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ABSTRACT

A continuous review policy for ordering inventory

stockage items with the option of expediting the shipping

time is formulated. Demand is assumed to have a Poisson

distribution with a stationary demand rate. Inventory

holding costs, ordering costs, shortage costs and expedit-

ing costs are postulated. The measure of effectiveness is

the minimization of a linear combination of these costs.

The optimal policy is determined analytically through the

use of first differences. An iterative computational

procedure is recommended for obtaining the optimal order

quantity, reorder point and expediting level. Analysis of

the first differences indicates the conditions under which

there is a solution and a simple numerical test for these

conditions is developed. A numerical example is given.
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I. INTRODUCTION

This thesis proposes a model of a continuous review

policy for ordering inventory stock items in which the

inventory manager has the option of expediting the shipping

time of any particular order. He is able to exercise this

option at any point during the procurement leadtime until

the order is actually shipped. Thus the model divides

procurement leadtime into two parts. The first is the

production leadtime, and the second is the shipping lead-

time. The circumstance which will trigger the expediting

decision is that demand during the production leadtime has

exceeded a specified amount , The reason for expediting,

of course, is to protect against backorders.

The decision to expedite an order is quite common in

actual operations. One simple example is that of a parts

clerk in a local body and fender repair shop picking up his

telephone and asking his supplier to ship by bus instead

of by rail. A slightly more sophisticated example is the

use of urgency-of-need codes by requisitioners In the armed

forces under the Uniform Military Issue Priority System.

In the latter case, a requisitioner located overseas can

choose among codes which impose delivery deadlines on the

national inventory control points which may vary from one

week to 11 weeks. For some overseas locations, only a

shipment by air will satisfy the one week requirement.



Common though the expediting situation is, most of the

analytic models which deal with expediting are of the

periodic review variety. A literature search conducted in

July, 1969 at the document branch of the Army Logistics

Management Center, Fort Lee, Virginia and an informal search

conducted at The Army Inventory Research Office in Phila-

delphia yielded only one analytic, continuous review,

expediting model. This is the model developed by Allen and

D'Esopo [1]

.

There is a closely related continuous review model

developed by Morey [2], This model treats the problem of

protecting against backorders by supplementing the routine

sealift deliveries with emergency airlift of additional

special deliveries.

It was the work done by Allen and D'Esopo which served

as a basis for the model developed in this thesis. The two

major differences between the two models will* be explained

before detailed formulation and analysis is begun.

The first difference is in the treatment of one of the

cost parameters. Allen and D'Esopo caused the unit price

each item in an expedited order to be increased in order

reflect the fact that the cost of expediting would

. upon the size of the order. However, they

•ed to c this increase in unit price when they

.tory holding costs. Under the present forula-

the expediting cost upon the order



size is accounted for by incrementing the cost of transport-

ing each item in an expedited order. In both models the

mathematical analysis involving this parameter is the same.

The difference is conceptual.

The second, and basic, difference is in the treatment of

procurement leadtime. In their model a decision to expedite

will result in the order being delivered a fixed length of

time after the decision is made. Under the present formu-

lation, a decision to expedite will result in the fast

shipment mode of transportation being used after the produc-

tion phase of the procurement leadtime is completed. Thus

two completely different leadtime situations are being

modeled.



II. THE MODEL

This section treats the formulation of the model con-

sidering in turn the ordering policy, the assumptions and

costs, and the cost equation.

A. THE ORDERING POLICY

The following ordering policy is considered:

When the on hand inventory level is reduced to r,

order an amount .Q. If during the production leadtime

inventory is further reduced to a level X, called the

expediting level, then expedite the outstanding order by

specifying the fast means of transportation.

This will yield a three parameter continuous review

policy (Q,r,X) in which the decision variables are the order

quantity, the reorder point and the expediting level. The

measure of effectiveness will be to minimize the average

annual variable cost. The cost expression will be a linear

combination of ordering costs, inventory holding costs,

expediting costs, and shortage costs.

B. ASSUMPTIONS

1. Demands have a Poisson distribution with a station-

ary demand rate.

2. Procurement leadtime, a two-valued random variable,

is composed <

a. T Production leadtime — a constant,
P



and either

b. T
R

= Fast shipping time — a constant,

or

c. T
T

= Slow shipping time — a constant.

3. No more than one order is outstanding at any time.

4. When an order arrives, it is sufficient to raise

the on hand inventory level above r.

