

Calhoun: The NPS Institutional Archive DSpace Repository

An evaluation of a suggested method for measuring the effectiveness of the utilization of technically trained personnel

Knutson, James G.; Kingston, Kenneth H.
Monterey, California: U.S. Naval Postgraduate School
https://hdl.handle.net/10945/14166

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

AN EVALUATION OF A SUGEESTED METHOD FOR MEASURING THE EFFECTIVENESS OF: THE UTILIZATION OF "TECHNICALIY. TRAINED PERSONNEL.

JERRY G. KNUTSON

and
KENNETH H. KINGSTON
1

Lil
AN EVALUATION OF A SUGGESTED METHOD EORMEASURING THE EFFECTIVENESS OFTHE UTILIZATION OF TECHNICALIY TRAINEDPERSONNEL

* * * * * * * *Jerry G. Knutsonand
Kenneth H. Kingston

```
            Submitted in partial fulfillment
        of the requirements for the
                        degree of
                            MASTER OF SCIENCE
                        IN
                            OPERATIONS RESEARCH
United States Naval Postgraduate School
    Monterey, California
    1 9 6 5
```

14Tu

$$
\begin{aligned}
& \text { NP FKE } 2 \text { E }
\end{aligned}
$$

AN EVALUATION OF A SUGGESTED METHOD FOR MEASURING THE EFFECTIVENESS OF THE UTILIZATION OF TECHNICALIY TRAINED PERSONNEL

by
Jerry G. Knutson
and
Kenneth H. Kingston

This work is accepted as fulfilling the thesis
requirements for the degree of
MASTER OF SCIENCE
IN
OPERATIONS. RESEARCH
from the

United States Naval Postgraduate School

ABSTRACT

Abstract

A test based on the Operations Analysis Curriculum at the United States Naval Postgraduate School was administered to 104 Naval Officers. All examinees were graduates or students of the Operations Analysis Curriculum and/or officers holding Operations Anslysts billets in the Navy. The sub-sample, 34 examinees, consisting of officers holding Operations Analysts billets and/or Operations Analysis graduates was not sufficient to make adequate statistical determination of the measure of effectiveness proposed in a suggested methodology. The data gathered did crudely support hypothesized learning and forgetting curves and suggested that the effectiveness of Operations Analysis graduates assigned directly to Operations Analysts billets immediately after graduation is much enhanced compared to graduates who are returned first to fleet operational billets. The effectiveness of Operations Analysis trained officers in Operational Analyst billets was shown to be quantitatively and subjectively significantly superior to those with no formal Operations Analysis training. These results indicate that Naval assignment policies should be reviewed in hopes of assigning more Operations Analysis trained officers (consistent with other requirements) to these

billets. Further investigation of the results of the test vehicle and other statistics common to Operations Analysis graduates yielded a feasible procedure with which to augment the screening of prospective Operations Analysis students. Final Quality Point Rating, an acceptable measure of performance, had a . 614 correlation with four readily available statistics.

This evaluation suggests that further study in this area has great promise in yielding useful measures of effectiveness for all personnel filling billets requiring postgraduate education, provided a more effective method is employed to insure completion of the required test instrument(s).

TABLE OF CONTENTS

Section Title Page

1. Abstract i
2. Chapter I - Introduction 1
3. Chapter II - The AnalysisPart I - Determination of the Adequacy 4of the test instrument
Part II - Comments on the suggested 14method and proposed measure ofeffectiveness
Part III - Prediction of performance 21in Operations Analysis Training
4. Chapter III - Conclusions and recommend- 27ations
5. Bibliography 31
6. Appendicies
I - Test instrument results 32
II - Reliability data and calculations 41
III - Learning, relearning and for- 45getting curves
IV - Results of computer regression 50 and correlation coefficient program

CHAPTER I

INTRODUCTION

In May of 1964 Commander P. D. Roman, and
Lieutenant Commanders K. D. Russell and J。M. Dunlop posed a highly interesting and promising methodology designed to evaluate the effectiveness of the utilization of technically trained personnel within the Navy. [11] The personnel involved in this suggested Methodology were Naval Officers who have received postgraduate education. The main motivation for this proposed model was the fact that no previous quantitative study had been made to determine if a better balance of career duty assignments should be devised which would allow officers to attain the operational knowledge and experience requisite to Military Command and simultaneously approach maximum effective use of their technical skills (sub-specialties). Because the acquisition of technical skills is costly, as well as necessary, finding an optimal procedure to utilize these skills, consistent with other requisites, is virtually a "must." The pure rationality of cost-effectiveness alone supports this supposition.

Commander Roman, et。 al., constructed a test instrument modeled on the Operations Analysis curriculum at USNPGS
which would, hopefully, measure the native ability and technical knowledge of Naval Officers who are holding Operations Analysis billets and/or graduates of the Operations Analysis Curriculum. It was their hypothesis that by categorizing these officers into several distinct groups the statistical results of their performance on this test would lead to a more efficient system of career planning for these officers. If this procedure proved successful for the Operations Analysis sub-specialty, it would obviously have applications for all officers who are technically trained. The authors of the referenced methodology have presented an admirable treatise on the need for the execution of such a quantitative study.

In September of 1964 the authors of this paper mimeographed the test instrument and distributed it to officers holding Operations Analysis "P" coded billets and/or graduates of the Operations Analysis Curriculum at USNPGS. A total of 34 returns from a population of 197 officers was realized. In January of 1965 the test was also administered to 36 second year Operations Analysis students at USNPGS scheduled to graduate in May 1965. In November of 1964 , 34 first year Operations Analysis students completed the aptitude portion of the test vehicle.

The purpose of this paper is threemold:
I. To determine the adequacy of the test as a measuring instrument, i.e., does it measure what it is supposed to measure?
II. To carry out, where possible, the statistical procedures suggested by Commander Roman, et. al., and analyse their usefulness and/or implications.
III. To analyse the results of a multiple linear regression analysis performed on the CDC 1604 Computer to develop a statistical means to augment selection procedures for input to the Operations Anslysis Curriculum.

The following chapter details the analysis of the data for each of these purposes.

CHAPTER II

THE ANALYSIS

I. Determination of the adequacy of the test instrument. The test instrument used in this study consists of a background questionaire and three test parts. The questionaire is designed to obtain the examinee's educational background, a history of his duty assignments, a listing of graduate and undergraduate courses completed and the examinees opinions' as to what courses he is lacking that are required in his billet. The main purpose of this part of the test is to stratify the examinee according to educational background. The other information gained will provide further refinement of this stratification. The adequacy of this questionaire is purely subjective. The authors feel that the information provided by the questionaire will allow assignment of testees to logical categories of interest to this study.

