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SYMBOLS

Cy - Coefficient of total skin friction

F - Total skin friction force per unit width

L - Length of test Panel

p - Pressure

q - Dynamic pressure

R - Reynolds number

S - Area of test panel

T - Absolute temperature

u - Streamwise velocity at a point in boundary layer

U - Streamwise velocity in free stream

x - Coordinate along surface in direction of flow

y - Coordinate normal to the surface

£ - Boundary layer thickness

6 - Boundary layer momentum thickness

JJ - Coefficient of viscosity

^ - Air density
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DETERMINATION OF THE SKIN FRICTION DRAG OF A

LARGE FLAT PLATE OF DIFFERENT FINISHES FROM

BOUNDARY LAYER INVESTIGATION

ABSTRACT

The skin friction drag of a large flat plate employed

as the movable panel of a direct force measurement device was

determined by means of a boundary layer total pressure survey.

Three different surface finishes were investigated in order to

determine the effect of surface condition on the skin friction

drag and to provide data for the evaluation of the direct force

measurement device. The investigation was restricted to turbu-

lent boundary layer in incompressible flow..

The total skin friction force coefficients obtained for

a smooth glass plate showed good agreement with the theoretical

values for a smooth flat plate. No significant increase in skin

friction was found for a polished Alclad surface. A slight in-

crease in skin friction force was indicated as the result of a

very limited survey conducted on a painted glass surface. The

data obtained from the complete boundary layer surveys were con-

sidered satisfactory for use in the evaluation of the direct force

measurement device

.





DETERMINATION OF THE SKIN FRICTION DRAG OF A

LARGE FLAT PLATE OF DIFFERENT FINISHES FROM

BOUNDARY LAYER INVESTIGATION

INTRODUCTION

The skin friction drag of a body moving through a real

fluid is due to the existence of tangential (shearing) forces in

the real fluid causing the fluid to adhere to the body. These

tangential forces are associated with a property called viscosity.

The adhesion of the particles to the body is known as the condi-

tion of no slip. Even for fluids of small viscosity, such as air,

because of this condition of no slip there exists a boundary layer

through which the fluid velocity varies from that of the wall to

that of the free stream.

Within the boundary layer the flow may be laminar, in

which the fluid moves in essentially parallel layers, or turbu-

lent, in which the fluid motion is quite disordered. The shear-

ing stress in laminar flow is due to the transfer of downstream

molecular momentum between the layers of fluid, while in turbu-

lent flow the momentum transfer is carried out by relatively

large masses of fluid as well. Consequently, a turbulent bound-

ary layer produces a greater amount of skin friction drag than

does a laminar boundary layer.

Transition from laminar to turbulent boundary layer may

be caused by such disturbances as turbulence in the main stream,

surface roughness, disturbances imposed within the boundary layer

or by shock waves, while the factors affecting transition include
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Reynolds number, pressure gradient, Mach number, suction, heat

transfer and curvature. For most aircraft surfaces early tran-

sition from laminar to turbulent boundary layer occurs and the

higher skin friction drag is present. It has recently been es-

timated (Reference l) that turbulent skin friction accounts for

one half of the total drag of a present day aircraft in cruising

flight

.

The turbulent boundary layer is composed of three re-

gions (Reference 2) extending from the wall to the free stream:

(1) a very thin region next to the wall, called the

laminar sub -layer in which the viscous forces pre-

dominate over the inertia forces

(2) a transitional region in which the turbulent shear-

ing stresses are comparable to the viscous stresses,

and

(3) the true turbulent region in which the turbulent

stresses predominate over the viscous stresses.

No exact solution is known for the turbulent boundary

layer, and only approximate methods are available for its solution.

The simplest case of a turbulent boundary layer is that existing

on a flat plate at zero incidence since the pressure gradient

along the wall is zero, and the velocity outside the boundary

layer is constant. Several empirical equations have been devel-

oped and are in excellent agreement with experimental results

(Reference 2) . The skin friction of streamlined bodies along

which a small pressure gradient exists does not differ greatly

from that of the flat plate at zero incidence, provided that





boundary layer separation does not occur. Therefore, the em-

pirical equations developed for the flat plate at zero inci-

dence have widespread use in estimating the skin friction drag

of aircraft surfaces

.

