£3 -^/) + 3,/^)
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By applying the appropriate boundary conditions at the interfaces

between the regions, we may write eight equations in eight unknowns

(the arbitrary constants) and write the determinantal equation as the con-

dition for a non-trivial solution, i.e. , the determinant of the matrix of

coefficients must equal zero. When this is done, equation (C u 3 6) is

obta ined

.

Case III (Region I, III, and IV)

Region I (Beam and Plasma, ^ r ^ a)

^L^rOj/O
{c.,37;

I + 11 A,Ti(t^) (C.38]

Hz -Aitt(fa)tA3 Z*(/>'i.)
(C. 39)

* a gfHw-^^) (C40)

Hz (*)-6a (*)=A, K^ae (6r^ j;(mt^a2 f̂ ^) (c 43

%Pl
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Region III (Free Space, a * r * c)

f2. = Ci ^o Cp-0 f ^ K cp^) {CAX

MQ = £;<%,

Z
7 c,z,(rt- ciKi(ri (C44)

Wz a ^3X C*^) + <* K* £/"0 (c.45:

** - -*^ CjX/Cp*.) -Cyk/pi) (C46)

Region IV (Free Space, r ^ c)

E_= D, K (/^.)
(c.47;

h,=-V-^V/-) (C 48)

Hz.= fyKoiri (CAS)
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£& == ^-To.H,(H

Applying appropriate boundary conditions, as in Case II, the

determinantal relationship is found to be equation (C.51).

Case IV (Region I, II, III, and IV)

Examining this case, we find that all the required quantities have

been developed for the preceding cases, therefore equation (C.52) is given

as the determinantal relationship without further comment.
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