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ABSTRACT

The basic Mitrovic's method is an effective technique in the

analysis and design of linear feedback control systems. Mitrovic's

method has been successfully applied to analyze feedback control systems

with single nonlineariti.es. The objective of this work was to employ

Mitrovic's method, which permits the variation of two coefficients of

a characteristic equation, in the analysis of a control system with two

gain-variable nonlinear feedback paths.

After predictions of system performance were made, the predictions

were tested by simulating the feedback control system on a Donner

Scientific Corporation analog computer, Model 3100. Computer results

were analysed in order to support or reject prediction techniques.
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CHAPTER I

USE OF THE BASIC MITROVIC'S METHOD

In general, the analysis and design of feedback control systems

centers around the solution to an ordinary, linear, differential equation

with constant coefficients. Specifically, the application of LaPlace

transforms to the differential equation produces a transfer function

which is a ratio of the output signal to the input signal. By proper

placement of the poles and zeros of the transfer function, the frequency

and/or time response are adjusted to produce results which meet with some

set of specifications for the system. This procedure may be followed

because the form of the solution to a linear differential equation is

unique. The resulting solution is predictable and invariant.

The introduction of a single nonlinear element in a control system

produces a nonlinear differential equation where one. or more of the co-

efficients may be variable. There are as many specific solutions to a

nonlinear differential equation with variable coefficients as there are

values of the coefficients. Therefore, the accurate prediction of system

performance is stringently curtailed. The use of describing functions

provides an adequate solution to the problem of one nonlinear element

within the limitations imposed on the describing function itself.

Consider a feedback control system with a transfer function G(j(*> )

and a nonlinear device which may be represented by a describing function

G_ ( j di ) both in the forward path as shovm in Fig. I-la. Then the

transfer function for this system is:

Qts) _ &Cjo)) GE (j^ ^ (I . 1)
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from which the characteristic equation may be found by setting the

denominator of Eq. (1-1) equal to zero. Thus,

1 + G (j(o) GD (.j«o) = 0. d-2)

The solution to Eq. (1-2) is:

G(H = P-T^T
' (I " 3)

Where G.(jOl) ) is a gain nonlinearity only and has no phase angle

associated \;ith it - which is the case for such nonlinearities as satura-

tion, ideal relay, dead zone, and relay with dead zone - the problem is

conveniently solved on a gain-phase plot. This graphical solution is

illustrated in Fig. I-lb. The system operates in a limit cycle at the

intersection of the two curves. This is shown as point "A" in the

figure. A root-locus plot may be used to arrive at the same result

providing the single nonlinear gain is not a function of frequency.

When two nonlinear devices appear in a control system, only a

family of gain-phase plots or root-loci plots can provide a complete

solution to the problem. Thus the problems of analysis and design become

complex and cumbersome. Analysis would be convenient if:

1. Some method of simultaneously looking at t
T.ro nonlinear

gains were available, and,

2. Some relationship between these two nonlinear gains could

be found.

Mitrovic's method [1] provides the answer to the first requirement for

control systems in which each nonlinear gain appears in a different co-

efficient of the characteristic equation. The purpose of this thesis

is to fulfill the second requirement for a particular feedback control





system.

The mathematical derivation of Mitrovic's method is based on a

theorum by Cauchy and will not be pursued here. The algebraic manipula-

tions give some insight into Mitrovic's method and will serve to provide

the reader with some feeling for the method.

Consider a feedback control system with a transfer function

G(s) " S(s* fl)CS*^)
(1-4)

The characteristic equation for this system is

S
3

* (ft^S2
* hh s * K =0 ,

"- 3 >

which is of the form

A 3 S
3 +A Z S* /\L 5 + A = . a- 6 )

If the coefficients to be varied are A and A. then the characteris-

tic equation may be re ritten as

AjS* A;,s
a +B,s *B„=0 , a-?)

where the values of s have the general form of

S = -]fa)n + jW^l-lT1-
(1-8)

and lie in the second quadrant of the s -plane. Then the values of s

which must be substituted in Eq. (1-7) are:

s
fc

-Gtf(*H) -j^fTT7
(i9)

S
3
=

$6)*(3-4f) *JQl^f-H{r^Y]

Substituting the values of s from Eqs. (1-8) and (1-9) in Eq. (1-7)

and requiring the real and imaginary parts to go to zero independently

4





yields t

A9
6>* * A4u;fef-i) - B^u, - B = (i-io)

jto rvf7F,

[-A3wft

3
(l-4f) - A e2^ * Bj =0- «-">

The solution of these two simultaneous equations, after first dividing

Eq. (X-ll) by j<On^l - 5*"' becomes:

B =-[A5 (orMz^ -10AZ<] a-")

B, = [A,<tf (1-+**) AzwJ^]-
By plotting the results of Eq. (1-12) on a B_ - B coordinate system for

constant fc lines as 6)K is varied, it is possible to map radial lines

from the s-plane onto the B„ - B, plane. Thus the result of sirnultan-r
1

eously varying two coefficients of the characteristic equation is plainly

evident from a single plot. When the F = line (s = j 63 in the s-plane)

is selected as radial line to be mapped, the stability curve is plotted

on the B-. - B plane.

Mitrovic's method may be expanded to solve any order characteristic

equation for any two coefficients. The generalized solutions for Mitrovic 's

equation pairs are listed in Appendix 3, Table I. In a generalized solu-

tion, certain functions of fe only [0 ( fc )] are repeated, such as 2\?

in Eqs. (1-12). A listing of these functions of fc is made in Appendix

B, Table II.

The analysis of feedback control systems with single gain variable

nonlinearities using Mitrovic's method is straight forward and produces

results consistent with root-locus, describing function, and analog

computer techniques. Since the author had no previous experience in





either Mitrovic's method or analysis of feedback control systems with

two gain variable nonlinearities , three control systems were selected

and analyzed before study on the two gain-variable nonlinear problem

was begun. The results of the study of these three systems appear in

Appendix A and corroborate the results obtained by LT P. L. WILSON, USN

[6].





