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The focal point of the discussion which follorjs is the design of a

filter type having two salient specifications. The first is that the

gain function sliall be naxinially flat in the pass band and the second is

that there slmll bo equal naxima of a specified value in the stop band.

A nothod, utilizing the potential analogue method, is presented for eas-

ily obtaining this typo of fVmction. Design procedures are developed for

directly obtaining the final gain characteristic from the given require-

ments prior to performing any of the calculations reqxiired in the design

of the actual filter. Tabulation is made of certain calculated data v;hich

are of interest to the design engineer.
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CliA-FTER I

lOTRODUCTION

1. Types of synthesis problems.

There are two main categories of synthesis probleros. Tliese are the

design of filters and the design of equalizers. Filters raay be classified

as (1) notch, (2) peak, (3) band suppression, (4) band pass, and (5) any

conbination of the proceeding. Other characteristics such as type of feed,

inpedance ii^atcliing, et cetera, are dependent on physical netnork configura-

tions. Equalizers may be of the phase correction or gain correction types

or both types may be incorporated together. In recent years the phase

shift network has become increasingly prominent. This is distinguishable

from the phase equalizer only in tlmt in the phase shift network the phase

characteristic is desired for itself rather than as a corrective measure.

2. The development of modem network synthesis.

Historically, synthesis of olecti*ic circuits evolved from circuit

analysis. Circuits known to have a particular type of characteristic

were analyzed and the circuit constants then adjusted to locate particu-

lar values of the knov/n characteristic where desired. An advancenent of

this scheme was to optimize a somewhat variable characteristic so that it

matched as closely as possible the one desired. Modem notv;ork synthesis

is the roveree of the abovo procedures. The desired characteristic is ob-

tained or approximated in an algebraic form constrained only by realiza-

bility conditions. Then the network is derived from this algebraic func-

tion, w'ith this procedure one is not limited by the extent of his expe-

rience with various circuits in the design of nervt ones.
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In 1924 P.. I.:, Fo3ter(5) troated tmo-teminal noirvvorix containing

only reactances. This nay bo considered the boginninc of aodem network

synthesis. The problera involving the general two-ter.unal netv/ork -was

solved by 0. Brune(2) in 1931 and its practical use v;as extended by Bott

and Duffin(l) in 1949 since t]iey avoided the ideal trans former in the re-

alization of the general tv/o-terrninal not^vork. The piune arna of network

synthesis iTiight be considered to be the developr.ient of desired transfer

functions "within the linitations of physical realization of the cori^s-

ponding net^vork. As used in this sentence, transfer function simply

means a functional relation between electrical quantities at one terr.iinal-

pair and those at another. For trvo-terminal networlcs the two tertiinal-

pairs are the sane.

?iuch has been -nritton on two terrninal-pair and n terainal-pair net-

Tr.'orlcs. Of greater engineering interest at the present tine is the fornier

type, and only this category rrill be considered hereafter. The general

realizability requirements have been obtained. Various -writers, too nu-

merous to mention, have found sone, or all, of the restrictions imposed

on the various transfer functions by specific classes of netv;orks \7ith,

or v/ithout, other restrictions. Others have developed methods of appi*ox-

irnating desired cliaractoristics with realizable transfer functions. Other

investigations liave dealt -with realizing the plysical network para-meters

fron the transfer flmction, and in sone cases also prescribing the input

and output in^edances of the network. Those findings, pertinent to the

filter designed in this thesis, will be discussed in succeeding chapters.

(3)





CPIA-PTER II

THE APPROnilATION PROBLEH

1. General.

There are numerous procedures which riay be follovjod in the process

of approximation. Before describing any of these, rontion should bo inado

of tocliniques frequently used in the approzination of filter type charac-

teristics. Usually the lofw pass characteristic is first sought and after-

•wards modifications are made transforming the characteristic to a band

pass or a high pass type, as may be desired. I'oreovor, certain quantities

are usually nonnalized (i.e., iriade equal to 1) in the initial development.

In the design of equalizers such techniques are not universally applica-

ble.

One of tlie oldest approximation procedures is to make a realizable

characteristic of a network match a desired characteristic exactly at a

finite number of given frequencies. Often this gives quite satisfactory

results -when the number of given matching frequencies is snail and T;hen

there is a knOTvn type of function -whose characteristics resemble those de-

sired. A handicap of this method is that little control is held on the

difference between the desired characteristic and that -nhich is approxi-

mated at frequencies other than the matching ones.

