

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1958

Vortex formations caused by fluid flow across a slot in a flat plate.

Axe, John R.

Monterey, California: U.S. Naval Postgraduate School

https://hdl.handle.net/10945/14772

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1958 AXE, J.

VORTEX FORMATIONS CAUSED BY FLUID FLOW ACROSS A SLOT IN A FLAT PLATE

JOHN R. AXE

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

VORTEX FORMATIONS CAUSED BY FLUID FLOW

ACROSS A SLOT IN A FLAT PLATE

ъ

.

* * * * *

1

John R. Axe

VORTEX FORMATIONS CAUSED BY FLUID FLOW

1

ACROSS A SLOT IN A FLAT PLATE

by

John R. Axe

Lieutenant, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

United States Naval Postgraduate School Monterey, California

1 9 5 8

VORTEX FORMATIONS CAUSED BY FLUID FLOW

ACROSS A SLOT IN A FLAT PLATE

by

John R. Axe

This work is accepted as fulfilling

the thesis requirements for the degree of

MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

from the

United States Naval Postgraduate School

ABSTRACT

The uniform flow of a fluid over a flat plate with a discontinuity in the form of a slot exposing a finite size cavity was investigated with the objective of determining the effect of variation of fluid velocity, slot length, and cavity size upon the frequency and stability of vortex formation. The correlating dimensionless parameters which evolve are the ratio of acoustical power to the free stream power, the acoustical quality of the resonant cavity, the Strouhal number based on the slot length, and the Reynold's number also based on the slot length.

The experimental work was performed from January 1958 through May 1958 at the United States Naval Postgraduate School, Monterey, California. q

ACKNOWLEDGEMENT

The author is indebted to Professor C. P. Howard for his guidance and counsel during the complete investigation. Appreciation is also expressed to Professors P. F. Pucci, and O. B. Wilson for their advice and assistance. Grateful acknowledgement is also due Messrs R. P. Kennicott, N. Walker, K. W. Mothersell, and A. B. Rasmussen for their work in the construction, assembly and installation of the experimental equipment.

TABLE OF CONTENTS

Item	Title	Page
Chapter 1	~ Introduction	1
Chapter 2	Description of Apparatus	3
Chapter 3	Instrumentation	9
Chapter 4	Experimental Procedure	11
Chapter 5	Theory	13
Chapter 6	<pre>~ Experimental Results</pre>	20
Chapter 7	Sources of Error	21
Chapter 8	Discussion of the Results	23
Chapter 9	Conclusions	28
Chapter 10	Recommendations	30
	Bibliography	31
Appendix I	Run Data	32
Appendix II	Plots from Data (Figures 8 through 17)	54
Appendix III	Photographs	64

.

-

TABLE OF ILLUSTRATIONS

Fi	gu re	Title	Page
	1.	Velocity Profiles at a Surface of Velocity Discontinuity	1
	2.	Progressive Deterioration of Surface of Velocity Discontinuity	1
	3	Experimental Apparatus - Overall View	4
	4	Test Section	5
	5	Smoke Generator	7
	6	Velocity Profile for Two Flows at Time of Union	13
	7	Velocity Profile in Mixing Zone for Two Flows After Union	13
	8	Frequency vs Reciprocal of Tank Height for Standing Waves	55
	9	Frequency vs Reciprocal of Tank Height for Helmholtz Vibration	56
	10	Velocity Profile of Flow in the Mixing Zone Without Oscillations	57
11,	12	Boundaries of Mixing Regions in the Slot	58
	13	Velocity Profile of Flow in the Mixing Zone With Oscillation	59
	14	Initial Boundary Layer Thickness vs Velocity	60
	15	Strouhal Number vs Reynold's Number/Strouhal	61
	16	Acoustical Quality and Pressure Coefficient vs Frequency	62
	17 .	Power Ratio-Acoustical Quality vs Reynold's Number/Strouhal Number	63

A	area (ft ²)
В	a constant (in/sec)
Ъ	half width of symmetric mixing gone (in.)
bo	initial boundary layer thickness (in.)
pl	the distance to the upper boundary of the actual mixing zone from the base line between the lip of the slot and the plate (in.)
p ^S	the distance to the lower boundary of the actual mixing zone (in.)
β	a dimensionless empirical constant = l_b
С	a constant
C	the velocity of sound (ft/sec)
d	tank length = 17.0"
f	frequency (oyc/sec)
G	effective length (in.)
h	tank height, the distance measured vertically from the slot to the water level in the tank (in.)
1/h	reciprocal of h (ft ⁻¹)
j	an arbitrary constant
k	an arbitrary constant
L	slot length, the distance between the lip of the slot and the plate (in.)
l	mixing length (in.)
^m 1,2,3	mode numbers for tank
n	stage number for oscillating stream
7	a dimensionless variable = y/b
P	atmospheric pressure ("Hg)
Pa	acoustic overpressure or instantaneous pressure differential (psi)

- △p pressure differential ("H₂0) average
- Q accustical quality, dimensionless
- ρ fluid density (lbm/ft³)
- 7 shear stress in the fluid (psi)
- s jet width (in.)
- T temperature (°F)
- t time (sec)
- U free stream velocity (ft/sec)
- u instantaneous horizontal velocity of the fluid at a point (ft/sec)
- u'(x) instantaneously horizontal velocity of a particle in the central filament of a jet at x (ft/sec)
- v instantaneous vertical velocity of the fluid at a point (ft/sec)
- w slot and tank width $= 8.0^n$
- x horizontal distance from the lip of the slot to any point (in.)
- y vertical distance from the lip of the slot to any point (in.)
- ψ a function
- Cp dimensionless pressure coefficient = particular
- Re dimensionless Reynold's number = $VL/\sqrt{}$
- Str dimensionless Strouhal number = fL/U

Z power ratio = C_p Str = $p_a f L / \frac{1}{2} \rho U^3$

1. Introduction

If two streams of the same fluid with different velocities unite such that their resulting flow is parallel, at the instant of union there is formed at their mutual interface a surface of velocity discontinuity (Figure 1a). Any disturbance in the surface causes an unstable distribution of the pressure, and the disturbance increases rapidly in size, while internal friction changes the surface into a fluid layer with rotation. $[1]^1$ The result is that the surface breaks down into eddies or vorticies, usually irregular (Figure 2). [2]

If a relatively thin edge is placed in the stream perpendicular to the direction of flow, under the proper circumstances, the stream will undulate and shed vortices at periodic intervals. [3]

When air is used as the fluid, this oscillitory motion produces clearly audible tones. The principle has been used for centuries in organ pipes, whistles, etc., but it wasn't until 1854 that Sondhaus [4] discovered that the resonating column was not necessary; that the tones could be produced by blowing a jet of air against an edge. Since that time "edge tones" have been a favorite subject of investigators. and though considerable work has been done, the theory is still rudimentary. Of the more important experimental studies, W. E. Benton [5] and E. G. Richardson [6] prefer an explanation based on the hydrodynamics of a

Numbers in brackets refer to references listed in the Bibliography.

viscous fluid, relating the chenomena to a von-Karman vortex street, where the vortices take spacings of optimum stability depending on the geometry of the system. G. B. Brown [7] takes strong exception to this hypothesis, favoring instead the theory that a compression wave travels back from the edge at acoustic velocity and triggers succeeding vortices. In a recent paper, W. L. Nyborg [8] presents a theory based on an equation of motion for the self maintained oscillations of a jet in a jet-edge system. Without attempting to justify their origin, transverse forces are assumed which act on each particle of the jet. Then the dynamical law for a particle traveling along the jet is cast in the form of a non-linear integral equation. After certain simplifying assumptions, solutions are obtained which predict the configuration of the jet with time and the frequency of oscillations.

All known previous work in this field has dealt with the effect on a thin jet flow encountering some wedge shape.

The objective of this investigation was to study the effects on a uniform flow over a flat plate which has a discontinuity in the form of a slot exposing a finite size cavity.

It was expected the effects which are produced are similar to those of jet flow, namely, the mixing of the flow and possible generation of periodic vorticies.

The independent variables influencing the fluid motion which were investigated included velocity of the stream, length of slot and size of cavity.

2. Description of Apparatus

The apparatus for description purposes can be divided into six sections (Figure 3): 1) the entrance section, 2) the tunnel, 3) the test section, 4) the tank, 5) the diffuser section, and 6) the blower.

The entrance section which was covered by two 1' ind; screens wit 2^{1} " separation, reduced the area from 34" x 25" to 6" x 10" following the countour of the Borda Moutupiece [11]. Overall length of the entrance section was 23^{1}_{1} ". Joints, seams, and arregularities were filled with modeling clay.

Following the entrance was the tunnel of 8" x 10" pross-section and 9⁻ feet length.

The test section consisted of the first 13" of the turnel over the tank (Figure 4). Sides were made of clear plastic to permit observation and photography. The bottom was a flat plate with a square edge of 0.1" thickness which was free to slide in the grooved plastic sides forming a variable slot across the tunnel over the tank. The leading edge of lip of the slot had a series of five pressure taps across the turnel. In the top of the turnel over the test section was a micrometer arrangement for raising and lowering various types of pressure probes, and a rubber seal permitted longitudinal traversing the first 8" of the test section.

'A tank, 8" wide, 17" long, and 48" deep, was located below the test section. Provision was made for filling the tank with water to vary the volume of the air space in the tank. A glass tube, connected to both top and bottom of the tank, permitted measurement of the air space in the tank. A series of taps every 4" down one side of the tank were installed in order to probe the sound pressure distribution in the tank with a

Experimental Apparatus - Overall View

prope microph me.

Followin; the tunnel was a diffuser section, which went from the 3" x 10" tunnel cross-section to a 24" discular cross-section in 40" of length. This amounted to a diffuser angle of about 25°. During early tests on the set-up, it was found that separation was convering in the diffuser, causing surging in the tunnel velocit at the test section. To suppress the separation and eliminate the surging, vortex generators were installed in the diffuser section. These consisted of three rings made of greenfield electrical conduit. They were installed at points 3", 10", and 28" from the diffuser entralce by wiring the rings to rods placed diametrically in the diffuser. Clearance between the outer diameter of the rings and the sides of the diffuser averaged from 1° to 2". The diffuser was joined to the blower by a canvas ring.

contrifugal lower rated at 5000 c.f.m. WH 5" of water at 1801 r.s.m. was set to pull air through the tunnel. The air flow was controlled with a sliding canel choke on the clower exhaust and permitted velocities at the test section from 10.2 ft/sec to 132 ft/sec. The blower was driven by a 220 volt, 3 phase, 51.s.motor.

