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nev^T.
ABSTRACT

The general unloading phase of amphibious operations is

examined with particular emphasis on the queueing problems that

arise. A model is structured and a computer simulation is pro-

vided. Variables considered are the number of transfer vehicles

and their speed and payload, the number and capacity of loading

and unloading points, and the ship-to-shore distance. Basic

relationships between the variables are examined and an approxi-

mating formula is developed for computing the _time required to

unload a given tonnage of cargo. Applications in operational

planning, system modification, and total system design are out-

lined. The impact on system performance of various assumed

distributions of travel time and loading time is discussed.

For systems employing mixed fleets of transfer vehicles, some

basic decision rules are developed as to which vehicles to load

or unload first. Suggestions as to further research and as to

the model's general applicability are included.
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CHAPTER I

INTRODUCTION AND RATIONALE

One of the key characteristics that serve to distinguish

amphibious operations from other types of military operations is the

requirement to project forces ashore onto a hostile land mass. This

necessitates the rapid and efficient landing of large numbers of men

and large quantities of supplies and equipment. Two quite distinct

problems are involved. The first is the tactical landing itself,

during which the scheduled waves and the on-call serials are landed.

The scheduled waves consist of troops and equipment boated in landing

craft, amphibians, or helicopters. They are organized into waves and

land according to a predetermined time schedule. The on-call serials

consist of groupings of troops, equipment, or supplies, for which an

early requirement ashore is anticipated. They are called ashore as

the need for them arises.

After the scheduled waves and the serials have been landed,

the general unloading commences. During the general unloading phase,

all remaining cargo and equipment is unloaded from the ships. Landing

craft, amphibians, and helicopters, which we shall refer to as trans-

fer vehicles, shuttle back and forth between the ships and the beach-

head, bringing ashore the large quantities of supplies necessary to

sustain the combat forces which have been landed. This is not a glam-

orous or exciting phase of an amphibious operation, but the importance

of a rapid and efficient build-up of supplies ashore to maintain the

momentum of the attack cannot be overlooked.

As the transfer vehicles shuttle back and forth, they may some-

times have to wait at the ship while other vehicles are being loaded.
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Likewise, they may have to wait at the beach while other transfer

vehicles are being unloaded. The entire system is circular in nature,

and may be schematically represented as in Figure 1. In making a cycle,

each transfer vehicle may go through six successive stages; the loading

queue, the loading operation itself, a transit to the unloading area,

the unloading queue, the unloading operation, and a transit back to the

loading area. Of course, sometimes an arriving vehicle will find that

there is no queue of vehicles waiting to load or unload, as the case may

be, and it will move directly into the loading or the unloading operation.

Many factors influence the way in which this system operates,

including transfer vehicle speed and payload, the ship-to-shore distance,

loading and unloading rates, and the number of transfer vehicles in the

system. In analyzing the effects of these various factors, it becomes

apparent that we cannot neglect the queueing problems which are inherent

in the physical system being considered. Unfortunately, the system which

this paper will model does not lend itself to solution by the usual queue-

' ing theory methods. The usual queueing theory models assume that arrivals

into the system come from some infinite population at a rate which can

be measured and in accordance with a probability distribution which can

be determined. The system we wish to model, however, involves a finite

number of transfer vehicles. Their number may, in fact, be quite small

in many actual operations. The rate at which the transfer vehicles

arrive at the loading or unloading areas for service is dependent on

what is happening at all other stages in the system. Additional compli-

cations will arise if we wish to consider the transient period which

exists before the system settles down to a steady state. A particularly

difficult problem arises from the fact that in practice the fleet of

transfer vehicles will often not consist of a single type of vehicle,

10



Queue at

Loading Area

4
Transfer

Vehicle

Trave

1

Unloading

Points

>

<

Loading

Points

Transfer

Vehicle

Travel

Queue at

Unloading Area

FIGURE 1

Schematic Representation of
General Unloading Operation

11



but rather will consist of a variety of vehicles, perhaps with widely

different operating characteristics.

In this paper we will structure the queueing system and describe

and discuss the results of a simulation through which the relationships

between several of the variables in this system have been analyzed, and

by means of which some of the theoretical questions concerning the nature

of this queueing system have been investigated. In a recent paper,

12
Posner presented a closed-form method for computing the steady-state

probabilities for queueing systems of the type which we wish to model,

However, the computations necessary in his approach are lengthy and

solutions are dependent upon the assumption of exponential service rates.

A computer simulation, on the other hand, will remove the need for this

assumption and also enables us to examine the effect of the transient

period at the start of system operation. The computer simulation also

permits consideration of various priorities of service when dealing with

a fleet of transfer vehicles consisting of a variety of vehicle types.

Chapter II will present a description of the model and the com-

puter simulation will be described in Chapter III. In Chapter IV,

results from a series of simulation runs will be presented and analyzed.

The parameter values which are used do not correspond to any actual

equipment, but are representative of a range of values attainable by

existing or proposed equipment. The results serve to demonstrate the

type of information that may be generated by the simulation and the

general nature of the relationships between the various parameters.

An empirically derived formula for estimating the total time to com-

plete the unloading of a given tonnage of cargo will be presented. In

Chapter V, the simulation program will be used to test whether the sys-

tem exhibits the characteristics of a Poisson process, under various

12



assumptions about the underlying distributions of travel time and

service time. An hypothesized mean arrival rate at the loading area

will also be tested. This will give us some insight into the nature

of the system being studied and will provide us with information as

to the significance of the underlying probability distributions on

overall system performance. Some results obtained employing mixed

fleets of transfer vehicles will be presented in Chapter VI. A sum-

mary of results thus far obtained, conclusions, and some comments as

to the applicability of the model to other systems completes this paper

13



CHAPTER II

DESCRIPTION OF THE MODEL

The physical system we wish to model is the general unloading

phase of an amphibious operation. The system may be characterized as

containing several key elements. First, there are the ocean-going

ships which have transported the landing forces and their supplies

and equipment to the objective area. We assume that port facilites

are not available for direct unloading onto piers. Next, we have a

fleet of transfer vehicles to move the cargo from the ships to thfe

shore. These transfer vehicles may be landing craft, amphibians, heli-

copters, surface-effect machines, or hydrofoils. In actual operations

they will probably exist as a mixed fleet of various types. Whatever

their physical characteristics, however, they can be categorized accord-

ing to their speed and their payload. In this model, we define speed

to be a readily attainable cruising speed, rather than the vehicle's

top speed. Thus, we may meaningfully speak of a mean time to travel

a given distance. We assume that the vehicle's speed is the same,

whether it is loaded or unloaded. Payload is taken to be a usable pay-

load, readily achievable when the vehicle is loaded with standardized

cargo, such as loaded pallets of uniform size and weight.

Other elements in the system are the cargo-handling facilities

on the ships and on the shore. These facilities may also have widely

differing physical characteristics, but they can be categorized by

their capacity and by the number of loading points. By capacity, we

mean their cargo-transfer rate, in tons per hour, achieved when load-

ing standardized cargo into the type of vehicle under consideration.

A loading point is defined as a location and a cargo-handling facility
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that can accommodate one transfer vehicle at a time. Two possible

queues in the system are a queue of transfer vehicles waiting at the

ship to load cargo and a queue of transfer vehicles at the unloading

area waiting to unload.

Characteristics of the Model .

A complete model of the general unloading operation should

include all the steps involved in moving cargo from the hold of a ship

to an inland dump, or perhaps all the way to the user. However, the

model developed for this study has been simplified in that it considers

only a movement of cargo from the ship to an unloading area, which may

be thought of as the waterline at the beach, although in the case of

amphibian vehicles or helicopters, it might be an inland dump. In

either case, we shall assume that the transfer vehicles do not encounter

any traffic delays enroute between the ship and the unloading area. The

model also assumes that the vehicles cycle continually through the sys-

tem until all the cargo has been moved. In other words, no allowance

is made for refueling or maintenance time during the operation.

In the computation of the loading time or the unloading time

for a vehicle, no allowance is presently made in this study for the

buffer time, or the time to move a vehicle into position. Buffer time,

however, could be taken into account if desired by adding a constant to

the computed loading or unloading time. Our computation of loading

(unloading) time assumes that the time is a linear function of vehicle

payload. This seems reasonable if the cargo to be moved consists of

standardized cargo, since the time will be determined largely by the

number of slingloads or cycles that the cargo-handling equipment will

have to perform. However, this method of computing loading and unload-

ing times may not be completely accurate, since the larger payload
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vehicles may be easier to load or unload because of larger loading

area, wider hatches, or other physical characteristics. In any com-

parison of actual vehicles, if one vehicle lends itself to more expe-

ditious loading, then this fact should be taken into account when

computing loading or unloading time.

