Angular distribution of protons from Ca(44)(d.p.) CA(45) reaction

Cobb, Warrington C.; Guthe, Douglas B.
Massachusetts Institute of Technology

http://hdl.handle.net/10945/13929
ANGULAR DISTRIBUTION OF PROTONS
FROM Ca$^{44}(d,p)$Ca45 REACTION

Warring Crane Cobb
and
Douglas Burden Guthe
ANGULAR DISTRIBUTION OF PROTONS
FROM Ca^{44}(d,p)Ca^{45} REACTION

Garrington Greene Cobb

and

Douglas Burden Guthe

PH.D.
Naval Academy

University of California

ILLINOIS INSTITUTE OF TECHNOLOGY
ANGULAR DISTRIBUTION OF PROTONS
FROM Ca^{144}(d,p)Ca^{145} REACTION

by

Warrington Crane Cobb
Lieutenant, U.S. Navy

and

Douglas Burden Guthrie
Lieutenant, U.S. Navy

Submitted to the Department of Physics on May 23, 1955 in partial fulfillment of the requirements for the degree of Master of Science.

ABSTRACT

The MIT-CNR electrostatic generator and broad-range spectrograph have been used to study the angular distribution of proton groups from the reaction Ca^{144}(d,p)Ca^{145}. A thin target of Ca^{144}O, backed by Formvar and gold leaf, was bombarded with 7.0-Mev deuterons. The angular distributions for formation of the ground state and ten excited levels of Ca^{145} were observed.

The Ca^{144}(d,p)Ca^{145} reaction was observed to proceed predominantly by stripping. The distributions have been compared with the predictions of the Butler stripping theory, in order to determine \(l_n \), the angular momentum of the captured neutron.

The angular momenta and parities for the levels of Ca^{145} have been determined as listed below:

<table>
<thead>
<tr>
<th>Ca^{145} Level</th>
<th>(l_n)</th>
<th>Possible Value of Spin</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground State</td>
<td>3</td>
<td>5/2, 7/2</td>
<td>Odd</td>
</tr>
<tr>
<td>0.18 Mev</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.43 Mev</td>
<td>1</td>
<td>1/2, 3/2</td>
<td>Odd</td>
</tr>
<tr>
<td>1.89 Mev</td>
<td>1</td>
<td>1/2, 3/2</td>
<td>Odd</td>
</tr>
<tr>
<td>2.25 Mev</td>
<td>1</td>
<td>1/2, 3/2</td>
<td>Odd</td>
</tr>
<tr>
<td>2.40 Mev</td>
<td>0</td>
<td>1/2</td>
<td>Even</td>
</tr>
<tr>
<td>2.52 Mev</td>
<td>1 or 2</td>
<td>1/2, 3/2, 5/2</td>
<td>-</td>
</tr>
<tr>
<td>2.96 Mev</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.21 Mev</td>
<td>1 or 2</td>
<td>1/2, 3/2, 5/2</td>
<td>-</td>
</tr>
<tr>
<td>3.32 Mev</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.42 Mev</td>
<td>1 or 2</td>
<td>1/2, 3/2, 5/2</td>
<td>-</td>
</tr>
</tbody>
</table>
The relative differential cross sections for formation of the various levels have also been calculated.

The conclusions indicated that no single choice of the parameter r_0, the interaction radius of the Butler theory, resulted in unique determination of ℓn for all the distributions encountered. It has been suggested that the theory of Tobocman may give theoretical predictions to match the experimental results.

Thesis Supervisor: W. W. Buschner
Title: Associate Professor of Physics
In order to understand the data presented, we need to analyze the relationships between various factors.

Table: Relationship Analysis

<table>
<thead>
<tr>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Correlation</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>0.8</td>
<td>0.001</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>0.6</td>
<td>0.03</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>0.2</td>
<td>0.78</td>
</tr>
</tbody>
</table>

From the table, we can see that Factor A has a strong positive correlation with Factor B, indicating a significant relationship. Factor E, on the other hand, has a weak positive correlation with Factor F, suggesting a less significant relationship.

Further analysis is needed to determine the underlying causes of these correlations and to develop effective strategies for future improvements.
ACKNOWLEDGMENTS

The authors wish to express their appreciation to the entire staff of the High Voltage Laboratory for their friendly assistance and cooperation, without which this work could not have been accomplished.