Part I of this test is an aptitude test designed to provide a measure of the examinee's ability in problem solving, the only major factor accepted as effecting current measures of intelligence. ${ }^{1}$ This test was constructed, from investigations
${ }^{1}$ Editorial. Federal Education, You're in the Classroom Now. Time, 83, 3, January 17, 1964: 72
of aptitudes of high level personnel, under the direction of Dr. J. P. Guilford at the University of Southern California, Los Angeles. $[1,6,9]$ The authors will assume that the results of this exhaustive and authoritative study has led to the formulation of an excellent test to measure native ability. It follows that the results of this test will allow examinees to be rated according to inherent abilities. This stratification, coupled with background areas, will provide an excellent means for comparison of technical skills in the selected categories. Part II of the test deals strictly with the retention of fundamental concepts of the basic courses within the Operations Analysis Curriculum: namely, Advanced Calculus, Linear Algebra and Probability theory. This test was formulated from suggestions of Professors of the Mathematics, Physics and Operations Analysis Departments of USNPGS. It is indeed a moot question as to whether or not a good working knowledge of these courses measures, with any degree of accuracy, the ability or success of an individual as an Operations Analyst. There can be little doubt, however, that proficiency in these fields does reflect some measure of the examinees technical abilities. Beacuse we are once again caught in a subjective (or qualitative) area, at this point we will assume that the combined opinions of these recognized
educators provides a good cross section of the technical knowledge required of an effective Operations Analyst, and the results of Part II of this test will yield, at least, a relative measure among the groups of officers of their abilities as Operations Analysts. Relative performance is, after all, a very important aspect in our real world and this relative performance is in essence one major objective of this study.

Part III is a practical test designed to evaluate the examinees' ability to recognize the applicability of a class of methods to specific problems. The situations presented in these problems do not have clean-cut answers, but are designed to determine how familiar an examinee is with an "accepted or proven" Methodology as related to well-known Operations Analysis problems. The answers to the situations posed are nothing more than a mean combination of opinions expressed by noted analysts and professors at USNPGS. Once again we are using the general reasoning of the preceding paragraph in stating that this portion of the test will display a relative measure of how familiar an examinee is with the "accepted" tactics of Operations Analysis.

Thus far we have been concerned with the question of whether the test will measure what we want it to measure.

Is it a valid indication of the technical abilities we are trying to measure? To this point we have tried to answer these questions in the affirmative by the use of subjective reasoning. This procedure is necessary because the determination of test validity does not readily or easily lend itself to meaningful quantitative analysis. ${ }^{2}$ Despite this dilemma, certain mathematical techniques do allow a degree of quantitative determination of adequacy to be calculated. The entire question of determining the adequacy of this test could be measured by two broad criteria: VAIIDITY and RELIABILITY. Reliability is defined as a measure of how faithfully the test allows the examinee to display the true percentage of the questions presented in the test to which he actually knows the answers. A mathematical presentation of this reliability follows.

Doctor J. P. Guilford has developed a mathematical model to evaluate the reliability of any test. Because the entire development is extremely lengthy we shall present only the basic assumptions and final forms of the reliability equations. ${ }^{3}$

[^0]The effects of these variations have been reduced as much as possible by the use of an a priori weighting of raw total scores.

$$
\begin{equation*}
S=\frac{R(K-1)-W}{K}, \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
S= & \text { Adjusted Score, } \\
R= & \text { Number of Right Answers }, \\
W= & \text { Number of Wrong Answers, } \\
K= & \text { Number of Alternate Responses to each } \\
& \text { item }
\end{aligned}
$$

This method of scoring is designed to nullify the small but not necessarily minute possibility that the examinee may guess the correct answer.

Doctor Guilford has postulated that, in theory, a regression equation could be calculated between observed scores and the true score (exactly how many questions the student knows the answers to) as depicted in Figure 1. In the development of this theory Dr. Guilford postulated that in any academic area a test of infinite length would be necessary to completely describe an examinee's knowledge of the subject. In like manner the authors have denoted true score by the symbol 00 .

FIGURE 1

The following assumptions were used in the mathematical development:

$$
\begin{aligned}
& \text { I Me } \equiv \text { Mean error }=0 . \\
& \text { II } \begin{aligned}
& \equiv \text { Correlation of true and error scores }=0 . \\
& \text { III } Y_{e_{1}, e_{2}} \equiv \text { Error score correlation in any two forms } \\
& \text { of the same test }=0 .
\end{aligned}
\end{aligned}
$$

IV Distribution of errors is normal.
It then follows that:

$$
M_{\infty}=M_{t}+M_{e}=M_{t}
$$

and

$$
\nabla_{\infty}=\sigma_{t}+\nabla_{e}, \quad \text { where } \nabla_{i}=\text { variance of } i_{0}
$$

This leads to the logical definition of reliability of a test as the proportion of true variance in obtained test scores or

$$
\begin{equation*}
Y_{t}=\frac{\nabla_{1}^{-\infty}}{\nabla_{t}^{\varepsilon_{i}}}, \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \gamma_{2} \equiv \text { Test reliability, } 0 \leq r_{t} t \leq 1 \\
& r_{00} \equiv \text { True variance of test scores } \\
& \nabla_{t}^{+} \equiv \text { Observed variance of test scores. }
\end{aligned}
$$

Because of the difficulty in obtaining $\sqrt{\infty}{ }^{2}$ equation (2) has been reduced (closely approximated) as follows:
where:

$$
\begin{equation*}
r_{t t}=1-\frac{\sqrt{I}^{2}}{\sqrt{t}^{2}}, \tag{3}
\end{equation*}
$$

$$
d \text { Difference between the scores on even }
$$

$$
\begin{aligned}
& \text { items and odd items on the test }, \\
& \equiv \text { Variance of these differences }
\end{aligned}
$$

$$
\Gamma_{t}^{2} \equiv \text { Variance of obtained total scores. }
$$

The variables in equation (3) can be readily calculated for any test.

