

Calhoun: The NPS Institutional Archive DSpace Repository

# Passenger traffic analysis for a high speed rail system between Boston and Washington 

Cook, Jan W.; Skiles, Alvin V.
Princeton University
https://hdl.handle.net/10945/12810

NPS ARCHIVE 1964
COOK, J.


## PRINCETON UNIVERSITY

DUDLEY KNOX LIBRARY
NAVAL POSTGRADJATE SCHOOI Wraremey CA g7ul? 412 ?

PASSENGER TRAFFIC ANALYSIS FOR A HIGH SPEED RAIL SYSTEM BETWEEN BOSTON AND WASHINGTON

by<br>Jan W. Cook, LT., USN and Alvin V. Skiles, III, LT., USN

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering from

Princeton University, 1964
$19+20+8$
$1,2,6) 5$

The Transportation Science Program at Princeton University has undertaken a broad study of transportation in a purely scientific manner with major emphasis on the problems of Megalopolis. Of particular interest is the evaluation of a high-speed rail system between Boston and Washington. The hypothesis of this part of the program is to locate a proposed route for such a system and analyze it from various aspects in order to ascertain its degree of practicability. This thesis will deal with just one of the many phases being studied--that of passenger traffic analyses.

The authors wish to thank especially the following who have contributed so much toward not only the successful completion of this thesis but the year of study it culminates:

The Bureau of Yards and Docks, Department of the Navy, for making this period possible.

Senator Claiborne Pell of Rhode Island who inspired this program.
Mr. Richard A. Rice, Acting Director, Transportation Science
Program, Department of Civil Engineering, Princeton University, for his time, thoughts and encouragement.

Professor Norman J. Sollenberger, Chairman of the Department of Civil Engineering, Princeton University, for his understanding and guidance throughout this year.

Mrs. Walter B. Foster, Jr., for her typing and composition abilities.

Above all, we wish to thank our wives for their encouragement and understanding.

## Table of Contents

Preface ..... ii
List of Tables ..... iv
List of Illustrations ..... v
Chapter 1. Potential of a High-Speed Rail System ..... 1
2. A High--Speed Rail System Concept for Megalopolis ..... 4
3. Passenger Potential ..... 20
4. History of Passenger Travel Within Megalopolis ..... 34
5. Evaluation ..... 65
Appendix A. Summary of Schedules and Services ..... 71
Bibliography ..... 76

## List of Tables

Table Page

1. Source of Station Population ..... 25
2. Station Population and Related Factors ..... 26
3. Daily City to City Potential ..... 28, 29
4. Per Cent of Total Traffic Generated by Nine Major Cities ..... 31
5. Per Cent of Each Major City's Traffic Generated by the Other Major Cities ..... 31
6. Major City to City Potential vs. Per Cent of Total Potential ..... 32, 33
7. Daily Rail Passengers Between Major Cities ..... 37, 38
8. Daily Rail Passengers--1947 ..... 39
9. Daily Rail Passengersm-1952 ..... 40
10. Daily Rail Passengers--1957 ..... 40
11. Daily Rail Passengers--1962 ..... 41
12. Daily Bus Passengers Between Major Cities ..... 46, 47
13. Daily Bus Passengers--1947 ..... 48
14. Daily Bus Passengers--1952 ..... 49
15. Daily Bus Passengers--1957 ..... 50
16. Daily Bus Passengers--1962 ..... 51
17. Determination of Air Passengers ..... 54
18. Daily Air Passengers Between Major Cities ..... 55, 56
19. Daily Air Passengers--1947 ..... 57
20. Daily Air Passengers--1952 ..... 58
21. Daily Air Passengers--1957 ..... 59
22. Daily Air Passengers--1962 ..... 60
23. Toṭal Daily Commercial Passengers Between Major Cities vs. ..... 69

## List of Illustrations

Figure Page

1. Map--Washington Area. ..... 7
2. Map--Philadelphia Area。 ..... 8
3. Map--New York Area. ..... 9
4. Map--New Haven Area. ..... 10
5. Map--Connecticut Valley Area. ..... 11
6. Map--Boston Area. ..... 12
7. Line Diagram of Stations Indicating Mileage. ..... 15
8. Schematic of Proposed JR-3 Unit for the High-Speed Line. ..... 18
9. Census Tract Map--Boston SMSA. ..... 24
10. Potential Daily Traffic Density Along High-Speed Line. ..... 30
11. Daily Rail Density--1947. ..... 42
12. Daily Rail Densityo-1962. ..... 43
13. A Comparison of Pennsylvania R.R. Daily Rail Density--1958 vs. 1961. ..... 44
14. Daily Bus Density-- 1947. ..... 52
15. Daily Bus Density-m1962. ..... 53
16. Daily Air Density--1947. ..... 61
17. Daily Air Density-a-1952. ..... 62
18. Daily Air Density--1957. ..... 63
19. Daily Air Density--1962. ..... 64

## Chapter 1

## Potential of a High-Speed Rail System

## Introduction

Interest in the need for new forms of transportation has been growing throughout the country since the close of World War II. Much has been written about the merits of Monorail, STOL, VIOL, electronic highways, and even personalized jet belts, but few such ideas can withstand critical evaluation of their ability to move large numbers of people rapidly, safely, efficiently, and economically。

## New Modes of Transportation

Superhighways have given travelers a greatly increased flexibility of movement by auto along with a reasonable decrease in travel time. They are rapidly becoming overcrowded, however, as is evidenced in the recently rising accident rate and frequent delays due to traffic. To further increase the superhighway network is one way of attempting to solve the traffic problem, but the staggering commitment in money and land (versus capacity) is rapidly reaching the point of diminishing return. The travel time from city to city apparently cannot be reduced much below present without raising the speed limit, which might further increase the accident rate.

Although there is currently no STOL aircraft that can be utilized for mass passenger movement, a STOL system might do nothing more than increase the already overcrowded skyways. STOL equipment alone costs at least twice as much to operate, both per seat and per passenger mile, than do fixed-wing aircraft. Also, if travel time city-to-city is to be decreased, new airports must be built closer to the cities. This would not
only reverse the present trend of locating them farther from the cities, but would add a staggering financial load to the air traffic control systems.

The electronic highway, in theory, has merit but must also reduce auto flexibility and at a great increase in cost compared to a conventional highway--both to the taxpayer and to the auto owner. An interesting comparison is seen in estimating what an electronic highway can do that a highspeed railroad carrying autos (with the passengers in the autos, on special drive on-drive~off flat cars) cannot do faster, cheaper, with much greater capacity, and with no loss in flexibility to the auto driver.

## High-Speed Rail Service

High-speed ( 100 to 125 mph ) rail service is not new in one sense. It has been used increasingly in France for the past few years. Another service for which extensive tests have already been run will open in Japan in the Fall of 1964. Both systems are practicable and proven from an engineering point of view. More importantly, such systems eliminate many of the objections of the somcalled "new" modes of transportation. Highspeed rail service would most certainly be safer than a highway (fatalities per 100,000,000 passenger-miles in 1960 were 2.2 for auto and 0.16 for rail) (l) and only slightly less flexible than intercity auto travel. It may actually be cheaper to build than future superhighways, when figured on a passengere mile or ton-mile capacity basis, and is certainly as fast or faster than any mode now in use for relatively short distances, as is illustrated by the following example:

The present center to center travel times between New York and Washington are: 300 minutes by auto or express bus (100 per cent of the highway is limited access), 225 minutes by rail and 140 minutes by air. Highospeed rail service would allow a person to make this trip in 120 minutes.

## Scope of Thesis

The scope of this thesis will cover the traffic phase of a high-speed rail system between Boston and Washington to determine potential passenger patronage based on present travel data and future growth. Some general inm formation on some of the more technical details that have already been completed-asuch as criteria, route location, car design, and schedulingoo is included in the next chapter.

## Chapter 2

## A High-Speed Rail Concept for Megalopolis

## Introduction

The most prominent metropolitan region in the United States extends 700 miles along the Atlantic Seaboard from north of Portland, Maine, to Richmond and Norfolk, Virginia, and considerably inland。 It includes the large metropolitan areas of New York, Washington, Baltimore, Philadelphia, the Connecticut Valley (New Haven, Hartford and Springfield), Providence, and Boston, as well as the rapidly developing suburban areas in between. This region has been aptly named "Megalopolis," to denote the virtually continuous city extending from Boston to Washington.

Megalopolis contains more than one quarter of the United States population, is above average in National Income, and has always been a great influence on United States life and development. However, it also has the most serious transportation problem in the United States. What should be the most lucrative market in the country for passenger travel is in reality the most difficult. The railroads have lost over half their postwar passen ger traffic; the airlines, with steadily increasing passenger traffic during the past decade, are mostly losing money or barely breaking even on the short intercity runs; and the bus companies are able to operate only through the additional revenues brought in by package express and charter service.

The through highways in Megalopolis are excellent; however, they are badly congested during the rush hours even though the majority are toll roads. The need in this region for a fast, safe, efficient means of mass transporむation is obvious. It is for this reason that Megalopolis was
chosen as the type location for a study of the potential of a high-speed rail system.

Route and Station Location
After considerable thought it was decided that the proposed route and station locations for a high-speed rail transportation system within Megalopolis should be located according to the following criteria:
(l) Because most of the population in Megalopolis is situated within the narrow Boston-Washington corridor, the high-speed rail line should be located to connect these metropolitan areas.
(2) Provide direct rail connections at locations where the line passes close to limited access highways in suburban areas. This will provide suburban communities with easy access to the high-speed line.
(3) Provide direct rail interchanges at some major airports.
(4) Provide a bypass around New York to allow freight to be shipped directly from any point south of New York to the New England area. Presently freight being shipped by rail from south of New York to New England must travel one of the two following routes:
a) via carofloat from New Jersey to Brooklyn and then north to New England;
b) via the circuitous Maybrook and New Haven Railroad route which crosses the Hudson River at Poughkeepsie.

Both of the above routes are inefficient and produce undue delays which result in much of the present freight being shipped by water or by truck.
(5) Provide direct rail connections for service to Cape Cod, Vermont, New Hampshire, and Maine to the north; and with the Southern Railroads for service south of Washington.
(6) Provide a direct rail service between the Connecticut Valley cities and the Boston-Providence area, a service which presently does not exist.

With the above criteria as a basis, the route location and station locations for this new high-speed rail transportation system were determined. (See Figures 1 through 6.) The new high-speed line is located on a rail right-of-way separate from the present Pennsylvania Railroad (between New York and Washington) and from the New Haven Railroad (between New York and Boston) for the following two very general reasons:
(1) Improvement of the existing Pennsylvania and New Haven rail line between Boston and Washington to handle high-speed rail traffic would seem to necessitate the following:
a) The straightening of four tracks instead of two.
b) The replacement of the present electrification system of 11,000 volts 25 cycles, which cannot be utilized effectively for 120 mph trains, to 25,000 volts 60 cycles. This would result in much of the present equipment becoming obsolete.
c) The replacement of the present automatic signaling system in order to accommodate high-speed trains. This change might severely impede freight traffic utilizing the line. Also, from a safety point of view, it is difficult to run slow-speed freight and highospeed passenger traffic simultaneously.



Fig. 2. Map of Philadelphia Area




气"1


## 1落

it


4 mon


If the above improvements could be accomplished, the primary purpose of this existing rail line--to serve local industryow-would be hindered, and yet the improved line would not meet the majority of the criteria previously listed for the establishment of a high speed rail transportation system. As a final thought, all of the above improvements would have to be accomplished under the most adverse traffic conditions, as the existing line between Boston and Washington is one of the most heavily traveled rail routes in the United States.
(2) Constructing a high-speed rail line over a new route location and utilizing the existing and abandoned rail rightswofoway as much as possible would require only two tracks instead of four. The new line would be constructed similar to a superhighway by utilizing existing connecting rail lines into the major cities along the BostonWashington corridor. This method would not only reduce construction costs and travel time, but would also provide a more scenic parkway type line through some of the best scenery the area has to offer. Locating the route of the new line through the Connecticut Valley will provide direct service for the population of one and a half million in that area to the other metropolitan areas along the BostonWashington corridor. It is estimated that the cost of constructing this new highospeed rail system, including track, stations and equipment, would be only twice the cost of improving the present rail line. The end result would be a new rail line that could handle both highe speed passenger and by-pass freight traffic while the present line would continue to handle local and commuter passenger traffic as well as the bulk of the existing freight traffic.

