

Calhoun: The NPS Institutional Archive DSpace Repository

Vortex formations caused by fluid flow across a slot in a flat plate.

Axe, John R.
Monterey, California: U.S. Naval Postgraduate School
https://hdl.handle.net/10945/14772

NPS ARCHIVE 1958
AXE, J.

VORTEX FORMATIONS CAUSED BY FLUID FLOW ACROSS ASLOT IN A FLAT PLATE

JOHN R. AXE

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL
 MONTEREY CA 93943-5101

VORTEX FORMATIONS CAUSED BY FLUID FLON ACROSS A SLOT IN A FLAT PLATE

John R. Axe

VORTEX FORMATIONS CAUSED BY FLUID FLON

ACROSS A SLOT IN A FLAT PLATE
by
John R. Axe
Lieutenant, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
IN
MECHANICAL ENGINEERING

United States Naval Postgraduate School
Monterey, California
1958

1 YYS ARCHENE

VORTEX FORMATIONS CAUSED BY FLUID FLOM ACROSS A SLOT IN A FLAT PLATE

 byJohn R. Axe

This work is accepted as fulfilling the thesis requirements for the degree of MASTER OF SCIENCE
 IN
 MECHANICAL FNG INFERING

from the
United States Naval Postgraduate Sohool

Abstract

The uniform flow of a fluid over a flat plate with a discontinuity in the form of a slot exposing a finite size oavity was investigated with the objective of determining the effect of variation of fluid velocity, slot length, and cavity size upon the frequency and stability of ∇ ortex formation. The correlating dimensionless parsmeters whioh evolve are the ratio of acoustical power to the free strean power, the acoustical quality of the resonant cavity, the strouhal number based on the slot length, and the Reynold's number also based on the slot length.

The experimental work was perfomed from January 1958 through May 1958 at the United States Naval Postgraduate Sohool, Monterey. California.

ACKNONLEDGEMENT

The author is indebted to Professor C. P. Howard for his guidance and counsel during the complete investigation. Appreciation is also expressed to Professors P. F. Pucci, and O. B. Wilson for their advice and assistance. Grateful acknowledgement is also due Mossrs R. P. Kennicott, N. Walker, K. W. Mothersell, and A. B. Rasmussen for their work in the construction, assembly and installation of the experimental equipment.

TABLE OF CONTENTS

Item	Title	Page
Chapter 1	VIntroduction	1
Chapter 2	Description of Apparatus	3
Chapter 3	Instrumentation	9
Chapter 4	Experimental Procedure	11
Chapter 5	"Theory	13
Chapter 6	Vexperimental Results	13
Chapter 7	Souroes of Error	20
Chapter 8	Disoussion of the Results	21
Chapter 9	Conolusions	23
Chapter 10	Recommendations	28
	Bibliography	30
Appendix I	Run Data	31
Appendix II	Plots from Data (Figures 8 through 17)	32
Appendix III	Photographs	54

Figure Title Page1. Velooity Profiles at a Surface of Velooity1Discontinuity
2. Progressive Deterioration of Surface of Velocity1Discontinuity
3 Experimental Apparatus - Overall View 4
4 Test Section 5
5 Smoke Generator 7
6 Velocity Profile for Two Flows at Time of Union 13
7 Velocity Profile in Mixing Zone for Two Flows 13Aftor Union
8 Frequency vs Reciprocal of Tank Height for 55 Standing Waves
9 Frequency vs Reciprooal of Tank Height for 56 Helmholtz Vibration
10 Velocity Profile of Flow in the Mixing Zone 57 Without Osoillations
11, 12 Boundaries of Mixing Regions in the Slot 58
13
Velooity Profile of Flow in the Mixing Zone 59 With Oscillation
14 Initial Boundary Layer Thickness vs Velocity 60
15 Strouhal Number vs Reynold's Number/Strouhal 61
16 Acoustical Quality and Pressure Coefficient vs 62 Frequenoy
17
Power Ratio-Acoustical Quality vs Reynold's63Number/Strouhal Number

A

B
b
b_{0}
b_{1}
b_{2}

C
c the velocity of sound ($\mathrm{ft} / \mathrm{sec}$)
d tank length $=17.0^{n}$
f frequenoy (oyo/seo)
G effeotive length (in.)
h tank height, the distance measured vertioally from the slot to the water level in the tank (in.)
$1 / h \quad$ reoiprocal of $h\left(\mathrm{ft}^{-1}\right)$
j an arbitrary constant
k an arbitrary constant
I slot length, the distance between the lip of the slot and the plate (in.)
ℓ mixing length (in.)
$m_{1,2,3}$ mode numbers for tank
n stage number for oscillating stream
η a dimensionless variable $=\mathrm{y} / \mathrm{b}$
P atmospheric pressure (${ }^{(7 \mathrm{Hg} \text {) }}$
Pa acoustio overpressure or instanteneous pressure differential (psi)

```
\triangles prossure differential ("ago) average
Q acorsticol quality, dimonsionless
P iluid dansityy (1bm/fto3)
\tau}\mathrm{ shear stress in the fluid (psi)
s joto width (in.)
I tomporature (% F)
t time (sec)
IJ fres etream velooity (ft/000)
u. instantanoous horizontsi velocity of the flvid at a point
        (ft/sec)
u'(x) inetenteneousiy rorizontal volooity of m proticle in the
        contral filment of a jot at x (ft/sec)
T instantanocus vertioal velocity of the fluid st s pomnt
        (It/sec)
w slot and tank widtr = 800"
* horizontal distance from the lip of the slot to any point (ino)
y Vertical distance from the lip of the slot to ary point (ino)
\psi & function
```



```
Re dimensionless Roymola's number % TL/v
Str dimensiorless Strouhal number = {L/U
Z power ratio * CP Stre M P&L/\frac{1}{2}\rho\mp@subsup{\rho}{}{\prime\prime}
```


1. Introduction

If two streams of the same fluid with different velocities unite such that their resulting flow is parallel, at the instant of union there is formed at their mutual interface a surface of velocity discontinuity (Figure la). Any disturbance in the surface causes an unstable distribution of the pressure, and the disturbance increases rapidly in size. while internal friction chances the surface into a fluid layer with rotation [[1] ${ }^{1}$ The

Figure 1

(b)
 result is that the surface breaks down into eddies or vorticies, usually irregular (Figure 2). (2]

Figure 2

If a relatively thin edge is placed in the stream perpendicular to the direction of flow, under the proper circumstances, the stream will undulate and shed vortices at periodic intervals. [3]

When air is used as the fluid, this osoillitory motion produces clearly audible tones. The principle has been used for centuries in organ pipes, whistles, etc., but it wasn't until 1854 that Sondhaus [4] discovered that the resonating column was not necessary; that the tones could be produced by blowing a jet of air against an edge. Since that time "edge tones" have been a favorite subject of investigators. and though considerable work has been done, the theory is still rudimentary. Of the more important experimental studies, W 。 E. Benton $[5]$ and $E \cdot G$. Richardson [6] prefer an explanation based on the hydrodynamics of a
$I_{\text {Numbers }}$ in brackets refer to references listed in the Bibliopraphy.
viscous fluid, relating the henomena to a von-Karman vortex street, where the vortices take spacings of optimu stability depending on the geometry of the system. G. B. Brow [7] takes strong exception to this hypothesis. favoring instead the theory that a campression wave travels back from the edge at qooustic velocity and triggers succeeding vortices. In a recent paper, W. L. Nyborg [8] presents a theory based on an equation of motion for the self maintained oscillations of a jet in a jet-edge system. Without attempting to justify their origin, transverse forces are assumed which act on each particle of the jet. Then the dynamical law for a particle traveling along the jet is cast in the form of a non-linear integral equation. After certain simplifying assumptions, solutions are obtained which predict the configuration of the jet with time and the frequenoy of oscillations.

All known previous work in this field has dealt with the effect on a thin jet flow encountering some wedge shape.

The objective of this investigation was to study the offects on a uniform flow over a flat plate which has a discontinuity in the form of a slot exposing a finite size cavity.

It was expected the effects which are produced are similar to those of jet flow, namely, the mixing of the flow and possible generation of periodio vorticies.

The independent variables influencing the fluid motion which were investigated included velocity of the strean, length of slot and sise of oavity.
2. Desoription of Apparatus

Tho apparatus for description, exposes san the aivitad zto $s=x$ sections (Figure 3): 1) the entrance section, 2) the timnel, 3) tie tiet section, 4) the tank, 5) the differser soction, and 6) tie klower.

The entrance sention which wes coveret by twn I' int: screers wit $2^{\prime \prime}$ " separation, roduced the area from $34^{\prime \prime} \times 25^{\prime \prime}+3^{\prime \prime} \times 10^{\prime \prime}$ followin tio countour of the Borda Moutrpiece [11]. Overall lor th of tio entrance section was $23^{1 n}$. Joints, seams, and irro pularities wern filled with modelin" clay.

Followin the entrance was the tunnel of $8^{11} \times 10^{11}$ ross-section and 9 foet lenoth.