The empirical equations are applicable only to smooth

surfaces, however, and surface roughness has a pronounced ef-

fect on skin friction drag. Nikuradse (3) performed extensive

experiments on the skin friction of sand roughened pipes. The

results were transposed to the case of rough plates by Prandtl

and Schlicting (K) . These data are expressed as a function of

the sand roughness used in the original experiments, however,

and application of the data requires that an equivalent sand

roughness be determined for the surface condition under

consideration. The equivalent sand roughness is a function

of grain size, grain shape and how closely the grains are

packed. The equivalent sand roughness of painted aircraft

surfaces was determined by Young (5), but, in general, it is

difficult to express the roughness of aircraft surfaces in

these terms.

The effect on skin friction of slightly roughened air-

craft surfaces is of increasing importance since a greater per-

centage of the total aircraft drag in cruising flight is due to

skin friction (Reference l) . A more practical approach, perhaps,

is the determination of the admissible roughness, i.e., the rough-

ness that can be tolerated without increasing the skin friction

drag over that of a smooth surface. This is of particular im-

portance, for it determines the amount of care that must be

taken in manufacturing and maintaining an aircraft surface. For
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turbulent boundary layers, roughness has no effect and the sur-

face is considered hydraulically smooth if the height of protuber-

ances is less than that of the laminar sub -layer. Schlicting (2)

presents considerable data on the admissible height of roughness

elements, concluding that the admissible height varies directly

with the kinematic viscosity and Inversely with velocity. Thus,

it can be seen that the surface condition has a profound effect

on the skin friction drag and consequently the total drag of a

modern aircraft.

The experimental determination of the skin friction drag

of a flat plate may be made by measuring the effect of the plate

on the air or by measuring the effect of the air on the plate.

The fonner involves the determination of the velocity profile

which cannot be obtained directly but must be determined from

measurements of other related quantities . The latter involves

only the measurement of the movement of a restoring force against

which a movable portion of the plate is displaced streamwise un-

der the action of skin friction. The displacement can be cali-

brated to indicate force.

The purposes of this investigation were to determine the

skin friction drag of a large flat plate of different finishes

by means of the former method and to provide skin friction drag

data for evaluating the results obtained from a direct force

measurement investigation conducted concurrently by Wolff (6)

.

This latter purpose greatly dictated the design of the equip-

ment and the procedures that are described in the following

sections.
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BQUIPMEKT

The large flat plate under investigation was that en-

ployed in a direct force measurement device designed by Hend-

ley (7) and- slightly modified by Wolff (6) . A complete descrip-

tion of this apparatus is contained in the above references.

The device consisted of vertically mounted rectangular

inner and outer cores of 0.50 inch thick aluminum alloy. The

inner core was suspended in the outer core by two parallel piano

wires of adjustable length. Test panels, 39«62 inches long,

29.50 inches wide, and 0.25 inches thick were fastened to both

sides of the inner core by securing clips mounted on their inner

surfaces. Alclad aluminum alloy frame plates of like thickness

were attached to the outer core by means of countersunk bolts

and were used to frame the test panels . With no force on the

test panels, the gaps between the frame plates and the test panels

were set at 0.002 inches at the leading edge, 0.010 inches top

and bottom, and 0.030 inches at the trailing edge to allow for

the rearward movement of the test panels when subjected to drag

forces. An electrical circuit was incorporated to provide warn-

ing of any contact between the inner and outer cores or between

the test panels and the frame plates.

The force measurement device consisted of a pair of can-

tilever steel springs to which strain gages were attached in such

a manner as to record the bending strains . The springs were

mounted on the leading edge of the rear member of the outer core

.

Contact between the inner core and the free end of the cantilever
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spring was made by means of an adjustable bolt attached to the

trailing edge of the inner core . The change in resistance of

the strain gages was readily calibrated in units of force ex-

erted by the drag forces on the test panels.

The complete device was mounted vertically along the

centerline of the 38 inch by 5$ inch test section of the Uni-

versity of Minnesota subsonic wind tunnel, A streamlined wooden

nose piece was attached to the leading edge of the device in

order to provide as smooth flow as possible on both sides of

the one inch thick test apparatus. A sketch of the complete

apparatus as installed in the test section is shown in Figure

1.

