Tide-level and bottom-friction effects on wave refraction as determined by numerical wave refraction procedures

Farrell, Charles Augustus, Jr.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/13295

Downloaded from NPS Archive: Calhoun
TIDE-LEVEL AND BOTTOM FRICTION EFFECTS ON WAVE REFRACTION AS DETERMINED BY NUMERICAL WAVE REFRACTION PROCEDURES

CHARLES AUGUSTUS FARRELL
TIDE-LEVEL AND BOTTOM-FRICTION EFFECTS
ON WAVE REFRACTION AS DETERMINED BY
NUMERICAL WAVE REFRACTION PROCEDURES

by

Charles Augustus Farrell, Jr.
Lieutenant, United States Navy
B.S., Naval Academy, 1961

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL
June 1967
ABSTRACT

Numerical wave refraction programs permit a detailed study of the transformation of wave energy as waves move from deep water to shallow water. By eliminating the subjectivity that is present with hand drawn diagrams the effect of small variations in the initial assumptions and wave conditions can be investigated. The effects on wave refraction of tide level changes and bottom friction are investigated here. It is demonstrated that a uniform increase in water level as would be caused by tidal fluctuations can cause a significant change in the wave refraction pattern for a given nearshore region. A computing procedure is developed to permit numerical refraction programs to account for bottom friction. The reduction in wave height caused by bottom friction depends primarily on bottom slope; this relation is shown in tabular and graphical form.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2. Computer Program</td>
<td>13</td>
</tr>
<tr>
<td>Depth Grid</td>
<td>13</td>
</tr>
<tr>
<td>Input Data</td>
<td>13</td>
</tr>
<tr>
<td>Computer Output</td>
<td>15</td>
</tr>
<tr>
<td>Computer Operations</td>
<td>15</td>
</tr>
<tr>
<td>3. Effect of Tide Level Changes on Wave Refraction</td>
<td>17</td>
</tr>
<tr>
<td>Differences in Shoaling Factor, Wave Speed, and Ray Curvature at Specific Depths</td>
<td>17</td>
</tr>
<tr>
<td>Differences in Wave Refraction Patterns for Specific Locations</td>
<td>21</td>
</tr>
<tr>
<td>4. Bottom Friction Effect on Wave Height</td>
<td>30</td>
</tr>
<tr>
<td>Introduction to Bottom Friction</td>
<td>30</td>
</tr>
<tr>
<td>Computing Procedures</td>
<td>31</td>
</tr>
<tr>
<td>Results of Bottom Friction Computations</td>
<td>33</td>
</tr>
<tr>
<td>5. Conclusions</td>
<td>38</td>
</tr>
<tr>
<td>6. Recommendations</td>
<td>39</td>
</tr>
<tr>
<td>7. Bibliography</td>
<td>41</td>
</tr>
<tr>
<td>8. Appendix 1 Computer Program</td>
<td>42</td>
</tr>
<tr>
<td>9. Appendix 2 Sample Input and Output</td>
<td>56</td>
</tr>
<tr>
<td>10. Appendix 3 Summary of Equations</td>
<td>59</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>I.</td>
<td>H/H_o ratio at low tide and high tide for specific coastal locations near Point Sur, California.</td>
</tr>
<tr>
<td>II.</td>
<td>H/H_o ratio at high tide and low tide for specific coastal locations near Eastern Head, Maine.</td>
</tr>
<tr>
<td>III.</td>
<td>Wave height reduction due to bottom friction as determined by Putnam and Johnson and by the numerical wave refraction program.</td>
</tr>
<tr>
<td>IV.</td>
<td>Percent reduction of wave height for various values of TIME.</td>
</tr>
<tr>
<td>V.</td>
<td>Wave height reduction for bottom slopes of 1:100 to 1:400 and wave periods of 8 to 16 seconds.</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure	Description	Page
1. | Effect on wave speed of varying tide levels for 8-16 second waves. | 18
2. | Effect on ray curvature of varying tide levels for 8-16 second waves. | 20
3. | Low tide refraction diagram for Big Sur, California. | 24
4. | High tide refraction diagram for Big Sur, California. | 25
5. | Low tide refraction diagram for Big Sur, California. | 26
6. | High tide refraction diagram for Big Sur, California. | 27
7. | Low tide refraction diagram for Eastern Head, Maine. | 28
8. | High tide refraction diagram for Eastern Head, Maine. | 29
9. | Expected wave height reduction at breaking point due to bottom friction for bottom slope of 1:10 to 1:400. | 37
TABLE OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>approach angle of wave ray</td>
</tr>
<tr>
<td>(\phi)</td>
<td>ray separation in shallow water divided by ray separation in deep water</td>
</tr>
<tr>
<td>C</td>
<td>wave velocity</td>
</tr>
<tr>
<td>(C_0)</td>
<td>deep water wave velocity</td>
</tr>
<tr>
<td>f</td>
<td>dimensionless friction coefficient for the bottom.</td>
</tr>
<tr>
<td>FK</td>
<td>curvature of ray</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>H</td>
<td>wave height at position (x)</td>
</tr>
<tr>
<td>(H_0)</td>
<td>deep water wave height</td>
</tr>
<tr>
<td>(H_1)</td>
<td>wave height at position (x_1)</td>
</tr>
<tr>
<td>(H/H_0)</td>
<td>wave height at position (x) divided by deep water wave height</td>
</tr>
<tr>
<td>HHFR</td>
<td>wave height at position (x), when bottom friction is included, divided by deep water wave height</td>
</tr>
<tr>
<td>(K_f)</td>
<td>wave height reduction factor due to bottom friction alone</td>
</tr>
<tr>
<td>(K_r)</td>
<td>refraction factor</td>
</tr>
<tr>
<td>(K_{fr})</td>
<td>combined friction and refraction factor</td>
</tr>
<tr>
<td>(K_S)</td>
<td>direct shoaling factor</td>
</tr>
<tr>
<td>L</td>
<td>wave length</td>
</tr>
<tr>
<td>(L_0)</td>
<td>deep water wave length</td>
</tr>
<tr>
<td>s</td>
<td>wave ray</td>
</tr>
<tr>
<td>T</td>
<td>wave period</td>
</tr>
<tr>
<td>(x)</td>
<td>distance measured along the wave ray in the direction of propagation of the waves</td>
</tr>
<tr>
<td>(\Delta x)</td>
<td>(x - x_1)</td>
</tr>
<tr>
<td>(\pi)</td>
<td>3.1416...</td>
</tr>
</tbody>
</table>

Note: All values are assumed to be in the English System of Units.
1. Introduction

Preparing accurate wave refraction diagrams is a necessary first step in many coastal engineering and amphibious operations. The advent of the numerical wave refraction programs [Griswold (1963), Stouppe (1966), Wilson (1966)] has considerably reduced the time required to construct a wave refraction diagram. The speed of the computer operations permits more parameters to be included in the calculations and improves the accuracy of the output. Of equal importance is the fact that numerical products provide a completely objective basis for evaluating the cumulative effect of various assumptions on wave refraction.

The present study has investigated the effects of tide-level changes and bottom friction on wave-refraction patterns for several environments. The investigation first compared the wave refraction programs of Griswold (1963), Stouppe (1966), and Wilson (1966). Since there was no way available to the author to compare program accuracy on an absolute scale, the comparison was based on method of computation, simplicity of use, and presentation of results.

The program written by Stouppe was considered to have the most potential and was chosen for use in this investigation. The major advantages of Stouppe's program are these:

(1) The program uses water depth directly as the interpolation surface for evaluation of wave speed, thereby limiting the number of computations and increasing the program versatility.

(2) The program uses a second-order non-linear differential equation to determine the refraction coefficient at each point along the ray. Thus, the wave height at each point can be computed.
(3) The program uses constant time steps in the computation rather than constant distance steps. This reduces the distance between computations as the shoreline is approached. Thus for the same number of computer operations a greater percentage of computations are in the shallowest area where refraction, friction, etc., are most important, and are changing rapidly.

(4) The program includes a graphical output that plots the wave orthogonals, wavecrests and the shoreline.

The following modifications were made to Stouppe's program:

(1) The program was made to recycle, permitting more effective use of computer time when more than one diagram is to be constructed.

(2) Provision was made to add a constant value to the depth field to investigate tide level effects.

(3) A subroutine was added to account for bottom friction in the computation of wave height.
2. Computer Program.

Depth grid.

The first step in the utilization of this program is the construction of a grid of water-depth values for the desired area. The grid must be sufficiently large so that the starting point of all rays to be followed is in deep water, i.e., the ratio of water depth to deep water wave length \((d/L_0)\) is greater than 0.5. By convention the x-axis is positive increasing toward the shore while the y-axis is positive to the left of the x-axis. The grid interval is selected so that the bottom contours are reasonably parallel to one another within a given square.

