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ABSTRACT

purpose of this paper is to describe an investigation of the

feasibility of development of a Zeeman modulated non-image forming in-

frared voice communication system using helium resonance radiation.

Dui ing the investigation, experiments were conducted which determined

some of the characteristics of the unique detector to be used in the

infrared system and other experiments were conducted which determined

that the Zeeman modulation of a gaseous discharge light source was

feasible.

The theoretical and experimental investigations were performed

at the instrument division of Varian Associates in Palo Alto, Calif-

ornia, during the period January to March, 1961, while the writer was

a student in the Engineering Electronics curriculum at the U. S. Naval

Postgraduate School, Monterey, California.

The writer wishes to thank William E. Bell, Dr. Arnold L. Bloom

and Nathan Steiger for their assistance and suggestions. The writer

gratefully acknowledges the guidance and editoral assistance given

him by Professor Carl E. Menneken and Associate Professor Glenn A.

Gray.
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One of I flitsry uses of Infrared radiation has been as a

carrier for :e and code communications. Most of the voice com-

systeirs developed are those in which the light source is

intensity modulate! at audio frequencies. As such systems might be

in danger of interception by enemy infrared receivers, ether types

of modulation which might be more secure have %«ee<- aoughi

.

devices have been developed, one of which makes use of a high frequency

sub-carrier wave and another uses modulated polarization of the light

beam. Another device which has been considered produced modulation

by varying tha wave length of the light,

However, all the above systems used wavelengths of light from 0.8

Imicrons to 1.4 microns, a region called the "near infrared" (NIR).

The lead sulfide photoconductor was the first sensitive detector of

radiation beyond 1.4 microns to have n response time short enough to

pick up audio frequency signals. Only with the indention of this photo-

conductor was a system feasible which utilized the "intermediate in-

frared" (IIK) region of the spectrum (1.4 to 6 micrors).

All of the detectors used in the systems above, as well as the more

recently developed phototransistors, are relatively broadband in their

spectral response to the incident radiation.

1„ The micron is the convenient infrared wavelength unit, and is equal
to 10 meters or 10,000 Angstroms. Wave numbers are also used;
a wave number is defined as the number of waves per centimeter. Thus,
a 2 micron wave has a wave number of 5,000 cm .





The purpose of this paper is to present & non- image forming IIR

e communications system which uses a detector with an extremely

narrow spectral response to the incident radiation and in which the

audio modulation is accomplished by shifting the wavelength of the

transmitted light through the narrow spectral response of the detector

by means of the Zeeman effect. Tbe energy in the light beam remains

constant and the shift in wavelength is extremely small, so detection

of the signal by any means other than by the proposed detector would

be very difficult. To avoid confusion, the incident radiation will

be referred to by wavelength or waver.umber, while the audio modulation

of the light will be referred to by frequency.

Figure 1 is a block diagram of the proposed communications system.

The optical systems and the audio amplifiers are conventional and

will not be discussed in this paper. The magnet bias supply is necessary

to prevent frequency doubling in the lamp and is similar to tbe bias sup-

plies used with magnetostriction sonar transducers.

Primarily, the experimental work was directed toward the determina-

tion of the characteristics of the unique detector (discharge photocell)

to be used in the proposed system and the determination of the feasi-

bility of Zeeman modulation of the light source.

This thesis describes the theory and the experimental work per-

formed at Varian Associates by the writer to demonstrate the feasibility

of a Zeeman modulated infrared voice communications system.
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II. Theory of Operation

The operation of the proposed communications system depends upon a

photodetection cell with extremely narrow spectral response to the in-

cident illumination so that minute changes in the wavelength, such as

that caused by the Zeeman effect, can be detected. Such a photodetect-

or is the discharge photocell.

A. Theory of Discharge Photocell

1. Pure helium

Helium, the second element, is one of the so-called noble gasses,

such as neon, argon, etc., and is characterized by having its outer elect-

ron shell completely filled. In the case of helium, there is only one

shell and It is filled with two electrons.

An atom, when free of external influences, will be found on the

average to have its electrons in the lowest energy state. Excited

states of an atom, in general, result when one of the electrons is rais-

ed to any of the higher energy levels. There are also excited atoms in

which two or more electrons are simultaneously in higher levels, but

such atoms are observed only rarely in the lighter elements and as a

result will not be considered here.