CHAPTER II

THE FEEDBACK CONTROL SYSTEM WITH ACCELERATION AND VELOCITY

FEEDBACK COMPENSATION

A block diagram of the system to be studied in this thesis is

shown in Fig, II-l. The root locus of the transfer function for the

system, without acceleration or velocity feedback paths, is plotted on

the s-plane in Fig. II-2a. For a gain of 60, the system has complex

roots in the right half plane and is unstable. The addition of velocity

and acceleration feedback compensation, when saturation is not present,

produces a characteristic equation which is

s
3
+ 63s

2
4- 62s + 60 = 0, (II-l)

when K and K are both unity,at
Eq. (II-l) may be factored to give

( s + 62.016) ( s
2
+ 0.984s + 0.984) = 0. (II-2)

Thus, the system has been compensated to approximate a second order

system with a damping ratio, t , equal to 0.5 and a natural frequency,

CO „ , equal to 0.984. The root locations for the compensated system

are shown in Fig. II -2b. In response to a step input, the system would

have a maximum overshoot, M , of 1.15 and a settling time of about

four seconds.

The addition of two nonlinear elements produces a characteristic

equation with two nonlinear coefficients. This equation is:

s
3
+ (3 + 60NoK )s

2
+ (2 + 60N K )s + 60 = , (II-3)





;»:.'.- 'J^ :k£''^Vf|^
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where N
1

and N_ represent the instantaneous gains of the velocity

and acceleration saturating amplifiers, respectively. The instantaneous

value of N- and N_ may be either unity or a magnitude determined by

Eqs. (II-4)

N =
E _sat

i Me)C
(II-4)

E
m - sat

2 K
a< 6 )

The root locations for Eq . (II-3) vary with time as and 9 vary.

This is evident if the block diagram is first reduced by including unity

feedback.

Then,

r /$\ - £fi (n-5)

and the feedback path is H(s) where

H(s) = N„K s
2
+ N.Ks . (II-6)

2 a It

Therefore, G_(s)H(s) is found from Eqs. (II-5) and (II-6) as:

The location of the system zero at S ~ —
l,*

w^-^ fluctuate during

any given cycle of the system and the gain, given by 60NoK , will also

fluctuate. The difficulties encountered in further root-locus analysis

are obvious.

However, there is one useful piece of information which may be glean-

ed from the root-locus plot. One root of the characteristic equation will

10





(II-8)

always lie between 3 ^ s ^ 62.016. Therefore, even the nonlinear

system will always approximate a second order system since the other two

roots w i 3 1 b e d cm i. n a n t

.

The system of Fig. IX-1 x<ras simulated on a Donner Scientific Corpora-

tion Analog Computer, Model 3100. The analog computer simulation is

shown in Fig. II 3. The signal is picked off before the final inte-

gration steo. The simulation for Q was accomplished after was

derived as shown in Eqs. (T.I-8).

8(61 /lO _ 2
V(s)

-
^5T2T

S 0(s)/lO = 2 V(s) - Z 6(s)/io

9(s)/l0 = 2Y(s) -Z6($/l0

By using the above method for simulating Q , differentiating circuits,

which tend to saturate with steep wave fronts, were avoided. Much of the

work involved the use of initial conditions. The initial condition for

D was set first. Then the initial condition of the integrating ampli-

fier, whose output is the signal marked "Y" in Fig. II-3, was adjusted

so that the si amplifier for Q had the desired initial value of

O ps its output. Since this system does not represent any parti-

cular physical system, the terms , and its derivatives, inputs, and

error signals will be used with units in volts.

The experimental procedure to be followed in this thesis will be

to look at the characteristic equation using Mitrovic's method in con-

junction with the B_ - F> plane. After predictions about system per-

formance are made, the predictions will be tested using the analog computer

1 1
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simulation. The results of computer runs will be analyzed and compared

to the predictions which were made. Finally, an attempt will be made

to expand any successful methods of predicting performance for applica-

tion to other systems with two nonlinear elements.

13
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: III

MITROVIC'S METHOD APPLIED TO THE CONTROL SYSTEM

WITH TWO CAIN-VARIABLE NONLINEARITIES

For the feedback control system described in Chanter II, the charac-

teristic equation may be put in the form:

A
3
S

3 + B z s* + Bx$ + A = 0. (in-i)

The appropriate Mitrovic's equation pair from Anpendix B is:

(III-2)

From Eqs. (III-2) it is evident that the parametric equations for B.

and ; „ are not functions of the nonlinearities but have constant co-

efficients which are A - 1 and A = 60. Substituting these constants

and the - >ropriat< .'' fc
' [unctions from Appendix B in Eqs. (III-2)

resul ts in Ens. (Ill -3)

.

Bi —w Wa

_ 60
*

(III-3)

To study this system for stability only, a mapping of the V equals

zero line of the s-plane into the B - B plane is desired. When W

equals zero,

Bj = to* (III-4a)

and

B
2 -§£• • "»-4b >

CJ^ can be eliminated from Eqs. (1II-4). Thus, the parametric equation

for stability becomes

1 ':





B^ = 60. (III-5)

[:her values of i and B~ which satisfy Eq. (III-5) are plotted on

the B, - B„ plane, a graphical solution for the stability curve is

obtained. This is shown in Fig. III-l. Also shown in Fig. III-l is the

curve obtained for ^f ecual to 0.5.

The values of B. and B_ from the characteristic equation are

given by Eqs. (II 1-6).

(III-6)

B,, = 3 +feONz ka

linear M point nay he defined as a point on the B
1

- B_ plane when

the magnitude of the nonlinear gains, N- and N_ in Eqs. (III-6), are

unity, i.e., when the system is linear.

With K and K both equal to one, the linear M-point, from Eqs.
t

(III -6), is at 3. equal to 62 and H equal to 63. There are minimum

values for B 1
and B_ which occur when N,K or N-K become zero.

1 / 1 t 2 a

These minimum values are given by Eos, (111-6) as B =2 and B =3.
1 2

These minimum regions are lined out on the 3.. - B
?

plane in Fig. III-l.

Since N. and N_ can have maximum values of unity, then B. = 62 and

B_ = 63 define an upper limit for M-point movement. These boundaries are

;r: as dashed lines in Fig. III-l. Therefore, movement of the M-point

is completely bounded in a region where 2 = 3.. = 62 and 3 = B
?

= 63.