Two pairs of test panels were used to provide the dif-

ferent surface finishes investigated. One pair consisted of

plate glass panels which were tested in their original surface

condition and also with the surfaces spray painted with Dupont

Duco High Speed Primer Surfacer No. 80 (Red Oxide). The other

pair consisted of Alclad sheets, polished by crocus cloth, rot-

ten-stone and jeweler's rouge. These panels were polished smooth

to the touch, but many scratches in the surface were visible.

The roughness of samples of the three surface finishes

was measured by means of a Brush Surface Analyzer. Typical

roughness indications so recorded are shown in Figure 2 . The

stylus of the Brush Surface Analyzer moves back and forth over

a 3/l6 inch length of the surface analyzed. As the stylus re-

verses direction, an abrupt trace is made similar to that caused

by a large roughness element. The positions at which the stylus
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reversed direction are indicated in Figure 2 by arrows in or-

der to avoid confusing these traces with those caused by sur-

face roughness . Waviness in the plates was examined by means

of a machinist's straight edge. None was found in the direc-

tion of flow.

The design requirements for the boundary layer total

pressure traverse mechanism were:

(a) that it permit boundary layer total pressure

profiles to be made at any point on the test

panel on either side of the direct force

measurement apparatus

.

(b) that the pitot tube be positioned rigidly and

accurately with respect to the test panel and

yet that the method of mounting not mar the

finish of the test panel.

(c) that the mechanism be capable of easy reloca-

tion from one point on the test panel to any

other

.

(d) that the boundary layer traverse be control-

lable from outside the wind tunnel with mini-

mum modification of the wind tunnel test section.

(e) the obvious requirement that the pressure distri-

bution about the mechanism not interfere with

the pressure to be measured.

The mechanism shown in Figures 3 and h was designed to

meet the above requirements. A streamlined probe holder, in-

ternally threaded, moved normal to the test panel along a cen-
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trally located threaded spindle. Guide rods on either side of

the spindle restrained the prohe holder against rotation. At

the test panel end of the traverse mechanism the guide rods were

joined to a streamlined foot. A thin rubber sheeting was glued

to the under surface of the foot to prevent marring the test

panel finish and to resist movement of the foot relative to the

test panel. Two guide rod supports were utilized to promote

rigidity. Ball "bearings mounted on the foot and the outer guide

rod support were utilized as thrust bearings for the spindle.

The outer ends of the guide rods were fastened to a mounting

bracket which also served as a support for a Selsyn receiver

whose shaft was coupled to the outer end of the spindle

.

A 0.125 inch brass tube served as the probe stem and

was clamped within the probe holder but electrically insulated

from it. Provision was incorporated for slight streamwise ad-

justment. Pressure and electrical leads were connected to the

downstream end of the probe stem and were led through holes in

the lower guide rod support and the mounting bracket.

The mechanism was clamped to a streamlined strut mounted

vertically in the tunnel test section. The pressure lead and

the electrical leads to the probe stem and the Selsyn receiver

were taped to the trailing edge of this strut and then led down-

stream along the floor of the test section and out of the tunnel

through the pressure equalizing slot. Figure 5 illustrates the

method of mounting the boundary layer traverse mechanism. Relo-

cation of the mechanism vertically to another position on the

test panel surface was readily accomplished by sliding the mount-
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ing bracket and strut clamp along the mounting strut. Reloca-

tion of the mechanism to a new longitudinal position also en-

tailed the movement of the mounting strut to the new location.

The trailing edge frame plate was not of sufficient width to

support the foot of the mechanism while maintaining the desired

probe stem length at the trailing edge of the test panels. There-

fore, it was necessary to install an additional auxiliary strut,

shown in Figure 6, to provide the needed support at this location.

The impact tube was made from 0.035 inch hypodermic tub-

ing whose open end was compressed such that the original 0.022

inch inner diameter was reduced to a height of 0.015 inches.

The lower surface was filed to a thickness of 0.002 inches. The

cross section of the impact tube is shown in Figure 7«

Traverse of the boundary layer was controlled by a Sel-

syn transmitter located outside the tunnel, 28 revolutions of

the transmitter rotor resulting in a one inch movement of the

probe. Movement of the impact tube away from the metallic sur-

face was detected by an ohmmeter connected to the probe electri-

cal lead and to the appropriate portion of the direct force meas-

urement contact warning circuit mentioned previously.