The tost section consisted of the first $13^{\prime \prime}$ of tho turnel wer the tank (ilmure 4). Sildes were made of clear plastic to pemit onsarmat: n and photoraphy. The bottom was a Plat plate with a square eate pin 2.2^{n} thiomess which was free to slide in the grooved plastio sidee formin a variable slot across the tumel over the tank. Tho loadin" ad "e of lip of the slot had a series of five pressure tape across the tarei. Ir tine top of the tumel over the test section was a mioroneter arran ement for raisin r and lowering various trpes of pressure probes, and a rubber seal permittod longitudinal traversing the first 8^{n} of the test section.
"A tank, $8^{\text {n }}$ wide, 17^{n} long, and $48^{\prime \prime}$ deep, was looated below the test section. Provision was made for filling the tank with water to vary the volume of the air space in the tank. A glass tube, conreoted to both top and botton of the tank, permitted measurement of the air apace in the tank. A series of taps every $4^{\prime \prime}$ down one side of the tant were installed in order to probe the sound prossure distribution in the tank with a

ENTRANCE
 SECTION

Figure 3
Experimental Apparatus - Overall View

roce mincoph ine。

 tests on tha sotwip, it was found tat separation waw oncumping in the
 T- suppess the seraration anc olininate the surpin", rortex sanerators wore installed in tre dicusur section Ihese orasistel of three rinas made of reerifeld electriogl conduito mey were installen at points $3^{11}, 1^{\prime \prime}$, ant 28" rom the diffuser ontra de by wirin the rangs to pods

 Trie difnusur was ;ured to the llower by a onnemerne

 trol?n ath a slidiñ "snel ohoke on thio alower ext anst and permitted
 12 Tower vas difluet a 200 wolt, ? piasse, $51 . \%$ motror.

needle valve for controling air supply.
combustion Chamber

Settling
Chamber

the onners. The most satiofactory source of smoke was ontared frm papor rolled tightly and wadded into the combustion chamber.

3．Instrumentation

Velooities were calculated from the pressure differeribial between a total head probe in the test section and the static taps immediatell ahaad of the slot，and were taken to be the velocitre at the probe Comparison of this method with a pitot－static probe ave substantially the same results．

Probes were lareoly made in the laboratory by soldering tozether con－ centric brass tubin\％．Barrels wore made of $\frac{1}{4}$＂stock with tips of various size。

When taking velocity profiles，particularly when probing the mixing region，a micromanoter manufectured by the Flow Corp．of Cambridge，Mass． Type 1 m－2，was used to measure the pressure differential with graduations to ．001＂of water．In all other cases an ordinary oil filled manoneter craduated to $.01^{11}$ of water up to $3^{\prime \prime}$ and to $0.1^{\prime \prime}$ above that was used．

The probe position was measured vertically with the micrometer arran rement on the top of the test section to ． 001 ＂and horizontally with a graduated scale to ． 03 ＂．

Slot length were moasured on a graduate scale to 。03＂and the height of water in the tank was measured similarly to $0.1^{\prime \prime}$ ．

The pickup of the generated tones was accomplished using an Altec BR 180 condenser microphone with a $33 / 1 \mathrm{C}^{\prime \prime}$ probe， $1 / 13^{\prime \prime}$ I。Do，looated in the tank $4^{\prime \prime}$ below the slot．

The frequency was measured to one ovcle with a Model 52lC frequericy counter and by comparison with a Model 200B audio oscillator calibrated with the counter，both manufactured by the Hewlett Packard Instrument Co． of Palo Alto，California．The amplitude of the tones were measured with a．Model 400 A vaourm tube wolt meter and a Model 130 calibrated oscillose
cope to . 05 volts both also manufactured by the Hewlett Packard Instrument Co. Wave shapes were observed on the oscilloscope. Photo= graphs were made with a 35 mm comera and lighting was obtained fram a Strobolux. Type 648A, and a Strobotac. Type 631B manufactured by the General Radio Company of Cambridge, Mass. with which visual observation could also be made.

A mercury barometer and thermqneter located within 10 feet of the entrance section provided data on local atmospheric conditions.

4. Experimental Procedure

The experimental work was divided into two phases. Phase 1 was devoted to obtaining the flow characteristics of the system: velocity profiles, boundaries of the mixing region, nature of the vorticities and initial boundary layer thiokness. In phase 2, the overall relationship of the various system parameters to the oscillitory motion was obtained.

Phase 1

Depending on the circumstanoes the type probe was seleoted first, and inserted in the micrometer devioe over the test section through the entrance seotion by removing the soreens. After aligning the probe by eye at the lip of the slot, the screons were replaced, the blower was turned on and permitted to come up to speed. Slot length was set and velocity was adjusted to some desired value with the choke on the blower exhaust. All runs in phase 1 were conduoted with the tank at maximum volume. After the micrometer device had been set to some selected position in the horizontal direction, the probe was then lowered, reoording vertical probe position and pressure differential. Profileswere obtained both with and without oscillitory motion.
-
In addition to complete profiles, runs were oonducted to determine as accurately as possible the disposition of the lower boundary in the mixing region. In these runs only the lower part of the mixing region was probed with a total head prube. When there was no oscillation of the flow a minimum pressure differential was taken as the boundary and with oscillation a zero reading on the micromanometer was taken as the boundary.

Measurements of the initial boundary layer thickness were made with a boundary layer probe at the lip of the slot. These measuroments were made with the slot both opened and closed.

Photographs of flowwere also taken during this phase. Due to limita= tions of the frequency range of the Strobolux (233 c.p.s. max.) pictures were obtainable only for the low frequency vortex formation.

Phase 2

These runs were made observing velocity, slot length, tank height, frequenoy, and acoustic overpressure. Various runs were made holding one or more of these system parameters constant and adjusting the remaining parameters until maximum sound pressure was obtained.

It became apparent that the tank did not amplify all frequencies equally. In order to evaluate the magnitude of the amplification, the acoustical quality of the tank as a resonator was determined over the frequency range by driving the tank with a loudspeaker located in the tunnel over the slot and measuring the sound pressure in the tank. Readings were taken at the resonant frequency and frequencies on either side of resonance at which the sound pressure was 0.707 of the resonant value for reasons to be discussed later.

5. Theory

As noted before, all known previous experimental work in this field has dealt with a jet-edge confimration. The same may be said about all known theoretical analyses except where comparison has been made to the Karman vortex street behind a cinder. While there is no close physical resemblance between the present system and a jet-edge, the basic require m ments exist. There is a union of two fluid streams of different velocity with a resulting surface of discontinuity, and a thin edgealike obstacle in the path of the mixing fluid. It was expected, therefore, that the present system was a modification of the jet-edge.

Considering first the problem of the mixing fluid which follows the breakdown of the surface of discontinuity, a solution for the velocity profile is presented by Sohlichtine, [9] who treats it as a problem of non-steady parallel flow.

At time t_{0}, U_{1} and U_{2} unite at $y=0$ (Figure 6). The situation is unstable and
 turbulance smoothes out the transition so that at any time after to the velocity is continuous and in the mixing zone $u=u(y, t)$ and $v=0$ (Figure 7).

Substitution of Prandial's mixing length

Figure 7 equation.

$$
\tau=t\left|\frac{\partial u}{\partial f}\right| \frac{\partial u}{\partial y}
$$

in the two dimensional laminar incompressible boundary layer equations,

$$
\frac{\partial u}{\partial t}+\lambda \frac{\partial u}{\partial z}+v \frac{\partial u}{\partial y}=\frac{1}{\rho} \frac{\partial u}{\partial y} ; \quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial ;}=0
$$

yields

$$
\frac{\partial u}{\partial t}=l^{2}\left|\frac{\partial u}{\partial u}\right| \frac{\partial^{2} u}{\partial u^{2}}
$$

3.

Assuming similar velocity profiles, then $u=f(\eta)$, where $\eta=$ y / b; a non-dimensional profile parameter and b, the half width of the mixing zone at time t after t_{0} is proportional to t. This gives

$$
b=B t: \quad \eta=y / b=y / B t
$$

The velocity is then assumed to be of the form

$$
u=\frac{1}{2}\left(U_{1}+U_{2}\right)+\frac{1}{2}\left(U_{1}+U_{1}\right) \psi(\eta)
$$

5.

where $\psi(\eta)$ is a nondimensional stream function satisfying the continuity equation. The boundary conditions imposed are, $\psi=t 1$ at $\eta=t$. Substituting these in 3 ., yields

$$
\begin{equation*}
\eta \frac{\partial \psi}{\partial \eta}+\frac{\beta C}{B} \frac{\partial \psi}{\partial \eta} \frac{\partial^{2} \psi}{\partial \eta^{2}}=0 \tag{6.}
\end{equation*}
$$

where it is assumed $\beta=l / b=$ (an empirical constant), and $C=\frac{1}{2}\left(U_{1}-U_{2}\right)$. Eliminating the trivial solution $\frac{\partial \psi}{\partial \eta}=0,1.0 . \psi=$ (a constant), which represents constant velooity, and dividing by $\frac{\partial \psi}{\partial \eta}$ leaves

$$
\eta+\frac{\beta C}{B} \frac{\partial^{2} \psi}{\partial \eta^{2}}=0
$$

Integrating gives

$$
\dot{\psi}=C_{1} n^{3}+C_{2} n
$$

The boundary conditions $\psi(0)=0$ and $\frac{\partial \psi}{\partial j}\left(L_{1}\right)=0$, determine the constents $C_{1}=-2$ and $C_{2}=\frac{3}{2}$. The velocity profile is then
where

$$
\begin{aligned}
u(y, t) & =\frac{1}{2}\left(U_{1}+U_{2}\right)+\frac{1}{2}\left(U_{1}-U_{2}\right)\left[\frac{3}{2}\left(\frac{y}{b}\right)-\frac{1}{3}\left(\frac{y}{b}\right)^{3}\right] \\
b & =\frac{3}{2} \beta^{2}\left(U_{1}-U_{2}\right) t
\end{aligned}
$$

It may also be shown that t is proportional to x and, therefore, $b=$ (a constant) x_{0}

Prandtl [2] has experimentally verified this, but in the region of no vortex formation, he has found that the same value of b, the half width, does not hold for both the upper and lower boundary of the mixing region. His results indioate that

$$
b_{1} / x=0.125 \text { and } b_{2} / x=0.100
$$

Velocity profiles showing an infleotion point of the type given by equation 9. lead to the formation of vortices. Prandtl has found experimentally that these vortices travel downstrean with a velocity equal to approximately $I / 2\left(\mathrm{U}_{1} \not \mathrm{U}_{2}\right)$. If the shedding of vortices is periodic, they will form at some frequency f, number of vortices per seoond, and the spacing between any two suocessive vortioes will be $\frac{U_{1} f U_{2}}{2 f}$. If it is assumed that a new vortex forms at the lip of the slot as the center of the previous vortex reaches the plate and that each vortex travels in a straight courso across the slot then

$$
\begin{equation*}
L=\frac{\left(U_{1}+U_{2}\right)}{2 f} \tag{10.}
\end{equation*}
$$

putting U_{2}, the velocity in the tank, equal to zero and rearranging gives

$$
\begin{equation*}
\frac{f L}{U}=\frac{1}{2} \tag{11.}
\end{equation*}
$$

Equation 11. does not take into consideration the possibility of more than one vortex present at any time, and it is a well known fact in the jetwedge phenomena that as many as four stages are possible. [7] Aocordingly, assuming the vortioes will space themselves equidistantly, 11. is modified $\frac{f L}{U n} 1 / 2$
or $\operatorname{Str}_{n}=\frac{f L}{U}=\frac{n}{2}$
where $n=1,2,3 \ldots$ is the stage number of vortex formation and corresponds to the number of vortices present at any instant, and the dimensionless ratio fL / U is defined as the Strouhal Number (Str).