In constructing the depth grid it is advantageous to record the average value of all depths within that grid square, rather than the value of water depth at the intersection point. This procedure tends to correct for small variations in the depth of water within the depth grid without necessitating the use of a smaller grid size. All actual depths are made positive; extrapolated depth values are continued on land for two grid units from the shoreline and are made negative. Beyond two grid units from the shoreline any arbitrary negative depth may be used. For depths on the shoreline itself zero is used.

To reduce the time required to obtain the depth grid a clear plastic overlay with a black dot at each grid intersection point was prepared by initially locating the grid dots on white paper and producing a viewfoil transparency with an Ozalid copier, Model 400.

Input data.

Stouppe's order of data input was modified to permit the program to recycle. The present data deck consists of three sections. The first section contains only the value of MM and NN which designate the number of points in the depth grid in the x and y directions respectively. The
second section contains the water depth grid. These values are arranged so that the computer reads all the \(y \) values for each successive \(x \)-grid position. Water depths are read in fathoms and are converted to feet within the computer program. The last section contains one card for each set of input parameters for which it is required to construct a wave refraction diagram. The input parameters include:

- **X, Y**: The grid position for the starting point of the first ray (feet). All starting rays must be more than two grid intervals in distance from the edge of the depth grid.

- **FCF**: The coefficient of bottom friction.

- **TIDE**: The tide level, in feet, above chart depth for which computation is required. This value is subtracted from the depth grid after each refraction pattern is completed.

- **HINT**: The deep water wave height (feet). This is required for the friction subroutine.

- **T**: The initial wave period (seconds).

- **Al**: The initial wave angle (degrees). The smaller angle measured between the positive \(Y \) direction and the initial wave crest. The angle is made negative if the slope of the wave crest is negative.

- **NOR**: The number of rays to be followed.

- **TIME**: The time interval between computations for advancing of the wave front (seconds).

- **DIST**: The distance between rays (feet).

- **GRID**: The grid interval (feet).

This order of data input permits wave refraction diagrams to be computed for many combinations of input variables while requiring the computer to assemble the program and read the depth field only once.
Computer output.

The output from the computer consists of both a printed output and a graphical output. The printed output variables are these:

X, Y: The x and y coordinates for a given wave crest and ray number (yards).

COREFR: The coefficient of refraction (K_r) for the wave at the point x, y.

HHO: The ratio of wave height to deep water wave height neglecting bottom friction.

HHFR: The ratio of wave height to deep water wave height when bottom friction is included.

NGO: Indicates that the ray has terminated (1), or it is continuing (2).

DEPTH: The water depth for grid position X and Y (feet).

The graphical plot of wave crests is programmed for the Calcomp 160 system utilizing the DRAW subroutine programmed by J. R. Ward for the Fortran 60 system. See Appendix II, Stouppe (1966), for subroutine listing. The first and each succeeding third wave crest are plotted. The zero water depth points are used for contouring the shoreline on the graph.

Appendix 2 contains a sample of the printed and graphical output for Monterey Bay, California.

Computer operations.

Since the details of the computer operations are discussed by Stouppe (1966), only the main features will be discussed here. The formulas used in the computations are listed in Appendix 3.
The water depth at the first point is computed by fitting the closest nine grid-point depths to a quadric surface by the least-squares method. An iterative procedure is then used to solve for wave velocity. It is assumed here that wave velocity is a function of water depth and period only.

The wave ray is then moved to the next point by solving for the ray curvature and projecting the ray forward a distance equal to the product of the wave speed for the point multiplied by TIME. At this new point the value of ray separation (\(\phi \)), coefficient of refraction (\(K_r \)), shoaling factor (\(K_s \)), \(H/H_0 \), and HHFR are calculated.

This procedure is repeated until all orthogonals have been advanced one time interval. The new wave crest is plotted and the entire procedure is repeated until all orthogonals have either gone off the grid or reached the shoreline.
3. The Effects of Tide Level Changes on Wave Refraction Patterns.

Differences in shoaling factor, wave speed, and ray curvature at specific depths.

The effect on wave refraction of a uniform increase in water depth caused by tide level changes is cumulative and is dependent on the bottom depth contours. Therefore, to evaluate the effect properly, a wave ray must be followed along its entire distance from deep water to the shore. However, by calculating the value of shoaling factor (K_s), wave speed (C), and ray curvature (FK) at both high tide and low tide it is possible to evaluate the order of magnitude of the differences in the basic parameters of wave refraction caused by tide level fluctuations.

The value of K_s, C, and FK were calculated initially for 25, 50, and 100 foot water depths; second calculations were made for a water depth equal to the initial water depth plus a tide level increase of 6, 10, and 16 feet. To evaluate these differences on a relative scale a percent difference was calculated by using the formula:

$$\% \text{ difference } X = \left| \frac{X_{HT} - X_{LT}}{X_{HT}} \right|$$

where

$X = \text{variable representing } C, K_s \text{, or } FK$

$X_{HT} = \text{value of } X \text{ at high tide water depth}$

$X_{LT} = \text{value of } X \text{ at low tide water depth}$.

The percent difference of K_s was generally small and under certain conditions went to zero (for those values associated with the inflection point in the curve when K_s is plotted against water depth).

Figure 1 shows the percent difference in wave speed corresponding to the low tide water depth for a specific tide range and wave period.
Figure 1. EFFECT ON WAVE SPEED OF VARYING TIDE LEVELS FOR 8-16 SECOND WAVES.

TIDE RANGE:
--- 6 Ft.
--- 10 Ft.
--- 16 Ft.
It is apparent that the difference is often greater than 10 percent and increases with increasing wave period, increasing tide range and decreasing low tide water depth.

The values of ray curvature (FK) were determined using the equation:

\[FK = \frac{1}{c} \left[\sin A \frac{\partial C}{\partial x} - \cos A \frac{\partial C}{\partial y} \right] \] (2)

where

- \(A \) = approach angle
- \(\frac{\partial C}{\partial x}, \frac{\partial C}{\partial y} \) = derivative of wave speed in the X and Y directions respectively.

Figure 2 shows the percent difference in FK versus tide range (computed using equation (2) with the following initial values: \(A = 30^\circ, \ \frac{\partial C}{\partial y} = 0, \ \frac{\partial C}{\partial x} = \Delta C \) for a twenty foot change in water depth starting with an initial depth of 100 feet). The values of percent difference plotted are representative of the percent difference for all values of \(A, \ \frac{\partial C}{\partial x}, \ \frac{\partial C}{\partial y} \), and water depth; this occurs because the terms inside the brackets in equation (2) have nearly the same value for high tide and low tide and tend to cancel out in the percent difference calculation.

This reduces the percent difference calculation for FK to

\[\text{% difference FK} = \left| \frac{C_{LT} - C_{HT}}{C_{HT}} \right| \] (3)

The fact that the difference calculation is primarily dependent on tide range and wave speed is clearly shown in Figure 2.

It is concluded that the change between high tide and low tide in a refraction pattern is primarily determined by the change in ray curvature (FK).
Figure 2. EFFECT ON RAY CURVATURE OF VARYING TIDE LEVELS FOR 8-16 SECOND WAVES
Difference in wave refraction patterns for specific locations.

To investigate the combined effect of the changes in C, Ks and FK caused by a uniform increase in water depth, wave refraction diagrams were constructed for several locations using both the low tide water depths and the high tide water depths.

The first area considered was the California coast near Big Sur, between latitude 36° 14' 30" and latitude 36° 17' 42". This area was chosen because eight-second waves arriving on the coast will be refracted by the offshore bar (shown by the shaded area in Figures 3 and 4) at low tide but not at high tide. Thus tide level changes will cause selective refraction by the offshore bar. Figure 3 shows the refraction pattern for 8 second waves approaching from 270 degrees at low tide; Figure 4 shows a different pattern for the same condition at high tide.¹

Figures 3 and 4 show two major differences in the refraction pattern. First, orthogonals 6 and 7 cross approximately halfway to shore at low tide but they do not cross at high tide.² Secondly, at low tide there is a convergence of wave orthogonals at Point A; this convergence is not present at high tide.

¹To make the changes in the orthogonal pattern more prominent Figures 3-8 are plotted with an expanded ordinate scale. Also, the computer was not used to contour the wave crests but rather the wave orthogonals were contoured manually; the shoreline was indicated by a triangle plotted whenever water depth was zero. TIME equalled 30 seconds for all diagrams.