A basic result from queueing theory is the fact that a single

queue feeding customers (in this case transfer vehicles) into multiple

servicing facilities (in this case the loading or unloading points)

will be more efficient than having a separate queue for each servicing

facility. Therefore, the model is structured in this fashion, and no

provision is made for other arrangements of the queues.

Independent and Dependent Variables .

Among the many variables which affect the system being con-

sidered by this model, those which are of principal interest are

1) the number of transfer vehicles,

2) the speed of the transfer vehicles,

i 3) the payload of the transfer vehicles,

4) the distance the cargo must be moved,

5) the number of loading and unloading points, and

6) the rate at which the cargo-handling facilities can

load or unload the cargo.

The model and the associated computer simulation are designed

to treat all of these factors as independent variables, that is, values

for these variables must be assigned for the program. The principal

dependent variables, whose values are the output of the simulation, are

1) the time to complete the unloading,

2) the avtrage waiting times per vehicle round trip,
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3) the probabilities that the queues are of various

lengths, and

4) the amount of time the loading and unloading facili-

ties are not completely utilized.

As mentioned above, the cargo itself is considered to be

standardized cargo consisting of pallets of uniform size and weight,

and the model is not designed to consider the effects of variations

in the cargo itself. This assumption about the uniformity of the

cargo does not seem unreasonable, since the actual cargo involved in

general unloading operations consists largely of rations, ammunition,

and boxed military equipment, all of which is palletized in a standard

and fairly uniform manner.

Measures of Effectiveness .

In this study, the time to complete the unloading of a fixed

tonnage of cargo is taken as the basic measure of effectiveness. Any

system that takes less time than another system is considered "better"

than that other system. Many different combinations of parameter

values will produce approximately the same overall results, in terms

of time to move a fixed tonnage of cargo. Changing the value of any

one of the parameters will change the total time required to complete

the operation. In any given situation, total time may be very sensi-

tive to changes in one or more of the parameters and relatively insensi-

tive to changes in other parameters. Trade-offs exist among the six

independent variables which we are considering.

In a study of broader range, of course, we would be interested

not only in the time to complete the unloading operation, but also in

the cost. However, it will not be possible to simultaneously minimize

time and cost, since it appears that a higher cost system (say, a system
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with more transfer vehicles) will always achieve at least some reduc-

tion in time. Therefore, it will be necessary to minimize the cost

to complete the unloading in a given time, or to minimize the time

to complete the operation for a fixed cost.

Using time as the basic measure of effectiveness seems intu-

itively appealing, since time is certainly of the essence in an amphib-

ious operation. Other possible measures of effectiveness, such as

average queueing time or utilization rate of the cargo-handling facil-

ities, do not appear to be of central importance. At any rate, their

impact on system performance could be taken into account by extending

the study to the costing of alternative systems.
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CHAPTER III

DESCRIPTION OF THE COMPUTERSIMULATION

The computer simulation written for this study is and event-

store simulation written in FORTRAN IV for the IBM 360/67. Program

documentation is included in the appendices. Throughout the program,

the time required to complete an event is computed in the following

fashion. First, a random number is selected from a uniform distribu-

tion, using the IBM library subroutine RANDU. The resulting uniform

random number is then transformed to the desired probability distribu-

tion. For example, in the case of a transformation from a uniform

random number y to an exponentially distributed random number x, the

formula is x=(-l/L)(ln y) , where 1/L is the mean of the exponential

distribution. The number thus computed is then added to current time

to obtain the time at which the event in question will occur. This

time of occurrence is then stored in an array indexed by vehicle

number

.

The program consists of seven major parts:

1) the starting routine,

2) the executive routine,

3) arrival at the loading area,

4) arrival at the unloading area,

5) departure from the loading area,

6) departure from the unloading area, and

7) the ending routine.

In the starting routine, constants and arrays are initialized and para-

meter values are assigned to the independent variables. The simulation

is started by placing all the transfer vehicles in the loading queue at
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the ship, moving as many as possible into the loading points, and com-

puting the time at which loading will be completed for each of the

vehicles being loaded.

The second part of the program, which corresponds to an execu-

tive routine, searches through the arrays in which the occurrence times

have been stored and selects the minimum time. This is the next event

to occur, and can be one of four possibilities; an arrival at the load-

ing area, an arrival at the unloading area, a departure from the load-

ing area, or a departure from the unloading area. If the next event is

an arrival at the loading area, the program checks the length of the

queue and then the status of the loading points. If a queue exists, or

if all loading points are occupied, the arriving vehicle goes into the

queue. Otherwise it moves directly into an unoccupied loading point

and a time for completion of loading is computed and stored. Arrivals

at the unloading area are treated in the same fashion as arrivals at

the loading area.

If the next event is a departure from the loading area, a tran-

sit time is computed and stored. The program then brings a vehicle

from the queue into the loading point, or if no queue exists, sets the

status of the loading point to empty. Departures from the unloading

area are treated in the same fashion as departures from the loading

area. Throughout the program, whenever queue length changes, the pro-

gram computes the time the queue has been of a given length.

When a specified quantity of cargo has been moved through the

system, the program goes to its ending routine and computes and prints

the data for that run. The output consists of the values of the depen-

dent variables, as described earlier, together with identifying informa-

tion for ease in analyzing the results. Modifications to the basic
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program to accomplish specific tasks or to accumulate specific data

will be discussed in the sections concerned with the special problems

necessitating those changes.
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CHAPTER IV

DEVELOPMENTOF AN APPROXIMATING EQUATION
FOR TIME REQUIRED TO UNLOADA GIVEN TONNAGEOF CARGO

As has been explained previously, the time required to complete

the unloading of a fixed tonnage of cargo is the basic measure of effec-

tiveness being used in this model. Six independent variables are being

considered: the distance the cargo must be moved, the speed, the pay-

load, and the number of transfer vehicles, the number of loading and

unloading points, and the capacity of the loading and unloading points.

Total tonnage of cargo to be moved is held constant at 10,000 tons

throughout this paper, although the tonnage may easily be varied in

the computer simulation. The simulation is structured as a balanced

system, that is, with an equal number of loading and unloading points

of equal capacity. Intuition, theory, and previous studies (ref. 1)

all support the notion that an unbalanced system will not provide a

desirable or "efficient" system. If, for instance, the total capacity

of the loading points is greater than the total capacity of the unload-

ing points, transfer vehicles will tend to queue up waiting to unload,

thus producing inefficient utilization of the transfer vehicles. The

loading points will be working at far less than their capacity, also,

thus producing an inefficient overall system.

In order to generate data for analysis, a number of computer

runs were made with various values assigned to the independent vari-

ables. The number of loading and unloading points was held constant

at four each. Fleets consisting of eight, twelve, and sixteen transfer

vehicles were considered. Four values of transfer vehicle speed were

considered, in conjunction with four values of ship-to-shore distance,
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as shown in Table I. In the computer simulation itself, only the mean

travel time is used. Therefore we were able to consider all sixteen

combinations of speed and distance by considering only seven mean

travel times.

Speed

TABLE I

Mean Travel Times Utilized in Simulation Runs

Ship-to-shore Distance

2.5 miles 5 miles 10 miles 20 miles

5 knots

10 knots

20 knots

40 knots

0.5 hrs.

0.25 hr.

0.125 hr.

0.0625 hr

1.0 hr.

0.5 hr.

0.25 hr.

0.125 hr

2.0 hr.

1.0 hr.

0.5 hr.

0.25 hr,

4.0 hr

2.0 hr

1.0 hr

0.5 hr

The mean capacity of each of the loading and unloading points was

taken to be fifteen tons per hour, which appears to be in the range

of the actual capacity of presently used equipment. Vehicle payloads

considered were five, ten, fifteen, and twenty tons. For these runs,

the underlying distribution of both service (loading or unloading) and

travel times was assumed to be exponential. Chapter V discusses some

results obtained using other assumed distributions.

Portions of the sample data are presented graphically in

Figures 2, 3, 4, and 5. In all of these figures, the principal depend-

ent variable, time, is plotted on the vertical axis. This is the time

to complete the movement of ten thousand tons of standardized cargo

from the ships to the shore. In any graphical presentation of the

data, only one or at most two of the independent variables can be dis-

played conveniently in a single figure. In both Figures 2 and 3 the

ship-to-shore distance is held constant at five miles, the number of
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loading and unloading points is held constant at four each, and their

mean capacity is held constant at fifteen tons per hour. In Figure 2,

transfer vehicle speed is also held constant at ten knots and vehicle

payload is plotted against time. Three separate curves are shown for

various values of N, the number of transfer vehicles in the system.

It is readily apparent from Figure 2 that, other things being equal,

larger payload vehicles are more efficient than small payload vehicles.