For the jet-edge, by a different approach, Nyborg [8] has obtained

$$
\begin{equation*}
f \int_{0}^{L} d x / u^{\prime}(x)=\frac{[k(k+1)]^{\frac{1}{2}}}{2} \tag{13.}
\end{equation*}
$$

where $k=1,3,5, \ldots$ which correspond to stages 1, 2, 3, ... respectively, and where $u^{\prime}(x)$ corresponds to the vortex velocity.

If a constant averare value of $\frac{1}{3} U$ is substituted in 13 . for $u^{\prime}(x)$ and the integration performed, then

$$
\text { Str }=f L / U=\frac{[k(k \nmid 1)]^{\frac{1}{3}}}{4}
$$

Also for the jet-odge, Brown [7] has obtained mpirically, where $\mathrm{u} \gg 1.3 \mathrm{ft} / \mathrm{sec}$ and $\mathrm{L} \ll 5.6^{\mathrm{m}}$,

$$
\text { Str }=\mathrm{fL} / \mathrm{J}=.466 \mathrm{j}
$$

where $j=1,2.3,3.8,5.4$ for stages 1, 2, 3, 4 respectively.
Table 1 shows the values of Str $_{n}$ for the first three stages as obtained using equations 12,14 , and 15.

Table 1 - Str by various methods

eqn/ n	1	2	3
12	.500	1.000	1.500
14	.354	.866	1.370
15	.466	1.07	1.77

It was assumed above that the periodic shodding of vortices would take place. The periodic nature of the phenomena implies an element of
feedback, i.e., a given vortex influences the next suoceoding vortex. [8] This influence is exerted in the form of the acoustio overpressure. In the present system the route of the feedback is through the tank which is fundamentally a resonator.

Analytioal attempts to introduce the influence of the cavity were unsuccessful sinoe the nature of the ooupling and feodbaok mechanism is not completely understood either by the author or others [5, 6, 7, 8] o Thus a dimensional analysis approach was undertaken to determine some parameter whioh accounts for this phenomena. Of tho parameters investigated, that of the power ratio, Z, proved to be the most useful. The power ratio is defined as $Z=\frac{p_{a} f L}{\frac{1}{2} f^{3}}$ and is effeotively the ratio of the power output of the cavity per unit area of the slot, to the power input from the stream per unit, area of the slot. The power ratio parameter also being the product of pressure coefficient and Strouhal numbers was thus used to replace the pressure ooeffiolent as a correlating parameter. The other non-dimensional quantities besides the Strouhal number which evolve are the Reynolds number and acoustical quality, Qo The acoustical quality being a parameter whioh oharacterizes the aooustioal behavior of a resonator with its resonant frequencies.

An aooustical resonator will have two methods of vibration. First by establishing standing waves of pressure distribution with regularly spaced nodes and anti-nodes, and second by what is termed Helmholtz vibration where the entire volume of air is compressed simultaneously. [10]

In the first method, the resonant frequencies for a rectangular volume are given by a solution to the wave equation when appropriate boundary conditions are substituted.

Then from Kinsler and Frey [10]

$$
\begin{equation*}
f=0 / 2\left[\left(\frac{m_{1}}{h}\right)^{2}+\left(\frac{m_{2}}{d}\right)^{2}+\left(\frac{m 3}{w}\right)^{2}\right]^{2} \tag{16}
\end{equation*}
$$

where c is the velocity os sound, and

$$
\begin{aligned}
& m_{1}=0,1,2,3, \ldots \\
& m_{2}=0,1,2,3, \ldots \\
& m_{3}=0,1,2,3, \ldots
\end{aligned}
$$

are the mode numbers for the tank. ard h, d, and w are the tank height, lenth, and width, respectively. The ourves in figure 8 show f ve $1 / \mathrm{h}$ for various modes. The nambers in parentheses indicate $\left(m_{1}, m_{2}\right)$ with $m_{3}=0$ 。

In the HeImholta mothod, thers is a single mode of vibration and the parameters of the system may be considered lumped. The resonant frequency is given by [10]

$$
\hat{S}=\frac{0}{2 \pi} \sqrt{\frac{A}{G V}}
$$

$$
17 。
$$

where c is the velocity of sound. A is the araa of the opening in the resonator and V its volume. G is the effective length of the openine. dopending on its confisuration, and must bo determined ompirically in most cases.

An acoustical resonator ie analogous to an inductaroo-capacitance electrical circuit. It offors a high impedanoe to the resonant frequency amplifyine it, and a low impedanoe to all other frequencies, suppressing them. In both methods of vibration the aooustioal quality, Q_{θ} is a measure of the acoustic impedance, and henoe the amplification of the resonator. [10] Q is now defined as

$$
Q=\frac{f_{0}}{f_{1}-1_{2}}
$$

$$
18 .
$$

where f_{0} is the resonant frequency and f_{1} and f_{2} are the frequenoies above and below resonance at which the averace power is half the resonant value; and the resonent frequency for a rigid system being detormined by the wave equation or Helmholte relation. For a non-rigid sistom other variables such as materials, tipe of construction, and power of driving also influence the syster, and the frequencies must be ompirioally determined. Since acoustical power [10] is proportional to p_{a}^{2} thon at the half power points $\mathrm{P}_{\mathrm{a}_{1}}=\mathrm{p}_{\mathrm{a}_{2}}=0.707 \mathrm{p}_{80}$.
6. Experimental Result 3

Experimental data are tabulated in Appendix. I, and also presented in craphioal form in Appendix II.

Data for phase 1 show the observed values of pressure differential. probe position in the horisontal and vertical directions, and the caloum lated values of velocity, velocity ratio, and position ratios.

Data from the runs for phase 2 show the observed values of frequency, slot lencth, tank hoight, pressure differential, and the voltage output of the microphone. The calculated values shown are velocity of the contral stroan, =eciprocal of the tank height, acoustic overpressure, and the calc lated dinensionless ratios: Reynold's Number, Strouhal Number, pressure coefficient, and the power ratio.

Other tabulations include the data for the calibration of the microm phone, acoustical quality and resonant frequency of the tank when driven with a loudspeaker.

Included in Appendix III are a series of photographs showing the vortex formations in the slot.
7. Sources of Error

Principle sources of error in the present syatem lie in the inherent uncertainties in the measurements of the observed values. Based on the accuracy of the instrumentation, maximum uncertainty or uncertainty at the point of most interest for the various values is tabulated below.

Table 2-Per cont Unoertainty
Quantity
Pressure differential
4.5
4.0
1.0
1.5
2.0
3.0,
2.0
2.5
5.0
20.0
5.0
5.0
7.0
5.0
10.0

Slot length
Tank height
$F_{r e q u e n c y}$
Voltage output of miorophone
Probe position, x and y
Velocity
5.0

Acoustic overpressure 20.0

Acoustical quality
5.0

Reynold's number
5.0

Strouhal number
7.0

Pressure coefficient
5.0
$\mathrm{Re} / \mathrm{Str}$
Power Ratio
10.0

These are the maximum uncertainties and in general improve with inoreasing magnitude of the quantity. Two exceptions of note are the voltage output of the miorophone and the acoustical quality of the tank.

The accuracy of the vacuum tube volt meter was such that with the changing of scales approximately the same per cent uncertainty was maintained. As for the aooustical quality, the unoertainty inoreases with increasing magnitude, since the peaks in the resonance ourve beoome sharper and the difference in frequency at the half power points smaller. Accordingly, the uncertainty listed above is for a high acoustioal quality.

The foregoing estimate of unoertainty is based on the aocuracy of the instrumentation and is in agreement with the reproduoibility of results.

Other sources of error could arise from misalignent of the pressure probes, and the fact that the microphone was not located at a pressure maximum in the tank.
8. Discussion of Results

Phase 1
As seen in figure 10 the velocity profiles obtained without oscillation are similar, and in figure 11 the boundaries of the mixing zone vary linearly with x when removed from the influence of the initial boundary layer. The upper and lower slopes of the mixing zone,

$$
\mathrm{b}_{1} / \mathrm{x}=0.066 \text { and } \mathrm{b}_{2} / \mathrm{x}=0.191
$$

are not in agreement with the values, $b_{1} / x=0.125$ and $b_{2} / x=0.100$, given by Prandtl [2]. It is also obvious equation 9. does not describe the velocity profile observed in this system. This is due to the fact thet equation 9. does not consider the initial boundary layer in the stream of the actual flow and also because equation 9. assumes a mixing zone symmetric with the horizontal axis.