In the ground state (lowest energy state) of helium, the electron

spins are antisymmetrical and the vector addition of their spins (call-

ed the resultant spin vector "S") is equal to zero. (Helium with

antisymmetrical electron spins is called parahelium while helium with

symmetrical electron spins is called orthohelium. Only parahelium is

of interest in the discharge photocell). With S equal to zero and

both electrons in the ground state, the angular momentum of the atom





(denoted by the azimuthal quantum number L) is zero. This state is

called the S state of the atom (not to be confused with the result-

ant spin vector S), while the state with L equal to one Is called the

P state. The transition from a 2 P state to the 2 S state results in

the emission of an infrared photon with a wavelength of 2.0582 microns,

which is the spectral line of interest in the discharge photocell.

Figure 2 is an abridged energy level diagram for helium showing this

transition.

.5016

2*8

1*8

.0584

Abridged Energy Level Diagram for Helium

Figure 2





The discbarge photocells used in l:he experiment were bulbs filied

with helium undet low pressure. In the cell, the helium must he. ionized

weakly to the extent of having a glow discharge or corona discharge.

In the glow discharge, the average energy of the charged particles is

insufficient to ionize the helium atoms. However, the average energy of

the charged particles is sufficient to excite the atoms to the various

p
1 states by direct collision. Most of the excited atoms are returned

to the ground state with the emission of a photon of energy, but some

fall to the metastable 2 S state and are trapped, building up a popula-

tion of metastable excited atoms within the cell. The metastable atom

can return to the ground state only by collision with another metas-

table atom, or by collision with the walls of the container, or by

collision with an impurity atom in the gas.

2
Seutler and Josephy have stated that in a collision of two metas-

table atoms there is a finite probability thai one of the atoms will

capture all the energy and be raised to a higher state while the re-

maining atom returns to the ground state. In helium, the metastable

capturing all the energy will become ionized as the combined energy of

two metastables is greater than the ionization potential of helium.

The probability of collision between two metastables, and thereby the

equilibrium concentration of charged particles present in the gas, is

a function strongly dependent on the metastable population in the glow

discharge.

2. H. Beutler and 3. Josephy, Fhil Mag 5, 222 (1928).





conductance of the gas in the corona discharge is a direct

function of the concentration of charged particles in the gas. Any

phenomenon which can change the metastable population can be detected

as a change in the conductance of the gas. Penning , while studying

the starting potentials in neon, discovered that when a glow discharge,

depending on the maintenance of a population of metastables, is illumin-

ated with the resonance radiation from a strong discharge of the same

gas, the metastable population is diminished and the characteristics of

the discharge altered. This is accomplished by the resonance radia-

tion exciting the metastable atoms to a higher non-metastable state from

which the radiative transition to the ground state is not forbidden

and the branching ratio is favorable for a return to the ground state.

1
In parahelium, the metastable state is the 2 S. The transition

from this state to the ground state is forbidden by the quantum mech-

anical selection rule A L = + 1. A photon of resonant radiation of

1 1
2.0582 microns can raise an electron from the 2 S state to the 2 ? state

from which the transition to the ground state is highly allowed and the

4
branching ratio is 1780:1.97. This means that for every 2000 metas-

1
tables raised to the 2 P state all but approximately 2 will fall to

the ground state with the emission of a photon with a wavelength of

.0584 microns. As the energy levels are quite sharp, the spectral

bandwidth of the resonant radiation exciting the metastables is quite

3. F. M. Penning, Phil Mag 11. 961 (1931)

4. A. H. Gabriel and D. W. 0. Heddle, Froc Royal Soc 258, 123 (1960).





narrow, bly on the order of the width of the spectral emission

line from the corona discharge. It has been estimated by Bell and

Bloom that the bandwidth for the detection of the 2.0582 micron

-1
line is about C.l cm .

5. V. E. Bell and A. L. Bloom, "Discharge Photocells for the Detection
of Resonance Radiation", unpublished pamphlet, Varian Associates,
Palo Alto, California.
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2. Effects of buffer gasses

As was stated previously, the metastable helium atoms can lose

their excess energy by collision with another metastable, or by col-

lision with the walls of the container, or by collision with an im-

purity atom in the gas. Collisions between metastables is the mechan-

ism which produces the charged particles in the cell. Collision of

metastables with the walls of the container can be controlled by keep-

ing the dimensions of the container large relative to the mean free

path of the atoms in the gas. Collisions of metastables with impurity

atoms can be controlled by controlling the partial pressure of the im-

purity gas in the cell.

