

Calhoun: The NPS Institutional Archive DSpace Repository

A refinement of an established method for computing confidence limits on system reliability.

Gress, James Andrew

Monterey, California. U.S. Naval Postgraduate School
https://hdl.handle.net/10945/12956

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

NPS ARCHIVE

A R\& COMPUTNG CONPIDENCE LIMIS ON SYSTEM REIABILITY

JAMES ANDREW GRESS

$$
m^{15}
$$

```
A REFINEMENT OF AN ESTABLISHED
METHOD FOR COMPUTING CONFIDENCE
LIMITS ON SYSTEM RELIABILITY
by
James Andrew Gress
Captain, United States Marine Corps B.S., Illinois Institute of Technology, 1960
```


Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
June 1967

ABSTRACT

A statement of a method [l] for obtaining an approximate lower $100(1-\alpha)$ \% confidence limit on System Reliability is made. A discussion of evaluating the accuracy of this method on a digital computer is presented. Following this the development of a continuity correction factor is developed and the accuracies of this refinement for several hypothetical systems are pryesented and discussed.

TABLE OF CONTENTS

CHAPTER PAGE
I. PURPOSE OF THE STUDY 7
II. EXPLANATION OF METHOD I 11
III. SIMULATED DISTRIBUTION OF THE CONFIDENCE 16
LIMIT
IV. DEVELOPMENT OF CONTINUITY CORRECTION 18
FACTOR
V. RESULTS OF SIMULATIONS 21
VI. SUMMARY AND CONCLUSIONS 27
BIBLIOGRAPHY 29
APPENDIX I 30
APPENDIX II 33
APPENDIX III 38
APPENDIX IV 41

LIST OF TABLES

TABLE PAGE
I. Results of Computer Simulation Without 22
Continuity Correction Factor
II. Comparison of Method I With and Without 25Continuity Correction Factor

CHAPTER I

PURPOSE OF THE STUDY

In past years our advancing technology has created systems which are becoming more and more complex. In the military this has been particularly true, and thus, has produced a great need for a method of predicting the overall reliability of these systems. Many problems in the area of reliability have not been solved. One of the unsolved problems is the formulation of a method for computing a confidence interval on system reliability where the reliability of the system is computed as the product of the reliabilities of each of the components, and the sizes of the test samples of the components are not all equal. If the test samples are equal, there exist well-known methods for computing a confidence interval. Because of the size and complexity of present day systems it is necessary for major contractors to have many sub-contractors. They may be scattered througout the country and may produce a limited supply of each component, of which very few may be used for reliability testing. These factors plus the general practice of testing before the system is assembled points out that having the sample sizes all equal is a rare event.

An ad hoc procedure for computing an approximate confidence interval has been developed, based upon Bernoulli test data from unequal samples of the various components of the system [l]. This technique will be called Method I throughout this document.

An underlying assumption to this procedure is that the distribution of the unbiased estimator of the negative natural logarithm of system reliability may be approximated by a two-parameter Gamma probability distribution. Consequently, a discrete set of values are approximated by a continuous function. Realizing the inherent error in this approximation this Thesis has as its purpose
(1) to develop a correction factor to reduce this error: and
(2) to simulate the distribution of the lower confidence limit of various systems and examine the results achieved with and without this correction.

The fruitfulness of the investigation that follows is demonstrated by a discussion of the results. In later chapters, it will be explained that the α th percentile of the simulated distribution of the lower confidence limit, called $R_{s, L}(\alpha)$, and the true reliability of the system, R_{s}, should be the same; therefore, the difference will be used as a measure of the accuracy of Method I. Consider the following example: a system is made up of 15 components; 14 have a sample size of 20 to be tested; and each a failure probability of .995; one has a sample size of 150 and probability of failure .850. The true reliability, R_{s}, is.. 7924 . The α th percentile point of the distribution of the lower $100(1-\alpha) \%$ confidence limit, without correction were computed
to be:

.05
.10
. 20

.8170
.8175
.8000
$\underline{R}_{s, L(\alpha)}-R_{s} \mid$
.0246
.0251
.0076

Now by adding the correction factor the results became:

α		
.05	$\frac{R_{S, L}(\alpha)}{}$	$\frac{\mid R_{S, L}(\alpha)^{-R_{S} \mid}}{10}$

The above example certainly did not have the best accuracy of the various systems chosen nor was it the worst. The following summary shows the average and variance of the error in all the cases studied. Without correction:

α	Average Error	Variance of Error
.05	.0438	.00213
.10	.0305	.00076
.20	.0109	.00016

With correction:
α
.05
Average Error
.10
.0286
Variance of Error
.20
.0168
.00041
.0056
.00015
.00005

The next chapter plus the appendices contains a complete explanation of Method I and discusses some further approximations made in the method.

Chapter three discusses the digital computer's role in obtaining the distribution of the lower confidence limit of
the reliability by Method I. Also mentioned is the measure of accuracy used to evaluate the method's precision.

Chapter four outlines the reason for the correction factor and discusses the logic behind its development and application to this method.

In Chapter five the results of various computations are presented and discussed.

The last chapter summarizes the study and states the conclusions.

EXPLANATION OF METHOD I [l]

If a system consists of k components in logical series, the true system reliability, R_{s}, may be expressed as follows:

$$
\begin{equation*}
R_{S}=\prod_{i=1}^{k} \quad p_{i} \tag{1}
\end{equation*}
$$

where p_{i} is the true reliability of the $i \frac{\text { th }}{}$ component. The component may be either continuous-operating or cycle type.

It is desired to find a lower $100(1-\alpha) \%$ confidence interval for R_{S}. That is, a statistic $R_{S, L}(\alpha)$ such that whatever the actual values of $p_{1}, p_{2}, \ldots . p_{k}$,

$$
P\left[R_{S} \geq R_{S, L(\alpha)}\right]=1-\alpha
$$

The method proposed is to put n_{i} items of component i on test, $i=1,2, \ldots ., k$; under the environmental conditions defined in the mission and let each operate until failure or the mission time is reached, whichever occurs first. Letting

$$
\begin{align*}
f_{i}= & \text { number of components of type } i \\
& \text { that didn't complete their mission. } \tag{2}
\end{align*}
$$

We define: $\hat{p}_{i}=1-\hat{q}_{i}$ where $\hat{q}_{i}=\frac{f_{i}}{n_{i}}$
and $\quad \hat{R}_{S}=\prod_{i=1}^{k} \hat{p}_{i}$
The random variable $=\ln \hat{R}_{s}$ is now used to obtain the lower confidence bound on R_{S}. This is accomplished by approximating the distribution of $-\ln \hat{R}_{s}$ by a two parameter gamma distribution and obtaining the confidence bound via the gamma distribution.