[T CYCLES . There are no limit, cycles for this system by the reasons

which follow. Eqs. (III-6) may be rewritten as:

5
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B = z +
feojE^

' 6 '
(III-7)

R - 5 + 60 lE Sitl

If the M-point moves into the unstable region for a significant period

of time, the oscillations in the system will tend to gror , This growth

• #

Lts in larger peak magnitudes of acceleration, & , and velocity,
• • ••

. As the ;nitudes of and Q increase, 3- and B
?

become

aller, according to Jqs, III-7), which drives the H-point farther into

the unstable region and the peak magnitudes of the oscillations increase

even -mo. '

.
' the M-point does not move into the unstable

ion, the pe?V magnitudes of any oscillations would decrease and the

int would move in the direction of the linear M-point. In theory a

limit cycle could exist. However, it would be an unstable limit cycle and

the slightest deviation from such a limit cycle would create either a

stable or an unstable system. Therefore, in the actual system no limit

cycles can exist and n • • ere found.

Lnt does not move in a linear system. Therefore,

operation of the system is defined by the M-point location, two roots are

specified (s = - ^C0n ± i k)n\| 1 ~" ^ )» tne third root can be found,

and system performance can be predicted. The M-point location on the

B„ plane can be adjusted to give any desired value of h and (jdn

by adjusting the acceleration and velocity feedback gains.

If only th< eedback channel saturates, M-point motion

is along i horizontal line since B can vary but B is fixed by the

value of acceleration feedback gain. Conversely, if only the accelera-

tion feedback channel saturates, movement of the M-point would be along

17





,-> vertical path.

When both feedback paths saturate, the M-point can move anywhere

in tl B. B„ >lane within the boundaries previously defined. The

ex^ct nature of the M- point motion can be predicted only if the exact

Q ,:•. @ -I' ;- .- - rtr'-it- i.an be oredicted. However, a qualitative

description of 3 >int motion can be made using only a few approximations.

Consider the transfer function of the linear system:

eis) _ go
©{CS) S 3 + 63S 2

" + 62$ + 60 '

which may be rearranged as

6CS) (s* - 63 S
2 + 62 S * 60) = 60 9{(S) . (in-8)

An approximation -, ' [1-8) is made by factoring out s I- 62.016

from the left side the equation and discarding this term. Then, Eq.

(II 1-3) becomes:

0cs)(s2+ .184 s + .w)s &oe c (s). (in-9)

For zero input to the system, Eq, (III -9) becomes

GCsHs^ * .184s + .S84) = . (iii-io)

Eq. (111-10) may be changed to an approximate differential equation for

' '< '". ? e Wl Lcl is:

© + 6 + 9 = (ni-ii)

VJithin the tolerances of the approximations made, Eq. (111-11) will

govern the linear system. If the system is driven by initial conditions,

then, at t = 0+, Eq . (111-11) must be satisfied. Also, at t = Of, 8





has not had tine to chan; roni its initial value. If 0(0) is zero,

8 = -0 for 0<t<0+. (111-12)

To test the validity of the assumptions which have been made, the linear

system was checked out on the analog computer. Fig. III-2 is a phase

• ••

portrait of the dvs0 plane. In the brief time when <. t < 0+, the

approximation given by En, (111-12) applies. This time period is indicat-

ed by the 24 single trace lines in Fig. Ill -2. Regardless of the initial

« «•

value of acceleration, when (0) - 35 volts, 0(0+) = -35 volts. After

t = Of, each of the 12 runs for positive values of 0(0) have essentially

the same phase portrait. Similarly, each of the 12 runs for negative

values of 0(0) have the same phase portrait after t = 0-K (It is

interesting to note here that, if the s tenn were eliminated from Eq.

(III-8), no significant difference in the ensuing Eqs. (111-10, 11, and

12) would have resulted. Use of this fact is made at a later point in

this chapter.

)

Consider this system operating in an underdamped condition. The

system is then oscillatory. If the velocity has a sinusoidal waveshape,

the accele a sinusoidal waveshape which will lead the velocity

waveshape by 90 degrees. When the velocity is at a positive or nega-

tive maximum, the acceleration will be zero.

If the criteria developed through the aid of the assumptions in the

preceding paragraphs are applied to the 3 -3 plane, a qualitative

description of M-point motion can be made. Assume the analysis of M-

point motion is begun when the velocity passes through a maximum value.

The acceleration is, therefore, zero and the acceleration feedback channel

is linear. Figure III-3 shows the location of this point as M- . When

19
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the magnitude of the acceleration becomes greater than the saturation

voltage the magnitude of B decreases according to Eq. (TIX-7) and the

M point moves downward as shown by the arrow from M. in Fig. 111-3.

- notion t ould continue until the velocity begins to change its magni-

tude, say at M_. When this happens, the velocity feedback amplifier

saturates to a lesser degree and R begins to increase. The M-point

motion is then shown by the arrow from M«. A short time later the

velocity channel goes out of saturation and the acceleration channel

reaches a maximum degree of saturation. The M-point has then moved to

M_. As the velocity channel is driven into saturation in the opposite

direction and the acceleration channel becomes saturated to a lesser de-

gree, the M-point moves away from M~ in the direction indicated, Assum-

ing a damped system, the M-point could then pass through M, and arrive

at M- . If, at M_, the acceleration channel remains unsaturated for an

appreciable amount of time, the M-point would move in the indicated direc-

tion as the magnitude of the velocity signal decreases. At M, the ac-

celeration channel saturates again and the entire process is repeated

through M_ to MQ . At M the velocity channel remains unsaturated
/ o o

as the acceleration magnitude decreases to M_ . This process continues
9

until the linear M-point is reached, after which neither channel satur-

ates. The above discussion has been for a theoretical M-point motion.

Before taking up actual M point movement, the theoretical aspects of

stability will be discussed.