In Figure 7 are listed the 40 existing and proposed station locations with the mileage between each station indicated. Within a ten-mile radius of each station there is a total population of $23,893,500$ (no other U.S. railroad services this size market) which is broken down as follows:*

Boston to the New York $\propto$ Newark area 5,782,700
New York-Newark area 10,765,200
Washington to the New York-Newark area 7, 345,600
The total rail mileage between Boston and Washington, including existing links to Worcester, Holyoke, Hartford, New Haven, New York (Grand Central, Penn and Kennedy), Philadelphia (North Philadelphia and 30th St.), Towson and Baltimore, and Falls Church and Dulles is 678.8 miles. Of this 678.8 miles, 422.4 are existing rail rights of way, 63.1 are abandoned rail rights of way, and 193.3 are new rights of way. The main high-speed line between Boston and Washington will be separate single tracks from Boston and Providence to a point five miles west of Woonsocket where the two tracks converge and form a double track. The double track then extends to Wheaton, Maryland, at which point one single track continues to Washington and another single track continues to Dulles. The length of this main line is 507.9 miles (this does not include any existing link service). Of this 507.9 miles, 404.0 are double track and 103.9 are single track. The mileage from downtown Boston to Washington is 454.2 miles. The construction along this main high speed line will require two major bridges, Hudson River and Susquehanna River, and two major tunnels, Fenton Mountain located between Webster and Springfield (2 miles) and at Redding, Connecticut (I/2 mile), between Stepney and Bedford.

Chapter 3 will explain how these populations were determined.

## $\frac{\text { Boston (South Station) }}{5.6}$

$$
\begin{gathered}
\frac{\text { Brookline (Back Bay) }}{6.7} \\
\frac{\text { Route } 128}{23.5} \\
\frac{\text { Woonsocket }}{20.0}
\end{gathered}
$$

Worcester $16.5 \frac{\text { Webster }}{42.5} 29.0$ N.Prov. 5.0 Prov. 4.5 Cranston Northampton $12.5 \frac{\text { Chicopee }}{} 8.0 \frac{\text { Longmeadow (Springfield) }}{10.5}$

$$
\begin{aligned}
& \frac{\text { E. Granby }}{21.0} \frac{\text { Windsor Locks }}{11.8} \\
& \frac{\text { Plainville }}{8.5} 13.5 \text { Hartford } \\
& \frac{\text { Waterbury } \oplus \text { Meriden }}{21.0} \\
& \frac{\text { Shelton }}{10.0} 9.0 \text { New Haven } \\
& \frac{\text { Stepney }}{22.0} \\
& \text { Bedford } \\
& 16.5 \\
& \text { Tarrytown 22.4 New York (Grand Central) } \\
& 15.8 \\
& \text { Teaneck } 9.9 \text { New York (Penn) 14.0 Kennedy } \\
& \text { Newark } 9.3 \\
& 24.5 \\
& \frac{\text { Bound Brook }}{28.5} \\
& \frac{\text { Trenton }}{23.0} 28.8 \frac{\text { N. Phila. }}{4.5} \\
& \text { Fort Wash. Phila. (30th Street) } \\
& 18.5 \\
& \frac{\text { Malvern }}{75.8} 21.5 \text { - } \\
& \frac{\text { N. Balt. }}{38.2} \cdot 4.6 \text { Towson } 7.9 \text { Baltimore } \\
& \frac{\text { Wheaton }}{15.8} \text { 9.1 Washington } \\
& \text { Total Mileage - } \quad 678.8 \\
& \text { Boston } \sim \text { N. Y. (Penn) }-233.5 \\
& \text { Wash. -N. Y. (Penn) --226.9 } \\
& \text { Boston-Washington- }-454.2
\end{aligned}
$$

Fig. 7. Line Diagram of High-Speed Route Indicating Mileage Between Stations。

In accordance with the criteria established previously for determining the best route and station locations, this proposed high-speed rail line would provide the following detailed service (refer to Figures 1 through 6):
(1) Direct rail connection with the following airports:
a) Dulles and Friendship International Airports.
b) Kennedy International, Newark and LaGuardia Airports。
c) Bradley Field (Springfield-Hartford area).
(2) "Suburban" rail stations will be constructed at the following locations next to limited-access highways:
a) Route 128 (Boston) Route 128
b) Longmeadow, Mass. Interstate 91
c) WaterburymMeriden, Conn. Interstate 84
d) Shelton, Conn. Wilbur Cross Parkway
e) Tarrytown, N. Y. New York Thruway
f) Teaneck, N. J. New Jersey Turnpike
g) Bound Brook, N.J. Interstate 287
h) Fort Washington, Pa。

Pennsylvania Turnpike
i) North Baltimore

Baltimore-Harrisburg Expressway
j) Towson, Md.

Interstate 695
k) Falls Church, Va.

Interstate 495

Type of Passenger Train to be Utilized
The type of passenger train best suited for highospeed operations is a self-propelled, double-deck, threewcar unit, commonly known as the JR-3. Both of the end cars would carry revenue seats only, whereas the middle car would contain the propulsion unit in the lower deck with the
upper deck available for passengers and a dining area. The average capacity of this three-car unit would be 320 passengers.

The type of propulsion required for this high-speed rail system would be 25,000 volts, 60 cycles; however, the propulsion unit design for the JR-3 will have the capability of running with any power in the United States. To accomplish this will require the following four different capabilities:
(1) 25,000 volts 60 cycles $\infty$ for the highwspeed line
(2) 1l,000 volts 25 cycles for for the Penn and New Haven lines
(3) 3,000 volts D.C. $-\infty$ for the Lackawanna lines, etc.
(4) 1,500 volts D.C. for the Illinois Central lines. etc. The engineering design of a propulsion unit capable of the above four modes of operation is not a difficult problem。 The French National Railways at the present time have an operational locomotive that operates on the follow ing four common voltages in Europe that are very similar to the propulsion requirements specified above for the JR-3 unit: (3)
(1) 25,000 vol.ts 50 cycles new lines
(2) 12,000 volts $16-2 / 3$ cycles $-\infty$ Switzerland
(3) 3,000 volts D.C. $\quad \infty$ Italy
(4) 1,500 volts D.C. -old French and Low Countries.

Figure 8 is a simplified sketch illustrating the type of three car unit ( $J R-3$ ) described above. Further study concerning the engineering design of this three-car unit is being conducted in other phases of the Transportation Science Program at Princeton University.

## Three-Car JR-3 Unit



Control and Passenger Car


Propulsion Car


Control and Passenger Car

Control and Passenger Car

| Control Cab <br> and <br> Baggage | 48 seats | 24 seats |
| :---: | :---: | :---: |
|  | 48 seats | Power |

Weight: 60 tons
Capacity: 120 passengers (42" seat spacing)

## Propulsion Car



Weight: 80 tons
Capacity: 80 passengers (booth seating)
Power: $\quad 1800$ horsepower electric

Note: Each car has the same following dimensions:

$$
\begin{array}{lr}
\text { Car length } & --82^{\prime \prime} 6^{\prime \prime} \\
\text { Drop center length } & -43^{\prime} 0^{\prime \prime} \\
\text { End sections length } & -196^{\prime \prime} \\
\text { Height } & --14^{\prime \prime}
\end{array}
$$

Fig. 8. Schematic of Proposed JR -3 Unit for the High $\infty$ Speed Line.

## Scheduling

The intercity schedule for rail service for the high-speed line in order to be as efficient as possible has been established as follows: The first passenger trains of the day will depart at 6:00 A.M. and passenger service will continue until the last passenger train departs at ll:00 P.M. Shortly after midnight high-speed freight and Piggyback service will begin operating and will continue until 6:00 A.M. Because of the large population that this new high-speed line will serve, an average density of 56 passenger trains (each way) will be scheduled daily. This density will provide a minimum of hourly service for each of the 40 proposed stations. The details of the scheduling are included in Appendix A.

A typical example of a "onemstop" run from Boston and Providence to New York would be as follows:

A three-car unit would depart from Boston (South Station) at 9:00 A.M. Another three-car unit would depart from Providence at 9:10 A.M. These two JR-3 units would then join together at the junction of the two single tracks five miles west of Woonsocket and travel as a single sixwcar unit (stopping at Hartford) to Tarrytown at which point the two JR-3 units would then separate. One JR-3 unit would proceed to Grand Central Station arriving at $11: 15$ A.M., while the other unit would proceed to Pennsylvania Station arriving at 1l:00 A.M. This type of service would allow each passenger the choice of disembarking at either New York station by a walk-through transfer en route. Through similar inter-connected scheduling, the equivalent of hourly service can be maintained for most points.

## Passenger Potential

## Introduction

There are several methods of determining passenger potential, each yielding various degrees of accuracy. For our purposes we chose to use the "gravity" formula, partly since it is the simplest to use when large numbers of city pairs are involved and can be easily programmed on a computer, and partly because none has yet proven more accurate.

## Gravity Formula

The formula is basically quite simple and is based on the following factors: (I) Traffic volume will decrease as distance increases; (2) traffic volume will decrease as population decreases; (3) traffic volume will decrease as per capita wealth decreases. Distance, population and per capita wealth are the most important factors and account for at least 80 per cent of the potential influence. Other factors which influence the potential are: population concentration, the distance of the city from transportation centers and abnormal transient factors. Among the types of cities that produce abnormal transient factors are state capitals, small cities with military bases, small university towns, and seasonal resorts. The effective populations of these places should be increased by a factor of 50 to 100 per cent.

The number of passengers between any two cities can roughly be come puted by the "gravity" formula:

$$
T_{p}=\frac{\left(p_{2} p_{2}\right)\left(w_{1} w_{2}\right)}{D} \times \frac{1}{\bar{K}}
$$

where $T_{p}$ yields the potential comercial carrier traffic in passengers per month; $\mathrm{p}_{1}$ and $\mathrm{p}_{2}$ are the populations of the two cities in thousands; $\mathrm{w}_{1}$ and $w_{2}$ are the per capita wealth of the two cities; $D$ is the distance between them; and $K$ is an empherical constant determined to be .234. This formula is felt to be quite reliable for distances of 50 to 500 miles for estimating carrier potential.

The illustrations below show the effect population and distance have on traffic between two cities, $A$ and $B$, as related by the formula.
City

10,000 passengers $\quad$| City |
| :---: |
| B |

If the distance in the case above were doubled, then the sketch below would result.


If City A's population were doubled and the distance remained the same as in the first case, the result would be:


The following is an example of how the formula applies between Chicago and the Twin Cities:

Data: Average distance --420 miles
Population Chicago $--4,523.0$ thousand
Wealth Chicago - - 1.29
Population Twin Citiessos 897.4 thousand
Wealth Twin Cities -1.28

Thus:

$$
\begin{aligned}
T_{p} & =\frac{(4,523.0 \times 897.4)(1.29 \times 1.28)}{420} \times \frac{1}{.234} \\
& =68,200 \text { approximately }
\end{aligned}
$$

Actual commercial traffic for a month when these figures were obtained was:

| Intercity Bus | $-\infty$ | 4,000 |
| :--- | ---: | ---: |
| Rail Coach | $-\infty 34,500$ |  |
| Rail Sleeper | $-\infty$ | 6,600 |
| Airlines | $-\infty \frac{8,000}{53,100}$ |  |
| Total |  |  |

The actual number of passengers will rarely exceed the potential unless service by all three modes is considerably above average.

## Population

The initial step in determining the passenger potential along the Boston-Washington corridor was to construct the proposed rail route on ten individual $1: 250,000$ scale topographic maps. Figures 1 through 6 illustrate the maps utilized. After selecting the route location, the suburban and downtown railroad stations were then located on the maps.

There are 40 proposed railroad stations served by the proposed line. In determining the population around each of these stations, circles of fiveand ten-mile radii were constructed around them using the stations as the centers. These circles were then transferred to the census tract maps included in references 9 through 28 in order to obtain the most accurate population. However, of the 40 stations, only 17 were covered completely by the census tract maps. The remaining 23 stations were covered only partially. In order to determine the population served by these stations, the census tract maps were used in conjunction with the population maps of
the entire state involved (see references 29 through 33).
Figure 9 is the census tract map of the Boston area which illustrates how the population for the three stations there was determined. The populations of the remaining stations along the route which were included in census tract maps were determined in much the same manner. Table lists the stations and the source of the population data for each one.

The populations listed in Table 2 were utilized in the formula as follows: For distances less than 100 miles the adjusted 5-mile population was used. For distances greater than 100 miles the adjusted populations of the lo-mile circles were used. For Boston and Washington, since these cities are at each end of the route, it was felt that when the distance was greater than 150 miles it could safely be assumed that people as far out as 15 miles from their stations could be considered as potential passengers.

