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The Invariance Principle for

Dependent Random Variables

By

Patrick Paul Billingsley

(Abstract)

In this paper the Erdos-Kac invariance principle, as

generalized by Donsker (Mem . Am. Math. Soc . , no. 6 (1951),)

is extended to the dependent case. Let C be the space of

functions continuous on the closed unit interval, with the uni-

form topology. If { X } is a sequence of random variables

on a probability space ( -O. , W^ , P), let p be that elemient

of C which is linear on each of the intervals ( (
j - 1 ) n" , j n )

and satisfies p (0) = and p (jn* ) = X, + • • • + X. -

^n ^n -^ ' 1 J for

j = 1 n. Thus p is a (measurable) mapping of JDL into C .

Suppose there exists a sequence (a } of positive constants

such that if the measure P is defined by P (A) = P{a" p G A}
n ' n n * n

for measurable subsets A of C , then {P } converges weakly

to Wiener measure. If this is true we say that the invariance

principle holds for { X } . Donsker has shown that the in-

variance principle holds if { X } is independent and stationary

and X- has zero mean and unit variance. In the present paper

we prove, after some measure-theoretic prelinninaries, that the





invariance principle holds under each of the following condi-

tions, (i) X = f(x ), where f is a function on the state space
n n

of a discrete Markov process {x } satisfying Doeblin's con-

dition, (ii) { X } is m-dependent. (iii) { X } is a discrete
n n

linear process with m-dependent residuals, (iv) X is 1 or

according as a recurrent event occurs or not at the nth of a

sequence of trials. In each of these four cases the additional

assumptions under which the invariance principle is proved

are essentially those under which the corresponding central

limit theorenn has been proved.
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So. Introduction .

In [9]* Erdos and Kac introduced a new method for proving

weak limit theorenas for functions of the partial sums of an inde-

pendent sequence of randonn variables. Their nriethod consisted

in showing first that the limiting distribution is independent of

the particular sequence and then conaputing this distribution for

some convenient sequence. Let

(0.1) X^, X^, ...

be an independent sequence of identically distributed random

variables with zero means and unit variances. Let

S, = X, + • • • + X, . Erd'os and Kac showed that the limiting dis-

tribution of

(0.2) n'^/^ max S,

(along with several other functions of S, , .... S^) is independent

of the distribution function conamon to the variables in the sequence

{Xj^} . Since the limiting distribution of (0.2) in the Bernoulli

case was well known, this argument gave the limiting distribution

*Numibers in brackets refer to the bibliography at the end of the

paper. The expression "Theorem i.j" refers to the jth theorena
of §i , while " Theorem A. j" refers to the jth theorem of the ap-
pendix.
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of (0,Z) under quite general conditions. There followed

several papers (cf . , e.g., Erdos and Kac [10] and Mark [17])

in which this argument, known as the invariance principle , was

applied to various other functions of the partial sums S^ . All

of these results were subsequently subsumed under a general

theorem due to Donsker [6] .

Donsker's result runs essentially as follows. Let C be

the space of functions x (t) continuous on the closed unit interval,

with the unifornn topology, and let W be Wiener measure on C .

Let (Xn) be a sequence of randonn variables on some probability

measure space {S^, CB • P ) • Let pj^ be that element of C which

is linear on each of the intervals ( (j - l)n" , jn" ) , j = 1, . . . , n,

and satisfies Pj^(jn" ) = S- for j = l, ..., n, and Pn(0) = 0. That

is, let p^ be the random function defined by

(0.3) Pn(t) = S.^j+(nt-j + l)Xj, (j-l)n*^<t<jn"\ j = l n,

where Sq = . Thus p^^ is a (measurable) mapping of S\ into C .

Let f be any function on C which is continuous in the uniformi top-

ology at almost all (W -measure) points of C . Donsker showed

that if (0.1) is an independent sequence of random variables which

are identically distributed with zero mean and unit variance, then
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lim P{f(n"^/^p^)<a} = W{x: f(x)<a}
T>-*«0

at continuity points a of the function W{x: f(x)<a} . If, for

example, f(x) = max x(t) , then f satisfies the above conditions

and f (n" ' p ) = n' ' max Si. , so that

{0
ifa<0

a

^_^e-"'/^du ifa>0,

where the right hand equality can be established by any one of a

number of methods. See [6] for other functions f which lead to

interesting linnit theorenns.

It should be pointed out that in place of the " random polygon"

p^ defined by (0.3) , Donsker actually worked with the "random

step-function" with value S: throughout the interval

((j -l)n" , jn" ] . There is of course no essential difference

between the two methods.

There is another way of stating Donsker 's result. Let C
be the Borel field generated by the open (uniform topology) sub-

sets of C . Suppose there exists a sequence {aj^} of positive

constants such that if Pj^ is a measure defined by setting

Pn(A) = P{aj[^ Pjj ^A} for A € C , then Pj^ converges weakly

to W . When this is true we say that the invariance principle

holds for the sequence {Xjj} with norming factors a . Then
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(cf. Theorem 1.1 below) Donsker's result says that the invariance

principle holds, with norming factors n '
, provided {Xj^} is an

independent stationary sequence with E{X,} - and E|X.} = 1.

The assumption that {X^^} is stationary is relatively unimportant.

It is the purpose of the present paper to replace the assumption of

independence by various weaker hypotheses.

The plan of the paper is as follows. The central results are

contained in §§4 through 7, those of §§1 through 3 being prelim,

inary. These first three sections are devoted to an account of the

theory of weak convergence of probability nneasures on vS ( § 1 ) .

an alternative proof of the existence of Wiener measure ( § 2 ) and

a general invariance principle ( § 3 ) .

In § 3 we sort out those steps in the proof of Donsker's

theorem (Theorem 1 of [6] ) which depend upon the assumption

of independence and state them as the hypotheses of Theorem 3.1.

This theorem then gives a set of conditions on the sequence {Xj^}

which insures that the invariance principle holds with a suitable

sequence of norming factors. While these conditions are not very

pleasing, they can be verified for those sequences {X^} of great-

est interest.

Theorems 1.1 and 1.3 are preliminary to §3. Theorem 1.1

gives several sets of conditions equivalent to weak convergence.
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These conditions, with the possible exception of (ii), are well

known. Theorenm 1.3, on which Theorem 3.1 depends, gives

a simple criterion for weak convergence of probability measures

on C in terms of the convergence of the measures of sets of

the form

{ x: ttj < x(t) < pj , (j - l)c"^ < t < jc'^ , j = 1, c} .

where c is a positive integer and a- , p. arbitrary real nunnbers.

This theorem is a slight generalization of one due to Donsker.

The proof differs from his in that several arguments "of the

Riemann approximation type" are eliminated, which elimination

is miade possible by condition (ii) of Theorem 1.1. Theorem 1.4,

which is essential to the considerations of §4 , is the anologue for

distributions on C of a well-known limit theorem for distributions

on the real line. Its proof depends on condition (ii) of Theorem 1.1 .

Theorem 1.2 and §2 are a side issue. Theorem 1.2 is a

result, announced by Prohorov [19] , on the weak compactness of

measures on G . Prohorov has used this theorem to give an

elegant proof of the invariance principle in the independent case,

but his method seems difficult to apply in those cases to which

the present paper is devoted. His result is really an existence

theorem, and in §3 we use it to prove the existence of Wiener
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measure. This method of proving the existence of a stochastic

process is of course not very general (cf. [8, Ch. II] for a gen-

eral approach) but an alternative proof of this important theorem

is interesting.

In §§4 through 7 , Theorem 3.1 is specialized in various

ways. In §4 the invariance principle is proved for sequences

{f(Xjj)} , where f is a function defined on the state space of a

discrete Markov process {xj^} satisfying Doeblin's hypothesis.

The conditions under which this result is obtained are identical

with those under which the central limit theorem for such processes

is proved in [8] .

In §5 we prove the invariance principle for nn-dependent

sequences of random variables. The best central limit theorenms

for such sequences are due to Marsaglia [18] , and the conditions

under which the theorems of §5 are proved are essentially those

of his central limit theorems. Donsker's original theorem follows

from the results of §5 .

§6 treats of discrete linear processes with m-dependent

residuals, processes which arise in the analysis of time series.

Here we prove the invariance principle under conditions only

slightly stronger than those assumied by Diananda [5] in his proof

of the central limit theorem for such processes.
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Finally, in §7 we prove the invariance principle for the

number of occurences of a recurrent event. Here we assume

that the recurrence time has a finite second moment.

In the appendix we prove several limit theorenns for c-

dimensional distribution functions. These theorems are all

routine extensions of results well known for the case c = 1 .

It is doubtful that the results of §§4 through 7 can be

substantially improved using present nnethods, since in each

case the invariance principle is proved under conditions virtually

the same as those under which the central limit theorem has been

proved. It is possible to prove the invariance principle in cases

other than those considered here. One can, for example, prove

it for nnartingales, as Levy [16] has the central limit theorem,

or under the assuiTiptions of Bernstein's " lemme fondannental"

[2] . Although no applications have been essayed, the cases

treated in §§4 through 7 are those of greatest interest for the

applications.
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§1, Convergence of measures on the space of continuous functions .

In this section we prove two useful theorems on the convergence

of probability measures on the space of continuous functions.

Consider first an arbitrary nnetric space 56 with metric P .

In what follows we will be interested in the cases in which 9S is

either the space of continuous functions or a Euclidean space. Let

(i3 be the collection of Borel sets, that is, the Borel field gener-

ated by the open sets. If Pj^, P are probability measures on vj)
,

we say that P^^ converges weakly to P (in symbols, P^ r"^ P) if

\ f dPn ^^ \ f dP

3e 3g

for all bounded continuous functions f .

Theorem 1.1 gives several convenient sets of conditions

equivalent to weak convergence. For its proof we require the

following variation on Urysohn's lemnna,

Lemma 1.

1

. If A and B are closed sets with /^(A, B)> 0,

then there exists a function f(x) which is 1 on A, on B
,

everywhere between and 1 , and uniformly continuous on 3€ .

Proof ; We may of course assume that A and B are non-ennpty.

V/ith the exception of unifornn continuity, it is clear that the function
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f(x) =
^(x. B)

^(x. B) +^(x. A)

has the required properties. To prove that f is uniformly

continuous observe first that (cf, [l, p. 57])

\ p (x, A) -My, A)\ < /9 (x, y)

and

a (x. A) + a (x, B) > /P {A, B) .

From these inequalities it follows that

|f(x).f(y)|
<l/^(x.B)-/^(y.B)|

y?(x, B) +yQ(x, A)

+ /?(y. B)
^(x. B) + /i>(x, A) ^(y, B) +^(y. A)

< r\^' l\ + /^(y>^) |/:>(y.B)-/^(x.B)|+|/P(y,A)-^(x,A)|
- /5(A,B) /9(y.B) + /9(y.A) /? (x. B) + /? (x. A)/^' ^(y.B) + /? /7(x. B) + /?

/^
(A. B) r

(x, y) .

Hence f is uniformly continuous on 3^ .

In what follows we denote the closure, interior and boundary

of a set A by A, A and A, respectively. If P is a probability
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measure on 36 and f is a nneasurable function then P{x: f(x)<a}

is a function of a which we call the P-distribution function of f .

Theorem 1.

1

. The following statennents are equivalent,

(i) Pn=>P •

(ii) \ f dPj^ —^- \ f dP for bounded uniformly continuous

functions f .

(iii) P(A)>lim sup Pn('^) fo^ closed sets A ,

(iv) P(A) = lim Pn(A) for sets A ^ (8 such that P(A) = .