However, it is also apparent that the marginal returns from increasing

vehicle payload diminish very rapidly. For a fleet of 12 vehicles,

under the conditions portrayed by this figure, the marginal returns

achieved by increasing vehicle payload from 5 tons to 10 tons are

fairly substantial. Time to complete the operation is reduced from

287 hours to 215 hours, for a gain of 72 hours. However, the marginal

return achieved by increasing payload from 10 tons to 15 tons is only

18 hours, and the marginal return achieved by increasing payload from

15 tons to 20 tons is an insignificant 3 hours.

In Figure 3, vehicle payload is held constant at 5 tons and

vehicle speed is plotted against time. Again, three curves are shown,

corresponding to 8, 12, and 16 vehicles in the system. Increasing

vehicle speed from 5 knots to 10 knots produces impressive reductions

in the total time necessary to move 10,000 tons of cargo through the

system. Increasing vehicle speed from 10 to 20 knots produces a sub-

stantial reduction in time for the fleet of 8 vehicles and lesser

reductions for the fleets of 12 and 16 vehicles. As we increase

vehicle speed above 20 knots, however, the marginal returns diminish

almost to the vanishing point, as evidenced by the essentially hori-

zontal shape of the curves between 20 knots and 40 knots. For the

fleet of 16 vehicles, there is almost no time reduction achieved by
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increasing speed from 20 to 40 knots under the set of conditions por-

trayed in this figure. We would normally expect to encounter dimin-

ishing marginal returns whenever we increase one parameter while

holding the other parameters constant. In this system, however, the

marginal returns from increasing vehicle payload, speed, or the num-

ber of vehicles diminish very rapidly once the queue lengths begin

to increase. Conversely, marginal returns from increasing the number

or the capacity of the loading and unloading points are very small

when the queues are not in existence.

Figures 4 and 5 are of a slightly different type. Total time

to unload ten thousand tons of cargo is again plotted on the vertical

axis, as in Figures 2 and 3. The number of loading and unloading

points is held constant at 4 each, their capacity is held constant at

15 tons per hour, and the ship-to-shore distance is held constant at

5 miles, as was done in Figures 2 and 3.

In Figure 4, however, the number of transfer vehicles is held

constant at 12, and vehicle payload is plotted against time. Four

curves are shown, corresponding to vehicle speeds of 5, 10, 20, and

40 knots. In the figure, S is used to denote speed. In Figure 5,

the number of transfer vehicles is again held constant at 12 and

vehicle speed is plotted against time. Four curves are shown, corre-

sponding to vehicle payloads of 5, 10, 15, and 20 tons. In the figure,

P is used to denote payload. The curves in Figures 4 and 5 display

the same general shape as the curves in Figures 2 and 3. Again, the

curves flatten out rapidly as we proceed from lower to higher values

of the independent variables, reflecting the rapidly diminishing mar-

ginal returns which are characteristic of this system.

27



Time (Hours)

500 -r

S=5

400 --

300 --

200 -

100 -

S = Transfer Vehicle Speed in Knots

Payload
10 15 20 (Tons)

FIGURE 4

Time to Unload Ten Thousand Tons of Cargo versus Transfer

Vehicle Payload (Distance 5 Miles, 12 Vehicles)

28



Time (Hours)

500 -r

P=5

400 --

300 -- p=10 ^,

P=15

200 -

•" P=20

._ P = Transfer Vehicle Payload in Tons

100 -

Speed

10 20 30 40 (Knots)

FIGURE 5

Time to Unload Ten Thousand Tons of Cargo versus Transfer

Vehicle Speed (Distance 5 Miles, 12 Vehicles)

29



All of the foregoing leads immediately to the realization that,

in order to create an "efficient" system, or to improve on an existing

system, we need to consider several variables simultaneously. The

complexity of the relationships between the variables under discussion

and the large number of possible combinations of parameter values that

might have to be investigated lead to the conclusion that a simple

function relating the variables would be of use even if it were only

an approximating formula. Computational ease might compensate for

lack of exactness, and once the approximating formula has led us to an

"efficient" neighborhood, more detailed investigations can be carried

out in this neighborhood by means of the computer simulation.

Development of an Approximating Equation .

In developing an approximating formula, it will be useful to

start from a highly simplified model, from which a more sophisticated

model may be developed. Let us consider a system in which the times

required to load or unload a vehicle and the time for a vehicle to

travel a given distance are known constants, rather than random var-

iables. We will refer to this as a system with determinate times, or

simply as a determinate system. Let us also assume that it is a bal-

anced system, as discussed earlier, and that the fleet of transfer

vehicles is composed entirely of vehicles of one type.

For a balanced, determinate system the computation of total

time to move a given tonnage of cargo through the system is fairly

simple. We can readily design a balanced, determinate system in

which there will be no queueing time. The total time to complete

the movement of a given tonnage of cargo through such a system can

then be determined as follows. Let T be the total tonnage of cargo
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to be moved, let P be the payload of an individual transfer vehicle,

D the ship-to-shore distance, S the speed of a transfer vehicle, N

the number of transfer vehicles, and L the capacity of an individual

loading (or unloading) point. Then the number of vehicle round trips

required is the tonnage divided by the vehicle payload, or T/P. The

number of round trips per vehicle is then T/NP. The one-way travel

time is the ship-to-shore distance, D, divided by vehicle speed, S.

The time required for a vehicle to make one round trip will be twice

the one-way travel time plus the loading time plus the unloading time.

Loading time and unloading time are assumed to be equal and are given

by vehicle payload, P, divided by L, the capacity (in tons per hour)

of an individual loading or unloading point. Thus the time required

for a vehicle to make one round trip is 2(D/S + P/L) . Multiplying

round trip time by the number of round trips required per vehicle

gives us approximately the total time required.

Time = 2(T/NP)(D/S + P/L). (1)

The formula is approximate in this case only because of the transient

period at the start and at the end of system operation.

Equation (1) assumed that we had designed a system in which

the transfer vehicles never had to wait to load or to unload. A queue

can develop in a determinate system with homogeneous vehicles only if

the time required for a vehicle to travel to the unloading area, un-

load, and travel back to the loading area is less than the time required

to load the remaining N- 1 vehicles. The time required for a vehicle to

travel to the unloading area, unload, and travel back to the loading

area is given by 2D/S + P/L. The time required to load the remaining

N-1 vehicles is (N-1)(P/L) if we have one loading point. Only one queue

will form in a balanced, determinate system, and since we started all
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the transfer vehicles at the loading area, the one queue will be at

the loading area. Q, the amount of queuelng time per vehicle round-

trip, is given by

Q - (N-1)(P/L) - (2D/S + P/L). (2)

If Equation (2) gives a negative value for Q, queueing time per

vehicle round trip will be zero.

Now consider a balanced determinate system with multiple load-

ing and unloading points. Let K represent the number of loading points

Since we are dealing with a balanced system, K also represents the num-

ber of unloading points. We will assume that all loading points oper-

ate until the ship as unloaded, and that transfer vehicles depart and

arrive in groups of K vehicles. A queue can develop only if the first

group of K vehicles can travel to the unloading area, unload, and re-

turn to the loading area before the remaining N-K vehicles have been

loaded. The time required to load the remaining N-K vehicles will be

given by ( (N-K)/K) (P/L) , and an approximate equation for queueing time

per vehicle round trip in this system will be

Q = -iSL (P/L) " (2D/S + P/L). (3)

By multiplying and grouping terms, we can rewrite this equation in the

more convenient form

MP
Q = -f^ - 2(D/S + P/L).

We are now ready to consider the more realistic case of a sto-

chastic model, in which the times for loading, unloading, and travel

are random variables rather than constants. The amount of queueing

time per vehicle round trip also becomes a random variable. We wish

to develop a simple approximating equation for determining the average

queueing time per vehicle round trip, which we shall denote by X . It
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seems reasonable to suppose that the average queueing time per vehicle

round trip for the stochastic model is related in some way to the

queueing time per vehicle round trip for the determinate case. Values

for Q, the amount of queueing time per vehicle round trip for the deter-

minate model, were computed for a number of combinations of parameter

values. Equation (3) was used for these computations. Values for X

were then determined for the same combinations of parameters by means

of the computer simulation. A least squares curve was then fitted to

the data points. The relationship thus derived between X and Q is

given by

X = 0.19Q^ + 0.69Q f 0.37. (4)

The root mean square error was 0.0456. This approximation gives

reasonably accurate estimates of X for values of Q in the range from

- 0.5 hours to + 1.5 hours. A negative value for Q indicates that in

a determinate system there would be no queue and the loading and un-

loading points would be unoccupied some of the time. Thirty data

points were used in fitting the least squares curve. Table II shows

the parameter values used, the average queueing time per vehicle round

trip as determined by the computer simulation, and the average queue-

ing time per round trip as determined by Equation (4).