A final consideration must be made in view of the fact that the test in question was timed and therefore speeded to some extent. Speed does detract from performance which we do not want reflected in reliability. The final form of this reliability equation is
where:

$$
\begin{equation*}
r_{M}=r_{t t}-\frac{\bar{u}}{\bar{\sigma}_{t e}}, \tag{4}
\end{equation*}
$$

$$
r_{m} \equiv \text { Reliability of slightly speeded test, }
$$

$$
r_{t t} \equiv \text { as before }
$$

$$
\bar{u} \equiv \text { mean number of unattempted items, }
$$

$$
\nabla_{t e}^{2} \equiv \text { variance of total test error scores. }
$$

Equation (4) is a close approximation to true reliability, as previously defined, of a speeded test provided that:
$\frac{\bar{u}}{\nabla_{t e}{ }^{2}} \leq 0.3$
and
$\frac{\sigma_{u}}{\sigma_{w}} \leq 1.3$,
where: $\nabla_{u} \equiv$ Standard deviation of unattempted test items,
$\begin{aligned} W_{W} \equiv & \begin{array}{l}\text { Standard deviation of } \\ \text { test items answered } \\ \text { incorrectly. }\end{array}\end{aligned}$

As suggested by Commander Roman, et. al., examinees were placed in the following categories:
(1) USNPGS Students nearing completion of their final year of the curriculum.
(1A) USNPGS Students in second term of first year of Operations Analysis Curriculum.
(2A) Graduates who have been assigned (and are in) directly to Operations Analysis billets.
(2B) Graduates who have never been associated with Operations Analysis billets.
(2C) Graduates who have completed a direct assignment in Operations Analysis billets and are now in unassociated activities.
(2D) Graduates who were not immediately assigned Operations Analyst billets but are now serving in that capacity.
(3) Non-Graduates who are presently serving in Operations Analyst billets.

Clearly all examinees involved in this study fall into one and only one of these categories. The chosen method of attack is to compare various categories by means of forgetting, learning and re-learning curves in hopes of deducing a useful measure of effectiveness. As a common basic for comparison, all examinees were stratified by comparing their results of Part I (Inherent Abilities) with the mean score of Part I for Category I. This procedure is logical because present students should be more familiar with the basic fundamentals of the courses test Parts II and III are concerned with.

To be specific, a ratio of an individual's score on Part I to the mean score of Category I on Part I was multiplied by the scores on Part II and III and this figure compared to the same mean score attained on Parts II and III by Category I.

From equations (3) and (4) and the information displayed in Appendix II the reliability of this entire test was calculated to be $T_{M}=.9024$. Category I students were chosen as a reliability base for the following reasons:

1. All data and comparisons are to be based on their performance.
2. Strict time limitations were imposed on these testees and we feel that their test conditions are more in keeping with the stipulations and assumptions made in the development of the reliability equations. ${ }^{4}$

In the final analysis, validity has to do with what test scores measure and what they will predict. A score is valid for predicting anything with which it correlates, where "anything" does not include the score itself, for a self prediction has to do with reliability. 5 We chose to predict
${ }^{4}$ Guilford, Jo P. Psychometric Methods, McGraw Hill Co., Inc., New York, 1954: 366
5^{5} Ibid: 398
final graduate level QUALITY POINT RATING* of Operations Analysis graduates of USNPGS. Here we have assumed that the degree of successful completion of the curriculum (hence a measure of technical ability) is measured by the reliability of the criterion of $Q . P . R . ;$ although the reliability of $Q . P \cdot R$. as a criterion is not known, it is the only quantitative measure we have for comparison and have therefore assumed, for the purposed of this study, it to be l.0. The results of a multiple linear regression analysis (Appendix IV, pp. 50) shows that the correlation coefficient of $Q . P . R$. to various parts of the test scores is a minimum of .5978 and a maximum of .6142. As shown in Appendix IV, it was found that Part II versus Time in Operations. Analyst billet or Time since Graduation, Part I and Category type had a multiple correlation of .8210 , indicating that technical knowledge is extremely dependent upon inherent ability and the way time is utilized after aquisition of these abilities. Since the reliability of this test is a high .9024 and its overall correlation to a real life criterion is high, it follows that the quantitative adequacy of this test is very high.

[^1]Within the assumptions stated, the quantitative reliability and validity calculation and the previous subjective verifications, the overall adequacy of this test is excellent. One final word on this "sticky" subject. This test was sent to Mr. R.P. Richardson, Head Operations Analyst for LING-TEMPCO-VAUGHT ASTRONAUTICS in Dallas, Texas for his comment as well as the reaction of his fellow employees. Mr. Richardson replied that in his opinion, and the opinion of his collegues, the overall design of the test should yield a practical relative measure of the technical tools of Operations Analysts.
II. Comments on the suggested method and proposed measure of effecticeness.

In the suggested methodology, two families of curves were to be plotted and studied in hopes of arriving at a useful measure of effectiveness. The first family of curves was to be a plot of weighted adjusted score (as described in I above) for categories $2 A, 2 B, 2 C$ versus time. The courses were postulated to appear as in Figure 2.

The second family of courses were to be concerned with the process of learning and relearning basic technological knowledge and were hypothesized to appear as in Figure 3.

EIGURE 3
The plots of Figure 2, if correct, would indicate that intervening duty assignments between acquisition of technical knowledge and application in the given field results in a larger loss of the tools required. A useful M.O.E. was to be constructed from the type graphs of figure 3. For example: if "b" in figure 3 indicates the ordinal value of the asymptote of curve E, the ratio of curriculum time to curriculum time plus time required for category 2 D (graduates who are essentially re-learning the technical tools) would yield a value between 0 and 1 , a higher value correlating to a more effective utilization of the technical resorurce and would imply a certain percentage of effectiveness. If this
ratio were to be drastically low it would demonstrate the need for assigning the technically trained to associated billets immediately after graduation to more effectively utilize the costly process of educating these individuals. Appendix III contains plots of weighted adjusted scores on Part II versus Time for the above mentioned categories. These graphs have the approximate shapes of Figures 2 and 3. At this point this particular plan of attack breaks down. As previously stated, 34 returns out of a population of 197 was realized. This resulted in a maximum of 14 points for the learning curve for category 3 and a minimum of two points for category $2 C$. It is a well known fact that little credence can be placed in a statistical procedure unless:
I. The sample size is very large (.9 to .95) in proportion to the population size, or ${ }^{6}$
II. One can safely assume knowledge of the exact distribution of the random variables observed, and/or have control over the method of selecting the sample size.?
${ }^{6}$ Burington, R. S., and May, D. C. Handbook of Probability and Statistics with Tables, Handbook Publishers, Inc., Sandusky, Ohio 1953: 170
${ }^{7}$ Ibid: 170-178

Clearly none of these proposed curves contain data satisfying any of these conditions. At most, one can say that the data so far gathered crudely support the hypothesized curves and that future study along these lines has more than a possibility of being fruitful.

If, however, we consider the sample size to consist of only two groups, Operations Analysis graduates and NonOperations Analysis graduates, several meaningful implications can be garnered from the test results. (Group I Operations Analysis Graduates, Group II Non-Operations Analysis Graduates). The mean score on Part I for Group II was 6.0 points below Group I indicating a significantly lower proficiency in the area of problem solving. The mean scores on Parts II and III were respectively, 3 and 4 times as high for Group I as for Group II. These mean scores had a standard deviation of less than 7.0 for the "worst" case. Group I's comments on the courses that they thought they were lacking were of a highly specialized nature (Dynamic Programming, Specialized Methods of Cost-Effectiveness, etc.) while Group II's overall response indicated they were lacking in the most rudimentary areas such as basic probability and statistics, linear programming, calculus, etc. Only two officers in Group II had any postgraduate education.