Lanoke promator, for visual operation, was constructed and as finally sed consisted of a combustion of amber made of a 2" steel pipe, ""lon, will sat over a settling commender made from a large coffee can (finder). To top of the number was plugged with a corb bured to take a 10" upp from a needly value which controlled the flow operator is to the number of a level value which controlled the flow protection to the number of a level of the settling composimatols """loc operator is the first the top of the settling comment to the entropy is the translew of the settling comments

e -

the Lorners. The most satisfactory source of smoke was obtained from paper rolled tightly and wadded into the combustion chamber.

3. Instrumentation

Velocities were calculated from the pressure differential between a total head probe in the test section and the static taps immediately ahead of the slot, and were taken to be the velocity at the probe. Comparison of this method with a pitot-static probe gave substantially the same results.

Probes were largely made in the laboratory by soldering together concentric brass tubing. Barrels were made of $\frac{1}{4}$ stock with tips of various size.

When taking velocity profiles, particularly when probing the mixing region, a micromanometer manufactured by the Flow Corp. of Cambridge, Mass. Type MM-2, was used to measure the pressure differential with graduations to .001" of water. In all other cases an ordinary oil filled manometer graduated to .01" of water up to 3" and to 0.1" above that was used.

The probe position was measured vertically with the micrometer arrangement on the top of the test section to .001" and horizontally with a graduated scale to .03".

Slot length were measured on a graduate scale to .03" and the height of water in the tank was measured similarly to 0.1".

The pickup of the generated tones was accomplished using an Altec ER 180 condenser microphone with a 3 3/16" probe, 1/13" I.D., located in the tank 4" below the slot.

The frequency was measured to one cycle with a Model 521C frequency counter and by comparison with a Model 200B audio oscillator calibrated with the counter, both manufactured by the Hewlett Packard Instrument Co. of Palo Alto, California. The amplitude of the tones were measured with a Model 400A vacuum tube volt meter and a Model 130 calibrated oscillos-

cope to .05 volts both also manufactured by the Hewlett Packard Instrument Co. Wave shapes were observed on the oscilloscope. Photographs were made with a 35mm camera and lighting was obtained from a Strobolux, Type 648A, and a Strobotac, Type 631B manufactured by the General Radio Company of Cambridge, Mass. with which visual observation could also be made.

A mercury barometer and thermometer located within 10 feet of the entrance section provided data on local atmospheric conditions.

4. Experimental Procedure

The experimental work was divided into two phases. Phase 1 was devoted to obtaining the flow characteristics of the system: velocity profiles, boundaries of the mixing region, nature of the vorticities and initial boundary layer thickness. In phase 2, the overall relationship of the various system parameters to the oscillitory motion was obtained.

Phase 1

Depending on the circumstances the type probe was selected first, and inserted in the micrometer device over the test section through the entrance section by removing the screens. After aligning the probe by eye at the lip of the slot, the screens were replaced, the blower was turned on and permitted to come up to speed. Slot length was set and velocity was adjusted to some desired value with the choke on the blower exhaust. All runs in phase 1 were conducted with the tank at maximum volume. After the micrometer device had been set to some selected position in the horizontal direction, the probe was then lowered, recording vertical probe position and pressure differential. Profiles were obtained both with and without oscillitory motion.

In addition to complete profiles, runs were conducted to determine as accurately as possible the disposition of the lower boundary in the mixing region. In these runs only the lower part of the mixing region was probed with a total head probe. When there was no oscillation of the flow a minimum pressure differential was taken as the boundary and with oscillation a zero reading on the micromanometer was taken as the boundary.

Measurements of the initial boundary layer thickness were made with a boundary layer probe at the lip of the slot. These measurements were made with the slot both opened and closed.

Photographs of flowwere also taken during this phase. Due to limitations of the frequency range of the Strobolux (233 c.p.s. max.) pictures were obtainable only for the low frequency vortex formation.

Phase 2

These runs were made observing velocity, slot length, tank height, frequency, and acoustic overpressure. Various runs were made holding one or more of these system parameters constant and adjusting the remaining parameters until maximum sound pressure was obtained.

It became apparent that the tank did not amplify all frequencies equally. In order to evaluate the magnitude of the amplification, the acoustical quality of the tank as a resonator was determined over the frequency range by driving the tank with a loudspeaker located in the tunnel over the slot and measuring the sound pressure in the tank. Readings were taken at the resonant frequency and frequencies on either side of resonance at which the sound pressure was 0.707 of the resonant value for reasons to be discussed later.

5. Theory

As noted before, all known previous experimental work in this field has dealt with a jet-edge configuration. The same may be said about all known theoretical analyses except where comparison has been made to the Karman vortex street behind a cylinder. While there is no close physical resemblance between the present system and a jet-edge, the basic requirements exist. There is a union of two fluid streams of different velocity with a resulting surface of discontinuity, and a thin edge-like obstacle in the path of the mixing fluid. It was expected, therefore, that the present system was a modification of the jet-edge.

Considering first the problem of the mixing fluid which follows the breakdown of the surface of discontinuity, a solution for the velocity profile is presented by Schlichting, [9] who treats it as a problem of non-steady parallel flow.

At time t_0 , U_1 and U_2 unite at y = 0(Figure 6). The situation is unstable and turbulance smoothes out the transition so that at any time after t_0 the velocity is continuous and in the mixing zone u = u (y,t) and v = 0(Figure 7).

Substitution of Prandtl's mixing length

$$\varepsilon = \ell^2 \left| \frac{\partial u}{\partial y} \right|^2 \frac{\partial u}{\partial y}$$
 1

in the two dimensional laminar incompressible boundary layer equations,

$$\frac{\partial u}{\partial t} + \lambda \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{1}{\rho} \frac{\partial \tilde{v}}{\partial y}; \quad \frac{\partial u}{\partial \tilde{x}} + \frac{\partial v}{\partial y} = 0 \quad 2$$

yields
$$\frac{\partial u}{\partial t} = l^2 \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial y^2}$$
 3.

Assuming similar velocity profiles, then $u = f(\eta)$, where $\eta = y/b$; a non-dimensional profile parameter and b, the half width of the mixing zone at time t after t_o, is proportional to t. This gives

$$b = Bt; \eta = y/b = y/Bt$$
 4.

The velocity is then assumed to be of the form

$$u = \frac{1}{2}(U_1 \neq U_2) \neq \frac{1}{2}(U_1 \neq U_3)\psi(\eta) \qquad 5.$$

where $\psi(\gamma)$ is a nondimensional stream function satisfying the continuity equation. The boundary conditions imposed are, $\psi = \zeta 1$ at $\eta = \zeta 1$. Substituting these in 3., yields

$$\eta \frac{\partial \psi}{\partial \eta} + \frac{BC}{B} \frac{\partial \psi}{\partial \eta} \frac{\partial^2 \psi}{\partial \eta^2} = 0 \qquad 6$$

where it is assumed $\beta = \frac{1}{2}b = (an empirical constant), and <math>C = \frac{1}{2}(U_1 - U_2)$. Eliminating the trivial solution $\frac{\partial \psi}{\partial \eta} = 0$, i.e., $\psi = (a \text{ constant})$, which represents constant velocity, and dividing by $\frac{\partial \psi}{\partial \eta}$ leaves

$$\eta + \frac{BC}{B} \frac{\partial^2 \psi}{\partial \eta^2} = 0 \qquad 7.$$

Integrating gives

$$\psi = C_1 \eta^3 + C_2 \eta \qquad 8.$$

The boundary conditions $\psi(0) = 0$ and $\frac{2\mu}{2\eta}$ $(\pm i) = 0$, determine the constants $C_1 = -\frac{1}{2}$ and $C_2 = \frac{3}{2}$. The velocity profile is then

$$u(y,t) = \frac{1}{2}(U_1 \neq U_2) \neq \frac{1}{2}(U_1 - U_2) \begin{bmatrix} \frac{3}{2} (\frac{V}{b}) & -\frac{1}{2} (\frac{V}{b})^3 \\ b = \frac{3}{2} \beta^2 (U_1 - U_2)t \end{bmatrix}$$
9.

where

It may also be shown that t is proportional to x and, therefore, b = (a constant) x.

Prandtl [2] has experimentally verified this, but in the region of no vortex formation, he has found that the same value of b, the half width, does not hold for both the upper and lower boundary of the mixing region. His results indicate that

 $b_1/x = 0.125$ and $b_2/x = 0.100$

Velocity profiles showing an inflection point of the type given by equation 9. lead to the formation of vortices. Prandtl has found experimentally that these vortices travel downstream with a velocity equal to approximately $1/2(U_1 \neq U_2)$. If the shedding of vortices is periodic, they will form at some frequency f, number of vortices per second, and the spacing between any two successive vortices will be $\frac{U_1 \neq U_2}{2f}$. If it is assumed that a new vortex forms at the lip of the slot as the center of the previous vortex reaches the plate and that each vortex travels in a straight course across the slot then

$$L = \frac{(U_1 \neq U_2)}{2f}$$

putting U2, the velocity in the tank, equal to zero and rearranging gives

$$\frac{fL}{U} = \frac{1}{2}$$
 11.

Equation 11. does not take into consideration the possibility of more than one vortex present at any time, and it is a well known fact in the jet-edge phenomena that as many as four stages are possible. [7] Accordingly, assuming the vortices will space themselves equidistantly, 11. is modified $\frac{fL}{Un} = 1/2$

or $\operatorname{Str}_n = \frac{\operatorname{fL}}{U} = \frac{\operatorname{n}}{2}$ 12. where n = 1, 2, 3 ..., is the stage number of vortex formation and corresponds to the number of vortices present at any instant, and the dimensionless ratio fL/U is defined as the Strouhal Number (Str).

For the jet-edge, by a different approach, Nyborg [8] has obtained

$$f \int_{0}^{L} dx/u'(x) = \frac{\left[k(k \neq 1)\right]^{\frac{1}{2}}}{2}$$
 13.

where $k = 1, 3, 5, \ldots$ which correspond to stages 1, 2, 3, ... respectively, and where u(x) corresponds to the vortex velocity.