If the value of Q computed by Equation (3) is less than - 0.5

hours, this suggests that the loading and unloading facilities are

standing idle much of the time. If the computed value of Q is greater

than 1.5 hours, the transfer vehicles are spending an inordinate amount

of time waiting to load or to unload. In either case, the overall

system operation would probably be considered inefficient. Thus, the

range in which we will be primarily interested when applying the equa-

tion will be the range covered by Equation (4), namely - 0.5 to + 1.5.
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TABLE II

Average Queueing Time per Vehicle Round Trip:
Comparison of Simulation Results and ^

Results Computed by Approximating Equation

Mean
Loading

Time

Mean
Travel

Time

Number
of

Vehicles

Time
from

Simulation

Time
from

Equation

.06 Hr. .33 Hr. 8 .08 Hr. .29 Hr.

.06 .33 12 .35 .52

.06 .33 16 .67 .78

.12 .33 8 .06 .21

.12 ,33 12 .26 .38

.12 .33 16 .56 .70

.25 .33 8 .03 -0-

.25 .33 12 .15 .26

.25 .33 16 .36 .49

.50 .33 16 .15 .16

.06 .67 8 .24 .29

.06 .67 12 .81 .80

.06 .67 16 1.45 1.48

.12 .67 8 .18 .21

.12 .67 12 .77 .70

.12 .67 16 1.32 1.35

.25 .67 8 .12 -0-

.25 .67 12 .53 .49

.25 .67 16 1.18 1,08

.50 .67 12 .27 .16

.50 .67 16 .74 .62

.06 1.0 8 .36 .29

,06 1.0 12 1.17 1.12

.12 1.0 8 .37 .21

.12 1.0 12 1.14 1.00

.12 1.0 16 2.04 2.17

.25 1.0 8 .30 -0-

.25 1.0 12 .95 .76

.25 1.0 16 1.96 1.83

.50 1.0 12 .61 .37
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Ihe average time for a vehicle to complete a round trip in the

stochastic model will be the sum of average travel times, average load-

ing and unloading times, and X, the average queueing time per vehicle

round trip. Average time per round trip, then, will be given by

2(D/S + P/L) + (X).

Total time required to unload a given tonnage of cargo will be approxi-

mately the time per vehicle round trip multiplied by the required num-

ber of round trips per vehicle, or

Total Time = 2(D/S + P/L) (T/NP) + (X) (T/NP) , (5)

where X is given by Equation (4)

.

Application of the Approximating Equation .

An application of the approximating equation would be to estimate

the performance of a given ship off-loading system. The need for such an

estimate might easily arise in the course of operational planning. In

the same context of operational planning, we may perhaps find ourselves

able to vary only one or two of the parameters which are treated as vari-

ables in this model. The approximating equation will provide us with a

ready means of estimating how changes in these parameters will affect

the time required for the general unloading. In a somewhat longer time

frame, we may be faced with a choice between several proposed systems.

We could use either the computer simulation itself or the approximating

equation to obtain estimates of the performance of each of the alterna-

tive systems. We would then be able to choose the system that provides

the best performance in relation to its cost.

We have outlined the use of the computer simulation or the approx-

imating equation in estimating the performance of a given system or in

choosing between a given group of alternative systems. Another situation

with which we may be faced is the task of determining the best way in
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which to modify an existing system. By use of the approximating form-

ula or the computer simulation we can estimate the reduction in time to

be expected from incremental changes in each of the variables. If we

also knew the additional cost associated with the proposed change in

each variable, we could then select which variable to modify in order

to achieve the largest reduction in time for a given cost.

Suppose we are given a system in which the parameter values are

as follows: the number of transfer vehicles, N, = 12, the speed of the

transfer vehicles, S, = 10, the payload of the transfer vehicles, P,

= 5, the number of loading points, K, = 4, the capacity of the loading

points, L, = 15, and the ship-to-shore distance, D, = 5. From the data

generated by the computer simulation we obtain an estimate of 287 hours

required to move ten thousand tons of cargo through this system. For

simplicity, suppose we wish to consider two possible changes in the sys-

tem: first, a change in the payload of the twelve vehicles from five to

ten tons, and second, a change in the number of five-ton payload vehicles

from twelve to sixteeno Let us further suppose that the additional costs

associated with these two changes are equal. We wish to determine which

of the changes to implement in order to achieve the largest reduction in

time. Changing the number of vehicles in the system from twelve to six-

teen reduces the estimated time for completion of the unloading to 229

hours. Changing the payload of the twelve vehicles from five tons to

ten tons reduces the estimated time to 215 hours. In this hypothetical

situation we would choose to increase vehicle payload rather than adding

more vehicles to the system.

A far more complex problem arises if we wish to design a complete

system. There does not appear to be any global optimum in the system we

are modeling. Decreasing ship-to-shore distance or increasing any one
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of the other variables always seems to result in at least some reduc-

tion in the time required to land a given tonnage of cargo. We can

strive to design a system to accomplish the unloading in a minimum

amount of time for a given cost or to accomplish unloading at a mini-

mum cost in a given time.

For illustrative purposes, suppose we wish to minimize the

cost to land a given tonnage of cargo in a fixed amount of time. It

appears that the most practical procedure would be simply to enumerate

the combinations of parameter values that produce the desired result

in terms of time to complete the landing of a given tonnage of cargo.

This would appear to be a sizable task. However, the number of trans-

fer vehicles in the system and the number of loading and unloading

points clearly must be integer values. The speed and payload of the

transfer vehicles and the capacity of the loading points might be

thought of as continuous variables, but in practice we need only con-

cern ourselves with a reasonable number of values for these variables.

We might, for instance, consider five-ton increments in transfer vehicle

payload. Even so, we will have to examine many combinations of para-

meter values. Fortunately, a computer can solve the approximating

equation very rapidly and can readily be programmed to eliminate all

combinations that do not meet our time criterion. Many combinations

can be eliminated almost automatically. For instance, if we find a

set of parameter values including a fleet of twelve vehicles that will

meet our unloading time criterion, we would not want to consider sys-

tems using larger numbers of transfer vehicles in conjunction with the

same set of values for the other parameters. Rough cost data should

further serve to reduce the number of alternatives to manageable pro-

portions. For this reduced number of alternatives we can then make
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more detailed cost estimates and select the system that will accomplish

the task at a minimum cost.

We have developed an approximating equation for estimating the

time required to land a given tonnage of cargo, and we have outlined

how this equation or the computer simulation may be used in operational

planning, in choosing between proposed alternative systems, and in deter-

mining how best to modify an existing system. We have also described a

procedure which offers a possible approach to the complex problem of

total system design. A number of questions still remain, however. The

data for the analysis in this chapter was based on the assumption of

the exponential distribution for both service and travel time. The

question of how this assumption affects system performance will be

examined in Chapter V. In Chapter VI, we will examine some of the

implications of having a fleet of transfer vehicles composed of more

than one type of vehicle.
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CHAPTERV

TESTING THE CHARACTERISTICS OF THE SIMULATION MODEL

A considerable amount of theoretical and practical work has

o
been done on networks of queues and on queues in tandem. This work

generally assumes the existence of an independent stochastic process

producing inputs or arrivals to the queueing network. Frequently, it

is assumed that these arrivals occur in accordance with a Poisson dis-

tribution. Because of the circular nature of the physical system which

we are attempting to model, however, there is no independent input into

the system. Rather, once the system is in operation the arrival rate

at any point in the system is dependent on the output of the rest of

the system. In order to gain some insight into the operation of the

system and to determine whether changes in the underlying distributions

of travel time and service time affect the operation, we will test two

hypotheses about the system. First, we will test the hypothesis that

the vehicles cycling through the system arrive at the loading area in

accordance with a Poisson distribution. Secondly, we will test an

hypothesis concerning the mean arrival rate.

Testing Whether the System Is of the Poisson Type .

