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ABSTRACT

A statement of a method [1] for obtaining an approx-

imate lower 100(l-a)% confidence limit on System Reliabil-

ity is made. A discussion of evaluating the accuracy of

this method on a digital computer is presented. Following

this the development of a continuity correction factor is

developed and the accuracies of this refinement for

several hypothetical systems are unesented and discussed.
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CHAPTER I

PURPOSE OF THE STUDY

In past years our advancing technology has created

systems which are becoming more and more complex. In the

military this has been particularly true, and thus, has

produced a great need for a method of predicting the over-

all reliability of these systems. Many problems in the

area of reliability have not been solved. One of the

unsolved problems is the formulation of a method for compu-

ting a confidence interval on system reliability where the

reliability of the system is computed as the product of the

reliabilities of each of the components, and the sizes of

the test samples of the components are not all equal. If

the test samples are equal, there exist well-known methods

for computing a confidence interval. Because of the size

and complexity of present day systems it is necessary for

major contractors to have many sub-contractors. They may

be scattered througout the country and may produce a limited

supply of each component, of which very few may be used for

reliability testing. These factors plus the general practice

of testing before the system is assembled points out that

having the sample sizes all equal is a rare event.

An ad hoc procedure for computing an approximate con-

fidence interval has been developed, based upon Bernoulli

test data from unequal samples of the various components of

the system [1] . This technique will be called Method I

throughout this document.



An underlying assumption to this procedure is that the

distribution of the unbiased estimator of the negative

natural logarithm of system reliability may be approximated

by a two-parameter Gamma probability distribution. Conse-

quently, a discrete set of values are approximated by a

continuous function. Realizing the inherent error in this

approximation this Thesis has as its purpose

(1) to develop a correction factor to reduce this

error? and

(2) to simulate the distribution of the lower con-

fidence limit of various systems and examine

the results achieved with and without this

correction.

The fruitfulness of the investigation that follows is

demonstrated by a discussion of the results. In later

chapters, it will be explained that the a th percentile

of the simulated distribution of the lower confidence limit,

called R , ., and the true reliability of the system, R ,s / .Li \ a

)

s

should be the same; therefore, the difference will be used

as a measure of the accuracy of Method I. Consider the

following example: a system is made up of 15 components;

14 have a sample size of 20 to be tested; and each a failure

probability of .995; one has a sample size of 150 and prob-

ability of failure .850. The true reliability, R , is,. 7924.
5

The a th percentile point of the distribution of the lower

100(l-a)% confidence limit, without correction were computed



to be:

ot

.05

.10

.20

s , L ( a)

.8170

.8175

.8000

s ,L(a)"
R

1

•s|

.0246

.0251

.0076

Now by adding the correction factor the results became:

a

.05

.10

.20

L

s ,L(a)

.8113

.8135

.7969

s,L (a) s

.0190

.0211

.0045

The above example certainly did not have the best

accuracy of the various systems chosen nor was it the

worst. The following summary shows the average and vari-

ance of the error in all the cases studied.

Without correction:

Average Error Variance of Errora

.05

.10

.20

.0438

.0305

.0109

.00213

.00076

.00016

With correction:

a

05
10
20

Average Error

.0286

.0168

.0056

Variance of Error

.00041

.00015

.00005

The next chapter plus the appendices contains a com-

plete explanation of Method I and discusses some further

approximations made in the method.

Chapter three discusses the digital computer's role in

obtaining the distribution of the lower confidence limit of



the reliability by Method I. Also mentioned is the measure

of accuracy used to evaluate the method's precision.

Chapter four outlines the reason for the correction

factor and discusses the logic behind its development and

application to this method.

In Chapter five the results of various computations

are presented and discussed.

The last chapter summarizes the study and states the

conclusions.

10



CHAPTER II

EXPLANATION OF METHOD I [1]

If a system consists of k components in logical series,

the true system reliability, R , may be expressed as follows:

r
s

= n n (i)

1= 1

where p. is the true reliability of the i— component. The

component may be either continuous-operating or cycle type.

It is desired to find a lower 100(l-a)% confidence

interval for R . That is. a statistic R T , x such that
s ' s f L(a)

whatever the actual values of p, , p 2/ ....pk/

P[R
s iVMc) 1 = f"a

The method proposed is to put n. items of component i

on test, i=l, 2, ...., k; under the environmental conditions

defined in the mission and let each operate until failure

or the mission time is reached, whichever occurs first.