Theoretically, if the system begins operation in the stable region

of the B - B plane, there is some damping ratio, *f , which will

2 2





item to have successively smaller peak signals at the maxi-

mum of each complete cycle or half-cycle. Therefore a stable system

wou remain stable and M-point motion would follow a trajectory similar

to that s' ig. 111-3, Conversely, if the system begins operation

in the unstable region, then a growth in the peak magnitudes of each

succeeding cycle occurs and the system can only remain unstable. However,

from Fig. IIT-4, a set of initial conditions can be imposed on the system

so as to place the M-point in the unstable region, say at M„. An un-

stable systen may be cyclic as well as unstable. For a cyclic system

• ••

driven with initial conditions, 8 and will pass through zero. As

either or es through zero the nonlinearity imposed on the system by

saturation is ed. On the B - B, plane, if the value of either

parameter Ls the same as the value at the linear M-point
s

the inscantan-

us M -point in question must lie in the stable region. (M ) . Addition-

ally, at any instant when B is greater than 20 ( <, 10 volts) or

B
7

is greater than 30 ( 0<6.66 volts) the instantaneous M-point must

lie inside t! ible region (M~).

Therefore, for the non-linear system, the stability curve is not an

in' iolate lary! It must be possible to start in the unstable region

and pass into the stable region. Two questions then arise.

1. Can a system be started in the stable region and become

unstable?

2. Can a system be initially unstable and go stable?

Equation (111-10) was obtained by assuming that the system at hand

was essentially a second order system. As previously stated, the same

3
result would have been obtained if the s factor had been dropped from

3
Eq. (1TI-8). Equation (1X1-13) results when the s factor is disregard-

ed but the non-linear coefficients are retained.
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0(S) [(3+60Nx Kjs*- *(Z + 60N
1
Kt^S + Go] = 0, (in-13)

Thus, the non -linear differential equation is approximated by:

(3 + GON| lKj8 + (Z+(bONt l<
t)6 + &0 9 20. (in- 14)

To movi the M-point to a desired location as a starting point s initial

conditions are imposed on 9 and 9 while Q(0) - 0., Thus
s

Eq, (111-14)

may be rewritten with the values of the nonlinear gains inserted and for

the time period <. t < 0+ as,

for E - + 3 volts in each channel,
sat

*
'A

insider Initial conditions of 0(0) = + 30 volts and @(0) - +

10 volts, This condition places the M-point at M„ m Fig. I1I-5. If

•• •

'q. (111-15) is rearranged as Eq, (XII-16) and solved for ©when &= +30
* < «<

volts then,. 9= -140 v nd B , the coefficient for U * will be at

shown a:

8 = - 2-|ii> - 6o[it9»i©( ) + Atgn 9(°) (111-16)

In order for (0+) to arrive at -140 volts, it must pass through zero

Therefore, M-point motion would be through M to H and the system

would be driven immediately into the unstable region,
«

dder the same M., noint but with 9 (0) - -30 volts. Then the

solution to Eq (111-16) is = +20 volts and the M-point of t - 0+

would be driven to H~ without passing through M.

.

If the system is started at M by having 0(0) = +10 volts and
10

(0) = +60 volts, where would the M-point be at t - 0+? Again
4 Eq.
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40 » •

16) is solved for The solution is 0^ -126 . It n 1, there-

fore, B_ - 4.43. The M-point would move to K passing through M .

For Q (0) - : volts and (0) = +60 volts, then 0(0+) would he +6,7

oil i This sequence drives the M-point to M , without pass-
2 1

J

ing through M
1

.

.

Although the above discussion, is based on approximations , some idea

of initial M-point ent has been obtained. When initial conditions

are imp .. n 9 and so that they both have the same sign,, the system

arently would be hit harder than if B and & were of opposite sign,

the question of stability would hinge, in. part, on the question of

the si i" initial conditions imposed.

;.-:. L6) is solved for O under varying initial conditions

for & and Q , Fable ilf-3 results. In lieu of ail the approximations

which have been made, Table III - 1 can not be regarded as an exact predic-

i of syste i bility, it does indicate the type of initial condition

settings whi I rould tend, to make the system stable, marginally stable*,

or completely stable. At this point it is concluded that experimental

tests nust be conducted to determine stability limits for this system,,

To investigate stability, the system was driven with various initial

conditions. The starting ooint on the B. - B plane is defined by the
i z

nitud< s of the and Q initial conditions. The 9 vs Q phase

plane was selected as the appropriate method of recording data because

of the direct correlation between this phase plane and the B - B

p I ace

After conducting several computer runs, it became obvious that some

» #«

regions of the vs plane would produce stable runs and some regions

won 1.!- 1

- unstable system. To delineate the. stable i the

27





TABLE III-l

9(o) B(o) %((» %(o)
" Initially:
Stable (S)

Unstable (U)

5(o+)

F———

—

B2 (0+)

Predicted:
Stable (S)

Unstable (U)

Marginal (S/U)

+15 +30 Hi 9 S -130 h.3Q S/U

+15 +60 Hi 6 S ,-130 U.38 s/u>

+15 +90 Hi ,5, S

f

-130 U.38 s/u

+15 -30 Hi 9 s - 10 21.00
-

s

+15 -60 1U 6 s - 10 21.00 s

++15 -90 1U 5 S - 10 21.00 s

-15 +30 Hi 9 S +010 _ 21.00 s

-15 +6o Hi 6 S > + 10 21.00 s

-15 +90 Hi 5 s + 10 21.00 s

-15 -30 Hi, 9 s +130 .'U.38 s/u

-15 -60 Hi 6 s °» +130 ^li.38' s/u

-15 -90 Hi 5 s +130 U.38 s/u

+30 +30 9 9 -HiO li.29 U

+30 +60 9 6 u -lUo li.29 u .

+30 +90. 9 5 V -HiO U.29 '

•

U

+30 -30 9 \ 9 s - 20 12.00
i

s

+30 -60 9 6 - 20 12.00 3

+30 -90 9 5 u
-

- 20 12.00 s

+30 +30 9 9,

•

s 1 + 20 12.00 s

-30 +60 9 6 u + 20 12.00 s •

-30 +90 9 5 u + 20 12.00 s

-30 +30 9 9 s +HiO U.29 U

-30 -60 9 6 U +lllO U.29 u

-30 -90 9 5 U +HlO U.29 u

.