If a constant average value of $\frac{1}{2}U$ is substituted in 13. for u'(x) and the integration performed, then

$$Str = fL/U = \frac{\left[k(k \neq 1)\right]^{\frac{1}{2}}}{4}$$
14.

Also for the jet-edge, Brown [7] has obtained empirically, where U >> 1.3 ft/sec and L << 5.6",

$$Str = fL/U = .466j$$
 15.

where j = 1, 2.3, 3.8, 5.4 for stages 1, 2, 3, 4 respectively.

Table 1 shows the values of Str_n for the first three stages as obtained using equations 12, 14, and 15.

eqn/ n	1	2	3
12	•500	1.000	1.500
14	•354	.86 6	1.370
15	•466	1.07	1.77

Table 1 - Str by various methods

It was assumed above that the periodic shedding of vortices would take place. The periodic nature of the phenomena implies an element of

feedback, i.e., a given vortex influences the next succeeding vortex. [8] This influence is exerted in the form of the acoustic overpressure. In the present system the route of the feedback is through the tank which is fundamentally a resonator.

Analytical attempts to introduce the influence of the cavity were unsuccessful since the nature of the coupling and feedback mechanism is not completely understood either by the author or others [5, 6, 7, 8] . Thus a dimensional analysis approach was undertaken to determine some parameter which accounts for this phenomena. Of the parameters investigated, that of the power ratio, Z, proved to be the most useful. The power ratio is defined as $Z = \frac{pafL}{2\rho U^3}$ and is effectively the ratio of the power output of the cavity per unit area of the slot, to the power input from the stream per unit, area of the slot. The power ratio parameter also being the product of pressure coefficient and Strouhal numbers was thus used to replace the pressure coefficient as a correlating parameter. The other non-dimensional quantities besides the Strouhal number which evolve are the Reynolds number and acoustical quality, Q. The acoustical quality being a parameter which characterizes the acoustical behavior of a resonator with its resonant frequencies.

An acoustical resonator will have two methods of vibration. First by establishing standing waves of pressure distribution with regularly spaced nodes and anti-nodes, and second by what is termed $Helmholt_z$ vibration where the entire volume of air is compressed simultaneously. [10]

In the first method, the resonant frequencies for a rectangular volume are given by a solution to the wave equation when appropriate boundary conditions are substituted.

*

Then from Kinsler and Frey [10]

$$f = c/2 \left[\left(\frac{m_1}{h}\right)^2 \neq \left(\frac{m_2}{d}\right)^2 \neq \left(\frac{m_3}{w}\right)^2 \right]^{\frac{1}{2}}$$
16.

where c is the velocity of sound, and

 $m_1 = 0, 1, 2, 3, \dots$ $m_2 = 0, 1, 2, 3, \dots$ $m_3 = 0, 1, 2, 3, \dots$

are the mode numbers for the tank, and h, d, and w are the tank height, length, and width, respectively. The curves in figure 8 show f vs 1/hfor various modes. The numbers in parentheses indicate (m_1, m_2) with $m_3 = 0$.

In the Helmholtz method, there is a single mode of vibration and the parameters of the system may be considered lumped. The resonant frequency is given by [10]

$$f = \frac{c}{2\pi} \sqrt{\frac{A}{GV}}$$
17.

where c is the velocity of sound, A is the area of the opening in the resonator and V its volume. G is the effective length of the opening, depending on its configuration, and must be determined empirically in most cases.

An acoustical resonator is analogous to an inductance-capacitance electrical circuit. It offers a high impedance to the resonant frequency amplifying it, and a low impedance to all other frequencies, suppressing them. In both methods of vibration the acoustical quality, Q, is a measure of the acoustic impedance, and hence the amplification of the resonator.[10] Q is now defined as

$$Q = \frac{f_0}{f_1 - f_2}$$
 18.

where f_0 is the resonant frequency and f_1 and f_2 are the frequencies above and below resonance at which the average power is half the resonant value; and the resonant frequency for a rigid system being determined by the wave equation or Helmholtz relation. For a non-rigid system other variables such as materials, type of construction, and power of driving also influence the system, and the frequencies must be empirically determined. Since acoustical power [10] is proportional to p_a^2 then at the half power points $p_{a1} = p_{a2} = 0.707 p_{a0}$.

6. Experimental Results

Experimental data are tabulated in Appendix I, and also presented in graphical form in Appendix II.

Data for phase 1 show the observed values of pressure differential, probe position in the horizontal and vertical directions, and the calculated values of velocity, velocity ratio, and position ratios.

Data from the runs for <u>phase 2</u> show the observed values of frequency, slot length, tank height, pressure differential, and the voltage output of the microphone. The calculated values shown are velocity of the central stream, reciprocal of the tank height, acoustic overpressure, and the calculated dimensionless ratios: Reynold's Number, Strouhal Number, pressure coefficient, and the power ratio.

Other tabulations include the data for the calibration of the microphone, acoustical quality and resonant frequency of the tank when driven with a loudspeaker.

Included in Appendix III are a series of photographs showing the vortex formations in the slot.

7. Sources of Error

Principle sources of error in the present system lie in the inherent uncertainties in the measurements of the observed values. Based on the accuracy of the instrumentation, maximum uncertainty or uncertainty at the point of most interest for the various values is tabulated below.

Ta	ble	2	-	Per	cent	Unce	rta	inty

Quantity	#% Uncertainty
Pressure differential	4.5
Slot length	4.0
Tank height	1.0
Frequency	1.5
Voltage output of microphone	2.0
Probe position, x and y	3.0, 2.0
Velocity	2.5
Acoustic overpressure	5.0
Acoustical quality	20.0
Reynold's number	5.0
Strouhal number	5.0
Pressure coefficient	7.0
Re/Str	5.0
Power Ratio	10.0

These are the maximum uncertainties and in general improve with increasing magnitude of the quantity. Two exceptions of note are the voltage output of the microphone and the acoustical quality of the tank.

The accuracy of the vacuum tube volt meter was such that with the changing of scales approximately the same per cent uncertainty was maintained. As for the acoustical quality, the uncertainty increases with increasing magnitude, since the peaks in the resonance curve become sharper and the difference in frequency at the half power points smaller. Accordingly, the uncertainty listed above is for a high acoustical quality.

The foregoing estimate of uncertainty is based on the accuracy of the instrumentation and is in agreement with the reproducibility of results.

Other sources of error could arise from misalignment of the pressure probes, and the fact that the microphone was not located at a pressure maximum in the tank.

X

,

.

8. Discussion of Results

Phase 1

As seen in figure 10 the velocity profiles obtained without oscillation are similar, and in figure 11 the boundaries of the mixing zone vary linearly with x when removed from the influence of the initial boundary layer. The upper and lower slopes of the mixing zone,

 $b_1/x = 0.066$ and $b_2/x = 0.191$,

are not in agreement with the values, $b_1/x = 0.125$ and $b_2/x = 0.100$, given by Prandtl [2]. It is also obvious equation 9. does not describe the velocity profile observed in this system. This is due to the fact that equation 9. does not consider the initial boundary layer in the stream of the actual flow and also because equation 9. assumes a mixing zone symmetric with the horizontal axis.

When the stream oscillates the situation is completely changed. $v \neq 0$, the slopes of the mixing zone are no longer linear functions of x, and while velocity profiles retain the same general shape they are not similar (Figure 13), Figure 12 shows the lower boundary of the mixing zone with a construction for the assumed path a vortex would travel in traversing the slot assuming the diameter of the vortex increases linearly with x. This general pattern of travel was observed visually, and may be seen in the sequence of photographs in Appendix III, namely that the vortices do not travel straight across the slot but rather dip below the horizontal, and from figure 13 it will be seen that the average vortex velocity is more like 0.6U instead of $\frac{1}{2}$ U as was assumed in obtaining equations 12 and 14.

Figure 14 shows the variation of the initial boundary layer thickness

with velocity with the slot both opened and closed. In taking the data for the figure it was observed that while there was a relatively large drop in the initial boundary layer thickness when the slot was opened by even a small amount, increasing the opening did not appreciably affect it further.

The sharp increase in thickness with velocity is due to transition from a laminar to a turbulent boundary layer with the transition point passing the lip of the slot at about 25 ft/sec and moving upstream with increasing velocity.

Previous investigators of the jet-edge have all noted that there is a minimum edge distance inside which there will be no stage of oscillation. Benton [5] gives empirically as a limiting value with increasing velocity

L_{min} = 1.22s

where s is the narrow dimension for the jet. In the present system if the initial boundary layer thickness, b_0 , is substituted for s by taking some point where the curve has flattened out, about 100 ft/sec, then

L_{min} = 0.58 in.

It was found in this investigation that the minimum value obtained for L for various velocities above 50 ft/sec is about 0.6 ins. No other attempts to study the influence of the boundary layer were undertaken as the entrance section was designed to keep the boundary layer small and minimize its effects.

Phase 2

Examination of figure 15 shows that the Strouhal number falls into three discreet bands with average values of 0.40, 0.95, and 1.50. These represent the stages of vortex formation for n = 1, 2, 3 and fall within

the range of values given in table I, page 10. As the stage number increases the stability of vortex formation and value of the pressure coefficient, C_p, decreases. Brown [7] has reported a fourth stage for jets, but higher stages were not observed in the present system.

It was indicated earlier, a very intimate coupling exists between the stream-slot and the tank, and whereas, the tank is not the source of oscillations, it does amplify them and the amplification is very selective. In fact, the net result of the above is that the stream-slot is able to oscillate only at the resonant frequency of the tank or not at all.

It has also been shown that the resonant frequency of the tank is dependent on its dimensions and its Q is highly dependent on the materials, type of construction, and the amplitude of the driving source.

In figure 8, f vs 1/h for the tank is compared with curves predicted by equation 16. for standing waves, and with points obtained by driving the tank with a loudspeaker and the stream-slot. It will be noted that there is a larger offset for those points obtained when driving the tank with the stream-slot. It is considered that this is caused by the change in effective volume of the tank created by the vortices.

Figure 9 shows f vs 1/h for the Helmholtz method of vibration. The curve shown was determined experimentally.

Figure 16 shows Q for the tank in mode (1,0) for standing waves as determined by using a loudspeaker, and C_p for stage 1 of the stream-slot at constant velocity over the same range of frequency. In addition to the large uncertainty in determining Q, it was not possible to drive the tank at the same amplitude with the loudspeaker as with the stream-slot.