The addition of impurity atoms to the helium diminishes the ef-

fective equilibrium concentration of metastables in the corona dis-

charge and lowers the sensitivity of the cell to the resonance radia-

tion. However, the sensitivity of the discharge photocell to the lower

modulation frequencies is diminished much more than is its sensitivity

to the higher modulation frequencies. This selective lowering of the

sensitivity by the added impurities results in an aduio frequency response

curve with a wider bandwidth than that of pure helium.

The process of building up the metastable population by electron

bombardment requires a finite amount of time. Should the population

be reduced by illumination with resonant radiation, and the illumina-

tion be abruptly terminated, the amount of time required for the build

up to the equilibrium concentration is a function of the population of

metastables in the equilibrium condition. The larger population requires

a greater amount of time to build up than does a smaller one. With pure

9





helium, the equilibrium concentration of metastables is so large

that a relatively long period of time is required to reach the equilib-

rium condition. Then, when the modulation frequencies are increased

above a few hundred cycles per second, insufficient time is allowed

during the cycle for the population of metastables to reach equili-

brium, and therefore the sensitivity of the cell is decreased for

these higher frequencies. With impurity atoms added, the equilibrium

population of metastables is lowered, the time required for the electron

bombardment to return the raetastable population to equilibrium is short-

ened; and, therefore, higher modulation frequencies can be reached be-

fore the time allowed for the build up during the modulation period be-

comes a limiting factor.

10





ipli tting

The energy of an atom is partially determined by its

angular momentum. The total angular momentum (denoted by the quantum num-

ber J) is the sum of the vectors L and S. However, in parahelium, S is

always equal to zero; therefore, J is equal to L. When a magnetic field

is impressed on the infrared light source, the orientation of the total

angular momentum relative to the magnetic field determines additional

energy levels. The additional energy terns separate a given level into

discrete sublevels according to the discrete orientation of the total

angular momentum relative to the magnetic field. The rigorous quantum

mechanical magnitude of the total angular momentum vector is >/J(J+l) h/2fr.

This vector has no fixed direction in space, but does have discrete values

of projected components along the reference direction, in this case, the

magnetic field. This means that J is "space quantized" in a magnetic

field. These projected components for the 2 P state are Jh/2n, 0, and

-Jh/2n, and are denoted by another number M such that M is equal to J,

0, and -J, for a total of 2j + 1 values.

M =-1 M = M =+1

Space Quantization for J = 1

Figure 3
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/ in a magnetic field is:

VV= Wo- H//„

where \fy is the energy of the field free case

i-j is the strength of the magnetic field

/Jh is the component of the magnetic moment in the direction

of the field.

From classical mechanics, the magnetic moment resulting from the

revolution of a negative electric point charge is:

/^ ~ ~2mTc

where is the angular momentum and SYY) is the mass of the charged

particle. Then,

jj g_ A- M/"h - 2/mC 2TT I »

is the component of A/ in the |-j direction.

The energy is then

W= Wo +
?l c * M H

As M must be 1, 0, or -1 for the P state, the separation of the

sublevets must be directly proportional to H • For M = 0, the

energy in the field is the same as the energy out of the magnetic field,

1 1
and the wavelength of a photon emitted in the transition 2 ? —> 2 S

with A M = is unchanged by the magnetic field. (Note that M = is

the only value for M when the atom is in the S state). With A M = + 1,

the change in magnetic energy in wave numbers is:

±(*r.!ol+ \6
5

) H

12
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Zeeman Splitting of 2 P Levels

Figure 4
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number for the 2,0582 micron line is 4858 cm

Line with /\ M = C (n line) is polarized parallel to the

magnetic field while the lines for A M * +1 ( <r lines) are polarized

perpendicular to the magnetic field.

-1
the acceptance bandwidth for the 4858 cm line (2.0582 microns)

is only 0.1 cm , it can be observed from the foregoing equation that

cnly magnetic field strengths on the order of 1 or 2 kilogauss are neces-

sary to shift the spectral lines this amount.

14





s and Results of Experiments

information to be obtained from the experimental work was

primarily on the feasibility of a communication system using Zeeman

modulated resonance radiation and a discharge photocell as a detector,

In. order to construct a workable system it was necessary to find the

answer to several questions about the discharge photocell before at-

tempting to modulate the light source by means of the Zeeman effect.