Letting

f . = number of components of type i

that didn't complete their mission.

We define: p. = 1-q. where q. = _i_ (2)

n

.

l

and R = n p.
S

i=l
X

The random variable =lnR is now used to obtain the
s

lower confidence bound on R . This is accomplished by

approximating the distribution of -InR by a two parameter
s

gamma distribution and obtaining the confidence bound via

the gamma distribution.

11



To continue the development define:

S = -InR = -J In (1-q.) (3)

i=l

and, expanding the natural logarithm in an infinite series

k r i

S = " .1
(-q

±)4 ( -«i
,2-T^t )3 ---|

1=1 L J

k 0° j

i=i j=i -i-
(4)

If each q. is small, say, .15 or less, the above series

can be approximated by the first two terms of the series,

called T. for ease of expression. That is,

2

s r q i
s

* Jxh
+ -* s

I T.

i=l X
(5)

In Appendix III [4 J , it is shown tnat tne error due to the

aoove truncation is quite small; in fact;

JS. A. y .

- I T
i

+
I 3 (1-q )i-1

x
i=l .

J VA 4^
(6)

In Appendix I [4], an unbiased estimator for T. is devel-

oped and is called T.

.

qV
T. = a.a.+b.-i-
l l^i l 2

(7)

where

a .
=

2n.-3
l

(nT^l) (8)

n

.

b. = i
i n. -1

l
(9)

and as in (2)

f

.

q. = -i4 i n.
l

12



An unbiased estimator is considered important here because

the T. are to be added to obtain:
1

k
s = y t. do)

i=l
x

Therefore, a positive or negative bias on all of the T.

would be undesirable. It also follows that S will be an

unbiased estimator of S.

An approximate value for the variance of S can be

shown to be (see Appendices II and IV of [4])

k k T.

Var (S) =
I Var (T

. ) =
J

-± (11)
i=l

1
i=l i

The distribution of S is now fitted with a two param-

eter gamma family. That is, it is assumed the probability

distribution of S is given by the density function fs

(x,r,0) defined as:

f_(x,r,0) = —i-r

-

x e ,x>0,r>0,6>0
b T(r)9r

= elsewhere.

Estimates of f and are found by the Method of Moments

2S 2and the fact that —pr is a y. random variable is used toA 2r

obtain a confidence interval for -InR and. thus, from this
s

the confidence interval for R can be derived.
s

Since S is assumed to be gamma distributed:

E[S] = 0r (12)

Var[S] = 2
r (13)

But also from (10) that

E[S] =
I T

i
i=l

13



and

Var[S] = I
jji

i=l i

Thus, solving the above equations for r and 0, the follow-

ing expressions are obtained:

k \ 2 / k

'lii

"

k T.

e = I
—

i !i
i=l n.

1

k

i=l

(14)

(is:

Thus, an estimator £, for r is taken as

(16)

Now to obtain the confidence interval the following

2S 2procedure is used. Since —= is a Xo random variable and

0r = -InR , the following probability statements can be
S

made

:

1-ct = P
"2S 2

- x l-a / 2rJ

0r < 2S

-InR < 2S
s —

xl-a,2r

r

-InR < 2S
s —

xl-a,2r

r

(17)xl-a,2r

It has been noticed that this last statement has an

important property; namely

2r
2

xl-a,2r (18)

is almost independent of r. As an example if a = .10 for

14



2 2
r = 6 the ratio is ^

—

f- and for r = 12 the ratio is35 «„« „w* ^ *.. w«* *.-w.^ *« 3>6
.