When the stream oscillates the situation is completely changed. $\nabla \neq 0$, the slopes of the mixing zone are no longer linear functions of x, and while velocity profiles retain the same general shape they are not similar (Figure 13), Figure 12 shows the lower boundary of the mixing zone with a construction for the assumed path a vortex would travel in traversing the slot assuming the dismeter of the vortex increases linearly with x. This general pattern of travel was observed visually, and may be seen in the sequence of photographs in Appendix III, nemely that the vortices do not travel straight across the slot but rather dip below the horizontal, and from figure 13 it will be seen that the average vortex velooity is more like 0.6 U instead of $\frac{1}{2} \mathrm{U}$ as was assumed in obtaining equations 12 and 14 。

Figure 14 shows the variation of the initial boundary layer thiokness
with velocity with the slot both opened and closed. In taking the data for the figure it was observed that while there was a relatively large drop in the initial boundary layer thickness when the slot was opened by even a small amount, increasing the opening did not approciably affect it further.

The sharp increase in thickness with velocity is due to transition from a laminar to a turbulent boundary layer with the transition point passing the lip of the slot at about $25 \mathrm{ft} / \mathrm{sec}$ and moving upstream with increasing velocity.

Previous investigators of the jet-edge have all noted that there is a minimum edge distance inside which there will be no stage of oscillation. Benton [5] gives empirioally as a limiting value with increasing velocity

$$
L_{\min }=1.22 \mathrm{~s}
$$

where s is the narrow dimension for the jet. In the present system if the initial boundary layer thickness, b_{0}, is substituted for s by taking some point where the curve has flattened out, about $100 \mathrm{ft} / \mathrm{sec}$, then

$$
L_{\min }=0.58 \mathrm{in} .
$$

It was found in this investigation that the minimum value obtained for L for various velocities above $50 \mathrm{ft} / \mathrm{sec}$ is about 0.6 ins . No other attempts to study the influence of the boundary layer were undertaken as the entrance section was designed to keep the boundary layor small and minimize its offects.

Phase 2

Examination of ifgure 15 shows that the Strouhal number falls into three discreet bands with average values of $0.40,0.95$, and 1.50. These represent the stages of vortex formation for $n=1,2,3$ and fall within
the range of values given in table I, page 10. As the stage number increases the stability of vortex formation and value of the pressure coefficient, C_{p}. decreases. Brown [7] has reported a fourth stagefor jets, but higher stages were not observed in the present system.

It was indicated earlier, a very intimate coupling exists between the stream-slot and the tank, and whereas, the tank is not the source of oscillations, it does amplify them and the amplification is very selective. In fact, the net result of the above is that the stream-slot ia able to oscillate only at the resonant frequency of the tank or not at all.

It has also been shown that the resonant frequency of the tank is dependent on its dimensions and its Q is highly dependent on the materials, type of construction, and the amplitude of the driving source.

In figure 8, f f s $1 / \mathrm{h}$ for the tank is compared with ourves predioted by equation 16. for standing waves, and with points obtained by driving the tank with a loudspeaker and the stream-slot. It will be noted that there is a larger offset for those points obtained when driving the tank with the stream-slot. It is considered that this is caused by the change in effoctive volume of the tank oreated by the vortioes.

Figure 9 shows f vs $1 / h$ for the Helmholtz method of vibration. The curve shown was determined experimentally.

Figure 16 shows Q for the tank in mode $(1,0)$ for standing waves as determined by using a loudspeaker, and C_{p} for stage 1 of the stream-slot at constant velocity over the same range of frequency. In addition to the large uncertainty in determining $Q_{\text {, }}$ it was not possible to drive the tank at the sane amplitude with the loudspeaker as with the strean-slot.

The wide variation of Q suggests some other form of acoustical
contribution, possibly from the tunnel or inlet section which have resonating shapes also. However, it is evident that the correlation between Ω and C_{p} is such that a maximum C_{p} will ocour at points of maximum Q, whon the tank vibrates in the standing wave method.

With the tank vibrating in the Helmholte method, a maximun Q of 15 was found at 53 cyc/sec using a loudspeaker but when driving the tank with the stream-slot in stare 1 a maximum C_{p} of 3.11 was observed at about $65 \mathrm{cyc} / \mathrm{sec}$ for the seme velocity as in figure 16 . This again points out the shift in frequency caused by the vortices changing the effective volume of the tank and also indicates, despite the low Q as compared with that for standine waves, that the action of the Helmholte method is such as the cause greater acoustic overpressures.

It has been show that the relative mamitude of the Str determines the stace of vortex formation and that Q is the factor which correlates C_{p} for different frequencies in a given mode of standing wave vibration for the tank. The various variables are now combined in a single plot of $C_{p} S t r /$ or $2 / Q$ णs Ro/Str (Figure 17). In figure 17 a series of runs was made in which points of maximum Q were sought at 65,300 , and 425 cyo/sec. In obtaining these points velocity and slot length were varied, and tank height was adjusted for maximun acoustic overpressure. Thus frequency was not constant but varied over a small rane, accordingly it was assumed that a remained constant where maximum acoustic overpressure was obtained, and that the shint in freruency was due to the change in effective volume of the tank.

From figure 17, it is evident that $2 / 4$ has a maximum at about Ro/Str a 2.5×10^{5} for all stares and froquencies, and that at this maximun the
-
i
value of Z / Q is the same for all stages of vortex formation for a given method of vibration of the tank. The action of the Helmholtz method in causing greater acoustic overpressures is also clearly shown where in the present system the ratio of the maximums between the Helmholta method and the standing wave rethod is about 10 to 1 .

9. Conclusions

1. The uniform flow of a fluid over a flat plate having a discontinuity in the form of a slot exposing a finite size cavity is held to be a modification of the jet-edge.
2. The initial boundary layer thickness determines the minimum slot length at which the stream will oscillate regardless of any other conditions, and this minimum is of the seme order of magnitude as the initial boundary layer thickness.
3. Within the range of parameters investigated the Strouhal number falls into three distinct bands with average values of approximately

$$
\begin{aligned}
& \text { Str }=0.40 \text { for Stage } 1 \\
& \text { Str }=0.95 \text { for Stage } 2 \\
& \text { Str }=1.50 \text { for Stage } 3
\end{aligned}
$$

indicating the stage of oscillation of the stream, where in stage 1 , one vortex is present. In stage 2, two vortices are present simultaneously, and stage 3, three vortices. Higher stages may be possible but in the present system these were not observed.
4. As the stage number inoreases the stability of vortex formation and the value of C_{p} decreases.
5. Osoillation is markedly affeoted by the presence of a resonator, in that a) the resonator will determine the frequency of oscillation if oscillation occurs, b) in the standing wave method the acoustic overpressure is directly proportional to the acoustical quality of the resonator, and c) when the resonator acts in the Helmholtz method its influence is such as to cause greater acoustio overpressures than the standing wave method even though Q is smaller.
6. The power ratio/acoustical quality, z / a, exhibits a maximum at Re/Str $=2.5 \times 10^{5}$ for all stajes and modes of vibration of the tank. 7. At this maximum, Z / Q is the same for all stages of vortex formation for a given method of vibration of the tank.
8. In the prosent systern the action of the Helmholtz. method of vibration in causing greater acoustic overpressures is of the order of ten times that of the standing wave method at Re/Str $=2.5 \times 10^{5}$ 。
10. Recommendations

There is still ample room in this field for both experimental and theoretical work. In the particular phase investipated here, it is recommended in future investigations that a more accurate mears of determining the acoustical quality of the resonator be found。

1. L. Prandtl, and O. G. Tietjens, Fundamentals of Hydro- and Aeromechanics, McGraw-Hill Book Company, 1934.
2. L. Prandt1, Essentials of Fluid Dynamios, Hafner Publishing Company, 1949.
3. G. Birkhoff and E.H. Zarantcnello, Jets, Wakes and Cavities, Academic Press, 1957.
4. A. Wood, Acoustics, Interscience Publishers, 1941.
5. W. E. Benton, On Edge Tones, Proceedinas Physical Society, London, Vol. 38, Feb. 1926, pp. 109-126.
6. E. G. Richardson, Edge Tones, Proceedings Physical Society, London, Vol. 43, July 1931, pp. 394-404.
7. G. B. Brown, The Vortex Motion Causing Edge Tones, Physical Society, London, Vol. 49, Sept. 1937, pp. 493-507.
8. W. L. Nybor , Jet Edge Systems, Journal of the Acoustical Society of Anerica, Vol. 26, March 1954. pp. 174-182.
9. H. Schlichtine, Boundary Layer Theory, MoGraw-ilill Book Company, 1955.
10. L. F. Kinsler and A. R. Frey, Fundamentals of Acoustics, John Wiley \& Sons, 1950.
11. V. L. Streeter, Fluid Dynamics, McGraw-Hill Book Company, 1948.
12. L. Prandtl and O. G. Tietjens, Applied Hydrom and Aeromechanics, KoGraw-itill Book Company, 1934.
13. Shih-I Pai. Viscous Flow Theory, Vols, 1 and 2, D. Van liostrand Company, 1956.
14. A. H. Shapiro, The Mrnamics and Thermodynamics of Compressible Fluid Flow, Vols. I and 2, the Ronald Press, 1954.