Most of the experimental effort went into attempts to obtain answers

to these questions. Some of the principal questions were:

(a) What is the signal output of the cell as a function of:

(1) Modulation frequencies?

(2) Electrode potentials?

(3) Helium pressure?

(b) What is the signal to noise ratio in a useable system?

(c) How can the detector best be matched to the indicator?

(d) What is the optical thickness of the cell for the 2

micron line of resonance radiation?

Experiments were designed and conducted in an attempt to provide

wers ,to some of these questions.

15





Preliminary Experiments

1. The first experiment to be conducted was designed to

ermine a good method of coupling the detector to the indicator. Two

methods of coupling were examined; one in which an electrode! ess dis-

cbarge photocell was closely coupled to the coil of an oscillator (de-

tector-oscillator) and one in which the discharge photocell electrodes

were directly coupled to a resistor-capacitor network.

The detector-oscillator was an PF oscillator with the discharge

photocell closely coupled to the tank coil. (Figure 5 is a schematic

of the detector-oscillator used in the experiment). The oscillator

supplied sufficient PF energy to the discharge photocell to excite the

gas. A change in the conductance of the cell was l-eflected as a change

in the loading of the oscillator and, thereby, a change in the equival-

ent impedance of the oscillator circuit, With a constant current supply

used to power the device, variations in the equivalent impedance of the

circuit caused variations in the voltage across the oscillator which

were amplified by the preamplifier and monitored by the oscilloscope

to indicate the signal.

second method of coupling the detector to the indicator was by

means of a resistor-capacitor network. The gas in the discharge photo-

cell was excited by the application of DC potentials to internal electrodes.

(See Figure 6). The collector electrode was connected to the power supply

through a resistor. Changes in the ion current through the cell caused

voltage variations across the collector resistor. These voltage varia-

tions were coupled through a capacitor to the preamplifier, where they

were amplified. The output of the preamplifier was monitored by an

16
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to indicate the signal,

ounts of noise in the resistor-capacitor oouj

]

1, the detector-oscillator appeared to be a better method of

Sing the discharge photocell to the indicator; however, in most of

the following experiments the resistor-capacitor method of coupling was

used because the pressure and electrode potentials could be controlled

in that particular cell.

2. The detector oscillator was used in an experiment to deter-

. i if the cell was optically thick. A spherical rnin-or was placed

directly behind the discharge photocell and located so that only light

first passing through the cell would be reflected* "irh the mirror in

place, the signal was Increased by a factor of approximately two over

signal with the mirror removed, indication that the cell was not

optically thick. A very thin coating of silver was deposited chemical-

on the cylindrical walls and one end of the cell to provide a reflec-

tive surface to the infrared. Unfortunately, the silver loaded the os-

lator so greatly that no corona discharge could be created in the

photocell. Efforts to etch rings around the cell through the silver to

reduce the shunting effects failed and the silver was removed.

The pressure in this photocell could not be changed; therefore, the

ects, if any, of the pressure of the gas on the optical thickness of

the cell could not be determined.

3. The noise level of the detector-oscillator was considerably

lover than the noise level of the photocell used in the pressure and

electrode potential experiments. The discharge photocell used for this

experiment was a ".IC-Oll ionization tube. There was no troublesome

18





Lc or low frequency noise in the oscillator circuit, but the

honlc anci lov/ frequency noise was extremely high in the ionization

tube circuit.

The discharge photocell was exposed, in turn, tc high

intensity chopped light from a tungsten lamp and a mercury vapor lamp.

No detectable signal was observed from either of these sources. Thus,

the discharge photocell demonstrated an excellent rejection of extraneous

light.

19





Lzation oc Gas Pressure and Electrode Potentials

study of the effects of helium pressure and electrode

potentials was undertaken next. In these experiments, the modulation

frequency of the light remained constant, while the pressure in the cell

and the electrode potentials were varied. The discharge photocell was

connected to a vacuum system so that the pressure cf the helium in the

cell was controllable. The gas in the photocell was excited by control-

lable DC voltages applied to internal electrodes. This study of the

pressure effects tended to divide itself into two distinct experiments.

For pressures below I micron , a vacuum ion gauge was available to in-

dicate the pressure. For pressure above 1 micron, it was planned to use

a thermocouple gauge; however, as this gauge proved unsatisfactory, a

McLoed gauge was installed later to indicate these pressures.