In order to test whether arrivals at the loading area occur in

accordance with a Poisson distribution, a means for measuring the

arrival times at the loading area was inserted into the computer pro-

gram. We wish to measure the amount of time, T, required to observe

n arrivals. We will denote the time from the start of measurement

until the i arrival as U.. If the arrivals have occurred in accord-
1

ance with a Poisson distribution, then the random variables U, , . . . ,

U are independent and uniformly distributed over the interval (0,T).
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Since the number of observations, n, varied from five hundred to two

thousand, we may use the central limit theorem to assert that the sum,

n

n rr i
1=1

of n independent random variables, each uniformly distributed on the

interval to T, may be considered to be normally distributed with t

2mean n(T/2) and variance n(T /12). At a 95 per cent level of signifi-

cance, then, we could accept the hypothesis that the arrivals are in

accordance with a Poisson distribution if the following inequalities

are satisfied:

n(T/2) - (1.96) ^
2 2

n(T /12) ^ S ^ n(T/2) + (1.96) . n(T /12) .

n \J

This hypothesis was tested with data from 208 simulation runs. Var-

ious distributions were assumed for both travel and service times and

various values were used for the number of vehicles, number of loading

points, mean travel time, and mean loading time, as shown in Table III,

In each of the 208 tests, the hypothesis that the arrivals

occurred in accordance with a Poisson distribution was accepted at a

95 per cent level of significance. From these tests we conclude that

the transfer vehicles are arriving at the loading area in accordance

with a Poisson distribution. Furthermore, there is no indication that

the Poisson nature of the arrivals in this system is dependent upon

the underlying distributions of travel time and service time. We have

not examined a large number of distribution functions, but those we

have examined include the rather extreme cases of the uniform distribu-

tion on the one hand and a constant value on the other. Although no

skewed distributions were tested, it appears that the assumption that

the arrivals occur in accordance with a Poisson distribution is a

robust assumption,
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TABLE III

Distributions and Parameter Values
Employed in Hypothesis Testing

Distribution of Exp. Exp. Exp. Exp. Uniform

Service Time

Distribution of Exp. Exp. Constant Uniform Exp.

Travel Time

Mean 0.33 Hr. 0.33 Hr. 0.33 Hr. 0.25 Hr.

Loading 0.67 Hr. 0.50 Hr. 0.67 Hr. 0.67 Hr. 0.50 Hr.

Time 1.00 Hr.

1.33 Hr.

1.00 Hr. 1.00 Hr. 0.75 Hr.

1.00 Hr.

Mean 0.06 Hr. 0.12 Hr. 0.12 Hr.

Travel 0.12 Hr. 0.25 Hr. 0.25 Hr.

Time 0.25 Hr. 0.50 Hr. 0.50 Hr.

0.50 Hr. 1.00 Hr. 1.00 Hr. 0.50 Hr. 1.00 Hr.

1.00 Hr. 2.00 Hr. 2.00 Hr.

2.00 Hr.

4.00 Hr.

Number of
4

1
4 4 4

Loading Points 2

Number of

Vehicles
8,12,16

2,3,4

5,6
8,12,16 8,12,16 8,12,16

Number of

Simulation Runs
84 10 45 9 60
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Testing an Hypothesis on the Mean Arrival Rate .

Having accepted the hypothesis that arrivals at the loading

area are occurring in accordance with a Poisson distribution, it next

seemed desirable to make some determination concerning the mean value

of this process. Intuitively, the mean arrival rate at the loading

area should be the number of vehicles in the system divided by the

average round- trip time, where the average round- trip time is taken

to be the sum of the mean loading time, the mean unloading time, twice

the mean travel time, the mean waiting time in the queue at the load-

ing area, and the mean waiting time at the unloading area. If a

Poisson process is observed until a predetermined number of events

(in this case arrivals) have occurred, then the amount of observation

time, W , required to observe the n events can be used to test hypoth-

eses concerning the mean value of the process. We shall denote the

mean value by M and the hypothesized mean value by M . In order to

avoid the transient period at the start of system operation, the mea-

surement was made for 60 arrivals beginning at arrival number 400.

If the events being observed are of the Poisson type, then 2MW is

chi-square distributed with 2n degrees of freedom. We shall accept

the hypothesis that the mean value of the process is the hypothesized

value M if the following inequalities are satisfied:

ySoi/x (2nj ^ ^ y \- ^/a (2n) .

2Mq n 2Mq

This test was made on data from the same 208 simulation runs as

described previously (Table III), and the hypothesis was accepted

at a 95 per cent significance level on all but one of the 208 runs.

(The one case in which the hypothesis was rejected appears to have

been a statistical quirk, since it did not occur at an extreme value
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or under any unusual conditions.) We conclude that the vehicles

cycling through the system are arriving at the loading area at a mean

rate equal to the number of vehicles in the system divided by the aver-

age round- trip time, where the average round-trip time is the sum of

the mean loading time, the mean unloading time, twice the mean travel

time, the mean waiting time in the loading queue, and the mean waiting

time in the unloading queue. Furthermore, there is no evidence from

the simulation data that this mean arrival rate is affected by the

underlying distribution of travel time or service time.

Significance .

We have accepted the hypothesis that, in the simulation model,

arrivals at the loading area occur in accordance with a Poisson distri-

bution, and we have accepted the hypothesis that the mean arrival rate

at the loading area is determined by the number of vehicles in the sys-

tem divided by the average round- trip time for a vehicle. We have

tested these hypotheses over the range of values shown in Table III,

There is no indication that these results are dependent on the assumed

distribution of the travel times or the service times. Although these

results throw some light on the nature of the process being investi-

gated, they do not, of themselves, lead to an immediate closed form

solution. The mean arrival rate, which is the parameter of the Poisson

distribution, is not independent of, but rather depends upon the wait-

ing times in the system. The waiting times are themselves dependent

upon the arrival rate. Thus, if we knew either the arrival rate or

the waiting times we could readily solve the system with closed form

queueing equations and determine the values of the other. Before the

fact, however, we do not know what the values will be for either the
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mean arrival rate or the waiting times. Use of the equations developed

in Chapter IV, however, will enable us to estimate the average queue-

ing time per vehicle round trip and the total time required to complete

the landing of a given tonnage of cargo.

Up to this point we have been assuming that the fleet of trans-

fer vehicles is composed entirely of one type of vehicle. Some of the

complexities that arise in the case of mixed vehicle fleets will be

examined in the next chapter.
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CHAPTERVI

IMPLICATIONS OF MIXED TRANSFERVEHICLE FLEETS

We have on several occasions mentioned the fact that, in actual

operations, our fleet of transfer vehicles consists of a variety of

vehicle types rather than just one type. This is certainly true today,

and seems likely to be the case in the future, due to the tactical

problems that must be solved in the assault phase of any amphibious

operation. Since this is so, it appears desirable to investigate the

mixed transfer vehicle case, and our simulation provides a ready means

for doing so.

Fleets Composed of Vehicles with Differing Payloads .

One of the situations that is of considerable interest is the

case of a fleet of transfer vehicles of the same speed, but with differ-

ing payloads. This is the situation that exists between various types

of present-day landing craft (LCU's, LCM's, LCVP's). The speed differ-

ential is not significant, but there is a significant difference in the

payloads of the various landing craft mentioned.

We will consider two fleets of vehicles all having a speed of

ten knots. In one fleet, half of the vehicles will have a fifteen-ton

payload and the remainder a five- ton pay load. In the other fleet, half

of the vehicles will have a fifteen-ton payload and the remainder a

ten- ton payload. When a number of vehicles are in the queue waiting

to load or to unload, we will have a choice as to what type of vehicle

to load or to unload first. One of our primary objectives in this

portion of the study will be to determine an optimal decision rule for

making this choice. Three possible decision rules which will be inves-

tigated are:
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1) load and unload the smaller payload vehicles first,

2) load and unload the larger payload vehicles first, and

3) choose vehicles in some random fashion for loading and

unloading

.

In order to test these decision rules, the basic simulation pro-

gram was modified slightly to include the decision rule as part of the

simulation. In the basic simulation program, whenever a vehicle is to

be brought from a queue into a loading or unloading point, the program

searches through an array in which the staus of all vehicles is stored

until it finds a vehicle whose status number indicates that that vehicle

is in the loading or the unloading queue, as appropriate. Each vehicle

has an index number in the sinulation. Among the vehicles in the queue,

the simulation program always selects the vehicle with the lowest index

number first. If the decision rule being tested was to load the smaller

payload vehicles first, the payload assigned to the vehicles with the

lower index numbers was the smaller payload, and vice versa if the deci-

sion rule being tested was to load the larger vehicles first. Whenever

a vehicle arrives and goes directly into a loading or an unloading point,

its index number a. id hence its payload is known. When the decision rule

being tested was to select vehicles according to some random procedure,

even numbered vehicles were assigned one payload and odd numbered vehicles

were assigned the other payload.

In comparing the results achieved under the different decision

rules, non-parametric or distribution free statistical tests were used.

9
The sign test and the signed rank test were selected. The hypothesis

tested was the hypothesis of no difference between the results. Data

were used only from combinations of parameter values that produced aver-

age waiting times greater than 0.10 hour. When the average waiting time
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is less than 0.10 hour per round trip, the decision rule is not playing

an important role, since there is usually no queue or only one vehicle

in the queue, and hence no choice exists as to which type of vehicle to

load or to unload first. The data are shown in Table IV.

In the case of the transfer vehicle fleet where half the

vehicles had a fifteen-ton payload and half had a five-ton payload, the

results obtained using the decision rule to load or unload the smaller

vehicle first were tested against the other two decision rules described

above. Using the signed rank test, the hypothesis of no difference in

the results was rejected in both cases at the five per cent significance

level. For the case of the fleet composed half of vehicles with a fifteen-

ton payload and half of vehicles with a ten-ton payload, the results

showed generally smaller differences, but again the hypothesis of no

difference was rejected in both cases at the five per cent significance

leve 1

.