The wide variation of Q suggests some other form of acoustical

contribution, possibly from the tunnel or inlet section which have resonating shapes also. However, it is evident that the correlation between Q and C_p is such that a maximum C_p will occur at points of maximum Q, when the tank vibrates in the standing wave method.

With the tank vibrating in the Helmholtz method, a maximum Q of 15 was found at 53 cyc/sec using a loudspeaker but when driving the tank with the stream-slot in stage 1 a maximum C_p of 3.11 was observed at about 65 cyc/sec for the same velocity as in figure 16. This again points out the shift in frequency caused by the vortices changing the effective volume of the tank and also indicates, despite the low Q as compared with that for standing waves, that the action of the Helmholtz method is such as the cause greater acoustic overpressures.

It has been shown that the relative magnitude of the Str determines the stare of vortex formation and that Q is the factor which correlates C_p for different frequencies in a given mode of standing wave vibration for the tank. The various variables are now combined in a single plot of C_pStr/Q or Z/Q vs Re/Str (Figure 17). In figure 17 a series of runs was made in which points of maximum Q were sought at 65, 300, and 425 cyc/sec. In obtaining these points velocity and slot length were varied, and tank height was adjusted for maximum acoustic overpressure. Thus frequency was not constant but varied over a small range, accordingly it was assumed that Q remained constant where maximum acoustic overpressure was obtained, and that the shift in frequency was due to the change in effective volume of the tank.

From figure 17, it is evident that Z/4 has a maximum at about Re/Str **2.5** x 10⁵ for all states and frequencies, and that at this maximum the

• 1

value of Z/Q is the same for all stages of vortex formation for a given method of vibration of the tank. The action of the Helmholtz method in causing greater acoustic overpressures is also clearly shown where in the present system the ratio of the maximums between the Helmholtz method and the standing wave method is about 10 to 1.

9. Conclusions

1. The uniform flow of a fluid over a flat plate having a discontinuity in the form of a slot exposing a finite size cavity is held to be a modification of the jet-edge.

2. The initial boundary layer thickness determines the minimum slot length at which the stream will oscillate regardless of any other conditions, and this minimum is of the same order of magnitude as the initial boundary layer thickness.

3. Within the range of parameters investigated the Strouhal number falls into three distinct bands with average values of approximately

Str = 0.40 for Stage 1 Str = 0.95 for Stage 2 Str = 1.50 for Stage 3

indicating the stage of oscillation of the stream, where in stage 1, one vortex is present. In stage 2, two vortices are present simultaneously, and stage 3, three vortices. Higher stages may be possible but in the present system these were not observed.

4. As the stage number increases the stability of vortex formation and the value of C_{p} decreases.

5. Oscillation is markedly affected by the presence of a resonator, in that a) the resonator will determine the frequency of oscillation if oscillation occurs, b) in the standing wave method the acoustic overpressure is directly proportional to the acoustical quality of the resonator, and c) when the resonator acts in the Helmholtz method its influence is such as to cause greater acoustic overpressures than the standing wave method even though Q is smaller.

6. The power ratio/acoustical quality, Z/Q, exhibits a maximum at Re/Str = 2.5 x 10⁵ for all states and modes of vibration of the tank.

7. At this maximum, Z/Q is the same for all stages of vortex formation for a given method of vibration of the tank.

8. In the present system the action of the Helmholtz method of vibration in causing greater acoustic overpressures is of the order of ten times that of the standing wave method at Re/Str = 2.5×10^5 .

10. Recommendations

4

There is still ample room in this field for both experimental and theoretical work. In the particular phase investigated here, it is recommended in future investigations that a more accurate means of determining the acoustical quality of the resonator be found.

BIBLIOGRAPHY

- 1. L. Prandtl, and O. G. Tietjens, Fundamentals of Hydro- and Aeromechanics, McGraw-Hill Book Company, 1934.
- 2. L. Prandtl, Essentials of Fluid Dynamics, Hafner Publishing Company, 1949.
- 3. G. Birkhoff and E. H. Zarantcnello, Jets, Wakes and Cavities, Academic Press, 1957.
- 4. A. Wood, Acoustics, Interscience Publishers, 1941.
- 5. W. E. Benton, On Edge Tones, Proceedings Physical Society, London, Vol. 38, Feb. 1926, pp. 109-126.
- E. G. Richardson, Edge Tones, Proceedings Physical Society, London, Vol. 43, July 1931, pp. 394-404.
- 7. G. B. Brown, The Vortex Motion Causing Edge Tones, Physical Society, London, Vol. 49, Sept. 1937, pp. 493-507.
- 8. W. L. Nyborg, Jet Edge Systems, Journal of the Acoustical Society of America, Vol. 26, March 1954, pp. 174-182.
- 9. H. Schlichting, Boundary Layer Theory, McGraw-Hill Book Company, 1955.
- L. F. Kinsler and A. R. Frey, Fundamentals of Acoustics, John Wiley & Sons, 1950.
- 11. V. L. Streeter, Fluid Dynamics, McGraw-Hill Book Company, 1948.
- L. Prandtl and O. G. Tietjens, Applied Hydro- and Aeromechanics, McGraw-Hill Book Company, 1934.
- 13. Shih-I Pai, Viscous Flow Theory, Vols. 1 and 2, D. Van Mostrand Company, 1956.
- 14. A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vols. 1 and 2, the Ronald Press, 1954.

APPENDIX I

Run Data

.

APPENDIX I

RUN DATA

Phase 1

Velocity profiles without oscillation

Run 101

 $T = 65^{\circ}F, P = 30.02^{"}Hg$

 $x = 0.00^{"}$, $L = 0.00^{"}$, x/L = .000, f = 0, $h = 47.5^{"}$

Total head probe 1/16" OD x 1/32" ID

У	y/b	Δ_{p}	u	u/U
in.	b 🖬 .500	"H20	'/sec	,
.045	。090	1.17	72.2	.785
.075	.150	1.42	79.6	.866
.100	.200	1.53	82.5	.898
.150	.300	1.71	87.3	.950
.200	.400	1.80	89.6	.975
.300	.600	1.86	91.0	.990
.400	.800	1.87	91.2	。993
. 500	1,000	1.89	91.8	1.000
.750		1.89	91.8	
1.000		1.89	91.8	
1.500		1.89	91.8	
2.00		1.89	91.8	
3.00		1.90	92.0	
4.00		1.89	91.8	
5.00		1.90	92.0	
6.00		1.90	92.0	
7.00		1.90	92.0	
8.00		1.89	91.8	
9.00		1.89	91.8	

Run 102

 $T = 67^{\circ}F, P = 29.98"Hg$

x = 0.00", L = 4.20", x/L = .000, f = 0, h = 47.5"

y in.	y/b t ₁ = .395 b ₂₌ .045	∆p "H ₂ 0	u '/sec	u/U
1.025		1.97	93.8	
.775		1.97	93.8	
•525		1.97	93.8	1.000

Run 102 (Continued)

i.

У	y/b	Δ_{p}	u	u/U
in.	b1 = .395 b2 = .045	"H20	"/sec	*
	2 -			
.425	1.078	1.97	93.8	1.000
.325	•823	1.96	93.5	.99 6
.225	.570	1.93	92.7	. 989
.175	.443	1.89	91.8	.979
.125	.316	1.82	90.0	.960
.100	• 2 5 3	1.77	88.8	.946
.075	.190	1.68	86.5	.923
.050	.127	1.57	83.6	.892
.025	.063	1.35	77.8	.830
.000	.000	1.02	67.4	.719
010	222	• 6 5	53.8	.574
025	555	• 24	32.8	.350
050	-1.110	01	0.0	.000

Run 103

 $T = 63^{\circ}F$, $P = 30.09^{"}Hg$

x = 1.00, L = 4.20", x/L = .238, f = 0, h = 47.5"

Total head probe 1/16" OD x 1/32" ID

y in.	y/b b ₁ =.400 b ₂ =.235	∆p "H ₂ 0	u !/sec	u/U
.750		2.00	9 3.5	1.000
.500		2.00	93.5	1.000
•400	1.000	2.00	93.5	1.000
.300	.750	1.98	93.1	•99 6
c 200	.500	1.94	92.1	.985
.150	.375	1.90	91.2	.975
.100	.250	1.84	89.8	. 960
.050	.125	1.67	85.5	.915
•0 2 5	.063	1.49	80.8	.865
.000	.000	1.25	74.0	.791
025	106	. 99	62.8	.672
050	212	.73	56.5	.605
075	318	.500	46.8	.500
100	425	.370	40.3	.431
125	531	.200	29.6	.317
150	637	,103	21.2	.227
175	744	.055	14.8	.158
200	850	.022	9.8	.102
225	955	.009	6.3	.067
250	-1.062	.004	4.2	.045

34

4

Run 103 (Continued)

T = $63^{\circ}F$, P = $30.09^{"}Hg$ x = 1.00, L = 4.20", x/L =.238, f = 0, h = 47.5" Total head probe 1/16" OD x 1/32" ID

y in.	y/b b1 =.400 b ₂ =.235	∆р "Н <mark>2</mark> 0	u Vsec	u/U
275		.003	3.6	.038
300		.002	2.9	.031
325		• 0 0 3	3.6	.038
350		• 004	4.2	.045

Run 104

 $T = 65^{\circ}F$, P = 30.11"Hg

x = 2.00", L = 4.20", x/L = .476, f = 0, h = 47.5"

y in.	y/b b ₁ =.450 b ₂ =.425	^p "H20	u '/sec	u/U
1.000		1.99	93.7	1.000
•750		1.99	93.7	1.000
.500	1.000	1.98	93.5	.997
•400	.890	1.98	93.4	.996
.300	.666	1.97	93.3	.995
.200	.445	1.93	92.4	.985
.150	.334	1.85	90.4	.965
°100	. 222	1.75	88.0	.940
.050	.111	1.54	82.5	. 880
.025	056	1.34	77.0	.821
.000	.000	1.17	71.9	. 76 7
050	118	.91	63.5	.678
100	235	• 65	53.6	.572
150	353	.41	42.6	.455
200	470	.240	32. 5	.347
250	588	.130	24.0	. 256
275	647	.090	19.9	.212
300	705	。05 9	16.1	.172
 325	765	.039	13.1	.140
350	824	.020	9.4	.100
375	882	.015	8.1	.086

Run 104 (Continued)