To continue the development define:

$$
\begin{equation*}
S \equiv-\ln R_{s}=-\sum_{i=1}^{k} \ln \left(1-q_{i}\right) \tag{3}
\end{equation*}
$$

and, expanding the natural logarithm in an infinite series

$$
\begin{align*}
S= & -\sum_{i=1}^{k}\left[\left(-q_{i}\right)-\frac{1}{2}\left(-q_{i}\right)^{2}-\frac{1}{3}\left(-q_{i}\right)^{3} \ldots\right] \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\infty} \frac{q_{i}^{j}}{j} \tag{4}
\end{align*}
$$

If each q_{i} is small, say, .15 or less, the above series can be approximated by the first two terms of the series, called T_{i} for ease of expression. That is,

$$
\begin{equation*}
S \doteq \sum_{i=1}^{k}\left[q_{i}+\frac{q_{i}^{2}}{2}\right] \equiv \sum_{i=1}^{k} T_{i} \tag{5}
\end{equation*}
$$

In Appendix III [4], it is shown that the error due to the adove truncation is quite small; in fact;

$$
\begin{equation*}
S \leq \sum_{i=1}^{k} T_{i}+\sum_{i=1}^{k} \frac{q_{i}^{3}}{3\left(1-q_{i}\right)} \tag{6}
\end{equation*}
$$

In Appendix I [4], an unbiased estimator for T_{i} is developed and is called $\hat{\mathrm{T}}_{i}$.

$$
\begin{equation*}
\hat{T}_{i}=a_{i} \hat{q}_{i}+b_{i} \frac{\hat{q}_{i}^{2}}{2} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{i}=\frac{2 n_{i}-3}{2\left(n_{i}-1\right)} \tag{8}\\
& b_{i}=\frac{n_{i}}{n_{i}-1} \tag{9}
\end{align*}
$$

and as in (2)

$$
q_{i}=\frac{f_{i}}{n_{i}}
$$

An unbiased estimator is considered important here because the $\hat{\mathrm{T}}_{i}$ are to be added to obtain:

$$
\begin{equation*}
\hat{S}=\sum_{i=1}^{k} \hat{T}_{i} \tag{10}
\end{equation*}
$$

Therefore, a positive or negative bias on all of the $\hat{\mathrm{T}}_{\mathrm{i}}$ would be undesirable. It also follows that \hat{S} will be an unbiased estimator of S.

An approximate value for the variance of \hat{S} can be shown to be (see Appendices II and IV of [4])

$$
\begin{equation*}
\operatorname{Var}(\hat{S})=\sum_{i=1}^{k} \operatorname{Var}\left(T_{i}\right) \doteq \sum_{i=1}^{k} \frac{\hat{T}_{i}}{n_{i}} \tag{ll}
\end{equation*}
$$

The distribution of \hat{S} is now fitted with a two parameter gamma family. That is, it is assumed the probability distribution of \hat{s} is given by the density function $f_{\hat{S}}$ (x, r, θ) defined as:

$$
\begin{aligned}
f_{S}(x, r, \theta) & =\frac{1}{\Gamma(r) \theta^{r}} x^{r-1} e^{-\frac{x}{\theta}}, x>0, r>0, \theta>0 \\
& =0 \quad \text { elsewhere. }
\end{aligned}
$$

Estimates of \hat{r} and $\hat{\theta}$ are found by the Method of Moments and the fact that $\frac{2 \hat{S}}{\theta}$ is a $x_{2 r}^{2}$ random variable is used to obtain a confidence interval for $-l n R_{s}$ and, thus, from this the confidence interval for R_{s} can be derived.

Since \hat{S} is assumed to be gamma distributed:

$$
\begin{align*}
& E[\hat{S}]=\theta r \tag{12}\\
& \operatorname{Var}[\hat{S}]=\theta^{2} r \tag{13}
\end{align*}
$$

But also from (10) that

$$
E[\hat{S}]=\sum_{i=1}^{k} T_{i}
$$

and

$$
\operatorname{Var}[\hat{S}] \doteq \sum_{i=1}^{k} \frac{T_{i}}{n_{i}}
$$

Thus, solving the above equations for r and θ, the following expressions are obtained:

$$
\begin{align*}
& r=\left(\sum_{i=1}^{k} T_{i}\right)^{2} / \sum_{i=1}^{k} \frac{T_{i}}{n_{i}} \tag{14}\\
& \theta=\sum_{i=1}^{k} \frac{T_{i}}{n_{i}} / \sum_{i=1}^{k} T_{i} \tag{15}
\end{align*}
$$

Thus, an estimator \hat{r}, for r is taken as

$$
\begin{equation*}
\hat{r}=\left(\sum_{i=1}^{k} \hat{\mathrm{~T}}_{1}\right)^{2} / \sum_{i=1}^{k} \frac{\hat{\mathrm{~T}}_{i}}{\mathrm{n}_{i}} \tag{16}
\end{equation*}
$$

Now to obtain the confidence interval the following procedure is used. Since $\frac{2 \hat{S}}{\theta}$ is $a \chi_{2 r}{ }^{2}$ random variable and $\theta r=-\ln R_{s}$, the following probability statements can be made:

$$
\begin{align*}
1-\alpha= & \mathrm{P}\left[\frac{2 \mathrm{~S}}{\theta} \geq \chi_{l-\alpha, 2 r}^{2}\right. \\
& \mathrm{P}\left[\theta r \leq \hat{2} \mathrm{~S} \cdot \frac{r}{x_{l-\alpha, 2 r}}\right] \\
& \mathrm{P}\left[-\ln _{\mathrm{S}} \leq 2 \hat{S} \cdot \frac{r}{x_{l-\alpha, 2 r}^{2}}\right] \tag{17}\\
& \mathrm{P}\left[-\ln R_{\mathrm{S}} \leq 2 \hat{S} \cdot \frac{r}{x_{1-\alpha, 2 r}^{2}}\right]
\end{align*}
$$

It has been noticed that this last statement has an important property; namely

$$
\begin{equation*}
\frac{2 r}{x_{l-\alpha, 2 r}^{2}} \tag{18}
\end{equation*}
$$

is almost independent of r. As an example if $\alpha=.10$ for
$r=6$ the ratio is $\frac{2}{3.5}$ and for $r=12$ the ratio is $\frac{2}{3.6}$. It is observed that r can be varied by a factor of 2 and still have nearly the same value. This effect is even less for larger values of r. This suggests that the probability distribution of

$$
\begin{array}{ll}
\frac{[2 \hat{r}]}{2} & \text { (19) where }[2 \hat{r}] \text { denotes the smallest } \\
X_{l-\alpha,[2 \hat{r}]} & \text { integer greater than or equal to } 2 \hat{r}
\end{array}
$$

has a very small variance. Therefore, (18) could be replaced by (19) in (17) and, thus, have the following statement

$$
\begin{equation*}
1-\alpha \doteq \mathrm{P}\left[-\operatorname{lnR}_{\mathrm{s}} \leq \frac{\hat{\mathrm{S}}[2 \hat{r}]}{2} \chi_{1-\alpha,[2 \hat{r}]}\right] \tag{20}
\end{equation*}
$$

(20) can be rewritten as

$$
\begin{equation*}
1-\alpha \doteq \mathrm{P}\left\{\mathrm{R}_{\mathrm{s}} \geq \exp \left[\frac{-\hat{\mathrm{s}}[2 \hat{r}]}{2}\left[x_{1-\alpha,[2 \hat{r}]}\right]\right\}\right. \tag{21}
\end{equation*}
$$

