

Calhoun: The NPS Institutional Archive DSpace Repository

Criteria for application of hydraulic fracturing to gas wells in western Pennsyvania.

Woyke, Max Einar Eric

University of Pittsburgh
https://hdl.handle.net/10945/14024

GBITRRA FOR NPLEATION OF
 WMRULIC TMCTUBING 70 CAS
 WEHS N WESTERM PENHSY VMWI

Max Ehar Eicic Woyo
s.

By
Max Einar Eric Woyke B.S., University of Utah, 1937

Submitted to the Graduate School of the University of Pittsburgh in partial fulfillment of the requirements for the degree of Master of Science
象

TABLE OF COIVTENTS

Page
FOREWORD iv
I. INTRODUCTION 1
A. Review of Hydraulic Fracturing 3

1. Types of Fracturing Fluids 3
2. Fracturing Procedure 4
B. Major Gas Producing Formations 6
II. ANALYSIS OF WELLS BEFORE FRACTURIIIG 7
A. Production History 7
B. Well Completion 9
C. Application of Engineering Principles 10
I. Volume and Injection Rate 10
3. Single ana Multiple Fracture Methods 12
III. ANALYSIS OF WELL DATA AFTER FRACTURING 15
A. Comparison of Data 15
4. Engineering Data 16
5. Geological Data 17
6. Application of Methods 17
B. Effect on Production 19
C. Economic Aspects 21
IV. CORRELATION OF FRACTURED WELLS 23
A. Production Decline 23
B. Geological Relationships 26
C. Open Flow Relationships 27
V. SUMAARY AND CONCLUSIONS 28
A. General Criteria for Application of Hydraulic Fracturing. 29
B. Specific Criteria for Application of Hydraulic Fracturing. 31

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

(2)
in $_{12}^{2}$ (1)

TABLE OF CONTENTS (CONTINUED)

Page

APPEIDIX I. GENERAL WELL DESCRIPTION AND PERFORMANCE 33
APPENDIX II. FRACTURING DATA 42
APPENDIX III. MONTHLY PRODUCTION IN IMI CU.FT. BEFORE AND AFTER FRACTURING 50
APPENDIX IV. FRACTURING COSTS 55
BIBLIOGRAPHY 58

FOREWORD

The application of hydraulic fracturing to gas wells is a relatively new technique in Western Pennsylvania. This paper presents a study and evaluation of much of the obtainable data with a view toward increasing the success of this process and increasing gas production in this area.

The author wishes to gratefully acknowledge the cooperation and assistance rendered by personnel of the Equitable Gas Company, the People's Natural Gas Company, and the New York State Natural Gas Corporation; to Professor H. G. Botset, Head of the Petroleum Engineering Department, University of Pittsburgh, and Professor P. F. Fulton, Professor, Petroleum Engineering Department, University of Pittsburgh, for their helpful comments and suggestions; and to the U. S. Naval Post Graduate School, Monterey, California, through whose sponsorship this study was made possible.
$\square \square \longleftarrow$

- !
- ! - ! ! !

$-\quad-\quad \rightarrow \quad$

\square
-1
$=$
7

I. INTRODUCTION

Pennsylvania is the oldest oil and gas producing state and the one in which the incustry had its beginning. In the years 1867 to 1870, the Bradford Field was developed making it at that tine the major producing area in the world. Since then Pennsylvania has declined in importance as an oil and gas producing state. However, through the recent development of a technique know as hydraulic fracturing, it may be possible for production, particularly gas, to be increased in this important producing state. Except for a few isolated experiments, this technique was not used in Pennsylvania until early 1954.

Hydraulic fracturing is a process of pumping a viscous fluid containing a "propping agent" under high pressure down through a well bore and into the producing information. The purpose of this process is to cause a splitting in a desired section of a formation and thus make one or more connecting channels for flow into the well bore. The propping agent serves to hold the channels open after the pressure is withdraw.

Although most producing formations in Western Pennsylvania respond Well to hydraulic fracturing, this area is the most difficult in which to apply the treatment. This condition exists for two reasons, the first being poor completion practices such a running as little casing as possible, shooting the producing Pormation, cleaning out, and producing at maximun rates. Such wells are not suitable for fracturing. The second obstacle is the complete lack of records on reservoir information and engineering data. Such information consists of porosity, permeability, temperature and formation thickness. In many cases, it is not even known whether a well was shot ar what completion method was used.
－－
몬든－
－！－＝
－$\quad-\quad-$ ．
\square

e^{-}
 \qquad －ーロ゙ージー－－

Since no organized study had ever been conducted of the available information on fractured wells in Western Pennsylvania, it was decided that an excelient opportunity now existed to do so. Only the gas phase of the industry will be considered in establishing crảteria for the application of hydraulic fracturing with a view toward increasing its chance of success.
,

A. Review of Hydravilic Fractureing

For quite some tine during cementing or vater flooding operations, it had been noted that the use of high pressure would cause parting in a formation with resultant loss of fluid. This parting or fracturing in a formation was to be avoided and usually decurred when a pressure was obtained of acproximately one pound per square inch per foot of depth. The Research Department of the Stanolind Oil and Gas Company experimented with this fracturing and developed a process which it licensed and patented in 1949 under the trade name Hydrafrac. The process has been accepted and Was grom in five and onewhif years from a treatment rate of 18 wells per month to over 3000 wells per month in 1955 and with over 30 organizations now licensed to perform fracture service. While this process is primarily used to increase and extend production, it has a secondary application in Encreasing water flow in injection wells in water flood operations and in gas storage fieIds to increase the rate at which gas may be injected, and of mare inpmance, withdram during periods of high consumption. 1. Types of Fracturing Fluids

The fracturing process is know by several different names, some of them being patented and named for the fracturing fluid used. The purpose of the different combinations being to obtain a fluid that is the least foreign and most compatible to the formation being fractured. Additional desirable characteristics are low fluid loss, minimum plugging effect on the formation, and viscosity consistent with required sand suspending properties. A lower viscosity will reduce the frictional drop in the tubing and reduce pump requirements. Some of the inore commonly known types of fracturing fluids are as folluws.
|- - -

- ! - - = \| I
\cdot

Gel Frac which is a trade name given to a viscous fel prepared from a hydrocarbon, such as kerosene, diesel oil or special oil mixtures which have been treated with an additive such as napalm to give the fluid sufficient viscosity.

Enulsifrac is a trade name applied to a crude oil jelle d by use of an additive. There is a convenience and economic advantage in using oil that is produced in the well.

Acid Frac is any viscous fluid which contains from five to twenty per cent acid. This particular mixture finds a use in calcareous formations.