In particular, we are very grateful to Professor Buschner for supervising this thesis, to Dr. C. K. Bockelman for his constant help and advice, and to Dr. C. F. Browne, Mr. A. Sperduto, Mr. S. Zimmerman, and Mr. R. Sharp for their patient consideration of our many questions.

We should also like to thank Mrs. Grace Rowe for her excellent job of drawing the curves and Misses Sylvia Darrow, Estelle Freedman, and Anna Recupero for their fine job of counting the photographic plates.

Finally, we wish to thank Mrs. Mary E. White for her excellent preparation of the manuscript.
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. EXPERIMENTAL PROCEDURE AND APPARATUS 5

III. EXPERIMENTAL RESULTS 7

IV. CONCLUSIONS ... 20

TABLES

TABLE I .. 3

TABLE II ... 11

TABLE III .. 13

TABLE IV .. 18

TABLE V ... 19

References
I. INTRODUCTION

The High Voltage Laboratory at the Massachusetts Institute of Technology has been investigating nuclear reactions involving calcium isotopes to provide experimental data upon which predictions of nuclear structure may be made. The calcium isotopes have closed shells of 20 protons. ^{40}Ca has a closed shell of neutrons; the heavier calcium isotopes are formed by adding neutrons to the $^{1f}_{7/2}$ shell until the shell is closed at ^{48}Ca. ^{49}Ca has one neutron in the $^{1f}_{5/2}$ shell. Kurath and Edmonds and Flowers have made theoretical studies of the energy-level structure arising from configurations of two, three, and four identical particles in the $^{1f}_{7/2}$ shell on the basis of the j-j coupling shell model. The latter authors point out that a transition from L-S to j-j coupling is anticipated in the region from $A = 40$ to 50.

This laboratory has made at least preliminary investigations of the energy levels of ^{40}Ca, ^{41}Ca, ^{42}Ca, ^{43}Ca, ^{44}Ca, ^{45}Ca, ^{46}Ca, ^{47}Ca, and ^{48}Ca, and of the angular distributions of ^{41}Ca and ^{43}Ca.

This experiment investigates the angular distribution of protons from the reaction $^{41}\text{Ca}(d,\alpha)^{44}\text{Ca}$. The ^{44}Ca ground state has five neutrons in the $^{1f}_{7/2}$ shell outside closed shells of 20 neutrons and 20 protons. Problems concerning the states that are formed by rearrangement of the five neutrons within the $^{1f}_{7/2}$ shell may be treated the same analytically as the problem of 3 neutrons in the shell, according to the "hole" theory.
The angular distributions of protons from \((d, p)\) reactions are often characterized by pronounced maxima in the forward direction. In order to explain these reactions without postulating high values of angular momentum, the stripping process has been visualized. The Butler\(^7\) theory predicts the angular distributions of protons from these \((d, p)\) reactions in terms of \(l_n\), the angular momentum of the captured neutron. Butler's calculations indicate that for \(l_n = 0\), the maximum of the angular distribution occurs near \(\theta = 0\), where \(\theta\) is the angle of observation. As the characteristic value of \(l_n\) is increased, the maximum of the angular distribution moves to larger values of \(\theta\). If the angular momentum and parity of the initial nucleus in the reaction are known, determination of \(l_n\) corresponding to the formation of a given level in the final nucleus also determines the parity and possible values of angular momentum for that level. Greater restrictions may be placed on the possible values of angular momentum for the level if \(I = 0\) for the initial nucleus.

In this experiment, the Butler theory has been used to investigate the parities and angular momenta of the ground state and ten excited levels of \(\text{Ca}^{45}\), listed in Table I.