APPENDIX I
 Run Data

APPENDIX I

RUN DATA
Phase 1
Velocity profiles without oscillation
Run 101
$T=65^{\circ} \mathrm{F}, \mathrm{P}-30.02^{\prime \mathrm{HI}} \mathrm{g}$
$x=0.00^{\prime \prime}, L=0.00^{\prime \prime}, x / L=.000, f=0, h-47.5^{n}$
Total head probe $1 / 15^{\prime \prime}$ OD x 1/3 $2^{\prime \prime}$ ID

$\begin{aligned} & \text { y } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & y \cdot b_{0} \\ & z . .500 \end{aligned}$	$\begin{gathered} \Delta_{p} \\ { }_{M_{H}}{ }_{2} \end{gathered}$	$\stackrel{u}{\mathrm{sec}}$	u / u
. 045	. 090	1.17	72.2	. 785
. 075	. 150	1.42	79.6	. 866
. 100	. 200	1.53	82.5	. 898
. 150	. 300	1.71	87.3	. 950
- 200	. 400	1.80	89.6	. 975
. 300	. 600	1.86	91.0	. 990
. 400	. 800	1.87	91.2	-993
. 500	1.000	1.89	91.8	1.000
. 750		1.89	91.8	
1.000		1.89	91.8	
1.500		1.89	91.8	
2.00		1.89	91.8	
3.00		1.90	92.0	
4.00		1.89	91.8	
5.00		1.90	92.0	
6.00		1.90	92.0	
7.00		1.90	92.0	
8.00		1.89	91.8	
9.00		1.89	91.8	

Run 102
$T=670 \mathrm{~F}, \mathrm{P}=29.98^{\mathrm{n}} \mathrm{Hg}$
$x=0.00^{\prime \prime}, L=4.20^{\prime \prime}, x / L=.000, f=0, h=47.5^{\text {h }}$
Total head probe $1 / 16^{n}$ OD $\times 1 / 32^{n}$ ID

$\begin{gathered} y \\ \text { in。 } \end{gathered}$	$\begin{aligned} & =y / b \\ & z_{1}=.395 \\ & b_{2}=.045 \end{aligned}$	$\Delta_{\mathrm{p}}{ }^{\mathrm{H}_{2} \mathrm{O}}$	$\stackrel{u}{s e c}^{u}$	u/U
1.025		1.97	93.8	
. 775		1.97	93.8	
. 525		1.97	93.8	1.000

Run 102 (Continued)

.425	1.078	1.97	93.8	1.000
.325	.823	1.96	93.5	.996
.225	.570	1.93	92.7	.989
.175	.443	1.89	91.8	.979
.125	.316	1.82	90.0	.960
.100	.253	1.77	88.8	.946
.075	.190	1.68	86.5	.923
.050	.127	1.57	83.6	.892
.025	.063	1.35	77.8	.830
.000	.000	1.02	67.4	.719
.010	-.222	.65	53.8	.574
-.025	-.555	.24	32.8	.350
-.050	-1.110	-.01	0.0	.000

Run 103

$$
T=630 \mathrm{~F}, P=30.09^{\mathrm{n}} \mathrm{Hg}
$$

$x=1.00, L=4.20^{\prime \prime}, x / L=.238, f=0, h=47.5^{\prime \prime}$
Total head probe $1 / 16^{\prime \prime}$ OD $\times 1 / 32^{\prime \prime}$ ID

$\begin{gathered} \text { y } \\ \text { in. } \end{gathered}$	$\begin{gathered} y / b \\ b_{1}=.400 \\ b_{2}=.235 \end{gathered}$	$\begin{gathered} \Delta \mathrm{p} \\ { }_{\mathrm{H}}^{2} \mathrm{O} \end{gathered}$	$\frac{u}{\text { / seo }}$	u / U
. 750		2.00	93.5	1.000
. 500		2.00	93.5	1.000
. 400	1.000	2.00	93.5	1.000
. 300	. 750	1.98	93.1	. 996
c 200	. 500	1.94	82.1	. 985
. 150	. 375	1.90	91.2	. 975
. 100	. 250	1.84	89.8	. 960
. 050	. 125	1.67	85.5	. 915
. 025	. 063	1.49	80.8	. 865
. 000	. 000	1.25	74.0	. 791
-. 025	-. 106	. 99	62.8	. 672
-. 050	-. 212	. 73	56.5	. 605
-. 075	-. 318	. 500	46.8	. 500
-. 100	-. 425	. 370	40.3	. 431
-. 125	-. 531	. 200	29.5	. 317
-. 150	-. 637	.103	21.2	. 227
-. 175	-. 744	. 055	14.8	. 158
-. 200	-. 850	. 022	9.8	. 102
-. 225	-. 955	. 009	8.3	. 067
-. 250	-1.062	. 004	4.2	. 045

Run 103 (Continued)
$T=630 \mathrm{~F}, P=30.09^{\mathrm{n}} \mathrm{Hg}$
$x=1.00, L=4.20^{\prime \prime}, x / L=.238, f=0, h \$ 47.5^{\prime \prime}$
Total head probe $1 / 16^{\prime \prime}$ on $\times 1 / 32^{\prime \prime}$ ID

$\begin{gathered} \text { y } \\ \text { in. } \end{gathered}$	$\begin{gathered} y / b \\ b_{1}=.400 \\ b_{2}=.235 \end{gathered}$	$\begin{gathered} \Delta_{\mathrm{p}} \\ { }^{4 \mathrm{H}_{2} \mathrm{O}} \end{gathered}$	$\cdot \frac{u}{s e c}$	u / U
-. 275		. 003	3.6	. 038
-. 300		. 002	2.9	. 031
-. 325		. 003	3.6	. 038
-. 350		. 004	4.2	. 045

Run 104

$$
\begin{aligned}
& T=65^{\circ} \mathrm{F}, P=30.11^{\mathrm{H}} \mathrm{Hg} \\
& x=2.00^{\prime \prime}, L=4.20^{\prime \prime}, x / L \propto .476, f=0, h=47.5^{\prime \prime}
\end{aligned}
$$

Total head probe $1 / 16^{\prime \prime}$ OD $\times 1 / 32^{\prime \prime}$ ID

y	y / b	Δp	u
in.	$b_{1}=.450$	${ }^{2} H_{2} 0$	$1 / \mathrm{seo}$
$b_{2}=.425$			

1.000		1.99	93.7	1.000
.750	1.000	1.99	93.7	1.000
.500	.890	1.98	93.5	.997
.400	.666	1.97	93.4	.996
.300	.445	1.93	93.3	.995
.200	.334	1.85	92.4	.985
.150	.222	1.75	88.0	.965
.100	.111	1.54	82.5	.940
.050	.056	1.34	77.0	.880
.025	.000	1.17	71.9	.821
.000	.118	.91	63.5	.767
-.050	. .235	.65	53.6	.678
-.100	-.353	.41	42.6	.572
-.150	-.470	.240	32.5	.455
-.200	-.588	.130	24.0	.347
-.250	-.647	.090	19.9	.256
-.275	-.705	.059	16.1	.212
-.300	-.765	.039	13.1	.172
-.325	-.750			
-.350	-.824	.020	9.4	.140
-.375	-.882	.015	8.1	.100
			.086	

Run 104 (Continued)
$T=65^{\circ} \mathrm{F}, P=30.17^{\mathrm{n}} \mathrm{A}$
$x=2.00^{\prime \prime}, L=4.20^{\prime \prime} x / L=.476, f=0,1=47.5^{\prime \prime}$
Total head probe $1 / 10^{\prime \prime}$ on $x 1 / 32^{\prime \prime}$ ID

-.400	-.940	.011	7.0	.075
-.425	-1.000	.008	5.9	.063
-.450		.006	5.1	.054
-.475		.005	4.7	.050
-.500		.007	5.6	.060
-.525		.007	5.6	.060

Run 105
$T=67^{\circ} \mathrm{F}, P=30.18^{\prime \prime} \mathrm{Hg}$
$x=3.00^{\prime \prime}, L=4.20^{\prime \prime}, x / L=.714, f=0, h=47.5^{n}$
Total head probe $1 / 16^{\prime \prime}$ OD $\times 1 / 32^{\prime \prime}$ ID

1.000		1.97	93.4	1.000
. 750		1.97	93.4	1.000
. 600		1.97	93.4	1.000
. 500	. 960	1.97	93.4	1.000
. 400	. 770	1.96	93.0	. 996
. 300	. 576	1.91	91.3	. 983
. 200	. 384	1.75	88.2	. 945
. 150	. 288	1.63	81.8	. 908
. 100	. 192	1.46	80.3	. 860
. 050	. 096	1.21	73.0	. 782
. 000	. 000	1.11	70.0	. 750
-. 050	. 080	. 89	62.7	- 572
-. 100	. 130	. 71	56.0	. 600
-. 150	. 240	. 53	48.4	. 518
-. 200	-. 320	. 39	41.5	. 445
-. 250	. 400	. 27	34.5	. 371
-. 300	. 480	. 175	27.8	. 298
-. 350	. 560	. 120	23.0	. 246
-. 400	-. 610	. 073	18.0	. 193
.. 475	-. 760	. 024	10.3	. 110

Run 105 (Continued)

$$
\begin{aligned}
& I=6705, P=30 .{ }^{7} 3^{\prime \prime} H g \\
& x=3.00^{n}, L=4020^{\prime \prime} \cdot x / L=.714, f\left(0, h e 47.5^{n}\right.
\end{aligned}
$$

Total head probe $1 / 13^{\prime \prime}$ OD $\times 1 / 32^{n}$ ID

$\begin{aligned} & \text { in } \\ & \text { in. } \end{aligned}$	$\begin{gathered} v / b \\ b_{1}=.520 \\ b_{2}=.325 \end{gathered}$	$\Delta_{\mathrm{m}_{2}} \mathrm{O}$	$1 / 800$	u / U
-. 500	-. 00	. 016	8.4	. 090
-. 525	-. 340	. 012	7.3	. 078
-. 550	= - 30	. 009	6.3	. 067
-. 575	-.920	-. 0.06	5.2	. 056
-. 600	-. 330	- 05	4.7	.050
-. 650	-1.040	- 206	5.2	, 056
-. 700		. 007	5.3	. 060
-. .750		-109	0.3	0667