Water Frac is the name applied to a method for thickening water for fracturing purposes, especially useful for water wells, water disposal and injection wells for water flooding. A recent development in the San Juan Basin has been the successful fracturing of gas wells using only water without sand.
2. Fracturing Procedure

The procedure for hydraulic fracturing may be broken down into four basic components. However, it must be realized that there are many variations within each component and possible combinations of the components, depending on the "tailored" treatment desired for a particular well bore.
a. The first step is the preparation of the fracturing fluid which was described in the previous section under types and which is selected according to the type of well bore and formation to be treated. Diesel oil and kerosene are the most common fluids used for gas wells with kerosene being used almost exclusively in Western Pennsylvania. Sand, which serves as a propping agent in the crevices of the fractures, is then added to this fluid in proportions of from one-quarter to three or more pounds per gallon.
－

\square

 －
\square
 － \square 1
\qquad －－－ーニー・ 1 \square
\square
 Naxich

 cex
b. The second consideration and probably most important is to obtain a high pressure and injection rate using high pressure pumps. The pressure exerted must be in excess of that due to the overburden and the pressure $1 . s$ transmitted to the formation by the viscous fluid pumped into the treated zone. The pumps used must be of suitable capacity and horse. iman to obtain the proper punping rate and pressure to make and extend the fractures. This phase of the procedure will be discussed in more detail as it is the part of the procedure that may be responsible for a successful or unsuecessful fracture。
0. The third step in the procoss is the addition to the fracturing fluid of a concentrated gel breaker to insure complete break down of the viscaus gel especially in low temperature, dry gas reservoirs.
d. The fourth step is the reverting of the viscous gel to a low viscosity fluid in a period of hours. On release of the excessive pressure which was necessary to fracture the fomation, the sand acts as a propping agent to hold open the fracture and the natural production flushes the treating chemicals from the formation. If the production does not accomplish this natural flushing, then the well must be cleaned out.

B. Major Gas Producing Formations

The Appalachian Geosyncline is made up of three major basins. A southern basin with its thickest sediments near Birmingham, Alabama, a central basis with its thickest sediments near Elkins, West Virginia, and a northern basin with its thickest sediments near Altoona, Pennsylvania. Northwest of the Appalachian Geosyncline and roughly paralleling it lies the Cincinnati Arch. Geographically, western Pennsylvania lies to the west of the northern basin where the formations dip down sharply from the Cincinnati Arch to the northern basin.

Gas has been found in western Pennsylvania in twenty-seven different geological formations. However, only about a dozen produce in any commercial quantities with the Bradford being the foremost producer. Other gas producing formations to be considered are the Gordon Third sand, Fourth sand, Fifth sand, Bayard, Speechley, Tiona, Balltown, Sheffield, Kane, Elk and Oriskany.
－ロ ハー

4－
$=$

－－－－－

II. ANALYSIS OF WELLS BEFORE FRACTURING

A. Production History

In evaluating a well for the application of hydraulic fracturing, its production history is one of the more irportant factors to be considered. It is quite obvious that a depleted reservoir is not going to react with as great a production increase as a reservoir that is in its early production life and retains most of its original recoveraole gas. Ia general, if a well has declined very slowly over a period of years, it can be assumed that the decline was due to normal withdrawel of the recoverable gas and depletion of the bottom hole pressure. In contrast, consider a well which was brought in with a high initial production, then declined very rapidly to a lower level which it maintained as a relatively flat deciine curve over a period of time. In this type of production, the possibilifty exists of having exhausted the producible gas under the existing permeability and pressure conditions fairly close to the well bore. If this assumpion is correct and the well is fractured, increasing the flow channels about the well bore, there is an excellent chance of increasing and maintaining a higher production rate.

The maximan efficient production rate of a well is another important factor in considering a well for fracturing. Any well that has been produced beyond its M.E.R. for any length of time must be evaluated with caution. Subjecting gas wells to extreme conditions of flow causes sand formations in the well to cave, aggravates wat er "coning," channeling and increases the possibility of trapping gas in the underground reservoir with water. Such damage to the well is permanent and it usually will
\square^{\square}
\square
|Fi

- - - - -

\qquad
\qquad
=- ! - \quad !

-
bili pero bill lo sang

\square
π
not respond to fracturing. In other words, production from the reservoir will not be helped by increasing the flow channels around the well bore. A gas well producing other than connate water is almost 100 per cent certain to show little or no improvement on fracturing.
,

B. Well Completion

In considering well completion methods, it should be remembered that hydraulic fracturing is as effective through perforations in casing as it is in open hole. For economical reasons, most gas wells have not been properly cased and since the advent of fracturing, it has become undesirable to have several hundred feet of open hole and a shot hole or pocket below the producing formation. Improper well completion methods may be a contributing cause of a permeability block about the well bore. In addition, the well must be completely clean before fracturing. If it has been properly completed, it should stay clean after fracturing and the production curve well not dip sharply after a short production period.
,

C. Application of Engineering Principles

1. Volume and Injection Rate

The effectiveness of any fracture is dependent upon the extent of that fracture from the well bore into the formation with as little loss of the fracturing fluid as possible. To obtain effective fractures requires a high fluid injection rate during the fracturing process. This rate of fluid displacement into the well bore is directly proportional to the injection pressure and inversely proportional to the viscosity of the fluid. The injection rate becomes of more concern as the fracture is extended due to unavoidable fluid loss and increase of fracture volume. George Roberts, Jr^{1} gives the following estimates of fluid required to achieve the tracture radius in tight formations with one pound of sand added per gallon of fluid.

Bbls. of Fracturing Fluid	Radius in Feet
20-40	100
200-400	200
$500-80 u$	400
1000-2000	600

If sufficient reservoir and well aata were available, it would be possible to determine if a well had a permeaoility block about the well bore. Such a well would be a good prospect for fracturing to increase the flow channels into the well. This permeability block is referred to as the skin effect $2,3,4$ which has been recognized and discussed in the literature. Investigators have attempted to explain marked incongruities that appear in the pressure behavior of draw down and build up

[^0]
$=\quad-\quad=\cdot=\quad=-$
\square

curves. These pressure curves are indicated by a bottom-hole pressure gage in a flowing well followtu by a periud of shut-in and compared with the theoretical aspects of fluid 坞ow into a well. If fluia flows were computed, it woula be iouna that a large pressurt gradient exists in the immediate or the adjecent areal extent in the sand close to the well bore. In explanation of these excessive pressure gradients, it is assumed that permeability of the formation at and near the well bore is substantially reduced for some reason. This reduction in permeability can be caused in a gas well by such things as impropor drilling, completion, and production practices. To visualize the problem, the well bure may be considered to be chtirey shared in e semi-impervious skin which hydraulic fracturing with its long oxtended crevices would be ideally suited to penetrate. Hewever, it is not possible to use this direct skin effect calculation as a positive means of selecting wells for fracture and one must resort to round-about ways of solving the problem.

It has been established that increasing the radius of a fracture will produce a corresponding increase in production after break-through of any existing permeability block.

An electric analog study has been conducted by Dr. Paul Crawford ${ }^{5}$ to determine the effect of fracture size on productivity. This study of necessity represents conditions of uniform vertical and horizontal permeability, but it does give vaiuable and usable information. From this study, fracture systems appear to fall into the following categories:

One or more vertical fractures
One or more horizontal fractures
Random fractures in various planes.

In this study, it was shown that the effectiveness of any one size fracture will vary little more than ten per cent regardless of the plane in which the fracture is lying. The study also illustrates the increase to be expected by extending a fracture beyond a blocked area and, therefore, changing the flow pattern to increase productivity by a factor of four or five,

The electric analog study revealed further information conceming single and multiple fractures.
a. When vertical and horizontal permeability are the same, one 75 foot fracture will produce at the same rate as two 75 foot fractures. As the fractures become longer, some benefit can be derived from two fractures. As the fractures become shorter, no benefit can be gained by producing through more than one fracture.
b. When the horizontal permeability is three times the vertical permeability, two 75 foot fractures will produce about 1.25 times the fluid that can be produced by one 75 foot fracture. Three 75 foot fractures will produce little more than twice that of one fracture.
c. When the horizontal permeability is five times the vertical permeability, two 75 foot fractures will produce twice as much as one fracture, three 75 foot fractures will produce only 1.1 times as much fluid as two fractures.