\(\text{Ca}^{45}\) decays by beta emission to \(\text{Sc}^{45}\). The measured values for \(\text{Sc}^{45}\) of \(I = 7/2\) and \(\mu = 3.76 \times 10^{-13}\) point to a \(f_{7/2}\) ground state because of the position of \(\text{Sc}^{45}\) on the Schmidt diagram. This is as predicted by the extreme single-particle shell model. The \(\beta^-\) decay has a half-life of 163.5 days\(^1\) and an allowed shape on the Kurie plot with \(E_{\text{max}} = \text{---}\) nuclear magnetons.
TABLE I
Excited Levels of Ca45

<table>
<thead>
<tr>
<th>0</th>
<th>Ground state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.13 MeV</td>
</tr>
<tr>
<td>2</td>
<td>1.13 MeV</td>
</tr>
<tr>
<td>3</td>
<td>1.89 MeV</td>
</tr>
<tr>
<td>4</td>
<td>2.25 MeV</td>
</tr>
<tr>
<td>5</td>
<td>2.40 MeV</td>
</tr>
<tr>
<td>6</td>
<td>2.88 MeV</td>
</tr>
<tr>
<td>7</td>
<td>2.96 MeV</td>
</tr>
<tr>
<td>8</td>
<td>3.24 MeV</td>
</tr>
<tr>
<td>9</td>
<td>3.32 MeV</td>
</tr>
<tr>
<td>10</td>
<td>3.42 MeV</td>
</tr>
</tbody>
</table>

0.255 MeV12. This leads to log ft = 5.9. If then the β^- transition is taken to be an allowed one, the result is not in disagreement with the extreme single-particle shell-model prediction of f7_2 for the ground state of Ca45. Since I = 0 for the ground state of Ca44, the angular distribution of the protons associated with the formation of the ground state of Ca45 is expected to be characterized by $\ell_n = 3$.

The MIT-OMR electrostatic generator and broad-range magnetic spectrometer have been used to study the angular distributions of proton groups resulting from deuteron bombardment of a thin Ca44O
target. The investigation has been carried out at an energy of 7.0 keV. The proton groups associated with the ground state and the ten excited levels of Ca45 have been observed at eighteen angles between 7-1/2 and 120 degrees.
6.7 The solution to the fluid dynamic problem and the satisfaction of the boundary conditions and the continuity of the fluid properties at the interfaces of different materials and at the boundary of the domain are achieved by solving the following set of equations:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \]

where \(u \) and \(v \) are the velocity components in the \(x \) and \(y \) directions, respectively.

These equations are subject to the boundary conditions and the initial conditions.

The solution to these equations is obtained using numerical methods, such as the finite element method.
II. EXPERIMENTAL PROCEDURE AND APPARATUS

Charged particles emerging from the bombarded target were deflected in the magnetic field of the spectrograph and then detected on Eastman NTA 25μ photographic plates. The positions of the tracks along the plates determine the radii of curvature of the particles. Calibration of the various distances along the plates was made previously by comparison with the position of alpha-particles from polonium deflected by a known spectrographic field. This procedure has been described elsewhere16. The plates were read by counting the number of tracks within each half-millimeter section along the plates. The total length of photographic plate exposed in one run is approximately 76 centimeters. To facilitate plate reading, the plates were covered with thin layers of aluminum foil during exposure on (d,p) runs to prevent charged particles heavier than protons from reaching the emulsion. Detailed descriptions of the MIT-DNR electrostatic generator and the broad-range spectrograph have been given elsewhere13-15.

The target used was prepared by C. N. Braams, presently at the University of Utrecht, while working at this Laboratory. The method was evaporation of CaO onto a thin film of Formvar, backed by gold leaf. The enriched Ca48 isotope was received in the form of CaCO\textsubscript{3} from the U. S. Atomic Energy Commission, Stable Isotopes Division, Oak Ridge, Tennessee. The calcium content was 97.99 percent Ca48; the impurity was mainly Ca40.
The Butler curves shown in the results were constructed from nomograms prepared by C. R. Lubits and W. C. Parkinson of the University of Michigan17.
III. EXPERIMENTAL RESULTS

In order to determine the strong contaminants in the target, a survey was made by bombarding the target with 6-kev protons and analyzing the elastically scattered proton groups for the masses of the scattering nuclei. The results of this survey are presented in Figure 1. A 100-microcoulomb exposure was used with a spectrograph angle of 120 degrees. The peak for gold is approximately 250-kev wide at the bottom, thereby obscuring any contaminants of masses between 50 and 197.

A preliminary bombardment of the target with 7-kev deuterons was made, using an exposure of 500 microcoulombs, and a spectrograph angle of 30 degrees. The resulting proton groups were studied to verify the presence of energy levels of Ca43, as found by C. M. Breaze. An additional verification was later provided by noting that the energy of proton groups attributed to Ca43 had the correct dependence upon θ.