Run 106
$T=2.50 \mathrm{~F}, P=30.32^{n} \mathrm{~F}$
$x=4.05^{7}, \mathrm{~L}=4.20^{n}, x / L=.965, f=0, h=47.5^{\prime \prime}$
Total head probe $1 / 16^{\prime \prime}$ OD $x 1 / 32^{\prime \prime}$ ID
y
in
$\mathrm{b}_{1}=.590$
$\Delta_{\mathrm{HF}_{2} \mathrm{O}}$
$1 /$ u
0 OH

.020	.034	1.13	70.0	.756
.050	.085	1.21	72.5	.784
.100	.170	1.35	$7 . .5$.829
.150	.254	1.48	80.2	.867
.200	.339	1.60	33.5	.902
.300	.508	1.78	88.0	.951
.400	.578	1.89	90.3	.980
.450	.753	1.93	91.5	.939
.500	.848	1.94	91.3	.993
.550	.932	1.96	92.4	.998
.500	1.020	1.96	92.5	1.000
.700		1.97	92.5	1.000
1.000		1.97	92.5	1.000

Run 107
$T=67^{\circ} \mathrm{F}, \mathrm{P}=30.31^{\mathrm{m}} \mathrm{Hg}$
$x=4.25^{\prime \prime}, L=4.20^{\prime \prime}, x / L=1.01, f \equiv 0, h=47.5^{\prime \prime}$
Total head probe $1 / 16^{\prime \prime}$ OD $\times 1 / 32^{\prime \prime}$ ID

$\begin{gathered} \text { y } \\ \text { in. } \end{gathered}$	$b_{0}^{y / b}$	$\Delta_{n_{H_{2}}}$	\cdot / seo	u/s
1.000		1.97	93.0	1.000
. 750		1.97	93.0	1.000
. 600		1.96	92.6	. 996
. 500		1.93	92.0	. 989
. 400		1.83	89.5	. 963
. 300		1.70	86.3	. 928
. 200		1.50	81.1	. 873
. 150		1.39	78.1	. 840
. 100		1.24	73.7	. 793
. 050		1.10	69.5	. 747
. 025		1.00	66.3	. 713
. 020		. 93	64.0	. 689

Run 108
$T=61^{\circ} \mathrm{F}, P=30.03^{\circ} \mathrm{Hg}$

$$
x=0.00^{\prime \prime}, L=4.20^{\prime \prime}, f=0, h=47.5^{n}
$$

Total head probe $1 / 16^{\prime \prime}$ OD $\times 1 / 32^{\prime \prime}$ ID

.500		2.00	93.6	1.000
.400	1.027	2.00	93.6	1.000
.300	.769	1.97	92.9	.993
.200	.513	1.92	91.7	.980
.150	.384	1.86	90.3	.965
.100	.256	1.72	86.9	.929
.050	.128	1.49	80.9	.865
.025	.064	1.27	74.5	.795
.000	.000	.76	57.8	.618
-.015	-.333	.59	50.9	.544
-.025	-.555	.226	31.5	.337
-.030	-.657	.147	25.4	.272
-.035	-.778	.038	12.9	.138
-.040	-.889	.009	6.3	.067
-.043	-.955	.007	5.5	.059
-.045	-1.000	.000	0.0	.000
-.050		.001	2.1	.022

Lowror Joundary Witiout Osoillation
Run 109
Total head probe $1 / 32^{\prime \prime}$ oD $x I / 64^{n}$ ID, $=0, n=47.5^{n}$

* Indicates lower boundary Iinit
$T=66^{\circ} \mathrm{F}, \mathrm{P}=30.24^{\mathrm{Hg}} \mathrm{H}, \mathrm{L}=4.20^{\mathrm{\prime} \mathrm{\prime}}$
$x=0.50^{\prime \prime}, x / L=.119, x=1,00^{\prime \prime}, x / L=.238 x=1.50^{\prime \prime}, x / L=.357$

y	Δp	y	Ap	y	$\Delta \mathrm{p}$
in.	${ }^{12} 20$	in.	${ }^{+} \mathrm{H}_{2} \mathrm{O}$	in。	${ }^{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}$
-. 100	. 040	-. 200	. 013	-. 250	. 028
-. 115	. 014	-. 225	. 007	-. 270	. 020
-. 120	. 008	-. 235*	. 006	-. 280	. 014
-. 125	. 003	-. 250	. 006	-. 290	. 012
-. $130 *$. 001			=.300	. 009
-. 135	. 001			-. 310	. 007
				-.325*	. 004
				-. 350	. 004

$x=2.00^{\prime \prime}, x / L=.476 x=2.50^{\prime \prime}, x / L=.595 x=3.00^{\prime \prime}, x / L=.714$

$x=3.50^{\prime \prime}, x / L=.833$

y	Δp
in.	$\mathrm{HH}_{2} \mathrm{O}$
-. 650	. 016
-. 700	. 014
-. 725*	. 012
-. 750	. 012

Velocity Profiles with Oscillation
Run 110
$T=670 \mathrm{~F}, P=30.09^{\prime \prime} \mathrm{Hg}$
$x=1.00^{\prime \prime}, L \equiv 4.20^{\prime \prime}, x / L=.238, f=31.60,0 /$ sec. $\mathrm{f}=47.5^{\prime \prime}$
Total head probe $1 / 32^{\prime \prime}$ OD $\times 1 / 64^{\prime \prime}$ ID

$\begin{gathered} \text { y } \\ \text { in. } \end{gathered}$	$\begin{gathered} \mathrm{y} / \mathrm{b} \\ \mathrm{~b}_{1}=.600^{\prime \prime} \\ \mathrm{b}_{2}=.250^{\prime \prime} \end{gathered}$	$\begin{aligned} & \Delta \mathrm{p} \\ & { }_{\mathrm{H}}^{2} \mathrm{O} \end{aligned}$	$\stackrel{u}{s e o}^{u}$	u / u
. 600	1.000	. 220	31.0	1.000
. 500	. 833	. 219	30.9	. 994
. 400	. 367	. 218	30.8	. 990
. 350	. 583	. 216	30.7	. 988
. 300	. 500	. 210	30.2	. 971
. 250	. 427	. 206	30.0	. 965
. 200	. 192	. 192	28.9	. 930
. 150	. 250	. 176	27.5	. 891
. 100	. 157	. 161	26.5	. 852
. 050	. 083	. 133	24.1	. 775
. 000	. 000	. 115	22.4	. 721
-. 050	-. 200	. 088	19.5	. 625
-. 100	-. 400	. 057	15.7	. 505
-. 150	-. 600	.029	11.2	. 360
-. 175	-. 700	. 019	9.1	. 292
-. 200	-. 300	. 011	6.9	- 222
-. 225	-. 900	. 005	5.1	. 164
-. 230	-. 920	. 004	4.2	. 135
-. 240	- . 980	. 022	2.9	. 093
- . 250	-1.000	. 000	0.0	. 000

Run 111
$T=630 \mathrm{~F}, \mathrm{P}=30.17^{\mathrm{n}} \mathrm{Hg}$

Total head probe $1 / 32^{\prime \prime}$ OD $\times 1 / 64^{\prime \prime}$ ID

$\begin{gathered} \text { y } \\ \text { in。 } \end{gathered}$	$\begin{gathered} y / 0 \\ b_{1}=.600^{17} \\ b_{2}=.485^{17} \end{gathered}$	$\stackrel{\Delta \mathrm{p}}{{ }_{\mathrm{H}_{2} \mathrm{O}}}$	$1 / s e 0$	u / s
. 600	1.000	. 216	30.8	1.000
. 500	. 833	. 211	30.4	. 986
. 400	. 667	. 193	29.1	. 945
. 300	. 500	. 169	27.2	. 885

Run 111 (Continuod)
$T=630 \%, P=30.17^{\prime \prime} \mathrm{Hg}$
$x=2.00^{\prime \prime}, L=4.20^{\prime \prime}, x / L=.475$, fa $31.6 \mathrm{cyo} / \mathrm{sec}, \mathrm{h}=47.5^{\prime \prime}$
Total head probe $1 / 32^{\prime \prime}$ OD $\times 1 / 54^{\prime \prime}$ ID

$\begin{gathered} \text { y } \\ \text { in. } \end{gathered}$	$\begin{gathered} y / b \\ b_{1}=.600^{\prime \prime} \\ b_{2}=0.485^{\prime \prime} \end{gathered}$	${\stackrel{H}{H_{2}},}^{0}$	$\stackrel{u}{100}^{1 / 500}$	u / s
. 200	. 333	. 150	25.5	. 832
. 100	. 267	. 130	23.9	. 776
. 000	. 000	.113	22.3	. 725
-. 100	-. 206	. 092	20.1	. 653
-. 200	-. 412	. 071	17.5	. 571
-. 300	-. 618	. 049	14.7	. 478
-. 400	-. 825	. 023	10.0	. 325
-. 450	$=.928$. 011	6.3	. 208
-. 475	-. 980	. 003	2.9	. 097
- 0485	$=1.000$. 000	0.0	. 000

Lowor Boundary with Oscillation
Run 112
Total head probe $3 / 32^{\prime \prime}$ OD $\times 1 / 64^{\prime \prime}$ ID, $f=31.6$ ovo/sec, h $4.4 .5^{\prime \prime}$

x		b_{2}	x / L	$\mathrm{b}_{2} / \mathrm{L}$
in.		in.		
. 050	-	. 090	. 119	-. 021
1.00	-	. 250	. 238	-. 059
1.50	-	. 380	. 357	-. 090
1.75	-	. 460	. 416	. 110
2.00	-	. 485	. 476	-. 116
2.25	-	. 490	. 535	-. 117
2.50	-	. 505	. 595	-. 120
2.75	-	. 535	. 655	-. 127
3.00	-	. 560	. 714	-. 133
3.50	-	. 650	. 833	-. 155