²Interpretation of the effect of crossed orthogonals is beyond the scope of this paper. In this discussion we will only be concerned with the difference in ray paths between low tide and high tide.
Table 1 shows the value of the wave-height ratio \((H/H_0)\) computed at four wave crests before the shoreline is reached for specific points along the coast. This table clearly shows that the value of wave height can be considerably different at low tide and high tide.

Figures 5 and 6 represent the same initial conditions as Figures 3 and 4 except that the initial wave direction is from 310 degrees. The change in the orthogonal pattern is clear. It is noted that in Figures 3 and 4 the primary change in the orthogonal pattern (between low tide and high tide) is in the vicinity of points B and C, whereas in Figures 5 and 6 the greater change occurs near Point A.

Wave refraction diagrams were also computed for the coast of Maine between latitude 44° 39' 35" and latitude 44° 44' 45". This area was chosen in order to determine if the combination of a large tide range (16 feet) and deep water depths (greater than 200 feet a short distance from the shoreline) would cause a change in the refraction pattern. Figures 7 and 8 show the refraction patterns for 16-second waves arriving from 070 degrees at low tide and high tide. The difference in refraction patterns is evident. Table 3 shows the \(H/H_0\) ratios (calculated at four wave crests before reaching the shoreline) for specific locations at low-tide and high-tide conditions.

In total, about 20 sets of refraction patterns were analyzed and it appears impossible to predict what changes in wave height and refraction patterns will occur as the result of tide level changes. The only generalization that can be made is that the curvature of an orthogonal is generally greater at low tide than at high tide. It is concluded that precise water-level information, including tide state, should be incorporated into wave refraction procedures.
TABLE I

H/H₀ Ratio at Low Tide and High Tide for Specific Coastal Locations Near Point Sur, California.

<table>
<thead>
<tr>
<th>LOCATION (SEE FIG. 3)</th>
<th>H/H₀ Ratio</th>
<th>LOW TIDE</th>
<th>HIGH TIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.1</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>B</td>
<td>1.3</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>C</td>
<td>3.1</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>D</td>
<td>0.8</td>
<td></td>
<td>0.8</td>
</tr>
</tbody>
</table>

TABLE II

H/H₀ Ratio at Low Tide and High Tide for Specific Coastal Locations Near Eastern Head, Maine.

<table>
<thead>
<tr>
<th>LOCATION (SEE FIG. 7)</th>
<th>H/H₀ Ratio</th>
<th>LOW TIDE</th>
<th>HIGH TIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.8</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>D</td>
<td>0.7</td>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>
Figure 3. Low tide refraction diagram for Big Sur, California. T = 8 sec. A = 270°. TIME = 30 sec. Latitude 36°14'30" to latitude 36°17'42". East-West Scale 6000 Ft./inch. North-South scale 4000 Ft./inch.
Figure 6. High tide refraction diagram for Big Sur, California. $T = 8$ sec. $A = 310^\circ$. TIME = 30 sec.
Latitude $36^\circ 14'30''$ to latitude $36^\circ 17'42''$. East-West scale 6000 Ft./inch. North-South scale 4000 Ft./inch.
Figure 7. Low tide refraction diagram for Eastern Head, Maine. $T = 16$ sec. $A = 070^\circ$. TIME = 30 sec. Latitude $44^\circ 39'35''$ to latitude $44^\circ 44'45''$. East-West scale 8000 Ft./inch. North-South scale 6000 Ft./inch.
Figure 8. High tide refraction diagram for Eastern Head, Maine. T = 16 sec. A = 070°. TIME = 30 sec. Latitude 44°39'35" to latitude 44°44'45". East-West scale 8000 Ft./inch. North-South scale 6000 Ft./inch.
4. Bottom Friction Effects on Wave Height.

Introduction to bottom friction.

The present method for calculating wave height assumes that the propagation of energy between two adjacent orthogonals is conserved as the wave proceeds from deep water to shallow water. This implies that the addition of energy by surface winds, dissipation of energy by bottom friction or internal friction, and the reflection of energy by a steep slope are absent. In nature this is not the case - the wave energy between adjacent orthogonals may be changed by all of these means.

According to Lamb (1932), in fluids of small viscosity (such as sea water), the velocity of the wave and the relationship between depth, length, and period are unaltered by internal friction. This is based on the assumption of a sinusoidal wave form but the result appears to indicate a very slow rate of damping of all waves in deep water, which is in accord with the limited observations in nature (Putnam and Johnson, 1949).

At the sea bottom, however, friction can cause a loss of wave energy. It can be demonstrated both theoretically and experimentally that the particle velocities of shallow water waves are finite at the bottom and actually approach the theoretical orbital values at a short distance from the bottom. Therefore, a boundary layer in which mechanical energy is dissipated through the distortion of fluid elements must exist at the bottom. The effective roughness of a sandy bottom probably is determined by the size of the ripples in the sand rather than by the size of the sand grains. The ripple size, however, appears to be determined by the size and sorting coefficients of the sand in addition to the height and period of the wave and the depth of water.
Putnam and Johnson established the general magnitude for the dimensionless friction coefficient for the sea bottom to be 0.01. (This value was computed assuming initial conditions of 12 second waves, 4 feet high, traveling over a sandy beach with a ripple spacing of 5 inches.) Putnam and Johnson point out that since the friction factor only enters the equations for wave height to the first power, the friction factor could change by ± 50 percent without appreciably changing the order of magnitude of wave-height reduction.

Based on the following assumptions Putnam and Johnson were able to develop a procedure to calculate wave height when bottom friction is included.

(1) The oscillatory motion at the bottom is sinusoidal and corresponds to the wave theory based on small amplitudes.

(2) The friction coefficient does not vary with velocity and is approximately independent of water depth. This assumption amounts to choosing an average friction factor for the entire region over which the sea bottom affects the wave motion.

(3) Perpendicular flow at the bottom resulting from percolation in the bottom material is negligibly small.

(4) The sea bottom has a constant upward slope from offshore to the breaker point.

Computing procedures.

Bretschneider and Reid (1954) extended the original work of Putnam and Johnson and developed new equations to solve for wave height which included simplified equations for the special cases of constant water depth and constant bottom slope.
Bottom friction is of importance only on gently sloping beaches and in shallow water; thus it is possible, when using numerical wave refraction procedures, to calculate the reduction to wave height due to bottom friction by making the assumption that the water depth is constant between successive computations along the ray path from deep water to the shoreline.

The wave height at each step is computed by the equation

\[
H = H_i \left[1 - \left\{ (1 - K_{f_1}) + (1 - K_{f_2}) + \cdots + (1 - K_{f_n}) \right\} \right]
\]

(4)

where

\(\begin{align*}
H_i &= \text{the calculated wave height, neglecting bottom friction, for the point;} \\
K_{f_n} &= \text{the refraction factor between point n-1 and n.}
\end{align*} \)

The coefficient of friction \((K_f)\) is calculated by the equation (from Bretschneider and Reid)

\[
K_f = \frac{1}{A' \phi_f - \Delta \chi + 1} ;
\]

(5)

\[
A' = \frac{f H_i}{T^4} ;
\]

\[
\phi_f = \frac{64 \pi^3}{3g^2} \left(\frac{K_s}{\sinh \frac{2 \pi d}{L}} \right)^3 ;
\]

\(\begin{align*}
K_s &= \text{direct shoaling factor;} \\
\Delta \chi &= \text{incremented distance.}
\end{align*} \)

\(K_f \) is computed at each ray point with \(\Delta x \) equal to the distance along the wave ray between point \(n \) and \(n + 1 \). It is assumed in the computations that the water depth between point \(n \) and \(n + 1 \) is constant and equal to the depth at point \(n \).
Results of bottom friction computations.

The accuracy of the approximation that water depth is constant can be seen by a comparison of wave height obtained by this procedure to the wave height obtained by the more sophisticated and accurate procedure used by Putnam and Johnson. This comparison is shown in Table 3 (computed for wave period = 12 seconds, bottom slope = 5 feet). The comparison is very favorable along the entire distance of travel from the point that the wave first feels bottom to the breaking point. The difference is certainly within the order of magnitude of the error introduced by other assumptions. The difference in values is caused by the approximation to constant depth steps in the calculating procedure.

Since this program uses constant time steps in moving each ray point toward the shoreline, the horizontal distance over which depth is assumed constant can be reduced by shortening the computing time interval (TIME). Table 4 shows the reduction (in percent) of wave height at the breaking point for different computing time intervals (with wave and bottom conditions the same as shown for Table 3 above). As expected, there is a slight increase in wave height reduction as the computing interval is decreased. It can be concluded that the value of TIME will affect the wave heights calculated by this procedure, but the effect is small.