T = 65°F, P = 30.11"Hg x = 2.00", L = 4.20" x/L = .476, f = 0, h = 47.5" Total head probe 1/16" OD x 1/32" ID y y/b Δp u u/U in. b₁ = .450 "H₂0 '/sec

ada ti da 😈	b ₂ =.425	6w	,	
400	940	.011	7.0	.075
425	-1.000	.008	5.9	.063
450		.006	5.1	.054
475		.005	4.7	.050
500		.007	5.6	.060
525		.007	5.6	.060

Run 105

 $T = 67^{\circ}F$, P = 30.18"Hg

 $x = 3.00^{\circ}$, $L = 4.20^{\circ}$, x/L = .714, f = 0, $h = 47.5^{\circ}$

y in.	y/b b]=.520 b2=.625	∆p "H20	u '/sec	u/U
1.000		1.97	93.4	1.000
.750		1.97	93.4	1.000
.600		1.97	93.4	1.000
.500	.960	1.97	93.4	1.000
.400	.770	1.96	93.0	.996
.300	.576	1.91	91.8	.9 83
.200	.384	1.75	88.2	.945
.150	.2 88	1.63	84.8	•908
.100	.192	1.46	80.3	.860
.050	.096	1.21	73.0	.782
.000	.000	1.11	70.0	.750
050	080	.89	62.7	• 6 72
100	160	.71	56.0	.600
150	240	.53	48.4	.518
200	320	.39	41.5	.445
250	- •400	. 27	34.5	.371
300	480	.175	27.8	.298
350	560	.120	23.0	.246
400	640	.073	18.0	.193
475	760	•0 2 4	10.3	.110

Run 105 (Continued)

 $T = 67^{\circ}F, P = 30.18"Hg$

 $x = 3.00^{n}$, $L = 4.20^{n}$, x/L = .714, f = 0, $h = 47.5^{n}$

Total head probe 1/13" OD x 1/32" ID

y	y/b	Δp	v.	u/U
in.	b] ₩.520	"H_O	1/800	
	b2 =.625	4		
500		.016	8.4	.090
525	840	.012	7.3	.078
550	-,880	.009	6.3	°067
575	- 0920	,006	5.2	.056
600	960	.005	4.7	.05 0
650	-1.040	.006	5.2	,056
700		.007	5.6	。O6 O
750		.009	6.3	。067

Run 106

T = 62.5°F, P = 30.32"Ig

x = 4.05", L = 4.20", x/L = .965, f = 0, h = 47.5"

У	7/6	Δp	u	u/U
in.	bl =.590	"H20	*/sec	,
.020	.034	1.13	70.0	.756
.050	.085	1.21	72.5	.784
.100	.170	1.35	73.6	.829
.150	. 254	1.48	80.2	. 867
.200	.339	1.60	83.5	.902
.300	.508	1.78	88.0	.951
.400	. 578	1.89	90.5	.980
.450	.763	1.93	91.5	.989
.500	.848	1.94	91.9	.993
.550	·932	1.96	92.4	.998
.600	1.020	1.96	92.5	1.000
.700		1.97	92.5	1.000
1.000		1.97	92.5	1.000

Run 107

 $T = 67^{\circ}F, P = 30.31^{"}Hg$

x = 4.25", L = 4.20", x/L = 1.01, f = 0, h = 47.5"

Total head probe 1/16" OD x 1/32" ID

y in.	у/b bo =	Δp "H ₂ 0	u '/sec	u/U
1.000		1.97	93.0	1.000
.750		1.97	93.0	1.000
.600		1.96	92.6	•99 6
.500		1.93	92.0	•98 9
.400		1.83	89.5	.963
.300		1.70	86.3	.928
.200		1.50	81.1	.873
.150		1.39	78.1	•8 40
.100		1.24	73.7	.793
.050		1.10	69.5	.747
.025		1.00	66.3	.713
.020		.93	64.0	。68 9

Run 108

 $T = 61^{\circ}F$, P = 30.03"Hg

 $x = 0.00^{\circ}, L = 4.20^{\circ}, f = 0, h = 47.5^{\circ}$

Total head probe 1/16" OD x 1/32" ID

y in.	y/b b1 =.340 b2 =.045	▲ p "H ₂ 0	"/sec	u/U
。50 0		2.00	93.6	1.000
•400	1.027	2.00	93.6	1.000
.300	. 769	1.97	92.9	.993
.2 00	.513	1.92	91.7	.980
.150	.384	1.86	90.3	.965
.100	• 2 56	1.72	86.9	.929
•050	.128	1.49	80.9	.865
• 02 5	.064	1.27	74.5	.79 5
•000	.000	.76	57.8	.618
015	333	.59	50 .9	.544
025	555	.226	31.5	.337
030	667	.147	25.4	.272
~ •035	778	.038	12.9	.138
040	889	.009	6.3	.067
043	.955	.007	5.5	.059
045	-1.000	.000	0.0	.000
050		.001	2.1	.022

Lower Boundary Without Oscillation Run 109 Total head probe 1/32" OD x 1/64" ID, f = 0, h = 47.5" *Indicates lower boundary limit $T = 66^{\circ}F$, $P = 30.24^{\circ}Hg$, $L = 4.20^{\circ}$ $x = 0.50^{\circ}$, x/L = .119, $x = 1.00^{\circ}$, x/L = .238 $x = 1.50^{\circ}$, x/L = .357Ар "Н₂0 Δp y in. Δp У У "H20 in. "H20 in. .013 .040 -.200 -.250 -.100 .028 -.225 .007 -.270 .020 -.115 .014 -.235* -.120 .008 .006 -.280 .014 -.250 -.125 -.290 .003 .006 .012 -.130* .001 -.300 °009 -.135 .001 -.310 .007 ~.325* .004 -.350 .004 $x = 2.00^{\circ}$, x/L = .476 $x = 2.50^{\circ}$, x/L = .595 $x = 3.00^{\circ}$, x/L = .714

У	Δp	У	Δp	У	Δp
in.	"H ₂ 0	in.e	"H_20	in.	"H20
350	.017	400	.031	500	.025
370	.014	450	.013	550	.013
380	.011	465	.010	600	.009
390	•00 9	475	.008	- 。6 25 *	.008
400	.007	500*	.006	650	.008
425*	.006	550	.006	700	.008
450	.006				

 $x = 3.50^{\circ}, x/L = .833$

y in.	∆p "H ₂ 0
650	.016
700	.014
725*	.012
750	.012

Velocity Profiles with Oscillation

Run 110

 $T = 67^{\circ} F$, $P = 30.09^{n} Hg$

 $x = 1.00^{\circ}$, $L = 4.20^{\circ}$, x/L = .238, $f = 31.6 \, c_{yo}/sec. h = 47.5^{\circ}$

Total head probe 1/32" OD x 1/64" ID

y in.	y/b b1 =.600" b2 =.250"	△p "H20	u 1/sec	u/U
	07 = 0000	4		
.600	1.000	.220	31.0	1.000
.500	.833	.219	30.9	.994
.400	. 367	.218	30.8	.990
.350	.583	.216	30.7	. 988
.300	.500	.210	30 .2	.971
.250	. 427	.206	30 .0	≠ .965
.200	.192	.192	28.9	. 930
.150	.250	.176	27.5	.8 91
.100	.167	.161	2 6.5	.85 2
.05 0	.083	.133	24.1	.775
.000	.000	.115	22.4	.721
050	200	.088	19.5	.6 25
100	400	.057	15.7	.505
150	600	°0 5 3	11.2	.360
175	700	.019	9.1	. 292
200	- ,300	.011	6.9	· 222
225	900	.005	5.1	.164
230	920	.004	4.2	.135
240	- ,960	.002	2.9	。0 93
250	-1.000	.000	0.0	000 ه

Run 111

T = 63°F, P = 30.17"Hg

x = 2.00", L = 4.20", x/L = .476, f = 31.6 cyc/sec, h = 47.5"

Total head probe 1/32" OD x 1/64" ID

y in.	y/b b] =.600" b2 =.485"	"H <mark>2</mark> 0	"/sec	u/U
.600	1.000	.216	30.8	1.000
.500	.833	.211	30.4	.986
.400	.667	.193	29.1	,945
.300	.500	.169	27.2	.885

Run 111 (Continued)

 $T = 63^{\circ}F$, P = 30.17"Hg

x = 2.00", L = 4.20", x/L = .476, f = 31.6 cyc/sec, h = 47.5" Total head probe 1/32" OD x 1/64" ID

y in.	y/b b1 =.60C" b2 =.485"	∆p "H ₂ 0	u '/soo	u/U
.200	.333	.150	25.6	°852
.100	.167	.130	23.9	.776
.000	.000	.113	22.3	.725
100	206	.092	20.1	.653
200	412	.071	17.5	.571
300	618	.049	14.7	.478
400	⊶ ,82 5	.023	10.0	.325
-,450	~ ,928	.011	6.3	.208
475	980	.003	2.9	.097
485	-1.000	.000	0.0	.000

Lower Boundary with Oscillation

Run 112

Total head probe 1/32" OD x 1/64" ID, f = 31.6 cyc/sec, h = 47.5"

x in.		b2 in.	x/L	b ₂ /L
05.5		000		0.03
.050	160	。090	.119	021
1.00	-	.250	. 23 8	059
1.50	-	.380	.357	090
1.75		,460	.416	110
2.00		.485	.476	116
2.25	- 1967	.490	.535	117
2.50	123	.505	.595	120
2.75	302	.535	.655	127
3.00	- 1986	. 56 0	.714	133
3.50	240	.650	.833	- ,155

Determination of Initial Boundary

Run 113

 $T = 66^{\circ}F$, P = 30.02"Hg, Slot closed, Total head probe 1/32" OD x 1/64" ID

	U '/sec	b _o in.
•202 •537	30.0 48.0	•290

Run 113 (Continued)

T = 66°F, P = 30.02"Hr, Slot closed, Total bead probe 1/32" DD x 1/64" ID

[∽] p "H ₂ 0	∪ 1∕8 96	b _o .in
1.094	69.5	.550
2.19	96.3	.570
2.84	111.0	.580

Run 114

T = 65°F, P = 29.33"Hr, Slot open

Total lead probe 1/32" OD x 1/64" ID

Фр	U	b _o
"Н20	'/sec	.in
.140	25.0	.100
.562	50.0	.365
1.265	75.0	.450
2.25	100.0	.475