A refinement of the above is the least squares approximation wherein

the integral of the squared difference betv;eon the two characteristics over

the frequency range of interest is made a minimum. This is a decided im-

provement, but it still leaves one vjith considerable doubt as to the :nax-

imum difference which occurs.
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Tills sitiiation is corroctod by techniquec wherein tho maxiuiun diffor-

oncc is linited. One of these is the equal ripple teclmiquc. In this

case all the noxiraa of difference are made equal to the allowed tolerance.

This is frequently described as bein^ the most efficient use of tho cir-

cuit elo:-ents. Ilov/ever, characteristics other than the one, or ones, ap-

proximated roay becor.e intolerable in actual practice.

Another scheiao of approximation is to match the desired characteris-

tic at only one frequency and require the difference function to approach

monotonically the tolerance in the band of approximation. The naxinally

flat characteristic, discussed later, exemplifies this type of approxima-

tion.

2. Tlie potential analogue method.

Use is made of the potential analogue of network Amotions in the

appro;d.nation of these functions by any of the teclaniques listed in sec-

tion 1. Laboratory equipment and techniques may be used to determine ex-

perimentally the approximatinc functions. In addition, one's laiowledge

of electrostatics and potential tlieory is available to provide anal^'tical

tools and intuitive approaches whether laboratory methods or strictly

mathematical techniques ai^ used. Darlington(4) has e:ctensively treated

the basis and application of the potential analo[^e method. The follow-

ing discussion of the analogy is a limited development vjliich is sufficient

for the use made of it in chapter III.

A transfer function is defined as the ratio of the output voltage or

current of a netv7ork to the input voltage or current as a function of p

when the inptrt quantity is of tho form, A CV^, :'.06t generally the real
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frequoncy behavior, foi- wkich p = jo), is that vrith which one is concemea.

The sjv.bol, t(p), represents a trcnsfer function and raay be expressed in

the form.

T^('^ - -P'j)

For the transfer function to bo realizable -with a physical, passive net-

work the follo";ving restrictions apply:

(o.) P.e[^,^-}<0

(b) t(p) is ilnite for p = <3o and for p= 0.

The latter condition is equivalent to the statement, m^S n. The approxi-

nation problein tlien becomes one of detennining the p*^ and the p^ • , sub-

ject to the above restrictions, such that the chajracteristics of t(p) for

p = JO) are tolerably close to those desired.

Consider the logaritlun of the transfer f\inction.

^-1

+ f d"^ ' I "'^

(6)





and .^ - -;*x/ =
)
^ - 7^A;j |£^

Consider next tlie potential at a point in a plane at a distance, d,

from an infinitely long line charge perpendicular to, and passing through

this plane. If the line charge has a linear charge density q, then "with

appropriately chosen units the potential, V, at the point considered is

given by:

V = - q log d + const.

The constant is an arbitrary one depending only upon the level chosen for

the reference potential. Since potential is a scalar quantity the poten-

tial due to several parallel line charges at a point in a perpendicular

plane is given by:

•where d^ is the distance in the plane of the point at which V is meas\ired

from the i"^^'^ line charge. If the complex notation is used to represent

the coordinates in the plan© a complex potential, Vf, may be defined such

that:

>*-*!

where z represents a location in the plane at which W is considered and

z^ represents the point in the plane through which the i"^^ line charge

passes. From the above equation is obtained:

(7)





Realizing that [2 - z^j is tho distance from tho i"*^^ lino cliar^e to the

point it is seen that:

All future reference to this potential pictiire will concern quantities in

the plane defined above and reference to a charge q in reality noans a

line charge perpendicular to the plane having a linear charge density q.

If tho value of q is restricted to tho values + 1 and -1 and if

the subscript x is used -when q^ = +l and the subscript o is used when

q, = —1, then the forraula for W becomes:

in n

Though thje charge magnitudes have been restricted to unity, coincidoirt

charges are allo7;ed.

The complex potential has tlie sane inathenatical form as the logaritlon

of a transfer function. This is the basis of the potential analogue method.

(8)





The magnitude of the logarithm of tho transfer function corresponds to the

real potential and the plmso function to the stream function of tho conplox

potential. Any restrictions inposed on the locations of the poles and ze-

ros of the transfer function shall likewise be applied to the locations of

the positive and negative charges, respectively, in the potential analogue.

On the basis of potential theory the potential function, or analogous

transfer function, may be napped into an auxiliary plane by neons of con-

fomal transformations. The reason for so doing is that tho riapping of

the original coordinates is arranged by appropriate transformations in

such a fashion that one's experience and intxiition in electrostatics dic-

tates an approach for obtaining a desired transfer function.