Realizing the limitations imposed by the initial assumptions of Putnam and Johnson and the calculating procedure employed here, the computer program was used to compute the wave height (with bottom friction included) for varying initial periods and bottom slopes. The results are shown in Table 5. (In arriving at these results it was assumed that the initial wave height was 5 feet and the friction coefficient was 0.01.) The reduction in wave height (in terms of percent of the wave height
TABLE III

WAVE HEIGHT REDUCTION DUE TO BOTTOM FRICTION AS DETERMINED BY PUTNAM AND JOHNSON AND BY THE NUMERICAL WAVE REFRACTION PROGRAM.

\[T = 12 \text{ sec.} \quad H_o = 5 \text{ FT.} \quad f = .01 \quad \text{TIME} = 30 \text{ sec.} \]

Bottom slope = 1:300 \quad \text{Breaking depth} = 11.5 \text{ Ft.}

<table>
<thead>
<tr>
<th>DISTANCE FROM WHERE (h = \frac{L_o}{2}) TO BREAKING POINT</th>
<th>PERCENT REDUCTION WAVE HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FARRELL CONSTANT DEPTH STEPS</td>
</tr>
<tr>
<td>PCT</td>
<td>PCT</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50.0</td>
<td>0.0</td>
</tr>
<tr>
<td>62.0</td>
<td>0.2</td>
</tr>
<tr>
<td>70.3</td>
<td>0.4</td>
</tr>
<tr>
<td>80.5</td>
<td>1.0</td>
</tr>
<tr>
<td>86.8</td>
<td>1.9</td>
</tr>
<tr>
<td>90.8</td>
<td>3.1</td>
</tr>
<tr>
<td>93.0</td>
<td>4.2</td>
</tr>
<tr>
<td>95.0</td>
<td>6.0</td>
</tr>
<tr>
<td>97.1</td>
<td>8.7</td>
</tr>
<tr>
<td>100.0</td>
<td>18.5</td>
</tr>
</tbody>
</table>
TABLE IV

Percent Reduction in Wave Height for Various Values of Time

<table>
<thead>
<tr>
<th>TIME (SEC)</th>
<th>WAVE HT. REDUCTION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19.0</td>
</tr>
<tr>
<td>30</td>
<td>18.5</td>
</tr>
<tr>
<td>40</td>
<td>18.0</td>
</tr>
<tr>
<td>50</td>
<td>17.0</td>
</tr>
</tbody>
</table>

TABLE V

Wave Height Reduction for Bottom Slopes of 1:100 to 1:400 and Wave Periods of 8 to 16 Seconds (Percent)

<table>
<thead>
<tr>
<th>WAVE PERIOD</th>
<th>BOTTOM SLOPE 1:100</th>
<th>BOTTOM SLOPE 1:200</th>
<th>BOTTOM SLOPE 1:300</th>
<th>BOTTOM SLOPE 1:400</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5.4</td>
<td>14.0</td>
<td>21.5</td>
<td>28.6</td>
</tr>
<tr>
<td>10</td>
<td>5.2</td>
<td>13.5</td>
<td>20.2</td>
<td>27.0</td>
</tr>
<tr>
<td>12</td>
<td>5.2</td>
<td>13.0</td>
<td>18.5</td>
<td>24.8</td>
</tr>
<tr>
<td>16</td>
<td>5.0</td>
<td>12.2</td>
<td>18.2</td>
<td>24.2</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>5.2</td>
<td>13.2</td>
<td>19.6</td>
<td>26.9</td>
</tr>
</tbody>
</table>
without friction) is shown for the theoretical breaking depth (from H.O. 234). To obtain the percent reduction at the specific breaking depth, it was necessary to fit a smooth curve to the plotted points of wave height reduction at the three closest water depths and interpolate the wave height reduction at the breaking point.

Figure 9 shows the average reduction (for all periods from Table 5) of wave height versus bottom slope. The curve is extended by a dashed line to the reduction amount found by Putnam and Johnson for a 1:10 beach slope.

The quantitative value of Figure 9 is controlled by the input accuracy of the coefficient of friction, the initial assumptions and the computation procedure. However, Figure 9 does show, qualitatively, the effect of bottom slope on wave height reduction due to bottom friction. Figure 9 is considered sufficiently accurate to be used in surf forecasting on sandy beaches to provide a first approximation of wave height reduction due to bottom friction.
Figure 9. EXPECTED WAVE HEIGHT REDUCTION AT BREAKING POINT DUE TO BOTTOM FRICTION FOR BOTTOM SLOPES OF 1:10 to 1:400.
5. Conclusions.

The numerical approach to wave refraction is a powerful tool in that it eliminates human subjectivity and permits the refraction computations to account for more factors than is possible with hand drawn techniques.

A computer program that uses constant time intervals between computations has more suitability in accounting for the effects of friction, wind, reflection, etc., than a computer program that employs constant distance steps.

Tide level changes can have a significant effect on wave refraction. This is especially true in areas where there is a large tide range or an offshore bar that can cause selective refraction.

The changes shown by the tide level effects also point to the importance of having an accurate water depth grid. To avoid significant errors in the refraction pattern a great deal of care must be exercised in the preparation of the depth grid.

Bottom friction can and does have an effect on the wave height. The numerical refraction program provides a convenient way to account for this reduction.

The course of this investigation has permitted a close look at wave refraction from many points of view. The numerical refraction program is capable of yielding wave refraction information with great speed and accuracy. (Computer time is approximately 5 minutes for a 20 ray diagram.) However, before the advantages of the computer product can be fully realized the author believes further investigations and improvements are needed in the areas of input data, computing procedures and field investigations.

The need for accurate depth information is essential to the computation of accurate refraction patterns. It is anticipated that the present efforts of the Naval Oceanographic Office and the Coast and Geodetic Survey in the area of color photography will improve the water depth information especially in areas where the bottom contours change considerably and in the shallow areas where it is difficult for hydrographic vessels to proceed.

The computer program can be expanded to account for more variables and to provide additional output information; in particular:

(1) The program should account for the fact that in nature there usually exists a spectrum of wave periods and directions, rather than the single period and direction that is considered here.

(2) For amphibious operations it would be advantageous if the program determined the breaking depth of the waves, printed out the height of the waves at the breaking point, and then contoured the breaking point on the output refraction diagram.
(3) Another desirable output for amphibious operations is a computer plot on the output diagram of the area where the wave height is a minimum, as this would be an ideal area to anchor large ships.

(4) The various subroutines should be checked to ensure that each section is providing comparable accuracy.

Field work is necessary to determine the value of the bottom friction factor for various type bottoms. This is essential before accurate wave height information can be obtained. Field investigations are also needed to determine the accuracy of the computer program; until now the numerical wave refraction procedures have been checked only by comparison with hand drawn results.
BIBLIOGRAPHY

APPENDIX 1

Computer Program for Wave Refraction using Fortran 63

on the C.D.C. 1604 Computer

Subroutine Title: FRICT¹

Variables of Subroutine:

HHQ..............Height of wave at point X, Y after bottom friction has been included.
RLO..............Deep water wave length.
RLQ..............Wave length at point X, Y.
CFF..............Friction factor between point n and n+1.
RCFF............(1 - K_f)
TRCFF...........Total of (1-K_f) terms to point n.
TCFF............Total friction factor to point n.

Summary of Subroutine:

The subroutine calculates the value of K_f and wave height reduced by bottom friction (HHFR) for each point along wave ray.