The "purchasing power" of the people living within the circles around each proposed station was obtained from "Survey of Buying Power" (reference 8). The quality index utilized is defined as "a measure of the purchasing ability of each county and city as compared to the nation. The average of the United States is 100."

A transient factor of 50 per cent was added to the actual populaw tions of Providence, R. I., Hartford, Conn., and Washington, D. C., since these three cities generate more travel than an ordinary city of comparable population. This increase in travel is mainly due to the fact that each of the above cities is a capital.


Fig. 9. Census Tracts in the Boston SMSA and Adjacent Area

Table 1
Source of Station Population

## Station：

1．Boston（South Station）
2．Brookline（Back Bay）
3．Route 128
4．Woonsocket
5．Cranston（S．Prov．）
6．Providence
7．North Providence
8．Webster
9．Worcester
10．Northampton
11．Chicopee
12．Longmeadow（Springfield）
13．East Granby
14．Windsor Locks
15．Hartford
16．Plainville
17．Waterbury－Meriden
18．New Haven
19．Shelton
20．Stepney（Bridgeport）
21．Bedford（Stamford）
22．Tarrytown
23．Teaneck
24．New York（Penn Station）
25．New York（Grand Central）
26．Kennedy
27．Newark
28．Bound Brook
29．Trenton
30．Fort Washington
31．North Philadelphia
32．Philadelphia（30th Street）
33．Malvern
34．North Baltimore
35．Towson
36．Baltimore
37．Wheaton
38．Washington
39．Falls Church
40．Dulles

Population Determined by：
Census Tract（Ref。10）
Census Tract（Ref．10）
Census Tract and State Map（Ref． 10 \＆31）
Census Tract and State Map（Ref． 21 \＆31）
Census Tract and State Map（Ref． 28 \＆31）
Census Tract（Ref。28）
Census Tract and State Map（Ref。 23 \＆31）
Census Tract and State Map（Ref． 23 \＆31）
Census Tract and State Map（Ref．23，29，\＆31）
Census Tract and State Map（Ref． 12 \＆29）
Census Tract and State Map（Ref。12 \＆29）
Census Tract（Ref。12）
Census Tract and State Map（Ref． 12 \＆29）
Gensus Tract and State Map（Ref． 27 \＆29）
Census Tract and State Map（Ref． 16 \＆29）
Census Tract and State Map（Ref．11，16，\＆29）
Census Tract and State Map（Ref． 11 \＆29）
Census Tract and State Map（Ref．17，24，\＆29）
Census Tract（Ref．17）
Census Tract（Ref。19）
Census Tract（Ref。13 \＆17）
Census Tract（Ref．17）
Census Tract（Ref．17）
Census Tract（Ref． 13 \＆18）
Census Tract（Ref。14，18，\＆22）
Census Tract and State Map（Ref。 20，25，\＆ 32 ）
Census Tract（Ref。20）
Census Tract（Ref．20）
Census Tract（Ref。20）
Census Tract（Ref．20）
Census Tract and State Map（Ref。9 \＆30）
Census Tract and State Map（Ref。9 \＆30）
Census Tract（Ref．9）
Census Tract and State Map（Ref． 26 \＆30）
Census Tract（Ref。26）
Census Tract and State Map（Ref． 26 \＆33）
Census Tract and State Map（Ref． 26 \＆33）

Table 2

## Station Populations and Related Factors

| Station | Population |  | Quality Index | Transient Factor | $\frac{\text { Adjusted }}{5 \mathrm{mi} .}$ | $\frac{\text { Population }}{10 \mathrm{mi}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 mi . | 10 mi . |  |  |  |  |
| Boston | 1008.4 | 1632.9 |  |  |  |  |
| Brookline |  |  | 119 | 1.0 | 1304.2 | 2229. |
| Route 128 | 87.6 | 240.5 |  |  |  | $(2839.1)^{*}$ |
| Woonsocket | 75.7 | 123.2 | 101 | 1.0 | 76.4 | 124.4 |
| Cranston | 90.0 | 207.5 |  |  |  |  |
| Providence | 152.9 | 164.1 | 102 | 1.5 | 678.9 | 918.7 |
| N. Providence | 200.9 | 228.9 |  |  |  |  |
| Webster | 26.4 | 70.4 |  |  |  |  |
| Worcester | 210 | 272 | 106 | 1.0 | 250.6 | 362.9 |
| Northampton | 39.6 | 69.4 |  |  |  |  |
| Chicopee | 117 | 186.7 | 108 | 1.0 | 340.0 | 488.2 |
| Springfield | 158.3 | 196 |  |  |  |  |
| East Granby | 14.4 | 37.3 | 117 | 1.0 | 58.6 | 137.9 |
| Windsor Locks | 35.7 | 80.6 | 117 | 1.0 | 50.6 | 131.9 |
| Hartford | 269.6 | 391.8 |  |  |  |  |
| Plainville | 141.7 | 172.8 | 120 | 1.5 | 740.2 | 1016.2 |
| Waterbury-Meriden | 91.5 | 239.6 | 111 | 1.0 | 101.5 | 265.9 |
| New Haven | 246.4 | 301 | 100 | 1.0 | 309.0 | 485.6 |
| Shelton | 62.6 | 184.6 |  |  | 300.0 | 485.6 |
| Stepney | 17.5 | 240.9 | 107 | 1.0 | 18.7 | 257.7 |
| Bedford | 50.0 | 209.6 | 145 | 1.0 | 72.5 | 303.9 |
| Tarrytown | 167.1 | 532.9 | 149 | 1.0 | 248.9 | 794.0 |
| Teaneck | 498.4 | 1099.2 | 117 | 1.0 | 583.1 | 1286.0 |
| Penn. Station | 3163.4 | 6238.2 | 118 | 1.0 | 3732.8 |  |
| Grand Central |  |  | 110 | 1.0 | 3132.0 | 7361.0 |
| Kennedy Airport | 636.8 | 1836.8 | 125 | 1.0 | 796.0 | 2296.0 |
| Newark | 900.7 | 1591.0 | 122 | 1.0 | 1098.8 | 1941.0 |
| Bound Brook | 92.6 | 287.0 | 132 | 1.0 | 122.2 | 378.8 |
| Trenton | 96.8 | 223.3 | 115 | 1.0 | 111.3 | 256.7 |
| N. Philadelphia | 1747.0 | 2699.4 |  |  |  |  |
| 30th Street |  |  | 775 | 1.0 | 2384 | 17) 6 |
| Ft. Washington | 236.0 | 663.3 | 115 | 1.0 | 2384.0 | 4149.6 |
| Malvern | 90.1 | 245.7 |  |  |  |  |
| North Baltimore | 194.6 | 280.7 |  |  |  |  |
| Towson |  |  | 102 | 1.0 | 1062.2 | 1448.1 |
| Baltimore | 846.8 | 1139.1 |  |  |  |  |
| Wheaton | 194.0 | 423.5 |  |  |  |  |
| Dulles | 46.5 | 129.8 | 127 | 1.5 | 2047.3 |  |
| Falls Church |  |  | 127 | 1.5 | 2047 | $\begin{aligned} & 3442.5 \\ & (3659.5)^{*} \end{aligned}$ |
| Washington | 834.3 | 1253.8 |  |  |  |  |

${ }^{*}$ 15-mile adjusted population.

## Potential

In order to reduce the number of "gravity" computations ( $p_{1} p_{2} / D$ ) for the 40 proposed stations, several stations were grouped together, thus arriving at 21 separate locations. To further reduce the number of computations any combination of these 21 locations which resulted in a trip less than 50 miles was omitted except for the following city pairs:
(1) Hartford-New Haven
(2) Washington - Baltimore
(3) Philadelphia-Trenton

Table 3 indicates the daily potential between any city pair along the proposed rail route. Figure 10 shows the daily density along the route with passenger-miles above the line and passengers below the line.

In order to both simplify and clarify the data (or lack of data) in the next chapter, discussion and figures are limited to the nine major cities in Megalopolis. Table 4 lists these nine cities and what per cent of the total potential traffic is generated by each.

Table 5 shows what per cent of each of the nine cities: total traffic potential within Megalopolis goes to the other eight.

Table 6 is similar in format to the tables used to list actual travel data and is made up so that the data (or lack of data) in these tables can be put in proper perspective. It lists the passenger potential between the cities and how this potential compares percentagewise with the total poten tial of the leading cities. Example:

Springfield accounts for only 2.33 per cent of the total potential of the route (Table 4) and the Springfield New Haven traffic accounts for only 2.11 per cent of the traffic from Springfield; yet SpringfieldwNew York accounts for 58.37 per cent of the traffic from Springfield (Table 6).

## Daily City-City Passenger Potential

| City | $\frac{\text { D.C. }}{21}$ | $\frac{\text { Balt. }}{20}$ | $\frac{\text { Phila. }}{19}$ | $\frac{\text { Trent. }}{18}$ | $\frac{\mathrm{Bd} \cdot \mathrm{Bk} .}{17}$ | $\frac{\text { Newark }}{16}$ | $\frac{\text { Kenn. }}{15}$ | $\frac{\mathrm{N} . \mathrm{Y} .}{\mathrm{I}}$ | $\frac{\text { T'nk。 }}{13}$ | $\frac{T^{\prime} \mathrm{twn}}{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Boston | 3,295 | 1,464 | 5,502 | 379 | 624 | 3,550 | 2,127 | 13,297 | 2,478 | 1,662 |
| 2. Providence | 1,126 | 506 | 1,920 | 133 | 221 | 1,271 | 1,346 | 4,603 | 892 | 605 |
| 3. Woonsocket | 156 | 70 | 270 | 19 | 31 | 182 | 191 | 677 | 128 | 87 |
| 4. WebsterWorcester | 500 | 229 | 807 | 56 | 194 | 561 | 587 | 2,094 | 396 | 272 |
| 5. Springfield | 704 | 324 | 1,318 | 95 | 164 | 993 | 1,002 | 3,691 | 717 | 511 |
| 6. Windsor Locks Granby | - 205 | 95 | 390 | 28 | 49 | 302 | 302 | 1,122 | 220 | 21 |
| 7. Hartford Plainville | 1,599 | 748 | 3,179 | 234 | 420 | 2,653 | 2,568 | 9,802 | 649 | 336 |
| 8. WaterburyMeriden | 429 | 202 | 871 | 65 | 118 | 163 | 719 | 2,782 | 98 | 53 |
| 9. Shelton New Haven | 825 | 391 | 1,859 | 132 | 247 | 594 | 1,713 | 1,951 | 365 |  |
| 10. Stepney | 453 | 220 | 1,019 | 79 | 3 | 44 | 23 | 143 | 28 |  |
| 11. Bedford | 572 | 286 | 1,410 | 11 | 18 |  |  |  |  |  |
| 12. Tarrytown | 1,633 | 809 | 4,232 | 49 | 83 |  |  |  |  |  |
| 13. Teaneck | 2,832 | 1,429 | 2,102 | 144 |  |  |  |  |  |  |
| H. New York | 16,335 | 8,257 | 13,719 | 894 |  |  |  |  |  |  |
| 15. Kennedy | 4,816 | 2,393 | 12,756 | 165 |  |  |  |  |  |  |
| 16. Newark | 4,487 | 2,295 | 4,500 | 329 |  |  |  |  |  |  |
| 17. Bound Brook | 982 | 520 | 709 |  |  |  |  |  |  | 83 |
| 18. Trenton | 775 | 436 | 1,259 |  |  | 329 | 165 | 894 | 144 | 49 |
| 19. Philadelphia | 14,284 | 3,942 |  | 1,259 | 709 | 4,500 | 12,756 | 13,719 | 2,102 | 4,232 |
| 20. Baltimore | 6,074 |  | 3,942 | 436 | 520 | 2,295 | 2,393 | 8,257 | 1,429 | 809 |
| 21. Washington |  | 6,074 | 14,284 | 775 | 982 | 4,487 | 4,816 | 16,335 | 2,832 | 1,633 |
| Below line total | 0 | 6,074 | 18,226 | 2,470 | 2,211 | 11,611 | 20,130 | 39,205 | 6,507 | 6,806 |
| Column total | 62,082 | 30,690 | 76,048 | 5,282 | 4,383 | 26,307 | 30,708 | 79,367 | 12,478 | 10,353 |
| Above line total | 62,082 | 24,616 | 57,822 | 2,812 | 2,172 | 10,313 | 10,578 | 40,162 | 5,971 | 3,547 |