The above conditions are true in pay zones having thicknesses up to 150 feet and in wells having 100 per cent permeability block except at the point of fractures.
2. Single and Multiple Fracture Methods

There are two distinct methods to be considered in applying the fracturing process to wells, the single fracture method and the multifrac
moner zirn =4
\qquad
 - $4=$場

method in which the process is applied two or more times. The single fracture method is generally recommended when thin sections of a formation usually under 30 feet are to be iractured. The cracks or fractures offer only negligible resistance to the flow of gas and are capable of increasing vell productivity by exposing large areas of the producing formation to relatively open drainage channels, thereby reducing the resistance to flow of the gas to the well.

In field application, it is not always possible to isolate properly that portion of the producing formation to be treated and many tines it is desired to fracture a very thick formation of two or more producing zones. This led to the development of the multiple fracture technique wherein a single fracture is created and then plugged at its face on the well wall by introducing into the fracturing fluid a suitable plugging material to prevent further penetration into the crack. By so restricting the fracturing fluid to the well bore, it is then possible to increase the hydraulic pressure in the hole to some higher valde, at which another fracture occurs at some other elevation. Each fracture so formed is extended with the fracturing fluid containing no plugging material. By repeating this procedure, sealing successively formed fractures with a suitable plugging material, it is possible to create multiple fractures in any one isolated section of the well. The two key points on which the success of the maltiple fracturing method depends are: effective sealing of previously formed fractures and removal of the plugging agent at the completion of the treating operation to allow free flow of the gas into the well through all the fractures created.

In multiple fracturing, the plugging agent must obviously be temporary in nature so that it will not restrict fluid flows. Among other factors
\qquad
\qquad

\qquad

which must be considered are effect of temperature and pressure, and the melting point and solubility of the agent. The material most commonly used at the present time to meet these requirements is compressed and ground pellets of naphthalene.
,

III. ANALISIS OF WELLS AFTER FRACTURING

A. Comparison of Data

An accurate and reliable evaluation of a welI's performance and its comparison with other wells must be based upon complete and accurate engineering information. In making this study, the lack of adequate engineering data on wells in the area was soon realized. The technique of fracturing in Western Pennsylva ia is so new that there is no real standardization for taking and recording field data. The kind and quantity of data taken in one area would vary considerably from that taken in another area and it would also vary among the different companies. To further add to the difficulties, vital field data would be carelessly recorded, if not left out entirely. If the missing information could not be located, it was necessary to disregard the well so that the over-all resuits would not be distorted. In some cases, wells were used for the information they would contribute to a certain phase of the study.

After assembling and tabulating all the data that could be obtained within the available time, it was decided to use 146 wells in Western Pennsylvania that contributed the most information both in quantity and accuracy upon which to base comparisons. All data used are tabulated for ready reference in the four appendices. Appendix I is a tabulation of the general description and performance of the wells. Appendix II is a tabulation of the hydraulic fracturing information that could be found on each well. Appendix III lists 74 wells on which monthly gas production could be obtained before and after the fracturing treatment. Appendix IV lists 37 wells on which a break down of costs is given in tabulated form.

I. Engineering Data

Normaliy a gas well operator cares very little about ary engineering data on his well and most times knows nothing about it, his only consideration being that it is producing gas and showing a profit. However, if this same operator considers hydraulic fracturing his well to increase production and profits, he suddenly becomes very interested in how and why his well is producing and endeavors to enlighten himself on this new born interest. Hydraulic fracturing is not a panacea for all production ills and its costs must be carefully considered against possible increase in future production. Making this decision rests purely on an analysis of what information can be obtained about the well.

Usually the age of the well is know, that is how long it has been producing, the current and cumulative gas production is known and a measurement can be made of its open flow to the atmosphere by pitot tube. The well is normally but not always shat-in for a period of time and its well head pressure taken. The period of shut-in depends on the whim of the operator and how long he desires to lose production on that well. Most operators allow at least 24 hours and some much longer time depending on the rate of build up and whether or not sufficient pressure is recorded. The combination of the open flow and well head pressure measurements are usually the determining factor whether or not a well will benefit from a fracture treatment. This combination may be considered in different ways. A well is given an even chance if it has a low open flow and high well head pressure or low well head pressure and high open flow. It has an excellent chance if both open flow and well head pressure are high and a poor chance if both open flow and well head pressure are small. Of course, this consideration is always tempered with the performance of other wells in the area and the current gas production.
2. Geological Data

The thickness of the formations and the location and thickness of the producing zones are in very many cases taken from driller's logs. In some instances electric logs and temperature surveys have been made prior to fracturing in order to locate the zones more accurately. In the wells being considered, the Bradford formation runs from a minimum thickness of seven feet to a maximum of 177 feet with an average of 45 feet. The Speechley formation runs from a minimum of 18 feet to 55 feet with an average of $34-1 / 2$ feet. The Tiona formation runs from a minimum of 11 feet to a maximum of 26 feet with an average of 19 feet. The Fourth and Fifth sands have an average of 18 and 30 feet respectively. On four mells, the Ball town showed an average of 25 feet. On five wells, the Sheffield showed an average of 33 feet, the Kane an average of $14-1 / 3$ feet on six wells. The Oriskany ran from a minimum of 92 feet to a maximum of 241 feet with an average of 123 feet on seven wells. The Bayard formation averaged 16 feet on two wells.
3. Application of Methods

The final selection for the method of hydraulic fracturing a well is dependent on several factors. To be considered are the formation thickness, the number of producing zones, the thickness of each and what the size of the fracture zone or zones will be. At this point, it must again be pointed out that the fracturing fluid will follow the path of least resistance and that this path cannot be left to chance.

Of the 146 wells evaluated, formation and producing zone depths were obtained on 125. Of this number, 89 wells had a fracture zone in excess of 30 feet which indicated the multifrac method was in order.

ー

$-$

（8）
 \qquad
 $=\sim$ a

Detailed fracture information was obtained on 132 wells, seven in excess of the number on which formation depths were obtained and it was found that 128 were treated by the single frac method while only four wells were treated by multifrac.

For a fracturing, fluid kerosene $\mathrm{m}_{\mathrm{n}, \mathrm{e}}$ used almost exclusively, only three cases being found to be otherwise. Crude oil was used in one well fractured in the Tiona formation in September of 1954 with practically no success. Diesel oil was used in two wells, one in the Third sand, in July of 1954, with no change in production, and one well in the Fourth sand in September 1954; the well was damaged as a result of the treatment.

In 97 of the wells examined, it was found that in 66 , the fracturing fluid was followed by a jel breaker while in 31 wells no breaker was used. The sand-gel mixture is fairly well standardized to one pound of sand per gallon of jel and the exceptions are limited in range from one-half pound to one and a half pounds per gallon.