Doternination of Initial Boundary
Run 113
$T=66^{\circ} \mathrm{F}, P=30.02^{\mathrm{H}} \mathrm{Hg}$, Slot olosed, Total has probe $1 / 32^{\mathrm{m}}$ on $\mathrm{x} 1 / 64^{\mathrm{m}}$ ID

Δp	U	b_{0}
${ }_{n} H_{2} \mathrm{O}$	$1 / 5 \theta 0$	in.
.202	30.0	.290
.537	48.0	.425

Rum 115 (Continued)

$\Delta \mathrm{p}$	J	b_{0}
$\mathrm{H}_{2} \mathrm{O}$	$1 / 800$.17
1.094	69.5	.550
2.19	93.3	.570
2.84	111.0	.530

Run 114
$T=65^{\circ} F_{8} P 29.23^{n}$, S10t opon
Total ead robo $1 / 32^{\prime \prime}$ ob $\times 1 / 54^{\prime \prime}$ ID

Δp	U	b_{0}
${ }^{4} \mathrm{H}_{2} 0$	$1 / 800$.12
.140	25.0	.100
.562	50.0	.355
1.265	75.0	.450
2.25	100.0	.475

Phase 2
Rens s:is a londenoakof
Run 224 Res mat frequenc, determatom
i(ino) $f(0,0 / 300)$
40 25, 95, 179, 197, 345, 402, 140, 503, 「00, 247
$30 \quad 20.4,=5,704,124,234,247,45,450,473,305,685$
$2421.5,27.0,31.7,37,42.4,75,119,137,200,405,500,575$
$17.221,29.3,43.5,52,87,128,154,400,408,570,820$
$1533.5,48.5,82,101,119,156,415,470,612$
$1234,45,82,105,146,184,210,392,408,567,700$
10 34, 46, 67, 82, 103, 111, 181, 211, 408, 440, 699, 830

f_{c}	Δf	Q	f_{c}	ΔI	Q
425.5	5.9	72	466.0	6.0	74
425.4	6.1	70	490.1	17.7	28
417.6	11.7	36	295.0	6.0	49
432.4	7.8	55	304.2	5.5	55
300.9	5.6	54	300.0	6.0	50
301.2	5.4	56	294.7	6.5	45
307.6	7.7	40	416.5	7.0	59
307.6	7.8	39	424.0	6.0	71
294.8	9.6	31	413.5	9.0	46
292.1	12.4	24	426.5	9.0	47
304.4			412.0	8.0	51
			53.0	3.5	15.2

Run 225 Calibration of Altec BR 180 Condenser Microphone

f	f°				
oye/seo	$d b$	psi/volt	030/800	$d b$	psi/volt
50	-77.2	.1052	330	-67.2	. 0333
60	-77.0	.1027	340	-66.7	.0319
70	-76.7	. 0991	350	-66.2	. 0296
85	-76.3	. 0947	360	- 65.9	. 0286
115	- 75.9	.0905	370	-65.7	.0280
150	-75.1	. 0826	380	-65.6	. 0276
200	- 73.6	. 0695	390	-66.1	. 0293
240	-72.1	. 0585	410	-66.8	. 0318
280	-70.0	. 0459	430	-68.2	.0373
300	-69.0	.0409	450	- 59.6	. 0439
310	- 58.3	.0378	470	-71.0	.0515
320	-67.8	.0357	500	-73.1	. 0655

80
\sum_{5}^{2}
∞
0
0
0
11
11

[^0]

NNNMNNNNNN
$P=29.91^{\mathrm{Hg}}$
Run $203 \quad T=66^{\circ} \mathrm{F}$
foyc/sec $L($ in $) \quad h($ in $)$
s7TOA $0^{2}{ }^{\frac{H}{\nabla}}$

N

8888888888 888 88.

Run 204 (Continued)													
$T=59^{\circ} \mathrm{F} \quad \mathrm{P}=30.02^{\prime \prime} \mathrm{Hg}$													
f cyo/sec	$L(i n)$	h (in)	${\underset{\mathrm{n}}{\mathrm{H}_{2} \mathrm{O}}}^{\Delta}$	Volts	ft / s	$2 \mathrm{~J}^{2} \mathrm{ps}$	f^{-1}	$\mathrm{pa}_{\text {a }} \mathrm{ps}$	$R e^{\text {UL }}$	$S t r \frac{f}{0}$	$\mathrm{C}_{\mathrm{p}} \mathrm{p}_{\mathrm{a}}$	Re/Str	Z
490	1.05	28.9	2.375	- 451	100	. 0825	. 415	. 0276	$5.57 \backslash 4$. 430	. 335	$1.294 \backslash 5$. 144
483	1.05	30.1	2.375	. 640	100	. 0825	. 399	. 0400	$5.57 \backslash 4$. 424	. 485	1.3125	. 201
480	1.05	30.6	2.375	. 637	100	. 0825	-392	. 0363	$5.57 \backslash 4$. 420	. 440	1.325	. 185
475	1.05	32.3	2.375	. 584	100	. 0825	. 372	. 0318	$5.57 \backslash 4$. 417	. 586	$1.335 \ 5$.161
Run $205 \quad T=57{ }^{\circ} \mathrm{F} \quad \mathrm{P}=30.01^{\prime \prime} \mathrm{Hg}$													
308	1.22	47.5	1.375	. 490	75	. 0466	- 250	. 0188	4.9014	. 419	. 404	$1.17 \backslash 5$. 1690
308	1.22	23.3	1.375	. 530	75	. 0466	. 516	. 0204	$4.90 \backslash 4$. 419	. 438	$1.17 \backslash 5$.1835
308	2.74	24.0	1.375	. 530	75	. 0466	$\bigcirc 500$		$4.76 \backslash 4$. 940		$5.06{ }^{\text {² }}$	
308	1.46	23.5	2.38	. 530	100	. 0466	. 512		7.8014	. 375		$2.08{ }^{15}$	
308	3.94	24.1	2.38		100		-499		$2.10 \backslash 5$	1.01		2.08	
433	2.52	17.8	2.38		100		-675		$1.30 \backslash 5$. 910		$1.43 \backslash 5$	
328	1.51	43.0	2.38		100		. 280		$8.06 \backslash 4$. 414		$2.95 \backslash 5$	
328	3.90	43.0	2.38		100		. 280		2.0815	1.070		$1.95 \backslash 5$	
328	3.90	22.2	2.38		100		-542		$2.08 \backslash 5$	1.070		$1.95{ }^{\text {¢ }}$	
328	1.51	22.0	2.38		100		. 546		$8.06 \backslash 4$. 414		$1.95{ }^{5}$	
520	. 97	43.6	2.38		100		. 276		5.1714	.420		$1.23 \backslash 5$	
520	. 97	26.8	2.38		100		. 449		$5.17{ }^{4}$. 420		$1.23 \backslash 5$	
520	.97	22.8	2.38		100		. 526		$5.17{ }^{4}$. 420		1.2315	
520	. 97	13.7	2.38		100		. 875		$5.17{ }^{4}$. 420		$1.23 \backslash 5$	
520	. 97	2.2	2.88		100		. 545		$5.17{ }^{14}$. 420		$1.23{ }^{15}$	
520	2. 26	13.9	2.38		100		. 864		$1.21 \backslash 5$. 980		1.2315	
520	2.26	23.3	2.38		100		.515		$1.21 \backslash 5$. 980		1.2315	
520	2. 26	27.1	2.38		100		. 443		$1.21 \backslash 5$. 980		1.2315	
520	2.26	43.8	2.38		100		. 274		$1.21 \backslash 5$. 980		1.23 15	
520	1.13	43.8	4.1		132		. 274		$7.30 \backslash 4$. 340		$20.15 \backslash 5$	
520	1.13	26.9	4.1		132		. 445		7.3014	. 340		2.15:5	
520	1.13	23.0	4.1		132		. 521		$7.30{ }^{14}$. 340		$2.15{ }^{5}$	

$9 \backslash 88^{\circ} \mathrm{C}$	£67＊	$9{ }^{2} 2^{\circ} \mathrm{T}$	994＊	$2 ¢ \tau$	でも	$L^{\circ} \mathrm{G}$ T	$\varepsilon L^{\circ} \mathrm{I}$	OSD
G $\backslash 88^{\circ} \mathrm{Z}$	¢67＊		$26^{\circ} \mathrm{Z}$	2¢L	で五	て・も	$\varepsilon L^{\circ} \mathrm{T}$	OS五
$9 \backslash 08^{\circ} \mathrm{I}$	998＊	可0も＊	09 ${ }^{\text {－}}$	2¢L	でも	$8^{\circ} 9$ I	$16{ }^{\text {® }}$	029
9 $108^{\circ} \mathrm{I}$	998＊	がOも゙9	＊L ${ }^{\text {a }}$	2\＆L	でも	$8^{\circ} \mathrm{E}$ も	I6＊	029
S ST $^{\circ} \mathrm{Z}$	00° L	$\mathrm{g} \backslash 9 \mathrm{~T}^{\circ} 2$	－L2	2¢L	じぁ	$8^{\circ} \mathrm{E}$ も	$90^{\circ} \mathrm{E}$	O2S
$S \backslash S T * 2$	$00^{\circ} \mathrm{T}$	S $\operatorname{ST}^{\circ} 2$	ロもも＊	2\＆L	でも	$\varepsilon^{*} \angle 2$	S0 $0^{\circ} \mathrm{E}$	029
S ST＊$^{\circ}$	00° T	S SI $^{\circ} \mathrm{Z}$	OTS＊	2\＆T	［•『	$S^{\bullet} \Sigma \mathcal{L}$	S $0^{\circ} \varepsilon$	02 S
S \backslash St＊	$00^{\circ} \mathrm{T}$	$S \backslash S T{ }^{\circ}$	028 ${ }^{\circ}$	2¢L	［・も	$8^{\circ} \mathrm{E}$ L	S $0^{\circ} \varepsilon$	029
S\ST＊	OZ ε°	可 $0 \varepsilon^{\circ} \mathrm{L}$	OL8 ${ }^{\circ}$	2¢L	［・も	$8^{\circ} \mathrm{E}$ I	$\varepsilon \tau^{\bullet} \tau$	O2S
7S/®y	$J^{17 S}$	$\mathrm{I}^{9} \mathrm{~d}$	WJ		$\mathrm{O}_{\mathrm{d}}^{\mathrm{H}} \mathrm{\gamma}$	T ）บ	［t） 7	\bigcirc