| City | $\frac{B^{\prime} \mathrm{fd}}{11}$ | $\frac{\text { Stpny. }}{10}$ | $\frac{\text { N.H. }}{9}$ | Wtby. | $\frac{\text { Htfd。 }}{7}=$ | $\frac{\text { W. Lhs. }}{6}$ | $\frac{\text { Spr. }}{5}$ | $-\frac{\text { Wor }}{4} .$ | $\frac{\text { Woon。 }}{3}$ | $\frac{\text { Prov. }}{2}$ | Boston |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Boston | 695 | 674 | 1,030 | 682 | 2,801 | 114 | 671 | 800 |  |  |  |
| 2. Providence | 256 | 252 | 495 | 339 | 762 | 76 | 438 | 621 |  |  |  |
| 3. Woonsocket | 37 | 37 | 72 | 11 | 95 | 9 | 57 |  |  |  |  |
| 4. WebsterWorcester | 117 | 118 | 233 | 44 | 362 |  |  |  |  | 621 | 800 |
| 5. Springfield | 38 | 13 | 232 |  |  |  |  |  | 57 | 438 | 671 |
| 6. Windsor Locks Granby | - 7 | 3 | 47 |  |  |  |  |  | 9 | 76 | 114 |
| 7. HartfordPlainville | 124 | 50 | 944 |  |  |  |  | 362 | 95 | 762 | 2,801 |
| 8. WaterburyMeriden | 19 |  |  |  |  |  |  | 44 | 11 | 339 | 682 |
| 9. SheltonNew Haven |  |  |  |  | 944 | 47 | 232 | 233 | 72 | 49.5 | 1,030 |
| 10. Stepney |  |  |  |  | 50 | 3 | 13 | 118 | 37 | 252 | 674 |
| 11. Bedford |  |  |  | 19 | 124 | 7 | 38 | 117 | 37 | 256 | 695 |
| 12. Tarrytown |  |  |  | 53 | 336 | 21. | 511 | 272 | 87 | 605 | 1,662 |
| 13. Teaneck |  | 28 | 365 | 98 | 649 | 220 | 717 | 396 | 128 | 892 | 2,478 |
| 44. New York |  | 143 | 1,951 | 2,782 | 9,802 | 1,122 | 3,691 | 2,094 | 677 | 4,603 | 13,297 |
| 15. Kernedy |  | 23 | 1,713 | 719 | 2,568 | 302 | 1,002 | 587 | 1.91 | 1,346 | 2,127 |
| 16. Newark |  | 44 | 594 | 163 | 2,653 | 302 | 993 | 561 | 182 | 1,271 | 3,550 |
| 17. Bound Brook | 18 | 3 | 247 | 118 | 420 | 49 | 164 | 194 | 31 | 221 | 624 |
| 18. Trention | 11 | 79 | 132 | 65 | 234 | 28 | 95 | 56 | 19 | 133 | 379 |
| 19. Philadelphia | 1,410 | 1,019 | 1,859 | 871 | 3,179 | 390 | 1,318 | 807 | 270 | 1,920 | 5,502 |
| 20. Baltimore | 286 | 220 | 391 | 202 | 748 | 95 | 324 | 229 | 70 | 506 | 1,4,64 |
| 21. Washington | 572 | 453 | 825 | 429 | 1,599 | 205 | 704 | 500 | 156 | 1, 1226 | 3,295 |
| Below line total | 2,297 | 2,012 | 8,077 | 5,519 | 23,306 | 2,791 | 9,802 | 6,570 | 2,129 | 15,862 | 41,845 |
| Column total | 3,590 | 3,159 | 11,130 | 6,595 | 27,326 | 2,990 | 10,968 | 7,991 | 2,129 | 15,862 | 41,845 |
| Above line total | 1,293 | 1,147 | 3,053 | 1,076 | 4,020 | 199 | 1,166 | 1,421 | 0 | 0 | 0 |
|  |  |  |  | AND TOT | TAL -1 | 471,283 |  |  |  |  |  |


tE8ILE1 EIZGL


Table 4

## Per Cent of Total Traffic Generated by the Following Cities

| City |  | Passengers per Day | Per cent of Total |  |
| :--- | :---: | :---: | :---: | :---: |
| Boston | 41,845 | 8.87 | 8.87 |  |
| Providence | 15,862 | 3.36 | 12.23 |  |
| Springfield | 10,968 | 2.33 | 14.56 |  |
| Hartford | 27,326 | 5.80 | 20.36 |  |
| New Haven | 11,130 | 2.36 | 22.72 |  |
| New York | 148,860 | 31.59 | 54.31 |  |
| Philadelphia | 76,048 | 16.14 | 70.45 |  |
| Baltimore | 30,690 | 6.51 | 76.96 |  |
| Washington | 62,082 | 13.17 | 90.13 |  |

Table 5
Per Cent of Traffic from Nine Cities Generated by the Other Eight

| City | Per Cent |
| :--- | :---: |
| Boston | 86.5 |
| Providence | 84.2 |
| Springfield | 92.0 |
| Hartford | 94.0 |
| New Haven | 91.3 |
| New York | 91.5 |
| Philadelphia | 85.6 |
| Baltimore | 90.6 |
| Washington | 90.8 |

$\square$
$\square$

mboctaturbins

8.06
axtigiztical

Table 6
Major City to City Potential vs. Per Cent of Total Potential

Passenger Per Cent of
Cities Potential Potential Cities' Potential

Boston and
Providence
Springfield
Hartford
New Haven
New York
Philadelphia Baltimore Washington

Providence and
Springfield
Hartford
New Haven
New York
Philadelphia
Baltimore
Washington
Springfield and
Hartford
New Haven
New York
Philadelphia
Baltimore
Washington
Hartford and
New Haven
New York
Philadelphia
Baltimore
Washington
New Haven and
New York
Philadelphia
Baltimore
Washington
New York and
Philadelphia
Baltimore
Washington

4,623 41.53
$1,859 \quad 16.70$
$391 \quad 3.51$
$825 \quad 7.41$

33, 077
22.89

14,374
9.94

28,470
19.70

Table 6 (cont'd.)

Cities
Philadelphia and Baltimore
Washington
Baltimore and Washington

## Passenger <br> Potential <br> Per Cent of <br> Cities: Potential

## Chapter 4

## History of Passenger Travel Within Megalopolis

## Introduction

In order to accurately forecast the potential for any type of transportation, some knowledge must be gained about actual present and past passenger travel in the area under study. The determination of the actual number of passengers traveling a specific route is not always an easy matter. Due to the expense involved, very few carriers maintain origin-destination records; thus information of this type must be obtained from whatever other records are available. The information in the following pages is the authors' attempt to show a history of passenger travel within Megalopolis, at five-year intervals since 1947 by the three major commercial passenger carriers--rail, bus, and air.

## Rail Passenger Traffic

The data for determining actual intercity rail travel was obtained from the Pennsylvania (6) and New Haven Railroads. (5) However, the data obtained from these two sources varied considerably, as will be explained below.

The most accurate method of determining the number of passengers traveling between any two cities is to count the total number of tickets sold and then relate this number, taking into account round-trips, furm lough, family plan, etc., to total passengers. This information was obtained from the New Haven Railroad for the month of January 1962. However, their records for 1952 and 1957 were no longer available. Information for 1947 was obtained from Mr. R. A. Rice, who conducted a similar study when he worked for the New Haven Railroad.

The Pennsylvania Railroad would not permit the use of their records to obtain ticket counts. They did, however, provide information on two origin-destination studies conducted by them for the years 1958 and 1961 concerning the cities between New York and Washington. They also provided records giving the total daily number of passengers on their line for each month from 1947 to 1962.

In order to determine the average daily passengers traveling between any two cities for the years 1947, 1952, 1957, and 1962, the information obtained from the 1958 and 1961 origin-destination studies was utilized as follows: The average daily passengers traveling between each city along the line in 1958 and 1961 were taken as a percentage of the average daily passengers on the entire line for the year. This percentage was then applied to the average daily passengers for the years under study (1947, 1952, 1957, 1962) in order to obtain the average daily passengers traveling between each city on the line. This method gives a fair approximation, but the travel between some cities, New York-Philadelphia for example, does not necessarily follow the over-all trend of the line.

No information was available from either the Pennsylvania or New Haven Railroads concerning the number of passengers traveling between the cities of one line and cities on the other line. The 1958 study conducted by the Pennsylvania Railroad, however, did indicate the average daily passengers traveling from each city on the line to beyond New York, but not their ultimate destination. Similarly, from the New Haven records could be determined the average daily passengers traveling from Boston to beyond New York, but, again, with no ultimate destination.

Table 7 indicates the average daily passenger traffic between the nine major cities within Megalopolis, while tables 8 through 11 indicate the average daily passenger traffic between all the cities along the Bostonw Washington corridor for which information was available. Figures 11 and 12 illustrate the daily rail density along the Boston-Washington corridor for 1947 and 1962. Figure 13 is a comparison of the daily rail density along Pennsylvania Railroad's New York-Washington line for 1958 and 1961 (data for this figure was obtained from the two previously mentioned origin-destination studies).

## Bus Passenger Traffic

Compared with the data available on rail and air traffic, the information concerning bus traffic was relatively sketchy. This is due mainly to the large number of cash sales made by the bus driver, which makes any information obtained from the ticket counts doubtful. Also, no information was available from any of the bus companies concerning the amount of passenger traffic between cities of Megalopolis.

In order to obtain as accurate an estimate as possible of the bus passengers traveling between the cities of Megalopolis, the following procedure was used: The bus passenger traffic for 1962 was based on a study of intercity bus schedules published in Russell's Official Motor Coach Guide。(7) This required an arbitrary selection of the average load factor and an arbitrary distribution of passengers over successive segments of each bus route. This selection was based on average loads reported by the bus companies whose schedules were included in the study. An arbitrary 15 per cent was added for extra busses.

## Daily Passengers Between the Major Cities <br> by Rail for the Years Indicated

| Cities | 1947 | 1952 | 1957 | 1958 | 1961 | 1962 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston and |  |  |  |  |  |  |
| Providence | 2,448 |  |  |  |  | 552 |
| Springfield | 149 |  |  |  |  |  |
| Hartford | 310 |  |  |  |  |  |
| New Haven | 318 |  |  |  |  | 134 |
| New York | 3,647 |  |  |  |  | 1,286 |
| Philadelphia |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |
| Washington |  |  |  |  |  |  |
| Providence and |  |  |  |  |  |  |
| Springfield |  |  |  |  |  |  |
| Hartford |  |  |  |  |  |  |
| New Haven | 157 |  |  |  |  | 77 |
| New York | 1,549 |  |  |  |  | 684 |
| Philadelphia |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |
| Washington |  |  |  |  |  |  |
| Springfield and |  |  |  |  |  |  |
| Hartford | 599 |  |  |  |  | 72 |
| New Haven |  |  |  |  |  | 22 |
| New York | 844 |  |  |  |  | 451 |
| Philadelphia |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |
| Washington |  |  |  |  |  |  |
| Hartford and |  |  |  |  |  |  |
| New Haven | 592 |  |  |  |  | 134 |
| New York | 1,632 |  |  |  |  | 891 |
| Philadelphia |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |
| Washington |  |  |  |  |  |  |
| New Haven and |  |  |  |  |  |  |
| New York | 2,634 |  |  |  |  | 1,84,5 |
| Philadelphia |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |
| Washington |  |  |  |  |  |  |

Table 7 (contid。)
Daily Passengers Between the Major Cities
by Rail for the Years Indi cated

| Cities | 1947 | 1952 | 1957 | 1958 | 1961 | 1962 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| New York and |  |  |  |  |  |  |
| Philadelphia | 13,273 | 10,029 | 7,464 | 6,658 | 6,858 | 5,385 |
| Baltimore | 2,926 | 2,211 | 1,546 | 1,470 | 1,254 | 1,187 |
| Washington | 3,872 | 2,926 | 2,177 | 1,943 | 2,209 | 1,570 |
| Philadelphia and |  |  |  |  |  |  |
| Baltimore | 1,845 | 1,394 | 1,038 | 914 | 896 | 749 |
| Washington | 2,484 | 1,878 | 1,397 | 1,232 | 1,077 | 1,008 |
| Baltimore and |  |  |  |  |  |  |
| Washington | 1,440 | 1,088 | 810 | 726 | 873 | 584 |