Q vsO phase nlano was hed until a stable run resulted from one

initial condition but, an unstable run resulted from an initial condition

displaced a small distance from the original starting point. Figures III-

• h III-6g are a sampling of these type runs, When the locus of all

stable starting points is drawn, the \3 vs © phase plane is divided

into a stable region and an unstable region, This is shown in Fig. III-

7 For all these runs, © (0) equals zero.

>9
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"re F.II-7 confir ie idea that stability depends on the signs

i initial conditions as well as the magnitudes. When the locus of

I : the B - B plane, as in Figure III-8, two

result. The first, shown as a dashed line, is

for initial conditions of Q and Q of opposite signs. The second

ling line results from & and © intiial conditions of the same

s i gn .

qualitative prediction of M-point motion is conf irmed, in part,

runs of x: iv. Ill are plotted on the B. - B plane, as iwhen • runs or rig. Ill-be are plotted on tne ii. - is plane, as in

table run is not predictable from the qualitative des-

riptioi noi nt motion .

» .<

.O trajectory can be predicted, stability can not
. ••

assist in -redicting the " vs" trajectory, isocline

theory seems to be the only available method. The differential equation

h this control system is rewritten as:

s + B^e + 6 1 e + koe =.0. <m-i7)

^-2- - g (111-18)
(it

d0 - Q (111-19)
dt

. substituting Eqs, (111-18 and 19) in Eq. (ITI-17) and rearranging

i
»

•

TT = - B,0 -B.9 -606. (in-20)





I









[f il Q Q ^}\r>.^c plane is defined as N, then

ISt - -^$- . (111-21)

When the left side of 1 11-20) is divided by dO/dt and the right

»»

side by 8 , En 22) i*esults.

do/di Bg,S >BtQ + 6>oe

de/di " g '• (m " 22)

Eliminating dt from the left side of Eq. (IIX-22) and replacing d6/d6

by the slope, N, reduces the desired equation for the isoclines in the

O vs G phase plane. When the non-linear factors, IL and B^, are sub-

stituted in the isocline equation, it becomes:

y« -(3 -it)Q -fr«ffi)6 -6oe (m . 2S)

Equation 111-23 may be rewritten as:

N = -3Q -28 -606 -180st«H S -X80s^6 (m24)

The • '[. (111-24) is applied to the Q vs phase

plane for given values of N, is 5. If some value of is assumed
s

the

isoclines can be dravm. Figures IIl-10a through 10c show these isoclines

for equal to zero, 10. and 20, respectively.

From [-7, it appears that, for a stable system^ the maximum

value of & when @ is zero is approximately 20 volts, By starting with

3 at -20 volts in Fig. IXI-lOb, and tracing a trajectory away from that

point in a reverse direction, a path results such that, for initial condi-

tions anywhere on the path and for Q remaining at a value of +10 volts,

the trajectory would return to the starting point. For a positive velocity

end a positive displacement, the displacement can only increase. Thus,

41
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the i

,

•
. ory in the upper half of the Q vs Q plane would

rd one ; eel by the isoclines in Fig. III-10c. For & equal

; . ond predicted trajectory to arrive at that point is drawn

;

;
' . Using these two predictor! trajectories, a region of

stable runs is predicted on Fig. III-10b,

Once, again, the Q vs phase plane was searched for stable and

unst? ion Q, , wa: ten volts. Figures III-lla through llg

are -
; -•

.
| , ade in this search. When the locus

• Lnts is drawn, the region of stable runs is enclosed.

»orl ion of this region which corresponds closely

with the r< hich was predicted.

wording to the results polotted in Fig. 111-12, when G (0) is

+10 volts nc Ll Lve values of are permitted if the system is to

table, Therefore, it is concluded that the system cannot remain

For a s greater than 10 volts by the reasoning which

follows. :: critically damped, for a step input of

vershoot. As reaches 10 volts a positive

i i overshoot. Therofore, the system will go un-

stable when " -1C volts and the velocity is positive.

. Lgure a is a nhase portrait of the vs pl?ne showing the

t
• jectory for r> step input of 10.1 volts. For this input, the system

!
''" ire IT! 13b shows a recorder trace for the indicated

«

vei .- 1-14 Is the phase portrait of the vs

lane nput was Increased to 10.2 volts. For the 10.2

>ut, t! syst • le unstable. No limit cycle operation could

etween 10.1 and 10.2 volts. When the input

ips, i.e. , less than ten volts, and the system has

45
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are chosen to place the linear M-point on the stability c . an un-

stable limit cycle results, An example of this type of run is shown in

111-18 for the corresponding point from Fig. 111-17.

F.nci dback gains K and K should wider: the stable
a t

• ••

:• oi the Q vs © phase plane since the M-point would spend a long-

period of time in the stable region of the B - B„ plane Converse-

ly, reducing the feedback gain; should reduce the stable region. These

predictions were found to be true. Figure 111-19 shows an unstable

run results when I is reduced to 0.13 whereas, with K = 1.0, the
t ' t

s

start il was in the stable region. Figure TII-20 shows two stable

runs when K and .ire increased to 10. Both of these runs were un-
t

able i rcity feedback gains.

iff.

It is concluded that an accurate prediction of system performance

cannot be Mitrovic's method in conjunction with algebraic and

1
s when two coefficients contain non-linear factors. From

the investigations undertaken by this author, it appears that isocline

by it; • mid provide the most accurate method of prediction.

-, the use of isocline theory would require a large number of

isocline plots, v.uth accuracy being proportional to the number employed.

An analysis i^ould proceed in the following manner, given the initial

conditions at the starting point. Using the following relationship
9

A9 =
At

and the values of Q , © ., , and Q* from a short trajectory s compute At.
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A9 = At-^
select a new iso i to the n< .. i &

second short trajectory on the n< lot pr< ii •;-.
,

This process w< b* a i ited until the trajectory eit) be-

comes unstable soelin theory developed here would : ippii-

cable to systems <.vu !
i chai teristis: equations of highe .

third order equnt or £02 this system.

It is als that the best means available to

system with two non- linearities is by analog or digita'.

Unfortunately , computer methods can answer the question o;

but not the more important question of 1

The dualism of the zeta equa line on thi R„ - E
\
lane is the

i

single most disturbing ar [>lieab pi 1

-,
. i ir. thi

If one such dualistic line exists, it seems entirely pess:' h that >tl rs

might
"

; ..his Eactot il would preclude the as I

Mitrovic ' s the t system performance when t -li iris ies

are invol\
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CHAPTER IV

M1TR0VIC 8

S METHOD APPLIED TO THE STABLE CONTROL SI -

In Chapter III 9
the control system was studied to ascertain stability

characteristics of the control system when the gain was high enough to

cause the uncompensated system to be inherently unstable. By reducing the

gain, the system can be made inherently stable. From Eq. (1II-5) S which

is repeated here as Eq. (IV-1) 9 the parametric equation for stability ist

B
X
B
2

- K 8 (IV-1)

which may be rewritten as

(2 + KN,K )(3 + KN..K ) = K.
1 t

x
2 a'

When K and K are zero, the maximum value which K may have, for a s

system is six, which is found from Eq. (IV-2) . The character! site equa-

tion for the system becomes

S
J
+ B S

2
+ B.S + 6 =

1 2

The solution of Eq. (IV-3) with the appropriate B
1
-B^, Mitrovic equation

pair from Appendix B gives the desired parametric equations for the B.-

B plane;

2
B. - <W + 6(2 K )
i n ° '

B
2

=
-.-6— + (2 ^
G)

2

n





The graphical solutions to Eqs. (1V-4) are shown in Fig. 1V-1. Sin~e B
1

cannot be less than two and B„ cannot be less than three, the corres-
2

ponding areas are ruled out in Fig. 1V-1. Thus, the M-point must always be

in the stable region and the control system is inherently stable. No dual-

ism of the zeta equals zero line could be found by varying either initial

conditions or the size of the step input.

It is desirable to predict an average M-point motion on the B..-B., plane,

If such a prediction were possible, system performance could be accurately

described. Two approaches to the prediction problem were attempted. The

first approach was a linear approximation to a step input response. The

second approach was to analyze the results of many runs to ascertain if

some definite "pattern" of performance could be determined.

LINEAR APPROXIMATION METHOD.

The procedure in this method was to choose a step input for the system

and a starting M-point. It wf s assumed throughout that the system could be

regarded as a second order system and, therefore, that the values of zeta

and natural frequency, CJ > would govern system performance.
n

The step input size was chosen as ten volts. Initial values of K -

2.57 and K =0.6 were chosen to place the starting M-point at B = 17.4
a I

and B = 6.6. At this point v the value of zeta is 0.4 and Q ~ 3.8 rad/sec.
z n

If 9 were sinusoidal then 9 would lag 9 by 90 degrees and 9 would lag

9 by 90 degrees. Therefore, if 9 goes from its initial value of zero to

the maximum value, M , in time, t, then 9 would arrive at its maximum
s pt
• »

value in t/2 and would have a maximum in time t/4.

i

Defining 9 as,° max '





-4+FF





and a
max

=0 - 9(0)
max .max

__
-

I

t

=9 - Q(Q
max max

t/2

provides a basis for predicting M-point motion on the B..-B plane.

For zeta equal to 0.4 the maximum overshoot would be 1„2S<> Therefor*

for a ten volt input. 9 is 12.5 volts. For (J equal to 3.8 rad/sec. t
max n n

.

equals 0.414. Substituting these values in Eq. (XV-5) gives a 9 of
max

30.2 volts. Therefore, B\ . equals 2.2?1. The values of 9 is predict-
1 min max

ed from Eq. (XV-6) as 146 volts, which corresponds to a B A . of 3.206.n 2 rain

Thus, the M-point would be bounded by the straight dashed lines shown in

Fig. IW-2. A revision to the first approximation is now made by choosing

an average trajectory along the zeta equals 0.2 line and guessing at an

average value of Q of 1.43 rad/sec. from the corner value of . Under
a n

these conditions, M is 1.5 and t equals 1.10 seconds. Using this value
pt

of M , 9 is 15 volts and v from Eq. (IV-5), 9 is 13.6 volts and, there-
pt max n max

fore B, . is 2.52. The revised value of is computed from Eq. (IV-6)
1 min max

as 24.3 volts, which corresponds Co a B A . of 4.23. A second revision
2 min

is now made based on the curved dash line of Fig. IV- 2, using a value of

o

zeta equals 0.3 and an Q of 1.4. From this data, M is 1.35, 9 is
.i pt maK

12.0 volts and 9 is 21.3 volts. Corresponding to B, - 3.50 and
max 1 min

B,. . - 3.85. Since this second revision shows about the same M-e
2 min

motion (shown by the curved dashed line in Fig. IV-2) no further revisions

are made.

To predict M-point motion after the first peaks are reached, it is

assumed that in one complete cycle position, velocity, and acceleration

n









are all damped by a factor of 6 The following deri of M-

point motion over any one cycle is made assuming that EL and !

1

linear throughout the entire cycle and, therefore^ haw

B, » 2 + 18

and

- 3 + 18

It is also assumed that velocity and acceleration have an aveu, i agmii-

tude over one cycle equal to the average magnitude of a sice w&.v<& over cne

cycle , i.e.

,

9
ave

636
peak

and

Therefore

0, = o636 . .
e»'w peak

11 ave

12 ave

= 2+1

+ 18

636
| 0.1

and

1 ave 12 ave 11
.636

Since
I SI

S I
,-\

OJS th ~r.

636 |0
|

28 o 4 1

$where 6 is the damping factor.

Similarly

EL - £*L4__ S

/4





The <S factors appearing in Eqs. (IV-7 and IV-8) are tabulated in

Table IV- 1. Using the values of o from the table and Eqs. • and

1V-8), a predicted average M-point trajectory is plotted in Fig, IV-3.

s
TA:BLE IV-

1

5
0.0 0.00
0.1 0.105
0.2 0.222
0.3 0.352
0.4 0.493
0.5 640
0.6 0.823
0.7 1.011
0.8 1.222
0,9 1.461

1.0 1.719

The results of the computations for average M-point trajectory are shown in

Table IV-2.

The revised predicted trajectory for a ten volt step input was based

on peak magnitudes of velocity and acceleration. If a single point average

value is used based on the average value of a sine wave over a complete

TABLE IV-2

.08

.10

.15

,22

B
l

B
2 '

9|(vo Its) | Qjvolt

3.50 3.50 12 .0 36.0
3.75 3.58 10.3 31.0
4,05 3.68 8.8 26.5
4.50 3.83 7.2 21.7
5.15 4.05 5.7 17.1
6.20 4.40 4,3 12,9
8.08 5.03 3,0 8.9
12.08 6.38 1.8 5.3

*17.s-0 **6 , 60

.105 ,25

.110 .30

.140 .45

.165 .65

.210 1.05

.285 1.88

.423 4,00
1.719 27.10

.63

1.35

* B, is linear for B, - 17. 4'

.

1 1

**B is linear for B = 6,6.
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cycle then = 0.63 and = 0.630* . For th< I
-

I step
ave max ave max

input, = 7.55 volts and 9 =13,4 volts corresponding t: .

ave ave : .

= 4.39 and a B„ = 4„13., This point is shown as M., Fig 3 -3
2 ave 1 ave

According to the predictions developed here, if the first M- is as° r r
i ave

shown in Fig. IV-3 then about three complete oscillations sh take pi

before the average M-point arrives at the linear M-point.

Figure IV-5 is an M-point trajectory for a 10 volt step input 3 I

• ••
which the 9 vs 9 phase portrait is shown in Fig. IV-4. There is only one

complete oscillation in the actual system. Figures IV -6 through IV-12 are

phase portraits and M-point trajectories for step inputs of 20, 30 s 40 9 arid

50 volts

„

The average M-point trajectory does follow the general trend cf the pre-

dicted average trajectory. However
9

the predicted trajectory allows for

nearly twice the number of cycles as actually occur.
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CON. :'.-i,-.)NS.

re art- two primary sources for error in the predicted M-poinf

trajectory, The first source is in predicting the initial vaJI

ity and acceleration and is due to the delay in position response after

the step input is applied. This results in erroneous values of the first

velocity and acceleration peak magnitudes,

cond source is in assuming a sinusoidal response when the actual

mse is a damped sinusoid. The damped sinusoid has a lower average

r a cycle than apure sinusoid and, thus, the predic niber

of £te oscillations are greater than the actual number,
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:mdix /

[Til :~i::cir nohlin parities

:

.

i Tin? :rror ciiaiiiijjl.

The block di; . the system to be analyzed nnd the analog

computer simulation of the system are shov;n in Fig = A-l. The closed loon

transfer function for this system is

JMzL = ion

:
CS) S

5
* 3 S* - £S * ION

where N represents the instantaneous variable gain of the saturation

nonlinearity. By choosing the last two coefficients of the characteris-

tic equation as the variable coefficients, the characteristic equation

bec i

3S* + B^S + B = 0. (A-2)

From Appendix B, Mitrovic's equations for S and B are:

B = - [3^0L(V * g>10z (\)]
(A-3)

'nd

stituting the values of the functions for I- = from Appendix B in

Eqs„ (A-3) nnd (A-4) gives the parametric equations of the stability

curve; as

B
ft

= 3d* (A-5)

and

B
1

= GO* . (A-6)
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•

: -::< the I? •• !' nlanc with the values of B. and B,
(! i (i 1

i
it ted as d)n

:

s varied. Thus the stab

• town, '. comparing '-*. (A-l) with En. (A-2), ; t Is seen :

B -2 and B = ION where N has a maximum value of one. Tims

•

i point locus is specifier1 on the B,. - B. plane,

1 c intersection of the M- point locus with the stability curve defines

a single >oint whore -

"

'• the equations for V, and B are satisfied.

At this i
! •

I ,

B = 3 co£ = ION (a-?)

B
x

= &>* = 2 . ca- )

The s< ut ion (A-8) gives 60*. r
1 .414 rad/sec. Substituting thi s

value 00^ ;• -
. (A-7) yields ". - ". •

. Since the variable gain of

L'' v n non 1 inea I

( •• defined as the rat^o of the output to the

input, • error signal can be predicted from Eq. (A-9)

b e 1 ow a s .

: v o ' 1

C - -2- volts (A-9)

The linear system with a gain of 10 is unstable. Thus, if any

turbance occurs in the system, the output signal will begin to in-

crease in magnitude. Therefore, the error signal also increases in

magnitude. ' sn (::<<> error channel saturates the gain of the system is

decreased. As the system gain is decreased, the system becomes more

1 "! : tor .'
.

• • ••
I begins to decrease. A decrease in the error

signal increases the system gain and the above process is repeated.
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FIGURE A-2

Graphical solution Co error channel saturation
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itually fi dynamic equilibrium is reached in which the syst

M-point locus at the intersection of the M-point locus and the

>, Llity curve. The value of the nonlinear gain, N, and the magnitude

of the error signal, c , are therefore time averaged values,

Fig. A-3 is a phase portrait of this system obtained with an analog

uter si i of the system. The radian frequency of 1.395 rad/

sec. agrees within one percent of the predicted value of 6)h
- 1.414 rad/

sec. As previously stated, the magnitude of the error signal., £ s> when

the system is operating in a limit cycle can be predicted as 8.33 volts.

When the error channel saturates, the system will be driven with a

stant input of five volts Therefore, the system should be driven at the

sane rate in either a positive or a negative direction and the error sign-

al channel should spend the same amount of time in positive saturation as

it does in negative saturation. The predicted magnitude of the error

signal should then be an average value which is independent of the sign

of the error signal. On Fig. A-3 a vertical line was drawn at C. - -8.A

volts. Then, for the limit cycle, the area narked "A'" can be compared to

the area narked "B" by counting the number of squares contained in each

area. The two areas are equal and, therefore, the average magnitude of

the error signal is 8.4 volts which agrees closely with the predicted

value

.

Fig, A-4 shows the graphical solution to this nonlinear problem on

the B B plane and the B~ - B- plane. The solution for the

B plane follows the same pattern as that for the B_ - EL plane.
3

'

1
l

Solving this problem on the B n
- B

?
plane is, however, somewhat unii

and is explained in the following paragraphs.
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men .<•. «c equations for this systcn

pnnrooriate co • om the characteristic equation ins are

B„ = m
and

B, =
wj flWs>

[2 6)^) * ulQjq

[-zuM) - w»0,(»ji]. A-ll)

When the C fe ) functions are substituted in Eqs. (A-10) and

become

Bo * Tf [^a + «?] fA-i;

CA-13)

The substitution of t- in Eqs. (A-12) and (A-13) results in singular!*

ties in bot I , for fe - 0, s = j t*>n . Substit itir^g this

quantity for s in Eq, yields

j<^l -B
tu£ *jun + Bo =0. (A-14)

Requiring the real and imaginary parts of Eq. (A-14) to

independently produces the following equation pair c

i^(Z-til) =

B - BX =

CA-is:

(A-16)

! solution to Eq. (A-15), after first dividing out j (O n ,
is 63 ~ 2

n

Thus, Cd
n
^ 1,414 rad/sec and, from Eq, (A-16) 9 B - 2B., Sir. r : -
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3 from the characteristic equation, then Bn
= 6 and N = O.6..

B~ - B_ curves are then plotted and a graphical solution is obtained
2

b '

which is consistent with the solutions from the B~ - B, and B~. - B.
l \

planes

.

CASE II. SATURATION IN THE VELOCITY FEEDBACK CHANNEL.

The block diagram of the system to be analyzed and the analog

computer simulation of the system are shown in Fig. A-5, The closed

loop transfer function for this system is

6„ca __, 30
G;CS) s

4
+ Is 5 +H$* + (8+U0l\|)s * 30

where N represents the variable gain of the nonlinearity As in Case

I , the last two coefficients of the characteristic equation are chosen

as the variable coefficients . The characteristic equation is

S
4 + 7s 5 +11S2

+ &t s + B = CA-i

where

and

B = 30, (A-i9)

Bj.= 8+-120N.

From Appendix B, Mitrovic's equations for B and B are
1

B =- Mw*^(|s> * Ta)„3 ^) * <aiO,C*] (A-21)

and

B
x

= Mo^Of) *lco^M +o>^Ct> . (a-
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Substituting the /( b ) functions for \j = from Appendix in Eqs [A-2i

and (A-22) provides the following equations for the stability curves,

B = i+o* -(a*. (6-

B
A
=1a}.

The stability curve and M-point locus are plotted or? the E. - B, plane
i

on Fig. A~6„

The graphical solution to this problem reveals both a stable an<

unstable limit cycle. The gain of the linear system {N - 1.0) is high

enough so that the linear system is unstable. Any dlsturbanc it occurs

in the system produces an oscillatory state. When the velocity feedback

signal saturates the feedback channel, the value of the nonlinear gain is

reduced. The M-point moves to the left toward the stability curve. If

the average M-point moves to the left of (or inside) the stability curve

the system is damped, As the oscillations decrease in magnitude the

linear gain increases and the M-point returns to the stability curve.

Eventually a dynamic equilibrium is reached and a stable limit cycle - -

suits, At the intersections of the M-point locus and the stabil

curve Eq. (A --IS) and Eq, (A-23) are equivalent and, therefore,

GO* - 14 60* + 30 = 0. (A-

The solutions to Eq, (A-25) are:

G0a = 1.G3 rod /sec (A-26)

and

6)a = 3.37rad'/sec. (a-

9 '9









each inter .sect ion of the M- point locus Eqs, (A-21

are enuiva.3 ent !

120 N = 7co* - 8. (a-28)

For the stable Limit cycle, using the value of 0)^ from Eq, {A-21

solution [A-28) is N equals 0.596. For the unstable lim Li . le

Eq, (A- 26) applies and the solution to Eq. (A-28) is K equal 1874.

Ihe unstable limit cycle results when the magnitude of the . .

feedback signal is large enough to produce saturation such that N is

equal to or less than 0,0874, This condition will exist 1 i i magni-

tude of Q equal to or greater than 5.73 rad/sec s a value d

the following equation?

N = ^,
5

.
,

< 0.0874. <a-

«

For any whose magnitude satisfies Eq e (A-29)« the -

ic and the oscillations begin to grow. This increase in "\ maj

»

of @ further reduces the value of N and the oscillations Lnue to

itudes, Fig. A-7 is a phase portrait of this systens si

operation at both limit cycles.

It is emphasized here that the operation of the system at either

limit cycle is not in a small region about the intersection : !

stability curve- and the M-point locus. As the value of © passes through

zero in either d he value of N is one, since the velocit

back channel is not saturated, Thus 9 the instantaneous van. ^ of N

cause the system to operate through a long portion of the M-jj ; I -

The unstable limit cycle 9 for example
9
would produce wal ot B,

tween e i gh t and 1 28

.
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' HIE ACCEL 1 - RATION FEEDBACK CHAN'--

lock diagram of the system to be analyzed and the am

computer simulation of the system are shown in Fig* A-8* The

loop transfer function of the system was found from which tl

istic equation is.'

S 4 + 7S 3 « (14* ION) S
z + 8 s +20 =

31)

where

,

and ,

B x
= 14 + 10 N . ca-

The EL • B. Mitrovic equation pair are selected from Aps

With the correct coefficients from Eq« (A-30) and the 0(fc ) functions

for fe =
S

the parametric equations for the stability curve are;

Bi-TCJa (A-33)

B = -££L . (A-34)

At the intersection of the M-point locus and the stability curve Eqs,

(A-31) and (A-33) are equivalent. Therefore 9 6J n = 1.06S

this value of 6Jn , B^ equals 18,64, from Eq. (A-34) s and M equals

0.464, from Eq, (A-32) .

I'he graphical solution to this problem is shown in Fig„ A-9. If

the magnitude of the acceleration signal is large enough seen that N

is less than 0„464
s

then the. system is unstable and oscillations in-

crease in magnitude., This increases the peak magnitude of the i ra-

tion signal, reduces the -magnitude of N s
and causes the syst m to 1

come oj table. Therefore the system will never attain a stable s

For small signal magnitudes of acceleration the system operates
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the point where N - unity. In this region the system has some c.

ing ratio. f
,
greater than zero. As the oscillations are decreased in

;nitude, the value of N approaches unity. In this mode of operaH

the oscillations will eventually die out and the system will operate in

a linear^ stable state. Fig. A-10 is a phase portrait of this system

which illustrates the stable mode of operation, the unstable limit cycle 9

and the unstable mode of operation.
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Figure A-9. Graphical solution for acceleration feedback channel saturation.
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TABLE If, Equations for the ( fe \ fnn^Hnnr\( | ; tunutions api u .

3

l a) = o

& <9 -
2-r

00 = i-4f

^(^)= -4 1 +8?

5^ = -1 + 12^ -lfe^
4

6^ -32f +32f

\® ~~ -hKt§ + K-S\ WKJ2
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