That is a $100(1-\alpha) \%$ lower confidence limit for R_{s} is

$$
\begin{equation*}
R_{s, L(\alpha)}=\exp \left[\frac{-\hat{S}[2 \hat{r}]}{2}\right] \tag{22}
\end{equation*}
$$

SIMULATED DISTRIBUTION OF THE CONFIDENCE LIMIT
In order to evaluate the accuracy of the procedure, a digital computer is used to simulate the distribution of the S's. The following parameters are used as inputs to the computer program: $k ; n_{i}, i=1, \ldots, k ;$ and $p_{i}=1-q_{i}$, i $=1, \ldots, k$

In order to have an R_{s} to compare with the simulation the program first computes an R_{s} from

$$
R_{s}=\prod_{i=1}^{k} p_{i}
$$

The program next simulates values. A three digit random number is obtained using a uniform random number generator subroutine. If the random number generated is greater than p_{i}, a failure is "counted" by the computer; if the random number is less than or equal to p_{i} " no "count" is made. This random number generation is done n_{i} times for each p_{i}. Thus, the number of failures counted divided by the number of units of that component becomes an estimator for the unreliability of that component.
i.e., $q_{i}=\frac{f_{i}}{n_{i}}$

This process is repeated for all q_{i}; thus giving an estimator for each q_{i}. Once these estimators are simulated the following arithmetic operations are performed by the computer and stored for further use:

$$
\begin{equation*}
\hat{\mathrm{T}}_{i}=a_{i} \hat{q}_{i}+\frac{b_{i} \hat{q}_{i}^{2}}{2} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \hat{S}=\sum_{i=1}^{k} \hat{T}_{i} \tag{10}\\
& \hat{r}=\left(\sum \hat{T}_{i}\right)^{2} /\left(\sum \frac{\hat{T}_{i}}{n_{i}}\right) \tag{23}
\end{align*}
$$

In order to complete the simulation of the distribution of $\hat{R}_{s, L(\alpha)}$, replications are made of the above procedure. This gives 500 values each of (10) and (23) which are used to compute 500 values of

$$
\begin{equation*}
-\ln \hat{R}_{s, L}(\alpha)=\hat{S}[2 \hat{r}] / \chi_{1-\alpha,[2 \hat{r}]}^{2} \tag{24}
\end{equation*}
$$

for each value of α. These 500 points are then sorted, by size, by a separate subroutine. The computer now picks out the α th percentile of this distribution, call it A. Then $R_{s, L(\alpha)}=e^{-A}$ is computed and printed out for comparison with the true system reliability, R_{s}.

To develop a measure of accuracy for the simulation consider the underlying meaning of the probability statement

$$
\begin{equation*}
P\left[R_{s} \geq R_{s, L(\alpha)}\right]=1-\alpha \tag{25}
\end{equation*}
$$

If the probability density function of $R_{S, L(\alpha)}$ is plotted on a coordinate system, and R_{S} is taken to be a point on the abscissa, then $100(1-\alpha) \%$ of the area under the curve lies above and $\alpha \%$ lies below R_{S}. Therefore, R_{S} should be equal to the α th percentile of the distribution of $R_{s, L}(\alpha)$ which we have called $\exp (-A)$.

$$
\text { Thus, } \quad\left|R_{s}-\exp (-A)\right|
$$

(26) is a measure of the
accuracy of the procedure under investigation.

DEVELOPMENT OF CONTINUITY CORRECTION FACTOR
In the previous discussion \hat{S} was assumed to be a gamma distributed random variable. Since a digital computer simulation is used to generate the values of \hat{S} it is realized that the actual distribution is discrete. Therefore, the program is estimating a gamma distribution. As in the case of estimating a binomial with a normal distribution a more accurate result can be had if the discrete values are slightly shifted.

The following is the development of a correction factor (commonly called a continuity correction factor). Consider the following:

$$
\hat{S}=\sum_{i-1}^{k} T_{i}
$$

$$
\begin{equation*}
\hat{T}_{i}=a_{i} \cdot \frac{f_{i}}{n_{i}}+\frac{b_{i}}{2}\left(\frac{f_{i}}{n_{i}}\right)^{2} \tag{27}
\end{equation*}
$$

where $a_{i}=\frac{2 n_{i}-3}{2\left(n_{i}-1\right)} \quad$ and $\quad b_{i}=\frac{n_{i}}{n_{i}-1}$

The smallest difference between two values of S will be the smallest change in one of the T_{i} terms. For a T_{i} the smallest change is when f_{i} is increased by one for that respective n_{i} that is the max $\left(n_{i}\right)$

$$
i=1,2, \ldots k
$$

Let j be that i \exists

$$
\begin{aligned}
n_{j} & =\max \left(n_{i}\right) \\
i & =1,2, \ldots . k
\end{aligned}
$$

and in $\hat{\mathrm{T}}_{j}$ increase f_{j} by one to obtain $\hat{\mathrm{T}}_{j}{ }^{*}$; that is

$$
\begin{equation*}
\hat{T}_{j}^{*}=a_{j} \frac{\left(f_{j}+l\right)}{n_{j}}+\frac{b_{j}}{2}\left(\frac{f_{j}+l}{n_{j}}\right)^{2} \tag{28}
\end{equation*}
$$

Define the correction factor as

$$
\begin{equation*}
c_{1}=\frac{1}{2}\left(\hat{T}_{j}^{*}-\hat{T}_{j}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{T}_{j}=\frac{2 n_{j}-3}{2\left(n_{j}-1\right)} \cdot \frac{f_{j}}{n_{j}}+\frac{n_{j}}{2\left(n_{j}-1\right)} \cdot \frac{f_{j}^{2}}{n_{j}^{2}} \\
&=\frac{\left(2 n_{j}-3\right) f_{j}+f_{j}}{2} \tag{30}\\
& 2 n_{j}\left(n_{j}-1\right) \\
& T j^{*}=\frac{\left(2 n_{j}-3\right)}{2\left(n_{j}-1\right)} \cdot \frac{\left(f_{j}+1\right)}{n_{j}}+\frac{n_{j}}{2\left(n_{j}-1\right)} \cdot \frac{\left(f_{j}+1\right)^{2}}{n_{j}^{2}} \tag{31}\\
&=\frac{f_{j}{ }^{2}+\left(2 n_{j}-1\right) f_{j}+2\left(n_{j}-1\right)}{2 n_{j}\left(n_{j}-1\right)}
\end{align*}
$$

Then

$$
\begin{align*}
C_{1} & =\frac{1}{2} \cdot \frac{\left[f_{j}{ }^{2}+\left(2 n_{j}-1\right) f_{n}+2\left(n_{j}-1\right)\right]-\left[\left(2 n_{j}-3\right) f_{n}+f_{n}{ }^{2}\right]}{2 n_{j}\left(n_{j}-1\right)} \\
& =\frac{2 n_{j}+2 f_{j}-2}{4 n_{j}\left(n_{j}-1\right)} \\
& =\frac{n_{j}+f_{n}-1}{2 n_{j}{ }^{2}\left(n_{j}-1\right)}
\end{align*}
$$