Other things being equal, larger payload vehicles (employed as

pure fleets) are more efficient than smaller payload vehicles in that

they move a fixed tonnage of cargo in a shorter period of time, as we

have seen in Chapter IV. In considering the mixed fleet of vehicles,

however, we conclude that we can improve the operation of the system

by using the decision rule to load the smaller vehicles first when there

is a choice, rather than loading and unloading the larger vehicles first

or choosing vehicles at random. This improvement is apparently due to

better utilization of the loading and unloading points. It should be

borne in mind, however, that no allowance was made for buffer time in

the simulation. In comparing the decision rule as applied to the fleet

with fifteen-ton and five-ton vehicles, using the sign test, we would

reject the hypothesis that loading and unloading the smaller vehicles
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TABLE IV

Time Required to Unload Ten Thousand Tons of Cargo with a Mixed Fleet
of Transfer Vehicles: Comparison of Decision Rules When Half the

Vehicles Have the Larger Payload and Half Have the Smaller

Payload
of

Smaller
Vehicle

Mean
Travel

Time

Number
of

Vehicles

Choose
15 Ton

Vehicles
First

Choose
Vehicles

at
Random

Choose
Smaller
Vehicles

First

5 Tons

5

5

5

5

5

5

0.12 Hr.

0.12

0.25

0.25

0.50

0.50

1.0

12

16

12

16

12

16

16

207 Hrs.

198

217

197

237

210

232

197 Hrs.

193

209

207

232

211

244

190 Hrs.

183

200

186

228

204

239

10 Tons

10

10

10

10

10

10

10

10

10

10

0.12 Hr.

0.12

0.12

0.25

0.25

0.25

0.50

0.50

1.0

1.0

2.0

8

12

16

8

12

16

12

16

12

16

16

220 Hrs.

197

190

230

207

183

213

197

259

213

300

216 Hrs.

193

190

242

198

188

210

191

253

214

299

219 Hrs.

188

180

235

187

185

207

194

261

214

288
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first produced a five per cent reduction in time compared to the deci-

sion rule to load the larger vehicles first, but we would accept the

hypothesis of a three per cent reduction. In percentage terms, the

improvement is small, but the cost of implementing the decision rule

is negligible.

Fleets Composed of Vehicles with Differing Speeds .

Another case we wish to consider is that of a mixed fleet in

which the transfer vehicles all have the same payload but have differ-

ing speeds. The procedure will be generally the same as that described

above. The parameter values used and the results obtained from the simu-

lation runs are shown in Table V. Using the sign test, we would accept

they hypothesis that there is no difference between the decision rules

at the five per cent significance level but we would reject the hypoth-

esis at the ten per cent significance level. If the two decision rules

we have considered do make any difference in the overall performance of

the system under these conditions, this difference is apparently on the

order of one per cent or less. Thus, we conclude that if the fleet of

transfer vehicles consists of vehicles with equal payloads but differ-

ent speeds, it does not make much difference whether we load the faster

vehicles first or the slower vehicles first.

Interpretation and Significance of the Results .

In employing mixed fleets of transfer vehicles, it is apparent

that part of the doctrine for their employment (the decision rules con-

sidered here) can play an important role in the overall system perfor-

mance in terms of time required to complete unloading. We have examined

in detail just two of the numerous situations that might arise in prac-

tice. However, for any given situation the computer simulation can
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TABLE V

Time Required to Unload Ten Thousand Tons of Cargo with a Mixed Fleet
of Transfer Vehicles: Comparison of Decision Rules When

Half the Vehicles Have a Speed of Ten Knots
and Half Have a Speed of Twenty BCnots

Mean
Loading

Time

Mean
Travel for

Slower
Vehicles

Number
of

Vehicles

Choose
20 Knot
Vehicles

First

Choose
10 Knot
Vehicles

First

0.33 Hr. 0.12 Hr. 12 188 Hrs. 191 Hrs.

0.33 0.12 16 184 185

0.33 0.25 12 202 206

0.33 0.25 16 185 186

0.33 0.50 16 200 210

0.67 0.12 8 220 221

0.67 0.12 12 194 184

0.67 0.12 16 170 187

0.67 0.25 8 232 229

0.67 0.25 12 195 194

0.67 0.25 16 177 184

0.67 0.50 12 208 212

0.67 0.50 16 179 183

0.67 1.0 12 237 245

0.67 1.0 16 199 212

0.67 2.0 16 263 268
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readily be modified to reflect that situation and to test the results

obtained by using alternative decision rules. The results are not

obvious or easily obtainable by other means. Use of the simulation

to determine the optimal decision rule appears to be a necessary part

of the analysis whenever we are faced with the problem of attempting

to optimize or to improve upon an existing system which includes a

mixed fleet of transfer vehicles. It would be hazardous to attempt

to extrapolate the results obtained outside the range of values actu-

ally tested, but the simulation provides a ready means for testing

various decision rules applied to any actual combination of vehicles.

In dealing with the larger problem of designing a ship off-

loading system, additional complexities are introduced by considera-

tions of mixed fleets of transfer vehicles. From a cost effectiveness

point of view, an optimal system might well be a system using a mixed

fleet of transfer vehicles. By optimal we mean a system that would

achieve a minimum unloading time for a given cost or a minimum cost

for a given unloading time. To illustrate why a mixed fleet may be

optimal, we will consider three cases,

1) a pure fleet composed of twelve vehicles with five-

ton payloads,

2) a pure fleet composed of twelve vehicles with fifteen-

ton payloads, and

3) a mixed fleet composed of six vehicles with five-ton

payloads and six vehicles with fifteen-ton payloads.

The mixed fleet will be operated according to the optimal decision

rule of loading and unloading the smaller payload vehicles first when-

ever there is a choice. The data resulting from these tests are dis-

played in Table VI. Fifteen different combinations of parameter values
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TABLE VI

Time Required to Unload Ten Thousand Tons of Cargo: Comparison of
Simulation Results Achieved by Two Pure Fleets and a Mixed Fleet

Mean
Travel

Time

Number
of

Vehicles

Pure Fleet
of

5 Ton
Vehicles

Mixed Fleet,
Half 5 Ton

Vehicles
Half 15 Ton

Vehicles

Pure Fleet
of

15 Ton
Vehicles

0.12 Hr. 8 243 Hrs. 230 Hrs. 233 Hrs.

0.12 12 196 190 186

0.12 16 185 183 176

0.25 8 292 260 235

0.25 12 218 200 189

0.25 16 188 186 185

0.50 8 417 317 261

0.50 12 287 228 197

0.50 16 228 204 182

1.0 8 661 460 334

1.0 12 444 289 237

1.0 16 346 239 200

2.0 8 1154 700 491

2.0 12 770 445 341

2.0 16 592 360 263
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were considered. The pure fleet of fifteen-ton vehicles achieved an

average reduction in unloading time of 29.6 per cent as compared to

the pure fleet of five-ton vehicles. The mixed fleet, however, did

almost as well, achieving an average reduction in time of 20.5 per cent

as compared to the pure fleet of five-ton vehicles. A mixed fleet of

twelve vehicles, consisting of six five-ton vehicles and six fifteen-

ton vehicles, was clearly superior in these simulation runs to a pure

fleet of eight fifteen-ton vehicles but inferior to a pure fleet of

twelve fifteen-ton vehicles. The twelve vehicle mixed fleet would be

equivalent to a pure fleet of nine, ten or eleven of the fifteen-ton

vehicles. Depending on the cost functions involved, it might well be

that the mixed fleet would be the most cost-effective. This possibil-

ity introduces considerable additional complexity to the already complex

problem of designing a general unloading system. It appears at this

point that a reasonable approach would be to use the procedure out-

lined in Chapter IV to arrive at a cost-effective system employing a

pure fleet, then test the implications of switching to a mixed fleet

of transfer vehicles.
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CHAPTERVII

SUMMARY, SUGGESTEDEXTENSIONS, AND GENERALAPPLICABILITY

The design of an efficient system for the general unloading

phase of an amphibious operation involves complex inter-relationships

among a large number of variables. We have examined six of these var-

iables, namely transfer vehicle speed and payload, the number of trans-

fer vehicles in the system, ship-to-shore distance, and the number and

capacity of loading and unloading points. The queueing problems that

arise in the operation of this system play a highly significant role

in overall system performance and hence must be taken into account.

Due to the circular nature of the system we are attempting to

model, closed form solutions are not readily attainable. We have struc-

tured a model and developed a computer simulation by means of which the

general unloading phase of an amphibious operation may be studied.