Phase 2

Runs is a loudspeaker

Run 224 Resmant frequency determination

1(in.)	f(orc/sec)
40	35, 96, 179, 197, 345, 408, 440, 503, 530, 647
30	20.4, 75.7, 104, 124, 234, 247, 408, 450, 473, 608, 685
24	21.5, 27.0, 51.7, 37, 42.4, 75, 119, 137, 290, 405, 500, 555
17.2	21, 29.3, 43.5, 52, 87, 128, 154, 400, 408, 570, 820
15	33.5, 48.5, 82, 101, 119, 156, 415, 470, 612
12	34, 45, 82, 105, 146, 184, 210, 392, 408, 567, 700
10	34, 46, 67, 82, 103, 114, 181, 211, 408, 440, 699, 830

Run 225 Q determination

fc	Δſ	Q	fc	∆ſ	Q
425.5	5.9	72	466.0	6.0	74
425.4	6.1	70	490.1	17.7	2 8
417.6	11.7	3 6	295.0	6.0	49
432.4	7.8	55	304.2	5.5	55
300.9	5.6	54	300.0	6.0	50
301.2	5.4	56	294.7	6.5	45
307.6	7.7	40	416.5	7.0	59
307.6	7.8	39	424.0	6.0	71
294.8	9.6	31	413.5	9.0	46
292.1	12.4	24	426.5	9.0	47
304.4	5.1	60	412.0	8.0	51
			53.0	3.5	15.2

Run 225 Calibration of Altec BR 180 Condenser Microphone

2			f		
oyc/sec	đb	psi/volt	070/800	đb	psi/volt
50	-77.2	°1025	3 30	-67.2	.0333
60	-77.0	.1027	340	-66.7	.0319
70	-76.7	.0991	350	-66.2	.0 29 6
85	-76.3	.0947	360	-65.9	• 02 86
115	-75 .9	.0905	370	-65.7	.0280
150	-75.1	.08 2 6	380	-65.6	.0276
200	~73.6	.0695	390	-66.1	.0293
240	-72.1	.0585	410	∞66.8	.0318
280	-70.0	.0459	430	-68 .2	.0373
300	-69.0	.0409	450	-6 9 .6	.0439
310	-68.3	.0378	470	-71.0	°0212
3 2 0	-67.8	03 57	500	-73.1	.0655

		Re/Str	1.183 \5	5.08\4	4.37\5	1.15\5	6.93\4	1.136\5	1.75\5	7.28\5	9.90\5	1.39\5	2.04 5	1.207\5	1.366\5	2.02\5	3.09\5	3.85\5	3.02\5	-	1.475\6		8°00\4	1.2665	1.44	2.10/2	1.87 \2	2.54 \D	2°20\5	2 52 V	2°22\5
		$c_{p_{1/2,oU}}^{Pa}$																													
		Strfl	.376		.417		• 985	.942			°506		•368	•970	•930		• 94 8	1.103	1.635	•452	•506		1.006	°414	•420	°368				463 318	.461
		Re JL	4.45/4	4 .91	1.825	4.73	6.82	1.07\5	1.62	3.32	5.01	6°35\4	7.50	1.17\5	1.27	2。04	2 . 93	4 . 25	4 . 93	5.65	7.47		8.05	5.24	6 .05	7.75	8 •05 E	1.12	2.10	1.17	1.025
		pe psi																													
		/h ft-1	.252	•252	.252	•252	.252	.252	.252	• 252	.252	. 252	.252	.252	• 252	.252	• 252	。252	252	。252	。252		.252	. 252	. 252	252	.252	.252	• 252	•252	• 252
		ft/sec 1/202 psi 1/h ft-1																													
			25	50	50	75	75	75	75	75	75	100	100	100	100	100	100	100	100	100	100		75	100	100	100	133	133		133	133
2 11 × 1	8 . Hg	Volts U																				3HnT									
1	а 11 11 11	ⁿ H20	.220	•642	. 642	0	•34	•34	•34	•34	•34	Ψ		0		2.33	0					= 29°8	3	2.39			4.05			4.05	4 . 05
010	65 F.	h(in)		•	0	47°5	•	•		•	0	0				0			0		•	57 ⁰ F P	0		47.5	8	0		0	•	47°5
I	18 E-4	L(in)	•	•		1.22	0				0	•	0				0	•	0	°	14.4	E4	2,01	6		1.4	1.13	ີ	0	9	1.36
Phase 2	Rum 201	f cyc/sec	32.7	3 05	35.4	303	513	308	200	50°5	35 °2	445	304	515	445	3 08	201	162	206	22	42	Run 202	450	505	445	304	608	445	515	445	510

 \sim

Phase 2 Run 201

														404	° 00053	107	1380	.1695	672	358	1095		142	234	204	047	026	098	205	.204
C	7													•	ر م	0	0	<u>م</u>	ດ ເ	ດເ	ດ ເ	ດດ	n i	i O	6					
D2 /04 2	Jac/en	1.85\ ⁵	2.10/5	2.60 \	3.52 5	2.10\5	2.57 2	3.25 5	3.1815	6.20 ²	1.7216		1.35 5	1.46 \2	1,165	1.258	1.270	1.291	1.360	1.48	1.497	1.154	1.207	1。250 \	1.266	1.27\5	1.197\5	1.223	1.233	1.257\5
d D	² <u>1</u> /2ρ0 ²													1.020	•011	•241	。383	. 393	1.645	.951	•294		•308	.526	•463	.107	• 056	.216	•454	•460
J. T. T.	1	•350	•394	•424	•380	. 961	.945	.985	1.58	1.023	.505		°417	•396	.479	.443	•439	•431	•409	.376	•372	•372 •483	•461	.445	.440	•439	•465	.455	.451	•443
D, DL	4	•48 14	8.26	1.10/5	1.34	2.02	2.43	3 .2 0	5°03	63 . 5	86 ° 6		5.63\4	5.574	5.57/4	5°57\4	5.57\4	5.57/4	5.574	5.57/4	5.57 4	4	5.5714	5.57.4	5.57*	5.5714	5.571	5.57	5.571	5.57
9 2 2	നാപ് പ്													°08 40	°0000	°0199	•0316	.0324	.1356	.0785	• 0242		.0254	.0434	• 0382	• 0088	。0046	°0179	•0374	•0379
A 4-1	N T T	•52	•52	•5 2	°52	°52	• 52	• 52	•52	.52	• 5 2		2.86	2.22	•92	•83	.857	。845	•795	.682	.635	.632	。550	4	.485	•465	•461	•484	•440	°430
At / con 1 Durdness 1 the	+ rod ada/r												.0825	。0825	.0825	• 08 2 5	.0825	.0825	° 08 25	.0825	• 08 2 5	。08 2 5	• 0825	8	.0825	.00255	0825 of the other of the other of the other othe	0825	•0825	• 08 2 5
Ħ	5	132	132	132	132	132	132	132	132	132	132		100	100	100	100	100	100	100	100	100		100	100	100	001-	100	100	100	100
= 29.91"Hg ∆p		0	0	0	0	0	0	0	0	0	0	30.02 ⁿ Hg	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
p.		4°00	4.00	4• 00	4.00	4.00	4.00	4.00	4°00	4.00	4°00	85 11 요	2.37	2.37	2.37	2.37	C2	2.375	2.37	2.37	20	23	2.37	2.375	2.3	2.3	2.37	2.37	2.37	2 31
66 ⁰ F h(1n)	/ *** / **	23										59°F	4°2	5.5	13.0	13 . 5	14.0	14.2	15.1	17.6	18.9	10.01	21.8	24.4	24.7	25 . 8	26.0	26.8	27.3	27.9
$m 203 T = 66^{0}F$	1117/17	°95	1.21	1.61	1.96	2.95	3.55 55	4°70	7.38	3°33	2	11 E-1	1.06	1.05	1,05	1.05	1.05	1.05	1.05	1,05	•	1•05	1°05	1°05	1.05	1.05	1.05	1.05	1.05	1.05
Run 203 f over /sec		585	515	417	307	518	420	333	340	174	63 I	Run 204	470	450	545	505		492	465	428	423	4 2 3 550				500	530	518	513	505

	Z	144 201 185 161		•1690
	2 Re/Str	1.294 ⁵ .144 1.312 ⁵ .201 1.325 ⁵ .185 1.335 ⁵ .181		1 1 1 1 1 1 1 1 2 0 2 0 2 0 1 1 2 0 1 1 2 0 1 0 2 0 1 0 2 0 0 0 0
	Cp Pa	•440 •440		• 404 • 438
	StrfL	.430 .424 .420 .417		•419 •419 •910 •910 •910 •414 •414 •420 •420 •420 •420 •420 •420 •420 •42
	Reul	5.57\4 5.57\4 5.57\4 5.57\4 5.57\4		4 4 990 4 4 990 4 4 990 5 10 5 1
	pa psi	•0276 •0400 •0363 •0318		• 0188 • 0204
	1∕h ft-1	•415 •399 •392 •372		•520 •516 •515 •512 •512 •499 •545 •546 •546 •545 •545 •545 •545 •545
	ts U ft/see $1/2 p_{D2} p_{D1} r_{p1}$	• 08 25 • 08 25 • 08 25 • 08 25		• 0466 • 0466 • 0466
	U ft/seo	100 100 100		75 75 1000 1000 1100 1100 1100 1100 1100
	Volts	•451 •640 •637 •584	30•01"Hg	• 530 • 530 • 530
	02H ⁿ 20	2°375 2°375 2°375 2°375 2°375	P = 30.	4 4 1 1 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
30 •02" Hg	h(in)	28 9 30 1 32 6	57 0 F	47. 23. 23. 23. 23. 24. 23. 23. 23. 23. 23. 23. 23. 23. 23. 23
P = 30.	L(in)	1.05 1.05 1.05	11 E-1	1.22 1.22 2.74 2.74 2.52 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.97 3.97 3.97 3.97 3.97 3.97 3.97 1.51 1.51 3.97 3.77
T = 59°F	f cyc/sec	490 483 480 475	Run 205	3 3 3 3 3 3 3 3 3 3 3 3 3 3