1. Fressure below 1 micron

Figure 6 is a block diagram of the pressure and electrode

potential experiment. The lamp was an electrodeless discharge excited

by an RF oscillator coupled to external electrodes at the ends of the

bulb. The lamps had been degassed at high temperature in order to eli-

minate impurities arising from the glass walls prior to the introduc-

tion of the spectroscopically pure helium.

No attempt was made to place a reflector behind the lamp;

however, a plastic fresnel lens with a relative aperture of approximate-

ly f/1.5 was placed in front of the lamp and the infrared radiation

focused on the slot of the light chopper.

The light chopper consisted of a stationary mask with a

-
|

1. In pressure measurements, I micron is equal to 10 mm Hg.

20





in it and a revolving disk driven by a series AC motor. The

disk was about 8 inches in diameter and had 78 slots milled around a

circle near the edge. The slots in the disk were approximately the

same size as the one in the mask, and were separated by about a slot

width. The speed of the motor was controlled by a Variac in the power

line and the device was capable of modulation frequencies in excess of

5000 cps.

The discharge photocell used for this experiment was

connected to the vacuum system by means of a pyrex tube. The grid

voltage was continuously controllable from C volts to +600 volts and

the collector voltage was controllable from volts to -180 volts.

The filament voltage was variable from to +12 volts,

A two stage low noise audio preamplifier was construct-

ed using a low noise 12AY7 twin triode, and was connected to the col-

lector of the photocell. 3 db bandwidth of the pre-amplifier was

measured as from 8 cps to 160 kcps. The equivalent noise voltage of

the amplifier was determined to be 20 micro-volts.

A frequency of 100 cps was selected as the constant fre-

quency for this experiment. In order to reduce the effects of noise

in the system, a bandpass filter with center frequency of 100 cps was

installed between the amplifier and the oscilloscope. This filter was

a Krohn-Hite model 330-A ultra- low frequency bandpass filter.

The GIC-011 vacuum gauge tube was extremely microphonic

and it exhibited a mechanical resonance around 100 cps. In addition to

the microphonic noise and the gas noise present, a large amount of low

frequency noise was observed.

21
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The experiment was conducted by filling the photocell

to a pressure of a few hundred microns of helium and adjusting the

circuit voltages until the modulation signal of the light was obser-

ved on the oscilloscope. With the circuit voltages thus optimized,

the discharge photocell was pumped down slowly, while attempting to

keep the signal observable on the oscilloscope.

Each time the pressure was lowered in the cell, the

signal was lost in the noise before a pressure of 1 micron was

reached. Therefore, no data was obtained concerning the operation

of a discharge photocell at pressures below 1 micron.

22





Pressures above 1 roi<

As the experimental work with pressures below 1 micron

met with no success, the next experiment performed was the optimiza-

tion of pressures above 1 micron.

The thermocouple gauge was to be used as the pressure

indicator, but it was not calibrated for helium. The specific heat

of helium caused great variances in the pressure readings from the

readings with air, for which the gauge was calibrated. It was de-

cided to conduct the experiment and then calibrate the thermocouple

gauge for helium on another vacuum system equipped with a McLoed gau>

The mechanical chopper was discovered to be a source of

vibration which contributed to the microphonics in the discharge photo-

cell. It was also discovered that the apertures of the slots were too

small. The lens and slots tended to concentrate the light in a very

narrow ribbon passing through the gaseous discharge and as a result, the

illumination was highly inefficient.

An electronic means of modulation of the light was adopt-

ed. A 220 volt to 5 volt filament transformer was placed in the line be-

tween the power supply and the lamp exciter. A nominal 40 watt audio

amplifier, driven by an audio oscillator, was coupled to the 5 volt

winding. The plate and screen voltage of the lamp exciter oscillator

could be modulated up to 100% in this manner for fairly low frequencies.

The mechanical chopper was removed.

The removal of the mechanical chopper, slot and the fres-

nel lens together with moving the lamp slightly closer to the discharge

photocell increased the signal output by two orders of magnitude, and
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microphonic noise in tlie tubvf. . (As this gain in signal

output was significant:, another attempt was made to obtain date at

pressures below 1 micron, but this, too, was unsuccessful).