The University of Minnesota subsonic wind tunnel is a

return flow type having a closed filleted rectangular test sec-

tion bled to atmospheric pressure. The static pressure drop be-

tween piezometer rings located upstream of the contraction cone

and upstream of the test section is measured using a U-tube mano-

meter. Its indication is calibrated with the test section dynamic

pressure and then used in regulating the tunnel speed. Static
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pressure taps are located at several locations on the top and

bottom walls of the test section. The turbulence level of the

tunnel has not been determined quantitatively but it is known

to be high.
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PROCEDURE

The polished Alclad sheets were the first test panels

installed. The pressure gradient along the direct force meas-

urement device was determined by means of the static pressure

taps located on both sides of the device in the top and bot-

tom walls of the test section. Adjustment of the top and bot-

tom walls of the test section greatly reduced this pressure

gradient j, but it could not be entirely eliminated at all speeds.

A preliminary investigation was undertaken to determine

the effectiveness of various types of distributed roughness ele-

ments in causing transition from laminar to turbulent flow.

Crepe masking tape and various grades of emery paper were at-

tached to the leading three inches of the wooden nose piece of

the test apparatus. Boundary layer total pressure surveys were

made at one position on the leading edge frame plate at various

speeds throughout the desired speed range . Turbulent profiles

were obtained for each of the roughnesses at all the speeds

.

The transitioning method of least roughness, crepe masking tape,

was then selected in order to minimize the profile distortion

described by KLebanoff and Diehl (8)

.

At the trailing edge of the test panel, boundary layer

total pressure traverses were conducted at the centerline and

at points three inches from the top and bottom of the panel.

The traverses were made by placing the impact tube on the test

panel surface, setting the desired tunnel speed and measuring

the total pressure on the surface. Counterclockwise rotation

of the Selsyn transmitter rotor moved the impact tube away from

the panel surface, the exact breakaway point being detected by
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the ohmmeter. Total pressure measurements were recorded at in-

tervals through the boundary layer until, no further increase in

total pressure could be detected. The test section static pres-

sure and the barometric pressure were recorded during each

traverse. Wet and dry bulb temperatures were taken at the be-

ginning and end of each traverse by inserting thermometers in-

to the pressure equalizing slot. Traverses were made at four

tunnel velocities: 6h } 1^+3 > 231 and 286 feet per second.

The boundary layer traverse mechanism was then relocated

at the leading edge of the test panel. The probe was positioned

at the centerline of the panel and the impact tube placed on the

surface of the frame plate slightly upstream of the leading edge

gap. Boundary layer traverses were made at the four tunnel ve-

locities previously specified. A laminar profile was obtained

at the low speed of 6k feet per second at this location, indica-

ting that laminar flow existed over a portion of the test panel

at that speed. Therefore, further investigations on the Alclad

panels were conducted only at the three higher velocities which

resulted in turbulent flow over the entire surface of the test

panels. In addition to those at the centerline, boundary layer

traverses were made at points three inches from the top and bot-

tom of the panel at the leading edge using the same technique de-

scribed previously. Identical procedure was followed for the

test panel on the other side of the direct force measurement

apparatus

.

The polished Alclad test panels were removed and the

plate glass panels installed. Since it was desirable to obtain
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low speed turbulent flow data, 3M No. 150 emery paper was sub-

stituted for the crepe masking tape on the leading portion of

the nose piece in order to insure transition at that location.

Boundary layer traverses were made on both sides at the same

locations described for the Alclad panels. Identical pro-

cedure was employed with the exception of the technique used

to determine the point at which the impact tube left the panel

surface. Since the electrical circuit could not be used, the

breakaway point was recorded as that at which an increase in the

total pressure was detectable . Turbulent profiles were obtained

at the leading and trailing edges of the glass panels at all four

tunnel speeds

.

The plate glass panels were spray painted while installed

in the direct force measurement device. A complete investigation

of the painted glass panels was precluded by the lack of time

available. Therefore, boundary layer measurements were made

only at the centerline on one side of the device. The procedure

used was the same as that described for the glass plates

.
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RESULTS AND DISCUSSION

The total skin friction force acting on a unit width of

the test panel was calculated by applying the von Karman momen-

tum relation between the leading and trailing edges at the three

vertical locations investigated on each side of the device. Sam-

ple calculations are shown in the Appendix. In order to provide

comparison data for Wolff (6) in his evaluation of the direct

force measurement device, the average value of skin friction

force per unit width was determined for each surface finish. The

coefficient of total skin friction and the Reynolds number based

on the test panel length as the characteristic length were com-

puted. These results are shown in Figure 8.