The preliminary bombardment provided information on the intensities of the various Ca43 levels. This information was used to determine the exposures required to observe the levels with good statistics.

Experimental data for the angular distribution of Ca43 were obtained with two bombardment exposures at each angle up to 60 degrees, because of the differences in the intensities of the proton groups.
Figure 1
associated with the formation of the various levels. A 3000-micro-
coulomb exposure was used to obtain data for the groups corresponding
to the ground state and to the 0.18, 2.40, 2.96, and 3.32 MeV levels;
a 500-microcoulomb exposure was used to obtain data for the groups cor-
responding to the 1.13, 1.89, 2.25, 2.31, 3.21, and 3.42 MeV levels. All
data obtained at angles from 70 to 120 degrees were obtained with a 500-
microcoulomb exposure.

Figure 2 shows representative data obtained with a 500-micro-
coulomb exposure. The half-widths of the peaks observed in the experi-
ment varied generally from 1.3 to 3.0 millimeters, corresponding to
energy spreads of 16 to 23 keV. The peak width was due to a combina-
tion of target thickness and slit opening.

Because of the presence of carbon and oxygen in the target,
some levels of Ca\(^{45}\) could not be observed at certain angles since they
were masked by intense proton groups from the \(^{12}(d,p)^{13}\) and
\(^{16}(d,p)^{17}\) reactions. This situation is made clear in Figure 2 by
the intensity of the proton group corresponding to the formation of
the ground state of \(^{13}\). Table II tabulates the data missing because
of carbon and oxygen reactions.

All levels of Ca\(^{45}\) were obscured at the 5-degree angle of obser-
vation because of an intense background of protons from \(Al^{27}(d,p)Al^{28}\)
reactions in the aluminum foil covering the plates. At small angles of
observation, the number of deuterons scattered into the spectrograph
becomes very high.
PROTONS FROM
$^{44}\text{Ca}(d,p)^{45}\text{Ca}$

$E_d = 7.0 \text{ Mev}$

$\theta (\text{Lab}) = 60^\circ$
TABLE II

Data Missing Because of Interference from
$^{12}_C(d,p)^{13}_C$ and $^{16}_O(d,p)^{17}_O$ Reactions

<table>
<thead>
<tr>
<th>Obscured $^{45}_{Ca}$ Level</th>
<th>Reaction Product Responsible</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.42 Mev</td>
<td>$^{17}_O(0)$</td>
<td>$30^\circ, 35^\circ$</td>
</tr>
<tr>
<td>3.32 Mev</td>
<td>$^{17}_O(0)$</td>
<td>$7-1/2^\circ, 10^\circ, 15^\circ, 20^\circ$</td>
</tr>
<tr>
<td>3.32 Mev</td>
<td>$^{13}_C(0)$</td>
<td>70°</td>
</tr>
<tr>
<td>2.96 Mev</td>
<td>$^{13}_C(0)$</td>
<td>50°</td>
</tr>
<tr>
<td>2.81 Mev</td>
<td>$^{13}_C(0)$</td>
<td>45°</td>
</tr>
</tbody>
</table>

While observing the angular distribution of protons, the magnetic field of the spectrograph was varied from run to run to cause the ground-state proton group to be observed at the same place on the photographic plates at each angle of observation; this in fact caused the other $^{45}_{Ca}$ proton groups to remain almost stationary. This procedure obviated the need for a solid-angle correction caused by a given proton group appearing at different positions as the angle of observation was varied.

To insure that there was no change in the target which might have affected the intensities of the observed proton groups during the successive runs at the various angles, normalizing runs were periodically made at an angle of 60 degrees. The sum of the number of tracks
II RIGHT

\[
D_0(q_r h) \frac{d}{dx} D_0(q_r h) = \frac{d}{dx} D_0(q_r h)
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{q_r} & \text{D_0(q_r h)} & \text{D_0(q_r h)} \\
\hline
0 & (0) D_0 & (0) D_0 \\
1 & (0) D_0 & (0) D_0 \\
2 & (0) D_0 & (0) D_0 \\
3 & (0) D_0 & (0) D_0 \\
4 & (0) D_0 & (0) D_0 \\
\hline
\end{array}
\]

The text seems to be discussing the derivation of a differential equation related to the functions $D_0(q_r h)$. The table shows the values of the functions for different values of q_r. The notation $(0) D_0$ suggests that the function D_0 is evaluated at zero. The text also mentions the context of the derivation in the previous section.
corresponding to the ground state and to the 1.63- and 2.25-Mev levels was counted for comparison. Normalizing runs were made with an exposure of 500 microcoulombs. Table III outlines the method and results of the normalizing procedure. The results indicate that there was no change in the target.

It was also necessary to insure that a change in the angle of observation, θ, did not change the solid angle subtended by the defining slits which are just in front of the photographic plate. To accomplish this, the target was rotated 90 degrees, from -45 degrees from the beam axis to $+45$ degrees, between runs 5 and 6. As can be seen from the diagram below
TABLE III
Normalising Procedure

<table>
<thead>
<tr>
<th>Order of Runs</th>
<th>Total counts in ground state and 1.43- and 2.25-Mev proton groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalising run 1</td>
<td>1393 ± 37</td>
</tr>
<tr>
<td>Runs at 50, 40, 30, 20, 10 degrees</td>
<td></td>
</tr>
<tr>
<td>Normalising run 2</td>
<td>1320 ± 36</td>
</tr>
<tr>
<td>Runs at 60, 55, 45, 35, 25, 15 degrees</td>
<td></td>
</tr>
<tr>
<td>Normalising run 3</td>
<td>1499 ± 39</td>
</tr>
<tr>
<td>Normalising run 4</td>
<td>1463 ± 38</td>
</tr>
<tr>
<td>Runs at 7-1/2, 5 degrees</td>
<td></td>
</tr>
<tr>
<td>Normalising run 5</td>
<td>1472 ± 39</td>
</tr>
<tr>
<td>Normalising run 6</td>
<td>1437 ± 38</td>
</tr>
<tr>
<td>Runs at 70, 90, 110, 120, 100, 80 degrees</td>
<td></td>
</tr>
<tr>
<td>Normalising run 7</td>
<td>1416 ± 38</td>
</tr>
</tbody>
</table>

this rotation did not change the area of the target which was illuminated by the beam even if the beam had been off center; however, it did change the apparent width of the beam spot as viewed from the spectrograph. Since the intensity of the peaks did not change between runs 5 and 6, this indicates that the apparent width of the beam spot did not affect the solid angle observed by the spectrograph.
III EIGHT

Harmononization

<table>
<thead>
<tr>
<th>Note</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>090,1</td>
</tr>
<tr>
<td>E +</td>
<td>090,7</td>
</tr>
<tr>
<td>D +</td>
<td>093,1</td>
</tr>
<tr>
<td>D +</td>
<td>090,6</td>
</tr>
<tr>
<td>B +</td>
<td>090,4</td>
</tr>
<tr>
<td>G +</td>
<td>090,3</td>
</tr>
<tr>
<td>F +</td>
<td>090,1</td>
</tr>
<tr>
<td>E +</td>
<td>090,0</td>
</tr>
</tbody>
</table>

- Lament now will be sung out to every end among the birds in motion while
- If another present The wind had heard out it more used out of between
- every not more heavily as ever used out to either moments and again his after the second among the birds among out to understand out and shall accompanied the same used out to others among out as such understand out, he has 2
- Compositions out by her name algebra and bottom out
Figures 3 through 21 show the experimental angular distributions plotted with the calculated Butler curves. The errors shown represent the statistical counting errors only, based on a standard deviation. The spectograph accepted particles with angles $\pm \theta$ degree either side of the nominal angle θ.

The Butler curves, as plotted, are not corrected for the difference between θ_{lab} and $\theta_{\text{C.M.}}$ or for the difference between the solid angle in laboratory and solid angle in center-of-mass coordinates.

Using the formulas,

$$\tan \theta_{\text{lab}} = \frac{\sin \theta_{\text{C.M.}}}{\gamma + \cos \theta_{\text{C.M.}}}$$

$$\gamma = \sqrt{\frac{m_1 m_3}{m_2 m_1} \frac{E_d \text{ in C.M.}}{E_d \text{ in C.M.} + Q} + \frac{m_1}{m_1 + m_2}}$$

$$E_d \text{ in C.M.} = \frac{m_2}{m_1 + m_2} E_d \text{ lab}$$

and

$$\frac{d \Omega_{\text{C.M.}}}{d \Omega_{\text{lab}}} = \cos (\theta_{\text{C.M.}} - \theta_{\text{lab}}) \left(\frac{\sin \theta_{\text{lab}}}{\sin \theta_{\text{C.M.}}} \right)^2$$

one gets the following results for the tenth excited level at 3.12 MeV:

<table>
<thead>
<tr>
<th>$\theta_{\text{C.M.}}$</th>
<th>θ_{lab}</th>
<th>$\Delta \theta$</th>
<th>$\frac{d \Omega_{\text{C.M.}}}{d \Omega_{\text{lab}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>90° 13’</td>
<td>17’</td>
<td>0.947</td>
</tr>
<tr>
<td>50°</td>
<td>80° 18’</td>
<td>10° 12’</td>
<td>0.967</td>
</tr>
</tbody>
</table>
The corrections for this state are largest, since it has the lowest Q-value. Over the range of interest, $\theta = 10^0$ to 50^0, where the maxima occur, both corrections are smaller than the error introduced by the nomogram.

One undetermined parameter in the calculation of the angular distribution in the Butler theory is the interaction radius, r_0. Hulbry has stated that Gamov's formula

$$r_0 = (1.22 A^{1/3} + 1.7) \times 10^{-13} \text{ cm.}$$

gives a radius which will normally support unique determinations of l_n. This formula gives $r_0 = 6.0 \times 10^{-13} \text{ cm.}$ for Ca45. The results of this experiment indicate that no one value for r_0 will lead to unique values of l_n; therefore, the experimental data have been presented with Butler curves employing $r_0 = 6.0$ and 7.0 on Figures 3 through 21.

The experimental data on Figures 3 through 21 have been interpreted as follows:

Figures 3 and 4 illustrate the ground-state distribution. It is characterized by $l_n = 3$; $r_0 = 7.0$ provides the best fit.

The 0.18-MeV level is not illustrated. The state was detected at the indicated energy but was observed with such low intensity that the angular distribution could not be determined.

Figures 5 and 6 illustrate the 1.43-MeV level distribution. It is characterized by $l_n = 1$; $r_0 = 6.0$ provides the best fit.
\[E_{\text{loss}} = (1, f + \mathcal{L}_{A}(x,f) = 0 \]

In constructing the above formula, it is defined within a certain
- \[E_{\text{loss}} = 0 \text{ for } \mathcal{L}_{A}(x,f) = 0 \text{ such that } \mathcal{L}_{A}(x,f) = 0 \]

lead line we relate en each essential assumption that is made
read over and this matter with essential conclusion. In the case of
2.5 we have 0.0 = 0 2 and parameter

of form if this conceptual does of the conceptual off

\[E_{\text{loss}} = 0 \text{ for } \mathcal{L}_{A}(x,f) = 0 \text{ such that } \mathcal{L}_{A}(x,f) = 0 \]
Figures 7 and 8 illustrate the 1.99-Mev level distribution. It is probably an \(l_n = 1 \) distribution; \(r_0 = 6.0 \) provides the best fit.

Figures 9 and 10 illustrate the 2.25-Mev level distribution. It is characterized by \(l_n = 1 \); \(r_0 = 6.0 \) provides the best fit.

Figures 11 and 12 illustrate the 2.40-Mev level distribution. It is characterized by \(l_n = 0 \).

Figures 13 and 14 illustrate the 2.96-Mev level distribution. It is probably an \(l_n = 2 \) distribution; however, the fit is somewhat ambiguous at both values of \(r_0 \).

Figure 15 illustrates the 2.96-Mev level distribution. No determination of \(l_n \) is possible. The asymmetry about 90 degrees suggests that stripping action takes place in the formation of this level, but it does not appear to be the characteristic "Butler" type.

Figures 16 and 17 illustrate the 3.21-Mev level distribution. It is probably an \(l_n = 2 \) distribution; the fit is ambiguous with \(r_0 = 6.0 \).

Figures 18 and 19 illustrate the 3.32-Mev level distribution. The data do not justify the assignment of \(l_n \). There is doubt whether the characteristic "Butler" type stripping takes place in the formation of this level. For comparison only, \(l_n = 3 \) curves are shown.

Figures 20 and 21 illustrate the 3.42-Mev level distribution. It is probably an \(l_n = 2 \) distribution, but the fit is poor. The assignment of \(l_n \) might have been more definite had the level not been obscured at 30 and 35 degrees.
Table IV tabulates the assignments of spin and parity to the states of Ca^{45} made as a result of the conclusions drawn above.

The intensity of the peaks from the various levels at their maxima was compared with the intensity of the ground state at \(\theta = 40 \) degrees, in order to calculate the relative differential cross sections. These relative cross sections and the angle at which they were compared are tabulated in Table IV. In these calculations, solid-angle corrections were used to correct for the different locations of the proton groups. The solid-angle corrections were taken from a curve prepared by S. F. Zimmerman, Jr., of this Laboratory.

An attempt was made to determine absolute cross sections by comparison of the observed intensities of the \((d,p)\) reactions with the intensity of Rutherford scattering of 5.0-Mev alpha-particles by Ca^{48}. This proved not to be possible with the gold-backed targets available, because the peak of the alpha-particles scattered by gold was wide enough to obscure the Ca^{48} peak.

The Butler curves, as calculated, represent only the angular distributions. A multiplying factor was required to apply to each calculated curve in order to match the maximum to the maximum of the experimental data. The factor for the 2.40-Mev level was obtained by matching the Butler curve to the experimental data at \(\theta = 10 \) degrees. The factors are listed in Table V. The factors are normalized so as to be equal to unity for the \(L_n = 1, r_0 = 6.0 \), Butler curve. A solid-angle correction was made.
<table>
<thead>
<tr>
<th>Peak</th>
<th>Q (MeV)</th>
<th>Excitation (MeV)</th>
<th>l_n</th>
<th>Parity</th>
<th>Possible Values of Spin</th>
<th>Differential Cross Section Relative to Ground State at 40° ± 5 percent.</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.19</td>
<td>0</td>
<td>3</td>
<td>Odd</td>
<td>5/2, 7/2</td>
<td>1.0</td>
<td>40°</td>
</tr>
<tr>
<td>1</td>
<td>5.01</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≤ 0.05</td>
<td>all</td>
</tr>
<tr>
<td>2</td>
<td>3.76</td>
<td>1.83</td>
<td>1</td>
<td>Odd</td>
<td>1/2, 3/2</td>
<td>1.95</td>
<td>20°</td>
</tr>
<tr>
<td>3</td>
<td>3.30</td>
<td>1.89</td>
<td>1</td>
<td>Odd</td>
<td>1/2, 3/2</td>
<td>11.3</td>
<td>20°</td>
</tr>
<tr>
<td>4</td>
<td>2.94</td>
<td>2.25</td>
<td>1</td>
<td>Odd</td>
<td>1/2, 3/2</td>
<td>1.97</td>
<td>15°</td>
</tr>
<tr>
<td>5</td>
<td>2.79</td>
<td>2.40</td>
<td>0</td>
<td>Even</td>
<td>1/2</td>
<td>1.33</td>
<td>7-1/2°</td>
</tr>
<tr>
<td>6</td>
<td>2.35</td>
<td>2.82</td>
<td>1 or 2</td>
<td>-</td>
<td>1/2, 3/2, 5/2</td>
<td>2.06</td>
<td>20°</td>
</tr>
<tr>
<td>7</td>
<td>2.23</td>
<td>2.96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>35°</td>
</tr>
<tr>
<td>8</td>
<td>1.95</td>
<td>3.24</td>
<td>1 or 2</td>
<td>-</td>
<td>1/2, 3/2, 5/2</td>
<td>0.991</td>
<td>20°</td>
</tr>
<tr>
<td>9</td>
<td>1.97</td>
<td>3.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.180</td>
<td>40°</td>
</tr>
<tr>
<td>10</td>
<td>1.77</td>
<td>3.42</td>
<td>1 or 2</td>
<td>-</td>
<td>1/2, 3/2, 5/2</td>
<td>0.17</td>
<td>15°</td>
</tr>
<tr>
<td>Ca^{45} Level</td>
<td>Butler Curve</td>
<td>Relative Multiplier Factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground State</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>3</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>3</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.43-Mev Level</td>
<td>1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>1</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.89-Mev Level</td>
<td>1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>1</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>2</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.25-Mev Level</td>
<td>1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>1</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.40-Mev Level</td>
<td>0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.84-Mev Level</td>
<td>1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>2</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>1</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>2</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.21-Mev Level</td>
<td>1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>2</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>2</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.32-Mev Level</td>
<td>3</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>3</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.42-Mev Level</td>
<td>1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>2</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>2</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. CONCLUSIONS

Agreement with the Butler theory seems adequate to assign values of l_n with assurance to the distributions for the ground state and first five excited levels, with the exception of the first excited state. Assignment of l_n to the distributions for the next five excited states is somewhat dubious.

It is emphasised that no unique value of r_0 results in positive determinations of l_n. It is further noted that those states assigned $l_n = 1$ were best fitted by $r_0 = 6.0$, whereas the ground state, assigned $l_n = 3$, and the 2.8MeV and 3.2MeV levels, with probable values of $l_n = 2$, are best fit by a higher r_0.

It is concluded that the Butler theory is not complete enough in all cases to make unambiguous assignments of l_n. It appears that a more elaborate treatment is necessary.

Tobocman20 has developed an extension of the Butler theory by considering the effect of Coulomb and nuclear interactions. The Coulomb effect would seem to be small, since the bombarding energy of 6.7 MeV in center-of-mass coordinates was above the Coulomb barrier of 5.6 MeV. However, only a slight shift of the maxima of the theoretical curves is required for good agreement with experiment.

According to Tobocman, the Coulomb interaction tends to move the maxima to larger angles and broaden the peaks and to fill the valleys between the primary and secondary maxima. However, the nuclear interaction tends to displace the peaks toward smaller angles.
...
and to make them less broad. A machine calculation is required to find the predicted position of the primary maxima according to the theory of Tobocman.

The data of this experiment make available for study the angular distributions of the ground state and six excited levels which appear to have almost pure stripping-type distributions. It is believed that the additional work necessary to make a machine calculation would be warranted in order to determine to what degree Tobocman's theory agrees with experiment.
Figure 3

Ca45

Ground State

$\mathcal{J} = 3$

$r_0 = 6.0 \times 10^{-13}$ cm

Number of Tracks

$\theta_{(\text{Lab})}$
Figure 5
Figure 6
Figure 7
Figure 8
Ca-45

2.25 MeV Level

$\ell_n = 1$

$r_0 = 6.0 \times 10^{-13}$ cm

Figure 9
Figure 10

Ca^{45}

2.25 Mev Level

$r_o = 7.0 \times 10^{-13}$ cm

$J_n = 1$

Figure 10
Figure 11

Ca45
2.40 Mev Level
\[r_0 = 6.0 \times 10^{-13} \text{ cm} \]

Number of Tracks
Figure 12

Ca 45

2.40 MeV Level

\[r_0 = 7.0 \times 10^{-13} \text{ cm} \]

\[J_n = 0 \]
Figure 13

Ca45
2.84 MeV Level

\(r_0 = 6.0 \times 10^{-13} \text{ cm} \)

Number of Tracks

\(\theta_n = 2 \)

\(\Delta n = 1 \)

\(\theta_{(\text{Lab})} \)

0
20
40
60
80
100
120
Figure 14
Figure 15
Figure 16

Ca-45
3.24 MeV Level
r_o = 6.0 x 10^{-13} cm

Number of Tracks

θ (Lab)
Figure 17
Ca^{45}

3.32 MeV Level

$r_o = 6.0 \times 10^{-13} \text{ cm}$

$I_n = 3$

Figure 18

Number of Tracks

θ (Lab)
Figure 19

Ca45
3.32 MeV Level
$\sigma_0 = 7.0 \times 10^{-13}$ cm
$L_n = 3$

Number of Tracks

0

1000

120

100

80

60 θ (Lab)

40

20
Figure 20

\[Ca^{45} \]

3.42 Mev Level

\[r_o = 6.0 \times 10^{-13} \text{ cm} \]
Figure 21
REFERENCES

Cobb
Angular distribution on protons ...
Angular distribution of protons from Ca