Utilizing data generated by the computer simulation, we have examined

some of the relationships between the variables in the system and we

have developed an approximating equation for the time required to com-

plete the unloading of a given tonnage of cargo. We have also investi-

gated the impact of various hypothetical distributions of service time

and travel time. The Poisson distribution of the arrivals does not

appear to be dependent upon the underlying distributions of service

time or travel time. The mean arrival rate, which is the parameter of

the Poisson distribution, depends upon the mean values of service time

and travel time, but does not appear to be dependent upon the probability

distribution of service time or travel time. We have also examined the

system when mixed fleets of transfer vehicles are employed. For two

cases likely to arise in practice, we have compared the results obtained
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using different decision rules as to which vehicles to load or unload

first.

There are several different levels at which we may be interested

in applying the results of this paper. For convenience, we will discuss

them in terms of the short-run time period, the mid-range time period,

and the long-run time period. In the short run we may be faced with

an existing sytem, in which case our only recourse is to employ the

most effective decision rule in operating the system. We have illus-

trated how a system employing a mixed fleet of transfer vehicles can be

analyzed in order to achieve the best possible results with fixed re-

sources. In the context of operational planning, we have outlined how

the approximating formula or the computer simulation itself may be used

to obtain estimates of the performance of a given system.

In applications pertaining to the mid-range time period from

five to ten years hence, we may be faced with the task of determining

the best means of improving upon an existing system or we may be faced

with the task of choosing among a number of alternative systems. In

Chapter IV we outlined procedures for dealing with these situations.

In the long run we are free to modify all of the variables under

consideration. This presents us with by far the most complicated prob-

lem. We have defined an efficient system to be a system in which the

ratio of marginal return (in time reduction) to marginal cost is the

same for each of the variables. We have mentioned some of the practical

and theoretical problems involved in trying to find such efficient

points. Nevertheless, the step-by-step procedure we have outlined in

Chapter IV appears to be the best practical approach to achieving an

efficient system design.
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Prior to implementing the results developed in this paper, it

would be necessary to test the entire model by comparing the results

predicted by the model with results achieved in actual operations. It

would also be necessary to determine the actual parameter values to be

used. This should be accomplished by field experimentation under real-

istic operating conditions. It appears that accurate estimates of the

parameter values for loading and unloading time and for travel time are

more important than the probability distributions associated with those

t ime s

.

Ship characteristics determine the number and capacity of the

loading points in the system which we have modeled. Lead times for

ship design and construction are such that the characteristics of the

ships that will be available five to ten years in the future are fairly

well known today. Thus we might reasonably be able to fix the number

and capacity of loading points that will be available in a "typical"

task force in the time period five to ten years hence. With appropriate

cost data, and after validation of the model, it should be possible to

develop transfer-vehicle fleets that meet our definition of an efficient

system for those variables not considered fixed. Unless some unexpected

dominant transfer vehicle fleet emerges, it would probably be necessary

to make separate analyses for various ship-to-shore distances. The

implications of various ship-to-shore distances on system cost and per-

formance could then be portrayed. Alternatively, it might be possible

to assign a discrete probability mass function to the variable ship-to-

shore distance and then to develop a transfer vehicle fleet that would

be efficient in an expected value sense. That is, it would be efficient

over a large number of operations if the various ship-to-shore distances

occurred in accordance with the assigned probability mass function.
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Another interesting extension would be to compare the per-

formance of a system employing amphibian vehicles to move cargo from

the ships to an inland dump and a system employing landing craft and

trucks to accomplish the same task. The model and simulation we have

developed can serve as the model of amphibian vehicles shuttling from

a ship to an inland dump or as a model of landing craft shuttling from

a ship to the water line at the beach. A system employing landing craft

and trucks to move cargo from a ship to an inland dump involves the

interaction, at the beach, of two circular queueing systems such as the

one we have modeled. A comparison of the relative effectiveness of a

system employing amphibian vehicles and the system employing landing

craft and trucks could then be made. This would be of considerable

interest since a major tactical and logistical consideration in amphib-

ious operations is to move men, equipment, and supplies rapidly inland

and to avoid congestion on the beach itself.

This model and the accompanying computer simulation were devel-

oped in order to investigate the general unloading phase of an amphib-

ious operation, but the model would be generally applicable to any

closed system in which a fixed population cycles continually through

the system. Many materials-handling systems and systems incorporating

shuttling operations would appear to be of the same general nature and

hence amenable to analysis by the same general methods and by the

same sort of model and simulation.
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APPENDIX

The simulation program was written in FORTRAN IV for

the IBM 360/67 computer. This appendix includes a list of the

variable names used in the program, generalized flow charts,

and a computer print-out of the program.
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LIST OF VARIABLE NAMES

AL Mean Loading Time

ALN Transfer Vehicle Payload

AM Mean Travel Time

AQL Average Waiting Time per Vehicle Round Trip at Loading Area

AQU Average Waiting Time per Vehicle Round Trip at Unloading
Area

D Total Number of Round Trips Required

KK Number of Loading (Unloading) Points

KQUE Length of the Queue at the Unloading Area

KS(K) Status of Vehicle K

KSTAT(L) Status of Unloading Point L

KVEH Number of Transfer Vehicles

LQUE Length of the Queue at the Loading Area

LSTAT(L) Status of Loading Point L

QLL(J) Length of Time Loading Queue Was of Length J

QLU(J) Length of Time Unloading Queue Was of Length J

TIM Time

TNARL(K) Time of Next Arrival at Loading Area for Vehicle K

TNARU(K) Time of Next Arrival at Unloading Area for Vehicle K

TNDPL(K) Time Next Departure from Loading Area for Vehicle K

TNDPU(K) Time Next Departure from Unloading Area for Vehicle K

TLE Length of Time at Least One Loading Point Was Empty

TUE Length of Time at Least One Unloading Point Was Empty

X Clock for Unloading Queue

XX Clock for Unloading Point

Y Clock for Loading Queue
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YY Clock for Loading Point

Z Tons of Cargo Moved
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>

/ If TNARU(M)

is the min

<-

Initialize Constants

and Arrays

Assign Parameter

Values

\/

Move a Vehicle into each

Loading Point and Compute

Times for Completion of

Loading

Compare the Arrays TNDPL,

TNARU, TNDPU, and TNARL

and Select the Minimum

Time

If TNDPU(LJ)\

is the min /

If TNARL(MJ)\ / If TNDPL(L)\

/ \ is the min/is the min

If All Cargo Has

Been Moved

\^

Compute Results and Print Data
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Yes

Set KSTAT(K) = 1

\/

Set status of

vehicle M to 5

\/

Compute TNDPU(M)

\/

10

Arrival at unloading

area is next event

\/

Set Time = TNARU(M)

\/

If KQUE = and

some KSTAT(K) =

Compute time unloading

point was empty and

reset clock

Set status of

vehicle M to 4

\/

Increment KQUE by 1

Compute time queue was of

length J and reset clock

\/

Set TNARU(M) to 99999

I Go to 1

63



20

Departure from unloading

area le next event

N/

Set Time » TNDPU(LJ)

N/

Compute TNARL(LJ)

\/

If KQUE =
No

Start clock for

time unloading

point empty

\/

Find a KSTAT(K) ^

and set 3°

\/

Compute time queue was of

length J and reset clock

\/

Increment tons unloaded

\/

Set TNDPU(LJ) to 99999

Compute time queue was of

length J and reset clock

\/

Reduce KQUE by 1

\/

Find a vehicle in the

queue (status = 4) and

bring it into the unload-

ing point (status = 5)

\/

Compute TNDPU for vehicle K

\/

Increment tons unloaded

Set TNDPU(LJ) to 99999
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Yes

Set LSTAT(K) = 1

N/

Set status of

vehicle MJ to 2

\/

Compute TNDPL(MJ)

\/

Compute time loading

point was empty and

reset clock

30

Arrival at loading

area is next event

\/

Set time = TNARL(MJ)

\/

If LQUE = and

some LSTAT(K) =

Compute time queue was of

length J and reset clock

\/

Set TNARL(MJ) to 99999

Compute time queue was of

length J and reset clock

\/

Increment LQUE by 1

V

Set status of

vehicle MJ to 1

V

Set TNARL(MJ) to 99999
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40

Departure from loading

area is next event

\^

Set Time = TNDPL(L)

\/

Compute TNARU(L)

\/

If LQUE =

Start clock for

time loading

point empty

\/

Find an LSTAT ^

and set =

\^

Compute time queue was of

length J and reset clock

\^

Set TNDPL(L) to 99999

Compute time queue was of

length J and reset clock

\/

Reduce LQUE by 1

V
Find a vehicle in the

queue (status = 1) and

bring it into the loading

point (status = 2)

\^

Compute TNDPL for vehicle K

\/

Set TNDPL(L) to 99999
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FORTRANPROGRAMLISTING