¹See Stouppe (1966) for discussion of remainder of program.
PROGRAM WAVREFR
REFRACTION IN SHOALING WATER BY LT. D. STOUPPE, OCTOBER 1966
THE PROGRAM WAS MODIFIED BY LT. C. FARRELL, MAY 1967, TO
INCLUDE THE EFFECT OF FRICTION AND TIDE LEVEL. THE PROGRAM IS
WRITTEN IN FORTRAN 63 FOR THE CDC 1604 COMPUTER SYSTEM.
USERS MAY ENTER THE DESIRED NAMES FOR THE GRAPH TITLES IN THE
ITITLE STATEMENTS AS DESCRIBED IN THE WRITEUP ON THE DRAW
SUBROUTINE.
DIMENSION ITITLE(12), XXX(100), YYY(100), FX(100), FY(100)
COMMON/BLK1/X(100), Y(100), COREFR(1), HH0(100), B(3,100), FFK(100),
NGO(100), NGO, AAA(100)
COMMON/BLK2/T, A, CXY, PAR, BAR, TIME, GRID, FK, MAX, NOR, MM, NN, DEPTH, HHA,
1COREFA, NORA, L0, DIST
COMMON/BLK3/DEP(100,100), PDPX, PDPY, PCPX, PCPY, PDDPXX, PDDPYY
1*PDDPXY*PDDPC, PDDC
COMMON/BLK4/FFK(100), DLO, C(6), MIT, DEL X, DEL Y, FCF, TIDE, HINT,
1HHF, HHFR(100), LQQ, HHQ, DEPTH1
READ 74, MM, NN
74 FORMAT (2I10)
C
NOTE MM AND NN MUST BE RIGHT ADJUSTED
READ 1, (DEP(I,J), J=1,NN), I=1,MM)
1 FORMAT (14F5.0)
333 READ 2, XV, YV, FCF, TIDE, HINT, T, A1, NOR, TIME, DIST, GRID
2 FORMAT (2F7.0, F5.2, F4.5, 1, I5, F5.1, 2F7.0)
PRINT 19
19 FORMAT (1H1, 2X, 22XV, 5X, 22HYV, 4X, 3HFCF, 1X, 4HTIDE, 1X, 4HHINT, 2X,
11HT, 4X, 2HA1, 2X, 3HOR, 2X, 4HTIME, 2X, 4HDIST, 3X, 4HGRID)
PRINT 2, XV, YV, FCF, TIDE, HINT, T, A1, NOR, TIME, DIST, GRID
DO 516 I=1, MM $ DO 516 J=1, NN
IF(DEP(I,J))501, 516, 502
501 DEP(I,J)=DEP(I,J)*6.0-TIDE
GO TO 516
502 DEP(I,J)=DEP(I,J)*6.0+TIDE
516 CONTINUE
B1=1.0
B2=1.0
MAX=1 $ A1=A1*.01745329 $ PAR=32.2*T/6.283185 $ BAR=6.283185/T
LQG=1
NIP=4
IFG=TIDE $ IAQ=A1 $ ITQ=T
LABEL=4H
DO 18 M=1,12
18 I|TLE(M)=8H $ I|TITLE(1)=8HFARRELL $ I|TITLE(2)=8H WAVE RE
|TITLE(3)=8HFRACTION $ I|TITLE(4)=8H PROGRAM
I|TITLE(5)=8H MONTER
|TITLE(6)=8H EY BAY
|TITLE(7)=8HTIDE LVL
|TITLE(8)=IBCD(IFG,0,4,IEQ)
|TITLE(9)=8HANGLE =
|TITLE(10)=IBCD(IAQ,0,4,IEQ)
|TITLE(11)=8HPERIOD =
|TITLE(12)=IBCD(ITQ,0,4,IEQ)
B(1,1)=B1 $ B(2,1)=B2 $ XX=XX $ YY=YY $ NORA=1 $ A=A1
IF(T-10.15,16,17
15 CXY= 30.0 $ GO TO 3
16 CXY= 50.0 $ GO TO 3
17 CXY=80.0 $ GO TO 3
5 B(1,NORA)=B1 $ B(2,NORA)=B2 $ A=A1
XX=XX-DIST*SINF(A) $ YY= YY+DIST*COSF(A) $XX=XX $ YY=YY $ GO TO 3
23 NORA=1
24 XX=X(NORA) $ YY=Y(NORA) $ A=AAA(NORA)
3 CALL RAYN(XX,YY,NOR)
4 CONTINUE $ NORA=NORA+1 $ IF(NORA-NOR)10,10,4
10 IF(MAX-1)5,5,24
4 IF(MAX-1)20,20,25
25 IF(NIP-4)21,26,26
20 CALL DRAW(NOR,XX,YY,1,2,LABEL,ITITLE,10000,10000,0,0,2,2,9,9,1,$
1$LAST) $ GO TO 27
26 CALL DRAW(NOR,XX,YY,2,2,LABEL,ITITLE,10000,10000,0,0,2,2,9,9,1,$
1$LAST)
27 CALL DRAW(NOR,XX,YY,2,0,LABEL,ITITLE,10000,10000,0,0,2,2,9,9,1,$
1$LAST)
1 LAST)
1 NIP=1
21 NIP=NIP+1 $ MAX=MAX+1 $ MIN=MAX-1
33 DO 32 M=1,NOR $ FX(M)=X(M)/3 $ FY(M)=Y(M)/3
32 CONTINUE
34 PRINT 28,MIN
28 FORMAT(/'17HNUMBER OF CREST = I4'/)
4 PRINT 6
6 FORMAT(/'4X,1HX,9X,1HY,6X,6HCOREFA,3X,3HHH0,5X,4HHHFR,5X,5HDEPTH,
11X,3HNGO,6X,1HX,7X,2HY,6X,6HCOREFA,3X,3HHH0,5X,4HHHFR,5X,5HDEPTH,
21X,3HNGO)
7 DO 7 J=1,NOR,2
8 PRINT 8,FX(J),FY(J),COREFR(J),HH0(J),HHF(R(J),DEPT1(J),NOGO(J),
1FX(J+1),FY(J+1),COREFR(J+1),HH0(J+1),HHF(R(J+1),DEPT1(J+1),
2NOGO(J+1)
8 FORMAT(2(2F9.1,3F8.4,F9.1,I4)/)
7 CONTINUE
9 DO 9 I=1,NOR $ DO 9 J=2,3
10 B(J,1,I)=B(J,1) $ NNGO=0 $ DO11 K=1,NOR
11 IF(NGO(K)-1)12,12,11
12 NNGO=NGO+1
11 CONTINUE $ IF(NNGO-NOR) 13,14,14
13 GO TO 23
14 CONTINUE
15 $ DO31 I=1,MM $ DO31 J=1,NN $ IF(DEP(I,J))31,30,31
30 XXX(M)=(I-1)*GRID $ YYY(M)=(J-1)*GRID $ M=M+1 $ N=N-1
31 CONTINUE
31 CALL DRAW(N,XXX,YYY,3,0,LABEL,ITITLE,10000,10000,0,0,2,2,9,9)
11 LAST)
11 DO616 I=1,MM $ DO616 J=1,NN
12 IF(DEP(I,J))601,616,602
601 DEP(I,J)=(DEP(I,J)+TIDE)/6.0
602 GO TO 616
616 DEP(I,J)=(DEP(I,J)-TIDE)/6.0
616 CONTINUE
50 TO 333
END
SUBROUTINE RAYN(XX,YY,NOR)
COMMON/BLK1/X(100),Y(100),COREFR(1),HHO(100),B(3,100),FFK(100),
1NGO(100),NGO,AAA(100)
COMMON/BLK2/T,A,CXY,PAR,BAR,TIME,GRID,FK,MAX,ABC,MM,NN,DEPTH,HHA,
1COREFA,NORA,L0,DIST
COMMON/BLK3/DEP(100,100),PDPX,PDPY,PCPX,PCPY,PDDPXX,PDDPPY
1PDDPXY,PDDPC,PDDC
COMMON/BLK4/FFK(100),DLO,C(6),MIT,DEL X,DEL Y,FCF,TIDE,HINT,
1HHF,HHFR(100),LQQ,HHQ,DEPTHH
IF(MAX-1)110,110,111
110 NGO=2 $ GO TO 108
111 NGO=NGO(NORA) $ GO TO (104,108)NGO
108 CALL DEPTFUN(XX,YY)
GO TO (104,102)NGO
104 NGO=1
COREFA=0.0
B(3,NORA)=0.0
FK= 0
HHA=0.0
HHF=0.0
GO TO 103
102 IF(MAX-1)105,105,107
105 CALL KFunct(A,FK) $ GO TO 106
107 FK=FFK(NORA)
106 CALL MOVE(XX,YY) $ GO TO(104,109)NGO
109 CALL BETA(XX,YY)
103 FFK(NORA)=FK $ COREFR(NORA)=COREFA $ HHO(NORA)
1=HHA $ NGO(NORA)=NGO $ X(NORA)=XX $ Y(NORA)=YY $ AAA(NORA)=A
DEPTH1(NORA)=DEPTH
HHFR(NORA)=HHF
RETURN
END
SUBROUTINE DEPTFUN(XX,YY)
DIMENSION D(6,6),E(6), O(100),P(100)
COMMON/BLK1/X(100),Y(100),COREFR(1),HHO(100),B(3,100),FFK(100),
30 IF(M-6)31,40,40
31 LP1=M+1 $ DO34N=LP1,6 $ IF(D(N,M))32,34,32
32 RATIO=D(N,M)/D(M,M) $ DO33J=LP1,NPM
33 D(N,J)=D(N,J)-RATIO*D(M,J)
34 CONTINUE
35 DO431=1,6 $ II=7-1 $ JPN=7 $ S=0.0 $ IF(II-6)41,43,143
36 143 186
37 186
38 186
39 186
40 186
41 IIP1=II+1 $ DO 42N=IIP1,6
42 S=S D(II,N)*C(N)
43 C(II) = (D(II,JPN)-S)/D(II,II) $ KER=1 $ GO TO 51
44 KER=2
45 PRINT 54,XX,YY,KER
46 FORMAT(/3X,5HXX = 1PE20.8,3X,5HYY = 1PE20.8,4X,6HKER = 12,
47 117H MATRIX SINGULAR/)
48 GO TO (52,53)KER
49 RETURN
50 CONTINUE
51 DEPTH=C(1)+C(2)*XX+C(3)*YY+C(4)*XX*YY+C(5)*XX*2+C(6)*YY*2
52 IF(DEPTH)62,62,65
53 62
54 ALO=PAR*T $ DLO=DEPTH/ALO $ IF(DLO .5)63,63,66
55 66
56 CXY=PAR $ L0=1 $ NGO=2 $ FK=0. $ GO TO 67
57 DO6 M=1,50 $ CXX=PAR*TANHF(BAR*DEPTH/CXY)
58 IF(ABSF(CXX-CXY)-0.01)61,61,60
59 60
60 CXY=(CXX+CXY)*.5
61 CONTINUE $ NGO=2 $ L0=2
62 NGO=1
63 GO TO 81
64 CONTINUE
65 RETURN
66 END
67 SUBROUTINE KFUNCT (A,FK)
68 COMMON/BLK1/X(100),Y(100),C0REFR(1),H0(100),B(3,100),FFK(100),
69
1 NOGO(100), NGO, AAA(100)
COMM0N/BLK2/T, UU, CXY, PAR, BAR, TIME, GRID, VV, MAX, NOR, MM, NN, DEPTH, HHA
10 COREFA, NORO, LO, DIST
COMM0N/BLK3/DEP(100, 100), PDPX, PDPY, PCPX, PCPY, PDDPXX, PDDPPY
10 PDDPX, PDDPPC, PDP
30 GO TO (5, 6) L0
6 R1=CXY/32.2 $ R2=R1**3-BAR**2 $ R3=R1**5-BAR**4 $ R4=R1**7-BAR**6
 PDPX=2.4*R1+4.6*R2/3.6*R3/5.8*R4/7. PDPX=2.4 *R1+4.6 *R2/3.6 *R3/5.8 *R4/7.
PDPX=2.4*R1+4.6*R2/3.6*R3/5.8*R4/7. CXY
PCPX=PDPX/PDPX $ PCPY=PDPY/PDPX
FK=(PCPX*SINF(A)-PCPY*COSF(A))/CXY $ GO TO 4
5 FK=.
4 RETURN
0000216
00002170
0000218
00002190
0000220
0000221
00002220
00002230
00002240
0000225
00002260
0000227
0000228
0000229
0000230
00002310
0000232
00002330
0000234
00002350
0000236
00002370
0000238
0000239
0000240
0000241
0000242
0000243
0000244
00002450
0000246
0000247
00002480
00002490
0000250
00002510