5. Both r and X are non-negative.

Assumption 3 is necessary in order to make the model

mathematically tractable. If more than one order can be

outstanding, the question of which of these orders should

be the one expedited arises. Also the behavior of the on

hand inventory level becomes quite difficult to describe.

This assumption is valid If the reorder quantity is much

larger than the expected demand during the procurement

leadtime

.

Assumption 4 is concomitant with Assumption 3. If it

were not made, it would be possible that a replenishment

would not raise the inventory level above r. Then the

on hand inventory would never again be reduced to r —
being always below r — and no more reorders would be made.

Assumption 5 is made only for mathematical simplicity.

It should be noted, however, that current military inventory

management practices will not allow the level of service

implied by a negative reorder point.



C. COSTS

A = Ordering cost.

I = Holding cost rate per dollar cost of each
item per year.

C = Unit cost

.

A' = Increment to order cost for expediting.

a = Increment to order cost for each unit expedited,

tt = Cost for each backorder.

K = Average annual variable cost.

D. NOTATION

p(z,T) = Prob(Z=z) where Z has a Poisson distribution
with parameter AT.

oo

P(z,T) = Prob(Z > z) - Z p(j,T).

X = Mean annual demand rate.

Q = Order quantity.

r = Reorder level.

X = Expediting level.

6 = Expected number of orders per year = X/Q.

W = Expected number of orders which are expedited.

U = Expected number of units which are expedited
= WQ.

S = Shortages per cycle.

E(S) = Expected shortages per cycle.

T "Slow" cycle length = T + T
T

.

S p Li

Y. = Demand during time period T. , e.g., Y = demand
^ during production leadtime T .

10



E. DEVELOPMENT OF THE COST EQUATION

1 . Inventory Holding Cost

The holding cost is proportional to the units of

stock held per unit time, i.e., it Is proportional to the

area under the on hand inventory curve calculated over a

one year time period. Note that this area is numerically

equal to the average inventory level for a year.

Given that no expediting has occurred, i.e., given

that Y < r-X , the conditional expectation for Y is
p > v

p

r-X-1
E(Y |Y < r-X) = y' = (l/Prob(Y < r-X)) Z j Prob(Y = j)PP P P j> _ q p

J/

Figure 1 is a typical illustration of the behavior of the

on hand inventory level over a cycle in which no expediting

has occurred. The safety level, s, is (r-y'-AT,.). The

area for one cycle is

l/2[(Q+s) + s] [(Q+s)/A + T + T
T ],

which can be written as

[Q/2 + r - (y'+AT
T
)] [(Q-y')/A + T ]

.

PL. p p

Multiply this area by A/Q to get the average inventory

[Q/2 + r - (y'+AT
T )] [Q - y' + AT ]/Q.

P L> P P

Given that expediting has occurred, i.e., given that

Y > r-X, the conditional expectation for Y is
p - ^

p

11
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E(Y lYn > r-X) = y" = (l/Prob(Y^ r-X)) Z jProb(Y =j)
P P - P P - j=r_X P

Figure 2 is a typical illustration of the on hand inventory

level over a cycle in which expediting has occurred. The

safety level is (r - y" -AT
R
). The area for one cycle is

[Q/2 + r - (Yp+AT
R )] [(Q-y£)/A + T

]

,

and the average inventory level is

[Q/2 + r - (y"+ATR )] [(Q - y" + AT )/Q]
P K P P

Define k' and k" as follows

k r = Prob(Y < r-X-l)/Prob(Y < r-X);
p p '

k" = Prob(Y > r-X-l)/Prob(Y > r-X).
p — p —

As demand is Poisson with parameter AT, y' equals k ' AT ,

and y" is equal to k"AT .J
P P

Therefore, the expected value of the average inven-

tory is

[Q/2 + r - A(k'T +T
T ) ] [Q - AT (k'-l)] Prob(Y^ < r-X)/Q

P Li P P

+ [Q/2 +r -A(k"T +T
R )][Q - AT (k"-l)] Prob(Y > r-X)/Q,

which equals

13
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Q/2 + r - AT - AT
T

+ A (T T -T D ) Prob ( Y > r-X)
P Li J_i n p —

+ (AT /Q)(-AT
T

+ A(T
T -T„)Prob(Y > r-X)

P J-i Li n p —

- (AT )

2
/Q + (AT

T
AT /Q)Prob(Y > r-X-1)

P Li p P

+ (ATD AT /Q)Prob(Y > r-X-1)
R p p —

+ (AT )

2
k T Prob(Y < r-X-l)/Q

p p

+ (AT )

2k"Prob(Y > r-X-l)/Q.

This expression can be simplified by adding and subtracting

the following four terms:

AT T AT Prob(Y = r-X-l)/Q, -ATD AT Prob(Y =r-X-l)/Q,Lp P
;

RP P

(AT )

2k'Prob(Y =r-X-l)/Q, -(AT )

2k"Prob(Y = r-X-1).
p p ' P P

to obtain as the expected average inventory level the fol-

lowing expression:

Q/2 + r - AT + A(T T -T„)Prob(Y > r-X)
s L R p —

+ (r-X)A[T (k M -k') - T T +TD ] Prob(Y^ = r-X)/Q.
P Li A P

The average annual inventory holding cost is obtained by

multiplying the expected average inventory level by IC.

2 . Shortage Costs

Shortages can occur whether or not expediting has

occurred. Given that there was no expediting, i.e., given

that demand Y < r-X, then the quantity short, i

•

15



backordered, will be equal to (Y + Y
r

- r) if r is less
P ^

than the total quantity demanded, and it will be equal to

zero otherwise. In this case, the conditional expectation

for shortages is given by:

E(S|Y < r-X) = Z (z+y-r) p(z,T
L ).

z=r-y

Given that there was expediting, the quantity short

will be equal to (Y + Y„ - r) if r is less than the totalM p R

quantity demanded, and it will be equal to zero otherwise.

Considering first the situation in which demand Y is&
p

greater than or equal to (r-X) but less than r, the condi-

tional expectation for shortages is given by:

E(S|r-X < Y < r) = Z (z+y-r) p(z,T
R ).

p z=r-y

If the total quantity demanded is greater than or

equal to r, the conditional expectation for shortages is

given by:

oo

E(S|Y > r) = I (z+y-r) p(z,T
R
).

p z=0

To find the expected number of shortages per cycle,

multiply the conditional expectations for shortages by their

respective probabilities:

16



r-X-1
E(S) = I E (z+y-r) p(z,T

L ) p(y,T )

y=0 z=r-y p

T» OO+2 Z (z+y-r) p(z,T ) p(y,T )

y=r-X z=r-y p

+ I (AT
R
+y-r) p(y,T )

The expected annual shortage cost is found by

obtaining the product of the expected number of shortages

per cycle, E(S), the expected number of cycles per year,

9, and the cost per shortage, tt, that is,

E(Shortage Cost) = ttE(S)0.

3 . Other Cost Elements and the Cost Equation

The other elements of the cost equation can be found

in a straight-forward manner. The expected number of orders

per year, 0, is equal to A/Q. The expected number of orders

expedited per year, W, is equal to 6 Prob(Y >_ r-X) , and

the expected number of items expedited per year, U, is equal

to WQ . So the expected annual cost of placing orders is A6,

and the expected annual cost of expediting is (A'W + all).

Therefore, the expression for average, annual, variable cost,

K, is

K = OA + ttE(S)6 + A'W + aU

+ IC(Q/2 + r - AT + A(T
T
-T P ) Prob(Y^ r-X)

S i_i A P

+ ICA(r-X)[T (k"-k r

) - T
L
+T

R
] Prob(Y = r-X)/Q.

17



III. SOLUTION AND ANALYSIS

A. SOLUTION OF THE COST EQUATION

The average, annual cost, K, is a function of three

variables: Q, r, and X. This relation can be written as

K = K(Q,r,X). This function is not continuous, nor is it

necessarily convex; therefore, none of the minimization

techniques of differential calculus are applicable. How-

ever, the method of first differences can be used. When

using this method, either "backward" or "forward" differen-

ces can be used. It is convenient to use a "backward"

difference for Q because the result is directly analagous

to that of Hadley and Whitin [3J. On the other hand, it

is convenient to use a "forward" difference for r because

this will facilitate computer program coding. For the

following discussion, it will be assumed that K(Q,r,X) has

only a global minimum. A graphical illustration of when

such an assumption is appropriate is given in Figure 3

(page 27).

Define AK(Q), the first "backward" difference for Q as

follows

:

AK(Q) = K(Q,r,X) - K(Q-l,r,X).

If, for a given r and X, a local minimum does exist, then

at that minimum AK(Q) must be less than or equal to zero.

Thus an optimal value for Q, say Q*, is the largest value

18



of Q such that AK(Q) is less than or equal to zero. There-

fore, Q* is the largest value of Q such that:

Q(Q-l) < (2A/IC) [A + ttE(S) + A' P(r-X,T )

+ IC(r-X)(T (k"-k') - T
T
+TR ) p(r-X,T )]. (i)

Similarly, define AK(r), the first "forward" difference

for r as follows

:

AK(r) = K(Q,r+l,X) - K(Q,r,X).

If, for a given Q and X, a local minimum does exist, then

AK(r) must be greater than or equal to zero at that minimum,

Thus an optimal value for r, say r* , would be the smallest

value of r such that AK(r) is greater than or equal to zero

Therefore, r* will be the smallest value of r such that the

following inequality holds:

19



(A/Q) <7T

r-X-1
((r-y)p(r-y+l,T

L
) - XT

L
p(r-y ,TL ) )p(y ,T )

y =

+ (AT
L
p(X+l J TL

)+(XT
L
-(X+l))P(X+2,T

L
))p(r-X,T

p
)

- (ATRp(X,TR ) + (ATR-(X))P(X+1,T ))p(r-X,T )R1 R P. P. P

+ Z ((r-y)p(r-y+l,T ) - AT
R
p(r-y ,T ) )p (y ,T )

- p(r+l,T ) - IC(r-X+l)T
T
p(r-X+l,T )

P ^ P

+ IC(r-X+l)T
R
p(r-X+l,T )

+ IC(r-X)T
L
p(r-X,T ) - IC(r-X)T

R
p(r-X,T )

2 2
IC(r+l-X)

<i

(p(r+l-X,T ))

AP(r+l-X,T
p
;)(l-P(r+l-X,T ))

P

IC(r-X)
2
(p(r-X s T ))

2

AP(r-X,T )(1-P(r-X,T ))
p p J

-A'p(r-X,T )r ' p

+ IC(1 - A(T
T
-T R )p(r-X,T ))-aAp(r-X,T ) > 0. (ii)

L R P

The first difference for X could be taken, and then a

possible method of solution would be to use an iterative

procedure to find values of Q, r, and X which would satisfy

the first difference requirements. This method is not

recommended as there is no guarantee of convergence.

A better method is to specify values for X, and then

use an iterative procedure to find values of Q and r which

will satisfy the first difference requirements for the

20



given X. Then choose that set of values, {Q*(X) ,r*(X) ,X*}

,

which gives the minimum, average, annual cost. The next

section is a discussion of the conditions under which a

solution may be expected.

B. ANALYSIS OF THE FIRST DIFFERENCE INEQUALITIES

For any given X, the optimal values of Q and r must

satisfy both of the first difference inequalities. If these

inequalities were approximated by being taken as equations,

they would describe a pair of curves in the Qr plane. Then

Q and r would lie at an intersection of these two curves.

This approach will be taken in the following analysis of

the first differences.

1 . The First Difference For Q

Define f(r), g(r), and h(r) as follows:

f(r) = ttE(S),

g(r) = IC(r-X)(T (k"-k')-T
L
T
R ) p(r-X,T

p
),

h(r) = A»P(r-X,T )

.

at

Then Q is the largest value of Q such that

Q(Q-l) < (2A/IC)(A+f(r)+g(r)+h(r)).

For large values of Q*, say Q* > 20, Q* may be approximated

by

Q* = /(2A/IC) (A+f(r)+g(r)+h(r)) . (iii)

21



Treating Q as continuous, for the moment, the above expres-

sion describes a curve in the Qr plane. The graph of this

curve is sketched in Figure 3 on page 27, and is labeled

(iii).

The behavior of Q* as r varies from X to infinity

can be derived as follows:

00 00

a. Lim f(r) < lim Z I ( z+y-r )p ( z ,T
L )p (y ,T )

.

r->-°° p->-oo y = z=r-y

This is true because the left-hand side of the above

inequality is the expected number of shortages annually

when some of the leadtimes have been shortened through

expediting, and the right-hand side is the expected number

of shortages when no expediting has occurred in any cycle.

The limit of the right-hand side is equal to zero;

therefore, the limit of f(r) is less than or equal to zero.