It is observed that r can be varied by a factor of 2 and

still have nearly the same value. This effect is even

less for larger values of r. This suggests that the prob-

ability distribution of

[2r] (19) where [2f] denotes the smallest

X-,_ r9 w, integer greater than or equal to 2r

has a very small variance. Therefore, (18) could be re-

placed by (19) in (17) and, thus, have the following state-

ment

S[2r]1- a = P -InR <
2

X1-a, [2f] J

(20)

(20) can be rewritten as

-S [2r]
1-a = P

)
R >_ exP

L x l-a, [2rH

(21)

That is a 100 (1-a) % lower confidence limit for R is
s

R
s,L(a)

= exP
-S[2r]

X 1-a, [2r]

-

(22)

15



CHAPTER III

SIMULATED DISTRIBUTION OF THE CONFIDENCE LIMIT

In order to evaluate the accuracy of the procedure,

a digital computer is used to simulate the distribution

of the S's. The following parameters are used as inputs

to the computer program: k; n., i = 1 ,...., k; and p. = 1-q.,

X ^ X
f

• • • » f Jv

In order to have an R to compare with the simulation the

program first computes an R from
s

k
R
s

= TT Pi •s
i=i

1

The program next simulates values. A three digit ran-

dom number is obtained using a uniform random number gener-

ator subroutine. If the random number generated is greater

than p. , a failure is "counted" by the computer; if the

random number is less than or equal to p., no "count" is

made. This random number generation is done n. times for

each p . . Thus, the number of failures counted divided by

the number of units of that component becomes an estimator

for the unreliability of that component.

f.
i.e., q . = —

1

This process is repeated for all q.; thus giving an estima-

tor for each q. . Once these estimators are simulated the

following arithmetic operations are performed by the com-

puter and stored for further use:

b . q

.

T
i

a
i«i

+ -t4-
< 7 >

16



k
S - J T

±
(10)

i=l

f = (I T.)
2 / r T. (23)

In order to complete the simulation of the distribution

of R , v , replications are made of the above procedure.
S , xj \ 0t )

This gives 500 values each of (10) and (23) which are used

to compute 500 values of

" lnV(a)
= g[2fl/X l-a,[2f) < 24 >

for each value of a. These 500 points are then sorted, by

size, by a separate subroutine. The computer now picks out

the a th percentile of this distribution, call it A. Then

-AR rM = e "is computed and printed out for comparison

with the true system reliability, R .

To develop a measure of accuracy for the simulation

consider the underlying meaning of the probability state-

ment

P[Rsf R
s,L(a)J

= 1 - a < 25)

If the probability density function of R T , * is plotted
S , Li \ QL

)

on a coordinate system, and R is taken to be a point on

the abscissa, then 100(l-a)% of the area under the curve

lies above and a% lies below R . Therefore, R should be
s ' s

equal to the a th percentile of the distribution of R T , v

which we have called exp (-A)

.

Thus, |r - exp (-A)
| (26) is a measure of the

accuracy of the procedure under investigation.

17



CHAPTER IV

DEVELOPMENT OF CONTINUITY CORRECTION FACTOR

In the previous discussion S was assumed to be a gamma

distributed random variable. Since a digital computer

simulation is used to generate the values of S it is real-

ized that the actual distribution is discrete. Therefore,

the program is estimating a gamma distribution. As in the

case of estimating a binomial with a normal distribution

a more accurate result can be had if the discrete values

are slightly shifted.

The following is the development of a correction

factor (commonly called a continuity correction factor)

.

Consider the following:

k
S = I T.

i-1
X

f . b.
/ f . \

2

T. = a . • — + -* — (27)
i i ,n

±
2 \n

j_
|

where a. = 2n.-3 and b. = n.
i i i i

2(n.-l) n.-l
l l

The smallest difference between two values of S will

be the smallest change in one of the T. terms. For a T.

the smallest change is when f. is increased by one for that

respective n. that is the max (n.)
l i

1= JLj^j • • • • JC

Let j be that i 3

n . = max (n .

)

18



and in T. increase f . by one to obtain T.*; that is
3 Iv, J

(f +1) b./f.+l\ 2

T* = a, —J + -11-1—

\

(28)
3 : n. 2 ^ n.

Define the correction factor as

C
l

=
1 $j* " V (29)

where ~

2n.-3 f. n. f.
T. = 3 . _1 + -1 . _0_
3 2(n.-l) n. 2(n.-l) n.

2HDD 3

(2n.-3) f.+f.
2

= 2 2 2_ (30)

2n. (n.-l)
: 3

(2n.-3) (f.+l) n. (f.+l)
2

Tj* = , 3 . 2 + 2 . 2 ___
2(n.-l) n. 2(n.-l) n.

3 3 3 3

f.
2
+(2n.-l) f.+2(n.-l)

= -1 J 2 2 . (31)
2n. (n.-l)

3 3

Then
l

[f

.