SUBROUTINE MOVE(X, Y)
COMM0N/BLK1/U(100), V(100), COREFR(1), HH0(100), B(3, 100), FFK(100),
1 NOGO(100), NGO, AAA(100)
COMM0N/BLK2/T, A, CXY, PAR, BAR, TIME, GRID, FK, MAX, NOR, MM, NN, DEPTH, HHA,
1 COREFA, NORO, LO, DIST
COMM0N/BLK3/DEP(100, 100), PDPX, PDPY, PCPX, PCPY, PDDPXX, PDDPPY
10 PDDPX, PDDPPC, PDP
COMM0N/BLK4/FFKK(100), DLO, C(6), MIT, DEL X, DEL Y, FCF, TIDE, HINT,
HHR, HFR(100), LQQ, HHQ, DEPTH1
FKBAR=FFKK(NORA)
IF(MAX-1)1,1,4
1 FKBAR=FK
4 MIT=1
DEL D=TIME*CXY
GO TO (22, 21) L0
22 XX=X+DEL*COSF(A) $ YY=Y+DEL*SINF(A) $ AA=A $ FKK=0. $ FKBAR=0. $ GO TO 6
21 DO 20IT=1, 30
19 DEL A=FKBAR*DEL D $ AA=A+DEL A $ ABAR=A+.5*DELA $ DEL X=DEL D*
1 COFS(ABAR) $ DEL Y=DEL D*SINF(ABAR) $ XX=X+DEL X $ YY=Y+DEL Y
GO TO (101, 6) MIT
101 CALL DEPTFUN(XX, YY) $ GO TO (38, 10) NGO
10 CALL KFUNCT(AA,FKK) $ FKBAR=.5*(FK FKK)
 IF(IT-13)5,37,9
 37 FKPP=FKBAR
 5 IF(MAX-1)7,7,9
 7 IF(IT-120,20,9
 9 IF(ABS(FKPP-FKBAR)-00001)6,6,20
 20 FKPP=FKBAR
 24 IF(ABS(FKPP-FKBAR)-00001)18,18,17
 17 MIT=3 $NG=1
 GO TO 38
 18 FKBAR=.5*(FKBAR+FKKP) $ MIT=2 $ GO TO 19
 6 NG=2 $ GO TO 8
 8 X=XX $ Y=YY $ A=AA $ FK=FKK
 38 CONTINUE
 FFK=(NORA)=FKBAR
 RETURN
 END
 SUBROUTINE BETA(xx,yy)
 COMMON/BLK1/X(100),Y(100),COREFR(1),HHO(100),B(3,100),FFK(100),
 1NGO(100),NGO,AAA(100)
 COMMON/BLK2/T,A,CXY,PAR,BAR,TIME,GRID,FK,MAX,NOR,MM,NN,DEPTH,HHA,
 1COREFA,NORA,L0,DIST
 COMMON/BLK3/DEP(100,100),PDPA,PDPY,PCPX,PCPY,PDDPXX,PDDPPXY
 1,PDDPXY,PDDPC,PDP
 COMMON/BLK4/FKK(100),DL0,C(6),MIT,DEL X,DEL Y,FCF,TIDE,HINT,
 1HHF,HHFR(100),LQQ,HHQ,DEPTh1
 GO TO (5,6)0
 5 COREFA=1. $ HHA=1. $ B(3,NORA)=B(2,NORA) $ COREFB=1. $ HHB=1.$
 HHF=1.0
 GO TO 7
 6 PCCPXX=PDDPXX/(PDPC+PDDPCC)
 PCCPYY=PDDPPYY/(PDPC+PDDPCC)
 PCCPXY=PDDPXY/(PDPC+PDDPCC)
 P=(1 COSF(A)*PCPX-SINF(A)*PCPY)/CXY $ Q=(SINF(A)**2*PCCPXX-2.*
 1SINF(A)*COSF(A)*PCCPXY+COSF(A)**2*PCCPYY)/CXY
 DD=SQRTF((DEL X)**2+(DEL Y)**2)
B(3,NORA)=(B(1,NORA)*(P*DD-2)+B(2,NORA)*(4-2*DD**2*Q))
1/(2*P*DD)
COREFA=1./SQRF(ABSF(B(2,NORA)))
CC0=CXY/PAR $ HSHOL=3.2519-12.8150*CC0+28.8112*CC0**2-29.9257*CC0
1**3 11.6815*CC0**4 $ HHA=COREFA * HSHOL
CALL FRICT (HHA,CXY,TIME,DEPTH,LQQ,PAT,THHF,NORA,NOR,
1FCF,HINT,HSOHOL)
7 RETURN
END
SUBROUTINE FRICT(HHA,CXY,TIME,DEPTH,LQQ,PAT,THHF,NORA,NOR,
1FCF,HINT,HSOHOL)
DIMENSION TCFF(100),TRCFF(100)
1 CC0=CXY/PAR
BEL D=TIME*CXY
IF (LQQ-1)715,701,715
701 DO 8 I=1,NOR
TCFF(I)=1.0
TCFF(I)=1.0
TRCFF(I)=0.0
8 CONTINUE
TFP=1**4
THET1=64.0*(3.141592**3)/(3.0*(32.2**2))
715 HHQ=HHA*HINT*TCFF(NORA)
RLO=PAR*T
RLQ=RLO*HSHOL
APR=FCF*HHQ/TFP
THET2=SINH(6.28315*DEPTH/RLQ)
THETA=THET1*((HSOHOL/THET2)**3)
CFF=1.0/((APR*THETA*DEL D/HSOHOL)+1.)
RCFF=1.-CFF
TRCFF(NORA)=TRCFF(NORA)+RCFF
TCFF(NORA)=1.-TRCFF(NORA)
HHF=HHQ/HINT
LQQ=5
RETURN
END
323
IDENT SINHF
SYSTEM SINHF
ENTRY SINHF