During the test, it was discovered that for conditions

which gave large signal output the signal increased slightly when the

filament voltage decreased to zero. The electric fields in the photo-

cell were strong enough to maintain the glow discharge.

Several sets of data were taken using the thermocouple

as the pressure measuring device, but they were not too meaningful.

(Figure 7 is a block diagram of this system). The thermocouple failed

to indicate the pressure accurately. The range of readings on the thermo-

couple was from 1 micron to 1 atmosphere. This range seemed excessive

and, when the thermocouple gauge was checked against a mercury manometer,

it proved to be grossly in error. The maximum pressured used was about

4000 microns. It was impossible to repeat the readings on the thermo-

couple gauge to any degree of accuracy. (It was later possible to obtain

data for a plot of signal response versus pressure using another type

of vacuum gauge and the electronic method of modulating the light. This

is discussed in part C).

Using what appeared to be near optimum pressure and a

modulation frequency of 300 cps, data for curves of the signal response

versus grid and collector voltages were obtained. (See Figures 8 and 9).

The response was found to be fairly independent of collector voltage,

changing by only 25 percent for a 100 percent change in collector vol-

tage. However, the response was very dependent on grid voltage, chang-

ing 100 percent for a 40 percent change in grid voltage.
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C, Frequency Response of the Discharge Fhotoi

After several sets of data for pressures above 1 micron had

been taken, it was discovered that the thermocouple gauge was so un-

realiable as to nullify the data taken. Through the use of a mercury

manometer it was discovered that the range of pressures of interest

was from 1 micron to about 4000 microns. It was necessary to provide an

accurate pressure indication and a McLoed gauge with that range was

obtained and connected to the vacuum system through a liquid air trap.

As the electronic modulation of the light had been success-

ful, it was decided to reverse the procedure of the experiment and vary

the modulation frequency of the light while maintaining a constant pres-

sure in the cell. This procedure was repeated for several pressures

within the range of interest.

While the filament transformer performed very well for the

constant low frequency in the previous experiment, its characteristics

were not suitable for use over a wide range of modulation frequencies.

Consequently, it was decided to obtain an audio transformer whose fre-

quency response characteristics would be more suitable. A UTC LS-58

audio output transformer was installed in place of the filament trans-

former in the plate supply of the lamp exciter. It was not possible to

modulate the plate aupply of the exciter 100% with this transformer but

the audio frequency response of this transformer was greatly superior

to that of the filament transformer. A calibration curve for the modu-

lation system was obtained with the use of a phototransistor, and the

curve was used to correct the photocell data. Figure 10 presents the

corrected frequency response curves of the photocell for selected pres-

sures.
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Lt L i^z on the lamp were held as ne^. .tnt as

during the entire set of runs so that comparison between runs

could he n-.ade. The percent modulation of the light was determined by

a K solar cell to be 40 at a frequency of 100 cps.

It was noted during the runs that some of the data produced

rather flat frequency response curves. (See Figure 11). Investigation

showed that during these runs the characteristic glow of the discharge

photocell had changed color, an indication that impurities had somehow

become mixed with the helium. These impurities were assumed to be air

molecules which had leaked through the connections of the l^cLoed gauge.

In order to assist in the determination of an optimum pressure.

i discharge photocell and to cross-check the frequency response data

obtained, a test was conducted in the manner of the previous experiment.

A constant modulation frequency of 10,000 cps was selected ar.d the pres-

sure in the cell was varied from about 800 microns to 1600 microns. The

result of this test is presented in Figure 12.

Froiri Figures 10, 11 and 12, it can be concluded that a pressure

in the range of 1100 to 1200 microns would be an optimum pressure for

the gas in the photocell. From Figure 11 it can be noted that the addi-

tion of impurities in the gas greatly reduced the overall sensitivity of

the cell to the incident radiation.
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D, Zeeman Modulation

A magnet was constructed with a field coil of 650 turns

of #12 aluminum wire. This coil was placed on a grain oriented, lamin-

ated silicone steel core of about one centimeter square in cross-sec-

tion. A gap of one centimeter was cut from the core and the lamp capil-

lary placed between the pole faces. A field strength of about .80 Kilo-

gauss per ampere coil current could be impressed on the lamp. The magnet

had an inductance of 107 millihenries and a Q of 11.7. The DC resist-

ance of the coil was 1.5 ohms.