Run 204 (Continued)

re/Str	2.15/5	2.15/5	2.15\ ⁵	2.15\5	2,15/5	1.80\5	1.80\5	2°48\5	2.48\5		1.85\4	1.63	2.90\ ⁴	2.98 \4	2.22 ⁴	2 • 24 ^{\4}	1.64\4	1.66\4	6°60\4	4 • 75\4	6.52\4	6.41 ^{1,4}	7.06/4	9.12\ ⁴	1.475 3	7.73/4
Re $\frac{UL}{2}$ Str $\frac{fL}{U}$ $\frac{CP_{a}}{1/2}$ F	7.3014 .340		2.15\5 1.00				6.40\4 .356	• 22 \5 • 493	•22 ^{\5} •493		6.96 ³ 376	44\4 .885	2.72 ⁴ .940	1.45 \4 1.49	3,25/4 1,46	2.06\4 .918	2.20\4 1.34			€.10\4 .862	5.65\4 .866	.71 \4 1.516	1.16\5 1.640	.46\5 1.600	2.38/5 1.612	t.14\ ⁴ .535
p ₈ psi	.870	•870 S	.510	•440				2.92 1	• 765			• 75		20	•674 3	。674 S	. 681	• 681	• 681	• 681	•681	• 681	•681	. 681	.681	• 695
Volts U ft/sec 1/2psi 1/h ft-1	132	132	132	132	132	3	132	3	132	я Н	13.2	13.2	45	45	38.6	38 6	33 . 2	33 .2	66.2	66 . 2	66 . 2	65 ~2	69 . 5	79.2	101.	133.5
"HPO		•	4.1							P = 29 •78 [#] Hg	•11	- famil	•530	S.	4	•420	.320	3	.950	S	.950	S	-	5		•
h(in)	•	•	23.5		0	•	e			58 0 F	0		6.2	2.	2	2.	0	-	-	5	7.	·	2.	-	7.	•
L(in)		0	3 .05	0	0	0	0		1.73	11 E-1	66°		1.13	e					•74			•	3°11	•		0
f cyc/sec L(in) h(in)	520	520	5 20	520	520	620	620		450	Run 206	60	68 5	-	435	430	4 25	430	426	425	590	430	437	439	440	442	946

ł

2

P = 30.01"Hg

Run 205 (Continued) $T = 57^{OF}$

	2	•0985 •130 •202		•274 •0461	.0627	•0945 266	• 335	1.62	•468	.563	•0695	.0527	• 265		• 680 • 448		
	Re/Str	2_04\5 6_35\4 1_02\5		5.15\4 6.19\4		1.36/5		- Proof			1.58	3.22	2.02 ³		1.224\5 1.73\5 2.00\5		5.35\4 2.30\5 3.60\4
	Spa 21/2112	202 083 207		。29 8 。0436	•0647	•0995	009°	3.55	•489	1.45	1°835	.128	• 690		1.63 1.075		
	StrfI	.488 1.568 .975		.919 .985	•970	,950 ,46	068°	。455	.958	•388	•379	•412	•384	~	-417 -441 -381		•984 •329 •433
		9 .95\4 9 .95\4 9.95 \4		4.73\4 6.10\4	7.7014	1.29\ ^U 7. 16\ 5	5.30/4	1,27\5	5.71 4	1.84\2	6.00\4	1.325 ³⁰	7°73\4		5°10\4 7°64\4		5.25 ⁴ 7.58 ⁴ 1.56 ⁴
	Pa psi Reul	•00920 •00378 •0094		•0108 00176		• 00360			•0177	•0525	°00143	10	• 0975		•0143 •00945		
	1/h ft-1	2.93 .915 .565		• 300	• 300	• 300	2.26	• 682	.682	•476	• 765	• 296	.460		。480 。375	2	•274 •731 •715
	$ft/sec \ l/c_{pU}^2 psi \ l/h \ ft^{-1}$	•0455 •0455 •0455		•0362 •0362	•0362	.0362	• 03 62	。0362	.0362	.0362	• 0078	• 0078	.141		•0088 •0088		
	U ft/sec	75 75 75		66 .0 66 .0	63.0	66.0 66.0	66 ° 0	66.0	66.0	66.0	2 5 • 0	22 ° 0	133 • 5		3 3 3 3 2 3 3 2 5)	66 5 0
29.82"Hg	Volts	.1195 .0398 .303	50.17"Hg	•120 •040	• 080	。053 29.5	• 425	1.285	•478	• 504	.143	•109	2.12	30.16"Hg	•138 •090	1 4	
ь Б	"ÅP0	1.335 1.335 1.335	P = 50	1.085 1.085	1.085	1.085	1.085	1.085	1.085	1.085	• 224	• 224	4°0	P = 30	.320 .320	P = 30	1.055 .635 .355
65°F	L(in) h(in)	4.1 13.1 21.2	58 F	40°0	40.0	40.0	5°0°	17.6	17°6	25.2	15.7	40°5	26.1	68 0 F	25 32 44	66 0 F	43.7 16.4 16.8
11 E-1		2.56 2.56 2.56	H E-	1.73 1.73		3.65	ំហំ	•	1.62	5° 2	1.70	° 7	2.19	11 E-1	2°0 4°5		1.50 2.90
Run 207	f cyc/sec	171 550 342	Run 208	54 3 450	352	2 06 3.6	468	68	430	57	67	33	280	Run 209	55 55 33 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5	Run 210	5 2 0 68 4 32

	2						• 204	• 284	•1115	.218	.175	.275	•190	.166	.114	.119		°1800	.1265	.184	• 227	.121	•188
	Rø/Str	3.27 4	1.37\5	1.95 ²	2.26\2		7.65\4	8.25\4_	1.008	1.06\5	1,11,5	1.18 5	1.305	1.57\5	7.95/4	8.4914		7.75/4	7.96	8°14 *	8.38	1.005	1.061
	6 ^{Pa} ,72 ^{JJ} 2	•					• 648	• 700	.262	•520	•423	.670	•465	•384	• 291	• 289		•510	•321	•456	• 552	• 282	•448
	Str <mark>fL</mark>	1°530 •426	1.030	.513	•443		.315	•406	.425	.420	.415	.410	•409	•433	•392	.412		.353	•394	•404	.411	•429	•421
	Reut	5 •00 4 6•10 4					2.41 4		4.28 4		4.59 4							2.74 4					4.47 4
	pa psi						°0 294	.0318	.0119	.0236	.0192	•0304	.0211	.0174	.0132	.0131		.0240	°0151	.0215	.0260	.0133	.0211
		2•00 2•00	1°28	1.28	.863		•789	.714	• 605	.574	.543	• 508	.451	.371	°759	• 6 59		• 786	•758	。740	.710	• 605	•574
Hg	U ft/sec $1/2\rho U^2 psi 1/h$ ft ⁻¹						•0454	• 0454	•0454	• 0454	• 0454	• 0454	• 0454	• 0454	• 0454	• 0454		•0471	°0471	•0471	•0471	•0471	. 0471
$P = 30.14^{n}H_{g}$	U ft/sec	20 20	50	50	50		75.6	75.6	75.6	75.6	75.6	75.6	75.6	75.6	75.6	75.6		75 ° 6	75.6	75°6	75.6	75°6	75.6
660F F	Volts					30 . 34 ⁿ Hg	• 60	• 86	.41	• 73	•54	.77	•43	• 28	• 31	•39	•33"Hg	•51	•35	• 55	°72	•35	. 65
T = 66	^∆ P "H_20	• 635 • 635	. 635	.635	.635	P = 30	• 33	•33	•33	•33	1.335	• 33	.33	• 33	•33	1.335	P = 30	• 33 30	•38	1.385	• 38	3	l.385
		0°9	9.4	9.4	13.9	66 0 F	15.2		19.8		22.1			32°3	0	18 .2	65 0 F	15.25	15.8	16.2	16.9	19.8	20°9
(Cont in	L(in)	1 .92 2 . 30	4.	3.85	000	=		•86	1.10	1.14	1.18	1.24	53	1.74	•80	• 90	H	•70	•80	. 84	. 88	1.10	1.14
Run 210 (Continued)	f cyc/sec $L(in) h(in)$	470	114	80	69	Run 211	461.5	427.2	354	335	3 20	301	271	226	445	416	Run 212	451	446	436	424	354	335

	2	°779	.794	•88₄	.839	.053	• 286	• 044	.050	.120	.140	.020	.975	.954	.821		• 079	.137	.178	. 220	.263	• 276	• 28 5	• 293	• 262
	Re/Str	3.98\4	4.85	7.09	٤ -	1.467\? 1	-1	2.54 1	- Frend		4.36 1	.83	6 .85		1°084\6		5°7914	7.85	1.043/5	1.243	1.595	2.08	2°48	2.88	3.72
	cpa pa	2.10	2.17	2 •68	2.44	3 .2 3	3.94	3.28	3.30	3.63	3.62	3.11	2.87	2 •88	2.04		1210	.312	•444	.573	.720	• 785	.810	.824	• 730
	trut	.371	•366	•330	•344	.326	•326	.318	•318	• 308	.315		. 340	. 331	•403	•		•438	.401	. 384	.365	•352	.352	.356	• 358
	Roul	1.48\4	1.77	2°34	3.41	4°78	6.53	8 .09	9.65	1.0845	1.375	1.584	2.33	2.47	4.37		2.59/4	3.44	4.19	4.77	5.82	7.33	8.74	1.025 ¹	1.335
	pa pai F	。0072		.0165		.0413	.0610	°07 2 9	• 0900	.1220	.1406		•1700	.1857	.1935		.00386	°00925	°07292	。0 2 70	.0436	.0019	.0762	.0905	.1038
	1/h ft-1	.826	•815	• 778	•754	• 745	.726	• 709	.713	. 685	. 685	.662	• 648	.614	.617		• 506	• 506	.506	.506	.504	• 502	°500	•498	.496
	1/2pu ² psi]	• 00343	.00415	.00615	•00867	.0123	.0155	.0222	.0273	.0336	.10388	• 0426	• 0591	• 0644	•0946		.0218	.0296	.0397	•0471	•0605	•0788	• 0940	.110	.142
	U ft/sec	20°5								64.4	69 . 2	72.5	84.8	88 .5			51.6		69°5	75.7	85.9	98°O	107.0	115.0	131°0
).92"Hg	Volts	.072	• 060	.165	.212	。413	.610	°729	• 300	.22	1.406	1.325	.70	1.857	6.	о 77 ^и Нg	• 093	• 223	•425	. 650		°49	1.835	-	•
03	ⁿ H ^P ₂ 0	.165	.185	• 240	.310	•425	• 500	.685	• 8 2 5		1.145	1.25	1°705	0	2.69	Р 11 29	.675	•890	•	.37	-	•	2.67		•
68 ⁰ F	L(in) h(in)	4	4.	ີດ	ີ່ເວ	.9	.0	6.	.9	-	~	18.1	ŝ	6	6	58 0 F	23.7		23.7		23 . 8	•	24.0	24.1	
11 E-1		4.	1.52			2.35		3.02			3.89		5 .1 4	0	7.62	H E-(•94						1 . 53		•
Run 21 3	f cyc/sec	5	ີ່ຄ	ဂိ	ŝ	.9	9	.9	2	.9	-	66.7	20	-	0	Run 214	295	296	297	296	296	296	296	295	295