60	． 99	18.0	． 11	13.2	． 67	$6.96 \backslash 3$	． 376	1．85 ${ }^{4}$
68.5	2.04	16.0	． 11	13.2	． 75	$1.44 \backslash 4$	． 885	1．63\4
447	1.13	6.2	． 530	45	1.93	2.7214	． 940	$2.90{ }^{14}$
435	1．85	17.3	． 530	45	． 693	$4.45 \backslash 4$	1.49	$2.98{ }^{14}$
430	1.57	17.8	． 420	38.6	． 674	$3.25 \backslash 4$	1.46	$2.22 \backslash 4$
425	1.00	17.8	． 420	38.6	． 674	$2.06 \backslash 4$	． 918	$2.24{ }^{14}$
430	1． 24	17．6	． 320	33.2	． 681	$2.20{ }^{4}$	1.34	1．64\14
426	－80	17.6	． 320	33.2	． 681	1．42．4	． 857	1．66 ${ }^{\text {，}}$
425	． 74	17.5	． 950	66.2	． 681	$2.62 \backslash 4$	． 397	$6.60 \backslash 4$
590	1.16	17.6	． 950	66.2	． 681	$4.10,4$	． 862	$4.75 \backslash 1$
430	1.60	17．5	． 950	66.2	． 681	$5.65 \backslash 4$	． 866	$6.52 \backslash 4$
437	2.75	17.5	． 950	65.2	． 681	$9.71: 4$	1.516	$6.41: 4$
439	3.11	17.6	1.175	69.5	． 681	$1.16 \backslash 5$	1.640	$7.06 \backslash 4$
440	3.16	17．5	1． 50	79.2	.681	$1.46 \backslash 5$	1.600	$9.12{ }^{4}$
442	4.41	17．6	2.41	101.	． 681	$2.38 \backslash 5$	1.612	$1.475{ }^{\text {，}}$
946	． 50	17．25	4.1	133.5	． 695	$4.14{ }^{4}$	． 535	$7.73 \backslash 4$

4	かがい
出	－ 10
	．
1	N 0

15

 .4171 .63

 $\begin{array}{ll}0 & 12 \\ \text { N } \\ \text { H } \\ 0 & \text { M }\end{array}$ กッパ
$\stackrel{H}{1}$

 .0362
.0362
.0362
.0362
.0362
.0362
.0362
.0362
.0362
.0078
.0078
.141 .0088
.0088
.0088 $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & n & m\end{array}$ MMN M 68

	$\stackrel{\square}{\square}$	H－N
¢	$\stackrel{\sim}{-1}$	$\because \cdot$
10	」	＊
	\bigcirc	
11	\＆	ω－ 0
	$\stackrel{-r}{ }$	$\square 5$
E－	－	へべ

E
∞
1
11
$E-1$
$P \approx 50.17^{\prime \prime} \mathrm{Hg}$

$P=30.16^{\prime \mu} \mathrm{Hg}$ $\infty 0$
$m=0$
-10
00
00
$m 0$ $\begin{array}{ll}.320 & .090 \\ .320 & .141\end{array}$

$$
P=30.14-12
$$

$$
00000 \text { Mcoch N上 }
$$

Run 207
f cye／sec 171
550
342 Run 20840.0～543
450
352
206
36
468
68
430
57
67
33
280Run 209 55
38.8
33.5
Run 210 520
68
432

Run 213	$T=$	${ }^{\circ} \mathrm{F}$	$\mathrm{P}=29$	$2^{\prime \prime} \mathrm{Hg}$									
$f \mathrm{cyc} / \mathrm{sec}$	L(in)	$h(i n)$	${ }_{\square} \mathrm{H}_{2} \mathrm{O}$	Volts	$\mathrm{U} \mathrm{ft} / \mathrm{sec}$	$1 / 2 \rho \mathrm{U}^{2}$	ft^{-1}	$p_{a} p_{B i}$	$0 \cdot \frac{U L}{4}$	$r \stackrel{\mathrm{fl}}{\mathrm{f}}$	$\mathrm{p} \stackrel{0}{1 / 2} 2 \mathrm{~J}^{\mathrm{J}^{2}}$	$\mathrm{Re} / \mathrm{Str}$	2
65.3	1.40	14.5	. 165	. 072	20.5	. 00343	. 826	. 0072	$1.48 \backslash 4$. 371	2.10	$3.98 \backslash 4$. 779
65.3	1.52	14.7	. 185	. 090	22.6	. 00415	. 815	. 0090	1.77	. 366	2.17	4.85	. 794
65.7	1.66	15.1	. 240	. 165	27.5	. 00615	. 778	. 0165	2.34	. 330	2.68	7.09	. 884
66.2	2.04	15.9	. 310	. 212	32.7	. 00867	. 754	.0212	3.41	. 344	2.44	9。90	. 839
66.2	2.35	16.1	. 425	. 413	39.8	. 0123	. 745	. 0413	4.78	. 326	3.23	$1.467{ }^{\circ}$. 053
66.7	2.74	16.5	. 500	. 610	46.7	. 0155	. 726	. 0610	6.53	. 326	3.94	2.00	1.286
66.2	3.02	16.9	. 685	. 729	52.4	. 0222	. 709	. 0729	8.09	. 318	3.28	2.54	1.044
67.2	3.27	16.8	. 825	. 900	57.6	. 0273	. 713	. 0900	9.65	. 318	3.30	3.04	1.050
66.7	3.57	17.5	1.00	1.220	64.4	. 0336	. 685	. 1220	$1.08{ }^{5}$. 308	3.63	3.52	1.120
67.2	3.89	17.5	1.145	1.406	69.2	. 10388	. 685	. 1406	1.375	. 315	3.62	4.36	1.140
66.7	4.27	18.1	1.25	1.325	72.5	. 0426	. 662	. 1325	1.584	. 328	3.11	4.83	1.020
67.2	5.14	18.5	1.705	1.700	84.8	. 0591	. 648	. 1700	2.33	. 340	2.87	¢0.85	. 975
67.2	5. 23	19.6	1.85	1.857	88.5	. 0644	. 514	. 1857	2.47	. 331	2.88	7.45	. 951
68.1	7.62	19.5	2.69	1.935	107.3	. 0946	. 617	. 1935	4.37	. 403	2.04	1.0841^{6}	. 821

のजackemma

 Run 214

 むた む心めN | 0 |
| :--- |
| 0 |
| 0 |
| |
| | $\begin{array}{cccc}0 & 0 & 0 & 0 \\ m & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ ． 944

 .0205
.0312
.0160
.0638
.0866
.1160 61.5
74.7
88.0
102.6
119.0

Run 219 \qquad
foudsec
299
299
300
300
302
302
302
302
301

 N．

$C_{p}^{p_{1 / 2}}$	Re/Str	Z
. 0443	$9.28{ }^{4}$. 0686
. 0650	$1.09{ }^{15}$.1010
. 1085	$1.472{ }^{5}$. 1638
.1297	1.815	.1960
.1367	2.18	. 208
. 128	2.0414	. 180
. 142	2.92	. 212
. 120	3.89	. 1825
. 0752	5.75	.1175
. 0830	8.39	. 0686
. 0785	$1.13{ }^{5}$.1235
.0767	1.51	. 1220

$$
\begin{array}{lllll}
\text { His tr } & \infty & 6 & N & 0 \\
5 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& \text { Run } 222 \\
& \text { f cyo/seo } \\
& 300 \\
& 300 \\
& 302 \\
& 301 \\
& 302
\end{aligned}
$$

$1 / 2 p^{U^{2} p s i}$
.0363
.0429
.0573
.0710
.0854
.0112
.0161
.0215
.0318
.0466
.0621
.0847U ft/sec

$$
\begin{array}{llll}
0 & 15 & 0 & N \\
0 & -1 \\
0 & -1 & 0 & 0 \\
0 & -1 & -1 \\
0 & & H
\end{array}
$$

 2.835

$$
\begin{aligned}
& \begin{array}{l}
5^{\text {7 }} \mathrm{Hg} \\
.0398 \\
.0636 \\
.0716 \\
.0663 \\
.0557 \\
.1355 \\
.1805
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}=30.15^{\mathrm{mP}} \mathrm{H}
\end{aligned}
$$

APPENDIX II

Plots From Data
Figures 8 through 17

APPENDIX III

A series of photographs

showing vortices in successive positions of travel across the slot. $U=31.0 \mathrm{ft} / \mathrm{sec}, f=31.6 \mathrm{cyc} / \mathrm{sec}, \mathrm{L}=4.2 \mathrm{in} . \mathrm{h}=47.5 \mathrm{in}$.

[^0]:

