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-OO (<C&fc/P ABSTRACT

Electron paramagnetic resonance (EPR) and acoustic paramagnetic

resonance (APR) lineshapes have been measured for four transitions in

ruby at 5.924 GHz. Cr concentrations varying from .005% to 1% were

used. Second moments were calculated from the APR lines; half-widths

were calculated from both EPR and APR lines. A theory is presented

which yields the second moment in terms of sums over exchange and

dipole-dipole interactions between Cr pairs. It is shown that the

theory predicts moments much larger than measured due to the fact

that the stronger Cr-Cr interactions lie outside the observed line.

A qualitative calculation of the moment from the known interactions

supports this conclusion. Finally, half-widths for both APR and EPR

lines are compared and shown to be equal.
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CHAPTER I

INTRODUCTION

If a magnetic ion is placed in a crystal lattice such that

it retains all or part of its original magnetic moment, the

crystal will display macroscopic magnetic properties. In order

to understand these properties, it is necessary first to under-

stand how the magnetic ion interacts with the host lattice, and

second, how the ions interact with each other. The technique of

electron paramagnetic resonance (EPR) , discovered by Zavoisky

in 1945, has provided an experimental source from which many of

the answers can be found.

In the formative years of EPR, emphasis was placed on the

location of paramagnetic resonance lines, i.e., the combination

of microwave frequency, static magnetic field, and crystal

orientation which would produce resonance absorption of the micro-

waves. It was obvious, however, that additional information

could be derived from the lineshape itself, not only with respect

to its width, but also to its mathematical form, especially as

it was altered by temperature, crystalline environment, magnetic

field direction and magnitude, and ion concentration. Impetus was

2
given to lineshape study by Van Vleck's classic paper in which,

rather than attempting the almost impossible problem of calculating

the complete lineshape, he showed how to obtain the statistical

moments of the line in a simple and direct fashion and how, knowing

some of the moments, one could make predictions about the lineshape

itself. In particular, Van Vleck showed that the line width is due

to the spin-spin interaction between neighboring magnetic ion pairs

and that this interaction takes on two forms:



1) Magnetic dipole-dipole coupling which is caused by one

ion responding to the magnetic field of another and vice-

versa.

2) Exchange coupling resulting from a partial overlap of

the wave functions of two ions and causing an apparent

spin-spin interaction between the ions.

The result of these mutual perturbations between the ions is to

take a large number of exactly coinciding energy levels at, say,

E , and spread them out into a collection of levels very near E.. .

Transitions involving E
1
are consequently spread over a range of

energies and the line appears broadened.

Since Van Vleck's paper treated only those ions whose energy

levels are completely degenerate at zero magnetic field, Pryce and

3
Stevens were able to extend the treatment to cases where the

crystalline electric field caused the levels to be initially split.

In this case, the levels are not equidistant and Van Vleck's approach

must be modified accordingly. Pryce and Stevens' results are

especially significant: for their case, the exchange interaction

contributes sizeably to the second moment, whereas in the Van Vleck

case, exchange appears only in the experimentally less accessible

4
higher moments. Ishiguro, Kambe, and Usui have exploited this fact

in an analysis of EPR lineshapes in nickel fluosilicate ; their

success has been a strong motivating factor for the present study.

We will develop Pryce and Stevens' result in more detail in a later

section; suffice us now to say that a measurement of the second

moment of a line can yield much information concerning the exchange

forces between neighbors.

10



Late in the 1950"s, a new technique appeared for the investi-

gation of paramagnetic ions in crystals. Called acoustic paramagnetic

resonance (APR), the method is in many ways similar to EPR. Typically,

a high frequency (v ~ 10 GHz) acoustic pulse is applied to one end

of a paramagnetic crystal and allowed to reflect from the other end.

The height of this return echo is then monitored as a large static

magnetic field B is slowly varied. At the resonance value of B, the

echo diminishes sharply; here, the interpretation is that the energy

levels of the crystal have been shifted by B until there exists a

pair with energy separation equal to hv for the sound. This particle

of sound, which is analogous to the photon of EPR, is called a phonon.

Photons and phonons are not identical in their interaction with ions,

however, for the energy field-atom interaction is quite different.

Classically, EPR occurs because the atom has a magnetic dipole which

responds to the microwave field's magnetic induction H; quantum

mechanically, this leads to selection rules of Am = or im = + 1,

depending on the polarizations involved. On the other hand, APR

is caused by a lattice wave, periodically modulating the crystalline

electric field environment of the paramagnetic ion. Since the atom's

wave function is very sensitive to its environment, its orbital

angular momentum L responds to the lattice and, by the mechanism of

L-S coupling, the sound wave finds itself ultimately modulating the

electronic spin S. The perturbation is quadrupolar in nature and,

as we will show in detail later, can lead to selection rules of

Am = 0, + 1, + 2. Not only is it possible to see different

transitions with APR than with EPR, but if there is a mixing of the

11



m-states, such as when the magnetic field differs from the quanti-

zation axis, we will see a different blend of transitions between

the same two energy levels.

The basic APR technique was developed experimentally by

Jacobsen, Shiren, and Tucker; the theoretical basis was developed

in a series of papers by Altshuler and summarized in a review article

by Altshuler, Kochelaev, and Leushin. The latter paper also gives

a summary of the rather limited theoretical status of APR lineshapes.

For transitions of Am = + 1, one can show that the second moment is

exactly equal to that for EPR; but for Am = + 2 , the two moments

are significantly different. For the fourth moments of EPR and APR

in the Van Vleck case, (i.e., no zero magnetic field splitting),

London has shown that they are nearly the same; thus, comparing

second and fourth moments, the APR line should be wider. No fourth

moments have been calculated for atoms whose energy levels have

undergone crystalline field splitting. More work is necessary in

this direction.

The fact that APR and EPR lineshapes may differ seems to be

a little exploited fact. It is of interest to know specifically

what causes the shape changes and if these changes also occur for

8
atoms with crystal field splitting. Meyer, et. al., have reported

preliminary data on ruby but their study appears to have been

terminated in the literature. The only other work, to our knowledge,

9
is that of Weeks at the Naval Postgraduate School. His results

form the initial phase of the present study.

12



In this paper, we develop a theory for the second moments

of both acoustic and photon resonance lines, following the

3
prescription given by Pryce and Stevens. We then show how to

apply the theory to the case in which the magnetic field is at

an arbitrary angle to the crystal axes and we explicitely evaluate

second moments for ruby in terms of exchange and magnetic dipole-

dipole strengths. It will turn out that the second moments for

EPR and APR lines are identical, but that there is an angular

dependence resulting from mixing of the energy states when the

applied magnetic field is not parallel to the crystal c-axis.

We have also performed experiments on rubies of concentration

varying from . 0057o to 1% by weight, measuring both the acoustic

and photon lineshapes of several transitions. Halfwidths are

presented for both sets of lines, and moments are calculated from

the acoustic lines.

Finally, we compare experimental and theoretical moments,

discover that the two do not agree, and present an explanation why

agreement is difficult to expect. We also discuss the halfwidths

of both sets of lines.

13



CHAPTER II

GENERAL THEORY

The technique for obtaining the statistical moments of a

2
magnetic resonance line originated with Van Vleck, who showed

that while the precise shape of the line is prohibitively dif-

ficult to determine, the invariance of diagonal sums in quantum

mechanics allows a straightforward calculation of the line's

moments. The theory was soon expanded in several directions:

Kittel and Abrahams treated the case where the paramagnetic

ions were dilute, being an impurity added to a host crystal;

Kambe and Usui " included the temperature dependence of the

3
moments; and Pryce and Stevens derived formulas for ions

whose energy levels are initially split by a crystalline field.

12
More recently, McMillan and Opechowski have incorporated

these refinements into one set of formulas. In this section,

we will rederive the expression for second moments, following

essentially the approach of Pryce and Stevens. It will be seen

that the inclusion of phonon induced transitions does not alter

the theory in any way and that the results apply in a natural

way to APR.

We start by supposing a large number of paramagnetic ions

in a host lattice, such that each ion is characterized by an

identical set of R energy levels in the absence of any ion- ion

coupling. Two of these levels, it will be further supposed, are

separated by energy hv ; it is the width of the transitions

between these levels that we wish to calculate. To do this,

consider the quantum states \a) of the entire crystal; under

14



the assumption of no coupling, these are just products of single

ion states, so that the energy E is characterized mainly by a

certain number of ions in each single ion energy level. Of course,

since there are numerous ways to achieve a given system energy,

\a>) is highly degenerate, containing as it does all possible spin

combinations yielding the energy E . Now, if one of the ions in

\a) absorbs a photon or phonon of energy hv , then the crystal

goes into a new quantum state |3) of energy E
ft

= E +hv which

is also highly degenerate. In this model, we therefore see that

the resonance line is discrete, at hv and no broadening occurs.

We next introduce a small inter- ion coupling W =E W,
.

, where

the summation is over all ion pairs i and j. The effect of W on

the degenerate states of \a) is to introduce a number of off-

diagonal terms in the Hamiltonian matrix; we then rediagonalize

and end up with new states |a) formed from linear combinations of

the zero order states. The outcome of this process is to lift the

degeneracy of the zero order states |a), so that the energy

E = E + (a W a). The original energy level has thus been smeared
a 01 '

'

out into a very large number of closely spaced levels; our resonance

line is no longer discrete at hv but is, instead, an amalgamation

of transitions from the set of levels a) near E to the set of

levels |b) near E
ft

, all of which appear as a broad transition at

hv .

o

We can now write down the formula for the absorption A(v)

between states |a) and jb). It is

15



A(v) = (no. of transitions up) - (no. of transitions down)

« (n - n,)(E - E )|<a|M|b)|
2

6 (hv - Eu+ E )abba 111 b a

-E /kT -E /kT\
e

a
-e

b
(E - E )|<a|M|b)|

2
6[v-(E - E )/h]

/ b a b a

-E /kT
- s
£ e

i ii 1

2

where n and n are the populations of levels a and b, |(a|M|b)j is the
3 b

-E /kT
g

matrix element of an arbitrary transition inducing operator M, e is

the usual Boltzmann factor, the sum in the denominator is the partition

function over all possible levels E , and 6[v - (E - E )/h] is a delta
S Do.

function at hv = E - E . If it were possible to determine the states
b a

I

a) and |b), we could sum this expression over those states | a) and |b)

that determine the strength of the line at v; practically speaking, this

is virtually impossible since then we would have to know all the mixings

of the zero order states of la) and |(3). If we settle for sums over all

states
I

a) and | b) , however, this amounts to taking the trace of the

Hamiltonian matrix, which can be done using the zero order states. It is

this fact that makes moment calculations possible.

First we make some simplifying approximations with respect to the

temperature. We write the expression

(

E /kT -E /kT
a

- '<VV
as

-E /kT -<a W a)/kT

e e

-(hv + <b|w|>- <a|w|a))/kT

X [hv + <b|w~|b> - <a|W|a>]
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Since (b|w|b) and (a|w|a) are much less than hv we drop them

where they appear as terms and get

E /kT - <a|w|a)/kr\

/hV o l

- hv /kT
o

A next approximation is to assume (a|w|a) « kT and replace

exp (- (a |W | a)/kT) by unity; this is not very restrictive at all

since (a|w|a) is quite small. We are thus left with

A(v)
hv

E e
s

-hv /kT
o

-E /kT
s

-E /kT 2
a

I / I I \ I c r
e Kb |M|a>| 6 [ v (E. - EJ /h

]

and since the factor in brackets is just a constant, we drop that

too. In any case, we will ultimately take ratios of the above

expression so that the bracketed factor will cancel out.

We now define the lineshape g(v) of the resonance line at v

g (v ) dv =

A -E /kT 2

£ e |<a|M|b>| 6[v- ( E - E ) /h
]

a,b

-E /kT 2

2 e |<a|M|b>| 6[ v - ( EK E
a ) /h ]

a,b
b a

where the upper summation is taken over just those a,b pairs such

that hv ^(E, - E )^ h(v + dv) and the lower summation is over all
D Si

possible pairs. In fact, the denominator is just the area of the

line. The moments can be defined in terms of g(v) as follows:

<Av,.(' (v - v
q

) g(v)dv

\ "VkI n„-E)n
|<a|M|b>|

2

a,b e b a '
N

' ' '

area

where now the sun.,T.ation is over all pairs.
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In order to evaluate this, we first put it in the form of

a trace; the introduction of projection operators P and P
R
will

13
greatly simplify the form. We define P by

P - 2 |a) <a| sum over all |a) in \ot)

so that P applied to any state selects out only those in the

manifold \<y) . These operators will be useful in keeping track of

the states when we perform the traces. For instance, the area

can now be written

-E /kT

area = 2 e
a

<a|M|b) <b|M|a>
a,b

-E /kT
= S e

a <a|P
a
MPgM|a>

a

and we have a trace. The first moment involves the expression

-E /kT

X = 2 e
a

(E, - E ) |<a|M|b>|
b a ' ' ' '

a,b

-E /kT
- 2 e

a
«b|w|b> - <a|w|a))<a|M|b> <b|M|a>

a,b

-E /kT
=2 e

a <a|PMP WP M- PMPDMPW|a>,
a

and finally the second moment involves

-E /kT

Y = 2 e (E. - E )

Z
|<a|M|b>r

b a ' ' ' '

a,b
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-E /kT
= 2 e

a
<a|p MP

ft
WPDWPQM + P WP Wp jytpu

x
' 0/ P (3 P Of Of Q? $

3.

- 2P MPQWPQMP W|a>

The evaluation of these traces is a tedious but straightforward

process. We start by invoking one more approximation: that of

setting exp(-E /kT) equal to unity. Our results are therefore

restricted to moderately high temperatures, but the calculations

are considerably simplified. Retention of the exponential factor

is the basis of the temperature studies mentioned earlier.

We will use the following notation in what follows:

M =E M, : sum over all ions i
1

1

W = % E 1 W . : sum over all ions k, i, but not k = i

a) = a,, a„ , '--a ): a.) = one of R single-ion states
1 ' 1 2 n ' i

The expression for |a) is now in the uncoupled representation;

this is permissable because we are going to calculate a trace.

First, we calculate the area.

area = 2 <a|P
a
MPgM|a>

a

= 2 2 S (a.a • • -a • • -a ...a |p M^P.M la •••a ..-a ...a >12 p q n'ofTgq'l p q npqa r i ki f-i

= ESE (a, i a. ) • • • S 2 <a a I P M. PQM I a a ) • •

pqa/ 11
a a ' P q' ^ p 3 q

1

p q
i p q

R
The sums 2 (a. a.) are just 2 (1) = R, but the sum over a

i
1 l

J
i P

a. a.=l r

i i

and a is slightly more complicated. Because of P , a a ) must
q a ' p q

be in the P manifold, so that either ion p or q must be in the
a

19



lower state of our transition. If we call the two levels of the

transition 1 and 2, then a a ) = la ). la l) or
I
11); if this

1

P q ' q ' P '

were not true, then P acting back on (a a I would yield zero.
' a °

P q

Now there are two cases: either p/ q or p = q. In the former

case, we have only the three possibilities

<ll|P M PQM 111) - <11|m I 12) - <ll| 22> =
1 Of p p q 1

'
N

P

<12 1 P M PBM Il2> - <12|M PQ |ll> =x
' Oi p 3 q

1 I p 3
1 '

<2l|P M PQM I 21> -• <2l|M I 22> - <2l|l2> =N
' a p 3 q

x
' p 1

' \
\

f

so that these terms all vanish. Next we try p = q; we get

E (a la ) E < ll P M PQM I 1> = R I <i|m I 2) I

2

a p
1 p a 'apgp 1

' ^'p 171

The total area is therefore

area = E A 1
I < 1 1 M I 2> I

2
= NR

N_1
|<i|m |2>|

2

Notice that the form of M is unimportant; all that matters is
P

that it connects the two states | l) and
| 2)

.

We next calculate the second moment, although in less detail

since the procedure is identical. The expression has three terms,

the first of which is

X = S <a|p MPQWPQWPQM|a>a ' a p 3 3

-il' % ?' S 2 (a^.aJP^MPW F^ |a a>
ij ki pq a

It turns out that the only non-vanishing possibility here is

X = \ Z E < ai |a.>---E E (a.a .|PMP
fi
W..P W..PQM la.a.)

N l'l i j
1 a s p lj ^ li P t' i jJ-ja a. a J j^j j

. 1
L

j
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where s and t = i or j . Although all the substitutions of i and j

for s and t must now be considered, we display just one:

Z=<ll|P
a
M
i
P
p
W
ij

P
p
W..P

3
M.|ll>

= <l|M.|2> <2l|W
i

.P
3
W.

j
|l2> <2|M |l>

= <l|M.|2> <2|M |l> [<2l|w.
j
|l2> <12|W

ij
|l2> + <2l| W. | 21><2l|w. .

j
12>]

The evaluation of the other possibilities for s and t and of the other

terms in the moment can be performed in similar fashion. Since there

are no new assumptions or techniques, we proceed directly to the answer.

It is

h
2
<Av

2
> = ±- S* |<11|W 111) - <2l|W..|21> - <2l|w. .|l2>|

2

NR ,„
' ij ij ij

lj J J J

+ 1 <22|W. . 1 22> - <12|W..|12> - <2l|W..|l2>
1

' ij 1

' l] 1
' ij 1

R

2
s=3

+ 2
|

<ls |W. lis) - < 2s- |W. . I 2s > I

+ |<ls|W. .| s l> - <2s|w, . |
s2> I

2
1

' ij i

j

'

where we have divided by the area and thereby lost the interaction

matrix elements. This is the general expression for the second moment

Before we close this section, we make a general comment on the

form of W. .. If one writes down W. . for magnetic dipole interactions,
ij ij

one finds a number of diagonal terms and a number of off-diagonal

terms. The effect of the diagonal terms is to mix the states of P„

21



states among the PD and other states. In the latter case, we could
P

then have transitions between states where EQ - E =0, 2hv , 3hv
,

3 a ' o o'

etc., and our moments would include their areas. Since our measure-

ment is confined to the neighborhood of hv , however, we must incor-

porate this situation into the theory, namely by truncating W. . to

only the diagonal part. This step is not an approximation but

rather a requirement for obtaining the correct answer. Explicitly

how the truncation is carried out will be discussed in the next

section, when we apply our general formula to the specific case of

ruby.
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CHAPTER III

APPLICATION TO RUBY

We next apply our theory to the particular case of ruby.

We have chosen ruby for several reasons:

1. The ruby crystal structure and energy spectrum are

well known. Both energy levels and state coefficients

have been tabulated as functions of magnetic field angle

and are readily available in the literature.

2. Ruby is commercially available in many synthetic forms

due to its popularity as a laser crystal. It is extremely

hard and may be polished to a high degree of accuracy--

an important point when considering acoustic techniques.

3. Finally, the ruby lineshape has been a puzzle to many

workers over the years. We will review this previous

work in a later section.

Ruby is aluminum oxide (Al_ ) in which some of the Al ions

have been isomorphically replaced by Cr ions in the trivalent state.

The lattice symmetry is rhombohedral and belongs to the space group

D„, with four and six sites in the unit cell for aluminum and oxygen
3d

14
atoms, respectively. Figure 3-1 shows the location of the

aluminum ions in the unit cell; since we will only use the aluminum

sub lattice, we have left out the oxygens for simplicity. The edge

of the cell is a = 5.128A in length and the apex angle is a = 5 5.33 ,

A simpler way of looking at this lattice is as a slightly

distorted hexagonal close packing of oxygens, with aluminums filling

some of the interstices and the c-axis parallel to the trigonal axis

of the rhombohedral unit cell. The close packing would be perfect

23
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if the rhombohedral apex angle were 53 47' and the trigonal

coordinates of the aluminum were a/3 instead of .3475 a; neverthe-

less, we can get a good idea of the lattice if we view it as being

purely hexagonal. Figure 3-2 shows a gum drop model constructed

in this spirit, exhibiting the aluminum sub lattice both with and

without the oxygens. The first five neighbors, with which we shall

concern ourselves later, are also indicated in Fig. 3-2.

3+ 3
A free Cr ion has a 3d electronic configuration and a 4F ,

ground state. The Al site which the Cr ion occupies in ruby is

9
surrounded by a slightly distorted octohedron of oxygen ions. Weeks

has discussed the group theoretical aspects of determining the energy

3+
levels of the Cr ion under the influence of the crystalline field.

For our purposes, it is sufficient to know that the angular momentum

of the ion is quenched and an effective spin S = 3/2 describes the

four resulting levels. These levels are not all degenerate but

consist of two Kramers doublets: the lower doublet corresponds to

S = + 3/2; the upper corresponds to S = + 1/2 and lies 11.5 GHz

above the lower doublet. Upon the application of a magnetic field,

the doublet degeneracies are resolved and four non-equidistant levels

appear, but the details of the splitting are dependent on the magnetic

field direction.

The meeting point between theory and experiment in a paramagnetic

1 f>

resonance experiment is usually the so-called spin Hamiltonian ;

3+
we now use this device to. further describe the behavior of Cr in

Al 0„. Leaving out spin-spin interactions until later, the spin

Hamiltonian is

K = 3(g S H + g S h + g u S H ) - D(S
2

- \ S(S + 1))
jl xx j.yy °uzz z 3
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Fig. 3-2a. Al sublattice of Al-0- (white balls) with surrounding
oxygen sublattice (gum drops)

.

Fig. 3-2b. Al sublattice only. Atoms are approximately in

horizontal planes. Neighbors of atom are numbered 1 through 6,
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where g and g are the perpendicular and parallel g-factors,

B is the Bohr magneton, (H ,H ,H ) the applied magnetic field
x y z

components, (S , S , S ) the spin operators, S = 3/2, and D is
x y z

the crystal field parameter. The values of g are g = 1.9840

and g = 1.9867; the value of D is 5.75 GHz. Inasmuch as
±

g =*- g we will be able to use the value g = g.. = 2.00 in all
j. l» _L

II

our calculations with negligible loss in accuracy. Thus,

K = gB H . S - D(S^ - ~)

where we have substituted 3/2 for S. The axes are rigidly fixed

in the crystal with the z-axis parallel to the trigonal axis.

The method of solving this expression for the energy levels

is to form matrix elements ofK with the pure spin states of S —for

3 I I 1
example (m = ~

|
K \ m = —)— and from the matrix elements, form

a 2S + 1 square matrix. If the matrix is already diagonal, such

as when H = H , then the energy levels correspond to the diagonal
z

values, one for each pure state. If, however, H and/or H is non-
x y

zero, the Hamiltonian matrix will contain off-diagonal contributions

from the S and S operators. Then, the matrix must be rediagonalized,
x y

the pure state vectors will be mixed together, and the energies

themselves will be different from the previous case. A typical level

is then described as being in the state | a) = a j—) + a„|—) +

a„| - —) + a.j - —) , which is a linear combination of the pure states.

18
For the above spin Hamiltonian as applied to ruby, Siegman

has published values of the energy levels versus magnetic field in

10 intervals from to 90 . He has also listed the state coef-

ficients (the a.'s in the above example) for each level and the
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probabilities for EPR transitions between any pair of levels.

We have plotted two representative energy level diagrams in

Fig. 3-3. Figure 3- 3a shows the levels when H is parallel to

the c-axis of the crystal; each level is a pure state as shown.

o
Figure 3-3b is for H at 50 to the c-axis; to show the mixing,

we have explicitely written out one state function.

Next, we turn to the question of which transitions are

observable in our resonance experiments. The first condition

that must be met is that the separation between two levels

corresponds to hv , where v is the microwave or sound frequency.

We have plotted the H-9 combinations which will yield resonance

for our frequency of v = 5.924 GHz in Fig. 3-4. However, even

if the energy spacing criterion is met, the transition may still

be unobservable unless we satisfy a second condition: the

transition strength must be large enough to be observable.

Transition probabilities are determined from the rule,

where ti = Planck's constant/2TT, |a) and |b) are the two levels

involved in the transition, JC. is the interaction Hamiltonian
xnt

between the perturbing field and the paramagnetic ion, g(E) is

the lineshape (in units of energy ) having area normalized to

unity, and W is the transition probability per unit time (in sec ),

If the interaction has the form JC . = A cos out then the transitionmt

probability becomes

2

W = (J
1

)
|<a|A|b>|

2
g(v)
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Fig. 3-3a. Energy levels of ruby for H parallel to c-axis,

D
N
I
o

-D

.673|§->-.142|l-) - .691 |-l->+
.222|-f->

KkG

Fig. i-3b. Energy levels of ruby tor H at 50 to c-axis,

coefficients for Level ) at 3 kG are from Siegman.
State
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10 20 30 40 50 60 70 80 90

6, degrees

Fig. 3-4. Values of magnetic field H and magnetic field angle 9

corresponding to transitions at 5.924 GHz. Transitions used in

this experiment are shown.
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Notice that we have also taken g(E) over to g(v); g(v) is expected

to be sharply peaked near the transition frequency v = (E, - E )/h.
D 3L

To proceed much further on the subject of transition proba-

bilities at first seems rather pointless since our study is not

really concerned with the strengths of the resonance lines. Later,

however, we will apply our moment theory to the energy levels of

ruby, and it will be necessary to construct matrix elements almost

identical to those needed here. Also, if the technique for obtaining

these matrix elements is developed now, we will be able to show some

additional features of APR affecting the prosecution of our experiment,

For this reason we continue.

Case I, Electron Paramagnetic Resonance (EPR)

—» —* —

»

For EPR,3C. = - I^.H,, where M- is the magnetic dipole momentmt 1

of the paramagnetic ion and H, is the magnetic induction of the micro-

wave field. In our experiment, H , = H -. cos u>t in the x-direction

perpendicular to the ruby c-axis, and since M- = g|3S then

K .
= - gpH

n S cos tutmt 1 x

We next form matrix elements withK . . Since we are only interestedmt

in relative magnitudes between different transitions, we drop the

i i 2
constants and concentrate on expressions of the form (a S b) .

1 x

We take two levels

|a> - ai |f>
+a

2
||+a

3 |

- |> + aj - |>

b> =Mf> + b
2
|i> + b

3 i
-•!> +b

4 | -|>

so that
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<a|sjb> •
l
b
1
<||^||>+^l,

1
<l|8j|> +..,

+
*z

hAK$ +a2Vii s
x ii>

+--

+ remaining terms

.

The S matrix elements are found in any quantum mechanics book; in

this particular case we get

IT
<a|sjb> = ^1 (a

x
b
2
+ a

2
b
L
+ a

3
b
4
+ a^) + (a

2
b
3
+ a^)

Using the values of a. and b. given by Siegman, this expression

may be evaluated and squared, thereby giving the strength of the

transition | a) —»|b). In general, we note that all transitions

are possible at 9 / where the states are mixed, but at 8 =

3 1
the selection rule Am = +1 holds and the transitions — ^—> —

,

13 3 3— f—> — , and — <-*> — are forbidden.

Case II, Acoustic Paramagnetic Resonance (APR)

The interaction Hamiltonian for APR has been developed by

Altshuler, et. al. for very general symmetries, and used to

calculate the sound absorption coefficient cr. We write explicitly

only the factors which contribute to lineshape:

6 9
a = c|£ a |<afC |b)|

Z
g(v)

p=l

where C is a constant, and or 's are factors incorporating propagation

and polarization direction of the acoustic wave relative to the

crystal axes, and the K 's are collections of spin operators. The
P

most general form of this expression has been shown by Loudon to be
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a = A[3S
2

- S(S + 1)1 + B(S S, + S,S ) + B'
f

(S S + S S )
z J z + +z z - - z

2 * 2
+ CS+

+ C S

where A, B, C are constants and S+ = S +i S . This form has the— x— y

following properties:

1) a - for S = %, therefore the expression only applies

to the S>\ case.

2) The A terms have selection rule Am =

3) The B terms have selection rule Am = + 1

4) The C terms produce quadrupole interactions: Am = + 2

Which of these terms appears in any specific case depends upon the

polarization and direction of the acoustic wave. For the case of a

longitudinal sound wave propagating down the c-axis of a trigonal

crystal, this being our experimental situation, Altshuler's prescription

yields

a = c|<a|s(S + 1) - 3S^|b>|
2

g(v)

where the constants have been absorbed into C. The angular dependence

of this expression becomes evident when we calculate o~ for our two

mixed states ja) and |b) as before. The result is

a = C|a
]

_b
1
+ a

4
b
4

- a^ - a^l g(v )

For our purposes, the chief consequence of this calculation is that

at 9^0 , all transitions are possible, while at 6 = all transitions

are forbidden. The latter result is indeed unfortunate, for the

theoretical expressions for moments would be materially simplified

if we could perform our experiments on the unmixed states. We do,

nevertheless, have the proper strengths for off-axis transitions.
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So far, we have calculated the energy levels of ruby and have

shown how to derive the transition probabilities of both EPR and APR

resonances at any angle 0. Our final task is to evaluate, for ruby,

the second moments of the transitions.

In the last section, we gave a general formula for the second

moment of a system of levels, where the number of levels remained

unspecified. In ruby, there are four levels so that R = 4; hence

2
<(hAv)

2
> -±j Z <ll|w..|ll> - <21 |W. . | 21> - <21 Iwl 12> J

1 l j ij

+ I <22 |W .
I 22> - <12|W..|12) - <21 Iw . . I 12> I

2

+ |<13|W. .Il3> - <23 |W. I 23>

I

2
+ I < 13 Iw . .1 31> - <23|w. . I 32)

I

2

+ |<14|W. . Il4> - <24|W. .|24>|
2
+ |<14|w..|41> - <24|w. . I 42> I

2

We will use the convention that the levels which are participating

in the transition are
| 1) and

| 2) , while
| 3) and J4) are the other

levels; since the formula is invariant with respect to interchange

of | l) and 1 2) and also with respect to
| 3) and

1 4) , there should

be no further difficulty in sorting out the proper levels.

2
The form of W. . is just that given by Van Vleck :

ij

„ [1..S, - 3(r. ..S.)(r. ..S.)]

ij
r

3 tj i j

ij

3+
where r. . is the distance between Cr ions i and i, and r. . is a

ij ij
—

unit vector in the r. . direction. The first term is, of course,
ij

the well known interaction between two magnetic dipoles, and the

last term represents an exchange coupling of magnitude A. .. In
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the last section, we also discussed the reasons for truncating W.

.

to include only that part which commutes with the main Hamiltonian.

This procedure amounts to throwing out all terms of W. . which are
ij

non-diagonal in the W. . matrix, and retaining only the diagonal

terms. Expanding W, . in spin variables and performing the truncation.

we get

W = A. . [S .S . +£ (S S . + S S .)]
ij ij zi zj 2 +i -j -l +j

+ B, . C| S .S .
- \ (S S . + S .S )]

ij 3 zi zj 6 +i -j -l +j

where
r

3 2 1

2 2
B - 3g p

2
Y ij 2

3
r . .

and where v. . is the direction cosine between r. . and the z-axis.

Since so many quantization conventions are in common usage for

calculations such as the present one, we should, at this point,

state explicitly which one we are employing. Our axes are fixed

with respect to the crystal, with the z-axis in the direction of

the crystal c-axis. We have chosen the quantization axis to be the

z-axis, so that when the magnetic field is at some angle to this

axis, the crystalline and magnetic field directions are "in

competition" and the levels become linear combinations of the pure

states (that occur when the magnetic field is along the z-axis).

The direction cosine Y- • occurring in the W. . is always with respect

to the quantization direction; therefore, it involves the angle

between r. . and the ruby trigonal axis. We thus see that sums such

as SB. . over all neighbors are independent of magnetic field direction
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and, being constants of the experiment, can be calculated or

measured once and for all.

The next step in obtaining the moments is to form the double

matrix elements (12 W. . 12), ( 12 W . . 21) , . . . , sum them, square
1 ij ' i j

the sums, and add the sums together, all according to the prescription

given earlier. First, we put W. . into the matrix element and obtain

forms like, say, < 12 1 S S_ . | 12>

.

These are easily analyzed; for example:

< 12 1 S. . S .|l2) - <lk.ll) <2| S .12)

= (a^fl + a
2
<|| + a

3 <4| + «
4
<-||)8+ (ajf) +^^l^ -4

>

"l>

x(bl <|| + b
2 <f|

+ b
3
<-l| + b

4
<-||)S_ (b [|> +b £> + b

3
|-i> + b

4
|-|)

= <a
i

2
<|l S

+lf>
+ a

i
a
2
<fl

S
+ l 2

)+ *•• >CX(b
1

2
<||8j|> + b

1
b
2
<||s_|%)+ ...)

= [ 3 (a] a
2
+ a

3
a
4

) + 2a
2
a
3
][ 3 (b^ + b^) + 2b

3
b
2
]

The a's and b's are now looked up in Siegman for the proper magnetic

field strength and angle, and the matrix element evaluated numerically

Double matrix elements can then be formed from the other components

of W. . in like fashion and the complete moment expression readily

evaluated. The outcome is of the form

h
2
<Av

2
) = 7\7 Z' |>A.

2
+ pA. . B. . +6 B.

2
]4N ij ij lj ij ij J

where Q>
, 3, and 6 result from our matrix element calculations.

In order to calculate the summation over pairs, we must remember

and incorporate the fact that ruby is a dilute crystal and that only

a few of the neighboring Al sites of a given Cr ion are occupied by
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other Cr ions. Kittel and Abrahams have shown that £ should first run
J k

over the j occupied sites, giving 2 = NT , where k indicates all actual Cr
jk k

neighbours of an occupied site. But this sum is the same as saying that

the contribution from every site, occupied or unoccupied, is just the con-

tribution from that site if it were occupied times the occupation proba-

bility f, so that

2 = N 2 = Nf 2
jk k k

all pairs all occupied all possible
neighbor sites neighbor sites

This gives us our final moment

h
2
<Av

2
> = 7 (a 2 A

2
+ 3 2 A, B. + 6 2 B,

2
)

4 k k k^k k k

or

<Av
2
) = 7 (a £ A,

2
+ 3 2 A, B, + 6 E B

2
)

4 k k k kk k k

if we divide A and B by h and express all energies in units of frequency.

Several conclusion can now be drawn concerning the second moment.

1. As we noticed in the last section, the transition inducing

interaction does not appear in our expression and therefore

the second moment should be the same for APR as for EPR.

2. The second moment is directly proportional to the concentration

of the magnetic impurity.

2
3. There is an angular dependence in (Av ) brought about by the

dependence of 0! , 3, and 6 on the amount of state mixing at

different angles. If we know the sums in A and B (which are

essentially constants) we can then predict the moment at any angle,

4. Contrary Lo the results of Loudon , we see that for levels with

2
crystal field splitting, the exchange does contribute to (Av ),

both in a squared term and in a cross term with B, . This is a
k
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highly favorable result because it removes the necessity for

measuring the fourth moment in order to get exchange information.

It turns out that fourth moments, which receive their main con-

tributions from the wings of the absorption curve where the

signal to noise ratio is low, are extremely difficult to measure.

We now have a choice as regards applying the second moment expression

to our experimental results. Since Ot
, 3, and 6 can be calculated from

matrix elements, and since f is just the known Cr concentration of our

samples, we could treat the expression as an equation in three unknowns:

~ 2 ~ 2
S A, , S ^JB > and S B . By measuring three moments with different Of,

3 and 6 coefficients, we could then solve the three corresponding equations

for each sum. On the other hand, since the form of B is well known, we

2
could calculate S B, from a knowledge of the Al 0_ crystal structure and

k °
2 3

~ 2 ~
be left with only the remaining two sums, £ A and T. A B , as unknowns.

tC K. K.

We have chosen the latter alternative -- especially since the summation

2
part of 2 B has already been performed in a nuclear magnetic resonance

tC

19
study by Verber , Mahon, and Tantilla

3 2

2 2
(
2
Y k " h)

K = "3gV
'k 3

r
k

so that, dividing by h and squaring,

2
4 4

S B.
k 4 ,2

h

(3y
k

2
- 1)

S -
6

r
k

in H
z

where the summation is to be taken over all possible nearest neighbor

- (\

sites. Verber, et al. quote a value of .0176A for the geometric factor

2
in brackets; using g = 2.00, we thus arrive at the figure of S B, = 107

2
GHz . Hence,

38



(Av
2
) = 7 [tt I A

2
+ 3 2 A B + 6(107 GHz )]

Without an explicit knowledge of the exchange A , we cannot proceed any
K.

further theoretically.

By way of motivation for the present experiment, we should mention

4
that the above formula has been used by Ishiguro, Kambe, and Usui in a

I

I

study of the second moments of Ni in nickel fluosilicate . By taking

angles of = and 90 , they showed that 3=0 and the cross term

~ 2
L, A B does not appear. They then calculated 2 B, for their crystal

K K. K.

~ 2 ~ 2
and solved for the exchange term 2 A . Assuming that 2 A was due

~ 2 ~2
to the six nearest neighbors only, then 2 A = 6A and they were able

to find A . Because they lacked the cross term, they were not able to

determine the sign of A, but they were highly successful in determining

its magnitude.

If we could achieve acoustic resonance in ruby at , it turns out

~ 2
that our cross term would also vanish, and we could solve for 2 A

only. But the transition probability for this angle is, as we have

shown earlier, zero, thereby forcing us to higher angles where we must

use the full moment expression. We do have, however, an opportunity to

determine the sign of the exchange.

In our experiment, we have chosen four transitions (see Fig. 3-4)

to measure as a function of Cr concentration: 2-3 Hi at 50 ,
2-3 Hi at

30 ,
2-3 Lo at 30 , and 1-2 at 80 . Using the state coefficients from

S legman, we have calculated a, (3 and 6 by CDC 1604 computer for each

transition; the results are listed in Table 3-1. APR and EPR lineshapes

of these transitions were then taken for six rubies of Cr concentration

.005%, .02%, .05%, .1%, .3%, and 1% by weight. No attempt was made to
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systematically study angular dependence.

This completes our application of the theory to the ruby crystal.

In Chapter VI, when we examine the experimental results, we will return

to the ideas of this section and attempt to estimate the second moment

by using the somewhat meager data on A. . . First, however, we will dis-

cuss the experiment itself.

transition 01 B 6

2-3 Hi, 50° 9.475 -2.453 1.37 3

2-3 Hi, 30° 5.925 .971 1.373

2-3 Lo, 30° 15.291 18.019 7.539

1-2, 80° 7.232 -.218 .935

Table 3-1. Coefficients of the second
moment equation

<Av
2
) =| (a SA

k

2
+ p£A

k
B
k
+ 6SB

k
2
)

for four transitions.
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CHAPTER IV

THE ACOUSTIC PARAMAGNETIC RESONANCE EXPERIMENT

In this section we will discuss the acoustic paramagnetic reson-

ance experiment. In Section 1, we will describe our ruby crystals and

the bonding of transducers. In Section 2, we discuss the microwave

equipment, followed by the signal detection scheme in Section 3.

Finally, we show how to get the second moments in Section 4, and we

discuss their accuracy.

1. Crystals and Bonding

The ruby crystals used in this experiment were purchased from

Union Carbide Corporation, Linde Division, and Adolph Me Her Company.

All crystals were cylindrical, %" in diameter by 1 1/8" long, having

frosted walls, and ends precision ground to a parallelism of 2 arc

seconds and a flatness of 1/20 wavelength of sodium light. The ori-

ginal boules were grown by the flame fusion process. Although the rods

were specified to have their crystal c-axis parallel to the rod axis,

we took x-ray patterns and discovered a slight misorientation. Table

4-1 summarizes this information.

c-axis
Sample Concentration Misalignment Manufacturer

1 . 005X 4.5° Adolph Meller

2 .02 2 Linde

3 .05 Linde

4 .10 1.5 Adolph Meller

5 .3 4.5 Linde

6 1.0 3 Linde

Table 4-1. Data on ruby samples
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All crystals were of standard quality except for rubies 2 and 5, which

were Linde Superior Internal Quality for better crystalline uniformity.

In order to propagate sound pulses through ruby, it is necessary

to provide a transducing material. We first attempted unsuccessfully

to bond %" diameter by V l°ng x-cut quartz crystals to the rubies using

9
indium as a bonding material as described by Weeks . It was, however,

difficult to control the rather critical bonding temperatures with this

technique; consequently, our bonds turned out either too thick or pro-

hibitively nonuniform and we abandoned the method.

In our next attempt, we tried various organic oils and greases as

bonding agents, again using our %" long quartz transducers. The bonds

were aligned at room temperature in a 500 MHz test apparatus (to be

described later), but this technique was also unsuccessful. The long

quartz transducers have two disadvantages: first, they have a low Q and

hence a low conversion efficiency; secondly, a bond echo is produced when

the sound wave passes through the bond, thereby wasting energy and often

obscuring the real echo from the ruby.

In the final bonding procedure, we used resonant quartz wafers

instead of the longer quartz transducers. The transducers, purchased

from Valpey Corporation, were x-cut with a 91 + 2 MHz resonant fre-

quency and 7/32" in diameter. The thickness corresponding to this fre-

quency is about 1.5 mil; in order to guarantee good performance at high

harmonics, the faces were polished to .00001" parallelism and 1/20

wavelength (of sodium light) flatness. These crystals are highly re-

sonant, even at 6 GHz, and the conversion efficiency is much higher than

with the larger transducers. Also, there is no bond echo.
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We give a step-by-step description of the crystal bonding process

in the Appendix; suffice it to say here that the bonding agent is Nonaq

Stopcock Grease (Fisher Scientific Co.) and that the transducers can be

successfully fixed to the end of the ruby. Fig. 4-1 shows a completed

bond

.

After making the bond, it was checked out on a 500 MHz pulser-

receiver setup to see if it: was good. The checkout apparatus was very

simple: a 1 watt General Radio 1209 BL unit oscillator, receiving

trigger pulses from a Teletronix PG-200AA pulse generator, fed 500 MHz,

1 M- sec pulses directly to a Navy AN/APR-4Y receiver. An adjustable

20
frequency reentrant cavity and a tuning stub were then coupled in by

tee fittings. After inserting the quartz-ruby bond into the test cavity,

the resulting receiver echoes could be directly observed on an oscillo-

scope. Over 100 observable echoes resulted, depending upon the bond

quality; therefore, poor bonds could be quickly detected and redone.

Typicable bonds, as could be seen by observing interference fringes,

had a thickness of a few wavelengths of light, but the bond thickness

was not particularly uniform. This fact did not seem to affect the

high frequency echo- train too much; indeed, the lack of rigidity of the

thin transducer may have helped the bond to remain intact at low tem-

peratures .

2. The Microwave Equipment

A diagram of the J band hypersonic spectrometer is shown in

Fig. 4-2. A Teletronix PG-200AA pulse generator provided 1 M» sec

,

100 V pulses at a repetition rate of 103 Hz to a modulator from a Navy

SU radar. The modulator then drove a watercooled Litton L-3467 magne-

tron, which in turn produced 5.924 GHz pulses of 1.8 kw peak power. An
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Fieure 4-1. Ruby sample with bonded transducer on upper end

and reentrant cavity. Microwave coupling loop screws into top

of cavity.
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attenuator was used to reduce the power during the experiment to 100

watt or less, depending upon the quality of the bond. In order to re-

duce heat leakage into the helium bath, the signal was coupled from the

waveguide into a copper plated, thin wall, stainless steel, coaxial

waveguide, to which the sample cavity was attached.

The cavity was of the reentrant type (Fig. 4-1) with internal

dimensions of 1.63 cm diameter by .712 cm depth. A raised post of

height 1.25 mm served to direct the electric field into the transducer

.

The microwave power was coupled into the cavity by a small loop oriented

with its plane perpendicular to the cavity magnetic field. In order to

adjust the resonant frequency of the cavity to a transducer harmonic,

the ruby was mounted in a collar; the position of the collar and, hence,

the depth of the ruby in the cavity could be controlled while the cavity

was immersed in liquid helium. Prior to the experiment, but after cool-

down, the ruby position was easily adjusted for maximum echo height.

The cavity Q was about 400.

The received echoes were passed through a TR ( transmit-receive) tube,

which provided a dead short to the main pulse and protected the receiver,

to an LEL CAC-2 mixer-preamplifier. A Varian X-26E klystron provided a

beat signal 30 MHz away from the main frequency. The 30 MHz difference

signal was then amplified by an LEL 3378 IF amplifier which put out the

rf signal and the detected envelope. The 30 MHz rf signal was used

for local oscillator control; it was fed to an LEL 3379 discriminator

which then provided a correction voltage for the reference klystron.

The detected signal from the IF amplifier was then available for oscil-

loscope observation or, as we shall describe in the next section, for

signal processing. Figure 4-3 shows a typical echo train, first when
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(a)

. i

(b)

Fig. 4-3. Acoustic echoes from ruby sample

a) Off resonance condition.

b) On resonance condition.
Scale is ,5v/cm vertically, 20 M-sec/cm

horizontally.
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the magnetic field is off resonance, and then when it is on resonance.

3. Pulse Detection and Calibration

In order to monitor the resonance, the echo train was passed

through a gate which selected one pulse for observation. Since the

-4
duty cycle of this pulse was so low (10 ) it was necessary to stretch

the pulse out; this was done very simply by passing it through a diode

to a large grounded capacitor. The capacitor had a rapid charging time

(< 1 M-sec) due to the low forward resistance of the diode and a long

discharge time determined by the backward resistance of the diode and/

or the input impedance of the instrument detecting the capacitor's

charge. In this way, the pulse was converted from a 1 |Jjsec spike to an

exponential decay with decay time T — 5 msec. This signal was then

added to a positive going 103 Hz square wave such that the signal

appeared during the first half of the repetition period and the square

wave appeared during the second half (when the exponential tail of the

signal was small). The square wave thus served as a comparison for the

signal, converting it to an AC signal whose average value off resonance

was zero. Detection of this signal was then effected by an EMC model RJB

phase sensitive amplifier, the output of which provided a DC voltage for

a Varian G-10 strip chart recorder. Synchronization signals for the

modulator pulser, gate pulser, square wave generator and phase sensitive

detector were supplied by a Hewlett Packard 200 AB sine wave generator.

The magnetic field was provided by a Varian V-4012-3B 12" magnet

operated from a V-2100A power supply and controlled by a Varian V-FR2100

Fieldial control unit. Uniformity of the field was better than .05 G

over the sample, and the Fieldial control unit gave extremely good

stability in time. Calibration of the field was obtained by using an
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Alpha AL67 NMR gaussmeter, modified so that the NMR frequency could be

extracted, amplified, and read on a Beckman 6127 frequency counter.

Since the NMR frequency was stable to — .01 KHz, the accuracy was about

one part in 10 for a 10 MHz NMR voltage.

Since quartz transducers are highly absorptive to high frequency

sound at high temperature, the experiment was performed in liquid helium,

The low temperature apparatus was of the standard type: an outer dewar

filled with liquid nitrogen surrounded an inner dewar filled with liquid

helium. The vacuum jacket on the inner dewar was connected to a small

forepump only; when liquid helium was introduced this jacket was sealed

off and allowed to cryopump. Control of the inner jacket vacuum turns

out to be essential in order to achieve slow cooldown times and prevent

breaking of the transducer bond.

In order to reduce bubbling in the cavity, the helium was pumped

below the X-point. The temperature at which all lines were measured

o
was 1.7 K.

A typical APR lineshape was calibrated as follows. The magneto-

meter was set to some field value, then, when the magnetic field swept

through the magnetometer resonance, a pen mark was put on the chart

paper and the frequency was read. The magnetometer was then reset and

the process repeated, providing for about six or seven marks per chart.

The frequencies were then converted to magnetic field values and plotted

against chart distance; in all cases, the relationship was linear. The

accuracy of this procedure was limited maily by the rate at which the

magnetometer signal crossed the oscilloscope face; accuracy is gener-

ally + .5 gauss and in no case worse than + 1 gauss.
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Immediately upon completion of a chart, trace, a signal calibration

was made by setting in known amounts of attenuation with the precision

attenuator and recording the corresponding recorder pen positions. This

procedure accounted for all non-linearities introduced between the

attenuator and the recorder—virtually the whole detection system. A

calibration curve of dB attenuation versus pen position was then made

and the chart ordinates corrected to read dB. The accuracy here depended

upon the amount of background noise, but generally can be set at + 5%.

It was necessary to avoid sweeping the resonance too fast on some reson-

ances, since the trace can be controlled by the lock- in amplifier inte-

gration time rather than the signal itself. This effect was calculated

beforehand and a set of maximum allowable chart slopes was obtained and

never exceeded in the experiment.

The overall sensitivity was a few tenths of a decible, however

on the lowest concentration ruby ( . 005%) no signal was detectable.

Figure 4-4 shows two sample curves, one very good and the other rather

poor. These graphs represent the extremes of our data.

4. Data Evaluation

Once the data was taken, the next step was to obtain the second

moments. Each chart was first digitized to between 40 and 80 points

and then analyzed by IBM 360 computer. The computer program performed

the following calculations:

1. For a given transition, five values of the energy level sepa-

ration v corresponding to various magnetic fields H were

entered. For example, in the transition 2-3 Hi at 50 which

occurs at H = 3000G, v was entered for H = 2000G, 2500G,

3000G, 3500G, and 4000G. The program then fit these pairs
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with a five degree polynomial and generated a frequency point

for each digitized value of H. This process converts the

magnetic fields to frequencies, automatically accounting for

asymmetry caused by nonlinearities in the v-H curve.

2. The area of the line was calculated using trapezoidal incre-

ments. Each ordinate was then divided by the area, thereby

normalizing the line and yielding the true lineshape g(v)

.

3. The second moment was calculated.

4. Values of H, v, and g(v) were read out along with the value

of the second moment

.

It must be remembered that the moment calculation is highly sensi-

tive to the behavior of the line's wings, yet it is in the wings where

the signal to noise ratio is the poorest. The limiting factor on our

experimental accuracy is just this effect, rather than the approximations

inherent in digital integration. We therefore feel that our moments have

an accuracy ranging from + 107o for the strong lines, up to + 50% for

weak, and consequently noisy, lines.

In addition to the moments, the widths of the lines at the half-

power points were obtained by interpolating between the computer print-

out values. These half-widths were dependent mainly on the frequency

calibration and therefore are felt to be accurate to a few percent.
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CHAPTER V

THE ELECTRON PARAMAGNETIC RESONANCE EXPERIMENT

Of the equipment described for the APR experiment, only the

crystals and DC magnet system are the same for EPR. The microwave

equipment and detection system for EPR are different, as we will

describe in the first part of this chapter. The second part will

be devoted to the data analysis and experimental accuracy.

1. Microwave Equipment and Detection

The J band microwave spectrometer used in this experiment is of

standard superheterodyne design as shown in Fig. 5-1. Both signal and

local oscillators were Varian X-26E klystrons operated in the CW mode

at 5.924 GHz. The signal was first fed through an E-H tuner, isolator

and two 20 dB attenuators to a hybrid tee. Although the hybrid tee was

initially set up to work as a microwave bridge, this proved to be un-

necessary in the experiment, with the result that 50 dB of attenuation

was permanently introduced into the reference arm.

The signal side of the hybrid tee was connected first to a fre-

quency meter, then to a directional coupler, and finally to the cavity.

Having the frequency meter in the cavity arm allowed us to lock on to

the meter resonance if necessary, but this option was never used. The

directional coupler was useful for tuning the klystron to the cavity and

measuring the frequency, neither of which measurements required 4the re-

ceiver .

The cavity was a section of J-band waveguide "7
. 18 cm long operating

in the TE _ mode. The ruby was inserted through the shortest dimensions

of »the cavity midway between the aperture and the cavity end; the trans-

verse magnetic field was therefore perpendicular to the ruby c-axis . A
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small metal or plastic screw could be inserted in the cavity bottom for

fine tuning; coarse tuning was effected by changing the aperture size,

normally set near, but not on, critical coupling. Cavity Q's were about

3000 with the ruby in place.

The return signal from the cavity was sent directly to an LEL CAC-2

mixer-preamplifier and the derived 30 MHz difference signal amplified

in an LEL 3378 IF amplifier. The rf output from the amplifier was used

two ways: first, it was monitored on an oscilloscope so that its change

during resonance absorption could be checked; secondly, it was fed to an

LEL 32B93 discriminator (modified for CW operation), the output of which

was used as a correction voltage to lock the reference oscillator to the

signal. A detected rf envelope, also provided by the IF amplifier, was

fed directly to an EMC model RJB lock- in amplifier, the DC output of

which then drove a Honeywell Electronik 19 recorder.

One feature of the spectrometer is not shown in Fig. 5-1. In order

to protect against frequency drift and, more critically in a lineshape

measurement, to guarantee that only the absorptive part of the complex

susceptibility was observed, the signal klystron was locked onto the

cavity resonance. To do this, the signal klystron reflector voltage

was modulated at 10 kHz by an external sine wave generator. Due to the

cavity characteristic, the received signal exhibited this modulation

as an amplitude modulation, with the following properties: If the

klystron frequency was situated on one side of the cavity, an approxi-

mate sine wave resulted; if the frequency lay on the other side, a sine

wave with the opposite phase appeared; if the frequency coincided with

the cavity center frequency, only a small second harmonic appeared.. The

sine wave was then phase sensitively detected and the resulting error
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voltage added to the signal klystron reflector such that the signal fre-

quency followed the cavity while the cavity shifted during passage

through the line. A considerable reduction in the signal to noise ratio

also resulted, indicating a lack of frequency stability without the

automatic frequency control (AFC) feature.

The static magnetic field was provided by the same system used in

the APR experiment. This field was modulated, however, by passing a

sinusoidal current through coils wrapped about the magnet pole faces.

The modulation frequency was 103 Hz, a frequency which is easily

separable from the 10 kHz AFC signal but slow enough to accommodate the

long relaxation time of ruby. The effect of the modulation was to cause

the cavity reflection to oscillate correspondingly as determined by the

shape of the ruby absorption characteristic. Since it was only the

103 Hz component of the cavity reflection that was ultimately seen by

the lock- in amplifier, the resulting chart was the derivative of the

true absorption line. In order to avoid distortion of the line, the

amplitude of the modulating field was never more than 3G peak-to-peak.

The low temperature apparatus was not used for the EPR experiment

since the lines could be easily observed at room temperature.

Most of the curves were obtained with about 10 [M of power to the

cavity, although this value was raised to as much as 100 [J-W in some

instances. Several curves exhibited consistent anomalies in their

lineshapes, perhaps due to some paramagnetic impurity in the crystal.

These were largely unexplainable; in any case, data from these curves

was omitted in the final results. A typical derivative trace is shown

in Fig. 5-2.

We now discuss several points relative to obtaining good EPR data.
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In order to observe the true lineshape of an EPR transition, it is

necessary to measure only the power absorption of the sample, but this

quantity is not, in general, simply related to the cavity reflection.

If E. and E are the signals into and away from the cavity, R is the
in out

on-resonance effective cavity resistance, and Z is the characteristic
o

impedance of the waveguide, then

E R - Z
out _ o

E. R + Z
in o

and we see that E does not vary linearly with R. The resolution of
out

21
this problem has been discussed thoroughly by Feher ; he has shown

that in the limit of small (ideally, differential) changes in the cavity

Q during resonance, the change in E , AE , is proportional to thex 6
'

6 out' out' ^ v

true lineshape. We have assessed the errors involved in this technique

with the following result: if E changes by 17° during the resonance,
out

then the error in the true lineshape is also 1%. For this reason, the

full rf envelope from the receiver was observed during every run. If

the height of the envelope changed by more than ^ 1%, the cavity Q was

lowered by changing the cavity iris size, and this lessened the change

in E due to the ruby resonance,
out

Another difficulty that occurs in EPR is the fact that the data

appears in derivative form. In order to obtain the moments, one must

first integrate the derivative to obtain the absorption curve, then

integrate again in order to finally obtain the area and moments. The

effect of the first integration on the moments can be very critical, for

if the two lobes of the derivative curve differ in area by only a few

percent, the absorption curve will not return exactly to the baseline
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in one of its wings, and it is mostly the shape of the wings that de-

termines the size of the moment.

In our experiment, it turned out to be very difficult to match

the lobe sizes of the derivative curves to better than a few percent;

for this reason, it was not possible to get moments. We feel that with

more time and considerable effort, the accuracy of the raw data could

have been adequately improved; however, in light of the fact that the

APR moments resisted quantitative interpretation anyway, we restricted

our results to EPR linewidths , for which the present data was sufficient

2. Data Analysis

The analysis of the EPR data was identical to the APR analysis

except in the initial conversion of the line to an absorption line.

Values of H were derived from gaussmeter frequency markers on the chart

and plotted against chart inches. The resulting calibration curve was

linear in every case, yielding magnetic field values for each point on

the chart trace. The chart was then digitized to between 50 and 100

points and analyzed by IBM 360 computer. The computer program performed

the following functions:

1. The derivative trace was integrated using trapezoidal incre-

ments and magnetic field abscissas.

2. The magnetic field was converted to frequency values v, in

exactly the same way as in the APR analysis.

3. The area of the absorption curve was calculated and used to

normalize the absorption line ordinates so that the area was

unity. The ordinates thus became values of g(v).

4. Moments were calculated.

5. The program printed out g(v) versus v and H for each digitized

point

.
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Half-widths, corresponding to the full width at halt power, were

obtained by interpolating between the computer print out values.

The half-widths are thus felt to be accurate to within a few percent
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CHAPTER VI

RESULTS AND DISCUSSION

In this section, we will present the measured second moments for

APR and relate them to theory. Near the end of the section, we will

also display EPR and APR half-widths and discuss them qualitatively.

The second moments of our four transitions are plotted in Fig. 6-1

as a function of Cr concentration. We note several features of these

curves

:

1. At 1% concentration, the curves have widely different moments,

2 9varying from .007 GHz to .07 3 GHz .

2. The curves approach a constant value of the order of 10~ 3
GHz

2

as the concentration is lowered below about .05%. The effect

is independent of the transition.

3. From the standpoint of our theory, the most important result

is the extreme smallness of the measured moments. Using only

the dipolar interaction, the second moment is predicted to be

<Av ) ~ (concentration) (SB^) ~ (1%)(107 GHz
2
) ~ 1 GHz

2
for

a 1% Cr concentration ruby. But as experimentally measured,

o
the largest moment at 1% is «« .07 GH

z

We begin our discussion of the data with an explanation of the moment

size.

The fact that measured ruby second moments might be smaller than

theory predicts has been alluded to by Manenkov and Fedorov
22

, and

23Grant and Strandberg
, although neither of these authors actually

measured the moments. Manenkov and Fedorov measured EPR line widths

e at = and assumed either a Gaussian line, where <Av
2
> = .171e

2
,

or a Lorentzian line with cutoff at 5e (a Lorentzian lineshape must be
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2
terminated somewhere in the wings or (Av ) diverges) , where

2 2
(Av ) = 1.35e . They then showed that neither of these moments is

large enough to account for the dipolar part of the theoretical value.

In point of fact, however, the line is neither Gaussian nor Lorentzian,

2
so we can consider their values of (Av ) to be just an estimate.

Grant and Strandberg have done a study on line shape in ruby and

have inferred most of the second moment is not present in the observable

line. Our measurements indicate that this is indeed the case. In the

following, we will show how to estimate the size of the interactions

involved in a resonance line; then, we will compare the measured widths

with theory; and finally, we will try to calculate the second moment by

summing only the interactions from neighbors outside a certain radius.

We first demonstrate that the overall width of a resonance line,

from where the line is first measurable to where the line returns to zero,

is of the order of the largest ion-ion interactions that are causing the

shape. For example, consider two identical uncoupled spin \ particles

in a coupled representation. There will be three energy levels: one at

-HE corresponding to both spins up (++) , one at -E corresponding to both

spins down (--), and two degenerate levels at zero energy corresponding

to up-down (+-) and down-up (-+) . Only one transition of energy E is

observed from this system, if we discount double spin flips.

We next ask the effect of turning on a small amount of coupling

between these particles, say of the form S . S _. Since the HamiltonianJ zY z2

matrix is still diagonal, the change in energy can be found simply by

forming matrix elements of the form (ajs S | a) and noticing that while

the (++) and (--) states both move up a small amount A, the degenerate

states move down by A. There are now two transitions of size E + 2A and
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E - 2A, respectively; our original transition has "broadened" into a

line of overall width 4A

.

One can also suppose a small off-diagonal coupling of the form

S S + S S between our original uncoupled particles. In this
+1 - 2. - 1 +z

case, we must rediagonalize our Hamiltonian since the perturbation is

between degenerate levels, but the end result is similar: the degene-

rate levels are mixed, one. moving up by A, the other moving down by A.

The original transition at E now consists of two lines at E + A and

E - A; the "width" is thus 2A

.

Of course, this simple analysis cannot be taken too far. It is

not the interaction of just ions i and j that causes broadening in a

large crystal; it is one of the states composed of all the mutually

interacting ions of the crystal that yields a resonant frequency dif-

ferent from the single ion frequency. Consequently, when we say that

the interaction between ions i and j appears Av away from the main

resonance frequency, we can expect only order of magnitude accuracy.

We define, then, the "full-width" of a line to be the distance

in frequency from where the signal is first detectable above the noise

to the center of the line. We also assume that if two Cr ions interact

with an energy e, they will produce a displaced line at frequency

Av = e/h away from the single ion frequency. In this sense, a measure

of the full-width of an observed line gives us a criterion for deter-

mining which interactions are contributing to the observable line.

The full-widths of our lines are given in Table 6-1; we note that

the full-widths vary from 1135 MHz down to 85 MHz. In order to compare

these values to actual interactions, we calculate first the dipolar,

and then the exchange, contributions to the second moment.
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Table 6-2 is a summary of the dipolar contribution B from each
K

nearest neighbor for the first 20 nearest neighbors. It is obvious

that the individual contributions of many of the neighbors is more than

the total observed second moment itself.

An estimate of the size of the exchange A has been given by Statz,
K.

25 4
et al. ; they quote a value of (1.17 + .15) x 10 GHz for the first

neighbor at 2.73A and about 15 GHz at 5.73A (eleventh nearest neighbor).

~ 2 8 2 2
The contributions to 2 A, are then 1.37 x 10 GHz and 225 GHz

,k

respectively, for these ions. The contrast between theory and experi-

ment here is even more drastic than with the dipolar case, the differ-

ence being many orders of magnitude.

Ruby Number
2 3 4 5 6

2-3 Hi, 50° 192 138 171 266 620

2-3 Hi, 30° 85 120 171 201 1135

2-3 Lo, 30° 146 92 216 259 --

1-2, 80° 129 107 122 230 880

Table 6-1. Full-widths of APR lines.

Widths are from beginning
of line to center.
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Neighbor Number r, 8. 0, deg
2 2

B, , GHz
k

1 -- __ --

1 1 2.728 180 58.9

2 3 2.804 101.6 9.48

3 3 3.180 59.6 .335

4 3 3.498 51.8 .07 2

4' 3 3.498 128.2 .072

5 1 3.767 8.49

6 3 4.758 90 .516

6' 3 4.758 90 .516

Table 6-2. Dipolar contribution of the second
moment from each of nearest 20

neighbors. (After ref. 14 and 24).

The sum of B^ over all neighbors is

107 GHz 2
.

The picture that emerges is now fairly clear. The theoretical

second moment as we have calculated it is correct, but the contribution

of the near neighbors to this moment is so immense that the transitions

caused by these interactions lie in the far wings of the line and are

unmeasured. For instance, the nearest neighbor, which lies only 2.73A

away from the origin on the z-axis , has an exchange contribution which

7
is 10 times bigger than the observed moment; furthermore, its dipolar

contribution is, in itself, 10 times larger than the measured value.

Indeed, for the first few nearest neighbors, the exchange coupling is

so strong that the ions form pairs and tend to produce pair spectra

which are quite independent of the single ion line. There is, in fact,

a considerable literature built up by workers trying to locate the

* , • ,_
25-27

spectra of these pairs, not without some success . For our purpose,

however, which is to explain the observed second moments, it is obvious
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that we must exclude such pairs from the summations over neighbors.

In order to get a quantitative understanding of the observed line,

we are faced with a dilemma. We know we must exclude the near neighbors

in our summations and sum only outside some radius r ; also, to avoid
o

circular reasoning, we must choose r without reference to the second

moment. If, instead of calculating the second moment (which is insensi-

tive to line structure), we were able to calculate the exact line shape

by knowing which atoms contribute to each part of the line, our approach

would be obvious. Lacking this straight- forward situation, we resort

to the following technique.

We assume that if a Cr ion interacts with a neighbor at radius

r such that the interaction strength is greater than the full-width

of the line, then that interaction is not being observed and must,

consequently, be excluded from our summation. By matching the full-

width of a line to the interaction size, we can therefore arrive at a

cutoff radius for each term in our second moment.

Obviously, this argument is not without a certain amount of cir-

cularity; we use it only as a last resort for determining r . We can

therefore expect no better than order of magnitude agreement between

our measured and calculated value, especially insofar as we will have

to make certain assumptions about the relatively unknown exchange

energies

.

We will choose two radii: r is that radius outside of which we
e

will sum the exchange contribution, and r , is that radius outside of

which we will sum the dipole contribution. Since r and r , will turn
e d

out to be fairly large, we will perform the sums by integration outside

of these radii. We start with the exchange part.
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Since the data on exchange is meager, we have fitted the pre-

25
viously quoted two values of Statz, et al. to the equation

|Mr)| -£
7 9

where C = 9.93 x 10 GHz-A , and n = 9.00. This is, we should point

out, a very arbitrary choice for A at all radii. Mollenauer and

27 ~
Schalow have measured A for the first four nearest neighbors; their

values do not obey an r law. But even a knowledge of A(r) for near

neighbors does little to help us predict A for the far neighbors. The

radial dependence of A, for instance, depends critically on how many

oxygen ions lie between the Cr ion pair; also, one can obtain both

positive or negative values for A, indicating ferromagnetic or anti-

~2
ferromagnetic coupling, respectively. (A , however, is always positive.)

We now choose the transition for our calculation: 2-3 Hi at 50 in

sample 6 (1% Cr concentration). This line has a full-width of 620 MHz

2 2
(Table 6-1) and a second moment <Av ) = .036 GHz (Fig. 6-1). The ex-

change cutoff radius r , obtained by setting |A|= 620 MHz and solving

for r, is 8.16A. This is a large radius-- a sphere of this radius con-

tains some 40 neighbors-- so we will approximate the summation outside

r by the integral
e

CO

i~ i 2 (2 2
S |A(r)

| srf \ A p 4nr dr

r r
e e

where p = number of ions per unit volume = .0574 atom/A and A = C/r

2
as before. The result is 10.1 GHz .

The next sum is the dipole sum. We recall from Chapter II that

the dipole-dipole energy for neighbor k is

-3gV(3Y
2

" D/2
B
k "

3
r
k
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Ignoring the directional factor and setting B = 620 MHz, we can solve
K

for the dipole cutoff radius r, and get r = 6.30A. The summation

2
over B, then reintroduces the directional factor:

k
2rr it

S B
2

= \ d0 \ sin d0 \
2 2

P B r dr

r
d

2 2
The factor (3/2 y - \) is thus averaged over all directions and

2 2
we get SB = 4.63GHz .

K

The last sum is £ A B , which vanishes because the angular

2
average of 3/2 Yi, - % is zero.

The moment expression is, then,

<Av
2
> - | (a SA

k

2
+ 6 2B

k

2
)

Inserting f = .01, a = 9.47, and 5 = 1.37 for this transition (see

2 2
Table 2-1) we arrive at (Av ) = .255 GHz as an estimate of the second

2
moment. Although our measured moment of .036 GHz is some 7 times

smaller than this, we feel that we have arrived at order of magnitude

agreement with experiment.

Another feature of the second moments of high concentration is

their variability from transition to transition. In view of our

inability to accurately predict these moments, it is difficult to

~ 2
assess the cause of this variability. If we assume that 2 A ,

~
2

2 A B and 2 B are. constant for all lines, as theory predicts, then
K. K. K.

we should be able to solve for the sums using three moment equations

and the known coefficients . Hopefully, the angular dependence would

then be due to the angular variation of a, |3 , and 6. We have attempted

this fit unsuccessfully; in fact, we have even obtained large negative,

2
and therefore uninterpretable , values for 2 B, .

k
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We could postulate that variation is caused by a wandering of

the crystal c-axis as we proceed along the sample rod axis. Wenzel

28
and Kim have discussed this effect in order to explain the low-

concentration linewidth; in our case, it will affect those transi-

tions whose angular variation dH/dQ is large. From Fig. 2-4, we

see that the transitions 1-2 at 80 and 2-3 Hi at 50 are most eligble

for this type of broadening. We have calculated that, for a half-

width of 300 MHz, the c-axis would only have to wander a degree or so,

which for a high concentration ruby (1%) is not at all unreasonable.

We feel, however, that while these transitions are indeed the larger

observed ones at l7o, a careful angular study would have to be made to

confirm this explanation.

The third feature of the second moment curves is the residual

2
moment of .002 GHz at low concentration. This effect has been ob-

served as a residual half-width in EPR measurements, and Grant and

23
Strandberg have reviewed the various explanations. More recently,

28
Wenzel and Kim have had some success on the problem by using various

models for crystalline imperfections. A calculation of the EPR second

moments at low concentration has been made by Laurance, Mclrvine and

24
Lambe , who assume that the residual width is due to hyperfine inter-

action with the neighboring aluminum nuclei. While our second moments

2
are for APR, their value of .000029 GHz is orders of magnitude too

small.

Inasmuch as the experimental second moments for APR have resisted

quantitative interpretation, we confine our EPR results to the half-

widths of the transitions only. (By half-width is meant the full

width of the line at the half power point.) Figure 6-2 gives the EPR
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half-width; Fig. 6-3 presents the corresponding APR half-widths. The

curves are quite similar. Both APR and EPR half-widths are about

320 MHz at 1% concentration and they both decrease to approximately

70 MHz at .05% concentration and lower. The angular dependence of

the lines is qualitatively the same: almost no angular dependence at

1%, while at low concentration the ordering in magnitude of the tran-

sitions is the same. Table 6-3 compares the half-widths at high and

low concentration. We feel that the differences that occur are quite

minor, but that a systematic study of linewidths versus angle would be

useful to confirm this in detail. As a further complication, it should

also be borne in mind that the half-width measures the central part of

the line, so that while the second moment deals with the distant

neighbors of a Cr ion, the half-width is caused by neighbors even

further away. A theory of half-widths is therefore even more dif-

ficult to construct.

02% 1%

Transition EPR, MHz APR, MHz EPR, MHz APR, MHz

2-3 Hi, 50° 66 67 308 308

2-3 Hi, 30° 5-6 56 308 315

2-3 Lo, 30° 78 91 47 ---

1-2 at 80° 72 67 321 336

Table 6-3. Half-widths of EPR and APR lines

at two concentrations. Half-widths
are the full widths at half-power
points

.
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We now finish this section with a summary:

1. We have rederived the general second moment formula of Pryce

and Stevens and have shown that it is also applicable to APR.

We have then applied this theory to ruby and arrived at an

2
expression for (Av ) in terms of angular dependent matrix

elements, Cr concentration, and sums over A and B , the

exchange and dipolar parts, respectively, of the Cr-Cr

interaction.

2. APR and EPR lineshapes have been measured for four transi-

tions as a function of Cr concentration. APR second moments

have been experimentally determined for the first time; APR

and EPR half-widths have been compared.

3. The EPR and APR half-widths quantitatively appear to be the

same

.

4. At low concentration, the second moment is concentration

independent and is much larger than the theoretical value

24
predicted by Laurance, et al.

5. At high concentration, the APR second moment is much too

small if all neighbor contributions are taken into account.

We have shown that the nearer neighbor contributions to the

second moment lie in the unmeasured wings of the line, thereby

confirming previous predictions. A rough calculation has shown

that qualitative agreement can be achieved when neighbors out

to about 6A and 8A for the dipolar and exchange parts of the

interactions, respectively, are excluded.
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APPENDIX

CRYSTAL BONDING

Inasmuch as considerable time and effort were spent in perfecting

a technique for bonding transducers, we present in this appendix our

final method. We do not claim that this is the only successful approach,

nor do we even claim that all of our steps are absolutely essential.

We do, however, assert that the method was repeatedly successful. The

procedure is set forth in step-by-step form:

1. Clean the quartz and ruby faces. The ruby could be moved with

ordinary tweezers; however, in order to prevent breakage of

the ultra- thin quartz plate, we made up a set of thin teflon

tweezer tips for gentler handling. (A vacuum tweezer was

also tried, but this was unsuccessful.) The cleaning solutions

are

:

a) Concentrated nitric acid - 5 min.

b) Flush with distilled water.

c) Detergent and water - scrub with Q-tip or ultrasonic

cleaner for 5 min. If the quartz is placed on a wet

tissue over a flat glass surface, it can be safely scrubbed

with a Q-tip. An ultrasonic cleaner can break thin quartz

plates

.

d) Flush with distilled water.

e) Reagent grade acetone - scrub for 5 min.

2. Prepare the bonding material. We used Nonaq Stopcock Grease

(Fisher Scientific Co.). Several bottles were stored in an

ordinary refrigerator freezer at all times. Since Nonaq absorbs

water from the air, the bottle should never be left open.
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a) Place fresh blob of Nonaq on a glass slide and cover with

watch glass

.

b) Put the slide on a small electric hotplate set to about

210 C. Heat till granularity disappears - about 5 min.

This step is absolutely essential.

3. Just prior to bonding, give quartz and ruby one last wipe

with reagent acetone. Make sure no drying marks remain on

either crystal.

4. With a glass rod, remove a small drop of Nonaq from the

heated blob. Place drop on ruby face. Invert ruby and

pick up quartz

.

5. Place quartz-ruby in a jig so that vertical pressure can be

applied to the quartz. We used a staking tool; on the end

of the plunger rod was a cylinder of silicon rubber, slightly

smaller in diameter than the quartz. Press with about 150g

for 15 min. Too long a time will cause vacancies in the bond

material. The best bonds occur when the Nonaq spreads to edge

of quartz but no further.

6. Remove bond and check for uniformity by observing fringes,

visible by an fluorescent desk lamp or, to a lesser extent,

by incandescent light.

7. Check on 500 MHz test rig. An even pulse envelope shape is

indicative of good uniformity. The bond is now ready for use.

8. Cooling down to low temperature must be slow in order to give

the cold Nonaq a chance to flow. Do not evacuate the sample

space, however: Nonaq tends to bubble. Our cooldown times

were about 12 hours.
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9. There is a large amount of art in successful bonding. We

have had difficulty bonding on humid days, and sometimes a

half- full bottle of Nonaq had to be discarded. On the other

hand, what we thought were rather poor quality bonds occa-

sionally gave excellent echoes. Trial and error sometimes

seems to be t;he only answer.
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