(v) For any function f which is continuous except on a set of

P-measure zero, the Pj^-distribution function of f converges

to the P-distribution function of f at each continuity point of

the latter.

Proof . We will prove in turn the implications (i)—*• (ii )
—^(iii) —*

(iv)—^(v)—*(i) . The implication (i)—*^(ii) is trivial.

(ii) —*-(iii) . Suppose that A is closed and C > given. We

may assume that A is neither the empty set nor the whole space.

For S > let U = {x: /3 (x, A) < S } . Then U^ is open

and U- ^ A as S | , since A is closed. Hence there exists

a S such that P(U^ - A) < £ . Clearly /o(A,9e-U^)>5>0.
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Therefore, by Lemma 1,1, there exists a uniformly continuous

function f which is 1 on A , on 36 - U- and everywhere

between and 1 . Now

f
f dP^ -^ (j^ f dP

by (ii ) , and

J
f dP„>P„(A).

while
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r f dP < P(A)+ P(U^- A) < P(A)+ e .

From these three relations it follows that

lim sup P„(A) < P(A)+ 6 .

n —^ oo

Since £ is arbitrary, (iii) follows.

(iii)-^(iv) . Suppose that P{A) = . Then

(1. 1) P(A) = IMA) > lim sap P„{A) > lim sup P_(A) .

n —*- «»o
" n —*- oo

Since the boundary of 9C - A also has P-measure zero we have in

the same way.

(1.2) P(Be -A) > lim sup Pr,(3€ - A)
h —> oo

But (1.1) and (1.2) imply

P(A) = lim Pn(A) .

(iv) —»-(v). Let F and F be respectively the P^^ -distribution

functions and the P-dis tribution function of f and let A be the

set of points at which f is discontinuous. Then

{ x: f(x) < a} C { x: f(x) < a} w A

and

{x: f(x) < a} - A C (x: f{x) < a}° ,
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so that the boundary of {x: f(x) < a} is contained in { x; f (x) = a) v-» A .

Since P(A) = , F(a) = F(a-0) implies that the boundary of

{ x: f(x) < q} has P-measure xero, and hence that .F„{a) -»- F(a) .

(v) —»-(i)« Let F and F be the P^-distribution functions and

the P-distribution function of the bounded continuous function f .

We assunne that F^(a)-»'F(a) if F is continuous at a and must

show that

\ f dP„ ^ ^ f dP .

But this last statement is equivalent to

\
a dF (a) 3- \ a dF(a)

,

where M is the bound of f . But (1.3) is easy to establish (cf.

[3, p. 74]). This completes the proof of Theorenn 1.1.

We note at this point the well-known fact that if 36 is

c -dimensional Euclidean space then equivalent to each of the con-

ditions of Theorem 1.1 is the condition that if F and F are the
n

distribution functions corresponding to P and P respectively,

then

lim ^n^°r • • • • *^c^
~

^^*^i' • • • ' °c^

at each point (a , , . . , a^) surh that
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F(aj^, .... a,,) = sup F(p^ p^) ,

i.e. , at continuity points of F .

Let C be the space of functions x(t) continuous on the

closed unit interval, with the metric

/9(x. y) = sup |x(t)-y(t)| .

' o<t<l

Then C is a connplete, separable metric space. Let C be the

collection of Borel sets. The Borel field C is generated by the

sets of the form {x: x(t) < a} . That such sets belong to C is

obvious, and to see that they generate yZ it is enough to observe

that

{x: ^(x,Xo)< 8 } = n (x: |x(r)-Xo(r)| < S } .

where the intersection extends over all rationals r in the unit

interval.

If t,, .. ., tj^ are fixed points in the closed unit interval,

[x(tj), ..., x(tj^)] defines, as x varies over C, a k-dimensional

random vector on C which we denote [x , ...» x ] ,

The first of the two theorems concerning the convergence of

probability measures on C which we will need is due to Prohorov

[19] .
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Theorem 1. 2 . Suppose that l^n^ ^^ ^ sequence of probability

measures on O with the property that for each € > there

exists a compact set K such that Pj^(K £ ) > 1- £ for all n ,

Then there exists a sequence {n } and a probability measure

P such that P :=f^ P as V—»-oo ,

Proof . Let {tj^. k > 1} be an ordering of the rationals of the

closed unit interval. For each n and k

(1.4) y^ ^ (S) = P^(&c^ ..... x^ ] €S}
* Ik

is a probability measure of k*dinnensional Borel sets S, Let

F, be the distribution function corresponding to P , , For
K ^ n I ic f n

each k it is possible by Helly's theorenn to find an increasing

sequence (n^ } of integers and a function F,(a., .... a ) such

that F^ is everywhere between and 1 , is non-decreasing in

each variable, is continuous from above and

(1.5) lim F^ ^ (a^ a^) = Fj^(aj. ...# \)

at continuity points of F\^ . By the diagonal method it is possible

to choose a single sequence {n^ } so that (1.5) holds for all k

simultaneously.

For a fixed k let

Sg = {[x(r^). .... x(r^)]: x 6 K^ }
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Then S ^ is a k-dimensional Borel set with
£

Vk.n'^e*
> 1 - £

for all n , Since Kg is compact, S g is bounded. Frora these

facts it follows that F, must have total variation 1, i.e., that it

is the distribution function corresponding to some probability

measure y, . And from the remark following the proof of

Theorem 1. 1 we conclude that

(1.6) p^^^ :r> fk (v>-^«> )

for all k .

We now use the measures P, to set up a measure on C

in a way similar to that used by Kolmogorov [15] in his fundamental

existence theorem. His theorem as such is not applicable here since

we are working in the space of continuous functions rather than the

space of all functions. Let t be the (finitely additive) field of sets

of the form

(1.7) A = {x: [x(rj) y.{r^)] e S}
,

where k is any integer and S is a k-dimensional Borel set. For

such a set A put P(A) = Pu(S) . Since there are other represen-

tations of A
, we must show that this definition is consistent.

Suppose then that in addition to (1.7) we have
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(1.8) A = {x: [x(r^) x(r.)] G S'} .

where j > k and S' is a i-dimensional Borel set. From the fact

that for any point ( ^,, • • • » *» u) ^^ k-space there exists an'

X e C with [x(r. ), . . . , x(r, )] = { ^^ ^ k^ ^* follows that

S' = {(^1 ^ •): (^, ^k^ ^ S}. From this and

the definition (1,4) we have

for all n . Hence by (l.b)

(1.9) Pk<^^ = Pj^^^l ^j^'<^l <i^)^S}.

provided the boundary of S has V . -measure zero. But this

clearly implies (1. 9) for all S , which establishes the consistency

of the definition of P(A) ,

It is easy to show that P is a finitely additive measure on

^ and that P(C) = 1 . We now prove that P is completely addi-

tive on T" . Suppose then that {A, } is a non-increasing sequence

of ^ sets with P(Aj^) > L > for all k . We will show that the

Aj^ have a non-empty intersection. For notational convenience we

assume that A, is defined in terms of the first k of the {r^} :

Aj^ = {x: fxCr^)
'^^'^k^^

^ ^k ^ •
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sChoose S so that < 2 6 < L and let Kg be as in the hypothesi

of the theorem. Let Uj^ ^ ^W t)e a compact k-dimensional Borel

set such that Pk^^'^k^"^ 62 . Now let

V^ = {x: [x(r^), ..., x(r^)] ^ U^} . let W^ = V^- - • V^ and

let Zj^ = {[x(r,) x(r, )]:xeW, } . Then

(1.10) f^k<\"^k^ " ^^^k"^'k^- ^

Finally, let J, = ([x(r,) x(r, )] : x €Kg } , Now J, is com-

pact and hence closed. In fact, if ^ ^
^^k

^°^ '^ ^ 1 » o^ie can

select Xj^ 6 Kg such that [^^^(r^), .... Xj^(rj^)] = ^^- Since

Kg is compact there exists a sequence {m^} of integers and an

X € Kp such that linn x = x . But then

lim ^ = [x(r,), ..., x(r, )] € J, , so that J, contains a linnit

point of the sequence { ^ ^n^ • Since J^ is closed we have by (1.6),

(1.11) U, (J.) > lim sup U, (J.)>limsupP (K ^ ) > I - £

From (1.10) and (1.11) it follows that

l-k'Vk'^ Kk'V-2^ >L-2 £ >0.

Hence Z, J, is non-empty, which inaplies that W^i^K ^ is non-ennpty.

Since the \\ , form a non-increasing sequence of sets, and each is

obviously closed, the ^^^K have a non-empty intersection by the

compactness of K ^ . Since V/ C A , the A have a non-empty
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intersection. Hence P is connpletely additive on -j- •

Since -j' generates C , P can be extended to a probability

nneasure on C . We now complete the proof of the theorem by

showing that P =^ P , By Theorenn 1.1 it suffices to prove that

(1.12) P(A) > lim sup P (A)

for closed sets A . For a given £ > let

Sj^ = {[x(r^), .... x(rj^)]: x G AK ^ } .

Now S, is closed for the same reason the set J, above was. If

Bj^ = {x: [x(r,), . . . , x(r, )] € S, } , it is clear that {Bj^} is a non-

increasing sequence of sets of C with AK C I 1 B, . Suppose on

the other hand that x € N, B, . Fronn the definition of S, and B,

it is possible to find a sequence (ym) °^ points of AK g such

that yjYi(r .) = x(r .) for i
= 1, .... k. Since AK g is compact

there exists a sequence {m^} of integers and a point y €AKg

with linn y = y . But then x = y by continuity, and x ^ AK_ ,

Hence AK^ = H, B, . It is therefore possible to choose k so that

(1.13) S+ P(AK^ )> P(Bj^) =
Pi^(Sj^).

Since S, is closed we have by (1.6) and Theorem 1.1 ,

(1.14) y^iS )> Umsup U (S^) .
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Now by the hypothesis of the theorem,

\ k.n^ k - n^ S n^

for all v» . Hence

(1.15) lim sup U, (S ) > lim sup P (A) - £

But now (1.12) follows from (1.13), (1.14) and (1,15), since £ is

arbitrary. This completes the proof of Theorem 1.2.

In order to apply this theorem we need a criterion for coin-

pactness of sets in C . The following standard lemma gives a

convenient criterion in terms of the modulus of continuity, which

for our purposes is best defined by

M(x. S ) = sup {|x(s)-x(t)| : s.t 6 [0. l] , |s -t| < S }

for X ^ C and S > ,

Lemma 1. 2 . If A is a closed set such that

(l.lfa) sup |x(0)! < OO

and

(1.17) lim sup M(x, S ) = ,

then A is compact.
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Proof « It is in the first place easy to show that

(1.18) sup lx(t)| < «»

xe A

for each t in the unit interval. Suppose {Xj^}CA , By (1.18) and

the diagonal procedure it is possible to find a sequence {n^} of

integers such that

lim X (r) = L(r)

exists for each rational r in the unit interval. We prove that

X (t) is uniformly fundannental. Given £ > 0, choose S^ so
n^

that M(x, S)<e if ^< Sq and x€A . Then choose rational

To. • • • • ^k so ^^^^

= Tq < r, < . . , < r, =1

and r^-r. . < S^ for i=l, ...» k. Finally, choose N so that

|x (r.) - X (r.)| < £
' n ^ 1 n^ 1

'

for i = k, provided ^,v» > N . It follows innnnediately that

|x (t) -x (t) < 3 £
n

.