In order to compare the skin friction force results with

existing theory it was necessary to determine if the conditions

under which the investigation was made approximated those assumed

in the theoretical analysis; i.e., a smooth flat plate at zero

incidence, with no pressure gradient, and turbulent boundary layer

existing from the leading edge. The glass plate was assumed to

best approximate the smooth plate.

The roughness trace shown in Figure 2a indicated an aver-

age roughness element height of approximately three microinches

and was consistent for different locations on the sample tested.

The glass plate was considered to by hydraulically smooth. The

plates were examined for curvature or waviness in the streamwise

direction by means of a machinist's straight edge. None was de-

tected, and the plates were assumed to satisfy the conditions of

being flat

.
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Since the direct force measurement device was mounted

along the centerline of the test section, it was assumed that the

angle of incidence was near zero. The negative pressure gradient

existing along the plate in the streamwise direction was less than

three percent of the free stream dynamic pressure. Schlicting (2)

points out that the skin friction forces on bodies along which a

small negative pressure gradient exists is not materially differ-

ent from that of a flat plate

.

To determine if the "boundary layer was fully turbulent,

dimensionless velocity distributions were plotted from the bound-

ary layer investigations. They are shown together with the curve

of the l/7 power law turbulent velocity distribution in Figures 9>

10, 11 and 12. The agreement with the theoretical turbulent distri-

bution is excellent at the lowest tunnel speed but lessens with

increasing speed, indicating that at the higher speeds the effects

of the roughened nose piece had not entirely disappeared. In

general, the agreement at the trailing edge was better than at the

leading edge, which experienced a greater effect of the roughening

elements. The latter result is similar to that described "by

KLebanoff and Diehl. (8) who performed an investigation involving

the use of distributed roughness elements to cause transition. The

agreement with the theoretical turbulent velocity distribution was

considered sufficiently good at all speeds to satisfy the condition

of the existence of a fully developed turbulent boundary layer.

Thus, all the conditions required for correlation with

existing theory were satisfied except for the condition that the
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turbulent "boundary layer originate at the leading edge. Therefore,

it was necessary to determine for the test panel its virtual origin,

defined as the location of the leading edge of a smooth flat plate

of equivalent width, having a turbulent boundary layer originating

at its leading edge and of sufficient length to develop the same

boundary layer conditions as those present at the leading edge of

the test panel. The leading edge of the wooden nose piece obviously

could not be regarded as the virtual origin because of the favorable

pressure gradient existing along the streamlined shape of the nose

piece and because of the presence of the roughness elements.

The virtual origin was obtained by computing the length of

smooth flat plate required to produce the same boundary layer momen-

tum thickness as the average value of those determined from experi-

mental results at the leading edge of the test panel. The distance,

x, from the virtual origin to the leading edge of the test panel was

obtained by equating the following relations for the coefficient of

total skin friction:

-2.58
CF s OA55 (log

10 Rx )

The length from the virtual origin to the trailing edge of the test

panel was then used as the characteristic length for Reynolds num-

ber calculations. The theoretical total skin friction force per

unit width existing from the virtual origin to the leading edge of

the test panel was calculated in terms of the boundary layer

momentum thickness at the leading edge:

F = U
2

3
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This skin friction force was added to that acting on a unit width

of the test panel and the coefficient of total skin friction com-

puted using the same characteristic length described above for

the Reynolds number computations.

These results for the three surface conditions investi-

gated are plotted in Figure 13 • The Schlicting empirical equa-

tion is shown for comparison. The agreement of the glass test

panels with the empirical skin friction relation is good. The

maximum deviation from theory is *K0 percent and exists at the

lowest velocity. With the exception of this point, the agree-

ment is within 2.2 percent and improves with increased velocity.

The lowest tunnel velocity, 6k feet per second, corre-

sponded to a free stream dynamic pressure of only 1.05 inches

of alcohol. It was possible to read the alcohol level in the

tunnel U tube manometer and in the manometer bank used to meas-

ure the static and total pressures only to the nearest 0.05 inches

Therefore, the reading error was on the order of five percent

at this velocity. This fact was well recognized prior to the

commencement of this investigation, but it was considered de-

sirable to make an investigation at this speed in order to ob-

tain data over as large a Reynolds number range as possible.

The data for the polished Alclad test panels indicate

no significant increase in skin friction force coefficients over

those obtained for the smooth glass plates. Therefore, the pol-

ished Alclad test panels were considered to be hydraulically

smooth.
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The results for the painted glass panels were obtained

from measurements only at the centerline of a single test panel.

The skin friction forces obtained from these measurements were

compared to those obtained over the corresponding area of the

glass plates and the coefficients for the painted glass panels

calculated on the basis of their relative values. The results

for the painted glass panels at the lowest Reynolds number

clearly demonstrate the pressure reading error existing at the

lowest tunnel speed, the coefficient for the painted glass sur-

face being five percent less than that for the glass plate. At

the intermediate Reynolds numbers the total skin friction coef-

ficients for the painted glass panels exceed those of the glass

panels by approximately two percent. At the highest Reynolds

number, this excess increases to approximately five percent.

From the roughness traces of the sample surfaces ob-

tained by means of the Brush Surface Analyzer, shown in Figure

2, it would appear that the painted glass surface was not as

rough as the polished Alclad panel. However, the painted glass

surface was considerably rougher to the sense of touch than the

Alclad surface, and it is felt that the roughness of the sample

was not truly representative of the painted glass panel roughness.

By applying the results of Young (5) to the criteria established

by Prandtl and Schlicting (h) , the height of the mean geometri-

cal protusions required to cause an increase in skin friction co-

efficient would be at least 500 microinches, very much greater

than that measured for either surface sample. The effect of these

protusions would be more pronounced at the higher velocities. It





-19-

Is possible that the increase in total skin friction coefficient

observed for the painted glass panel at the highest velocity in-

dicates this trend. However, because the boundary layer investi-

gation was confined to a limited portion of the painted glass sur-

face, which, itself, may not have been truly representative of the

entire surface, the increase in skin friction force over that of

the glass plate remains inconclusive.
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C0NCLUSI0NS

From the results of this boundary layer investigation

made to determine the skin friction drag of a large flat plate

of different finishes and to provide skin friction drag data

for evaluating the results of a direct force measurement de-

vice, it is concluded that:

(1) The turbulent boundary layer conditions existing

over the test panels of the direct force measure-

ment device approximated those existing over a

portion of a flat plate at zero incidence.

(2) The total skin friction force coefficients deter-

mined for the glass plate test panels showed good

agreement with the theoretical values for a smooth

flat plate

.

(3) No significant increase in skin friction was ex-

perienced for a polished Alclad surface under the

test conditions investigated, and that surface is

considered hydraulically smooth.

(k) No quantitative correlation between the increased

skin friction drag of the painted glass surface

and its roughness condition is possible because

of the inability to correlate the roughness condi-

tion of the surface over which the limited boundary

layer survey was made with that of the sample as

measured by the Brush Surface Analyzer.
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(5) The skin friction drag data obtained from complete

boundary layer investigations were satisfactory for

use in evaluating the results of the direct force

measurement device.
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APPENDIX

CALCULATIONS

The following data were recorded during each boundary

layer traverse. Sample calculations are performed for the glass

plate at a free stream velocity of 231 feet per second.

Pg - barometric pressure, inches of mercury

p - pg - difference between test section static pres-

sure and barometric pressure, inches of

alcohol

q - dynamic pressure, difference between total

pressure and static pressure, inches of

alcohol

y' - distance traversed by the probe normal to

the surface measured from its surface posi-

tion, shaft revolutions

.

tj) - dry bulb temperature in tunnel, degrees

Fahrenheit

ty - wet bulb temperature in tunnel, degrees

Fahrenheit.

The conversion factors necessary for calculations are:

1 in. alcohol = 0.0595 in. Hg. - U.21 lbs. /ft.
2

1 revolution = 0.0357 in. = 0.002976 ft.

Calculation of Density

The static pressure in the test section in inches of mer>

cury was determined:

P = PB -h (P - Pg)

p - 29.22 +(0.95) (0.0595)

p = 29.28 in. Hg.
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The average value of the wet and dry bulb temperatures

were obtained from the readings taken at the commencement and

completion of each traverse:

t = 88° F

ty = 69° F

Entering the Air Density Tables (Reference 9) with the

values of pressure and temperature:

£> . 0.07051 lbs. /ft. 3 = 0.00219 slugs/ft.

3

Calculation of Velocity

The velocity was determined from the value of dynamic

pressure recorded and the value of density computed above:

U = / 2q

U = / (2) (13.90) (^-21)

y 0.00219

U - 231 ft. /sec.

Calculation of Reynolds Number

The coefficient of viscosity was determined from Suther-

land's formula: ,

3/2

JJ - 2.270 T + I93 t £
x 10"8 for T = 5^8° R

jj (2.270(^8)3/2 x 10

"

8

"
' 7k6.6

8U = 39.O x 10"° lb. sec. /ft.
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The Reynolds number based on the test panel length,

L, was then:

R = £ UL where L = 3-30 ft.
L ^

It. = (0-00219) (231) (3-30)

39-0 x 10

"

b

RL . U,281,000

Calculation of Skin Friction

Consider a region in steady two dimensional incompres-

sible flow bounded by perpendiculars to the test panel at its

leading and trailing edges, by the panel itself, and by an ar-

bitrary streamline existing completely outside the boundary

layer. Denoting the perpendicular distance from the panel to

the streamline as h, and using the subscripts 1 and 2 to indi-

cate the leading and trailing edges, respectively, the forces

per unit width acting parallel to the surface of the plate

(downstream positive) may be summed up as follows:

(a) The skin friction of the plate, -F

(b) The difference in the forces exerted by the pres-

sures at the ends, p^h-i - P2h2
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(c) The pressure existing in the free stream acting on

the vertical projection of the streamline, approxi-

mated by the expression,

/hi ^ 2 /ho ~ 2.
(d) The momentum loss, / C]U, dy-

L -J \2 U2 y2

where u represents the streamwise velocity both

within the boundary layer and in the free stream.

The skin friction drag may then be expressed in terms of

the other forces and simplified to the form:

F =/* 1 P u 2dy - f ^ p u 2dy _£p(h _L h )
'0 Ml l y ^22 2 2 12

The only unknowns on the right hand side of this equation are

the values of h-, and ho- Subject to the condition stated above

that hi and hg be outside of the boundary layer, an arbitrary

value of h-L may be chosen and the equation of continuity applied

to the flow bounded by the wall and the streamline between the

leading and trailing edges:

V -L l 1 '

Each side of this equation may be divided into two integrals;

one extending from the wall to the outer edge of the boundary

layer where the velocity equals that of the free stream, desig-

nated as y = £ , and the other extending from that point to the

streamline, h. Since the value of u is independent of y outside

the boundary layer, the equation of continuity reduces to





-26-

Since q - /Ou , u / 2q , and the equation can be reduced to
2

v e
the form - '

1 JT 1 i

e//1^ t^^ -^) -ez*jfW<I% (V4 )

To evaluate the integral, a smooth curve was drawn through the

experimental data points and the function q(y) obtained at regu-

lar intervals in order to apply Simpson's approximation.

Because 100 Boundary layer traverses had been made in

the investigation, over 3*000 profile points were required for

the solution of the continuity equation alone. Since repetitious

use of these points was necessary for the evaluation of the momen-

tum integrals, and the calculation of the boundary layer momentum

thickness to determine the virtual origin, the data reduction was

programmed for solution on the University of Minnesota I.B.M.

Model 602A Calculating Punch.
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Direct Torce Measurement Device
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c - polished Alclad

Figure 2

Surface Roughness Traces of Samples Measured

by Brush Surface Analyzer
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Figure 3

Boundary Layer Traverse Mechanism

(Probe tip not included)
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Figure h

Boundary Layer Traverse Mechanism

(Including orobe tip)
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a. View from contraction cone
(Glass panel shown)

b. View from test section
(Painted glass panel shown)

Figure $

Mounting of Boundary Layer Traverse Mechanism
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a. View from outside the tunnel test
section

b. Close-up

Figure 6

Mounting of Boundary Layer Traverse Mechanism

at Trailing Edge of Test Panel
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Variation of total akin friction coefficient with Reynold* Number

baaed on teat panel length
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Figure 13

Variation of total skin friction coefficient with Reynolds Nuwber
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