2+(2n -l)f
n
+2(n -1) ] -

[ (2n .-3)

f

R
+f

n
2

]

1 2
2n. (n.-l)

D 3

2n.+2f .-2
= __J 2

4n. (n.-l)
3 3

n.+f -1
= _J D_

2n.
2
(n.-l) . (32)

The corrected S is now defined to be

S* = S+C, (33)

19



It can be seen from the above calculations that S*

will have a value even if all the T. 's turn out to be zero

Keeping this in mind and looking at the equation for f

in equation (23)

k
T - 2 / £
2± = (s*)y I

x

_±
n. / i=l n.
1 l

it is observed that in this case £ becomes infinite when

the denominator is zero. Obviously this doesn't make

sense; therefore, a correction factor is added to the de-

nominator. Because this correction factor has little in-

tuitive basis other than keeping r from becoming infinite,

it was picked quite arbitrarily. The following correction

factor was chosen:

T . - T.
C = -J i_ (34)
2 n

.

D

k T.
and added to £ — giving a new f ie. f*. This factor

i-1
n
i

proved to be adequate and didn't appear to bias the final

results; at least, not in the region of accuracy desired

in the model.

The two corrected values are now combined in the prob-

ability statement of equation (21)

l-a -p[R
8
>exp(-S* [2£*]/xl-a,

[2|*j|]
(35)

giving the associated lower confidence limit

(36),L(a) = ex? [-S* [2
**

]Al-a, [2r*]]

which was simulated in the computer.

20



CHAPTER V

RESULTS OF SIMULATIONS

There were thirteen different combinations of param-

eters used, representing as many hypothetical systems.

Table I lists the input parameters and the results. Col-

umn (1) is self-explanatory. Column (2) is the number of

components in the system. Colums (3) gives the size of

the sample tested for each respective component. Column

(4) is the probability of success for each component of

the system. Column (5) is the system reliability as com-

puted directly from the input parameters (2) , (3) and (4)

.

Column (6) lists the three values of a for which a lower

confidence limit was computed. Column (7) is the exponen-

tial power of the a th percentile of the distribution.

The first four cases in Table I are examples of systems

with different component sample sizes. In Cases 5 through

13, the sample size is constant in each case. These last

cases show the effect that system size, sample size and

probabilities have on the accuracy of the method. The

effects noted will be discussed after Table II is presented.

A further check was made on the method by computing

Case 10 four times, each time starting the random number

generator at a different point. The results of this test

showed there wasn*t any difference in the first four decimal

places of the confidence limit estimate. From this, it is

concluded the 500 replications of each case is enough to

smooth out any fluctuations in the generated numbers.

21



TABLE I

RESULTS OF COMPUTER SIMULATION WITHOUT

CONTINUITY CORRECTION FACTOR

(1) (2) (3) w (
i>

(6) (7)

:ase k
n

.

l p i Rs a exp (-A)

150 19 .995 .900 .05 .7185
90 5 .985 .980
75 125 .979 .995 .10 .7270

i 13 100 63 .988 .970 .7233
125 125 .982 .995 .20 .7292
18 59 .980 .968
28 .967

250 30 .05 .8610
40 20 .990 .8601 .10 .8626

120 75 1=1,— ,15 .20 .8606
2 15 15 100

130 90
65 60
70 60

130

20 150 .995 .05 .7270
20 20 i=l,— ,14 .7920 .10 .7480
20 20 .20 .7891

3 15 20 20
150 20
150 20
150 20
150

.850
i=15

20 1=1,-, 14 .995 .05 .8170
4 15

150 i=15
i=l,— ,14

.850
i=15

.7924 .10
.20

.8175

.8000

.05 1.0000
5 5 50 .99

i-lr"~, 5

.9510 .10
.20

.8958

.9142

.05 .8359
6 10 50 .99 .9044 .10 .8604

i=l,~- ,10 .20 .8894

.05 .7985
7 15 50 .99

i=l, ,15
.8601 .10

.20
.8325
.8506

._ .,

.

22



TABLE I (Continued)

RESULTS OF COMPUTER SIMULATION WITHOUT

CONTINUITY CORRECTION FACTOR

(1) (2) {Z> (S J (5) (6) (7)

CASE k
n
1 p i Rs a exp(-A)

.05 .5767
8 30 20 .99

i=l,-— ,30
.7397 .10

.20
.6647
.7059

.05 .7636
9 5 100 .95

1=1,—-, 5

.7738 .10
.20

.7652

.7696

.995 .05 .6862
10 15 20 1=1,— ,14

.85
i=15

.7924 .10
.20

.7048

.7666

.995 .05 .7683
11 15 40 i=l,— ,14

.85
i=15

.7924 .10
.20

.7825

.7935

.995 .05 .7704
12 15 50 i=l,— ,14

.85
i=15

.7924 .10
.20

.7829

.7925

.995 .05 .7780
13 15 100 i=l,~— ,14 .7924 .10 .7885

i

.85
i=15

1

»

.20 .7918

23



Table II lists the results of the cases with and with-

out the correction factor added. Columns (1) , (2) and (3)

were described before. Column (4) is the exponential

power of the a th percentile of the distribution with the

correction added. Column (5) shows the value of the meas-

ure of accuracy used in evaluating Method I with correction

added. Column (6) is the same as (5) but without the

correction added.

From Table II, it is quite apparent, on the whole,

that the error was reduced by the addition of the correction

factor. It also appears the correction has less effect on

cases where the sample sizes (n.) vary [Cases: 1, 2, 3, 4],

but still, obviously, worth the effort. Cases 5, 6 and 7

seemed to indicate the number of components (k) in the

system has no effect on accuracy. Cases 10, 11, 12 and 13

appear to point out that as the sample size (n.) increases

the accuracy versus probabilities* This concludes the

discussion of the most observable facts that can be viewed

from the tables.

2

V\ofc W^^fc oj2tk£v
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TABLE II

COMPARISON OF METHOD I WITH (*) AND

WITHOUT CONTINUITY CORRECTION FACTOR

(1)

CASE % (3)

a
(4)

exp (-A*)
(5)

exp(-A*) -Rs

(6)

exp(-A) -Rs

1 .7233
.05
.10
.20

.7184

.7270

.7291

.0049

.0037

.0058

.0048

.0037

.0038

2 .8601
.05
.10
.20

.8610

.8626

.8606

.0010

.0025

.0006

.0010

.0026

.0006

3 .7924
.05
.10
.20

.7219

.7459

.7873

.0705

.0465

.0051

.0654

.0444

.0033

4 .7924
.05
.10
.20

.8113

.8135

.7969

.0190

.0211

.0045

.0246

.0251

.0076

5 .9510
.05
.10
.20

.9961

.9269

.9522

.0039

.0241

.0012

.0490

.0552

.0368

6 .9044
.05
.10
.20

.8628

.8953

.8998

.0415

.0090

.0045

.0685

.0440

.0150

7 .8601
.05
.10
.20

.8384

.8480

.8567

.0216

.0120

.0033

.0616

.0276

.0095

8 .7397
.05
.10
.20

.6830

.7070

.7220

.0567

.0327

.0177

.1630

.0750

.0338

-

9 .7738
.05
.10
.20

.7635

.7651

.7696

.0103

.0086

.0042

.0102

.0085

.0042 j

j

10 .7924
.05
.10
.20

.7495

.7591

.7684

.0429

.0330

.0240

.1062

.0876

.0258

!
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TABLE II (Continued)

COMPARISON OF METHOD I WITH (*) AND

WITHOUT CONTINUITY CORRECTION FACTOR

(1)

CASE
(2)
Rs

(3)

a
(4)

exp (-A*)
(5)

exp (-A*)-Rs

(6)

exp (A-A) -Rs

11 .7924
.05
.10
.20

.7714

.7820

.7931

.0210

.0104

.0007

.0241

.0099

.0011

12 .7924
.05
.10
.20

.7700

.7826

.7923

.0224

.0098

.0001

.0220

.0095

.0001

13 .7924
.05
.10
.20

.7779

.7884

.7917

.0145

.0040

.0007

.0144

.0039

.0006

26



CHAPTER VI

SUMMARY AND CONCLUSIONS

In the preceding four chapters a procedure [1] has

been explained which will approximate a lower 100(l-a)%

confidence interval on system reliability. The simulation

of this method on a computer has been explained and the

technique used to measure the accuracy of the method was

stated. A continuity correction factor has been developed

which enables the discrete computations of a digital com-

puter to more closely approximate a continuous distribution.

The simulation was run for thirteen cases with and

without the continuity correction factor. These were not

an adequate amount of cases on which to base any concrete

conclusions. It is felt these cases are sufficient to

show the merit of the correction factor. The following

summary as stated in Chapter I demonstrates the validity

of the procedure

.

Without Correction:

a Average Error Variance of Error

.05 .0438 .00213

.10 .0305 .00076

.20 .0109 .00016

With Correction:

a Average Error Variance of Error

.05 .0286 .00041

.10 .0168 .00015

.20 .0056 .00005

From Tables I and II in Chapter V, it can be seen

the average error for those cases where sample size (n.)
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is varied would be less than shown above. It must then

be concluded that Method I with the correction factor

will be an effective method for approximating the lower

100(1 - a) % confidence limit for system reliability.

It should be pointed out that another study; ob-

viously, could be done in this same area. By varying the

input parameters (k, n., p.) and determining their

effects, one could possibly establish limits on their

variation to keep within a desired degree of accuracy.

In closing, I would like to express my appreciation

to Dr. W. Max Woods of the Operations Analysis Department

for pointing out this problem and serving as a very

willing advisor. I also wish to extend my thanks to Dr.

Rex H. Shudde for supplying the basic computer program

for Method I which required slight alteration to meet

my needs

.
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APPENDIX I

DERIVATION OF T., THE UNBIASED ESTIMATOR OF T.
l

'

l

In order that T. be an unbiased estimator of T.,
l l

it is necessary that

T. = E[T. ]
l l

Rewriting the above expression, using (5) and (7)

q ± + -2- = e

and, substituting (2)

a.f. b.f.
1 ! + 1 1

2 -i

n

'l 2
q. + —=- = E

a.f. b.fli li
2-,

n. o 2
l 2n

.

l

a. b

.

9-i E[f .] + —i* E[f/]
n

.

l ~ z i
l 2n

.

l

a. n .q . b.

n

.

<> 2
l 2n

.

i

(n. q. -n.q. +n.q.)
l M i l^i l^i

b.q
a.q. +

1 1
(1 i-) + b.q

i^i 2 n. i^i
l

b. b. q.2
(a. + ^-) qj + (b. - -i) -4-

l 2n

.

^i i n

.

2
l * l
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2
q iThen equating coefficients of q. and —«—

b.
a. + J±- = 1
1 2n

.

l

b.
b. - -± = 1
l n.

l

and solving simultaneously

a. + -A* = l
l 2n

.

l

1 (b .) - 1 <^i> = l(i)
2 l 2 n . 2

l

b. .

l 2 2

* a
i i<

3 - b
i»

Substituting back

b.
£ (3 - b.) + «— = i
2 l 2n

.

b.
3 - b. + — = 2

l n.
l

n.
=> b. = i-*

l n .
- 1

l
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and again substituting

a. =4 (3 -
( i-T-) )

1 2 n. - 1

n

.

2n. - 3
l

2(n
±

- 1)

Thus,

2n. - 3 n. q.
2

T
i

=
2(n. - 1) ^i

+
n. - 1

~2~
l l

is an unbiased estimator of T .

.

i

r-
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APPENDIX II

COMPUTATION OF VARIANCE OF S

/ k A \ k
Var (S) = Var I T. = £ Var (T

±)1=1 A
/ i=l

Var (T. ) = E[T. ] - E [T.

]

1 1 l

= E[T.
2

] - T.
2

l l

E[T/] = E[(a.q, + -±±-
)

Z
]

1 -1 !

b
2 " 4

E[a.
2
q\

2
+ a.b.q.

3
+

i
/1

i

l ^i l 1^1 4

2 K k 2
a

.

~ a . b

.

-> d .

2-, . l l „ r *- 3

n

i^ E[f
i
^] + -iji E[f

i

J
] + ^i-3 E[f

i

4
]

n 4n

From [ 3

]

_ r , 2, 2 2 2
E[f. J =n. q. -n.q. +n.q.

l l H i 1^1 l^i

E[f.
3

] = E[(f. - E[f.]) 3
] + 3E[f.]E[f.

2
] - 2E

3
[f.]

l l

3 3 2 3 „ 3 22 2= n. q. - 3n. q. + 2n
.
q . + 3nrq. - 3n.q. + n.q.

i ^i l ^i 1^1 i^i 1^1 li

E[f
±

4
] = E[(f

i
- E[f

;

.])
4

] + 4E[f
i
]E[f

i

3
] - 6E

2
[f

i
]E[f

i

2
] +

3E"[f\]

33



44 r 3 3 nl 24 10 23
7

2 2
n
i q i " 6n

i q i
+ lln

i q i "
18n

i q i
n
i q i

4 3 2
6n

.
q . + 12n.q. - 7n.q. + n.q.li l^i i^i i^i

Therefore

2
r. ( 2n . - 3) oo o

E[T
2

] = -g-i 2—^- (n.^q.
2

- n .q * + n.q.) +
1

2^(n. -1) n.
x 1 x 1 x x

l l

(2n
i " 3) n

i r n 3 3 . 2a 3 . _ Zn
3

—2-3 { ni q. - 3n. q. + 3n. q. +
2(n. - 1) n

l l

3n. q. -3n.q. +n.q.}+
l ^i l^i l^i

n
i /44 .34 c 3 3 -.2 4

a , In. q. - 6n . q. + 6n . q. + lln. q.
. , , x 2 4 l ^i l M i l ^l l ni
4 (n. - 1) n.

l l

18n.
2
q.

3
+ 7n.

2
q.

2
- 6n.q.

4
+ 12n.q.

3
- 7n.q. 2

+
l ^i l ^i l^i l^i l^i

n.q . -,

i^i)

2 n , , 2 2
* 2

E[T. ] =
(4n. - 12n. + 9) (n.q. - q. + q.) + (4n. - 6)

l i i^i ^i ^i l

1
4(n. - l)

2
n.

l i

(n
i q ±

- 3n
iqi

+ 2q
±

+ 3n
iq i

- 3
qi

+ q^ +

4(n. - l)
2
n.

l l
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/ 34 ,.24 ,2 3 .. 4 1£> « 3
(n. q. - 6n. q. + 6n . q. + lln.q. - 18n.q. +
v

i
M i l ^i l ^i i^i i^i

4(n. - 1) n.

2 4 3 2
7n

iq i
- 6

qi
+ 12q

±
- 7

qi
+ q

± )

4(n. - l)
2
n.

l l

n.
3
(q.

4
+ 4q.

3
+ 4q.

2
) + n.

2
(-6q.

4
- 12q.

3

1 JTL jVl ^1 1 ^1 ^1

4n. (n. - l)
2

l l

4q.
2

+ 4q.) + n.(llq.
4

+ 8q.
3

- 2q.
2

- 8q.) +

4n
i
(n

i
- l)

2

(-6q.
4

+ 2q.
2

+ 4q.)

4n. (n. - 1)li

Let

4 3 2
A = q ±

+ 4q. + 4
qi

B = -6q.
4

- 12q.
3

- 4q.
2

+ 4q.

C = llq.
4

+ 8q.
3

- 2q.
2

- 8q.

D = -6
qi

4
+ 2q

±

2
+ 4

qi
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Then

.

3
+ Bn . + Cn . + D

El*/] - -^ —, "T 2
4n. - 8n . + 4n.111

A B + 2A
(C + 2B + 3A)n

i + (D " B " 2A)

4"
+

4n.
+ 7~T 77T

4n. (n. - 1)
l l

T.
2

+ -^
l

q ± + qi + q± (2q.j_ - 4q
i

+ 2q
±

)n
i

n
4n. (n. - 1)li

4 3 2
-(2q.

4
- 4q.

J
+ 2q.

2
)

1
4n. (n. - 1)

l l

2 .
<*!

, ^i
2

, ^i
2

^i + 0; +
^i

2(<
3i

- 1)2
= T. + —- +

l n. 2n. 2n.ill n 2n. (n. - 1)li

~ 2
E[T.^] T. = VarfT^

T. q.

n . n.
l i

i . (q± + q± )
+

2
x x

(qj - i)

2(n
i

- 1)

which, when simplified, gives

T. q
Var(T.) = -± + -±

n
i

n
i

3q.
2

- n.(2q.
2

+ 2q. - 1)

2lnT - 1)

T.
l

j
n
±

T
2(n, - 1)i

.

i

3q
1 + i 2q. - 2q.

n. ^i ^i
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which we approximate by

T.