J^o

for all t 6 [0, 1], provided X,v > N . Thus x (t) is uniformly
n^

fundamental and hence converges unifornaly to an element of C ,

which must lie in A . Therefore A is compact.
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In order to prove the second of the convergence theorenns of

this section we need a lenama which is a slight variation on a result

due to Donsker [b] . If x € C and c is a positive integer, define,

for i =1, . . . , c,

a.(x) = inf {x(t) : (i -l)c"^ < t < ic'^ }

b.(x) = sup {x(t) : (i -l)c"^ < t < jc"^ } .

Now let

'Tr,(x) = (aj(x), .... a^(x), bj(x), .... b^(x)) .

Thus TT„ maps C into 2c-space. It is easy to show that TT

is continuous. If t is bounded and continuous on 2c -space, then

^ (TT (x)) is a bounded continuous function on G , Let Ul be
c

the set of functions arising in this way (as c and *-f vary).

Lemnna 1. 3 . Let f be a bounded uniformly continuous function on

C . Then there exists a pair of sequences of functions (f } and

{f"} , all belonging to (SI , such that for all c and x ,

(1.19) f^(x)<f(x)<f;:(x) ,

such that f and f" are uniformly bounded, such that
c c '

(1.20) lim (f'^(x) - fj.(x)) =
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for all X € C .

Proof . For each c let M be the (non-empty) set of y 6 C

such that a.(x)<y(t)<b.(x) for (i-l)c"<t<jc" , !
= 1, ...,c.

And define

fj,{x) = inf {f(y) : y 6 M^ }

f^(x) = sup {f(y): ySMC } .

It is clear that f* and f" satisfy (1.19) and that they are bounded

by the bound of f . And (1.20) follows from the uniform continuity

of f .

There remains only the proof that f and f" belong to 01. ,

We consider only the case of f" , Let S be the set of points

(i^,, .... ^ -> ) of 2c -space having the property that

(1.21) <. < :^^_^. , j = l c,

and

(1.22) [ <,. <c+j^^ f
^i+1' ^c+j+1^ ^ °' ^

= ^ ^-^ •

Then S is obviously closed. If (^i. ...,^-, )^S define

^(<1 ^^^) = sup{nY): <.<y(t)<<'^^..(j-l)c-^

< t < ic" , i
= 1, . . . , c} ,
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where the set over which the supremum is extended is non-empty

by (1.21) and (1.22). Obviously 7r(x)€S for all x€C,

cp (it (x)) = f"(x), and ^ is bounded. Suppose we piDve that

^ is continuous on S . Then it is possible by Urysohn's exten-

sion theorem [l, p. 73] to extend t to all of 2c-space in such

a way that it remains bounded and continuous. Hence the proof

will be completed if we show ^ is continuous on S ,

Suppose (Si. ...,^-> )^S and that E > is given. We

will find a S > such that

(1.23)
I ^(<j <2c^-'''^^l ^ 2c^' < ^

provided

(1.24) |< .- C .1 < S , j = 1 2c,

and (?ii •... 5t )€s. By the uniform continuity of f there

exists a S such that |f(x)-f(y)| < ^ /Z if ^(x,y)< 5 .

Suppose now that ( 5it •••» H j ) satisfies the above conditions.

It is clearly possible to find x and y in C such that for j = 1, .•.( c ,

C = inf {x(t) : (i-l)c"^ < t < jc'M ,

<^^. = sup{x(t) : (i -l)c"^ < t < ic"^ } ,

^ . = inf (y(t) : (j-l)c"^ < t < jc"^ } ,

j^ = sup{y(t) : (j-l)c"^ < t < ic*M .

^ J
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Then

«?(<! ^'zc^ = ^(-ir^(x)) = f'^(x).

and it suffices to show that

(1.25) |f^(x) -f;:(y)| < £

By the definition of f' there exists a z €M such that
c X

(1.26) f^(x) < f(z)+ £/2 .

Now let z'(t) = z(t) at points t where

(j-l)c"^ < t < jc'^ , 5 . < z(t) < 5

let z'(t) = 5 . where

(j.l)c"^ < t < ic"^ . z(t) < 5 .

and let z'(t) = ? , . where

(j-l)c"^ < t < jc"^ , ?^.. <z(t) .

c+j

It follows that z' €M*^ , so that
y

(1.27) f(z')<f;:(y)
,

and from (1. 24) it follows that /^(z,z')< S , and hence by the
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choice of S
,

(1.28) f(2) < f(z') + £ /Z .

From (1.26), (1.27) and (1.28) we have

r(x).r(y) < e .

The symiTjetric inequality follows in the same way, and (1.25)

results. This completes the proof of the lemma.

We come now to the second of the two convergence theorems

of this section. For any integer c and real numbers a., .... q^,

(3., .... j3 , consider the set

(1.29) E = (x: a. < x(t) < ^., (j -l)c'^ < t < jc"\ j = l, .... c }

Theorem 1. 3 . Suppose that for probability measures P and P

on ^ we have Pj^(E)—^P(E) for all sets E of the form (1.29)

for which P(E) = . Then P => P .

Proof . V e show first that

(1. -?0) { f dP^j -^^ \ f dP

for any function f in ^ . For a fixed integer c define

-1

YJS) = P^dr^MS))

p (S) = P (TT^Ns))
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for 2c -dimensional Borel sets S . Now if

S = {(<! ^2c^ • ^j - ""j* ^c+j - ^j' ^"^ ""^ '

then IT ^^S) = E, so that ^'^(S) --^ p(S)
, provided U (S) = . But

this obviously implies U ^=^ U , Hence

j^^c j^<:c

for any bounded continuous function ^ , But if f(x) = *=P (-TT (x) ) ,

(1,30) follows frona (1.31) by a transfornnation of the integrals in-

volved. Hence (1.30) holds for any function i oi (Jl ,

Now suppose f is a bounded uniformly continuous function

on C , By Lemma 1, 3 there exists a pair of sequences {f ' } and

(f"} of functions of LR which are uniformly bounded and satisfy

(1,19) and (1,20), By (1,20) and uniform boundedness we have

(1.32) lim V (f" - f) dP = .
_ 1 c c
C -- oo ^ ^

C

But from (1.32) and (1.19) it easily follows that (1.30) holds. And

since (1.30) holds for any bounded uniformly continuous function f ,

we have P^ rrp» P .

In the following sections we will be concerned with ' random

polygons" . For the purposes of this discussion we define a poly-

gon to be an element p of C with the property that the unit
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interval can be decomposed into a finite number of sub-intervals

over each of which p is linear. Suppose {f\., (5^, P) is a

probability measure space on which random variables X^, X,, .,,, X

are defined. Associated with each point co of S\ we define a

polygon p = p by the equations

(1.33) p^(t)= {j.nt)X.^^(c.)+(nt-j + l)X.(<^), (j-Dn^^^t < jn"^ .

j = 1, .... n ,

that is, p is the polygon with vertices at the points (jn" , X.) ,

We will be interested in the distribution properties of p , that

is, we will be interested in probabilities P{p € A} , where A € C ,

In order to show that P{p €A} has meaning we must show that

{cj:p €A}e(S,i,e., that the mapping «*> —^ p,^ is measurable.

Since the collection of A's for which this holds forms a Borel

field, it suffices to prove it for A's of the form A= {x:x(t) < a} ,

But if A has this fornn, and (j -l)n" < t < jn" , then by (1.33)

{a>: p^€ A} = {to; (j -nt)X.^j(a>)+ (nt - j + l)X^(u>) < a} ,

which lies in O since the X. are measurable.

We can use this result to set up on t a probability measure

P* which gives unit mass to the set of polygons which are linear on

each of the intervals ((j-l)n" , jn"), j = 1, .... n, and under
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which the random vector (x^ , x i , x_ , , . , , , xj has a pre-

scribed distribution function. In fact if X^, X , .,,, X are

random vectors (on some probability space {H., Qo , P) ) having

the prescribed distribution function, and if P' is defined by

P'(A) = P {p e A} for A € t , then P' obviously has the

desired properties,

A useful fact in the theory of distributions on the real line

is that if the distributions of a sequence {X } of randonn variables

converge weakly to F , then so do the distributions of {X +Y } ,o / » n n

provided p lim Y = . We conclude this section with a theorem

which plays an analogous role in the theory of distributions on C .

The theorena and its proof obviously remain unchanged if C is

replaced by any Banach space.

Let { X^ } and { Y } be two sequences of nneasurable

functions on sonne probability measure space (Jl , CS , P), with

values in C . That is, we assunne that X^(w) € C for co 6 X\

and that { o : X^(w ) € A } e © if A e fe , and similarly for Yn .

Let Pn , P^ and P^ be the distributions on C of X^ , Y^ and

X^ + Yj^ respectively:

P^(A) = P{X„ 6 A}
.

P;^(A) = P{Y^ € A)
,

P;^(A) = P{X^+Y^ 6 A}
,
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for A € C , Let U be the measure on t which places unit mass

at the function which is identically zero.

Theorem 1.4 . If P„ => C and P' =^U then P" =:> O .n n
^^

n

Proof . It is clear that P^ => U is equivalent to the statement that

(1.34) lim P {/?(0, Y„)> £ } =

for all £ > , Let f be a bounded uniformly continuous function

on C . Given ^ choose S so that |f(x)-f(y)| < ^ if P(x, y) < ^ ,

Then

P{|f(X^).f(X^+Y^)| > £ } < P{^(X^. X^ + Y^)> S }-^

by (1.34), Hence

(1.35) p lim (f(Xn)-f(Xn + Y^)) = .

Now by Theorem 1.1 , P { f(Xj^) < a} ->• Q {x : f(x) < a) at continuity

points of the later function. Hence by (1.35) and the above -nnentioned

fact in the theory of distributions on the real line,

P {f(X +Y ) < a)-^0 {x : f(x) < a} . Since f is bounded this

implies

^ f dp;; —^ I ^ ^° •

c c

Hence by Theorem 1.1 ((ii)-»-(i)) we have P^ ^ C .
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§2. The existence of Wiener measure.

A fundanmental problem connected with the measure-

theoretic aspect of probability theory is that of proving the ex-

istence of stochastic processes having specified properties. In

this section we give a proof, based on Theorem 1. 2, of the ex-

istence of the Wiener process.

Aprobability measure P on C is called Gaussian if the

P-distribution of the random vector (x , . . . , x ) is, for any
1 n

set (t , . . . , t ) of points of the unit interval, a normal distri-

bution with zero ntieans. For such a measure P the covariance

function

R(s.t) = \ X X dP
^ C ^

is defined for all s and t in the unit interval. Moreover R

completely determines P . In fact R determines the covariance

matrix and hence the distribution of each (x , . . . , x ), and
1 n

these in turn clearly deternnine P . The question is, given R,

does there exist a Gaussian measure P with R as its covari-

ance function? The following theorem gives an affirmative

answer in the case R{s,t) = nnin (s, t ) . The Gaussian measure

having this covariance function is called Wiener measure, and is

denoted here by W . It is a simple matter to show that if
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t- < t^ < • • • < t , then the random variables12 n

X " X , X "• X I . « • , X " X
^2 h ^3 ^1 ^n n-1

are, under W , normally and independently distributed with

zero means and variances

2 13 2 n n-1

Theorem 2. 1. There exists a Gaussian measure W such that

(2.1) \ X X. dW = min (s,t)
J ^ s t

for all s and t in the closed unit interval.

Proof. For each positive integer n let A € O be the set of

polygons which are linear on each of the intervals

{( j - 1 )Z'^, j2""), j
^- 1 2 "

. Let P be a probability

measure on ^ such that P (A ) = 1 and such that the
n n

P -distribution of
n

(2.2) (x , X „ ' ^ , . . . , X )

1^2" 2-2" 1

is normal with zero means and covariance matrix ( A.. ), where

A.. =2*'^ min (i,i). That such a P exists follows from the
ij

\ ' J /
j^

rennarks preceding Theorem 1.4 and the fact that the matrix

(A-) is positive semi-definite (in fact
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^ \ -n ^" 2"
2

/\ . .u.u. = 2 L. '

"
Z.. A .u.u. = 2 L. ( S. . u. ) > . ) Note that under P

the differences

(2.3) X - X
,
X

rx
' ^ n ' • • •

1-2"" 2-2' 1-2'

are independently and normally distributed, each with variance 2"

We will first show that P satisfies the hypothesis of
n ' ^

Theorem 1.2. For 0<^<1 let (3 ( S ) = - Ig S . Then

(2.4) P ( S) I as S t ,

and

(2.5) S {3( S) t as S t ,

provided ^ < T • Given an £ , with < £ < A , let Kg be

the closed set

{ X : sup (3 ( S ) M(x, S ) < A/£ } ,

o< %< i^

where A is a positive constant to be determined later. Then Kg

is compact by Lemma 1. 2, since (3* ( S ) ]f as S | . We will

prove that P (Kg) > 1 - £ for all n by showing that

(2.6) P { x : sup p( 8 ) M(x, S ) > A/ 6 } < £ .

If x € A it follows from (2.5) that
n
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sup P(S)M(x. S)= sup 3(S)— max |x((k+l)2'*") - xikZ""^)

= p{^"*^) max |x({k + l)2'") - x(k2"")| .

Hence, since P (A ) = 1 , since the differences (2.3) are normal
n n

and since € < A" , we have

(2.7) P ( sup p ( ?) M(x, 8 ) > A/£ }

2^-1

< IZ P„{P(2"'') |x((k+l)2-").x(k2-'')|> f-}.n ^

k =

£ ^/T , ,
,n/2 . 1 2"

. _A^ .

< ~ A' .

where

A' = supj^ igZ n 2""/^ exp( - ^ . ' "z"
) < *=^ •

T»>1 '^ 2 Ig 2 n

On the other hand from (2.4) and the fact that M(x. S" ) y as

8 t , it follows that

(2.8) sup p(S)M(x, 8)= max .sup p(S)M(x,8)

< max p(2J"^"")M(x,2-^""^ '

2^ iin-z
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But if X € A , a moment's reflection shows that
n

(^..9) M{x. 2^"'')

<3 max sup { |x(t) - x( 12-^"^
) | : iZ-^'^l t < {i H )2^"""

}
o<i<z"-J

= 3 max . max .
|x((i2J + k )2"'^) - x( 12^"")

|
.

o < i < z"'^ o<k<z^

Now by a well-lmown inequality concerning the maximum of the

partial sums of iiidependent symmetric randoni variables

[8, p. 106 j we have,

(2.10) P f 3f^{2J "^"'^) max |x(( i2^+k)2"'^) - x( 12^"^)
|
> A/ £ )

< Z P^{36(2J"^"")|x((i+l)2J"'') - x(i2J"")| > A/e }

^ J- 1" "^ZL n-i + I , L
2""-^

- A A72Tf .{n-jlT^
®^P^- ,_ , 2- , .^.,2 ^ •

2 '
' 18 Ig 2 (n-j+1)

From (2.8). (^. 9) and (2.10) it follows that

(2.11) V { sup p( S)M(x. S )> A/ £ } < -^ A" .

where

^" = "^7# - 2^^ (k+1) exp (. ^~-j- —^-—
) < oo

.

^'"^
k:^2 18 lg'^2 (k+1)^

IJ we take '\ - A' + A" then (2.6) follows from (2.7) and (.'.11)

We next show that





- 35 -

(2.12) \ X X dP -^min (s,t) .

J^. s t n

Suppose that s < t and let j = [s2 ] and k = [t2 ]. If x ^ A then
n ' ' n *^ ' n

x(s) = x(j^2-^)+(s2"-j^){x((j^ + l)2-'') -x(j^2-")) .

x(t) = x(k^2-") + (t2'' - k^)(x((k^ + DZ-"") - x(k^2-^))

Hence, since the differences (2.3) are independent,

J
X x^ dP = \ x(j 2"*^) x(k 2"^) dPn = j

2""

J-,

s t n j„ ^-"n ^ n •'n

Since {P } satisfies the hypothesis of Theorem 1.2, there

exists a sequence {n } and a probability measure W on C such

that P =^W . It follows easily from the normality of the

variables (2.2) that W is Gaussian. And (2.1) follows fronn (2.12)

The method of proof of this theorem can be applied equally

well in other cases. It is possible to use it to prove, for example,

the existence of the stochastic process which arises in connection

with Doob's approach to the Kolmogorov-Smirnov theorenniS [7] .

We note at this point the well-known fact [8, p. 392] that

- * 2.

W{x: max (x(t) - x(a)) > \ ) -^f^rt^ [
^.u/2(b-a)

^^ ^

a<t<b ' ^ ^^'^'
-^)^

It follows from this that the W-measure of the boundary of any

set of the form (1.29) is zero.
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S3. A general invariance principle.

In this and the following sections we will be concerned with

proving the convergence to W of the distributions (on C) of cer-

tain sequences of random polygons. Let X.,X^, ... be a sequence

of random variables on a probabaility space {jTl, Qb , i"* )• iet

p be the random polygon defined by
n

Pn^^^ " ^j-1
"^ ("t-J + l)Xj ' ( J-1 )n'^ < t < jn"^ . j = 1 n,

where S. = X, + • • • + X. and S^ = . Thus p is the polygonjl J '^n r/b
with vertices at the points (jn" , S.). As remarked at the end of §1 ,

P (p € a} is, for A 6 C« , a well defined quantity. Suppose there

exists a sequence (a } of positive constants such that if the

measure P is defined by P (A) = p{a"p €A} then P =^ W .

n n n n n

If thia is true we say that the invariance principle holds for the

sequence {X } with norming factors a . It is the purpose of

this section to derive a general set of conditions on { X } under° n

which the invariance principle holds. What the conditions lack in

elegance they make up for in utility. In the subsequent sections we

specialize these conditions in various ways.

For integers c , \> and n define

n =
[ jnc' ], j = c,

•I

n. „ = [n(V> (j-l) + u)c" V "
], j = l, ...,c , u = ...,V
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For any real numbers a., S. with a. < (3. , j = 1 c , let E
J J J

-
J n. r

be the S\ set where the relations

(3.1) a. < a" S. < (3. if n. , < i < n.
J
- n I - ^j J - 1 -

J

are satisfied for i < r , but not for i = r .

Theorem 3. 1. The invariance principle holds for the sequence

{ X } with normine factors a if the following two conditions are
^ n ^ n ^

satisfied.

Condition (i ) . For each integer c the distribution of the random

vector

(3.2) a"^ ( S , S - S , . . ., S - S )
n n, n- n, n n ,12 1 c c-1

approaches, as n —*- oo
, the normal distribution having zero

means and having as covariance matrix c" times the cxc identity.

Condition ( ii ). For each integer c , each set

(a, , . . . , a , 6, p ) and each £ > ,

1 c 1 c

(3.3) lim lim sup Z) P(E
t-\ { \ S -S|>£a}) :^0.

V-«-«> n-^ «« |*a|
^'^ ^j,u+l ^

^

where the n , corresponding to each r is defined by the re-
J,u+1

lation

(3.4) n. < r < n. . , .
^ j,u - j,u+l

Proof. Throughout the rest of the paper we will be dealing with sums

of the sort appearing in (3.3) . In each instance n. , is a

function of r defined by (3.4) .





- 38 -

To prove the theorem, let E be the TL set where (i.l)
n

is satisfied for all i = 1 n . Then n - E = \J^_ E

Let E be the C set where

Q. < x(t) < S.
J
~ ~

J

if (j - l)c" < t < jc" , for j = 1 , . . . , c . Let D ^ be the C

set where

a. < x(((j-l) V + u)c'^ V "S < p.

for j = 1 c and u = 1 , . . . , V . Further, let F be the
n

St set where

a. < a" S < (3.

J
- n n. - 1

for j = 1 , . . . , c and u = 1 , . . . , V* . Finally, let E ^ , D^
^

and F be defined in the sanne way as E, D_x and F , but
n,

e

' ^ n

with a. and (3. replaced by a. + 6 and p. - £ respectively.

For n. < r < n. ,, write
j,u - j,u+l

(3.5) P(E ) = P(E rx {|S -S | > £ a })n.r n.r n.^^^^ r

+ P(E nils -S|<a c}).
* n,

r

' n. , , r

'

n
J,u+1

Obviously the set in the second term of the right member of (3.5)

is contained in S\ - F . Hence, since the E are disjoint,
n, £ n,

r

we have
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n ^
1 - P(E ) = 2 P(E ) < 1 - P(F ) + S

" r=i n, r' - ^ n, £ ' >». n '

where C is the sum in (3.3) . Since E C F nac have^ V, n ' ' n n

P(F ) - ^, < P(E ) < P(F ) .
' n,£ ' ^T?, n - * n - ^ n

But

lim P(F^) = W(D„ ) .

lim P(F - ) = W(D ) .

by Condition (i) . Hence

W(D , )
- lim sup C < lim inf P (E ) < lim sup P (E ) < W(D, )

V, e ti-^»-e» ^ x>,n - x\-^vo n n-^_^^ n n- v

Letting V —>- co we have, by Condition (ii) ,

W(Ep ) < lim inf P(E ) < lim sup P(E ) < W(E) .

Now E . t E° as £ io . Since W(E) = 0, lim P(E ) = W(E) .

The proof of the invariance principle will be coinplete if we

prove the following lemma, the hypothesis of which we have just

shown to be satisfied.

leiTima 3.1. Let A be the set of polygons p which are linear

on each of the intervals ((i - l)n , in ) and satisfy p(0) = ,

and suppose P is a measure on v3 with 1 (A ) - 1 , Suppose
'
^ n n

further thit
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(3.6) p^(GJ-^-W(E)

if E is any set of the form (1.29) and G is the set of

X € C for which

a, < x(in" ) < S.

if n. , < i < n. , for i = 1 , . . . , n . Then P =^ W .

J-1 - J n^
Proof. Let £ be a small positive rational and let Eg be the

set where

aj<x(t)<Pj

if (j-^''"' + £ Itljc" -€ (j = 2 ,..., c), where

aj<x(t)<
p^

< t
" - £ , where

a < x(t) < p

1-c' ^6<t<l, and where

max ( a., a.^j) < x(t) < min (p , p ^^)

ii jc' . S < t < jc + e (j = 1 , . . . , c - 1 ) . Analogously,

define G „ to be the set where for i = 1 , . . . , n ,

n, s

a. < x(in" ) < p.
J
- - J
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if (j - l)c" + £ < in' < jc" - € , (j = 2 , , . . , c - 1 ) , where

a. < x(in ) < p,

if < in" < c" - £ , where

a < x(in" ) < (3

c — c

ifl-c +€'<in <1, and where

max ( a . , a .
. , ) < x (in ) < min { 6 . , 3 .

, , )

if jc' - £ < in' < jc" + £ (j = l c-1). Since £ is

rational, E- can be cast in the form (1.29) and G bears
•^ n , e

the same relation to Eg as G does to E. Then by hypothesis

(3.7) P (G^ ) —^ W(Eg )n n, c *

as r\ —»" «> . Now E C G , while G ACE provided
n n,£ n

n' < € . Hence x

P„(G^ ^ )< P„(E)<P (G^)
n n, c n n n

for large n and, by (3.6) and (3.7),

(3.8) W(E_)< lim inf P (E) < lim sup P (E) < W(E).
^ n —*- oo n x\ —>- oo n

Now Eg I F as £ | , where ^V(E - F) - . Letting £ -^^

in (3.8) we have lim P (E) = W(E) . Hence P r^ W by
ti-^oo n n

Theorem 1.3. This completes the proof of the lemnma, and hence

of the theorem.
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With only slight complications Lemma 3,1 can be proved

with W replaced by an arbitrary linniting nneasure.
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S4. The invariance principle for Markov processes.

In this section we prove, using Theorem 3.1, the invari-

ance principle for discrete Markov processes satisfying Doeblin's

condition. We use the definitions, notations and results of

(8, Ch, V] .

Let X be a space of points ^ and let -y- be a Borel

field of subsets of X . Let { x , n > 1 } be a Markov process
n —

with state space X and stationary transition probabilities

(4.1) P(?.A) = P { x^^^€A|| x^ =^ } .

That is, { X } is a sequence of measurable functions from, some

probability space (Jf7 , ^, F) to X , such that (4.1) holds,

where the transition function p is a measurable function of ^

for a fixed A ^ -f and is a probability measure on ~/^X X

for fixed ^ . The initial distribution 'TT is defined by

7T (A) = P {x^ e A } ,

and the n-step transition probabilities by

p<^N^.A).P (x^^^e All x^. ? } .

The existence probleins involved here are resolved in [8] .

We assume that the process satisfies the hypothesis of

Doeblin:
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Hypothesis (D). There exists a finite-valued measure

on -/t. , an integer V > 1 and a positive £ , such that if

SP (A) < B then

P^**^ (f.A)<l - e

for all ? € X .

Note that (D) is a hypothesis on the transition function

alone and is independent of the initial distribution "TV

It is shown in [8] how, under (D), the states ? can be

classified according to their ergodic properties. It is shown

further that the ergodic theorem holds if the following hypothesis

is satisfied.

Hypothesis (D ) .

(a) Hypothesis (D) is satisfied.

(b) There is only a single ergodic set and this

contains no cyclically moving subsets.

That is, it is shown that if (D ) holds then there exist positive

constants V" and /^ , /^ < 1, and a (unique) stationary initial

distribution p such that

,(n)
Ip^^^^f ,E)-p(E)| < >^^ "

for all f € X , E ^ ^ and n > 1 . The results of this section

will be obtained under the assumption of (D ) .
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In what follows the initial distribution under the assumption

of which a probability is computed will be denoted by a subscript,

thus: P (E) . If -TT = p , the stationary initial distribution, the

subscript will be omitted. In statements involving only transition

probabilities, e.g. , (4.1), the initial distribution is irrelevant

and the subscript will be omitted in any case.

We state for reference three results proved in [8, p. 224] .

Lemma 4.1. Under Hypothesis (D ), if f is a bounded (perhaps

complex-valued) random variable, |f| < M , on x, ., x, ^,..,

sample space, then

(4.2) |E (f ||x^} - {f } I

< 2 >- M^^ .

In several of the subsequent applications of this lemma f will

be the characteristic function of a set.

Lemma 4.2. Under Hypothesis (D ) , let f be real-valued function

of § , measurable ^^ , with

E{f(x^)} = 0, E{(f (x^ )^} = or^ < «x>
.

Then as n —»- oo ,

n ,

E{( E f(x.))''}^n <r, ,

2where CT is a constant depending on f and on the process
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Lemma 4. 3. Under Hypothesis (D ), let f be a real-valued

function of ? , measurable 7*^ ' ^^^^

E {f(xp} = , E{ |f(Xj)|^"^M < ^

for some o > . Then there is a constant a , for which

E{| Z £(x.)|2^Mian'+(*/^', n=l,Z
j = l >

It is convenient to have available the following corollary

of Lemma 4.1 . Suppose we have positive integers u.,v. with

(4.3) u < V < u < V < ... < u < V .

i I c d mm
Suppose further that

(4.4) u.-v.,>B>l, i = 2,...,m.
' 1 1-1 — — '

Lemma 4. 4. Under Hypothesis (D ), let f. be a (perhaps com-

plex-valued) random variable, with If. I < 1, on x , . . . ,x'^
'

J
' — u. V.

sample space, for j = 1, , , . , m . If (4,3) and (4.4) hold, then

(4.5) |E{fj--.f^} - E{fj}..- E{f^}
I

< 2m-K^® .

Proof. The proof goes by induction on m . The result being

trivial for m = 1 , assunne it is true for some m - 1 . Then

E{f-"f } = E{f/--f ,}E{f 11 X } = E{f,---f ,}E{f } +
'^

1 m '
^

} m-1 ^ m " V , 1 m-1 m"^
m-i

S .
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where | € |
< 2 Tp by Lemma 4.1 and the bound jf.

|
< 1 .

And now (4.5) follows from the induction hypothesis.

We come now to the invariance principle.

Theorem 4. 1. Under Hypothesis (D ), let f be a rea'-valued

function of ^ , measurable "/V' with

E{f(xp} = . E{ |f(xp|^'^^} < oo

for some 8 > . Then

(4.6) lim E{ (n" ^^ S f(x.) )^} = CT^
n-^«>

j
_

2
J i

2
exists. M ^. > then the invariance principle holds for the

1/2
sequence {f(x )) with norming factors (T.n '

, no naatter
n 1

what the initial distribution TT .

Proof. That the limit (4.6) exists is simply a restatement of

Lemma 4.2 . We prove the result first under the assumption of

stationarity and remove this restriction later.

We must show that Conditions (i) and (ii) of Theorem 3.1

are satisfied. In the notation of that theorem, we must first

prove that the distribution of the vector

-1 ^-1/2 ^g_s -S,...,S -S )
1 n^ n^ n^ n^ n^.^

approaches the appropriate normal distribution, where

S, = f(x.) +• • •+ f(x, ) . Our proof of this part of the theorem

follows [8] . Let {OC^} and { p } be two sequences of positive
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integers such that if { P } is defined by

-1
(4.7) y^-[ (min ("• - n.^^) - PJ(a^ . PJ ]

then

(4.8) lim H (3 a "^ = ,

n-^oo / n n n

(4.9) lim p p " :. ,

while Q , (3 and U all go to infinity. For example one can
n n r n

''

4-1 3
take '~' no and a =

n n '^n

Now for j = 1, . . . , c let

y. = /_, f(x . • ) . m = 1, . . . , M
'j, m *—

'

n. ,+1 I

y? = y^ f(x . . ) . m = 1 H
'j, m I—^ n. ,+1

\

J. I is i;<.(+p)-H J-1

We prove that

-1/2 ^+^
(4.10) p lim n

'/^ S y! = , j = 1, . . . ,c

n ->«» m = l J'"^
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Now by Lemma 4.2, Minkowski's inequality and (4.8),

rv^i J.m ' ' ^_, ^
" J.m

nT=l '' nn= 1

< An-V2 (^pl/2
+ (a + Zp )^/^) < A ^"^/^ q"^/^ (^^p^/^ + ( a + 2p)^''''

. -^0 ,

where A is a constant. This implies (4.10) .

Hence by Theorem A. 4 it suffices to prove the asymptotic

normality of the random vector

(4.11) cr-^n"^/^ ( 2 y, ^..... Z y ) .

1 m = l
^'"^ m=l ^'"^

Let

f (u .,,..u ) = E{exp(i E u S
<^i"^

n"^/%. ^) )
'^ ^

^
j = l

J m=l ^ J''"

be the characteristic function of (4.11) . Now the last term f(x.)

occurring in y. and the first occurring in y. ,, have 3

such terms in between them. And the last term of y. ^ and the

first of y.,, , have at least S others in between. Hence by
'j+1,1

Lemma 4.4,

I' c

m = lj = i
J J'

where |€ | < Z^c |^P ^''"^-^0 by (4.9). Let
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z. (j = 1, . . . , c, m = 1, . . . , P ) be independent random
j.m r

variables each having the distribution of y, i • By (4.12), the

proof of Condition (i) will be complete if we show that the dis-

tribution of the vector

-1 -1/2 ^ ^
(4.13) a-'n'^'-i Z z ^ ^^ rJ^ m=l ^'"^ m=l ^•''^

approaches the appropriate normal distribution. Since

Y /an-^c' by (4.8), it follows that

(4.14) lim E {{ <r'^ n'^^^ Z z. )^ } = c"\ j=l c

m = l

Since the components of (4.13) are independent, its covariance

matrix approaches c" times the cxc identity matrix. By

Theorem A. 2 it suffices to show that Lyapounov's condition is

satisfied. By Lemma 4.3 there is a constant a such that

iTj I
l^+S \ ^ l+(5/2)

El z. } < a a ^ ' '

' j,m • ' -

Hence, by (4.14), for n sufficiently large,

1 1 J.m' C/o

E{(<ln-l/^ 2 z.
)2})l+(^/^)

m- 1

Thus Lyapounov's condition holds.

Having shown that Condition (i) of Theorem 3.1 is satisfied,
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we turn to Condition (ii). Let E , n. . , . c and V be as
n, r j,u+l

in that theorem. Define a sequence {p } of integers by

Pn = [Ig n] . If r + p< n.^^^j then

(4.15) P(E^ .aHS^ - S I > En^^}
)

^'"^
""j.u+l

< P(E ^{|S ~- S ^„| > £ n^^/l } )— * n,r ^ ' n. ,, r+S '

— / * >

J.u+1

and we can estinnate the terms on the right separately. Now

(4.16) P{|S^ -Sr+3l> en^^V^llxj x^ }

j,u+l

< P{|S -S ^-1 > en^/V2}+ 2T-A>P

•^j.u+l ^+P '

by Lemma 4.1 and the Markov property. And by Chebyshev's

inequality and Lemma 4. 2»

j,u+l r+p' -

< A 6"^n"^(n. ^^j- (r+p) ) < 2A/e^c »> ,

where A is a constant. By (4.16), (4.17) and the defining property

of conditional probabilities,
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(4.18) P(E r\{\S -Sa.ftl> S,n^^/Z))
J , u+1 /

<
(2A

^ ^ ir^P)t{E^
^) .

^ C V

To estimate the second term in (4.15) observe that

(4.19) ^nS^^p.Sj > tn'^/2.)

r + P
, ,y,

< E F{|f(x )| > e p"'n''72 }

i = r+l

= pP{ |f(xj)| > £ 6"V^V2} .

Therefore, by (4.15), (4.18) and (4.19) ,

P(E ^{|S - S
I
> £ n^^^})

* n, r ' n. ,, r '
- "

< (-4^- + 2-r z^*^ )P(E^ ,) + PP{|f(x,)| > 6 (3-V''72 }

€"cv ' "'"^ ^

This estimate was obtained under the assumption that

r + P < n. .,, but ob-.'iouslv holds in the other case as well.
J, u + 1

Since the E are disjoint we have then,
n , r

(4.20) 2 V^(E r^(iS„. ^, - S |> £ n^^^ } )*

,
n, r '' "J , u + 1 r '

—
r =1 -^

< -^— +2r^P+npP{|f(x,)i > e^'^r}^^/!) ,
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Now

npP{if(xp| > £f3-y^^/Z }

^ . 2 ,2+8 ^3+8 -8/2 „- ... v i
2+ S .

< (-7-) P n El|f(xj^)| ) .

Hence as n ->-oo the second and third terms on the right in (4, 20)

go to zero, and (3.3) follows immediately.

We have thus proved the theorem under the assumption that

the initial distribution is the stationary one, which assunnption we

now remove. Let TV be any initial distribution. AA e show first

of all that there exists a sequence { P } of integers going to

infinity so slowly that

1/7
(4.21) lim P { max |S. |

> 6n } =

for all £ > . For each k select an integer m, so that

2 1;^ {|f(x.)| > k-^n^/^ }<k-^

if n > m, . Clearly we can choose the m, so that m, < m, . .

And now let 3 = k if m, < n < m, ,, . Then (3 goes to
n k - k+1 n '^

infinity and if m, < n < r^i,
, 1 then

P{ max |S.i>n^^^}< Z P { |f (x. ) |
> k"^ n^^^ }

"^ tip„ ^ i=l '^ '

<k-^ = r^ .n
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But this implies (4.21) . It is obvious that we can also choose |3 so

that

(4.Z2) p = o( n^''^ ) .

Let p be the polygon defined by

p (t) = S (j-nt) + S.{nt-j+l), a-l)n'^ < t < jn"^ j = l....,n,
n J-i J

~

where S.. = . And let p ' be the polynonnial defined by

p (t) if < t < p n"
^n — — "^n

P'{t) =

p (8 n"^) if (3 n"^ < t < 1 ,^n n '
'^ n - -

where {p } satisfies (4.21) and (4.22) . Finally, let
n

p " = p - p '
. Now (4. 21) implies that

'^n ^ n n

(4.23) lim P { max n" ' p '(t) > €} =

for all £ > . Also

P { max |S.
I

> 6 n^^ } < (3 P{|f(xj| > p"^ 6 n^^^ }

,3

e'^n

< —f— E{(f(xj))^}
,
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so that by (4.22)

(4.24) lim P( max n"^^^ p ' (t) > £ } =
n-»-«K. o<tii ^

for all £ > . Since we have shown that the invariance principle

holds if TV is the stationary distribution,

P { cr'^n*^^^ p e A } *- W(A)
1 ^n

for all A €: ^ for which W(A) = . By (4.24) and Theorem 1. 4,

(4.25) P {(T^^ n'^^^ p^' e A }—^W(A) .

-1 -1/2
It is clear that the set {(T"" n' p " ^ A} is naeasurable on

1 '^n

Xfl , , X - , . . . sample space. Hence by Lemma 4.1,

|P {<r:^n~^^^ P" € A) . P {<r-^n-^/%" € A}|

< 2 r-^^—^0 .

By (4.25) then,

^Vr ^ ^r^
^'^^^

P'n ^ ^^> ->- W(A)
.

But from this, (4.23) and Theorem 1. 4 it follows that if

W (A) = then

P {^r^n'^^p e A} ^ W(A) .

-rr 1 n

We have thus proved the invariance principle with no restrictions on -7T
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§5. The invariance principle for m~dependent random variables .

A sequence (X } of random variables is said to be m-depen-

dent if the random vectors (X_ X , ) and (X , , .... X .^)
ri' n+r n+s n+t

are independent whenever s -r > m. Sequences having this property

are of interest in statistics and have been studied by various authors

(cf. Bernstein [2j , Hoeffding and Robbins [14], Diananda [5] and

Marsaglia [l8], ) In this section we prove that the invariance prin-

ciple holds for m-dependent sequences if one or the other of two

auxilliary conditions is satisfied.

Then let (Xj,) be an m-dependent sequence of random vari-

ables with zero means and finite variances. Let S = X,+.,.+ X
n 1 n

and s^ = E{S^} .n ^ n

Theorem 5.

1

. If, for an nn-dependent sequence {X^^} , E{X^} is

bounded,

(5.1) |s2 -ncr^l = 0(1)

for sonme constant <r^ > 0, and

(5.2) limsn"^^"^^^ S E{|X.|^'^M =
n-*-oo 1 = 1

for some S > , then the invariance principle holds for the

1/2sequence fX^) with norming factors cTn '
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Proof . We first show that Condition (i) of Theorem 3,1 is

satisfied, using the technique of Marsaglia [18] (cf. Theorem A. 4

below). Let (n,, . . . , n^) be defined as in §3 , and for each pair

(n, k) with 2m < k < nc " and each j = 1 c define

k- tn

y
-LEX ^,. n, J. , 1 < i < [k"'(n. -n. , )]

^, n. ,+ (i-l)k + v • - - J J-1J»^ V=i "j_l

m
-1,

y.' .
= 2 X ^ ., . . 1 < i < [k"(n. -n. ,)] ,

J'^ v=,
n +ik-m+v "J J-1

y! . = f X
J... . . i = [k"Mn.-n. ,)]'j.i

v=i
n +ik-m+v J J-1

Let

^n,k
"

^,, ^j,i • ^n.k u, ^j,i

Now by Holder's inequality, if i < [k** (n. -n. , )] then

m
E{(y.'.)2)<m S E{X2 ^ } < m^ B ,

'l.i - y_| n.^,+ik-m+v^ - '

where B is the bound on EfX*^} . Using this inequality, a similar

one for the case i = [k* (n.-n. ,)] and the fact that the y! . are

independent, we see that

(5.3) E{(e^-'|^)2} < (n. -n.^j)k"^ m^ B + (k + m)^ B .

One obtains in a similar manner the inequality
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(5.4) |E{(S -S )2} -E{(gjJh2}|

< 5(n. -n._j)k'^m2B+(k + m)^B + 2m^B .

From (5.3) and (5.4) it follows that

(5.5) lim lim sup n" <r" E ((e ^^', )'^} =

"1 ^"2 I rp//c _c: \2l _ rp f/^ (j) »2
(5.6) lim lim sup n"' <r"^ |E{(S -S )'' } - E {(g^^' )^ }| =0.

Note that these two relations have been obtained without the use

of (5.2).

Now by (5.1) .

(5.7) E{(S .. -S )2} = i<r2+ ^ ,n+i n

where 3^ is bounded. From this fact and (5.6) it follows that

(5.8) lim lim cn"^ Ct"^
^{(gjij^ )^} = 1 .

where the iterated linnit is to be taken in the strong sense (cf. the

appendix).

We now show that if k is sufficiently large than the distri-

bution of the vector

ii^ <1) r2 „(1) /lite) .-2 ^(c) .

^< ^n.k ' ^n.k <^n.k^ ^n.k ^ '

where {^ i, )^ = E{(g ' )2} , apprpaches, as n —*-oo, the
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normal distribution having zero means and having the cxc identity

as its covariance matrix. By Theorenn A. 2 it suffices to show

that Lyapounov's condition is satisfied. But for k sufficiently

large this follows from (5,7), (5.1) and the fact that

But now from (5.8) and Theorem A. 5 it follows that the distribu-

tion of

_-l -1/2 . (1) (c) ,^ " K.k 8n.k ^

approaches, if n ->-« and then k —>- oo , the normal distribution

having zero nneans and having c" times the identity as covariance

matrix. In order to show that the distribution of

<r"^n"^/^(S S -S^ S^ -S )
n, n-, n, n n ,12 1 c c-1

approaches, as n-^*^c»o, this sanae normal distribution it is enough,

by Theorem A. 4 , to show that

(5. 10) p lim p lim <r"^ n"^/^ (q^^I , . . . , e ^^l ) = ,

since S -S = e , + e , . But (5.10) follows immediately
n. n. , ''n,k n, k ^

1
1-1

from (5.5) and Chebyshev's inequality.

We have thus proved Condition (i) of Theorem 3,1, and pass

on to Condition (ii). Using all the notations of that theorenn.
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P{|S .^-S I
> £ n^^Vz} < ''s" P{|X

I

> 6 n^^^Zm} .

Hence

,

(5.11) S P{|S ^ -S
I
> en^/^/2}<m S P{

|
X„| > £ n^/^/2m}

t*=i r+m r - " rm

^"^<"T^ l+(S/2) S Eilxr'^^'^^O

as n —*"»"
, by (5,2), And (making the inessential assumption that

r + m<n. ,,) by Chebyshev's inequality and (5.7),

P{|S -S .
i
> e n^/^Z} < —r-i + —7^ ^ .

Hence, since S -S , is independent of E
,

n. ,, r+nn ^ n,r
j,u+l

(5.12) lim sup 2 P(E ^{|S -S^ \>€n^^^/z})^ n.r*^ n. ,, r+m '

- / j'

n—>-«» rsi • j.u+l

< V c V f

.

And now (3.3) follows from (5.11), (5.12) and

(5.13) P(E ^^{\S -Sj > en^/^ })

''j,u+l

<P{|S. -S^l > 6 n^/^/2} + P(E ^{IS -S . I" r+m r' - ' -• ^ n.r'^^' n. ^, m+r'
J.u+l

> £n^/V2}).
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It is possible, at the expense of complicating sonaewhat the

proof of Condition (ii) , to relax the condition (5.1). In particular,

it can be replaced by s^ /^ n O" .
n

Theorem 5. 2 . If {X } is a stationary nn-dependent sequence of

random variables with zero nneans and finite variances, then the

invariance principle holds for {X } with norming factors n '0"
,

where

0-2 = E(x2} + 2
J^

E {XjX^^^} .

Proof . Define y. ., y! . , g , , and e -' , as in the proof of
j,i J, I n,K n,K

Theorem 5.1. It is a simple matter to show that (5.1) holds here.

Since EfX'^} is bounded it follows that (5.5) and (5.6) hold in this
n

case as well. In order to establish that Condition (i) of Theorem 3.1

holds in the present case it suffices to show that the vector (5.4) is

asynrjptotically normal. But this follows iminediately by Theorem A, 3 .

To prove the Condition (ii) holds we proceed as before. In

fact (5.13) and (5.12) are still valid. Finally,

w

»,?, ^^I^r+m"^rl > 6 n ^ V2 } < mn P{
|
Xj > ^n'^yinx) ,

and the right-hand side of this inequality goes to zero since

E{X2}< oo
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An immediate consequence of this theoremi is the original

result of Donsker [6]

«

Theorenm 5« 3 « If {X^^} is an independent sequence of random

variables which are identically distributed with zero mean and

finite variance O" , then the invariance principle holds for

i/z
{ Xj^ } with norming factors n ' CT .
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§6, The invariance principle for linear processes with

m-dependent residuals.

Let (Y .; - c^> < j < <» }be an m-dependent process and

^^t' *^-^^) ^ sequence of constants such that for every integer

i, 2 A^ Y . ^ converges in probability to a variable
t=0 t l-t to f /

X. = 2^ r. -^-^ Y. ^ as n -*-«> . Then we say that
1 t=0 t i-t '

(X. , - oo < i < oo
} is a discrete linear process with m-dependent

residuals. Processes of this sort are of interest in the analysis

of time series (cf. Diananda [5] for references to the statistical

literature).

Suppose that (Y.,-oo<
j < <» } is a stationary m-dependent

process such that Y. has zero nriean and finite variance and
J

suppose that

<x>

(6.1) 2^^^ |AJ < oo
.

F JT a fixed i
,

let T^^ = ^-n ^t ^ '

i
' ^^ ^^ easy to show,

using the m-dependence and stationarity properties of {Y.} ,

that

^^<T^ + n -T )2} < £{y2} ( S A2+2mA 2 |A|).
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Therefore

lim sup E{(T -T„)2} = .

n-^eo U,>0 "^"

and {Tj^} is fundamental, and hence convergent, in probair liity.

Thus S Q ^f^- f
converges in probability, as n-^»^««s to soj^ne

random variable X^ = S _ '^^t^.t • ^^^ ^"^i ' ' ^ < ^ < ^] is

a discrete linear process with nn-dependent residuals, it is

trivial to show that {Xj} is stationary. In [5] Diananda has

shown that the central limit theorem holds for processes {Xj)

which arise in this way, that is, if {Yj} is m-dependent and sta-

tionary, Yi has finite variance and (6.1) holds. It is the pur-

pose of this section to prove the invariance principle for such

processes. We are forced, however, to nnake a stronger

assumption on the nature of the sequence {A^} , viz. , we

assume that

(6.2) |A„| = 0(n"^) .

At the end of the proof we indicate some ways in which the re-

quirement (6.2) can be relaxed.

Theorem 6. 1. Let {Yj, - oo < j < oo } be a stationary m-depen-

dent process with zero means and finite variances and assume
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that (6.2) holds. Then S „ A Y. converges, as n —>- oo ,

in probability to some random variable X- = 2 ^ A Y. . ,^ ^ 1 t = t i-t

so that X^ is a stationary discrete linear process with rn-depen-

dent residuals, and the invariance principle holds for {X^} with

norming factors n <T" , where

(6.3) 0-2.(2 A. )2 (E {y2} -i- 2 S E{Y^Y^}) .

Proof . That (X-) exists and forms a process of the type asserted

follows from the preceeding discussion and the fact that (6.2)

implies (b.l). We proceed with the proof that Condition (i

)

of Theorem 3. 1 holds , making use not of (6. 2) , but only of its

consequence (b.l). Vv e will use repeatedly the inequality (easily

established by induction on n )

a^ + (aQ + a^)2+... + (a^ + . . . + a^^^ )^

%?J^^^-H-'-"^Vn.l)'^ "< if. 1-il^'

Following Diananda, define

k-1 oo

P. , = 2 A. Y.
, Q, , = S A, Y. ,
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^n k i " ^^
J-1

P.
i.k •

V , . = n
n.k.j

-1/2

n.
J

i=n. ,+1

Q
i.k

Now for k fixed and i varying, (P. , ) is a stationary (m + k-i;-
1 , K

dependent process with zero means and finite variances. It was

proved in the preceeding section that Condition (i) holds for such

processes (Theorem 5.2). Therefore the distribution of

(6.4) (U ,
,

U - )

n,k,l n,k,c

approaches, as n —>-oo , the normal distribution having zero

rneans and having as covariance matrix the identity inultiplied

2by <7" , where

(6.5)
2 _

„'i"L '^("n'k.j' = =''<^0+---+^k-l*' A .

J 't » • * $ ^ t

where

(6.6)

tn

X- E {Y^} + 2 S E(Y Y^}





- 67 -

To establish the second equality in (6.3) it is enough to show

that

(6.7) lim n"^ E {( 2 P. )2 } = (A^ + •

Let S"
,

P. . = ^ + >] ,1=1 i,k '

•+\-i>' ^

where

f = (A„+...+A^_^) ^S

and

>)= A„Y,^ + (A^ + A,)Y^.,+ ...+(A„+...+A^_2)Y_^_^^2

+ (A^+...H-A^_j)ygHA2+-..+A^_j)Y_^+...tA^_jY2_,

Then

E{^^} = (Aq+...+/.j^_j)2 (X(n-k+l)+P ) ,

with A defined by (b.6) and V> by

(6.8) p = -2 S vE{YqY^} .

v=i

If

(6.9)

then

A = sup
I

A(.|
,
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(6.10) E { V| 2} < 2k2 a2 E {y2} .

By Schwarz' inequality,

(6.11) (E^/2{^^}-E^/^{>)2})2 <E{(?+>))2}

< (E^/2{52j+E^/2{>3'^))2 .

By (6.10) and (6.11) .

|[n-^E{( 2 R .
)2}]^/2 -[n-N X(n.k-H)+P )]^/2|

< Zk^ A^ E {Y^jn'^ ,

which yields (6.7), and hence (6.5). From the convergence

of the distribution of (6.4), and the limit

? -1 2
lim O-^ = c 'c7- ,

where CT^ is defined by (6.3), it follows that the distribution

of

^"^^"n.k.l ^n.k.c^

approaches, if n-voo and then k —»• "o , the nornnal distribution

with zero means having as covariance nnatrix c times the iden-

tity. In order to show that the distribution of
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^ n'(S ,S ~S ,...,S -S )^ n ' n^ n

,

' n n ,12 1 c c-1

converges, as n —5»-oo , to this normal distribution , it suffices

by Theorem A. 4 to prove that

p lim p lim (V^^^j^^j
^n,k,c^ = ^ '

or, by Chebyshev's inequality, that

(6.12) lim lim sup E(V ? .) = , i
= 1, . . . , c ,

Now, letting w = n.-n. . , one connputes

<^-l^) Z2 ZZ ^Y..t = ^kY,.MA,.A^^^) Y^_^

i=n. ,-f-l t=k ^ J

j-1

. + (A, +... +A, . ,) Y _^_k k-l-w-2 n. ,+2

+ E (A +••• +A, . . .)Y .,k+v k+v+w-1 n. . + 1-Vv-o j-1

Letting

(d.14) B = max | E(Y^Y }| ,

ind using the well-known fact that E(z2}<lim sup £{2^} if

Tl —>- oo
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Z = p Urn Zj^ , one deduces from (6.13) that
n

-1
(6.15) E(V^,k.j ^- ^-"j.p" ^<l^kl + l\+li ^••-

) '

which yields (6.12). This completes the proof that Condition (i)

holds.

In order to prove that (3,3) holds in the present circum«

stance, we first show that there exists a sequence {pn) of integers

tending to infinity in such a way that

(6.16) lim npP{|X
I

>Ep"^n^/^/2} =

and

(6.17) lim S P{| S Y (A., +...+A . .,

> £ n^/^/4 } = .

It is easy to show that X, has a finite second nnoment. Hence

there exists an increasing sequence {mj^} such that

k n P (IXj > ek"^ n^/^} <k"^

if n > mj^ . If one puts p^^ = k for mj^ '^ " 5 "^i^ + i
» than p goes

to infinity and (6.16) holds. It follows from (6.2) that
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(6.18) Rn = 0(n"^) .

where R^ = |A^| + |A^^j| +••• . Now

(6.19) P(| L Y^^(A +...+A^
V=0 r- J,U+1

)l > e n'/V4}

< P{ S |Y
I
R«. > en^/^/4}

< J_ P{|Y^^| Rp^^>n^/2^p + v)-^/^} .

provided n is large enough that

V=o

But

s (p + v)'^/^ < e/4
.

P{|Y_J Rp^^>nl/2(p + v)-5A}<,-l(p^,)5/2 ^2^^

00
so that by (6. 18) the sum in (6.17) is dominated by S _>. (p + v)

which goes to zero since p goes to infinity. Hence (6.17).

We now deconnpose the sunmnnand in (3.3) into

+ v)

(6.20) P(E^^^ ^^IS^. .^-Sj > £n^/^})<P{|S^^p-Sj> £n^/V2}

1/2+ P(E ^^{|S .S^^.bI > 6 n^/V2}) .
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where (P^^ satisfies (6.16) and (6.17). It follows immediately

from stationarity and (6.16) that

M 1/7 .

(6.21) lim S P{|S .„-S
I

> £ n Vz} = .

Lie t n . . 1 - r = w . ThenS -S =5 + ^» whe re
l,u+i n. ., r

? = S (A-^ +... +A . ) Y
v=o P"*'V w+v r-v

and

^=A^Y . +(A„+A,)Y .
,+... + (A.+...+A « ,

) Y . „ .

,

* r+w 1 r+w-l w-p-1 r+p+1

(9-1

+ 2 (A +... +A ^ «)Y . .

Hence

(6.22) P(E ^{|S -S ..| > £ n^/Vz})
^•'^

j,u+l ^

<P(E^^^)P{|>3| > €n^/V4} + P{!? !>6n^/V4} .

where the factorization of the first term on the right is valid if

n is large enough that p > m . Now by stationarity and (6.17)

we have,

(6.23) lim 2 P {| ? I
> £ n^^/4} = .
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Using the rn-dependence property, one computes

+ S (A +••• +A )2

v=o V v+w-p

00

< w(2A2Bm+( 2 |A^! )^)
,

where A and B are defined by (6.9) and (6.14). Since, in the

notation of Theorem 3.1, w < n/c v» ,

(6.24) S P(E ) P{|v]
I
> 6 n^'^/4} < (const. ) 16 / e^ c v» .

Finally, (3. 3) follows from (6.20), (6.21), (6.22), (6.23) and

(6.24), connpleting the proof of the theorem.

It is clear that (6.2) can be replaced by the weaker condition

(6.18). In fact

R„ = 0(n"^"^ ) , S > 0.

suffices. An examination of the proof shows that if there exists a

sequence (Pf,) going to infinity in such a way that (6.16) and

(6.17) hold, then the result follows. This fact can be used to

weaken (6.2) under the assumption that Y. possesses some

moment of order higher than two.
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§7. The invariance principle for recurrent events .

Let (^ be a recurrent event in the sense of Feller (cf . [11]

or [12] ) . Suppose that (5 is certain, let

1 ' 7 ' • • *

be the successive recurrence times of (3 and let

Let Zj^ be 1 or according as Q> occurs or not at the nth

trial and let

Nn = Zj+-«. +Zn

be the number of occurrences of 0> during the first n trials.

Assume that the recurrence times have finite nnean M and

variance <r" . In this section we prove the invariance princi'

pie for the sequence {Zj^ - ii
"

} .

Theorem 7. 1 . If the recurrence times have finite mean
r

and variance <r , then the invariance principle holds for the

-I »^ /z 1/2
sequence {Zj^ - ij

"
) with norming factors (T" V>

" ' n '
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Proof : Feller has proved the central limit theorem for N^

by reducing it to the central limit theorenn for Sj^ via the

identity

(7.1) {N^> k) = {S^< n>.

Our proof that Condition (i) of Theorem 3.1 holds proceeds in

the same way. Let J ( a, a^,) be the normal distribution

with zero means and covariance matrix (^-ji). where X^: = c"

min (i, j) . We must show that

(7.2) lim P {N^ -n. U'^ < a.(rp"^/^n^/^. j = l c}

= f (aj, .... a^) .

For j = 1, .... c let k. = k.(n) be one greater than the integral

part of n. »-' "^ + a. <rw»
"^/^ n^/^ . Then (7.2) reduces to

(7.3) lim P{N < k. , j=l. .... c} = J (a, a^) .

By (7,1) we see that (7.3) will follow if we can prove

fSk.-k. 1^ n-k.
p

.

Tn-*oo
.^-x/.^V- tf-|)

c
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Since

, ^..-1/2 1/2
n. -k. /-^ -a.CTU ' n '

J J 3 1

and $(-<ii -a^,) = 1- 5(a^, ..., a^ ) , it suffices to show that

the distribution of

--,.-1/2 1/2 ^\S \ '\ ^
^ru ' n '

1 c

approaches 2 , But this follows easily from Theorems A, 3 and A, 4

and the fact that k. ^^^n. U
"

J J r

We need a subsidiary result for the second part of the proof.

For each integer r let Uj. be the last trial before the (r + l)st

at which G? occurs, letting U = 1 if there is no occurrence of

<^ in the first r trials. And let Vj. be the first trial after the

rth at which <S occurs. Then

(7.4) P{V^ -U^ = k} = P{Xi = k} .