EXP1 DEC 709.089
EXP1 DEC -709.78
EXP2 OCT 2000542710277575
EXP3 OCT 2044400000002000
EXP4 OCT 2002561250731225
EXP5 OCT 1773433546344024
EXP6 OCT 2003704560677011
EXP7 OCT 2007535620560566
EXP8 OCT -0
ONE DEC 1.0
HALF DEC 0.5

SINHF SLJ **
SIU 1 SINH3
LIU 1 SINHF
LDA 1 0
ARS 24
SAU SINH1
INI 1 1
SIL 1 SINH3

SINH1 LDA **
AJP SINH3
THS EXP
SLJ ERROR1
THS EXP1
SLJ +2
SLJ ERROR1
FDV EXP2

STA =STEMP
FSB EXP3
SAL SINH2
FAD EXP3
FSB TEMP
STA TEMP
| Instruction | Description | Address
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FMU</td>
<td>TEMP</td>
<td>SINHF037</td>
</tr>
<tr>
<td>STA</td>
<td>=STEMP1</td>
<td>SINHF038</td>
</tr>
<tr>
<td>FAD</td>
<td>EXP7</td>
<td>SINHF039</td>
</tr>
<tr>
<td>STA</td>
<td>=STEMP2</td>
<td>SINHF040</td>
</tr>
<tr>
<td>LDA</td>
<td>EXP6</td>
<td>SINHF041</td>
</tr>
<tr>
<td>FDV</td>
<td>TEMP2</td>
<td>SINHF042</td>
</tr>
<tr>
<td>FAD</td>
<td>EXP5</td>
<td>SINHF043</td>
</tr>
<tr>
<td>FMU</td>
<td>TEMP1</td>
<td>SINHF044</td>
</tr>
<tr>
<td>FAD</td>
<td>EXP4</td>
<td>SINHF045</td>
</tr>
<tr>
<td>STA</td>
<td>TEMP2</td>
<td>SINHF046</td>
</tr>
<tr>
<td>FAD</td>
<td>TEMP</td>
<td>SINHF047</td>
</tr>
<tr>
<td>STA</td>
<td>TEMP1</td>
<td>SINHF048</td>
</tr>
<tr>
<td>LDA</td>
<td>TEMP2</td>
<td>SINHF049</td>
</tr>
<tr>
<td>FSB</td>
<td>TEMP</td>
<td>SINHF050</td>
</tr>
<tr>
<td>FDV</td>
<td>TEMP1</td>
<td>SINHF051</td>
</tr>
<tr>
<td>LRS</td>
<td>36</td>
<td>SINHF052</td>
</tr>
<tr>
<td>INA</td>
<td>**</td>
<td>SINHF053</td>
</tr>
<tr>
<td>AJP</td>
<td>2 **+1</td>
<td>SINHF054</td>
</tr>
<tr>
<td>INA</td>
<td>-1</td>
<td>SINHF055</td>
</tr>
<tr>
<td>INA</td>
<td>2000B</td>
<td>SINHF056</td>
</tr>
<tr>
<td>LLS</td>
<td>36</td>
<td>SINHF057</td>
</tr>
<tr>
<td>AJP</td>
<td>3 ERROR1</td>
<td>SINHF058</td>
</tr>
<tr>
<td>STA</td>
<td>TEMP</td>
<td>SINHF059</td>
</tr>
<tr>
<td>LDA</td>
<td>ONE</td>
<td>SINHF060</td>
</tr>
<tr>
<td>FDV</td>
<td>TEMP</td>
<td>SINHF061</td>
</tr>
<tr>
<td>SCM</td>
<td>EXP8</td>
<td>SINHF062</td>
</tr>
<tr>
<td>FAD</td>
<td>TEMP</td>
<td>SINHF063</td>
</tr>
<tr>
<td>FMU</td>
<td>HALF</td>
<td>SINHF064</td>
</tr>
<tr>
<td>SLJ</td>
<td>SINH3</td>
<td>SINHF065</td>
</tr>
<tr>
<td>ENI</td>
<td>1 **</td>
<td>SINHF066</td>
</tr>
<tr>
<td>SLJ</td>
<td>**</td>
<td>SINHF067</td>
</tr>
<tr>
<td>LDQ</td>
<td>ERROR2</td>
<td>SINHF068</td>
</tr>
<tr>
<td>CALL</td>
<td>Q8QIBJOB</td>
<td>SINHF069</td>
</tr>
<tr>
<td>BCD</td>
<td>1SINH OUT</td>
<td>SINHF070</td>
</tr>
<tr>
<td>CALL</td>
<td>Q8QEXITS</td>
<td>SINHF071</td>
</tr>
<tr>
<td>ERROR2</td>
<td>51 6 14567B</td>
<td>SINHF072</td>
</tr>
</tbody>
</table>
FUNCTION IBCD(NX,JT,NJ,IER)
DIMENSION NN(8),NNT(8)
NT=XABSF(NX)
IER=0 $ NEG=0 $ BLANK=20B
NP=XMODF(NJ,8)
IF(JT.EQ.0) 51,52
52 IF(JT.EQ.1) 51,53
53 IER=2 $ IBCD=20202020202020B $ GO TO 60
C CHECK IF INPUT IS MORE THAN EIGHT PLACES
51 IF(NX) 5,6,7
 7 NEG=1
 IF(NX.GT.99999999) 10,17
10 NT=99999999
 IER=1
 GO TO 17
 5 IF(NX.LT.-99999999) 12,17
12 NT=99999999
 IER=-1
 FTEN=NT
 DO 1 I=1,8
 J=9-I
 NN(J)=MODF(FTEN,10.)
 1 FTEN=INTF(FTEN/10.)
 GO TO 25
C IF INPUT IS ZERO SET ALL BLANK EXCEPT NN(8)=0
 6 DO 40 I=1,7
 40 NN(I)=BLANK
 NN(8)=12B
 JBL=7
 GO TO 21
 25 DO 3 I=1,8
 IF(NN(I).EQ.0) 4,8
 4 NN(I)=BLANK
 3 CONTINUE
8 JBL=1-1
 DO 41 KK=1,8
 IF(NN(KK).EQ.0) 42,41
42 NN(KK)=12B
41 CONTINUE
 IF(NEG.EQ.0) 20,21
20 NN(JBL)=40B $ JBL=JBL-1
21 IF(NP-JBL)26,26,27
26 NP= $
27 IF(JT.EQ.0) 30,31
30 KJ=NP $ GO TO 32
31 KJ=JBL-NP
32 NK=KJ+1
 DO 33 K=NK,8
33 NNT(K-KJ)=NN(K)
 DO 34 K=1,KJ
34 NNT(K+8-KJ)=NN(K)
 ENCODE(8,50,IBCD) (NNT(I),I=1,8)
50 FORMAT(8R1)
60 END
END
APPENDIX 2

Sample Computer Input and Output

Sample Input

<table>
<thead>
<tr>
<th>Sample Input</th>
<th>Sample Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>56</td>
</tr>
</tbody>
</table>

440	460	515	505	510	470	425	355	300	330	370	360
340	345	350	365	375	390	455	560	700	850	950	865
550	490	470	460	415	380	335	400	460	520	560	595
510	460	400	315	275	300	220	140	80	55	53	51
360	405	450	435	445	380	330	270	235	250	280	280
290	297	300	305	315	360	420	490	655	810	930	870
540	500	515	515	480	445	440	500	540	593	630	630
610	560	515	400	315	275	234	190	110	63	53	50
295	370	370	325	325	307	260	190	170	175	190	190
240	250	250	265	275	305	405	470	570	750	900	885
560	540	550	560	550	540	550	605	620	640	610	570
540	590	570	430	390	350	310	280	240	170	70	55
240	250	250	235	195	225	200	190	160	130	140	160
190	195	210	230	250	280	350	427	490	670	820	860
610	590	590	615	600	610	620	660	650	620	560	505
480	520	560	515	405	370	320	260	190	80	60	49
150	195	200	110	125	120	115	95	80	98	105	110
162	170	180	205	210	210	290	380	455	580	740	785
660	650	640	660	660	670	690	685	650	585	510	480
450	490	550	525	450	380	325	270	215	120	65	50
80	80	90	75	73	70	72	70	70	72	80	80
110	120	140	160	175	195	240	290	390	475	610	670
760	720	715	725	730	710	680	655	620	540	480	445
440	410	550	490	415	370	325	285	235	170	85	65
61	60	60	58	60	60	61	63	60	60	65	65
80	85	100	120	130	120	160	230	280	380	460	540
770	750	735	715	665	635	620	610	570	485	440	415
425	490	550	500	445	375	315	295	245	190	110	80
47	47	48	49	52	54	53	54	56	59	60	60
63	65	70	77	82	85	110	150	185	250	340	395
560	610	590	600	570	540	525	520	500	460	410	380
420	510	515	500	465	410	283	265	235	210	145	105