Var(T.) **-£
i n.

Thus

k T.

Var(§) = I -±
.
6

, n.
i=l 1

and the truncation error is

k

I

i=l

3q,

HHT - i) I

x + nq- " 2q
i

2
" 2q

i

This error is further discussed in Appendix IV,
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APPENDIX III

ANALYSIS OF THE ERROR DUE TO TRUNCATION

In the transitions from (4) to (5) an infinite

series was truncated to its first two terms. Examine

the inner summation of (4)

j-1 D *i
+ + I

J-3
(37)

= T. + R
l 2

where R
2

is the remainder of the series after two terms

have been written out. If we test the n and (n + 1)

terms of this series by the ratio test,

n+1 / n + 1
nq.

n /
n + 1

we see that this expression is always less than q, < 1,

which implies the series is convergent. Then by Theorei

24, p. 328 of [2]

liiii
a^-oo

nq.

H+r

which implies that

< „ n+1
R
n " q i / (n + 1) (1 " r), r > q.
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Since r ^ q. , let us choose r = q, ^ 1 so as to make

R as small as possible

n + 1
£ q.

n /(n +1) (1 - q.)

and evaluating at n = 2

R
2 * q

j.

3

/ 3(1 " q i )
'

(38)

Since q. << 1 in most cases of interest, choose q. =

.15, for example, which is about the largest value it

-3
will ever take on, and we see that L i 1.4 x 10

Substituting equation (38) into (37)

,

00 q

1
i < T . + q .

3 / 3(1 - q.) (39)

j = l J

and substituting (39) into (4)

S £ I (T. + q
J / 3(1 - q± ))

i=l

which upon distributing the summation sign becomes

equation (6). For q. = .05, still quite a large value

for q. to take on, and k = 15

S < I T. + 6 x 10"
,

1=1
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so the approximation

k
S = I T.

1=1

is quite good.
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APPENDIX IV

INVESTIGATION OF ERROR DUE TO APPROXIMATION IN Var (S)

In Appendix II the Variance of the random variable S is

computed, and it is seen that the value used in (11) before

differs from the true variance by a factor

k

I
i=l

2 / . 2

*±
[ 14

3q
i , 2 9

TTKpi) 1+ "n— " 2c
3i " 2

*i (40)

Upon embarking upon an investigation of the size of this term

it is quickly seen that it is a task which, due to the amount

of work involved, is beyond the scope of this thesis. A few

general comments on this term are in order, however.

Being a function of both the q. and n., equation (40)

may, for certain combinations of these parameters, actually

be less than zero and reduce the variance of S. In order to

determine when this occurs, it would be necessary to use a

digital computer to compute and plot for each set of n.,

i=l,..., k, a curve over the range of < q. < 1; and,

similarly, to compute and plot for each set of q., i=l,...,k,

a curve over the range of interest of n
.

, 2 n. < N, where

N might be 150.

If the summand of (40) is plotted as a function of a

single q., with the n. held fixed, the curve is seen to be

bell-shaped over the range q 1, but within the real-

istic range that q. may be expected to take on _< q. <_ .15,

(40) is a non-decreasing function, and strictly increasing

unless a point of inflection occurs.
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If the summand of (40) is plotted as a function of a

single n., where n. is of course interger-valued, it is seen

to be a monotone-decreasing step-function, asymptotic to the

n. axis.
1

As a crude bound, on the size of the error, consider

the summand of (40)

2(n
i
-l)

1 + !2l
n
i

- 2q
i

- 2q
i

2n
1 + !2i

n.
- 2

qi
- 2

qi

2

2n.
i

1 +
3q.

n

2n.
i

1 +
n

.

i

which implies that

k

I
i=l

q i /
3q

i

2(n -1)
I

X +
-nT" " 2q

i
" 2q

i <

J, ^ (I + Mn

which is obviously not a least upper bound, but an example

is informative.
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Let n = 20 for all i, and k = 15

which admittedly is of an undesirable magnitude for an omit-

ted term, but (40) is undoubtedly much less than .4.
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