B. Effect on Production

Whether a fracturing job on a well was successful or unsuccessful rests in the final analysis on actual gas production. A comparison must be made of actual gas production before and after fracture and the longer the periods used for comparison, the more accurate will be the evaluation. While production figures are the most valuable asset to a study of this kind, they are probably the most difficult to obtain. All production information is of a rather confidential nature. Another source of difficulty is that the production from two or more wells belonging to the same owner will go through one meter so that the production from an individual well cannot be determined. However, the primary source of difficulty results from the newness of the fracturing technique itself to this area. As stated before the accuracy of an evaluation on a fractured well is dependent on the observed periods of production both before and after fracture. Appendix III shows in tabulated form for comparison the production on 74 gas wells. Except in a few cases, the production figures for these wells are shown for six or more months after fracture. The effect of fracturing on production is shown in the following sumary.

Bradford	33 old wells increased production
	16 new wells increased production
	1 old well decreased production
	1 new well decreased production
	3 old wells, no change in production
	5 new wells, no change in production
Fifth Sand	1 new well, no change in production
Bayard	1 new well increased production
Speechley	2 old wells increased production
	2 old wells decreased production
	1 old well, no change in production
Speechley and Tiona	I old well, no change in production
Tiona	1 old well increased production
	1 new well increased production
Ball town	1 new well, no change in production
Sheffield	2 old wells increased production
	1 old well decreased production
	1 new well, no change in production

C. Economic Aspects

One of the more rewarding results of this study has been the break dow of the cost to fracture a well. This is one of the most important consjderations in making a decision to fracture, yet there is a general lack of knowledge on the subject. Not only is the over-all cost important, but unit costs for the sane item will vary with different wells. While there is no intention of going into detail on costs, Appendix IV was prepared on 37 wells showing seven major categories of expense. The service company charge is based on the amount of equipment necessary to properly fracture the well. The cost of kerosene is merely the amount used multiplied by the unit cost. The most interesting item is the cost of surveys which average between $\$ 300$ and $\$ 500$. This is the least costly item in the entire operation and is in most cases deleted in order to save this minor expense. Surveys will give much preliminary information with which to arrive at a fracture decision and should always be made. The information which they supply may save much expense later on or perhaps determine that the well would not be a good prospect for fracturing. Fracturing labor consists of all wages paid to set tubing and prepare the well for the service company. Clean-out labor consists of all wages paid after the well is fractured. Other costs are miscellaneous and include such items as accidents and making the well accessible to the service equipment.

Considering all possible expenses due to fracturing on these 37 wells, the average per well is $\$ 9,312.87$. The current price of gas at the well head averages around 20 cents per $1,000 \mathrm{cu}$. ft. In the area where most of these wells were drilled, it is customary for the operator
to pay an annual fee in lieu of royalty payments. This fee, of course, should be deducted from income from gas sales in determining pay out on a fracture job. Actually the amount to be subtracted for such annual payments is relatively small. At the rate of 20 cents per 1000 cu . ft. a fractured well to be considered successful must produce 46,564,000 cu. ft. of gas more than it would have produced if unfractured. It is estimated that half the fractured wells in Western Pennsylvania will return the investment in from 12 to 18 months after having been fractured. To substantiate this statement, it is interesting to note that out of the 56 wells whose production had increased, five had already or were very likely to return their fracturing costs within 12 months and 23 more wells had an excellent chance of doing so within 18 nonths.

A. Production Decline

Hydraulic fracturing is so new to Western Pennsylvania that there are insufficient post-fracturing data to draw any specific conclusions as to production. Figures 1 and 2 show graphically the effect of fracturing on the first four wells used in this study. It may be said that in a successful fracture, there is a period of flush production for several months up to a year after the well is fractured. Beyond this point, it may reasonably be assumed that the production curve of the fractured well will continue to decline and approach the production of the well had it not been fractured. If one were to speculate further, it is believed that the decline curve of the fractured well will gradually flatten out and continue to decline approximately parallel to the expected decline curve of the unfractured well but somewhat higher. This interpretation is based upon the premise that by creating new channels of flow about the well bore, the same volume of production may be recovered in much less time than it would take in the conventional manner of flow.

B. Geological Relationships

The Bradford formation is by far the most important producing formation in Western Pennsylvania and, consequently, the most highly exploited. It can be said that the formation in general responds well to fracturing and that if care is used in the selection of wells, this formation will give the highest chance of success. While the Tiona shows up well, the experiences with this formation has been too limited to make any conclusive recomnendation. The Speechley and Sheffield formations appear very good from the wells that are successful, but the percentage of successful wells is small by comparison with the Bradford.

Perhaps the most interesting formation open for speculation is the Oriskany. While results have been disappointing, there have been a couple of outstanding successes in this formation and it probably is the next formation after the Bradford that would warrant further explor ation especially considering the success with which the Oriskany is being fractured in West Virginia and Maryland.

It is realized that not enough information has been gained on the other formations to draw any definite conclusions, but isolated cases of outstanding success may some day make these formations popular for fracturing.

C. Open Flow Relationships

The open flow results of the fractured wells used in this study are shown in the following summary.

$\begin{aligned} & \text { Producing } \\ & \text { Sand } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { Wells } \end{aligned}$	Total Open Flow Before Mcfo/Day	Total Open Flow After Mcf./Day	No. Times Increase
Bradford	95	2185.4	48639.1	22.2
3rd Sand	1	44.7	43.2	0
4 th Sand	3	72.8	82.1	0
5 th Sand	3	116.5	351.0	3.0
Bayard	3	72.0	101.7	1.4
Speechley	10	178.9	1453.2	8.1
Speechley and Tiona	1	22.7	32.0	1.4
Tiona	5	122.4	398.8	3.2
Balltown	4	36.0	1335.0	37.0
Sheffield	5	122.5	817.0	6.6
Kane	6	124.5	874.6	7.0
Elk	2	8.7	70.0	8.0
Oriskany	8	1074.0	9556.9	9.0

This tabulation gives at a glance the total relative rates of open flow increase that have been experienced from the various gas producing formations.

The fracturing procedure in this area has become fairly uniform. In the 146 wells evaluated, kerosene was the fracturing fluid with three exceptions, crude oil was used in one and diesel oil in two.

V. SUMMARY AND CONCLUSIONS

Statistical analysis of fracturing on wells in Western Pennsylvania reveals that in the Bradford formation, 49 wells showed increased production, two decreased production and eight showed no change. In the Fifth Sand one well showed no change in production. In the Bayard, one well increased production. In the Speechley, two wells increased production, two decreased production and one showed no change. Two wells in the Tiona increased production and one well in the Balltow showed no change. In the Sheffield, two wells increased production, one decreased production and one well showed no change. In all formations, 56 wells increased production, five decreased production, and 12 showed no change.

Out of the 56 wells whose production had been increased by fracturing, five had already or were very likely to return their fracturing costs within 12 months and 23 more wells had an excellent chance of doing so within 18 months. This indicates that of the successfully fractured wells whose production had been increased, it can be expected that 50 per cent of the wells will return their cost of fracturing within a period of 18 months.

One of the most interesting aspects of this study has been the relationship between the thickness of formation fractured and success of the operation. While a 30 foot zone is the generally accepted maximum for fracture, by the single frac process, it was found that in 67 per cent of the successful wells evaluated, the zone thickness exceeded this recommended figure. This would seem to indicate that even the thicker formations in Western Pennsylvania respond well to single fracturing treatments, eliminating the need for the more expensive multifrac treatnents. four wells were evaluatun in wicin tio matitrac procos was used. Two of these were in the Fifith Sand, one in the Sheffield, and one in the Kane. The results in all four cases were disappointing.