To obtain the flat portion of a filter characteristic using the an-

alogy, one would desire a constant potential over the corresponding por-

tion of the real frequency axis or its napping into another plane. A

constant potential is impossible with a finite number of lurked chaises

and therefore it is necessary to approximate a continuous cliarge distribu-

tion -with the luEiped charges. A basic conclxision from potential theory

is that a conductor enclosing a charge-free region has a constant poten-

tial on and -witliin it. The approximation procedure then is to choose an

appropriate contour, v;hich is considered as a conductor. The charge dis-

tribution on the conductor is then calculated, if not already obvious from

the choice of contour. This distributed charge is then divided into seg-

ments such that the charge of each segment is equal to tliat of each of the

other segraents . Each charge segment is then replaced by a lumped charge

T/ith the same quantity of cliarge. Thus in obtaining a flat pass band for

a filter, a contour may bo placed about the portion of the real frequency

(9)





axis corresponding to the pass band and then quantized as indicated above

This procedure reqxiires the placing of positive charcos on both sides of

the jc*j axis and this is prohibited by the restrictions on the transfer

function pole locations.

To obviate this difficulty, encountered with the contour technique,

the potential analogy will be used with respect to the gain fujiction.

The gain ftmction is defined and used herein as a function equal to the

squared r.ag;nitude of the transfer function for p=^*^ • If the trojisfer

function is exoressed as:

m

77 {^ - ^^^ )

i = '

then
Z

7r I -^ - ^^j
=

I

If ^.. ^ <n^ -^i^"-
^""^ ^^^' =^ ^-/ "^

^
^'

then \J:(^)\ ,,'=' K ^—

/ >

TTfc,^ .(^ --..)']

Let poi and p/. be the negative conjugates of p^^ and p^^- rospoctively.
V
/

and -f^x^ = ^ <riy + ^ '^^"j
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Define a quantity, G(p), as follows

yn

m

?

= \^m\1=

Thus it is seen tliat G(p) is a function satisfying the requirements of the

defined gain function. It is to be noted for future use that the poles

and zeros of G(p) are those of t(p) plus the mirrored inac^s ahout the j co

axis. Due to this symetrical arrangement of the allov/ed locations of tlie

poles of G(p), the contour teclinique is visable provided the contour and

the negative charge (zero) locations are also synetrical to the j60 axis.

For ease and simplicity the contour is chosen, -when possible, such that the

charge distribution is so sinple caid obvious that the contour itself is

not directly considered in the solution of the synthesis problen.

The design pix)blon solved in chapter III is simplified by choice of

trans formations to the extent that the potential distribution need never

be calculated, but it is the potential analogue tlmt provides the guidance

for forming the desired gain fVinction.

(11)





CHAPTER III

TIE in?." FILTER

1. Tho filter typo.

Tho problem taken up at this point is the devclopnent of a filter

gain function haviiig the following; characteristics:

(a) IIa:^iEially flat in the pass band, and
(b) Equal, specified maxima in the stop band.

As is coraraon in filter synthesis, only the low pass case will be consid-

ered since the high pass and band pass types may be obtained fron the low

pass circuit itself or from a transfomation upon tho p-plane, A filter

is defined as maxinally flat if its loss function, the reciprocal of its

gain function, has its first n-1 derivatives, taken v/ith respect to CO ,

equal to zero at sone point on the real frequency a:cis where n is the nun-

be r of poles in tho transfer function. It should be noted tliat the re-

quirement of eqxial raaxijna of gain in the stop band does not necessarily

mean nathermtical naxina, but rather, naxiraun values. Tvjo exceptions can

occur. In one instance the magnitude of the gain function inay be ap-

proaching its naximim allowed value as 60 approaches infinity. The other

instance is at the defined edge of the stop band, at -which frequency the

gain function nagnitudo passes tlirough the maximuni allowed value for the

stop band.

The question may be asked, "I'Jhy bother with this now filter type?"

The answer lies in engineering requirements. The theory that the ear is

totally insensitive to phase is being displaced, "dthout a reference tho

ear, or Q.ny othor instnonont, cannot detect or measure phase. Variations

in relative phase delay imposed on two musical tones heard by one^s ear

(12)





IB undetectable. Hovje-ror, -when transient sounds are considered, the ear,

while perceiving frequency components, does not necessarily nrxke a Fourier

analysis. The timbre of even a steady sound is dependent not only on its

frequency conposition but also upon the phase relations of the frequency

conpononts. This factor is a frequently neglected item in the reproduc-

tion of speech and consequently intelligibility is degraded. The filter

typo to be subsequently developed has fairly linear phase as coupared with

the equal ripple pass band variety. The operation of many present day

coraaercial and military equipments is dependent upon transient pheiioraenon

.

For ezainple, teletype and pulse coding systems can tolerate some distor-

tion of the pulse shapes but cannot \ise signals suffering from a great

deal of delay distortion.

Another factor making a maximally flat filter type useful is the fact

that its gain in the pass band nonotonioally approaches the allov^ed devi-

ation from the desired constant gain. Over most of the pass band the de-

viation is much less than the tolerance. The overall quality of signal

reprtjduction is better for this filter type than for the equal ripple pass

band typo -with the same tolerance allowed.

In the region of transition between pass band and stop band, the

filter herein designed has properties very nearly equivalent to those of

the equal ripple pass band filter. Any filter having frequencies of in-

finite loss may have these used to satisfy additional requirements beyond

the basic filter specifications.

For comparison purposes, the pass band claaracteristics of three fil-

ter types are shovni in figure 1.

2. The method of solution.

(13)









Tho potential anclocuo nothod combined with various confonnal trans-

fomationiJ provides particularly dij-ect, and intuitively obvioufl, ways of

producing "equal ripple" in the stop bajid, "Equal ripple" v/ith reference

to the stop band portion of the gain function is a slight nisnojner. It

is a sernantic convenience and as used herein means that the gain function

has equal maximum values of magnitxide in the stop band without regard to

its beliavior otherwise. For ercample, if the transforrmtion p — csch z is

used, the real frequency axis for lu>\ ^ 1 is mapped into, and includes

all of, the imaginary axis in the z-plano as shown in figure Z» Then if

the stop band is defined for l<^/ — 1, and the zeros are equally spaced

along the imaginary axis in tho z-plane, it is immediately apparent from

tho potential analogue that the equal ripple condition is produced pro-

vided certain other conditions arc met. As previously shown, the trans-

fer function has half the number of polos and zeros included in the gain

function and the remainder must be the images as mirrored by the real

frequency axis. Since tho zeros are of integral order in the trans iter

function, any zeros of the gain function on the real frequency axis must

be even ordered. The polos of the gain function must be located so as

not to destroy the equal ripple condition tentatively produced with the

zeros. One way of doing this is to place a pair of poles on opposite

sides of the imaginary axis, equidistant therefrom, for each second order

zoiKi located on this axis. If tho ordinatos of tl:ie pole locations are

equal to that of tho corresponding zero, then the equal idpplo is not

destroyed. Additionally, tho locations of the critical points in each

cell of the z-plano must map into the same set of locations in tho p-plane.

This is accomplished by maid.ng the locations of those critical points in

(15)
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that cell of the z plane -which includos the origin symetrical to the

origin and further requirinc the spacing between adjacent zeros along the

l^na^inary axis to bo -j^, -where n is any integer. Figure 2 shows n = 3.

Other considerations -would apply were this transformation actually used.

It has not been used since it -would require -the sunaation of an infinite

series to find the gain function and a simpler means is a-vailable. An-

other reason -will be brought oirfc later.

Another easy method of approaching equal ii.pplo stop band is to us©

a transformation such as to nap the stop band portion of the real fre-

quency axis to a circle in an auxiliary plane. The pair of trans forma-

I
-, 2 -

I

tions, p = Y-^^*-/ and -wcs . ^ does this as shown in figure 3. Again

the method of producing equal ripple is apparent; that is, by equally

spacing the zeros around the circle. Similar additional considerations

are required as before. One advantage has been gained in -Umt this type

of transformation does not require an infinite seides s\;annation to deri-vre

the gain function.

Inherent in both the precoeding types of transformation is the same

deficiency. This has to do vdth producing the maximally flat pass bond

vdth assurance tliat it actually is such. Before specifically locating

tlais deficiency the means used to produce a maximally flat condition -will

be described.

The frequency at which the n-1 derivati-ves are made equal to zero is

taken as zero, both for simplicity and to malce maximally flat most mean-

ingful if the dori"7«d characteristic is to be transformed to the band

•oass case. Consider a loss function as follows:

(17)
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F'T^) ~ "GU^)

Let V(co) = -p J

where D is a ratioiial polynomial not equal to zoro at ^ = 0»

Then,
f- ((j)

= --^

F (W) -rj*

Continuing the process of taking suooessive derivatives it may bo seen

that each term of the i^ derivative contains a povrar of CO, the loavost

of -which is n-i. V/lien the n derivative is tal33n this is no longer true.

Thus if these derivatives are evaluated at £c) = there TJill bo at least

the first n-1 of them equal to zero. Thiis the sufficient condition for

r (oji) to bo maxiinally flat is that it liave an n^^'^ order zero at o) =

and necessarily it nay not liavo a polo at the origin.

Since the derivative of a constant is zero then F *- C, v;here C is a

constant, is also maximally flat. The addition of the constant loaves one

witli the same pole locations but locates a nevv set of zeros. Renenbering

that the gain function is the reciprocal of the loss function, the proce-

dure for producing the desired characteidstics is to ta.'oe zeros producing

equal ripple in the stop band, form a maximally flat loss function "with

poles corresponding to the gain function zeros, add a constant, take the

reciprocal of this no-w function as a possible gain function, and then in-

(10)





vestigate this latter function. First, tho pole locations nust satisfy

realizability requirenents. Second, the pole locations raust not destroy

tho equal ripple character previously set up.

The additional deficiencies of the transfomiations shovm in fif^res

1 and 2 "will nori be considered. If the p-plano is napped into an auxil-

iary plane by sorae transformation and the jco axis is mapped into a curve,

or straight line, in this auxiliary plane, then denote distance along the

curve by s. Label the derivatives of s -with respect to A^ as s', s , end

so on, and label the derivatives of the loss function with respect to s

as F', F , and eo on. It is then found that:

^ = s'F'

and so on for successive derivatives. Thus if a function is synthesized

in an auxiliary plane by the procedure previously described so as to be

maximally flat "with respect to s; then to insure that the function, 7;hon

mapped back into the p-plane, is maximally flat -with respect to , it

will be required that th^ derivatives of s "with respect to (*> exist v/uen

evaluated at ^o — 0. It is found that the previous trans formati one do not

meet this requirement.

A transformation meeting the requirement above is ^=
~J - "^^ *

shown in figure 4. This one -will be used to develop the gain function.

3. Development of the gain function.

First of all it should be noted that two sheets of tlio r>-"olane are

(20)
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required to completely map the z-plane. One sheet maps into the interior

of the imit circle in the z-plane centered at the orij^in, and the other

to the exterior. Therefore, -when placing clmrf^os (poles and zeros) in

the z-plane, a pair of charges must be used for each one finally located

in the p-plane, and each of a pair most map into tho same coordinates on

different sheets of the p-plane. If p, is a point in tho p-plane then:

3?. =: ~r^ ± "M Z.^^^t ~ / /^i
+-/

-V

— ^ - (I ^ -^/)

Thejrefore a pair of points in the z-plane, which map into the sane loca-

tion in the p-plane, liavo co-;7iplox coordinates that are n0|v;ative recipro-

cals.

The zeros of the gain function v;ill now be located with the require-

ments following as gxiidos.

(a) n equals the number of polos in the transfer function.

(b) There sloall also be n zeros in the p-plane, including the on©

at infinity for n odd, in order to produce tho ucixinally flat condi-

(r3)





tion and to mair.tain the typo of syTmnetry required by the pole looa-

tions and the equal ripple condition.

(c) In order that the transfer function may be realised by a practi-

cal ladder netivorlc, all zeros shall bo located on the jO) a::is,

except for a possible one at infinity, as shovm by Darlin{jbon(3)

.

(d) In the p-plane there s]iall be 2n poles and 2n zeros for the s^in

function with mirror syranetr;,' about both the real and iraarinary axes.

The zeros shall oocur as doubles.

(e) There sliall be 4n poles and 4n zeros in the z-plane in accordance

with the riapping conditions.

(f) Since the stop band portion of the roal frequency axis maps into

a circle in the z-planc, tho zero locations shall liave equal angular

spacing between them to produce the equal ripple condition.

(5) Tho 6l) = 1 snapping shall be midway between adjacent zero loca-

tions. T.'ere this point to be a zero location, the nonnalization of

the defined edf;;e of the stop band would not be possible.

In line with tho above listed requirements the development of the

gain function is started by placing second order zeros about the unit

ITcircle in the z-plane with an an^palar spacinr;; of ~~ betivoen successive

locations. The anr^lar displacement of the set of zeros nearest tlie imag-

inary axis from that axis is -r— . This is shown in fi|~ures 5a for n=?3.

and in fir^ure 5b for n = 4. Tliis set of zero locations satisfies all re-

quirements placed upon them.

The maximally flat condition v;ill noiv be met. A loss function is

sot up with polos located at the zero locations of the gain function.

The maximum possible number of zeros of the loss function will be talcen

(23)
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Fi{;ure 5. Zero locations in the z-plane.

There are to be 4n zeros in the z-plane and only 2n of then nay be inde-

pendently located. Therefore 2n zeros are placed at the origin and tlie

other 2n zeros must be located at infinity to meet the mapping require-

ment. Before addinj^ a constant, it is found to be convenient to rnaloB an

additional transformation, z** = v;. This transformation is shovm in fig-

ure G for representative values of n. Since each sheet of the T7-plane is

identical to the others, f\irther calculations can be carried out in only

one sheet of the -vv-plane. It is to be noted tliat the relative orienta-

tions of the napping of the stop band and the critical points are the

same for any n. Furthermore the multiplicity of the critical points in

one shoot of the w-plane is independent of the value of n. The tentative

loss function may nov; bo Tiritten in the T;-plane, neglecting any constant

multiplier, as

:

(24)
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vv^
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i-^^-ffl^^Tf)^
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addin<;; a constant,
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\^>

Locating the zoros of F it is fotind that:

If C is only allov/ed values such tliat: *

C < for n odd,

and C > for n even,

thon vi/" is positive real for odd n and negative real for even n.

Let ^ ^^ '"iFC
T^ ^^ „„i .J„ +(^jj

(2G)
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£This shOTws that the two values of -w, are reciprooals

.-a
--(-/j'^^r^r ^.1-^^

z.

The "TO-luo of r has boen taken arbitrarily as positive and less than one

without loss of generality.

The zeros of F^ have now been located as shown in figure 7. Since

the gain function has poles at these locations, all critical points of

the gain function are now loiovm. Therefore the transfer function is also

laiovm.

At this point must be found the relations anong the design specifica-

tions and the quantities ivhich have boen used in the equations. Define

V" to be the magnitude of w at a point Tvhich is the napping of CO for

0^ 60 ^1. Figure 8 shovjs the -w-plane rotated such that the napping of

X ^ X X O - X
A.i^ i I

Figure 8, Critical points of G in w-plane.

i'i-)





the real froquenciec for < CO — 1 extends up^mrd fron the oricin.

The orientations of the critical points are thiis independent of n. The

gain function may be -written fron on inspection of figure 8, neglecting

any constant factor, as:

»2

Define Gj as the inajciTnuo. value of G in the stop band. Since this value

occui^ at c^ = 1, then:

_ _ >
b, ~ fciVj

.

-
'('c±^^j (\-^ yJ)

n
Us

(

y?/
z

_ J

X. i

r

rr:~ n

.'^
/

~i

As was to be expected these two values of r are reciprocals. Since r has

already been choson as the snaller value, it is nost accurately computed

as

:

/

r + Vi^vc

r, and consequently Cr(v), is conplotoly determined by Gj . By the onis-

sion of a constant multiplier from the gain expression such a multiplier

(29)





has boon tacitly assuraed as equal to unity. Thus Ct{y) — 1, and this

is suitable for realization purposes

,

Define Cy as the miniraon allowed value of G in the pass band and k

as tliat -value of CJ -wMch is the upper limit of the pass band. Since

60 = 1 defined the lo".ver limit of the stop band, thon < k< 1.

Take p = ~ -r^ , v/here z as x + jy«

Then pz' + 2z - p *

Since these two values of z are negative reciprocals for all values of p,

only one need bo considered and the other is an automatic consequence.

Using the expression,
_

' + ./ '

H = - - i Y^ +

From z" ^M^ it is seen that: IaT = ir

Talce the equation for G(v) and write its reciprocal:

G(V) fj -^ v^)

(30)
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where V rr: —-^— •—• I

Of tho tT7o reciprocal values of v* riven "by the il cign abc/e, only tloat

on© associated T?ith the minus sign mil be considered.

If

where
Qj^ - Q (n)

and Vj^ is that value of v for a; = k, then since v^ = y*'^

/ / / ./
j

^n

T/

? p f ^ , rx—7"
\

Since n laust be an inte{^er, tho specification of Gj , '"-^ and 1: cannot bo

completely arbitrary. The noi^ial procedure is to specify G^ , C^ , and the

nininun -value of k. S. is computed fron Gj and G_. Then n is talsjn as

the least inrbej^r equal to or larger than tho value computed fron the above

(32)





equation.

4. A dosi^ nomograph.

For a practicing engineer interested in choosing a suitable filter

for a particular application, the calculations required by the proceeding

fomulae are lengthy and tedious. To ease this situation a nor-iograph is

developed to enable one to rapidly choose the value of n required to meet

the basic filter specifications and tlien easily derive the corresponding

gain curve. A stjirnmary of pertinent fonnulae follav.'s

:

CO rr^ ..^.-.^f-^- foY' c — *^

'V . re- I'

a

1 I

1

"gT

Exponents are prominent in the first three of these equations and they

are plotted on logarithnic graph paper as the basic nomograph. The fourth

equation is plotted separe.tely and this plot is used to provide easy entry

into the nomograph. These plots are given in appendix A and 3 respectively,

and a sketch of the basic nomograph is shovm in figure 9.

The filter designer nay also be intei-tssxed in the frequencies of in-

finite loss and those of naxiiirum stop band gain. These are tabulated in

Appendix C for various values of n.

It may be noted that neither the nomograph in Appendix A nor the

tabulation in appendix: C includes data for n = 1. ?'or n =r 1 this filter

(33)
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type is identical to the Butterworth and the equal ripple pass band types

.

5. Healisin^ the i?ilter notiivorl:.

Before finding the physical configuration of the filter, it -will b©

necessary to find tho transfer function in tertic of p. To do this, the

locations of the poles and zeros in the "vv-plane must be nuxppod bad: into

the p-plano. The quantity r is fo\md from G, as sho\in on par;e 28, and

n is found from the noraograph. Then in the z-plane the poles of tho gain

function lie on circles centered at the origin and -with radii, H and l/R,

ivhere H =v^ . Only those on the inner circle need be considered

and their angular locations are the same as those of the zeros, as des-

cribed in section 3. These pole locatioriS are then napped into tlie p-plane

Only those in the left half-plane are \isod as explained in section 2 of

chapter II. Tho zeros of the transfer function are simple and lie on tho

jco axis. The values of a> at these locations, fit>o , are given in appen-

dix C as the frequencies of infinite loss. Zeros are located at p =+^c«>o

and p s= — j cOo for each value of Cc), given in appendix C , !To action

need bo taken for O), ~ »« since a pole occurs rjaturally there whenever n

is odd. The transfer function is nov; written in the usual form with m ^ n

or n — 1, v/hichever is even.

^(>) ^K^ —

—

w-jt

(35)





Only even powers of p occur in the numerator since the zeros are located

at conjugate values on the imaginary axis . K is chosen as ^^/^ so that

t(p) = 1 at p = 0.

With the tranafier function now in hand the notvjork is arrived at by

a procedure based on a nethod originally given by Norton(7). Tcvq fom of

realization is that of a purely reactive coupling network teniinatod in a

one ohm resistance. The output is taken across tliis resistor. The input

may bo either a voltage feed or current feed depending on the circuitry

in the coupling network. The procedure for detemining the coupling net-

work will be derived for a voltage feed and the dual of the circuit niay

be used if a current feed is desired.

Consider a tv/o terminal-pair reactive network as indicated in

figure 10. z„ and z^j arc the open circuit

l^
4',

network

e:. ut out
0

Oiiiput

Coupling network Filter arrangonent

Figure 10. pLcpresentatiou of the filter realization,

impedances of the input and output respoctivoly. z is the trans for

impedance. Using the generalized fom of impedances, then z
,| , z^j^ , and

z,g are all odd functions of p since they are made up of pureljr reactive

teiTis. Take the equations:

T -1, r.,i
-f

(1)

(3C)





^-'2. ~ I, ^,a. r 1^ ^-.^ (2)

Substitute ,1^ ~- — h. 2.
(muacrically) (3)

B, ::•• I, ^.,, " Ex^ '^ri (4)

Solvxj (5) for: I, z::'

Substitute (6) into (<l)

^-
I ..... ^;.'] ,

I ^1^ ^SL'S 1 ] \ < 'U (8)

v</hcre A and Z ai*c even functions of p.

-, ?