The corrected \hat{S} is now defined to be

$$
\begin{equation*}
\hat{\mathrm{s}}^{*}=\hat{\mathrm{s}}+\mathrm{C}_{1} \tag{33}
\end{equation*}
$$

It can be seen from the above calculations that \hat{S}^{*} will have a value even if all the T_{i} 's turn out to be zero. Keeping this in mind and looking at the equation for \hat{r} in equation (23)

$$
\hat{r}=\left(\sum_{i=1}^{k} \hat{\mathrm{~T}}_{i}\right)^{2} / \sum_{i=1}^{k} \frac{\hat{\mathrm{~T}}_{i}}{\mathrm{n}_{i}}=\left(\hat{S}^{*}\right)^{2} / \sum_{i=1}^{k} \frac{\hat{\mathrm{~T}}_{i}}{\mathrm{n}_{i}}
$$

it is observed that in this case \hat{r} becomes infinite when the denominator is zero. Obviously this doesn't make sense; therefore, a correction factor is added to the denominator. Because this correction factor has little intuitive basis other than keeping \hat{r} from becoming infinite, it was picked quite arbitrarily. The following correction factor was chosen:

$$
\begin{equation*}
c_{2}=\frac{\hat{T}_{j}^{*}-\hat{\mathrm{T}}_{j}}{n_{j}} \tag{34}
\end{equation*}
$$

and added to $\sum_{i=1}^{k} \frac{\hat{T}_{i}}{n_{i}}$ giving a new \hat{r} ie. \hat{r}^{*}. This factor proved to be adequate and didn't appear to bias the final results; at least, not in the region of accuracy desired in the model.

The two corrected values are now combined in the probability statement of equation (21)

$$
\begin{equation*}
1-\alpha=P\left[R_{S} \geq \exp \left|-\hat{S}^{*}\left[2 \hat{r}^{*}\right] / \chi_{l-\alpha,\left[2 \hat{r}^{*}\right]}^{2}\right|\right] \tag{35}
\end{equation*}
$$

giving the associated lower confidence limit

$$
\begin{equation*}
R_{S, L(\alpha)}=\exp \left(-\hat{S}^{*}\left[2 \hat{r}^{*}\right] / x_{\left.1-\alpha,\left[2 \hat{r}^{*}\right]\right)}^{2}\right. \tag{36}
\end{equation*}
$$

which was simulated in the computer.

RESULTS OF SIMULATIONS

There were thirteen different combinations of parameters used, representing as many hypothetical systems. Table I lists the input parameters and the results. Column (1) is self-explanatory. Column (2) is the number of components in the system. Colums (3) gives the size of the sample tested for each respective component. Column (4) is the probability of success for each component of the system. Column (5) is the system reliability as computed directly from the input parameters (2), (3) and (4). Column (6) lists the three values of α for which a lower confidence limit was computed. Column (7) is the exponential power of the α th percentile of the distribution. The first four cases in Table I are examples of systems with different component sample sizes. In Cases 5 through 13, the sample size is constant in each case. These last cases show the effect that system size, sample size and probabilities have on the accuracy of the method. The effects noted will be discussed after Table II is presented.

A further check was made on the method by computing Case 10 four times, each time starting the random number generator at a different point. The results of this test showed there wasn't any difference in the first four decimal places of the confidence limit estimate. From this, it is concluded the 500 replications of each case is enough to smooth out any fluctuations in the generated numbers.

TABLE I
RESULTS OF COMPUTER SIMULATION WITHOUT
CONTINUITY CORRECTION FACTOR

$\begin{array}{r} \hline(1) \\ \text { CASE } \end{array}$	$\begin{gathered} (2) \\ \mathrm{k} \end{gathered}$	(3)	${ }_{(4)}^{\text {P }}$ i	$\begin{aligned} & (5) \\ & R_{S} \end{aligned}$	$\begin{gathered} \hline(6) \\ \alpha \\ \hline \end{gathered}$	$\begin{array}{r} (7) \\ \exp (-A) \end{array}$
1	13	150 19 90 5 75 125 100 63 125 125 18 59 28	$\begin{array}{ll} .995 & .900 \\ .985 & .980 \\ .979 & .995 \\ .988 & .970 \\ .982 & .995 \\ .980 & .968 \end{array}$. 7233	$\begin{array}{r} .05 \\ .10 \\ .20 \end{array}$	$\begin{aligned} & .7185 \\ & .7270 \\ & .7292 \end{aligned}$
2	15	250 30 40 20 120 75 15 100 130 90 65 60 70 60 130	$\begin{aligned} & .990 \\ & i=1,---, 15 \end{aligned}$. 8601	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.8610 .8626 .8606
3	15	20 150 20 20 20 20 20 20 150 20 150 20 150 20 150	$\begin{aligned} & .995 \\ & i=1,---, 14 \\ & .850 \\ & i=15 \end{aligned}$. 7920	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.7270 .7480 .7891
4	15	$20 \quad i=1,-, 14$	$\begin{aligned} & \begin{array}{l} .995 \\ i=1,---, 14 \\ .850 \\ i=15 \end{array} \end{aligned}$. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .8170 \\ & .8175 \\ & .8000 \end{aligned}$
5	5	50	$\begin{aligned} & .99 \\ & i=1,---, 5 \end{aligned}$. 9510	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{array}{r} 1.0000 \\ .8958 \\ .9142 \end{array}$
6	10	50	$\begin{aligned} & .99 \\ & i=1,---, 10 \end{aligned}$. 9044	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .8359 \\ & .8604 \\ & .8894 \end{aligned}$
7	15	50	$\begin{aligned} & .99 \\ & i=1,---, 15 \end{aligned}$. 8601	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	

RESULTS OF COMPUTER SIMULATION WITHOUT
CONTINUITY CORRECTION FACTOR

$\begin{array}{r} \text { (1) } \\ \text { CASE } \\ \hline \end{array}$	$\begin{gathered} (2) \\ \mathrm{k} \\ \hline \end{gathered}$	$\left(\begin{array}{l}3 \\ \mathrm{n} \\ \mathrm{i}\end{array}\right.$	${ }_{(1)}^{\text {P }}$)	$\begin{array}{r} (5) \\ R_{S} \\ \hline \end{array}$	$\begin{gathered} (6) \\ \alpha \end{gathered}$	$\begin{gathered} (7) \\ \exp (-A) \end{gathered}$
8	30	20	$\begin{aligned} & .99 \\ & i=1,---, 30 \end{aligned}$. 7397	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$. 5767 .6647 .7059
9	5	100	$\begin{aligned} & .95 \\ & i=1,---, 5 \end{aligned}$. 7738	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.7636 .7652 .7696
10	15	20	$\begin{aligned} & .995 \\ & i=1,---, 14 \\ & .85 \\ & i=15 \end{aligned}$. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.6862 .7048 .7666
11	15	40	$\begin{aligned} & .995 \\ & i=1,---, 14 \\ & .85 \\ & i=15 \end{aligned}$. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .7683 \\ & .7825 \\ & .7935 \end{aligned}$
12	15	50	$\begin{aligned} & .995 \\ & i=1,---, 14 \\ & .85 \\ & i=15 \end{aligned}$. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .7704 \\ & .7829 \\ & .7925 \end{aligned}$
13	15	100	$\begin{aligned} & .995 \\ & i=1,---, 14 \\ & .85 \\ & i=15 \end{aligned}$. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .7780 \\ & .7885 \\ & .7918 \end{aligned}$

Table II lists the results of the cases with and without the correction factor added. Columns (1), (2) and (3) were described before. Column (4) is the exponential power of the α th percentile of the distribution with the correction added. Column (5) shows the value of the measuse of accuracy used in evaluating Method I with correction added. Column (6) is the same as (5) but without the correction added.