A. General Criteria for Application of Hydraulic Fracturing
I. A well which vas brought in with a high initial production, then declined quite rapidly to a lower level which it maintained as a relatively flat decline curve over a period of time, may be considered a good prospect for fracturing.
2. Well history should be correlated with the type of drive existing in the reservoir. The history of the water production from a well gives a good insight into the type of reservoir which is present and aids in deturmining whether the water produced is connate or from a water drive. Wells that make a small amount of water each day which does not increase over a period of time and which fluctuates in proportion to production may usualiy be assumed to be producing connate water. In wells where the water production curve climbs in relation to production, it is possible that a water drive is present or the well has been danaged and waker is fingering through the formation making such a well a poor prospect for fracturing.
3. The workwover history of a well is an important consideration in any well evaluation. Analysis of the wells used in this study appears to support the belief that wells which have been shot with nitroglycerin will not respond as well as those that have not been shot prior to fracture treatment. Lime or sandy line wells that have been acidized can usually be expected to fall below the expected results from fracturing. When it is considered that fracturing increases production by increasing the flow channels to the well bore, it seems reasonable to assume that the process has a much better chance of success in a virgin well bore than one that has been previousiy worked over to accomplish a similar purpose。
*
4. To prevent unwarranted expense and failure, only wells and equipment in good condition should be selected, as high pressures will be encountered in the process. Remembering that the fracture will follow the line of least resistance, a good primary cementing job is essential to confine the fracturing fluid to the zone to be treated. Every well evaluated in this study used a cemented packer. Well head, casing, packers and tubing strings should be able to withstand treating pressures. Well number 82 in this study costing $\$ 25,956.34$ to fracture is an outstanding example of the high cost of fracturing if the equipment is not in good condition and the well properly prepared for the treatment.

B. Specific Criteria for Application of Hydrau"ic Fracturing

I. The first and foremost revomendation to be made is that any well being considered for fracture should hawe an electric or gamma ray, ternoerature, and caliper log run on it to gain as much preliminary information as possible. Through the use of the gamma ray log the pay zones may be located which may help to reduce the thickness of zone to be treated. The temperature \log is a definite aid in determining whether the temperature is sufficiently high for the fracturing fluid used to revert to a low viscosity fluid without the use of a jell breaker. The caliper log is extremely important and helpful in anticipating fracturing difficulties. In this area tubing is run in open hole well below the casing. The packers between the tubing and open hole are always cemented to lessen the possibility of packer failure due to the high fracturing pressures. In addition to cementing the packer, it is customary to use 10 to 15 bags of cement above the packer between the tubing and well wall. This, of course, results in a. higher than nomal cost of fracturing as the tubing is not pulled and reused. However, by leaving the tubing in, the well remains cleaner over a. longer period of time thus saving future clean out costs.
2. A minimum of three inch outside diameter tubing is recommended especially where substantial increases of flow are expected. The larger the tubing diameter, the less friction loss in pumping the fracturing fluid, hence more effective pressure at the zone to be fractured.
3. A study of the appendices will show that prior to fracturing, no exact value of open flow and well head pressure may be stated that is necessary for success. While there should be sufficient pressure to bring gas into the well bore, it does not appear to be an absolute necessity that high pressures exist. A rule of thumb that is offered for consideration is that if a well can be shut-in for 48 or 72 hours and then recover
\qquad
$-1 \mid-\mathrm{N}+\mathrm{s}$

production of the shut-down period in approxinately the same length of time, the chances for success are good.
4. Normally the service companios recomnend a maximun fracture zone of 30 feet when using single frac and that multifrac be used on thicker zones. Probably the most important result of this study is the finding of the practicability of using single frac in lieu of multifrac for extensive formation thicknesses. In order to evalute the production of fractured Wells against the thickness of zone fractured, three ranges of thickness were chosen. The first range ras from zeso to 30 feet. The limit of this range was chosen because of it being the generally recommended maximum for single frac. The second range extended from 30 to 60 feet giving a thickness up to double the recommended maximum. The third range consisted of wells whose fracture zone was in excess of 60 feet.

In the Bradford formation there were 11 wells in the first range Whose average production was increased 5.57 times over what it was before fracture. In the second range there were 17 wells whose average production was increased 10.5 times over what it was before fracture. In the third range 11 wells increased production 6.38 times over average production before fracture. Such figures seem to refute the argument that multifrac should be used in zones whose thickness exceeds 30 feet. In formations other than the Bradford, information was too limited to draw any specific conclusions.
5. As a last consideration, it must be realized that all factors cannot be so fully evaluated that 100 per cent success is assured, however, it is believed that the chance for success may be greatly enhanced if more information on existing and new wells is taken, recorded and thoroughly evaluated. While much of the information gathered for this study is not new to a lot of people, it is thought that no one person has had access to all of it or has taken the time to make an evaluation of this type on

```
-4, 青H-4,
4-3!-41
```


－－

Date Fractured	GENERAL	WELL DES Open Mcf.	RIPTION low ay	AND PERFOR W.H.P./H Shut	$\begin{aligned} & \text { MANCE } \\ & \text { lours } \\ & \text { n } \end{aligned}$
	Formation	Before	After	Before	After
3-28-55	Bradford	12.0	696.0	815/8	730/18
5-26-55	Bradford	17.9	284.0	N.T.	575/16
6-8-55	Bradford	21.0	506.0	N.T.	785/18
6-23-55	Bradford	16.0	407.0	590/120	820/16
6-21-55	Bradford	28.3	321.0	615/72	752/72
7-6-55	Bradford	21.0	852.0	N.T.	560/72
8-3-55	Bradford	30.4	36.5	585/20	N.T.
4-5-55	Bradford	12.5	823.0	N.T.	975/18
3-9-55	Bradford	21.0	475.0	N.T.	560/40
$8-2-55$	Bradford	6.3	200.0	$360 / 24$	930/16
8-23-55	Bradford	4.0	696.0	640/72	800/16
8-25-55	Bradford	3.9	87.8	320/60	320/24
10-5-55	Bradford	8.4	581.8	$345 / 24$	700/18
9-21-55	Bradford	22.7	100.0	525/22	700/24
10-11-55	Bradford	25.8	622.0	800/18	980/16
11-9-55	Bradford	5.0	696.0	525/22	960/90
12-12-55	Bradford	10.9	354.0	535/96	1050/18

$$
\begin{array}{ll}
\text { H } & \text { r } \\
\text { 0 } & 0 \\
\beta & E \\
0 & r \\
-1 & 0
\end{array}
$$

$$
\begin{array}{ll}
H & न \\
0 & 0 \\
0 & D \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{array}{ll}
H & r \\
\text { D } & \\
0 & \\
\sigma & \\
0 &
\end{array}
$$

$$
\begin{aligned}
& \text { r-1 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& r-1 \\
& H \\
& 0 \\
& 0 \\
& E \\
& E \\
& 0
\end{aligned}
$$

.

\quad Remarks
Old well
Old well
Shot, old
New well
New well
New well
30 years old, shot
25 years old, shot
30 years old
New well
12 years old
12 years old
25 years old
13 years old
New well
6 years old
7 years old
New well

$\begin{aligned} & \text { Well } \\ & \text { No. } \\ & \hline \end{aligned}$	County	Date Fractured	Formation	Open Flow Mcf./Day		W. H.P/Hours Shut in		Dia. Tubing In。	Remarks
				Before	After	Before	After		
72	Jefferson	1-10-56	Bradford	12.5	412.0	415/22	560/18		9 years old
73	Jefferson	1-20-56	Bradford	17.9	593.0	775/72	1010/24	3	New mell
74	Jefferson	$3-27-56$	Bradford	25.8	2555.0	$650 / 24$	$800 / 24$		New mell
75	Jefferson	$2-7-56$	Bradford	1.8	3.1	115/20	$160 / 72$		9 years old
76	Westmoreland	$8-10-55$	Bradford	2.5	233.4	N.T.	N. T 。	3	32 years cld
77	Westmoreland	$2-25-55$	Bradford	8.0	425.0	N.T.	$925 / 72$	2	New well
78	Westmoreland	12-9-54	Bradford	231.0	4000.0	1330/68	N. To	3	New well
79	Westmoreland	$6-27-55$	Bradford	260.0	250.0	$800 / 5$	$900 / 90$	$3-1 / 2$	New well
80	We stmoreland	$7-25-55$	Bradford	0.5	30.0	270/38	970/12	2	New well
81	Wes tmoreland	10-17-55	Brodford	1.0	55.5	700/68	800/48	2	lew well
82	Testmoreland	$5-14-56$	Bradford	32.7	146.0	$590 / 162$	$550 / 43$	2	New well, shot
83	Westmoreland	$2-15-56$	Bradford	6.2	17.8	375/48	N.T.	2	Shot, old
84	Westmoreland	$4-7-55$	Bradford	51.9	381.0	785/144	$675 / 48$	2	New well
85	Westmoreland	7-23-55	Bradford	6.0	28.0	$380 / 16$	37/48	2	Niow well
86	Westmoreland	$2-24-56$	Eradford	7.9	250.0	$330 / 96$	$500 / 16$	3	New well
87	Wes tmoreland	4-17-56	Bradford	32.7	358.0	800/68	$680 / 192$		New welı
88	Westmoreland	$2-23-56$	Bradford	12.5	162.0	1100/65	1170/240	3	New well
89	Westmoreland	1-5-56	Bradford	21.9	21.9	400/?	$320 / 240$		38 years old

$\begin{aligned} & \text { Well } \\ & \text { No. } \\ & \hline \end{aligned}$	County	Date Fractured	Formation	Open Flow Mcf./Day		W.H.P./Hours Shut In		$\begin{gathered} \text { Dia. } \\ \text { Tubing } \\ \text { Iro- } \\ \hline \end{gathered}$	Remarks
				Before	After	Before	After		
70	Westmoreland	$2-9-56$	Bradford	30.6	293.6	490/20	$360 / 240$	2	37 years old
91	Westmoreland	$8-24-55$	Bradford	124.0	3000.0	$575 / 43$	12.25/504	3	Nu¢ well
92	Indiana	21-25-55	Bradiord	8.4	278.0	300/13	905/18	$3-1 / 2$	9 years 0ld
93	Indiana	$6-19-56$	Bradford	20.0	219.0	520/72	$515 / 24$		O1~*日1
94	Indiana	$4-26-56$	Bradford	155.0	5800.0	1180/20	1235/20		New ${ }^{\text {aje }}$
95	Indiana	1-17-56	Bradford	5.0	248.6	134/21	1280/60	3	New Well
96	Allegheny	$2-8-55$	Speechley	34.6	76.0	250/92	262/60		Experimental
97	Westmoreland	$8-19-55$	Speechley	38.0	622.0	400/45	$440 / 21$	3	14 years oidd
98	Indiana	10-13-55	Speechley	14.0	200.0	825/4.4	850/16	3	Il yezrs old
99	Testmoreland	10-5-55	Speechley	9.3	28.0	$310 / 36$	$328 / 16$	2	15 yeans old
100	Armstrong	7-28-55	Speechley	12.0	84.0	600/19	600/17	2	New well
101	Armstrong	9-23-55	Speechley	14.5	193.0	245/15	710/56	2	Snot
102	Armstrong	12-10-55	Speechley	3.5	28.2	466/69	$352 / 48$	2	O1d we.ll
103	Clarion	$3-1-55$	Sneechley	5.5	14.0	$710 / 72$	N.T.		OLd well
104	Butler	12-12 -53	Speechley	44.5	188.0				02dwEII
205	Clarion	$8-30-55$	Speechloy	3.0	20.0	500/72	600/24	2	01d well

Dia.
Tubing
In.

		$\begin{aligned} & \text { un } \\ & \text { u} \\ & \underset{\sim}{1} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & \underset{1}{1} \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{1}{1} \\ & \frac{1}{4} \end{aligned}$	$\begin{gathered} 2 n \\ n \\ 1 \\ 0 \\ -1 \\ 1 \\ -1 \end{gathered}$	$\begin{aligned} & \pm \\ & 1 \\ & 1 \\ & \infty \\ & r-1 \\ & 1 \end{aligned}$	$\begin{aligned} & \stackrel{7}{n} \\ & i \\ & \underset{i}{i} \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & -1 \end{aligned}$	$\begin{gathered} 7 \\ 1 \\ 1 \\ \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} \pm \\ 1 \\ \underset{\sim}{n} \\ \vdots \\ 0 \end{gathered}$	$\begin{aligned} & \text { n } \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0-1 \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { un } \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & i \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & \hat{u} \\ & \vdots \\ & \vdots \\ & 1 \\ & -1 \end{aligned}$	in in a \vdots j
$\left.\begin{array}{\|c\|} \hline 8 \\ \stackrel{3}{8} \\ 0 \\ 0 \end{array} \right\rvert\,$						$\begin{aligned} & \text { II } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4-1 \\ & 0 \\ & D \end{aligned}$	$\begin{aligned} & \text { 告 } \\ & 0 \\ & \text { H } \\ & \text { D } \\ & \text { Hy } \\ & \text { H } \end{aligned}$		$\begin{aligned} & \infty \\ & \text { E } \\ & 0 \\ & \text { H } \\ & \text { O } \\ & \text { E } \\ & \text { \& } \end{aligned}$	$\begin{aligned} & \text { e } \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & -1 \\ & \text { 纪 } \end{aligned}$	$\begin{aligned} & \text { d } \\ & \text { N } \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				

-

焉

5

\square

C
\square
-2
-2
-2
5
1
1
1
\square

	Remarks
New	Well
New	well
IVew	well
New	Well
New	well
New	well
	well
New	welı
Old	well
012	Voll
Old	well
Old	๗e11
Old	well
01 d	Nell

$\sim m \sim N$

W.H.P./Hours	
Shut	In
Before After $940 / 72$ $940 / 72$ $700 / 24$ $700 / 24$	

$525 / 20 \quad 950 / 48$
ñ
0
0
-
-
N

0
0
${\underset{-1}{-1}}_{\substack{2 \\ \hline}}$
$4 / 24$
$\stackrel{0}{2}$
$\stackrel{\infty}{8}$

 Kane | 0 | 0 |
| :---: | :---: |
| | |
| | |

 $3-9-55$
$12-15-55$ $\begin{array}{cc}n & n \\ i n & n \\ 1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}$ County
Armstrong
Westmoreland
Armstrong
Armstrong
Indiana
Indiana
3นOU7 Sunty
Armstrong
Armstrong
Armstrong

Armstrong Jefferson | | |
| :--- | :--- |
| 0 | 0 |
| 0 | 0 |
| 0 | α |
| 0 | 0 |
| 0 | 4 |
| 4 | 4 |
| 0 | 4 |
| 0 | 0 |
| 1 | 0 |

N．H．P．／Hours	
Before	After
770／90	1150／18
850／44	1075／24
415／72	460／48
700／36	None
N．T．	N．T．
$3000 / 72$	$3400 / 72$
2250／24	N．T．
$3660 / 74$	3580／42
500／40	$3750 / 43$
4300／1	N．T．
	2650／48
	$3600 / 24$
	$3550 / 48$

	$\begin{aligned} & 0 \\ & \dot{\circ} \\ & \dot{\sim} \\ & \dot{-1} \end{aligned}$	$\begin{aligned} & \text { ri } \\ & \infty \\ & \infty \\ & \text { r } \end{aligned}$	$\stackrel{0}{\sim}$	$\begin{aligned} & 0 \\ & \text { ć } \\ & 0 \\ & \gtrless Z \end{aligned}$	$\stackrel{0}{0}$	$\begin{aligned} & \mathrm{C} \\ & \dot{O} \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{8} \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & 0 \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{0} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \infty \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{8} \\ & \infty \\ & 0 \end{aligned}$	$\stackrel{\circ}{0}$
	$\stackrel{r}{r}$	0	$\begin{gathered} 0 \\ \stackrel{0}{i} \end{gathered}$	$\stackrel{0}{\circ}$	\sim	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \\ & \dot{8} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{~} \\ & \underset{H}{H} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \underset{\sim}{-} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{gathered} 0 \\ \stackrel{0}{*} \end{gathered}$	$\begin{aligned} & \text { H } \\ & \text { H } \\ & \text { だ } \end{aligned}$	F \％ \％

	$$	$$	$$	$\begin{aligned} & \text { 華 } \\ & \text { 畀 } \end{aligned}$					$\begin{aligned} & \text { C } \\ & \text { N } \\ & \text { N } \\ & \text { N1 } \\ & \text { oH } \\ & 0 \end{aligned}$			

－${ }^{0}$	\cdots		Ln				\bigcirc	\bigcirc					
	\cdots	0	\sim	ก	น	\sim	น	\cdots	Ln	ก	～	$2 \sim$	ᄂ
¢	1	ᄂ़	－	1	i	1	$\stackrel{1}{4}$	i	1	1	1	น	1
\bigcirc	\cdots	\rightarrow	$\stackrel{+}{\square}$	\cdots	\bigcirc	$\stackrel{H}{7}$	Γ	N	\checkmark	$\xrightarrow{7}$	N	6	\sim
${ }_{5}$	－	\rightarrow	\cdots	a	$\stackrel{-}{\square}$	น	\rightarrow	แ	a	น	น	\cdots	\cdots

-

 1

	\sim	\sim	$\underset{\sim}{\underset{\sim}{\sim}}$	－		\checkmark	ก	$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{N} \end{gathered}$	$\underset{\substack{\mathrm{H} \\ \mathrm{H}}}{\stackrel{N}{2}}$	\sim	ᄂ	ᄂ	\sim		\sim
	B	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 야 } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{p} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\circ}{\sim} \end{aligned}$	$$	î	$$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \sim \end{aligned}$
	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	\cdots	$\underset{\sim}{\sim}$			8	능	$\underset{\sim}{n}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\begin{aligned} & 8 \\ & \hline 1 \end{aligned}$	미	$\stackrel{\text { a }}{\text {－}}$	O
		৪	$\begin{aligned} & 8 \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{p} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \underset{\sim}{n} \end{aligned}$	8	$\begin{aligned} & 8 \\ & 8 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { 그N } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$$	$\stackrel{\substack{0 \\: \\ \hline \\ \hline}}{ }$	\cdots	$$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y}{z} \end{aligned}$	ᄂ		\cdots	5	\bigcirc	9	\cdots	10		\cdots
	$\begin{aligned} & \mathrm{B} \\ & \sim \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \text { O } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { O } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	O-8	$\stackrel{8}{7}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{p} \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
	৪	৪	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	8	$\stackrel{\omega}{\stackrel{\omega}{8}}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\underset{\substack{0 \\ \hline}}{\text { N }}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	O	$\begin{aligned} & 8 \\ & \infty \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \text { 㠻 } \end{aligned}$	$\begin{gathered} \text { B } \\ \hline \infty \end{gathered}$	$$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
	N	\Im		ก	$\stackrel{H}{H}$	\cdots	$\stackrel{\sim}{\sim}$	n	Э	8	$\stackrel{\text { N }}{\sim}$	\cdots	$\stackrel{\sim}{\sim}$	\sim_{\sim}^{∞}	$\stackrel{\square}{\square}$
		示	\bigcirc	$\stackrel{\sim}{-}$	$\xrightarrow{-1}$	$\stackrel{\sim}{-}$	\bigcirc	ヘ๊	\sim	\bigcirc	ω	\sim	$\xrightarrow{0}$	9	∞
	8	$\underset{\sim}{7}$		$\stackrel{\sim}{-1}$	${ }_{-}$	\cdots	¢	N	a	－	9	\sim	N	$\stackrel{\circ}{\text { P }}$	$\stackrel{\sim}{\sim}$
$\stackrel{\text { r-1 }}{\stackrel{\circ}{0}} \stackrel{\circ}{\approx}$	H	\cdots	\cdots	\approx	$\stackrel{\sim}{\sim}$	\approx	8	${ }_{\infty}^{-1}$	\％	∞	¢	¢0	∞	¢	∞

	\sim				$\begin{aligned} & \dot{0} \\ & \substack{4 \\ i \\ \text { in }} \end{aligned}$			\sim	m						m		n	－	m	$\xrightarrow[\sim]{\sim}$
	$\begin{aligned} & \mathrm{B} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { N } \end{aligned}$	$\begin{array}{r} 8 \\ \stackrel{8}{\sim} \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & \hline \mathrm{~m} \end{aligned}$	$\frac{8}{\frac{1}{0}}$	$\underset{m}{8}$	$\stackrel{\sim}{\underset{\sim}{7}}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 呆 } \end{aligned}$	$\stackrel{\circ}{\sim}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{8}{y} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \# } \\ & \stackrel{y}{c} \end{aligned}$	$\stackrel{8}{\underset{\sim}{h}}$	$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	$\stackrel{i}{\sim}$	$\stackrel{i}{\sim}$	$\stackrel{\text { Oin }}{\sim}$	$\begin{aligned} & 8 \\ & \stackrel{\circ}{0} \end{aligned}$	O
	～	\％		$\stackrel{\sim}{m}$	$\underset{\sim}{\circ}$			$\stackrel{\infty}{7}$	$\stackrel{\sim}{\sim}$	$\stackrel{\widetilde{\sim}}{\sim}$	㣍				$\underset{\sim}{\infty}$	$\stackrel{\sim}{\sim}$	8	早	$\stackrel{\text { in }}{\text { ¢ }}$	¢
	$\stackrel{\otimes}{\mathrm{O}}$	$\underset{\sim}{8}$	$\stackrel{8}{\stackrel{~}{n}}$	$\begin{aligned} & \stackrel{8}{y} \\ & \end{aligned}$	$\stackrel{8}{8}$			$\stackrel{8}{\mathrm{O}}$	$\underset{\sim}{8}$	৪	ষ্ণ	$\stackrel{\circ}{8}$	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & i \\ & i \end{aligned}$	$\stackrel{8}{8}$	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\underset{\sim}{8}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$
	in							\sim	$\begin{aligned} & \text { ® } \\ & \stackrel{0}{2} \end{aligned}$					$\underset{\sim}{\underset{\sim}{8}}$	9		in	in	9	迺
	$\begin{aligned} & \text { O} \\ & \text { O } \end{aligned}$		$\stackrel{C}{\square}$		$\stackrel{8}{8}$		$\underset{\sim}{8}$	$\underset{\sim}{8}$	$\underset{\sim}{8}$				$\begin{aligned} & \stackrel{\infty}{7} \\ & \underset{7}{2} \end{aligned}$		$\stackrel{8}{0}$		$\begin{aligned} & 8 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & \stackrel{8}{0} \\ & \stackrel{-1}{ } \end{aligned}$	$\stackrel{\text { B }}{\substack{~}}$	－
	8	$\begin{aligned} & 8 \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{y} \\ & \hline \end{aligned}$		ơ		$\begin{aligned} & \text { B } \\ & \text { in } \end{aligned}$		$\begin{aligned} & 8 \\ & \underset{子}{8} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { 呆 } \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { U } \\ & \text { U } \end{aligned}$	O	名	$\begin{aligned} & 8 \\ & \underset{\sim}{\infty} \end{aligned}$	8	$\begin{aligned} & \infty \\ & \infty \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \text { B } \\ & \hline-1 \end{aligned}$	$\underset{\sim}{8}$	8	8 ing
	7	\because	\cdots		－	\sim	\％	${ }_{\mathrm{m}}$		α	m		込		＊	む	∞	$\stackrel{H}{3}$	$\stackrel{-1}{m}$	ฑิ
	∞	9					$\begin{gathered} \stackrel{-}{0} \\ 0 \\ 0 \\ 0 \\ \text { on } \end{gathered}$	～		m	∞	\sim	H	\sim	m	$\underset{\sim}{7}$		in		$\stackrel{\sim}{\sim}$
	$\stackrel{3}{\sim}$	－	$\stackrel{\square}{\sim}$	\sim	$\stackrel{-1}{\sim}$	$\stackrel{\sim}{n}$		$\underset{m}{\square}$		$\stackrel{\square}{-}$	$\stackrel{\sim}{m}$		$\stackrel{\sim}{\sim}$	～	$\stackrel{\sim}{\sim}$	c	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	－	$\stackrel{\infty}{\square}$
	ò	$\underset{\sim}{\mathrm{O}}$	ت̈	$\underset{7}{\sim}$	$\underset{\sim}{m}$	寻	合	$\begin{aligned} & 0 \\ & \underset{\sim}{1} \end{aligned}$		$\underset{\sim}{7}$	$\stackrel{\infty}{\underset{\sim}{1}}$	$\stackrel{\text { a }}{\text { I- }}$	$\stackrel{\underset{\sim}{\mathrm{H}}}{ }$	$\xrightarrow{\text { H }}$	$\underset{\sim}{N}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\mathbb{A}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{4}$	ה̈̆̃

,

APPENDIX III

,

In

Well
No.
108
116
119
122
126
128
130

,

$$
\begin{gathered}
0 \\
\underset{\sim}{n} \\
\underset{\sim}{n}
\end{gathered}
$$

$$
\begin{aligned}
& \text { IX IV } \\
& \text { G COSTS } \\
& \text { Fracturing } \\
& \text { Labor } \\
& \hline 910.14 \\
& 1351.67 \\
& 6130.30 \\
& 506.55 \\
& 4510.81 \\
& 2036.27 \\
& 3338.38 \\
& 3578.86 \\
& 1511.42 \\
& 262.13 \\
& 351.19 \\
& 4688.91 \\
& 1984.37 \\
& 311.18 \\
& 254.09 \\
& 1633.77
\end{aligned}
$$

$$
\begin{array}{lll}
\substack{n \\
~} & \infty \\
\stackrel{\infty}{j} & \underset{m}{n} & \tilde{m}
\end{array}
$$

$$
\begin{aligned}
& \text { Cost of } \\
& \text { Kerosene }
\end{aligned}
$$

Well No.	Service Co. Charges	Cost of Kerosene	Cost of Surveys	Cost of Tubing	Fracturing Labor	Clean Out Labor	Other Costs	Total Cost
41	874.90	1108.00		2898.92	2886.11	854.98	1182.74	9,805.65
57	1111.62	917.15	318.96	825.68	7789.59	560.11	1543.75	13,066.86
58	1166.11	630.00	318.14	3268.38	1389.11	559.58	1092.46	8,423.78
59	1171.63	632.80	8.48	3035.45	1927.01	307.76	550.53	7,633.66
61	1255.98	812.00		2912.92	584.80		1261.15	6,826.85
62	1185.71	578.85	316.40	1872.66	3072.96	198.64	425.29	7,650.51
63	900.55	56.00	283.40	596.99	3288.80	32.45	1569.90	6,728.09
64	984.43	490.00	23.41		292.98		2690.92	4,481.74
65	1035.16	714.00		372.12	2941.74	167.26	1338.32	6,568.60
66	1019.07	830.75		2960.86	711.75		1222.53	6,744.96
69	1206.11	484.00	310.10	1462.79	4800.54	1471.84	4592.55	14,327.93
82	1621.78	272.00		3072.46	10292.27	3021.21	7676.62	25,956.3.4
84	1161.82	693.60		7046.38	360.40		2439.10	11,701.30
85	1165.00	588.00	351.20	1212.88	2411.04	114.99	737.82	6,580.93
96	1225.95	960.22	230.16		1906.48		917.63	5,240.44
98	1173.50	780.37	510.54	2783.29	3136.42	193.45	2161.65	10,739.22

,
$\begin{aligned} & \text { Total } \\ & \text { Cost }\end{aligned}$
$9,077.21$
$6,839.31$
$9,824.70$
$6,411.48$
6,8227.44

$\underset{3559.06}{\text { Fracturing }}$
$\begin{gathered}\text { Labor }\end{gathered}$
$\mathbf{1 5 1 5 . 5 4}$
641.10
993.42
842.56

$\begin{array}{l}\text { Cost of } \\ \text { Tubing }\end{array}$
1343.77
1239.07
4736.01
2439.28
2083.30

쿵웅 $\stackrel{0}{\circ}$ O
,

BIBLIOGRAPHY

1. Roberts, Jr., George, "Fydraulic Fracturing," The Oil and Gas Journal, March 1, 1954, pp. 82-86
2. Van Everdinger, A. F., "The Skin Effect and Its Influence on the Production Capacity of a Well," T.P. 3581, Petroleum Transactions, AIME, Vol. 198, 1953, pp. 171-176.
3. Hurst," William, "Establishment of the Skin Effect and Its Impediment to Fluid Flow into a Well Bore," The Petroleum Engineer, October 1953, pp. B6-BI6.
4. Timmerman, E. H., "Figure Your Chances before Fracturing," The Oil and Gas Journal, June 7, 1954, pp. 94-97.
5. Crawford, Paul B. and Landmun, Bobby Lo, "Estimated Effect of Horizontal Fractures on Production Capacity," T.P. 414G, Petroleum Branch AIDE, October 1954.

[^0]: ${ }^{1}$ References are listed in the Bibliography.