An opaque plate with a slot cut in it. was mounted direct-

ly in front of the lamp to reduce the unmodulated resonance radiation

from those portions of the lamp not between the pole faces.

A Polaroid Corporation Type HR linear polarizer was placed

in front of the slot. The HR filter was oriented so that it would block

light which was polarized parallel to the magnetic lines of flux (n lines)

and pass that light polarized perpendicular to the lines of flux ( <j—

lines). This filtering is necessary because it lines do not shift wave-

length as the lines do when a magnetic field is applied.
«»

Data for a graph showing the effects of signal amplitude

versus magnet field strength were obtained. (See Figure 13.) The modu-

lating frequency of the light was 500 cps. It was noted that the signal

did not decrease to zero as the current through the coil was increased.

There are at least two causes of this effect. First, the capillary of

the lamp was not in a uniform magnetic field. This non-uniformity was

caused by fringing effects resulting from the width of the air gap being

on the order of the cross sectional dimensions of the magnet core.

33





Second, the rt lines were not completely attenuated by the linear

i r i ze r

,

From Figure 13 it can be observed that the response of

the photocell is fairly linear with magnetic field strengths imposed

on the lamp for magnetic fields up to about one kilogauss. With the

design of a more efficient magnet, the steepness of the curve could be

increased, thereby requiring a lesser magnetic field current to modu-

late the lamp.

The transformer was removed from the plate and screen

supply of the exciter and the audio power amplifier was connected to

the field coil of the magnet. Figure 14 is a block diagram of this

system. The power amplifier was incapable of supplying sufficient cur-

rent to the magnet coil to permit a satisfactory degree of Zeeman modula-

tion of the lamp. However, a small signal was observed, with a signal

to noise ratio of 1.8 to one. The magnetic pickup was extremely high due

to the proximity of the magnet coil to the detector; this magnetic pick-

up accounted for about 90 percent of the noise present. Observation of

the signal was facilitated by the fact that with no bias current through

the magnet, the signal out is at twice the frequency of the input signal.

In order to increase the current through the coil, a fre-

quency of 120 cps was selected, the power amplifier removed from the

circuit and a Variac connected to the field coil. The distance between

the lamp and the detector was increased by ten inches. The magnetic

pickup was considerably reduced from the previous condition even though

the current in the coil was increased. The Krohn-Hite filter was used to

remove the fundemental frequency component of the magnetic pickup.

A signal to noise ratio of three to One was observed, with most of the

noise again resulting from magnetic pickup.
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IV. «sions

The modulation of the transmitting light utilising the Zeeman

effect and its reception and demodulation hy a discharge photocell has

demonstrated the feasibility of using helium resonance radiation in an in-

frared communications system. It was noted that during the Zeeman modu-

lation experiment a signal to noise ratio of only 3 to 1 was obtained.

Analysis of the oscilloscope traces show that the magnetic pickup

accounted for approximately 90 to 95 percent of the noise present,

his mangetic pickup was due to the proximity of the electromagnet to

cell and associated wiring. In a practical system, the

transmitter would necessarily be remote from the receiver and this magne-

tic pickup would not exist. Had the magnetic pickup in the experimental

setup been removed, signal to noise ratios of about 30 to 1 would have

been observed.

From the curve of signal versus pressure, it is concluded that the

optimum pressure in the discharge photocell would be in the range of 1100

to 1200 microns. Vithin its spectral range, the frequency response of the

discharge photocell compares favorably with most of the available infrar-

ed photo-detectors.

Due to noise consideration, the detector-oscillator appears to be

a better method of coupling the cell to the indicator than the resistor-

capacitor method.

The presence of the buffer gas in the discharge photocell made the

frequency response more uniform, but it so severely reduced the sensiti-

vity of the photocell it is concluded that it would be preferable to avoid

the use of a buffer gas, gain the higher sensitivity of the pure helium,
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obtain the required frequency response uniformity by means of

modern electronic equalization techniques.

The magnet used during the experiment was a relatively crude instru-

ment. Much greater magnetic field strengths could be obtained for com-

parable currents with a more optimum design of the magnet. As the im-

pedance of the magnet increases linearly with frequency, any source

supplying power to the electromagnet would have to compensate for this

effect.

The light source used during the experiment was the type used for

spectroscopic studies and any communications system using this light

source would be limited to short ranges due to lack of intensity. A

high intensity helium light source must be developed before the system

could be capable of operating over long distances.
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