From Table II, it is quite apparent, on the whole, that the error was reduced by the addition of the correction factor. It also appears the correction has less effect on cases where the sample sizes $\left(n_{i}\right)$ vary [Cases: 1, 2, 3, 4], but still, obviously, worth the effort. Cases 5, 6 and 7 seemed to indicate the number of components (k) in the system has no effect on accuracy. Cases 10, 11, 12 and 13 appear to point out that as the sample size (n_{i}) increases the accuracy versus probabilities λ This concludes the discussion of the most observable facts that can be viewed from the tables.
? [I two words added by library. not by the author.

TABLE II

COMPARISON OF METHOD I WITH (*) AND WITHOUT CONTINUITY CORRECTION FACTOR

$\begin{gathered} \hline(1) \\ \text { CASE } \end{gathered}$	${ }_{(2)}^{\text {R }}$ S	$\begin{gathered} (3) \\ \alpha \end{gathered}$	$\begin{gathered} (4) \\ \exp \left(-A^{*}\right) \end{gathered}$	$\begin{gathered} (5) \\ \exp \left(-A^{*}\right)-R_{S} \end{gathered}$	$\begin{gathered} (6) \\ \exp (-A)-R_{S} \end{gathered}$
1	. 7233	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .7184 \\ & .7270 \\ & .7291 \end{aligned}$	$\begin{aligned} & .0049 \\ & .0037 \\ & .0058 \end{aligned}$	$\begin{aligned} & .0048 \\ & .0037 \\ & .0038 \end{aligned}$
2	. 8601	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .8610 \\ & .8626 \\ & .8606 \end{aligned}$	$\begin{aligned} & .0010 \\ & .0025 \\ & .0006 \end{aligned}$	$\begin{aligned} & .0010 \\ & .0026 \\ & .0006 \end{aligned}$
3	. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.7219 .7459 .7873	.0705 .0465 .0051	
4	. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.0246 .0251 .0076
5	. 9510	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.9961 .9269 . 9522		
6	. 9044	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .8628 \\ & .8953 \\ & .8998 \end{aligned}$.0415 .0090 .0045	.0685 .0440 .0150
7	. 8601	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$		$\begin{aligned} & .0216 \\ & .0120 \\ & .0033 \end{aligned}$	$\begin{aligned} & .0616 \\ & .0276 \\ & .0095 \end{aligned}$
8	. 7397	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$		$\begin{aligned} & .0567 \\ & .0327 \\ & .0177 \end{aligned}$	
9	. 7738	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.7635 .7651 . 7696	.0103 .0086 .0042	.0102 .0085 .0042
10	. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$.7495 . 7591 .7684	.0429 .0330 . 0240	

COMPARISON OF METHOD I WITH (*) AND
WITHOUT CONTINUITY CORRECTION FACTOR

$\begin{array}{r} \text { (1) } \\ \text { CASE } \end{array}$	${\stackrel{(2)}{R_{s}}}^{2}$	$\begin{gathered} (3) \\ \alpha \end{gathered}$	$\exp ^{(4)}\left(-A^{*}\right)$	$\exp \left(-\mathbf{A}^{(5)}\right)-R_{S}$	$\exp \left(\begin{array}{l}(6) \\ (A-A)-R_{S}\end{array}\right.$
11	. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .7714 \\ & .7820 \\ & .7931 \end{aligned}$.0210 .0104 .0007	$\begin{aligned} & .0241 \\ & .0099 \\ & .0011 \end{aligned}$
12	. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .7700 \\ & .7826 \\ & .7923 \end{aligned}$	$\begin{aligned} & .0224 \\ & .0098 \\ & .0001 \end{aligned}$	$\begin{aligned} & .0220 \\ & .0095 \\ & .0001 \end{aligned}$
13	. 7924	$\begin{aligned} & .05 \\ & .10 \\ & .20 \end{aligned}$	$\begin{aligned} & .7779 \\ & .7884 \\ & .7917 \end{aligned}$	$\begin{aligned} & .0145 \\ & .0040 \\ & .0007 \end{aligned}$.0144 .0039 .0006

SUMMARY AND CONCLUSIONS

In the preceding four chapters a procedure [1] has been explained which will approximate a lower $100(1-\alpha)$ \% confidence interval on system reliability. The simulation of this method on a computer has been explained and the technique used to measure the accuracy of the method was stated. A continuity correction factor has been developed which enables the discrete computations of a digital computer to more closely approximate a continuous distribution. The simulation was run for thirteen cases with and without the continuity correction factor. These were not an adequate amount of cases on which to base any concrete conclusions. It is felt these cases are sufficient to show the merit of the correction factor. The following summary as stated in Chapter I demonstrates the validity of the procedure.

Without Correction:

α	Average Error	Variance of Error
	.0438	.00213
.10	.0305	.00076
.20	.0109	.00016

With Correction:

Average Error
.0286
.05
.10
.0168
.0056

Variance of Error
.00041
.00015
.00005

From Tables I and II in Chapter V, it can be seen the average error for those cases where sample size (n_{i})
is varied would be less than shown above. It must then be concluded that Method I with the correction factor will be an effective method for approximating the lower 100(1 - α) \% confidence limit for system reliability.

It should be pointed out that another study; obviously, could be done in this same area. By varying the input parameters $\left(k, n_{i}, p_{i}\right)$ and determining their effects, one could possibly establish limits on their variation to keep within a desired degree of accuracy.

In closing, I would like to express my appreciation to Dr. W. Max Woods of the Operations Analysis Department for pointing out this problem and serving as a very willing advisor. I also wish to extend my thanks to Dr. Rex H. Shudde for supplying the basic computer program for Method I which required slight alteration to meet my needs.

1. Borsting, J. R., and W. M. Woods, "A Method for Computing Reliability Confidence Intervals." Unpublished paper, Naval Postgraduate School, Monterey, California, 1966.
2. Kaplan, Wilfred, Advanced Calculas. AddisonWesley, 1952.
3. Parzen, Emanuel, Modern Probability Theory and its Applications, Wiley, 1965.
4. Isaacson, R. T., "An Investigation of Confidence Limits on Systems Reliability When Component Sample Sizes Vary," THESIS, Naval Postgraduate School, Monterey, California, May 1966.

APPENDIX I

DERIVATION OF \hat{T}_{i}, THE UNBIASED ESTIMATOR OF T_{i} In order that \hat{T}_{i} be an unbiased estimator of T_{i}, it is necessary that

$$
T_{i}=E\left[\hat{T}_{i}\right]
$$

Rewriting the above expression, using (5) and (7)

$$
q_{i}+\frac{q_{i}^{2}}{2}=E\left[\frac{a_{i} f_{i}}{n_{i}}+\frac{b_{i} f_{i}^{2}}{2}\right]
$$

and, substituting (2)

$$
\begin{aligned}
q_{i}+\frac{q_{i}^{2}}{2} & =E\left[\frac{a_{i} f_{i}}{n_{i}}+\frac{b_{i} f_{i}^{2}}{2 n_{i}^{2}}\right] \\
& =\frac{a_{i}}{n_{i}} E\left[f_{i}\right]+\frac{b_{i}}{2 n_{i}^{2}} E\left[f_{i}^{2}\right] \\
& =\frac{a_{i} n_{i} q_{i}}{n_{i}}+\frac{b_{i}}{2 n_{i}^{2}}\left(n_{i}{ }^{2} q_{i}^{2}-n_{i} q_{i}^{2}+n_{i} q_{i}\right) \\
& =a_{i} q_{i}+\frac{b_{i} q_{i}^{2}}{2}\left(1-\frac{1}{n_{i}}\right)+b_{i} q_{i} \\
& =\left(a_{i}+\frac{b_{i}}{2 n_{i}}\right) q_{i}+\left(b_{i}-\frac{b_{i}}{n_{i}}\right) \frac{q_{i}{ }^{2}}{2}
\end{aligned}
$$

Then equating coefficients of q_{i} and $\frac{q_{i}{ }^{2}}{2}$

$$
\begin{aligned}
& a_{i}+\frac{b_{i}}{2 n_{i}}=1 \\
& b_{i}-\frac{b_{i}}{n_{i}}=1
\end{aligned}
$$

and solving simultaneously

$$
\begin{aligned}
a_{i}+\frac{b_{i}}{2 n_{i}} & =1 . \\
\Rightarrow \quad \frac{1}{2}\left(b_{i}\right)-\frac{1}{2} \frac{\left(b_{i}\right)}{n_{i}} & =\frac{1}{2}(1) \\
\Rightarrow \quad a_{i}+\frac{b_{i}}{2} & =\frac{3}{2} \\
\Rightarrow \quad a_{i} & =\frac{1}{2}\left(3-b_{i}\right)
\end{aligned}
$$

Substituting back

$$
\Rightarrow
$$

$$
\begin{aligned}
\frac{1}{2}\left(3-b_{i}\right)+\frac{b_{i}}{2 n_{i}} & =1 \\
3-b_{i}+\frac{b_{i}}{n_{i}} & =2 \\
b_{i} & =\frac{n_{i}}{n_{i}-l}
\end{aligned}
$$

and again substituting

$$
\begin{aligned}
a_{i} & =\frac{l}{2}\left(3-\left(\frac{n_{i}}{n_{i}-1}\right)\right) \\
& =\frac{2 n_{i}-3}{2\left(n_{i}-1\right)}
\end{aligned}
$$

Thus,

$$
\hat{T}_{i}=\frac{2 n_{i}-3}{2\left(n_{i}-1\right)} \hat{q}_{i}+\frac{n_{i}}{n_{i}-1} \frac{\hat{q}_{i}^{2}}{2}
$$

is an unbiased estimator of T_{i}.

APPENDIX II

COMPUTATION OF VARIANCE OF \hat{S}

$$
\operatorname{Var}(\hat{S})=\operatorname{Var}\left(\sum_{i=1}^{k} \hat{T}_{i}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(\hat{T}_{i}\right)
$$

$$
\operatorname{Var}\left(\hat{T}_{i}\right)=E\left[\hat{T}_{i}^{2}\right]-E^{2}\left[\hat{T}_{i}\right]
$$

$$
=E\left[\hat{T}_{i}^{2}\right]-T_{i}^{2}
$$

$$
E\left[\hat{T}_{i}^{2}\right]=E\left[\left(a_{i} \hat{q}_{i}+\frac{b_{i} \hat{q}_{i}^{2}}{2}\right)^{2}\right]
$$

$$
=E\left[a_{i}^{2} \hat{q}_{i}^{2}+a_{i} b_{i} \hat{q}_{i}^{3}+\frac{b_{i}^{2} \hat{q}_{i}^{4}}{4}\right]
$$

$$
=\frac{a_{i}^{2}}{n_{i}^{2}} E\left[f_{i}^{2}\right]+\frac{a_{i} b_{i}}{n_{i}^{3}} E\left[f_{i}^{3}\right]+\frac{b_{i}^{2}}{4 n_{i}^{4}} E\left[f_{i}^{4}\right]
$$

From [3]

$$
\begin{aligned}
E\left[f_{i}^{2}\right] & =n_{i}{ }^{2} q_{i}^{2}-n_{i} q_{i}^{2}+n_{i} q_{i} \\
E\left[f_{i}^{3}\right] & =E\left[\left(f_{i}-E\left[f_{i}\right]\right)^{3}\right]+3 E\left[f_{i}\right] E\left[f_{i}^{2}\right]-2 E^{3}\left[f_{i}\right] \\
& =n_{i}{ }^{3} q_{i}^{3}-3 n_{i}{ }^{2} q_{i}^{3}+2 n_{i} q_{i}^{3}+3 n_{i}^{2} q_{i}^{2}-3 n_{i} q_{i}^{2}+n_{i} q_{i}
\end{aligned}
$$

$$
E\left[f_{i}^{4}\right]=E\left[\left(f_{i}-E\left[f_{i}\right]\right)^{4}\right]+4 E\left[f_{i}\right] E\left[f_{i}^{3}\right]-6 E^{2}\left[f_{i}\right] E\left[f_{i}^{2}\right]+
$$

$$
3 E^{4}\left[f_{i}\right]
$$

$$
\begin{gathered}
=n_{i}{ }^{4} q_{i}{ }^{4}-6 n_{i}{ }^{3} q_{i}{ }^{3}+\ln n_{i}{ }^{2} q_{i}{ }^{4}-18 n_{i}{ }^{2} q_{i}{ }^{3}+7 n_{i}{ }^{2} q_{i}^{2}- \\
6 n_{i} q_{i}{ }^{4}+12 n_{i} q_{i}^{3}-7 n_{i} q_{i}{ }^{2}+n_{i} q_{i}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& E\left[\hat{T}_{i}{ }^{2}\right]=\frac{\left(2 n_{i}-3\right)^{2}}{2^{2}\left(n_{i}-1\right)^{2} n_{i}}{ }^{2}\left\{n_{i}{ }^{2} q_{i}{ }^{2}-n_{i} q_{i}{ }^{2}+n_{i} q_{i}\right\}+ \\
& \frac{\left(2 n_{i}-3\right) n_{i}}{2\left(n_{i}-1\right)^{2} n_{i}^{3}}\left\{n_{i}{ }^{3} q_{i}{ }^{3}-3 n_{i}{ }^{2} q_{i}^{3}+3 n_{i}{ }^{2} q_{i}{ }^{3}+\right. \\
& \left.3 n_{i}{ }^{2} q_{i}^{2}-3 n_{i} q_{i}^{2}+n_{i} q_{i}\right\}+ \\
& \frac{n_{i}}{4\left(n_{i}-1\right)^{2} n_{i}}{ }^{4}\left\{n_{i}{ }^{4} q_{i}{ }^{4}-6 n_{i}{ }^{3} q_{i}{ }^{4}+6 n_{i}{ }^{3} q_{i}{ }^{3}+1 \ln { }_{i}{ }^{2} q_{i}{ }^{4}-\right. \\
& 18 n_{i}{ }^{2} q_{i}{ }^{3}+7 n_{i}{ }^{2} q_{i}^{2}-6 n_{i} q_{i}^{4}+12 n_{i} q_{i}^{3}-7 n_{i} q_{i}^{2}+ \\
& \left.n_{i} q_{i}\right\} \\
& E\left[\hat{T}_{i}^{2}\right]=\frac{\left(4 n_{i}^{2}-12 n_{i}+9\right)\left(n_{i} q_{i}^{2}-q_{i}^{2}+q_{i}\right)+\left(4 n_{i}-6\right)}{4\left(n_{i}-1\right)^{2} n_{i}} \\
& \frac{\left(n_{i}{ }^{2} q_{i}^{3}-3 n_{i} q_{i}^{3}+2 q_{i}^{3}+3 n_{i} q_{i}^{2}-3 q_{i}^{2}+q_{i}\right)}{4\left(n_{i}-1\right)^{2} n_{i}}+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(n_{i}{ }^{3} q_{i}{ }^{4}-6 n_{i}{ }^{2} q_{i}{ }^{4}+6 n_{i}{ }^{2} q_{i}{ }^{3}+1 n_{i} q_{i}^{4}-18 n_{i} q_{i}{ }^{3}\right.}{4\left(n_{i}-1\right)^{2} n_{i}}+ \\
& \frac{\left.7 n_{i} q_{i}{ }^{2}-6 q_{i}{ }^{4}+12 q_{i}{ }^{3}-7 q_{i}{ }^{2}+q_{i}\right)}{4\left(n_{i}-1\right)^{2} n_{i}} \\
& =\frac{n_{i}^{3}\left(q_{i}^{4}+4 q_{i}^{3}+4 q_{i}^{2}\right)+n_{i}^{2}\left(-6 q_{i}^{4}-12 q_{i}^{3}-\right.}{4 n_{i}\left(n_{i}-l\right)^{2}} \\
& \frac{\left.4 q_{i}^{2}+4 q_{i}\right)+n_{i}\left(l l q_{i}^{4}+8 q_{i}^{3}-2 q_{i}^{2}-8 q_{i}\right)}{4 n_{i}\left(n_{i}-1\right)^{2}}+ \\
& \frac{\left(-6 q_{i}^{4}+2 q_{i}^{2}+4 q_{i}\right)}{4 n_{i}\left(n_{i}-l\right)^{2}}
\end{aligned}
$$

Let

$$
\begin{aligned}
& A=q_{i}^{4}+4 q_{i}^{3}+4 q_{i}^{2} \\
& B=-6 q_{i}^{4}-12 q_{i}^{3}-4 q_{i}^{2}+4 q_{i} \\
& C=11 q_{i}^{4}+8 q_{i}^{3}-2 q_{i}^{2}-8 q_{i} \\
& D=-6 q_{i}^{4}+2 q_{i}^{2}+4 q_{i}
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\hat{T}_{i}{ }^{2}\right]=\frac{A n_{i}^{3}+B n_{i}^{2}+C n_{i}+D}{4 n_{i}{ }^{3}-8 n_{i}{ }^{2}+4 n_{i}} \\
& =\frac{A}{4}+\frac{B+2 A}{4 n_{i}}+\frac{(C+2 B+3 A) n_{i}+(D-B-2 A)}{4 n_{i}\left(n_{i}-1\right)^{2}} \\
& =T_{i}^{2}+\frac{-q_{i}^{4}-q_{i}^{3}+q_{i}^{2}+q_{i}}{n_{i}}+\frac{\left(2 q_{i}^{4}-4 q_{i}^{3}+2 q_{i}^{2}\right) n_{i}}{4 n_{i}\left(n_{i}-1\right)^{2}} \\
& \frac{-\left(2 q_{i}^{4}-4 q_{i}^{3}+2 q_{i}^{2}\right)}{4 n_{i}\left(n_{i}-1\right)^{2}} \\
& =T_{i}^{2}+\frac{q_{i}}{n_{i}}+\frac{q_{i}^{2}}{2 n_{i}}+\frac{q_{i}}{2 n_{i}}-\frac{\left(q_{i}{ }^{3}+q_{i}^{4}\right)}{n_{i}}+\frac{q_{i}{ }^{2}\left(q_{i}-1\right)^{2}}{2 n_{i}\left(n_{i}-1\right)} \\
& E\left[\hat{T}_{i}{ }^{2}\right]-T_{i}{ }^{2}=\operatorname{Var}\left(\hat{T}_{i}\right)=\frac{T_{i}}{n_{i}}+\frac{q_{i}}{n_{i}}\left[\frac{1}{2}-\left(q_{i}+q_{i}{ }^{2}\right)+\right. \\
& \left.\frac{\left(q_{i}-1\right)^{2}}{2\left(n_{i}-1\right)}\right]
\end{aligned}
$$

which, when simplified, gives

$$
\begin{aligned}
\operatorname{Var}\left(\hat{T}_{i}\right) & =\frac{T_{i}}{n_{i}}+\frac{q_{i}^{2}}{n_{i}}\left[\frac{3 q_{i}^{2}-n_{i}\left(2 q_{i}^{2}+2 q_{i}-1\right)}{2\left(n_{i}-1\right)}\right] \\
& =\frac{T_{i}}{n_{i}}+\frac{q_{i}^{2}}{2\left(n_{i}-1\right)}\left[1+\frac{3 q_{i}^{2}}{n_{i}}-2 q_{i}^{2}-2 q_{i}\right]
\end{aligned}
$$

which we approximate by

$$
\operatorname{Var}\left(\hat{\mathrm{T}}_{\mathrm{i}}\right) \doteq \frac{\mathrm{T}_{i}}{\mathrm{n}_{\mathrm{i}}}
$$

Thus

$$
\operatorname{Var}(S) \doteq \sum_{i=1}^{k} \frac{T_{i}}{n_{i}}
$$

and the truncation error is

$$
\sum_{i=1}^{k}\left[\frac{q_{i}^{2}}{2\left(n_{i}-1\right)}\left(1+\frac{3 q_{i}^{2}}{n_{i}}-2 q_{i}^{2}-2 q_{i}\right)\right]
$$

This error is further discussed in Appendix IV.
In the transitions from (4) to (5) ar infinite
series was truncated to its first two terms. Examine the inner summation of (4)

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{q_{i}^{j}}{j}=q_{i}+\frac{q_{i}^{2}}{2}+\sum_{j=3}^{\infty} \frac{q_{i}^{j}}{j} \tag{37}
\end{equation*}
$$

$$
=T_{i}+R_{2}
$$

where R_{2} is the remainder of the series after two terms have been written out. If we test the $n^{\text {th }}$ and $(n+1)^{s t}$ terms of this series by the ratio test,

$$
\frac{q_{i}^{n+1} / n+1}{q_{i}^{n} / n}=\frac{n q_{i}}{n+1}
$$

we see that this expression is always less thar $q_{j} \leq 1$, which implies the series is convergent. Then Dy Theofem 24, p. 328 of [2]

$$
{ }_{n}^{\frac{1}{\rightarrow} i m i n}\left|\frac{n_{i}}{n+1}\right|=q_{i}
$$

which implies that

$$
R_{n} \leq q_{i}^{n+1} /(n+1)(1-r), r \geq q_{i}
$$

Since $r 2 q_{i}$, let us choose $r=q_{i} \leq 1$ so as to make R_{n} as small as possible

$$
R_{n} \leq q_{i}^{n+1 /(n+1)}\left(1-q_{i}\right)
$$

and evaluating at $n=2$

$$
\begin{equation*}
R_{2} \leq q_{i}^{3} / 3\left(1-q_{i}\right) \tag{38}
\end{equation*}
$$

Since $q_{i} \ll l$ in most cases of interest, choose $q_{i}=$.15, for example, which is about the largest value it will ever take on, and we see that $R_{2} \leq 1.4 \times 10^{-3}$. Substituting equation (38) into (37),

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{q_{i}^{j}}{j} \leq T_{i}+q_{i}^{3} / 3\left(1-q_{i}\right) \tag{39}
\end{equation*}
$$

and substituting (39) into (4)

$$
S \leq \sum_{i=1}^{k}\left(T_{i}+q_{i}^{3} / 3\left(1-q_{i}\right)\right)
$$

which upon distributing the summation sign becomes equation (6). For $q_{i}=.05$, still quite a large value for q_{i} to take on, and $k=15$

$$
S \leq \sum_{i=1}^{k} T_{i}+6 \times 10^{-5}
$$

so the approximation

$$
S \doteq \sum_{i=1}^{k} T_{i}
$$

is quite good.

APPENDIX IV

INVESTIGATION OF ERROR DUE TO APPROXIMATION IN Var (\hat{S})

In Appendix $I I$ the Variance of the random variable \hat{S} is computed, and it is seen that the value used in (11) before differs from the true variance by a factor

$$
\begin{equation*}
\sum_{i=1}^{k}\left[\frac{q_{i}^{2}}{2\left(n_{i}^{-1}\right)}\left(1+\frac{3 q_{i}^{2}}{n_{i}}-2 q_{i}^{2}-2 q_{i}\right)\right] \tag{40}
\end{equation*}
$$

Upon embarking upon an investigation of the size of this term it is quickly seen that it is a task which, due to the amount of work involved, is beyond the scope of this thesis. A few general comments on this term are in order, however.

Being a function of both the q_{i} and n_{i}, equation (40) may, for certain combinations of these parameters, actually be less than zero and reduce the variance of \hat{S}. In order to determine when this occurs, it would be necessary to use a digital computer to compute and plot for each set of n_{i} ' $i=1, \ldots, k$, a curve over the range of $0 \leq q_{i} \leq 1$; and, similarly, to compute and plot for each set of $q_{i}, i=1, \ldots, k$, a curve over the range of interest of $n_{i}, 2 \leq n_{i} \leq N$, where N might be 150 .

If the summand of (40) is plotted as a function of a single q_{i}, with the n_{i} held fixed, the curve is seen to be bell-shaped over the range $0 \leq q \leq 1$, but within the realistic range that q_{i} may be expected to take on $0 \leq q_{i} \leq .15$, (40) is a non-decreasing function, and strictly increasing unless a point of inflection occurs.

If the summand of (40) is plotted as a function of a single n_{i}, where n_{i} is of course interger-valued, it is seen to be a monotone-decreasing step-function, asymptotic to the n_{i} axis.

As a crude bound, on the size of the error, consider the summand of (40)

$$
\begin{aligned}
& \frac{q_{i}^{2}}{2\left(n_{i}-1\right)}\left(1+\frac{3 q_{i}^{2}}{n_{i}}-2 q_{i}^{2}-2 q_{i}\right) \\
< & \frac{q_{i}^{2}}{2 n_{i}}\left(1+\frac{3 q_{i}^{2}}{n_{i}}-2 q_{i}^{2}-2 q_{i}\right) \\
< & \frac{q_{i}^{2}}{2 n_{i}}\left(1+\frac{3 q_{i}}{n_{i}}\right) \\
< & \frac{1}{2 n_{i}}\left(1+\frac{3}{n_{i}}\right)
\end{aligned}
$$

which implies that

$$
\sum_{i=1}^{k}\left[\frac{q_{i}^{2}}{2\left(n_{i}-1\right)}\left(1+\frac{3 q_{i}^{2}}{n_{i}}-2 q_{i}-2 q_{i}\right)\right]<\sum_{i=1}^{k} \frac{1}{2 n_{i}}\left(1+\frac{3}{n_{i}}\right)
$$

which is obviously not a least upper bound, but an example is informative.

Let $n=20$ for all i, and $k=15$

$$
\sum_{i=1}^{k} \frac{1}{2 n_{i}}\left(1+\frac{3}{n_{i}}\right) \doteq .4
$$

which admittedly is of an undesirable magnitude for an omitted term, but (40) is undoubtedly much less than . 4.

No. Copies1. Defense Documentation Center20Cameron StationAlexandria, Virginia 22314
2. Library 2
Naval Postgraduate School Monterey, California 93940
3. Sponsor (Code OP-96) 1Department of the NavyWashington, D. C. 20301
4. Commandant of the Marine Corps (Code AO3C) 1
Headquarters, U. S. Marine Corps Washington, D. C. 22214
5. Professor W. M. Woods (Thesis Advisor) 8
Department of Operations Analysis Naval Postgraduate School Monterey, California 93940
6. Captain James A. Gress, USMC 1
MACS-3
MCAF Santa Ana
Santa Ana, California
7. Professor J. R. Borsting 1
Department of Operations Aralysis Naval Postgraduate School Monterey, California 93940
8. Marine Corps Operations Analysis Group 2
Code AXD Room 4431
Headquarters Marine Corps Washington, D. C. 20380

Naval Postgraduate School
Monterey, California 93940

Unclassified
2b. GROUP
3. REPORT TITLE

A REFINEMENT OF AN ESTABLISHED METHOD FOR COMPUTING CONFIDENCE LIMITS ON SYSTEM RELIABILITY
4. DESCRIPTIVE NOTES (Type of moport and Inciucive datea)

Thesis
5. AUTHOR(S) (Last name, fret neav, Intial)

GRESS, James Andrew, Captain, USMC
6. REPORT DATE
JURE 1967
10. AVA IL ABILITY/LIMITATION NOTICES
11. SUPPLEMENTARY NOTE
12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School
Monterey, California
13. ABSTRACT

A statement of a method [l] for obtaining an approximate lower $100(1-\alpha) \%$ confidence limit on System Reliability is made. A discussion of evaluating the accuracy of this method on a digital computer is presented. Following this the development of a continuity correction factor is developed and the accuracies of this refinement for several hypothetical systems are presented and discussed.