		88	227	191	11	16	02		10	46	534	0	184	506	15		074	603	•3 26	138	172	488)46	37	60,	174	。066	212
	2	0.			5.		•			2		÷.	•	•	•						4.	4		1.0				1 °C	•
	~	8.07\ ⁴	1°176	1.615	2°145	2°65	3 。 68		6.53\4	8.67	1.1325	1°44	1°87	2.26	2. 66		5.674		1.225		1.845	2 <u>1</u>			03		•	2°12	0
	c c Pa F	. 208	• 555	• 702	。870	.883	° 795		.494	.612	•8 69	1.089	1.390	1.444	•		.1725	.543	°906	1.274	1.413	4		1.13	• 93	•79	• 78	1.10	1.26
	StrfL C	.423	•408	。371	.357	.357	• 380		.407	•402	. 384	.368	. 348	•351	.337		°430	o384	•360	•344	•334	•334		.925	°900	896	.922	• 969	.961
	RoUL	3.42\4	4 . 30	5.99	7.63\4	9.45 _	1.40\5		2.66	3.49	4.35	5.30	6.50	7 . 93			2°44\2	3°43	4.40	5 .30	6.16	8•63		4 °59\ 4		J.097]•53	2.05	2 • 5 5
	p _a psi	• 0065	.0256	• 0460	0720	1160	.1140		.0177	.0288	.0530	0841	.1384	.182	• 220		•0054		.0611	.1080	.144	• 209		•0045	• 0074	• 0087	.0111	.0212	°0318
	1/h ft-1	.510	•510	.510	• 506	.508	• 500		.719	• 705	.697	.630	.685	• 685	• 685		.726	°719	.722	•715	.714	• 715		• 596	.612	• 588	• 563	.631	•571
	U ft/sec $1/2 ho$ U ² psi 1/h ft ⁻¹	•0313	.0461	•0655	.0827	.1034	.1435		• 0358	• 0470	.0610	•0774	• J925	.126	•144		•0313	• 0495	•0675	• 0849	.1020	.143		• 00398	°00795	.0110	.0152	019 3	•0252
	U ft/sec	61.8	74.8	87.5	100°4	112.0	132°0		65°3	75.5	86.0	96.8	109.9	121.0	131.6		61.8	77.5	90.6	101.6	111.4	132.0		23 • 0	31.2	36.7	43°1	48°6	54.0
30.01 ⁿ Hg	Volts	•160	.63	1 ,1 3	1.77	2.24	2.80	29 • 85 ⁿ Hg	•478	.810	1.515	2.44	4 . 04	5.31	6.37	30.01"Hg	.150	• 750	1.70	3 °00	4 • 00	5.80	29•85"Hg	•045	•074	• 087	. 111	•212	•318
P = 30.	[∆] P 120	°945	1.355	1.82	2.51	2.945	4.05	P = 29	1.06	1.37	1.76	2.21	2.82	3.45	4 . 05	P = 30.	°945	1.445	1 . 95	2. 43	2.905	4.05	P = 29.	•19	• 29	.375	•49	. 605	• 73
н 60 ⁰ F	L(in) h(in)	23 5 3	23 . 53	2 3 . 53	2 3 . 68	23.60	23°68	5 1 0F	16.7	17.0	17.2	17.4	17.5	17.5	17.5	60 0 F	16.50	16.68	16.60	16.75	16.80	16°76	6 1 o F	20°1	19°6	20.4	21.3	19•0	21.0
H		1 05	1.22	1.30	1.44	1.60	2.01	€ 8 E⊶1	•75	•86	•94	1 °02	1.10	1.22	1.27	H E-1	•75	*	•92	• 99	1.05	1.24	8	3.80	4 . 90	5.70	6.75	8.05	9°00
Run 215	f cyc/soo	299	300	300	299	300	300	Run 21 6	4 28	423	421	419	418	418	419	Run 217	425	425	426	424	425	426 • 5	Run 21 8	67.2	68.7	69•2	70°6	70.2	69 . 2

	2	• 260	。307	• 268	.256	• 28 6	•308	.316	。279	• 255		231	236	. 261	.332	.335	•323		•392	。38 4	•389	•435	0440	•462	£97	•526	。54 0	。530
	Re/Str	3°05\4	4.58	6.90\ ⁴	1.04\5	1.275	1.685	2.14	2.85	3.74		5.29\4	7.95	1.175/5	1°63	2.21	2.96		3 °50\4				1	1.111/5	1.42	1.825	2°20	2.67
	Strf1 CPa Pa FI	• 294			• 282				.312					•274		.370	•342								•542		6	•570
	Strfu (• 885	.916	.930	906 •	.905	.896	.929	.896	• 918		.936	054	.952	.915	• 905	.944		• 909	.901	168 .	. 895	.910	.910	•917	.920	•934	•930
		2.70\4	4.2Q	6.21/4	9.41.	1.15¢	1.51	1.99	2.56	3.43		4.95\4	7.59	1.1255	1.49	2.00	2 . 80		3.184	3°83	4°44	6.10	8.00	1.011V5	1.303	1.680	2.05	2 。48
	pa psi	.00347						• 0282		• 0406		-005 1					°0397		• 008J	• 0098	•0117						0	.0831
	I/n rt-I	• 503	• 505	•500	•496	. 498	•496	•49Å	•488	•476		. 503	503	.500	.495	.493	₀490		• 698	• 698	• 685	. 682	. 68 2	• 675	• 652	.675	° 660	• 649
	1/2/0 ² psi 1/h ft-1	.0118	°0175	.0271	• 04 00	• 0494	•0645	• 0829	.111	.146		.0205	C L 20 -	.0460	.0638	.0866	。 1160		•0188	.0230	.0268	• 03 68	.0477	.0601	.0765	• 0990	.120	.146
	U ft/sec	37.8	46.2	57.5	69.7	77.5	88 。 6	100.4	116.0	132°5		50°0	61.5	70.77	88°0	102°6	119.0		47.7	52.8	57.0	66.9	76.0	85 . 5	96.4	109.7	120.0	132.4
29.77 ⁴¹ Hg	Volts	• 0848	.1431	.191	.276	•382	• 544	• 690	.850		30 .01" Hg	.125	002	.310	.570	• 790	• 980	•85"Hg	• 2 28	.276	•329	• 504	• 650	•862	1°160	S	6.	2°34
P = 29.	ⁿ H ² 0	.395	• 555	•82	.17	4	•85	2. 36	•	0	P = 30.	。645	070	1.350	1.845	4		P = 29	• 59	~	•81	0	• 3	M	2.185	2.81	3.4	4 . 1
580F	L(in) h(in)	23.9	2 3 . 8	24 ° O	24°2	24.1	24.2	24 • 3	24.6	ີ້ຄ	60 0 F	23.86	79.20	24.03	24.25	4	24•48	570F		17					18.4	٠	∞	0
10 11 E-1	L(in)	м. •	1.70	5	2.53	5			-	8	H	1.8 8	N.	2.84	3.21	3°70	4.46	E-4	• 24	•35	40	5	6°	°. ℃	5	2.85	-	4
Run 219	f cydsec	5	299	300	300	302	302	302	302	301	Run 220	299	201	300 . 5		301,5	302	Run 221	420	4 23	421	2	423	424	421	425	423	424

	Z	0686 1010	.1638	•1960	°2 08		180	.212	1825	1175	0686	°1235	1220
	c Pa Re/Str	9°28\4 1°09\5	1.4725.	1,815 .	2 . 18 。		2.04\4					1.13/5 .	1.51
	C Pa	• 0443 • 0650	.1085	.1297	°1367		.128	°142	°120	•0752	.0430	. 0785	°0767
	StrfL	1.550 1.552	1°508	1.510	1.525		2.86141.405	1.490	1.520	8.97_1.562	1°597	1.572	1 . 590
	Rog	1.445 1.696	2°22	2°74	3 . 32		2.864	4.35	5 .91	8.97	1.347	1.78	2.40
	. pa psi	•00161 •00279	°00622	•00920	°01168		°00143			• 00239	.00200	•00488	• 00650
	1/h ft ⁻¹ p _a psi	•48 2 •48 2	°475	•469	464		•694	.685	。685	.678	• 666	• 652	• 645
	$1/2\rho U^2 psi$	。0363 。0 42 9	。057 3	°0110	。0854		.0112	.0161	•0215	.0318	.0466	.0621	• 0847
	U ft/sec	66 .0 71 . 5	83 °O	92.2	101.1		36.7	43.9	50°9	61.8	74.8	86.4	101°0
L5"Hg	Volts	• 0398 • 0690	•154	。22 8	•289	15" Hg	• 0398	• 0636	.0716	°0663	.0557	°1355	•1805
P = 30.15"Hg	0 ² H ^D ² H ^D	1.08 1.255	1.66	2.04	2.435	P = 30.15"Hg	•385	.520	.670	9 55	1.365	1.795	2.42
70F	L(in) h(in) $\overset{\Delta p}{H_2^p}$ 0	24°9 24°9	25°3	25.6	25°9	570F	17.3	17.5	17°5	17°7	18.0	18.4	18°6
T = 570F		4.09 4.44	5°00	5°56	6.14	98 19	1.46	1.86	2 . 18	2°72	3°36	3.84	4.45
Run 222	f cyc/sec	300 300	302	301	302	Run 223	424	421	426	426	426	424	424

APPENDIX II

Plots From Data

Figures 8 through 17

3

.

APPENDIX III

.

A series of photographs

showing vortices in successive positions of travel across the slot. U = 31.0 ft/sec, f = 31.6 cyc/sec, L = 4.2 in., h = 47.5 in.