4500 2 * 0.01 0. 5.0 18.0 10.0 10.0 30.0 1500.0 1500.0
4500 2 * 0.01 6. 5.0 18.0 10.0 10.0 30.0 1500.0 1500.0
K-SCALE = 1.00E+04 UNITS/INCH
Y-SCALE = 1.00E+04 UNITS/INCH
FARRELL WAVE REFRACTION PROGRAM MONTEREY BAY
TIDE LVL = 0 ANGLE = 0 PERIOD = 18
APPENDIX 3

SUMMARY OF EQUATIONS

Wave Speed (C)

\[C = \frac{g \cdot T}{2 \pi} \tanh \left(\frac{R \cdot \nu \cdot d}{T \cdot C} \right). \]

Ray Curvature (FK)

\[FK = \frac{1}{\xi} \left[\sin A \frac{\partial C}{\partial \xi} - \cos A \frac{\partial C}{\partial \eta} \right]. \]

Coefficient of Refraction (K_r)

The value of ray separation (β) is calculated by solving the second order, non-linear differential equation:

\[\frac{D^2 \beta}{Ds^2} + P \frac{D \beta}{Ds} + q \beta = 0 \]

where

\[P = - \cos A \frac{\partial C}{\partial \xi} - \sin A \frac{\partial C}{\partial \eta} \]

\[q = \sin^2 A \frac{\partial^2 C}{\partial \eta^2} - 2 \sin A \cos A \left(\frac{\partial C}{\partial \xi} \frac{\partial C}{\partial \eta} \right) + \cos^2 A \frac{\partial^2 C}{\partial \xi^2}. \]

The above equation is solved by the finite difference method. This results in an equation for the Beta value at the n+1 point in terms of the Beta values at the two previous points. The equation to be solved is then:

\[\beta_3 = \frac{(PD - 2)\beta_1 + (4 - 2qD^2)\beta_2}{2 + PD}; \]

where

D is the incremented distance
p, q are as defined above
β_1, β_2 are the Beta values of the two previous points. The
The coefficient of refraction is calculated by the relation:

\[K_r = \sqrt{\frac{1}{\beta}}. \]
Direct Shoaling Coefficient \((K_s) \):

\[
H_s = 3.2519 - 12.8150 \left(\frac{c}{c_0} \right) + 28.8112 \left(\frac{c}{c_0} \right)^2 - 29.9257 \left(\frac{c}{c_0} \right)^3 + 11.6815 \left(\frac{c}{c_0} \right)^4 .
\]

Wave Height Reduction Factor Due to Bottom Friction \((K_f) \):

\[
K_f = \frac{1}{\frac{A' \phi_f}{K_s} \Delta H + 1}
\]

where

\[
A' = \frac{f H_s}{T^4}
\]

\[
\phi_f = \frac{\kappa^4 \pi^2}{3g^2} \left(\frac{K_s}{\rho n h \frac{2 \nu d}{L}} \right)^3
\]
INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Recipient Details</th>
</tr>
</thead>
</table>
| 1. | 20 | Defense Documentation Center
 Cameron Station
 Alexandria, Virginia 22314 |
| 2. | 2 | Library
 Naval Postgraduate School
 Monterey, California 93940 |
| 3. | 3 | Professor Glenn H. Jung
 Department of Meteorology and Oceanography
 Naval Postgraduate School
 Monterey, California 93940 |
| 4. | 3 | LT Charles A. Farrell
 Department of Meteorology and Oceanography
 Naval Postgraduate School
 Monterey, California 93940 |
| 5. | 3 | Department of Meteorology and Oceanography
 Naval Postgraduate School
 Monterey, California 93940 |
| 6. | 1 | Office of the Naval Weather Service
 Naval Station (Washington Navy Yard Annex)
 Washington, D. C. 20390 |
| 7. | 1 | Officer in Charge
 Naval Weather Research Facility
 Naval Air Station, Building R-48
 Norfolk, Virginia 23511 |
| 8. | 1 | Commanding Officer
 U. S. Fleet Weather Central
 Box 12, COMNAVMARIANAS
 FPO San Francisco, California 96601 |
| 9. | 1 | Commanding Officer
 U. S. Fleet Weather Central
 Box 10
 FPO San Francisco, California 96610 |
| 10. | 1 | Commanding Officer
 U. S. Fleet Weather Central
 FPO New York, New York 09540 |
| 11. | 1 | Officer in Charge
 Fleet Weather Facility
 Naval Air Station
 San Diego, California 92135 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Full Name and Title</th>
<th>Address and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Officer in Charge</td>
<td>Fleet Numerical Weather Facility, Naval Postgraduate School, Monterey, California 93940</td>
</tr>
<tr>
<td>14.</td>
<td>Superintendent</td>
<td>Naval Academy, Annapolis, Maryland 21402</td>
</tr>
<tr>
<td>15.</td>
<td>Oceanographer of the Navy</td>
<td>The Madison Building, 732 N. Washington Street, Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>18.</td>
<td>Office of Naval Research</td>
<td>Department of the Navy, Washington, D.C. 20360</td>
</tr>
<tr>
<td></td>
<td>Attn: Special Projects (Code 418)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Geophysics Branch (Code 416)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Director, Surface and Amphibious Programs (Code 463)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Senior Marine and Amphibious Warfare Officer (Code 407M)</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Mission Bay Research Foundation</td>
<td>7730 Herschel Avenue, La Jolla, California 92038</td>
</tr>
<tr>
<td>20.</td>
<td>LT David E. Stouppe, USN</td>
<td>USS INDEPENDENCE (CVA-62), FPO, New York, New York 09501</td>
</tr>
<tr>
<td>No.</td>
<td>Name and Institution</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td></td>
</tr>
</tbody>
</table>
| 21 | LCDR Gale M. Griswold
Fleet Numerical Weather Facility
Naval Postgraduate School
Monterey, California 93940 |
| 22 | Professor J. A. Putnam
University of California
Berkeley, California |
| 23 | Professor C. L. Bretschneider
Chairman of Ocean Engineering
University of Hawaii
Honolulu, Hawaii 96822 |
| 24 | Coastal Engineering Research Center
Corps of Engineers, U. S. Army
5201 Little Falls Road, N. W.
Washington, D. C. 20016 |
| 25 | Chairman
Department of Meteorology and Oceanography
New York University
University Heights, Bronx
New York, New York |
| 26 | Chairman
Department of Meteorology and Oceanography
University of Hawaii
Honolulu, Hawaii |
| 27 | Chairman
Department of Oceanography
Oregon State University
Corvallis, Oregon 97331 |
| 28 | Chairman
Department of Oceanography
Texas A&M University
College Station, Texas 77843 |
| 29 | Director, Biological Laboratory
Bureau of Commercial Fisheries
U. S. Fish and Wildlife Service
450-B Jordan Hall
Stanford, California |
| 30 | Geophysical Institute
Tokyo University
Bunkyo-ku
Tokyo, Japan |
31. Director
Pacific Oceanographic Group
Nanaimo, British Columbia
Canada

32. Ocean Research Institute
University of Tokyo
Tokyo, Japan

33. Secretary
Canadian Committee on Oceanography
Ottawa, Canada

34. Chairman
Department of Oceanography
University of Rhode Island
Kingston, Rhode Island
Numerical wave refraction programs permit a detailed study of the transformation of wave energy as waves move from deep water to shallow water. By eliminating the subjectivity that is present with hand drawn diagrams the effect of small variations in the initial assumptions and wave conditions can be investigated. The effects on wave refraction of tide level changes and bottom friction are investigated here. It is demonstrated that a uniform increase in water level as would be caused by tidal fluctuations can cause a significant change in the wave refraction pattern for a given nearshore region. A computing procedure is developed to permit numerical refraction programs to account for bottom friction. The reduction in wave height caused by bottom friction depends primarily on bottom slope; this relation is shown in tabular and graphical form.
Wave Refraction
Numerical Analysis
Bottom Friction
Tide level Changes