Table 8

## Daily Rail Passengers $194 ?$

Cities Wash. Balt. Wilm. Phila. Trent. Nªrk. N.Y. Stam。
Boston $\quad 3,647 \quad 99$

Providence
New London
Springfield
1.,549

99

Hartford
New Haven
Bridgeport
S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton
Philadelphia.
Wilmington
Baltimore
3,872
2,926
1,269
13,273
5,970
492
84
1,632
2,634 $\quad 174$
2,761 302
1,215 321
2,278

|  | W'by. | S. Nor. | B'pt. | N.Hav. | Hart. | Sifld. | N.Lon. | Provo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston |  | 18 | 145 | 318 | 310 | 149 | 206 | 2,418 |
| Providence |  | 8 | 71 | 157 |  |  | 90 |  |
| New London |  |  |  | 205 |  |  |  |  |
| Springfield |  |  |  |  | 599 |  |  |  |
| Hartford |  |  |  | 592 |  |  |  |  |

New Haven
$75 \quad 796$
Bridgeport
362
S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton
Philadelphia
Wilmington
Baltimore

## Daily Rail Passengers 1952

Cities Wash. Balt. Wilm. Phila. Trent. Newark through Boston

Boston N
Providence
New London
Springfield
Hartford
New Haven

○

D
a
t
a
S. Norwalk Waterbury
Stamford New York
Newark
Trenton
Philadelphia Wilmington
Baltimore
2,926
2,211 959 10,029
4,510
$442109 \quad 1,674$
$1,878 \quad 1,394 \quad 2,245$
286224
1,088

Table 10
Daily Rail Passengers 1957

Cities Wash. Balt. Wilm. Phila. Trent. Newark through Boston
Boston
Providence

N
○

D
a
t a

New London
Springfield
Hartford
New Haven
Bridgeport
S. Norwalk

Waterbury
Stamford
$\begin{array}{llllll}\text { New York } & 2,177 & 1,646 & 714 & 7,464 & 3,357\end{array}$
Newark
Trenton
Phíladelphia
329
1,397
1,038
1,246
Wilmington
213167
Baltimore
810

## Table 11

## Daily Rail Passengers 1962

$\qquad$
Cities
Wash. Balt. Wilm.
Boston
Providence
New London
Springfield
Hartford
New Haven
Bridgeport
S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton

$$
1,570 \quad 1,187
$$

$515 \quad 5,385 \quad 2,422$

Philadelphia
237
58
889

Wilmington
1, 008
749 1,206
Baltimore
$153 \quad 120$
584

Wlby. S.Nor. B'pt. N.Hav. Hart. Sifld. NoIon. Prov.

| Boston | 7 | 47 | 134 | 0 | 0 | 148 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Providence | 4 | 35 | 77 | 1 | 552 |  |
| New London | 2 | 21 | 61 | 0 | 0 | 60 |
| Springfield | 2 | 11 | 22 | 72 |  |  |
| Hartford | 7 | 52 | 134 |  |  |  |
| New Haven | 9 | 128 |  |  |  |  |
| Bridgeport | 20 | 62 |  |  |  |  |
| So Norwalk |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |
| New York |  |  |  |  |  |  |
| Newark |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |
| Philadelphia |  |  |  |  |  |  |
| Wilmington |  |  |  |  |  |  |


FIG. II. DAILY RAIL DENSITY (1947)

1961


The study was limited to the following carriers: Greyhound Corporation, Eastern Greyhound Lines Division, Safeway Trails, Inc., The Short Line, Inc., and Trailways of New England, Inc. The study was further limited solely to express schedules for the more densely traveled routes, which resulted in slightly conservative data.

In order to obtain the bus traffic data for the years 1947, 1952 and 1957, the 1962 average daily city to city passenger traffic was applied to the total passengers carried that year by all the bus lines in the courity to obtain percentages. These percentages were then applied to the total passengers carried for the years under study (1947, 1952, 1957) in order to determine the corresponding city to city passenger traffic. Because of this method of estimation, only the 1962 passenger figures can be given a reasonable degree of reliability.

Table 12 indicates the average daily passenger traffic between the nine major cities within Megalopolis, while tables 13 through 16 indicate the average daily passenger traffic between all the cities along the BostonWashington corridor for which data was obtained. Figures 14 and 15 illustrate the daily bus density along the Boston-Washington corridor for 1947 and 1962.

## Airline Passenger Traffic

The data for determining actual intercity travel by air was obtained from the Air Transport Association of America located in Washington, D. Co, which publishes information collected by the Civil Aeronautic Board conm cerning the number of air passengers traveling between any city pair served (34, 35, 36, 37) by air. air passengers were determined for the years of interest (1947, 195\%, 1957, 1962):

## Daily Passengers Between the Major Cities

 by Bus for the Years Indicated| Cities | 1947 | 1952 | 1957 | 1962 |
| :---: | :---: | :---: | :---: | :---: |
| Boston and |  |  |  |  |
| Providence | 998 | 652 | 440 | 392 |
| Springfield | 533 | 349 | 235 | 210 |
| Hartford | 1,810 | 1,184 | 800 | 714 |
| New Haven | 742 | 486 | 328 | 292 |
| New York | 2,861 | 1,872 | 1,264 | 1,124 |
| Philadelphia | 354 | 231 | 156 | 139 |
| Baltimore | 66 | 43 | 29 | 26 |
| Washington | 641 | 420 | 283 | 252 |
| Providence and |  |  |  |  |
| Springfield |  |  |  |  |
| Hartford |  |  |  |  |
| New Haven | 213 | 139 | 94 | 84 |
| New York | 1,168 | 764 | 516 | 459 |
| Philadelphia | 53 | 35 | 23 | 21 |
| Baltimore | 10 | 6 | 4 | 4 |
| Washington | 53 | 35 | 24 | 21 |
| Springfield and |  |  |  |  |
| Hartford |  |  |  |  |
| New Haven |  |  |  |  |
| New York | 820 | 537 | 363 | 323 |
| Philadelphia |  |  |  |  |
| Baltimore |  |  |  |  |
| Washington |  |  |  |  |
| Hartford and |  |  |  |  |
| New Haven |  |  |  |  |
| New York | 2,223 | 1,454 | 961 | 857 |
| Philadelphia |  |  |  |  |
| Baltimore |  |  |  |  |
| Washington |  |  |  |  |
| New Haven and |  |  |  |  |
| New York | 2,265 | 1,482 | 998 | 890 |
| Philadelphia | 129 | 84 | 57 | 51 |
| Baltimore | 13 | 8 | 6 | 5 |
| Washington | 45 | 29 | 20 | 18 |

Table 12 (cont'd.)

## Daily Passengers Between the Major Cities

 by Bus for the Years IndicatedCities $1947 \quad 1952 \quad 1967$

New York and

Philadelphia
Baltimore
Washington
Philadelphia and
Baltimore
Washington
Baltimore and
Washington

7,802
2,049
6,834
5,104
1,340
4,470
3,447
905
3,020
3, 066
809
2,689

1,306
855
577
792
513 704

6,090
3,984
2,691
2,392

Table 13

## Daily Bus Passengers 1947

Cities Wash. Balt. Wilm. Phila. Trent. N'ark. N. Y. Stam。

| Boston | 647 | 66 | 25 | 354 | 94 | 2,861 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Providence | 53 | 10 |  | 53 |  | 1,168 |
| New London |  |  |  |  | 369 |  |
| Springfield |  |  |  |  | 820 |  |
| Hartford |  |  |  |  |  |  |
| New Haven | 45 | 13 |  | 129 | 6 | 2,175 |
| Bridgeport | 53 | 6 | 22 | 259 |  |  |
| Si |  |  | 445 |  |  |  |

S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton
Philadelphia
Wilmington
Baltimore
$\begin{array}{llllll}6,834 & 2,049 & 592 & 7,802 & 251 & 2,049\end{array}$
$498 \quad 163 \quad 88 \quad 1,473$
$\begin{array}{llll}60 & 27 & 20 & 185\end{array}$
$1,792 \quad 1,306 \quad 654$
533338
6,090

W'by. S.Nor. B'pt. N.Hav. Hart. S'fld. NoLon. Prov.

| Boston | 195 | 742 | 1,810 | 533 | 480 | 998 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Providence
New London
Springfield
Hartford
New Haven
295
Bridgeport
S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton
Philadelphia
Wilmington
Baltimore

## Table 14

## Daily Bus Passengers 1952

| Cities | Wash. | Balt. | Wilm. | Phila. | Trent. | $\mathrm{N}^{-1} \mathrm{ark}$. | N. I . | Stam。 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | 420 | 43 | 17 | 231 |  | 615 | 1,872 |  |
| Providence | 35 | 6 |  | 35 |  |  | 764 |  |
| New London |  |  |  |  |  |  | 241 |  |
| Springfield |  |  |  |  |  |  | 537 |  |
| Hartford |  |  |  |  |  | 31 | 1,423 |  |
| New Haven | 29 | 8 |  | 84 |  | 4 | 1,478 |  |
| Bridgeport | 35 | 4 |  | 15 |  |  | 291 |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York | 4,470 | 1,340 | 387 | 5,104 | 164 | 1,340 |  |  |
| Newark | 326 | 106 | 58 | 964 | 46 |  |  |  |
| Trenton | 39 | 17 | 13 | 121 |  |  |  |  |
| Philadelphia | 1,172 | 855 | 428 |  |  |  |  |  |
| Wilmington | 349 | 221 |  |  |  |  |  |  |
| Baltimore | 3,984 |  |  |  |  |  |  |  |
|  | W'by. | S.Nor. | B'pt. | N.Hav. | Hart. | Sifld. | N.Lon. | Prov. |
| Boston |  |  | 128 | 486 | 1,184 | 349 | 314 | 652 |
| Providence |  |  | 35 | 139 |  |  |  |  |
| New London |  |  |  |  |  |  |  |  |
| Springfield |  |  |  |  |  |  |  |  |
| Hartford |  |  |  |  |  |  |  |  |
| New Haven |  |  | 193 |  |  |  |  |  |
| Bridgeport |  |  |  |  |  |  |  |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York |  |  |  |  |  |  |  |  |
| Newark |  |  |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |  |  |
| Philadelphia |  |  |  |  |  |  |  |  |
| Wilmington |  |  |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |  |  |

## Daily Bus Passengers 1957

| City | Wash. | Balt. | Wilm. | Phila. | Trent. | N: ark. | N. $Y_{0}$ | Stam。 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | 283 | 29 | 11 | 156 |  | 41 | 1,264 |  |
| Providence | 24 | 4 |  | 23 |  |  | 516 |  |
| New London |  |  |  |  |  |  | 163 |  |
| Springfield |  |  |  |  |  |  | 363 |  |
| Hartford |  |  |  |  |  |  | 961 |  |
| New Haven | 20 | 6 |  | 57 |  | 21 | 998 |  |
| Bridgeport | 24 | 2 |  | 10 |  | 2 | 196 |  |
| S.Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York | 3,020 | 905 | 262 | 3,447 | 111 | 905 |  |  |
| Newark | 220 | 72 | 39 | 651 | 31 |  |  |  |
| Trenton | 27 | 12 | 9 | 82 |  |  |  |  |
| Philadelphia | 792 | 577 | 289 |  |  |  |  |  |
| Wilmington | 235 | J. 49 |  |  |  |  |  |  |
| Baltimore | 2,691 |  |  |  |  |  |  |  |


|  | W'by. | S.Nor. | B'pt. | N.Hav. | Hart. | Sifld. | N.Lon. | Prov. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston |  |  | 86 | 328 | 800 | 235 | 212 | 440 |
| Providence |  |  | 23 | 94 |  |  |  |  |

New London
Springfield
Hartford
New Haven
Bridgeport
S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton
Philadelphia
Wilmington
Baltimore

Table 16

## Daily Bus Passengers 1962

Cities Wash. Balt. Wilm. Phila. Trent. N'ark. N. Y. Stam.

| Boston | 252 | 26 | 10 | 139 |  | 37 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Providence | 21 | 4 |  | 21 | 124 |  |
| New London |  |  |  |  |  | 459 |
| Springfield |  |  |  |  |  | 145 |
| Hartford |  |  |  |  | 51 |  |
| New Haven | 18 | 5 |  | 9 |  | 19 |
| Bridgeport | 21 | 2 |  |  | 897 |  |
| S. Norwalk |  |  |  |  |  | 175 |
| Waterbury |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |
| New York | 2,689 | 809 | 223 | 3,066 | 99 | 809 |
| Newark | 196 | 64 | 35 | 583 | 28 |  |
| Trenton | 24 | 11 | 8 | 73 |  |  |
| Philadelphia | 704 | 513 | 257 |  |  |  |
| Wilmington | 210 | 133 |  |  |  |  |
| Baltimore | 2,392 |  |  |  |  |  |

W'by. S.Nor. B'pt. N.Hav. Hart. S'fld. NoLon. Proz\%.

## Boston

Providence
New London
Springfield
Hartford
New Haven
116
Bridgeport
S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton
Philadelphia Wilmington Baltimore

FIG. 14, DAILY BUS DENSITY ( 194.7 )

fig. 15. DAILY bus density (1962)


## Table 17

## Determination of Air Passengers

Year
1947 All tickets sold in March were counted.
1952 All tickets sold during a twowweek period in September were counted.

1957 All tickets sold during a twowweek period in March were counted.

1962 A continuous 10 per cent sample of all tickets sold during the first quarter were counted.

The number of tickets sold for the periods indicated above were then adjusted to represent average daily air passengers. Table 18 indicates the average daily passenger traffic between the nine major cities of Megalopolis, while tables 19 through 22 indicate the average daily passenger traffic between all the cities along the Bostonwashington corridor which are served by air. Figures 16 through 19 illustrate the daily air density along trse Boston*Washington corridor for 1947, 1952, 1957, and 1962.

## Daily Passengers Between the Major Cities

 by Air for the Years Indicated| Cities | 1947 | 1952 | 1957 | 1962 |
| :---: | :---: | :---: | :---: | :---: |
| Boston and |  |  |  |  |
| Providence | 12 | 11 | 8 | 6 |
| Springfield | 8 |  |  |  |
| Hartford | 96 | 40 | 74 | 37 |
| New Haven | 4 | 4 | 3 |  |
| New York | 1,531 | 1,417 | 1,794 | 3,096 |
| Philadelphia | 81 | 149 | 237 | 445 |
| Baltimore | 22 | 31 | 56 | 118 |
| Washington | 127 | 186 | 290 | 521 |
| Providence and |  |  |  |  |
| Springfield |  |  |  |  |
| Hartford |  | 2 | 2 | 3 |
| New Haven |  | 2 |  |  |
| New York | 252 | 255 | 313 | 285 |
| Philadelphia | 10 | 23 | 15 | 47 |
| Baltimore | 3 | 4 | 7 | ? |
| Washington | 9 | 27 | 40 | 51 |
| Springfield and |  |  |  |  |
| Hartford |  |  |  |  |
| New Haven |  |  |  |  |
| New York | 15 |  |  |  |
| Philadelphia | 3 |  |  |  |
| Baltimore |  |  |  |  |
| Washington | 3 |  |  |  |
| Hartford and |  |  |  |  |
| New Haven |  |  |  |  |
| New York | 101 | 142 | 193 | 241 |
| Philadelphia | 7 | 20 | 28 | 78 |
| Baltimore | 2 | 7 | 1 | 14 |
| Washington | 14 | 42 | 60 | 100 |
| New Haven and |  |  |  |  |
| New York | 1 | 6 | 4 | 2 |
| Philadelphia |  |  |  |  |
| Baltimore |  |  | 1 |  |
| Washington |  | 3 | 4 | 9 |

Table 18 (contid.)

## Daily Passengers Between the Major Cities by Air for the Years Indicated

| Cities | 1947 | 1952 | 1957 | 1962 |
| :---: | :---: | :---: | :---: | :---: |
| New York and |  |  |  |  |
| Philadelphia | 47 | 114 | 120 | 165 |
| Baltimore | 72 | 103 | 177 | 264 |
| Washington | 845 | 1,268 | 1,630 | 2,575 |
| Philadelphia and |  |  |  |  |
| Baltimore | 1 | 2 | 1 | 15 |
| Washington | 35 | 101 | 168 | 263 |
| Baltimore and Washington | 17 | 30 | 26 | 30 |

Table 19

## Daily Air Passengers 1947

Cities Wash. Balt. Wilmo Phila. Trent. Niark. No Yo Stamo

| Boston | 127 | 22 |  | 81 |  |  | 1,531 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Providence | 9 | 3 |  | 10 |  |  | 252 |  |
| New London |  |  |  |  |  |  |  |  |
| Springfield | 3 |  |  | 3 |  |  | 15 |  |
| Hartford | 14 | 2 |  | 7 |  |  | 101 |  |
| New Haven |  |  |  |  |  |  | 1 |  |
| Bridgeport | 1 |  |  |  |  |  | 3 |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York | 845 | 72 |  | 47 |  |  |  |  |
| Newark |  |  |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |  |  |
| Philadelphia | 35 | 1 |  |  |  |  |  |  |
| Wilmington |  |  |  |  |  |  |  |  |
| Baltimore | 17 |  |  |  |  |  |  |  |
|  | W'by. | S.Nor. | B'pt. | N.Hav. | Hart. | $S^{\text {S }}$ fld。 | N. Lon. | Prov. |
| Boston |  |  | 11 | 4 | 96 | 8 |  | 12 |
| Providence |  |  |  |  |  |  |  |  |
| New London |  |  |  |  |  |  |  |  |
| Springfield |  |  |  |  |  |  |  |  |
| Hartford |  |  |  |  |  |  |  |  |
| New Haven |  |  |  |  |  |  |  |  |
| Bridgeport |  |  |  |  |  |  |  |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York |  |  |  |  |  |  |  |  |
| Newark |  |  |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |  |  |
| Philadelphia |  |  |  |  |  |  |  |  |
| Wilmington |  |  |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |  |  |


| Cities | Wash. | Balt. | Wilm. | Phila. | Trent. | $\mathrm{N}^{\text {tark }}$. | N. $\mathrm{Y}_{0}$ | Stam. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | 186 | 31 | 6 | 149 |  |  | 1,417 |  |
| Providence | 27 | 4 | 2 | 23 |  |  | 255 |  |
| New London |  |  |  |  |  |  |  |  |
| SpringfieldHartford | 42 | 7 |  | 20 |  |  | 142 |  |
| New Haven | 3 |  |  |  |  |  | 6 |  |
| Bridgeport |  |  |  |  |  |  |  |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York | 1,268 | 103 | 5 | 114 |  |  |  |  |
| Newark |  |  |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |  |  |
| Philadelphia | 101 | 2 | 1 |  |  |  |  |  |
| Wilmington | 4 |  |  |  |  |  |  |  |
| Baltimore | 30 |  |  |  |  |  |  |  |
|  | W'by. | S.Nor. | B'pt. | N.Hav. | Hart. | Sifld. | NoLon. | Prot. |
| Boston |  |  | 2 | 4 | 40 |  |  | 11. |
| Providence |  |  |  | 2 | 2 |  |  |  |
| New London |  |  |  |  |  |  |  |  |
| Springfield* Hartford |  |  |  |  |  |  |  |  |
| New Haven |  |  |  |  |  |  |  |  |
| Bridgeport |  |  |  |  |  |  |  |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York |  |  |  |  |  |  |  |  |
| Newark |  |  |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |  |  |
| Philadelphia |  |  |  |  |  |  |  |  |
| Wi.lmington |  |  |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |  |  |

## Daily Air Passengers 1957

| Cities | Wash | Balt. | Wilm. | Phila. | Trent. | N'ark. | N.Y. | Stam。 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | 290 | 56 | 12 | 237 |  |  | 1,794 |  |
| Providence | 40 | 7 | 1 | 15 |  |  | 313 |  |
| New London | 2 |  |  |  |  |  | 1. |  |
| SpringfieldHartford | 60 | 1 | 1 | 28 |  |  | 193 |  |
| New Haven | 4 | 1 |  |  |  |  | 4 |  |
| Bridgeport | 2 |  |  |  |  |  | 1 |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York | 1,630 | 177 | 6 | 120 |  |  |  |  |
| Newark |  |  |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |  |  |
| Philadelphia | 168 | 1 | 1 |  |  |  |  |  |
| Wilmington | 7 |  |  |  |  |  |  |  |
| Baltimore | 26 |  |  |  |  |  |  |  |
|  | W'by. | S.Nor. | B'pt. | N.Hav. | Hart. | S'fld. | NoLon. | Provo |
| Boston |  |  | 4 | 3 | 74 |  |  | 8 |
| Providence |  |  |  |  | 2 |  |  |  |
| New London |  |  |  |  |  |  |  |  |
| Springfielda Hartford |  |  |  |  |  |  |  |  |
| New Haven |  |  |  |  |  |  |  |  |
| Bridgeport |  |  |  |  |  |  |  |  |
| S. Norwalk |  |  |  |  |  |  |  |  |
| Waterbury |  |  |  |  |  |  |  |  |
| Stamford |  |  |  |  |  |  |  |  |
| New York |  |  |  |  |  |  |  |  |
| Newark |  |  |  |  |  |  |  |  |
| Trenton |  |  |  |  |  |  |  |  |
| Philadelphia |  |  |  |  |  |  |  |  |
| Wilmington |  |  |  |  |  |  |  |  |
| Baltimore |  |  |  |  |  |  |  |  |

Table 22

## Daily Air Passengers 1962

Cities

| Cities |  | Wash. |  | Balt. |  | Wilm. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | Phila.

W'by. S.Nor. B'pt. N.Hav. Hart. Sifld. NoLon. Prov.
$\begin{array}{lll}\text { Boston } & 17 & 37\end{array}$
Providence
New London
Springfield* Hartford
New Haven
Bridgeport
S. Norwalk

Waterbury
Stamford
New York
Newark
Trenton
Philadelphia
Wilmington
Baltimore

FIG. IE. DAIKY AIR DENSITH (1947)


FIG. 17. DAILY AIR DENSITY (1952)


FIG 18. DAILY AIR DENSITY (1957)



## Chapter 5

## Evaluation

The decline of commercial passenger traffic in Megalopolis since 1947 is rather evident from the data presented in Chapter 4。 Percentage wise the commercial passenger traffic has decreased 47 per cent from 1947 to 1962, while the population of Megalopolis has increased 18 per cent. With regard to a high-speed rail transportation system, there are two major questions to be answered: What has caused this decline in passenger traffic, and is the trend reversible?

Undoubtedly one of the major causes affecting the loss of commercial passenger traffic has been the increased utilization of the automobile, along with the excellent network of highways in Megalopolis. It will soon be possible to drive from Boston to Washington without ever having to stop for a traffic light. Many of the large metropolitan areas in Megalopolis are either enclosed by a circumferential limitedaccess highway or have an expressway passing through the center of the metropolitan area, thus allowing the intercity motorist to avoid the central business district if he so desires. To better illustrate the increase in automobile traftic, data obtained from the Connecticut Highway Department showed that the average daily traffic at Stratford and Milford, Connecticut (12 miles west of New Haven), for 1947 and 1962 was as follows: (2)


The Pennsylvania and New Haven Railroads, instead of attempting to encourage the people to ride their trains after passenger revenue started to decline during the early "fifties," did just the opposite by reducing service (or in some cases canceling service altogether) and raising fares. These two items were accomplished in an attempt to maintain the same revenue; however, the result was that more people stopped riding the trains and started using their automobiles. Between 1947 and 1962 the passenger traffic on the Boston-New York segment of the New Haven Railroad decreased 75 per cent, and, similarly, on the New York - Washington segment of the Pennsylvania Railroad passenger traffic decreased about 50 per cent. The fault does not lie entirely with the railroads, however. They are very heavily taxed in Megalopolis and in 1962 showed only a 1.77 per cent return on their investment。 (38)

Airline traffic, on the other hand, has steadily increased in Megalopolis since 1947 due to the expansion of service and the desire of travelers for a more rapid means of transportation. Presently New York Boston and New York-Washington are the two most densely traveled air routes in the United States. (37)

The reversibility (or irreversibility) of the decline of raill passenger traffic has been a controversial subject. Some people believe that the end of rail passenger service is inevitable, whereas many more believe that rail passenger service is indispensable and cannot be duplicated by any other means of transportation. Railroads are inherently the most efficient means of land transportation in existence. Whether or not they are efficiently utilized is another question.

There are several major factors that may help increase rail passenger traffic in the future, whether or not any improvements are made by the Pennsylvania or New Haven railroads. The most important of these factors is the rapid rate at which the new super highways are becoming overcrowded。 It has been estimated that by 1980 the new 41,000mile National System of: Interstate Highways will be inadequate. Another factor is the increase in air travel time caused by many airports being oversaturated with commercial flights, which results in delays of landing and taking off. This condition is especially bad in Megalopolis. Another problem facing the airlines in Megalopolis is the age of their short-haul intercity aircraft. As these planes are replaced with jet aircraft, operating costs will increase with little possibility of an equivalent increase in revenue. This may resuit in air routes of under 500 miles becoming more unprofitable. The major short-haul airline in Megalopolis, Eastern, is already wresting with a staggering deficit.

The authors believe that the above factors will ultimately help increase the rail passenger traffic in Megalopolis. However, with the combination of the above factors and the construction of a new highospeed rail system between Boston and Washington, there is no question that the rail passenger traffic would increase. The new high-speed rail system
would provide the following six factors，any four of which usually result in an increase of passenger traffic：
（I）Reduction in fare。
（2）Faster schedule．
（3）Better timing of schedules．
（4）Modern equipment．
（5）Increased advertising and promotion．
（6）Relocation of some terminals and stops．
Another phase of the Transportation Science Program at Princeton University has been to estimate the amount and sources of revenue required to make a high－speed rail system in Megalopolis successful．Based on a construction cost of twomandmone－half billion dollars for the complete system，including equipment，it is estimated that the system should gross about 800 million dollars per year in order to be considered profitable． This 800 million dollars in revenue would come from the following sources： passengers， 150 million；mail and express， 50 million；auto piggyback， 200 million；truck piggyback， 200 million；and bulk freight， 200 million．Based on a revenue of 3.5 cents per passenger mile，an average density of 27,400 passengers per day（13， 700 each way）along the highospeed line would be re－ quired in order to attain the 150 million dollars from passenger traffic．\％ This is 31.4 per cent of the estimated potential of 87,130 passengers per day for all commercial carriers（refer to Fig。10）。 Table 23 shows a comparison between 1947 and 1962 total commercial passengers（rail，bus and air）for certain intercity pairs in Megalopolis and what percentage of the 1960 potential was achieved。

[^0]Table 23

Total Commercial Traffic Between Major Cities for the Indicated Years Compared to 1960 Potential

| City Pairs | 1947 | Per Cent Potential | Potential | 1962 | Per Cent <br> Potential |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Boston-Hartford | 2,216 | 79.1 | 2,801 | 75. | 26.8 |
| Boston-New Haven | 1,064 | 103.3 | 1,030 | 426 | 41.3 |
| Boston-New York | 8,039 | 37.4 | 21,452 | 5,506 | 25.6 |
| Providence-New Haven | 370 | 74.7 | 495 | 161 | 32.5 |
| ProvidencemNew York | 2,969 | 36.6 | 8,112 | 1,428 | 17.6 |
| Hartford-New York | 3,956 | 25.2 | 15,672 | 1,989 | 12.6 |
| New Haven - New York | 4,900 | 105.9 | 4,623 | 2,737 | 59.2 |
| New York-Philadelphia | 21,122 | 63.8 | 33,077 | 10,089 | 30.5 |
| New York-Baltimore | 5,047 | 35.1 | 14,374 | 2,327 | 16.1 |
| New YorkwWashington | 11,484 | 40.3 | 28,470 | 7,473 | 26.2 |
| Philadelphia-Baltimore | 3,152 | 79.9 | 3,942 | 1,424 | 36.1 |
| PhiladelphiaoWashington | 4,311 | 30.1 | 14,284 | 2,044 | 14.3 |
| Total | 68,630 | 711.3 | 148,332 | 36,355 | 338.8 |


| Traffic loss between 1947 and $1962 \infty 47 \%$ |  |
| :--- | :--- |
| Average Potential in 1947 | $\infty 59.2 \%$ |
| Average Potential in 1962 | $\infty=\infty 28.2 \%$ |

In view of the above figures and previous discussion, it appears reasonable to expect that a highospeed rail transportation system between Boston and Washington could realistically generate a volume of passenger traffic necessary for profitable operations.

It was established in Chapter 2 that the most logical area in the United States to construct this high-speed rail system was between Boston and Washington. However, a similar highospeed rail system could also be successfully utilized in the future in other large metropolitan areas, such as:

> SacramentowSan Francisco (Oakland)wLos AngelesmSan Diego Milwaukee»Chicago-DetroitaToledo=Cleveland-Pittsburgh
> Chicago-IndianapolisøCincinnati or Cleveland-ColumbusmCincinnati
> Kansas CitymSt。LouismChicago
> Ft. Worth (Dallas) oHouston $\curvearrowleft$ New Orleans
> MiamioJacksonville
> Portland-seattleaVancouver, B.C, etc.

## Appendix A

## Summary of Schedules and Services

Train Frequency at Major Megalopolis Points

The basic service to be operated in conjunction with the proposed high－speed rail service in the Washington - Boston area is based upon regular through fast trains every other hour to and from each major metropolitan area．In this fashion，with alternate routing available，there is the equivalent of regular hourly fast service among all major city pairs．The following table summarizes this service．

BOSTON Hourly $\infty$ Y shuttle via O．R．to Providence．Hourly N．R． MASS Limiteds to N．Y．consisting of oddهhour－B nonstops to Penn． Sta．，and even hour ojolm onemstops（Hartford）to Penn．Sta。 and G．C．T．Hourly service to Phila．and Washington consisting of odd－hour $-E$－limiteds and even $\propto$ hour $-J \infty 2 \infty$ expresses with walk－up transfer．Also oddohour wo shoreline（ O．R。）expresses via Providence and New London to New Haven．Thence via NoR． to Grand Central．
Summary．Equivalent of hourly service to Providence，Hartford， New York，Phila．，and Washington．Two－hourly service to New London，Springfield and Baltimore．

PROVIDENCE Hourly－Yo shuttile via O．R．to Boston．Hourly service to R．I．New York consisting of odd $\infty$ hour oP $\infty$ 2－onesstops to Penn．Sta． or G．C．T．and evenゅhour $\infty J \infty 2 \infty$ limiteds with walkwup transfer to G．C．T．Both these services（ $\mathrm{P}-2$ \＆ $\mathrm{J}-2$ ）stop at Hartford West． Hourly service to Washington Line consists of thru oJo2e even－ hour trains and crosswplatform transfer at WestwHartford on odd - hour $\propto \mathrm{P} \infty$ 2－trains．Also even $\sim$ hour - We trains via O．R． shoreline to New London，New Haven and N．R．to G．C．T． Summary．About the same as Boston．

NEW LONDON Odd－hour $⿰$ wh service to Providence and Boston via the O．R． CONN．

WORCESTER Fifteen $\propto$ minutesゅafter even－hour service on $\propto M \infty$ trains to MASS． South Springfield，Hartford，West Haven，and New Yorkoowith choice of either Penn．Sta．or Grand Central．Crossoplatform transfer at West Haven to Washington Line via oFo trains． －Jo trains stop at South Worcester on the N．R．also giving twenty－after－even－hour service to N．Y．，both stations，and to Phila．，and Washington．

SPRINGFIELD Quarter till odd－hour 2wstop service on wodo trains from Springw MASS．

HARTFORD From Downtown Hartford：Odd hour - Mo service via O．R．and
field to New York including walkothru transfer to Washington （ N 。R。）cars．Thirty minutes after odd－hour service，3ostops， downtown Springfield to Penn．Sta．and Grand Central via NoR． - Poo trains．At 25 minutes after even hours，through $-K c$ trains from Conn．Valley via Old Hartford thence $N$ 。R。 express to either Penn．Sta．or Grand Central．Twentyoafterweven hour service to Providence and Boston via $\quad$ Jo trains． Summary．Hourly service to all of New York City and West Hart－ ford；two－hourly service to Washington Line，Boston and Providence， and to downtown Hartford．Change at downtown Hartford for two hourly service to local O．R．shoreline points to New York \＆ Phila．By changing at Hartford West on $\infty P_{\infty}$ trains，hourly service is available to New Washington Line．（oP® trains to －E trains．）

CONN。

New Britain to N．R．and New York City，either Penn Sta．or G．C．T．Also oddwhour $=$ Co service via O．R．and shoreline to New Haven，Bridgeport，Penn．Sta．and Wash．Line．Evenohour －T＊train service via shoreline O．R．to G．C．T．（－T－trains）。 From West Hartford on New Route：Even－hour－Es trains to Phila．and Wash．$\%$ even hour $-P_{\infty}$ service nonstop to Penn Sta． or G．C．T．Odd－hour－Jo service to New York and to all Wash． Line points。Hourly $\rightarrow \mathrm{P} \propto \&-J \infty$ trains to Boston and Providence． Summary．Hourly service from West Hartford to Boston，Provi＝ dence，all of New York，Phila．and Wash．，etc．Hourly service from downtown Hartford to Springfield and O．R．shoreline points，including thru cars to Phila．area．

WATERBURY Two hourly oFo trains eastbound at even hours to W．Hartford， MERIDEN New Route Sta．

MERIDEN STA．Two－hourly $C$ C－trains to Penn。Sta。 and Washington points via Old Route old shore line at 20 minutes after odd hours and two hourly －T trains via old shore line to Grand Central at 20 minutes after even hours．North - bound hourly $-C \infty$ and $-T \infty$ trains at 40 minutes after the hour to Hartford and Bradley Field stations．

NEW HAVEN Hourly shore - line trains（ $\infty$ C－and $-\mathrm{T}_{\infty}$ ）to Bridgeport and Old Sta．New York，alternating GoC．T．and Penn Sta。with latter running through to Washington．Two hourly New Route Trains，－Wo service from New London to G．C．T．at 35 min．after odd hours on NoR．Two whourly w．${ }^{(1)}$ service to New London and Providence at 10 min．after even hours．

WEST NEW HAVEN
New Route

Two mourly oWe service as described above，to N。Y。 and New London。 Also－Fotrains as described for Waterbury $\propto$ Meriden leaving ten minutes to even hours eastbound and 30 min ．after odd hours westbound．Also twowhourly $-M \omega K_{\infty}$ trains to Hartford，Springo field and Worcester leaving on same schedules as $\omega$ F $\omega$ trains； ditto New York（westbound）$-\mathrm{M} \omega \mathrm{K} \odot$ schedules．

BRIDGEPORT New Route Station．Essentially same trains as West New Haven． Old Route Station．Essentially same trains as downtown New Haven except $\alpha$ We trains which run via the New Route．

STAMFORD New Route Station．Same service as West New Haven \＆West NORWALK AREA

NEW YORK CITY

Bridgeport，
Old Route Station．Same service as Old Route Bridgeport Station．
All trains except Providence shuttle and－Fe service（Wash。w Boston mail trains）service downtown New York．

Penn Station：Hourly N．R．trains to Trenton－Phila．－Balt．\＆ Wash．Two－hourly N．R．trains to Wilmington，Harrisburg \＆ Albany．Twomhourly O．R．trains to Phila．，Balt．\＆Wash． Grand Central：Hourly N．R．trains to Boston，Providence，Harto ford．Two hourly NoR。 trains to New London，Old Hartford，Spring field and Worcester．Hourly O．R．trains to New Haven \＆Hartford。 Penn。Sta．Summary．A，X，Z，C，P $-1, K, W, J_{\infty} 1$ Grand Central Summary．$B, P-2, J=1, M, W, T$

TRENTON West Trenton－New Line．Two $\quad$ hourly - Fo trains at 30 min。 after even hours to Boston（eastbound）with platform transfer at Hartford to $\quad \mathrm{J}-2 \infty$ trains for Providence；westbound at quarter till odd hours to West Phila．，Bal．t．，and New York．（Hourly －Za Clocker service to both Phila．points and New York．）Also two hourly ©CX－service to both O．R．and N．R．Phila．．．Wash． intermediate points，westbound，at even hours． Downtown Trenton 0ld Route．Two hourly oCX ctrains to New York New Haven－Hartford（east）at 15 min．after odd hours and both N．R．and O．R．Phila．oWash．points（westbound）at 15 min．after even hours．
Summary．Trains each 30 min ．West Trenton to New York．
PRINCETON－New Line Stations．Certain $-C X \infty$ trains to provide every other NEW BRUNS－ WICK，N．J．
hour service at about $8: 15 \infty 8: 30$（even hours westbound）and 9：45－10：00（oddehours eastbound）to N．Y．or Washington． Old Line Stations．©CX trains will stop about 30 min ．after odd hours westbound．Thus a 2 hourly service to all New York and all Phila．－Wash．points．Service to New England is avail－ able on all O．R．©CX trains to Hartford and from West Trenton to Boston and Providence on the $\infty \mathrm{F}$ trains．

PHILADELPHIA All Routes

WILMINGTON
Old Route

BALTIMORE Maryland

WASHINGTON Dulles Field．Hourly－CX－expresses to New York and Kennedy
30th Street：Hourly－Zo clocker service via NoR。 and Phila。 N．W．，to West Trenton and Manhattan－Kennedy。 Running time to New York one hour from 30th Street．Two hourly dCX trains via old Trenton Route from Wash．to N．Y．at quarter till odd hours and two－hourly N．Y．oWash．©CX－trains via old Wilmington Route at quarter till odd hours． North Phila．：Two－hourly ©CX－trains（N．Y．to Wash．）west． bound at half after odd hours with both NoR．and O．R． sections（running times to Wash． 2 hours and $13 / 4$ hours respectively）．Two hourly oCX trains eastbound Washington to New York on the odd hours：running time one hour flat via Trenton．Thru cars to New Haven \＆Hartford． New No．Phila。\＆N．W．Phila．：－Z－clocker trains hourly via West Trenton and New Route to Manhattan． West Phila．：Hourly $=$ CX－trains to New York alternating via
 and via N．W．Phila．\＆West Trenton（New Route）at 30 min． after odd hours．Running times one hour via new route and 90 minutes via old Trenton Route．

Two hourly clocker \＆Le trains via 30 th St．and New Route in 75 minutes to Manhattan $\propto$ Kennedy at 15 minutes before even hours．Twowhourly - CX－service via old Trenton Route to New York at half after even hours in about 90 minutes； thru cars to New Haven and Hartford；change at Penn。Sta。 or Hartford for Boston．Two－hourly－CX－service at odd hours westbound to Balt．\＆Washington．

Downtown Stations．Hourly $\infty$ CX - trains to Phila．\＆N．Y。 points，running in two hours，on N．R．connection at 30 min．after the even hours and in twomandma－half hours via Wilmington oTrenton old route at half after the odd hours．Hourly service locally to Washington via the －CX－trains．Change at W．Phila．for New England． West Baltimore New Route Stations．Hourly oCX－trains to Phila．and N．Y．points alternating via N．R．all the way and via No．Phila．－Trenton old line．Running times 2 and 2 I／2 hours，respectively．Also two－hourly－Fo trains at twenty－after odd hours to New England points and twentyo before even hours to Washington points．Westbound hourly service to Dulles Field via ©CX trains． alternating New Route all the way and via Old Route beyond W．Phila．Cross platform change for New England points at W．Phila．or Newark．Running time 2 to 2 l／2 hrs． Union Station．Hourly $\infty \mathrm{E}-$ and $-\mathrm{J}-2 \infty$ services to Boston and Providence．$\infty$ Jo－2－trains run through to Prov．at odd hours，$\infty$ E－trains run on even hours．Hourly $\sim A=$ non－ stop service to Penn．Station only．Running time 2 hours flat．

Train Service Key to PROPOSED PRINCIPAL PASSENGER TRAIN SERVICE Among Key Population Areas in Megalopolis on the Projected High－Speed Washington－Boston Line

| Stations | $\begin{aligned} & \text { BOSTON } \\ & \text { (Prov.) } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { HARTFORD } \\ & \text { Area } \\ & \hline \end{aligned}$ | NEW YORK Stations | PHILA． <br> Area | WASHINGTON <br> \＆Balt． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | － | E＊ | \％ $\mathrm{B} \#$ | E兵 | E\％ |
| Providence | Y\＃ |  | P第了\％ | J $\%$ E\％ | J $*$ E 的 |
| Worcester | － | M\％ | M \％ | MF＊＊ | MFF\％ |
| New London | W\％ | $\cdots$ | W＊ | W\％ | W＊＊ |
| So．Worcester | J\％ | $\mathrm{J} \times \mathrm{M} *$ | $J * M \%$ | J $\times \mathrm{A}$ M | J $\because \mathrm{M}$ \％ |
| Springfield | － | K\％ $\mathrm{P}_{*}$ | K＊P＊ | KP\％\％ | KP\％ |
| So．Springfield | J\％ | J 瑯 $* \mathrm{~K}$ | J $*$ P $\%$ K | J $\%$ P\％ | $J \% \mathrm{P} \%$ |
| Hartford | － | － | T\％$\because$ \％M | XC\％ | XC\％ |
| Hartford West | E\％ | － | J $\%$ P\％ | $\mathrm{J} \%$ E\％ | J\％E\％ |
| Meriden Area | F\％ | T $\%$ M＊ | M $\%$ T $\%$ XC\％ | $\mathrm{F} \times \mathrm{XC} \%$ | FstXC\％ |
| New Haven | W\％ | W\％T＊C\％ | $W \% \mathrm{~T} \% \mathrm{C}$ | XC\％ | $\mathrm{XC} \mathrm{\%}$ |
| West New Haven | F\％＊W | $\mathrm{M} \times \mathrm{F}$ \％ | $W * M *$ | M $\%$ \％F\％ | M\％${ }^{\text {\％}} \mathrm{F}$ |
| Bridgeport Stas。 | W＊F\％ | $\mathrm{T} \times \mathrm{XC} \% \mathrm{~F} \%$ | $W \% \mathrm{M} \% \mathrm{~T}$ | XC \％ $\mathrm{F}_{\text {\％}}$ | XC\％F\％ |
| Grand Central |  | $\mathrm{J} \times \mathrm{P} \times \mathrm{M} \%$ | － | $\infty$ | $\infty$ |
| Penn．Sta． | \％B\＃ | P 巷为 | － | Z．XC | A\＃\＃XC |
| Kennedy | \％ | $\mathrm{S}_{*}$ | Z | Z | CX |
| W．Trenton | F＊ | F\％ | 2\＃ | F\％Z\＃CX |  |
| Trenton | CXOPJ\％ | $\mathrm{CX} \sim \mathrm{PJ} \%$ | CX | CX＊ | CX\％ |
| No．Philadelphia | CX $-\mathrm{PJ} \%$ | CX - PJ $\%$ | CX | $\infty$ | CX |
| 30th St．Philadelphia | CX $\sim$ PJ＊ | CX $\triangle$ P \％ | CX\％ | $\infty$ | CX＊ |
| W．Philadelphia | J $*$ E\％ | J＊E＊ | \＃JE\％CX | $\cdots$ | \＃JE $\because C X$ |
| Wilmington | CX $\triangle$ PJ＊ | $\mathrm{CX} \triangle \mathrm{PJ} \%$ | 2\％CX\％ | \＃乙＊CX\％ | CX＊ |
| W．Balt． | F\％ | F\％ | CX | \＃F\％X\％ | \＃F\％X\％ |
| Baltimore | CX $\quad$ PJ\％ | CX - PJ\％ | XC | XC | \＃XC |
| Union Sta．Washington | J \％$\because$ F\％ |  | A\＃ | E\％J\％CX\％ | $\infty$ |
| Dulles Field | CX $\triangle$ PJ | CX $\sim$ PJ $\%$ | CX | CX | $\infty$ |
| \＃Nonstop \＃TWo－Hourly otherwise shown．） | $\%$ Platform Transfer（All trains hourly unless |  |  |  |  |

## Bibliography

1. Bus Facts. 30th ed. Washington: National Association of Motor Bus Owners, n.d.
2. Connecticut Highway Department, Bureau of Planning-Design. A Table Showing Traffic Volumes at Automatic Recorders. February 1963.
3. L'Anneé Ferroviaire. Paris: Libraire Plon, 1963.
4. Monroe, J. Elmer. A Review of Railroad Operations in 1963. Washington: Association of American Railroads, 1964.
5. New Haven Railroad. Information obtained by the authors from New Haven Railroad on June-2-3, 1964 .
6. Pennsylvania Railroad. Information obtained by the authors from Pennsylvania Railroad on June 9-10, 1964.
7. Russell's Official National Motor Coach Guide. January 1947, March 1952 and January 1962. Cedar Rapids: Russell's Guides, Inc.
8. "Survey of Buying Power," Sales Management. New York: Sales Management, Inc., June 10, 1962.
9. U. S. Bureau of the Census. U. S. Censuses of Population and Housing: 1960. Census Tracts, Baltimore, Md. Final Report PHC(1)-13. Washington: U. S. Government Printing Office, 1962.
10.     - U. S. Censuses of Population and Housing: 1960. Census Tracts, Boston, Mass. Final Report PHC(I)-18. 1962.
11. $\qquad$ - U. S. Censuses of Population and Housing: 1960. Census Tracts, Bridgeport, Conn. Final Report PHC(1)-19. 1961.
12. $\qquad$ - U. S. Censuses of Population and Housing: 1960. Census Tracts, Hartford, Conn. Final Report PHC(1)-61. 1961.
13.     - U. S. Censuses of Population and Housing: 1960. Census Tracts, Jersey City, N. J. Final Report PHC(1)-67. 1961.
14. 

_- U. S. Censuses of Population and Housing: 1960. Census Tracts, Middlesex County, No J. Final Report PHC(I) -91. 1961.
15. $\qquad$ . U. S. Censuses of Population and Housing: 1960. Census Tracts, New Britain, Conn. Final Report PHC(I)-101. 1961.
16. $\qquad$

17．U．S．Bureau of the Census．U．S．Censuses of Population and Housing： 1960．Census Tracts，New York，N．Y．Final Report PHC（1）－104．Parts 1 and 2．Washington：U．S．Government Printing Office， 1962.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28. 29.
30.
31. of Inhabitants，Massachusetts．Final Report PC（1）－23A．1961． 32. －U．S．Censuses of Population and Housing： 1960．Census Tracts，Newark，N．J．Final Report PHC（1）$=105.1962$. $\frac{1960 \text { ．Census Tracts，Paterson－Clifton－Passaic，No Jo Final Report }}{\frac{\text { PHC（1）－114．1962．}}{} \text { ．S．Censuses of Population and Housing：}}$
－U．S．Censuses of Population and Housing： 1960．Census Tracts，Philadelphia，Pa．－N．J．Final Report PHC（I）－116． 1962。

1960．Census Tracts，Pro $\frac{\text { U．S．Censuses of Population and Housing：}}{\text { Vidence－Pawtucket，R．I．－Mass．Final Report }}$ PHC（1）－122． 1962.

1960．Census Tracts，Somerset County，N．J．Final Report PHC（I）-145 ，
1960．Census Tracts，SpringfielddChicopee－Holyoke，Mass．Final Report PHC（1）－150．1961．
－U．S．Censuses of Population and Housing：
1960．Census Tracts，Stamford，Conn．Final Report PHC（I）－151．1961。
1060 U．S．Censuses of Population and Housing： 1960．Census Tracts，Trenton，N．J．Final Report PFC（1）－160． 1961.

1960．Census Tracts，Washington，D．C．- Md．- Vapulation and Housing： 166．1962．

1960．Census Tracts，Waterbury，Conn．Final Report PHC（I）－167．1961．
1960．Census Tracts，Worcester，Mass．Final Report PHC（I）－175．1961． 19． －U．S．Census of Population：1960．Number of Inhabitants，Connecticut．Final Report PC（I）－8A．Washington： U．S．Government Printing Office，1960。
 of Inhabitants，Maryland．$\frac{\text { U．S．Census of Population：1960．Number }}{\text { Final Report PC（I）－22A．1961．}}$ of Inhabitants，New Jersey．Final Report PC（1）－32A．1961。 Number
33. U. S. Bureau of the Census. U. S. Census of Population: 1960. Number of Inhabitants, Virginia. Final Report PC(l)-48A。 Washington: U. S. Government Printing Office, 1961.
34. U. S. Civil Aeronautics Board. Airline Traffic Survey, March 1947. Vols. 2 and 3. Washington: U. S. Government Printing Office, 1947. 4 vols.
35. $\qquad$ - Origination $m$ Destination Airline Revenue Passenger Survey, September 16-30, 1952. Vols. 2 and 3., Washington: The Airline and Accounting Conference, 1952, 4 vols.
36. Passenger Survey, March 1-1 Origination $\quad 1957$ Destination Airline Revenue The Airline and Accounting Conference, 1957, 4 vols.
37.
 Airline Passenger Traffic, 1962, Ist Qtr. Vol. III-l. Washington: The Airline and Accounting Conference, 1962,4 vols.
38. Yearbook of Railroad Information, 1963 ed. Jersey City: Eastern Railroad Presidents Conference, 1963.
thesC74713
Passenger traffic analysis for a high sp


32768002093692 DUDLEY KNOX LIBRARY


[^0]:    ＊（About 10 million endatomend passengers per year equivalent at a $\$ 15$ fare for the 450 miles．）