These disparities in relative performance of Group II to Group I exist despite the fact that the mean time in billet for Group II is 19 months - only two months less than time required for completion of the Operations Analysis Curriculum, thus indicating that on-the-job training is not very effective。 From these facts there exists a clear implication that there is a significant difference in the technical abilities and therefore effectiveness of Group I and Group II as practicing Operations Analysts. The least one could say is that Group I displays a marked advantage over Group II in the technical tools needed in the field of Operations Analysis.

One might say this is not surprising - any logical person would safely assume an Operations Analysis trained person to be more effective than one not so trained. This conjecture is most likely true in highly specialized fields (such as microelectronics), but cannot be safely assumed for fields such as Operations Analysis. Operations Analysis is concerned with optimal solutions to real life problems arrived at by the applications of all sciences and the rational logic intrinsic to them. Therefore it could just as well be said that an officer with a good working knowledge of "the sciences" has an excellent chance of being an effective

Operations Analyst. Although all examinees in Group II have Bachelor's degrees in fields requiring the basic mathematical and scientific technologies used by the Operations Analyst, the quantitative results of this study indicate that their ability to effectively apply these tools to Operations Analysis problems is relatively low.

Why is all this important? The Navy has stated that its policy in the future will be to continue to educate officers at the Postgraduate level in ever-increasing numbers. 8 Whatever their reasons may be for arriving at this decision, the cost of training these officers has or will be expended and cannot be recovered. It therefore logically follows that the most effective use of these officers will yield the maximum return for the money spent. In the past, many Operations Analysis trained officers have never held Operations Analyst billets and many officers have been assigned to these billets so long after their training as to nullify the maximum effectiveness they could display. 9 It is highly likely that this situation exists in other technical fields within the Navy.
${ }^{8}$ OPNAV Instruction 1040.2 dated 9 December 1963: 2 $9_{\text {Roman, P. Do, Russel, K. B., and Dunlop, J. M. }}$ A Suggested Method for Measuring the Effectiveness of the Utilization of Technically Trained Personnel, U.S. Naval Postgraduate School, Monterey, California 1964: 9

These results clearly indicate that the Navy should give more thought to the problem of using the technical abilities of these officers more effectively. Specifically, a review of present career planning should be made in hopes of arriving at a method of duty assignment planning which will allow technically trained officers to be assigned associated billets compatible with their education at the earliest possible date after completion of this education. This of course must be done in light of providing the officer with the operational experience necessary for Military Command。 ${ }^{10}$ The authors are certain that the Navy is aware of this problem, but may not be cognizant of the fact that the use of officers not trained in such specialties as Operations Analysis results in a large loss of effectiveness that could be realized by more judicious use of the available corps of technically trained officers.

III。 Prediction of performance in Operations Analysis Training.

During the gathering and analysis of the data for the previous parts of this paper the authors discovered what appeared to be another fruitful avenue of investigation; the prediction of performance in the Operations Analysis Curriculum. Since $Q \circ P \circ R$. is accepted universally as a measure of a person's knowledge of the technical tools acquired during his training, it would be especially welcome if some means of predicting, before training commenced, the approximate skill any particular person, or more appropriately, any group of persons would aquire. If such a predictor could be developed, any input group to the Operations Analysis Curriculum could be selected so as to yield maximum benefit to the Navy for the time and money expended on the training.

In an attempt to develop some prediction relationships, a number of statistics were considered as variables. Using Q.P.R. as the variable to be predicted nine other statistics were treated as the predictors;

1. Score on Part I of the test vehicle.
2. Verbal score on the Graduate Record Examination.
3. Quantitative score on the Graduate Record Examination.

4．Advanced score on the Graduate Record Examination．
5．Time since graduation or time in an Operations Anslysis billet．

6．Score Part II of the test vehicle。
7．Score Part III of the test vehicle．
8．Category as defined previously for responders．
9．Sum of Parts I，II，and III。
A standard linear regression analysis（see Appendix IV） was performed on a CDC 1604 to obtain the prediction equations．The level of significance on the F－test used was fixed at 0.01 for all runs．As previously mentioned in Part II of this paper one run was made using the scores of Part II and then Part III of the test vehicle as the dependent variable．Many other equations were also obtained， not with the purpose of predicting $Q . P . R$ ．specifically but for obtaining as much information about the correlations of the various statistics as possible．A complete summary of these equations is contained in Appendix IV。 Initially three different groups of data points were used：

I．All Operations Analysis students and graduates for which $Q_{\circ} P_{\circ} R_{0}$ ，and the $G \circ E \circ E$ 。scores were available。

II．The class of 1965 。
III．The class of 1965 and previous Operations Analysis graduates whose statistics were available。

From each group of data points eight regression equations were obtained. All these equations are tabulated in Appendix IV. The equations of interest in predicting Q.P.R. are necessarily those containing only independent variables which are readily available before a person or person's start the course of instruction. Of the group of variables used in the analysis only Part I and the G.R.E. scores would be obtainable prior to enrolement.

The following is the regression analysis and equations obtained in the order of the groups of data points.

GROUP I

Var-

iable No.	Mean	Standard Deviation	Regression Coefficient	Std. Error of Reg. Coef.
2	50.318	6.349	.031	.011
3	579.649	108.514	.001	.001
4	673.377	86.551	.001	.001
5	308.701	248.352	.000	.000
1	1.938	.625		

Multiple Correlation Coefficient .5978

Computed	Partial	Variance	Prop. Var。
T Value	Corr. Coef.	Added	Cum.
2.778	.311	7.670	.259
1.466	.170	1.672	.056
1.639	.189	.699	.024
1.446	.168	.553	.019

GROUP II

Vara iable No。	Mean	Standard Deviation	Regression Coefficient	Std。 Error of Reg。 Coef。
2	52.228	5.365	.032	.013
3	610.833	76.322	-001	.001
4	675.556	95.900	.001	.001
5	545.000	91.853	.001	.001
1	2.043	.410		

Multiple Correlation Coefficient ． 6142

Computed	Partial	Variance	Prop。Var．
T Value	Corr。Coef：	Added	Cum。
2.483	.407	1.747	.296
-.993	-.176	.037	.006
.662	.118	.147	.025
1.571	.272	.292	.050

GROUP III

Var－ iable No．	Mean	Standard Deviation	Regression Coefficient	Std。 Eeg。 Error of Refo
2	52.433	6.017	.022	.010
3	607.111	82.754	-.001	.001
4	682.889	91.617	.001	.001
5	554.444	93.628	.002	.001
1	2.103	.413		

Multiple Correlation Coefficient ． 6118

Computed T Value	Partial Corr。Coef。	Variance Added	Prop。Var。 Cum。
2.289	.340	1.652	.220
-.943	-.148	.003	.000
.773	.121	.292	.039
2.712	.394	.864	.115

It is readily seen from the above equations that the multiple correlation coefficients of the three groups of data points are remarkably constant $(0.5978,0.6142$, 0.6118). The authors found this somewhat surprising since previous analysis of data had indicated that the Q.P.R. of the 1966 class would not have settled down into the same pattern as those of the 1965 class and the graduates. It had further been hypothesized that the data points obtained from graduates would be somewhat distorted due to their high mean $Q . P \cdot R$. and the fact that since they were not in school they would have lost some of their "test taking ability." Even though the multiple correlation coefficients are fairly constant over the three groups of data it is apparent that the class of 1966 does degrade the results and it is therefore felt that either the second or third equation should be used for prediction.

As time passes and more data points are obtained it is felt that this method will yield ever better prediction equations. The authors leave it to the readers to decide if the present equations with approximately 0.34 as the standard error of estimate is sufficiently accurate for their application. The authors do feel that the results
obtained thus far strongly support the hypothesis that the predictors (Part I, $G . R . E . s c o r e s)$ can be used to select the makeup of a class or predict the performance of a previously selected group. It is further felt that these predictors and methodology could be applied to other curricula with equally promising results.

CHAPTER III

CONCLUSIONS AND RECOMMENDATIONS

Reliability and Validity determinations for the test instrument have shown that the basic tool of the proposed methodology is a feasible and meaningful model with which to measure technical resources. Admittedly there are a number of necessarily subjective "proofs" included in this analysis, but the authors feel that quantitative determinations have served to augment these "proofs," and provide a creditable coalescence leading to an overall high degree of adequacy for the test vehicle. This logical trajectory had led the authors to the conclusion that this test does measure relative percentages of technical resources which in turn gives an excellent indication of effectiveness in billets requiring these resources.

Analysis of the data garnered from this test model on the Operations Analysis Curriculum has objectively indicated that:
(1) The percentage of technical resources retained decreases logarithmically (approximately) with time.
(2) On-the-job training in Operations Analyst billets is significantly inferior to formal Operations Analysis training -
especially in the area of learning fundamental technical knowledge.
(3) If technical ability is utilized immediately after it's acquisition, loss of this resource occurs at a slower rate.
(4) Although Operations Analysis is a field utilizing mainly the basic sciences (Mathematics, Physics, Probability, etc.), College Graduates (Non Operations Analysis trained) holding degrees which require knowledge of most of these subjects do not possess nor readily learn the basic tools of the Operations Analyst.
(5) Graduates of the Operations Analysis Curriculum (regardless of time since completion of course or use or non-use of technical abilities) display three (3) to four (4) times the technical knowledge of College Graduates who have held Operations Analyst billets for an average of 19 months.
(6) Use of Part I of the test instrument and the three parts of the graduate achievement tests taken by all students of USNPGS has yielded a quantitative method of augmenting the screening of prospective students to the Operations Analysis Curriculum.

From these conclusions it is recommended that:
(1) Further investigation of this methodology be under-
taken. It is obvious that the sample sizes obtained were not large enough to make "bullet proof" statistical conclusions but rather serve as indications that the stated postulates concerning the use of technical abilities and the effectiveness of various groups of officers holding Operations Analyst billets are essentially correct.
(2) The significant disparity in technical abilities of the two groups of officers mentioned in 5. (above) definitely suggests that Naval Officer assignment policies be reviewed in hopes of assigning as many Operations Analysis trained officers to Operations Analyst billets as is consistent with other requirements.
(3) Use of the regression equations and correlation coefficients presented in Appendix IV would be of considerable use for Operations Analysis Curriculum officials in balancing the levels of Operations Analysis Classes in any manner consistent with the ever changing policies and needs of the Postgraduate School.
(4) If future investigations of this type are undertaken a more effective method of insuring the test subjects complete the required questionaire and test instrument should be invoked. The authors were forced to appeal to the examinees sense of responsibility, their response being completely voluntary.
(

It is felt that in order to obtain meaningful sample sizes from which learning and forgetting curves can be accurately constructed, and measures of effectiveness deduced, completion of the test vehicle should, in some manner, be made mandatory.

1．Allen，M．So，Guilford，J。 P。o and Merrifield，P．R． The Evaluation of Selected Intellectual Factors by Creative Research Scientists．Reports from the Psychological Laboratory \＃25，University of Southern California，Los Angeles， 1960.

2．ALNAV 01／64 dated 11 January 1964.
3．Burington，R。So，May，D。C．Handbook of Probability and Statistics with Tables，Handbook Publishers，Inc．， Sandusky，Ohio，1953．

4．Cronbach，L。 J．Essentials of Psychologic Testing， Harper and Brothers，New York，1949．

5．Editorial．Eederal Education，You＇re in the Classroom Now．Time，83，3，January 17，1964．

6．Guilford，J．Po，et．al．A Factor－Analytic Study Across the Domains of Reasoning，Creativity and Evaluation．Reports from the Psychological Laboratory \＃11，University of Southern California，Los Angeles， 1960.

7．Guilford，J．P．Fundamental Statistics in Psychology and Education，McGraw Hill Co．，Inc．，New York，1956， 3rd Edition．

8．Guilford，J．P．Psychometric Methods，McGraw Hill Co．，Inc．，New York， 1954.

9．Merrifield，P。R。，Guilford，J。 P。，et．al．A Factor－ Analytic Study of Problem Solving Abilities．Reports From the Psychological Laboratory \＃22，University of Southern California，Los Angeles， 1960.

10．OPNAV Instruction 1040.2 dated 9 December 1963.
11．Roman，P。D．，Riussel，K。B．，and Dunlop，J．M．A Suggested Method for Measuring the Effectiveness of the Utilization of Technically Trained Personnel，U．S．Naval Postgraduate Schaol，Monterey，California， 1964.

12．SECNAV Instruction 1520．4 dated 7 March 1963.

APPENDIX I

SCORES ACHIEVED ON TEST INSTRUMENT

| | | | | | G.E.D.RESULTS | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Examinee | PART I | PART II | PART III | QPR | VERB | QUAN | ADV |
| 1 | 53.0 | 16.5 | 1.85 | 1.92 | 510 | 570 | 540 |
| 2 | 49.88 | 26.5 | 2.85 | 2.34 | 600 | 570 | 610 |
| 3 | 49.6 | 16.5 | 2.85 | 1.50 | 590 | 640 | 520 |
| 4 | 52.6 | 21.5 | 2.85 | 2.19 | 610 | 690 | 480 |
| 5 | 60.9 | 29.5 | 3.85 | 2.83 | 610 | 740 | 520 |
| 6 | 51.96 | 20.5 | .855 | 1.80 | 630 | 760 | 500 |
| 7 | 53.5 | 15.5 | 1.85 | 2.11 | 730 | 590 | 490 |
| 8 | 55.6 | 32.5 | 6.85 | 1.98 | 520 | 600 | 580 |
| 9 | 50.6 | 17.5 | 2.85 | 1.83 | 570 | 620 | 510 |
| 10 | 60.6 | 27.5 | 1.85 | 2.31 | 590 | 810 | 540 |
| 11 | 47.6 | 11.5 | 2.85 | 2.00 | 590 | 780 | 560 |
| 12 | 50.6 | 21.5 | 2.85 | 1.85 | 680 | 840 | 570 |
| 13 | 61.6 | 35.5 | 2.85 | 2.53 | 600 | 850 | 730 |
| 14 | 49.0 | 19.5 | 1.85 | 1.38 | 510 | 480 | 460 |
| 15 | 52.6 | 27.5 | 4.85 | 2.27 | 710 | 770 | 550 |
| 16 | 48.6 | 22.5 | 2.85 | 1.47 | 660 | 690 | 470 |
| 17 | 45.63 | 26.5 | 2.85 | 2.56 | 650 | 570 | 720 |
| 18 | 51.6 | 14.5 | 3.85 | 1.44 | 640 | 550 | 440 |
| 19 | 51.6 | 24.5 | 4.85 | 2.08 | 560 | 660 | 510 |
| 20 | 50.6 | 21.5 | 3.85 | 2.54 | 610 | 600 | 490 |
| 21 | 49.6 | 14.5 | 3.85 | 1.49 | 710 | 680 | 490 |
| 22 | 47.6 | 13.5 | 4.85 | 1.56 | 600 | 690 | 430 |
| 23 | 50.63 | 14.5 | 28.858 | 1.58 | 530 | 610 | 520 |
| 24 | 54.6 | 28.5 | 2.85 | 2.39 | 610 | 830 | 700 |

CATEGORY 1 CLASS 1965 (Continued)

				G.E.D. RESULTS			
Examinee	PART I	PART II	PART III	QPR	VERB	QUAN	ADV
25	47.6	27.5	4.85	1.83	540	670	590
26	42.0	20.5	3.85	2.36	540	630	390
27	60.6	26.5	2.85	2.29	670	690	680
28	53.6	27.5	3.85	2.47	590	720	420
29	47.6	16.5	4.85	1.89	720	760	720
30	60.6	23.5	6.85	2.39	710	780	560
31	63.6	26.5	5.85	2.60	680	840	750
32	50.0	25.5	.858	2.25	440	570	510
33	60.6	25.5	4.85	2.32	760	660	580
34	41.6	14.5	1.85	1.42	530	590	420

[^2]CATEGORY LA INPUT OPERATIONS ANALYSIS CLASS 1966 - PART ONE TAKEN DURING FIRST TERM IN CURRICULUM

Examinee	PART I	
1	50.6	
2	52.6	
3	35.6	
4	45.6	
5	54.6	
6	50.6	
7	53.6	
8	45.6	
9	33.6	
10	47.6	
11	51.6	
12	54.6	
13	49.6	
14	60.6	
15	38.6	
16	38.0	Mean $=47.9$
17	44.6	
18	47.6	Standard Deviation $=6.41$
19	43.6	
20	46.6	
21	53.6	
22	51.6	
23	37.6	
24	43.6	
25	50.6	
26	46.6	
27	58.6	
28	44.0	
29	52.6	
30	50.6	
31	48.6	
32	49.6	
33	54.6	
34	41.6	

OPERATIONS ANALYSIS GRADUATES WHO HAVE GONE DIRECTLY TO OPERATIONS ANALYST BILIETS
CATEGORY 2A

นとəた

นо！7e！ィәव puepue7s
NEVER
HAVE COMPLETED DIRECT DUTY IN AND ARE NOW IN ACTIVITIES

	time since	since left	PART	PART	PART	SUM	
Examinee	Graduation	OA billet	I	II	III	I, II, III	QPR
1	55	34	63.6	17.5	2.85	83.95	2.51
2	24	8	53.63	29.5	4.85	87.98	2.01

			SUM	
PART I PART II	PART III	I, II, III	QPR	
58.61	23.50	3.85	85.96	2.26
4.80	6.00	1.00	2.24	

GRADUATES WHO HAVE COMPLETED AN INTERVENING
ASSIGNMENT AND ARE NOW IN OPERATIONS ANALIS BILLETS
Months Months
CATEGORY 2D
u! əu!̣
time since
OA billet
uo!fenpex

ゆNIU＇IaれOD Sت山甘 TEST INSTRUMENT

ueว
Standard Deviation
CATEGORY 3
NON OPERATIONS ANALYSIS GRADUATES HOLDING OPERATIONS ANALYSTS BILLETS

APPENDIX II

RELIABILITY DATA
RELIABILITY DATA - OPERATIONS ANALYSIS CLASS 1965

8	$\left(w_{i}-\bar{w}\right)^{2}$	
\times	$\begin{aligned} & \text { number of } \equiv W_{i} \\ & \text { items answ- } \\ & \text { ered incorr- } \\ & \quad \text { ectly } \end{aligned}$	
$\stackrel{\longleftrightarrow}{H}$	$\left(u_{i}-\bar{u}\right)^{2}$	
	$\left\lvert\, \begin{gathered} \text { number of } \\ \text { unattempted } \\ \text { items } \end{gathered} \equiv u_{i}\right.$	Mn-NinotmmunmNotromenoot
S	$\left(t_{e i}-\bar{t}_{e i}\right)^{2}$	
H	$\mid \text { test erron } \equiv \text { tei } \mid$	
\rightarrow	$\left(t_{i}-\bar{t}\right)^{2}$	oom
	$\underset{\text { score }}{\text { total }_{\text {test }}} \equiv t_{i}$	
品	$\left(x_{i}-\bar{x}\right)^{2}$	
	$\begin{aligned} & \text { even item } \\ & \text { score } \end{aligned} \equiv E_{i}$	
	$\begin{aligned} & \text { odd itern } \equiv O_{i} \\ & \text { score } \end{aligned}$	
	STUDENT	-1

Data from Table \#l
Equations from Chapter II

$$
\begin{gathered}
R_{m} \equiv R_{\text {ELIABILITY }} F_{O R} T_{\text {EST }} I_{\text {NSTRUMENT. }} \\
R_{m}=\left[1-\frac{\bar{T}_{d}^{2}}{\sigma_{t}^{2}}\right]-\frac{\bar{u}}{\sigma_{t e}^{2}}, \\
P_{\text {ROVIDED }}: \frac{\bar{u}}{\sigma_{t e}^{2}} \leq 0.3 \text { ANd } \frac{\sigma_{u}}{\sigma_{w}} \leq 1.3 . \\
\Rightarrow R_{m}=\left[1-\frac{3.52}{100.976}\right]-\left[\frac{4.77}{112.211}\right] \\
R_{m}=0.9024 . \\
\frac{\bar{u}}{\sigma_{t e}^{2}}=\frac{4.77}{112.211}=0.0466<0.3 \\
\frac{\sigma_{u}}{\sigma_{w}}=\frac{2.38}{8.43}=0.282<1.3 .
\end{gathered}
$$

Q.E.D.

APPENDIX III

Learning, Relearning
and Forgetting Curves

KEY TO GRAPHS

Weighted Adjusted Score is the ratio of the Mean Score of a particular category to the individual's score on Part I multiplied by the individual's score on Part II.

APPENDIX IV
REGRESSION EQUATIONS AND
CORRELATION COEFFICIENTS

Regression Fquations using all Operations Analysis students and graduates for which QPR, and the G.R.E. scores were available.

Variable No.

1	Quality Point Rating
2	Part I Score
3	G.R.E.Verbal Score
4	G.R.E. Quantitative Score
5	G.R.E. Advanced Score
6	Time (in billet or out of school)
7	Part II Score
8	Part III Score

CORRELATION COEFFICIENTS

ROW 1

1.00000 .42051 . 39584 . 37374 . 50869

ROW 2 .42051 1.00000 . 47756.30214 . 42939

RON 3
.39584 . 47756 . 00000.19532 .41359
ROW 4 .37374 . 30214 . 19532 1.00000 . 35157

ROW 5 .50869 .42939 .41359 .351571 .00000

SAMPLE SIZE 77
NO. OF VARIABLFS 5 NO. OF VARIABLES DELETED 3 (FOR VARIABLES DEPENDENT VARIABLE IS NO NO. 1 DELETED, SEE BELOW)

COEFFICIENT OF DETERMINATION . 3574

MULTIPLE CORR. COEFFICIENT
.5978
SUM OF SQUARES ATTRIBUTABLE TO REGRESSION 10.59485
SUM OF SQUARES OF DEVIATION FROM REGRESSION 19.04868
VARIANCE OF ESTIMATE . 26456
STD. ERROR OF ESTIMATE . 51436
INTERCEPT (A VALUE) - 1.14097
STD. ERROR OF INTERCEPT . 57577
ANALYSIS OF VARIANCE FOR THE MULTIPLE LINEAR REGRESSION

| SOURCE OF VARIATION | D.F. | SUM OF SQUARES | MEAN SQUARES | F VALUE |
| :--- | :---: | :---: | :---: | :---: | :---: |
| DUE TO REGRESSION | 4 | 10.59485 | 2.64871 | 10.0116 |
| DEVIATION ABOUT REGRESSION | 72 | 19.04868 | .26456 | |
| TOTAL | 76 | 29.64352 | | |

COMP. CHECK ON FINAL COEFF.
MEASURE OF EFFICIENCY (STD. ERROR OF EST./REG. COEFF.) $\begin{array}{llll}16.82825 & 535.97354 & 392.20669 & 1565.91004\end{array}$
VARIABLES DELETED 678 VARIANCE PROP. VAR.

90000°

ADDED
.67059
.59153
.82547
.00189

.0018

.06015

VARIABLE NO.	MEAN	$\begin{aligned} & \text { STD. } \\ & \text { DEVIATION } \end{aligned}$	REG. COEFF.	STD. ERROR OF REG. COE.	$\begin{aligned} & \text { COMPUTED } \\ & \text { T VALUE } \\ & \hline \end{aligned}$	PARTIAL CORR. COE.	VARIANCE ADDED	PROP. VAR CUM.
2	50.31818	6.34913	. 04208	. 01049	4.01231	. 42507	7.67059	. 25876
7	12.36364	11.87175	.00964	. 01008	. 95571	.11116	1.09873	.03706
8	1.93506	2.02699	. 00924	. 05865	.15759	.01844	. 00710	. 00024
1	1.93779	.62454						

MULTIPLE CORR. COEFFICIENT . 5447

MULTIPLE CORR．COEFFICIENT
VARTABLE STD．

$\begin{array}{c}\text { VARIABLE } \\ \text { NO．}\end{array}$	MEAN	$\begin{array}{c}\text { STD．} \\ \text { DEVIATION }\end{array}$
6	1.27273	4.22909
1	1.93779	.62454

MULTIPLE CORR。 COEFFICIENT
.1401
.5371
REG．
． 62454
VARIABLE STD．REG．STD．ERROR COMPUTED PARTIAL VARIANCE PROP。VAR． $.05004 \quad .00978$
.5087
MULTIPLE CORR。COEFFICIENT

GROUP II

```
    Regression Equations using just the class of 1965.
```

Variable No,

1	Quality Point Rating
2	Part I Score
3	G.R.E. Verbal Score
4	G.R.E. Quantitative Score
5	G.R.E.Advanced Score
6	Time (in billet out ol school)
7	Part II Score
8	Part III Score

CORRELATION COEFFICIENTS
ROW 1
1.00000 .31319 . $49274 \quad .43350$. 54445

ROWE 2 .31319 1.00000 . 43538 . 26674 . 09552

ROW 3 $.49274 \quad .43538 \quad 1.00000 \quad .44631 \quad .37425$

ROW 4 $\begin{array}{llll}.43350 & .26674 & .44631 & 1.00000\end{array} .45348$

ROW 5
$\begin{array}{lllll}.54445 & .09552 \quad .37425 & .45348 & 1.00000\end{array}$

SAMPLE SIZE 36
NO. OF VARIABLES 5 NO. OF VARIABLES DELETED 3 (FOR VARIABLES DEPENDENT VARIABLE IS NOW NO. I DELETED, SEE BELOW')

COEFFICIENT OF DETERMINATION . 3772
MULTIPLE CORR. COEFFICIFNT . 6142
SUM OF SQUARES ATTRIBUTABLE TO REGRESSION 2.22289
SUM OF SQUARES OF DEVIATION FROM REGRESSION 3.66991
VARIANCE OF ESTIMATE . 11838
STD. ERROR OF ESTIMATE . 34407
INTERCEPT (A VALUE) ©. 10242
STD. ERROR OF INTERCEPT . 64905
ANALYSIS OF VARIANCE FOR THE MULTIPLE LINEAR REGRESSION

MULTIPLE CORR。COEFFICIENT

VARIANCE PROP．VAR． ADDED CUM．

T8870 \quad L6L9 $0^{\circ} \quad$ 6205て

MULTIPLE CORR．COEFFICIENT ． 5194
STD
MUTIPLE CORR。COEFFICIENT

.6323

MULTIPLE CORR. COEFFICIENT . 4876

CUM. VAR.
CUN.

PARTIAL
CORR. COE
.31010
.46812
.08170

COMDUTEA

STD REG
MULTIPLE CORR. COEFFICIENT

.5033
MULTIPLE CORR. COEFFICIFNT

PARTIAL CORR．COE	VARIANCE ADDED	PROP。VAR。 CUM。
.54445	1.74679	.29643

STD．FRROR COMPUTED
OF REG．COE．T VALUE

$\begin{array}{c}\text { VARIABLE } \\ \text { NO．}\end{array}$	MEAN	STD．
2	52.22778	5.3650
1	2.04333	.4103
MULTIPLE CORR．COEFFICIENT		

Regression Equations using the class of 1965 and previous
Operations Analysis graduates whose statistics were available.
Variable No.

1	Quality Point Rating
2	Part I Score
3	G.R.E. Verbal Score
4	G.R.E. Quantitative Score
5	G.R.E. Advanced Score
6	Sum of Parts I, II, and III
7	Part II Score
8	Part III Score

CORRELATION COEFFICIENTS
ROW I
1.00000 .34292 .41106 .36267 . 46906

ROW 2 .34292 . 1.00000 . 28744529.14136

ROW 3 $.41106 \quad .47445 \quad 1.00000 \quad .41974 \quad .35087$

ROW 4 .36267 . 28329.419741 .00000 . 51502

ROW 5 $.46906 .14136 \quad .35087 \quad .515021 .00000$

SAMPLE SIZE 45
NO. OF VARIABLES 5 NO. OF VARIABLES DELETED 3 (FOR VARIABLES DEPENDENT VARIABLE IS NOW NO. 1 DELETED, SEE BELOW')

COEFFICIENT OF DETERMINATION . 3743
MULTIPLE CORR. COEFFICIENT . 6118
SUM OF SQUARES ATTRIBUTABLE TO REGRESSION 2.81137
SUM OF SQUARES OF DEVIATION FROM REGRESSION 4.69891
VARIANCE OF ESTIMATE . 11747
STD. ERROR OF ESTIMATE . 34274
INTERCEPT (A VALUE) . 02897
STD. ERROR OF INTERCEPT . 53596
ANALYSIS OF VARIANCE FOR THE MULTIPLE LINEAR REGRESSION

COEFF。)
201.82783
ERROR OF EST./REG. 635.08100 MEASURE OF EFFICIENCY (STD.
VARIABLES DELETED 678

MULTIPLE CORR。COEFFICIENT . 5897
.5897

TARTANCE PROP。VAR.

VARTAN
ADDED
2.07402
.15927 $.17117 \quad .15927$
parttal

国 ${ }^{2}$
COMPUTED
.5453

MULTIPLE CORR. COEFFICIENT

STD．ERROR	$\begin{array}{c}\text { COMPUTED } \\ \text { OF REG．COE．}\end{array}$	$\begin{array}{c}\text { PARTIAL } \\ \text { T VALUE }\end{array}$	CORR．COE．	VARIANGE
ADDED	PROP．VAR．	CUM．		
.00534	.12640	.01927	.00279	.00037

STD．ERROR	COMPUTED	PARTIAL	VARIANCE	PROP。VAR。
OF REG．COE．	T VALUE	CORR．COE．	ADDED	CUM．
.00925	3.48276	.46906	1.65241	.22002

O

STD．
DEVIATION
11.79030

.41314
MULTIPLE CORR．COEFFICIENT
.0193

$\begin{array}{c}\text { VARIABLE } \\ \text { NO．}\end{array}$	MEAN	$\begin{array}{c}\text { STD．} \\ \text { DEVIATION }\end{array}$	$\begin{array}{c}\text { REG．} \\ \text { COEFF。 }\end{array}$
2	52.43333	6.01744	.03220
1	2.10267	.41314	

.4691
MULTIPLE CORR．COEFFICIENT

Regression Equations using oniy returns from graduates of the Operations Analysis Curriculum or officers holding Operations

Analyst billets.
Variable No.

1	Time (in billet or since graduation)
2	Part I Score
3	Part II Score
4	Part III Score
5	Category $(2 A=1.0,2 B=2,20=3,2 D=4,3=5)$

CORRELATION COEFFICIENTS
ROW 1
$1.00000-.08659 \quad .20970 .12543$
ROW 2
-. 08659 1.00000 -. 18069 . 36119
ROW 3
$.20970-.18069$ 1.00000 -. 72901
ROW 4
.12543 . $36119-.729011 .00000$
SAMPLE SIZE 34
NO OF VARIABLES 4 NO. OF VARIABLES DELETED 1 (FOR VARIABLES DEPENDENT VARIABLE IS NOW NO. 3 DELETED, SEE BELOW)

COEFFICIENT OF DETERMINATION . 6740
MULTIPLE CORR. COEFFICIENT . 8210
SUM OF SQUARES ATTRIBUTABLE TO REGRESSION 2526.80694 SUM OF SQUARES OF DEVIATION FROM REGRESSION 1222.22490

VARIANCE OF ESTIMATE STD。ERROR OF ESTIMATE

INTERCEPT (A VALUE) $\quad 5.60460$
STD. ERROR OF INTERCEPT 9.01661

$$
\begin{array}{r}
40.74083 \\
6.38 .285 \\
5.60460 \\
9.01661
\end{array}
$$

ANALYSIS OF VARIANCE FOR THE MULTIPLE LINEAR REGRESSION

COMP. CHECK ON FINAL COFFF. -4.60381
MEASURE OF EFFICIENCY (STD.
17.60597
17.24689 $\underset{-1.38643}{\text { ERROR OF EST. }}$ /REG. COEFF.)
-1.38643
.7368

MULTIPLE CORR. COEFFICIENT . 8311

.2538

MULTIPLE © RR. COEFFICIENT

[^0]: ${ }^{2}$ Guilford, J. P. Psychometric Methods, McGraw Hill Co., New York, 1954: 36

 3 Ibid: $344-409$

[^1]: * Hereafter referred to as Q.P.R., with a maximum of 3.0 .

[^2]: | | | SUM | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | PART I PART II | PART III | I,II,III | Q.P。R. | | |
 | 52.08 | 22.04 | 3.3 | 77.40 | 2.046 | |
 | 7.81 | 5.96 | 1.42 | 10.04 | | |

 ueəN
 Standard Deviation