For when (5 occurs the process begins anew (cf, [U]) so that

P{V^.U^ = k} =
2^,/.i,+i P{Ur = v}P{Xi = k} = P{X^ = k} ,

To prove that Condition (ii) of Theorem 3.1 holds, define

random variables (3 by
Ml , r ^
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V if V < n. ^,
r r - J, u+1

"'"'
' n. ^, if V > n. ^,

J, u+1 r J, u+1

Then

J,u+1 -^
• »

n, r

+ P(E /^{|(N -n. ^, u"^
^ nr '^ vi ^ n. ,, j, u+1 \

'

J, u+1 -'
'

' n, r '

Now No -N IS or 1 (accordine as V >n. , , or not), soBr \ &
J. J, u+1

'

' n, r '

that |(N -p^U-').(N^-^-l)|<l+f-N(3 -r).
n, r '

And S -r<V-U ,so that
^n, r - r r

P{p -r> f n'/^} < P(X,> |„l/2}
'' n, r — 4 ^— ^1-4 •*

g i/zHence if n is large enough that "T n ' > 1 t

)
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(7.6) I p{|(Np^ ^.(3^^^,.-l).(N^-r,.-^|> |n^/^}

< n P { Xj > I n^^ } —^ .

where the limit holds because X, has a finite second moment.

On the other hand, by the defining properties of recurrent events,

the second term of the second member of (7.5) is equal to

P(E )p(|N « - (n. ^, -P)W"M > -T n^/^} .

^^
"j,u+l"*^ '

j,u+l ^T '
- 2

J

It is shown in [U, p. Ill] that

E(Nj^) = kj^-^ + ^ (<r^^y^y^)y'^ -l+o(l)

and

Var {Nj^l-^kiT^W
'^

Hence there exists a constant A such that

E{(Nj^.k|j"S^} < Ak

From this and Chebyshev's inequality it follows that

J.u+l -• »
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Hence

(7.7) hm lim.up Z P(E„^„{|(N„ ^-"j,u+ir''
V-»»o h -^ -o *^"' J,U+1 •'

-(Np-Pf>-^) > f n^/^} ) = .

Finally, Condition (ii) follows fro nn (7.5), (7,6) and (7.7),

completing the proof of the theorenn.

It is possible to prove this theorenn by a direct extension of

Feller's method, avoiding the use of Theorenn 3.1 . That is, it is

possible to prove it using relation (7.1) and the invariance principle

for {X - P } (Theorem 5.3). While such a method is conceptually

appealing, the details of the proof become very involved.
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Appendix.

In this appendix we prove some multivariate central limit

theorems and extend to several dimensions two theorems of

Marsaglia [18] . The proofs are straightforward but seem not

to be available in the literature in a generality sufficient for our

purposes.

Let {V , , k = 1, , , , , \> (n), n = 1, 2, , , . } be an array
n y K.

of random vectors

n,k n, k n,k

We assume that each X ^, has mean zero and a finite variance
n,k

and that the vectors with a comnnon first subscript are independent.

Let S , = 1^^"^^ X^^i, , s^ . = E {S^ . } and let A be the
n, j nc=l n,k n,j ^ n,j ' n

covariance matrix of the random vector

(A. 1) (s
"

, S ,,,.., 8 " S ) .
n, 1 n,

1

n, c n,

c

In what follows we assume that

(A. 2) A = (a. .) = lim A^

exists. The matrix A is of necessity positive semi -definite,

and for covenience we assume it to be positive definite.
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The first result says in effect that if (A.2) holds and the

Lindeberg condition holds in each of the c components then the

central limit theorem holds. The proof reduces the problem to

the central limit theorem in one dimension, making use of a

technique due to Cramer and 'V^old [4] ,

Theorem A. 1 . If (A.2) holds, where the limit nnatrix A is

positive definite, and

-2

r
t»cn)

(A. 3) lim s"''. 2

J
(X^j|^)^ dP =

(j)
^' n,k ' - *=• n,j'

for all € > and j =1, ,.., c, then the distribution of (A.l)

converges to the normal distribution having A as its covariance

matrix and zero means.

Proof. We must show that

C 1 c

(A.4) lim E {exp(i S t: s . S .)} = exp(-l/2 2 a. .t.t.)
n->oo jsi J n,j n,j ^

ij_l i,j ij

fO]>r all (t,, .... t^) , Let the t. be arbitrary but fixed throughout

the following discussion. For notational convenience we assume

that no t. is zero. Let

Y , = 2 t. s "I X^Jj
.n,k •

I 1 n,.i n,k

v(n)
It is easily seen that the second moment of 2, _ Y , is
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s^ = S a<"l t.t. .

I \ 7
where a. . is the (i, i)th entry of A^ . Note that s > for

1 , J
' » ." / n n

sufficiently large n , since A is positive definite. If we can

prove that the central limit theorem holds for the array {Y^ j^}

then

(A. 5) lim E {exp{iu s S Y )} = e "^ ^ .

Since

(A. 6) lim s^ = 2 a^.'^^. t. t. >

by (A. 2), substituting (D.^. , a. .t.t,)' for u in (A. 5)

gives (A, 4), in view of a well-known theorem (cf. Theorem A, 5

below)

.

In order to show that the central limit theorem holds for

the array ( Y , } it is enough (cf, , e.g. , [13]) to show that

o v(n) j ^
(A. 7) lim s'^ S Y , dP = .

n-^oo n
^^^ j

n.k

^(|Y ,
I
>€s }

' n, k' - n-*

for all £ > . Now choose S so that

< ^^ < c"^ 6 ( S a. . t. t. ){ max |t.| )"^ ,

and let /» , be the set where I X , I > "L^ s . for sonne
n,k ' n, k ' - ^ n, J
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j = 1, .... c . By (A, 6 ) and Holder's inequality we have, for

large n ,

-2

n

r
X^ , dP < c s'^ 2 S
n,k - n ^^, .,,

^lVkl>^^n>
'A

g-2 (^(j) j2 ^p
n

, j n , k

n, k

Using (A, 6) again, we see that in order to prove (A. 7) it suffices

to prove

-2
(A. 8) lim s "^ S

'^n!'k''
^P = °

n, k

for
i
=1, . . . , c . But

-2

n,3

'A
(X^i>^)2 dP

-2
s 2

h,k

(X^Jh2 dPn,k

" n,k' - P n,j'

+ s
-2 v>Ch)

n,k ^' n,k ' ••- •* n, j

'

Now the first term of the right-hand member of the preceding in-

equality goes to zero by (A. 3), while the second term is dominated

by
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r

<
7 V(h)

k=1

dp
c

-2
s

vin)

2 2
i=i

n.i
k = »

which goes to zero, again by (A. 3). Thus we have proved (A. 8)

and hence the theorenn.

The multivariate version of Lyapounov's theorena now folJuvvs

immediately,

Theoremi A. 2 . If (A. 2) holds, where the limit matrix A is

positive definite, if the X -'
, all have finite moments of order

2+6 for some o > , and if

(A. 9)
-2-5

lim s

for j = l c, then the distribution of (A.l) converges to the

normal distribution having A as its covarian^e nnatrix and zero

means

.

Proof. Since

-2

n, j

(A. 3) follows from (A. 9).

A second consequence of Theorem A.l is the multivariate

central linnit theorem for identically distributed random variables.
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Theorem. A . 3 . If the V , are identically distributed, each

having the positive definite matrix A as its covariance matrix,

and if lim v* (n) = <»
, then the distribution of (A. 1) converges to

the normal distribution having A as its covariance nnatrix ixnd

zero nneans

.

Proof . Let the distribution function of X •'( be F. , where—

r

"'^ J

x^ dF.(x) = (T^ . Then/

s . s {yi'-^lr dP = <r . / x" dF.(x)
n.l ,^_,

J
n.k

J
f jy

^l^n^l' ^^^n i^
^{|x!>£a:v^/^n)}

n, K n,

J

J

goes to zero, and ihe result follows.

The next two theorems are trivial extensions to c dim^ensions

of results of Marsaglia [18] on iterated limits. Here an iterated limit

is used in the strong sense, i.e., lim lim a , = a means

lim lim sup |a-a | = 0. If V = (V^^^ ..., V^^^ and
k-».<» n—> do n, K

V , = (V , . . . , V -'
) are c-dimensional random vectors then byn,Kn,K n,K '

p lim p lim V = V
^ n , K

we mean

lim lim P{|VJ^U V^i^l < e,j = 1 c} = 1

for all £ > .
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Theorem A. 4 . Let V , = (V^^j , ..., ^^'^l) and
n,k n,k' n,k'

U 1 = (U ,,.,,, U ') be random vectors such that
n , K n , K n, K

p lim p lim U , =
n, K

and

lim lim P { V ^
, < x., i

= 1, . . , , c } - G(x, x )

v^_!^~. n,K ~ 1 L c

for all continuity paints (x., ..., x ) of a distribution function G ,

Then

lim lim P (V ^^J, + U^^J, <x . j = l, ..., c} = G(x,, .... x^)
k-*eo h-*«. ".^ n.k- n -^ ' r ' c

at continuity points of G .

Proof . Marsaglia's proof goes over almost word for word. Let

C = 8 S > and a continuity point (x., . . . , x ) of G be given.

We must find integers K, N, , N_ , ... such that

(A. 10) |P(Vn|l+ U^^ik5x., j = l c} - G(x^ x^)| < £

if k > K and n > Nj^ . First choose (3 so that (x. - p, . . . , x^ - p)

and (x., +p, ..., X +p) are continuity points of G and so that

(A. 11) <G(x^ + p x^ + p) . G(x^-p x^ -p) < S

Next choose K, N. , N^ , ... so that
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(A, 12)

(A.13)

(A.14)

(A. 15)

p( u (lujJh >p}) < S .

j = l
n,K

|P{V^||^<x., ,i=l c} -G(x^ x^)! < ^ .

|P{V^J|^<x. -p. 1=1 c} .G(xj-p. .... x^-|3)| < S
,

|P(V^|^^<x. + p, i=l, .... c} -G(x^+p x^+p)! < ? ,

provided k > K and n > N, , For such a pair (n. k) set

F(§) = p(v^;L^u^^;)^<x.f?.j=i c).

H(?)= P{V„^|L+U^^;J^<x.-f? . |U^;»J<p. j=l c} .

L(5) c P{V^J}^<x. + ? , lU^Jjc' 5P' 3 = 1 ^> •

0(5) = P(\^^^l,<Xj + § . j = l c} .

T(? ) = G(xj + ? ^c
"^^ ^

Then

.|F(0)-T(0)| < |F(0)-H(0)| + |H(0)-L(0)|

+ |L(0) -0(0)1 + |Q(0) - T(0)|

The first, third and fourth terms on the right are each less than 8
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by (A. 12), (A. 12) and (A. 13) respectively. Since

L( -p)<H(0) < L(|3)

and

L(-p) < L{0) < L(p) ,

we have

|H(0)-L{0)| < |L(p) - L(-{3)i < iL{p)-0((3)|

+ |0(P) ~ T((3)| + |T(p) - T(-i3)| + |T{-(3) - Q(»B)|

+ |Q(-(3) - L(-p)i < 5 S

by {A. 12), (A..15). (A. 11), (A.14) and (A. 12). Hence

|F(0)-T(0)| <8S , which is (A. 10).

Theorem A. 5 , l-.et V . be random vectors such that
, ^^ j^

lim Um P{V ^. < x., j = 1, .... c} = G(x,, .... x )

at continuity points of G , Suppose that

lim lim A , = 1

k—*- «o n —>- oo n
,
K

y>\ -

for j = 1, . . . , c . Then

lim lim P{ y^{ V^^l^ < X j = l, .... c} = G{x .... x^

)

,—^00 «—*«> n,K n,K j 1k—^00

at continuity points of G .
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Proof, By the preceding result it suffices to show that

(1) (1) (c)

which is easy.

p am p lim
( ( \l]{ - '>^ "I < ^n.l - "^n,k> = " '
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