DIMENSION 0LL(50).0LU(50) tTN0PL(50>,TN0PU(50>,
1TNARU(50),TNARL(50),KSTAT{10>,LST4T(10),KS(50I

IX = 123456789
CALL RANDU (IX,IY,RN)
IX = lY
INITIALIZE PARAMETERSAND ARRAYS FOR NEXT RUN
KK = A-

DO 103 IK = 1,A
B - IK
ALN = 5. * B
AL = ALN / 15,
DO 106 IJ = 1,7
AM = (d, / 32. ) * 2. ** IJ)
DO 59 I = 8,16,4
JJ = I ^ 1
DO 60 K = 1, JJ
OLL(K) = 0.
OLU(K) = 0.
TNOPLCK) = 9999.
TNOPU(K) = 9999.
TNARL(K) = 9999.
TNARU(K) = 9999,
KS(K> = 1

60 CONTINUE
U = 0.
SN = 0.
UI = 0.
TIM = 0.
X = 0.
Y = 0.
XX = 0.
YY = 0.
TUE = 0.
TLE = 0.
KQUE =
Z = 0.
DO 62 K = 1, KK
KSTAT{K) =
LSTAT(K) =

62 CONTINUE
LOUE = I

DO 63 K = 1, KK
CALL RANDU ( IX,IY,RN)
IX = lY
R = (-AL * ALOG(RN))

65 TNOPL(K) = TIM R
KS(K) = 2
LSTAT(K) = 1
LQUE = LOUE - 1
IFCLOUE .EO. 0) GO TO 2

63 CONTINUE
2 IF(Z .GE. 10000) GO TO 90

L « 1
DO 71 LK = 2, I

IF(TNDPL(L) .LE. TNDPL(LK))
L = LK

71 CONTINUE
M « 1
00 72 MK = 2, I

IF(TNARU(M) .LE. TNARU(MK))

GO TO 71

GO TO 72
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72 CONTINUE
LJ « 1
00 73 LK = 2,1
IF(TNDPU(LJ) .LE. TNDPUtLK)) GO TO 73
LJ « LK

73 CONTINUE
MJ * 1
00 74 MK = 2, I
IF(TNARL(HJ) .LE. TNARKMKI) GO TO 74
MJ « MK

74 CONTINUE
IF(TN0PL(L) .GT* TNARU(M)) GO TO 3
IF(TNDPL(L) .GT, TNDPU(LJ)) GO TO 4
IF(TNDPL(L) .GT. TNARL(MJ)) GO TO 30
GO TO 40

3 IF(TNARU(H) .GT. TNDPU«Ljn GO TO 4
IF(TNARU(M) .GT. TNARL(MJ)) GO TO 30
GO TO 10

4 IF(TNDPU<LJ) .GT. TNARL(MJn GO TO 30
GO TO 20
ARRIVAL AT UNLOADING AREA IS NEXT EVENT

10 TIM = TNARU(M)
IF(KQUE .NE. 0) 60 TO 11
DO 12 K = 1,KK
IF(KSTAT(KI .NE. 0» GO TO 12
CALL RANOU (IX»IY,RN)
IX « lY
R = (-AL * ALOG(RN))

14 TNOPU(M) = TNARU(M» R
KSTAT(K) * 1
KS(M) « 5
TUE * TUE + «TNARU(M) - XX)
XX « TNARU(M)
J * KQUE 1
OLU(J) = OLU(J) (TNARUCM) - X)
X * TNARUCM)
TNARU(M) « 9999.
GO TO 2

12 CONTINUE
11 J « KOUE 1

QLUCJ) * OLU(J) (TNARU(M) - X)
X « TNARUCM)
KQUE » KOUE > 1
TNARUCM) « 9999.
KSCM) « 4
GO TO 2
DEPARTUREFROM UNLOADING AREA IS NEXT EVENT

20 TIM = TNDPUCLJ)
CALL RANDU CIXyIY,RN)
IX « lY
R s C-AM* ALOGCRN))
TNARLCLJ) « TIM R
ksTlj) * 6
IFCKQUE .EQ. 0) GO TO 21
J » KOUE 1
OLUCJ) « QLUCJ] CTIM - X)
KQUE » KQUE - 1
X « TIM
00 22 K = 1, I

IFCKSCK) .EQ. 4) GO TO 23
22 CONTINUE
23 KSCK) « 5

CALL RANOU CIXtlYtRNI
IX « lY
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R = {'!^L * ALOG(PN))
?7 TNDPU( O = TIM ft

TNOPUCJ) = 99Q9.
Z = Z ALN
GO TO 2

21 XX = T\tJh>U(LJ)
00 24 K = ItKK
IF(KSTA JK) .EO. 01 GO TO 24
KSTAT(K ) =
GO TO 25

^4 CONTINUf.
d5 Z - I ^ ALN
29 J -' KOUE -f 1

Ol.U{J) = QLU(J) + (TNOPU(LJ) - XI
X ••= TNDPU(LJ)
TNDPU(LJ) = 99<^9
GO TO 2
ARRIVAL AT LOADING AREA IS N^XT EVENT

30 TIM = TNAkL(MJ)
36 IF(LOUE .NE. 0) GO TO 31

DO 32 K = 1,KK
IF(LSTAT(K) .NE. 0) GO TO 32
CALL RANDU ( IX,IY,RN)
IX = lY
R = (-AL * ALOG(RN))

38 TNOPL(MJ) = TIM + R
LSTAT(K) = 1
KS(MJ) = 2
TLE = TLE t- (TIM - YY)
YY =: TIM
J = LQUE * 1
OLL(J) = OLL(J) + (TIM - Y)
Y = TIM
TNARL(MJ) = 9999.
GO TO 2

32 CONTINUE
31 J = LOUE + 1

OLL(J) = OLL(J) (TIM - Y)
Y = TIM
LQUE = LOUE * 1
TNARL(MJ) = 9999.
KS(MJ) = 1
GO TO 2
DEPARTUREFROM LOADING AREA IS NEXT EVENT

40 TIM = TNDPL(L)
CALL RANDU (IXflY,RN)
IX = lY
R = (-AM* ALOG(RN))
TNARU(L) = TIM + R
TNDPL(L) = 999c.
KS(L) = 3
IFCLOUE .EO. 0) GO TO 41
J = LOUE * 1
OLL(J) = OLL(J) + (TIM - Y>
LQUE = LOUE - 1
Y = TIM
DO 42 K = 1, I

IF(KS(K) .EO. 1) GO TO 43
42 CONTINUE
43 KS(K) = 2

CALL RANDU (IX,IY,RN)
IX = lY
P = (-AL * ALOG(RN))

47 TNDPLCK) = TIM + R
GO TO 2
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41 YY « TIM
00 44 K == 1 , KK
IF(LSTAT(K) .EQ. 0) GO TO 44
LSTAT (K) =
GO TO 45

44 CONTINUE
45 J * LOUE 1

QLL«J) = OLL(JI (TIM - Y)
Y = TIM
GO TO 2

90 KVEH = I
PRINT 91, TIM, KVEH• TLE, TUE

91 FORMAT (//lOX, • TIME = * ,F10.5, •

l« TLE = • ,F10.5, • TUE = • ,F10.5)
AQL = 0,
AQU = 0.

= Z / ALN
DO 61 J = 1,1
A = J - 1
AQL ^ AQL * QLLCJ) * A
AQU = AQU QLU(J) * A

61 CONTINUE
AQL ' AQL
AQU = AQU
PRINT 94,

/ D
/
AQL, AQU

NO.VEH = • ,15

94 FORMAT (//lOX, • AVG DELAY LOADING = • ,F15.5,
1 • AVG DELAY UNLOADING= • ,F15.5)

PRINT 110,AM,AL
110 F0RMAT(//10X, 'AM • ,F10.5, • AL • ,FI0.5)

JJ = I 1
00 105 J = 1, JJ
OLU(J) = QLU(J> / TIM
OLL(J) = OLL(J) / TIM

105 CONTINUE
PRINT 92, ((QLL(J),QLU(J)), J = 1,JJ)

92 FORMAT ( //10X,2F10.5)
59 CONTINUE
106 CONTINUE
103 CONTINUE

RETURN
END
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particular emphasis on the queueing problems that arise. A model is structured

and a computer simulation is provided. Variables considered are the number of

transfer vehicles and their speed and payload, the number and capacity of loading

and unloading points, and the ship-to-shore distance. Basic relationships between

the variables are examined and an approximating formula is developed for computing

the time required to unload a given tonnage of cargo. Applications in operational

planning, system modification, and total system design are outlined. The impact

on system performance of various assumed distributions of travel time and loading

time is discussed. For systems employing mixed fleets of transfer vehicles, some

basic decision rules are developed as to which vehicles to load or unload first.

Suggestions as to further research and as to the model's general applicability

are included.
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