(5)

(6)

r :r
\ I

hi-^z^ U 1
(7)

-p. 3 _ ^'-^

-^^'^ ^-
(9)

Define Z^ as the inpodance seen looln.nr; into the output terninals of tho

coupling; netr.vork with tho input shorted. From equation (1) "with E, == 0:

i, - ^x li~"- (10)

SubGtitutinc (10) into (2): ^^ =;i
'Lj'^is, " ^~ -^

^^^"^

7- \

^-^ 2-

^:^ ^-
-J-

^^ ^^,. -
i-;; (12)

Fron (9) and (12) "7
^ .±:..^.. (lo)

c
The transfer function cane out to be of the form, —;

;— , where C, J

J +^1^

(37)





and L are c.^cn functions of p. Tiion the reciprocal is:

±J. _ -Vl„-. C... —
/, -r- /i-X^ (14)

t-z C

M ^ -P- L
"""A

~ - """7*"
(15)

Eqiiation (13) shovjs that the ratio of the odd part of the reciprocal of

the transfer f'.mction to the even part is equal to the impedance seen

looking into the outpirt teminals of the coupling; netv/ork when the input

tonrinalG are shorted. However, equation (15) shows that this ratio con-

tains no information relative to the zeros of tlie transfer function. The

ccuplin-j network is realized by synthesizing Z^ as a drivinc point im-

pedance in a ladder forci. Then by oponinc the circuit betv;oen the final

branch element and ground, consider the tenninals thus produced as the in-

put tcrrainals. In addition, the resultant net;';ork T.'ith a one oIki load re-

sistor nust be forced to h^\'o the zeros of its trar^ufcr function at the

proper locations . The pi'ccedure for acconplishinQ this is riven by

O'uillerdn(C) . Basically, it consists of removing a branch inpedance fron

2g such tliat the renaindor h-as a pair of zercs or poles located at

p = - j^. A pair of zeros is removed as a resonant circuit in a sl:unt

branch or a pair of polos as an anti-resonant circuit in a series brcnch

of the ladder. I^^ure 11 shows two forms the filter may ta!:o for n = 3.

(33)
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CFAPTER rV

COI'ICLUSION

The basic design procedure for a nevj type of filter hac boon developed,

The gain function has equal maxiiaum values in the stop band and is des-

cribed as having an equal ripple stop band characteristic. The reciprocal

of the gain function, the loss function, has its first n-1 derivativcG

equal to zero at co = 0, and this is described as a maximally flat pass

band characteristic. It can be shown that the gain function also lias its

first n-1 derivativoB equal to zero at co = 0. The gain function -which

was synthesized in chapter III could have been obtained without consider-

ing the loss function, but such a procedure v;ould not have as clearly

separated the stop bond and pass band problems.

A design nonograph was developed which pernits a designer to deter-

mine immediately the value of n required to meet the filter specifications.

Having determined n, the nonograph may be used to obtain easily a plot of

the gain function without tlic necessity of first synthesizing the gain

function.

A procedure was given for realizing the filter with a physical con-

figuration suitable for use in vacuum tube circuits. Other realizations

are, of course, possible.

The definition of maximally flat which hias been used is racher arbi-

trary. For a general gain function of degree 2n, there are 2r.-l independ-

ent conditions which may bo imposed on the function. In the well knovm

Butterwortli function, all these conditions have been used in the specifi-

cation of maximal flatness, A more general definition of maximal flatness

(40)





nicht be taken as

:

A 2^in function of de'-jree 2n is defined as ncjcinially flat if its

first Sii-l-r.i derivatives are equal to zero at ao::\Q one frequency,
ivhcre m is tl:e nunbor of constraints inposed on the fui^ction in
the production of other desired characteristics.

Rirthor investigations suf,r;®sted arc the s;yTithesi3 of narcinally flat

gain fLuictions of different relative decrees of flatness and those v/lth

stop baiid characteristics other tiian equal ripple.

(41)





APPENDIY A-i

OJ 0.2 UJ 0.3' ^ ^ ^ 7 d 9 /o

(^i)





APPEND!X A~Z

0.2 UJ o.< 2 —

I

— - - ..- ,.— --. ,. 1 III — ...^

r

(^





APPENCIK A-

5

4- 6' C 7 b^ 10

(44-









APPEIIDIX C

Tabulated frequencios of inilnite loss
and inaximicn stop band [;;ain.

oO(,- frequency of infinite loss
tCj = frequency at -nhich C-(60j ) — Cr^

n CJ. CO.

1.4142 1.0000

1.15470
OO

1 .0000
2.0000

1.0824
2.6131

1 .0000
1.4142
OO

1.0516
1.7013
OO

1.0000
1.23G1
3.2361

1.0353
1 .4142

3.8637

1 .0000
1.1547
2.0000

1.0257
1.2790
2.3048

CtO

1.0000
1.1099
1.6039
4.4939

1.0196
1.2027
1.8000
5.1258

1 .0000
1.0824
1 .4142

2.G131

(4C)
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