But no term in f(r) is ever negative; so it must be that

the limit of f(r) as r tends to infinity is greater than or

equal to zero. The only way that both Inequalities can be

satisfied is that the limit of f(r) as r tends to infinity

is zero.

IC lim (r-X)
2 fp(r-X,T ))

2

p-*-oo ^
b. Lim g(r) = •

r+00 P ( r-X ,T ) ( 1-P ( r-X ,T )

)

Let J = r-X, and let u = *T . When u is less than or equal
p

to one, the above limit is easily seen to be zero. When u

is greater than one, the numerator is of the form

22



. 2 2j -2u / .

,

J u ° e /j I ,

and the denominator is

J
°°

( Z u
Z
e"

u/z!)( Z u
Z
e"

u
/z!) j! .

z=0 z=j

Now, as r gets large, j will get large, but

and

, . • 2 2 j -2u / . , nlim j u J e /j I = 0,

J
00

lim ( Z u e~ /z.')( Z j ! u e~ /z! ) = °°.

j->oo z=o z = j

Therefore, the limit of g(r) as r tends to infinity is zero

Lim h(r) = lim A' P(r-X,T ) = 0.
c. ' pp->oo p->oo r

d. If r is equal tc X, f(r) is the expected number

of shortages when the procurement leadtime is always T + T
R ,

say it is z'(X). Also g(r) equals zero and h(r) equals A'.

So when r gets large, Q* tends to /(2 AA/IC , the Wilson

Q, and when r equals X, Q* equals /(2A/IC) (A + tt z ' (X) + A' ) .

Call this latter value Q. These results agree with those of

Hadley and Whitin ([3J, p. 170).

2 . The First Difference For r .

In order to facilitate examining the behavior of r

as Q varies over its range, several approximations will be

23



made. First, the following terms will be eliminated from

the cost equation:

a. Z (AT +y-r)p(y,T )

y=r+l p

b. IC(r-X) [T
p
(k n -k')-T

L
+T

R ] p(r-X,T ) .

The first of the above expressions is the expected

number of shortages in a cycle in which the demand during

production leadtime exceeded r. This value should be rela-

tively small. The second of the above expressions is the

product of several terms with the point probability that

the demand during production leadtime is exactly equal to

(r-X). This product also should be relatively small. Using

this approximate cost equation, the first difference for r

is

(A/Q)<tt
r-X-1

Z ((r-y)p(r-y+l,T
L

) - AT
L
p(r-y ,T

L ) )p(y ,T )

y =
P

+ [\T
L
p(X+l,T

L
)+(AT

L
-(X+l))P(X+2,T

L )] p(r-X,T )

- [AT
R
p(X,T

R
) + (AT

R
-X)P(X+1,T

R )] p(r-X,T )

+ Z ((r-y)p(r-y+l,T
R

) - AT
R
p(r-y ,T

R
) )p (y ,T )

y=r-X+l

+ AT
R
p(r+l,T )

- A'p(r-X,T
p

)

+ IC(l-A(T
T
-TD )p(r-X,T )) - aAp(r-X,T ) >

Li n p p

24



Once again the terms which are products involving the point

probability that demand during production leadtime is

exactly equal to (r-X) will be ignored. The first differ-

ence for r then becomes

(A/Q) yrr

I

ff r-x-:
I p(r-y+l,T

L
)p(y,T ) E p(r-y+l,T

R
)p(y,T )

y=0 p y=r-X p

Z (P(y,T
L

) - P(y,T
R
))p(r-X,T ) + AT

R
p(r+l,T )

y=x+2 p

- A'p(r-X,T )f ' p

+ IC - aAp(r-X,T ) > 0.

Assuming for the moment that r* is continuous, the

above inequality can be considered to be an equality. Then,

for any given X, it also describes a curve in the Qr plane.

This curve is sketched in Figure 3 and is labeled (iv).

Now note that the first summation in the above

expression is the joint probability that exactly one back-

order occurs in a cycle and no expediting occurs, and the

second summation is the joint probability that exactly one

backorder occurs and that there was expediting. Therefore

the sum of these two summations is the probability that

exactly one backorder occurs in a cycle. Denote this

probability as S(r). Ignoring the last two terms within

the braces — both of these should be quite small — the

equation becomes

25



(A/Q)(-TTS(r) - A'p(r-X,T )) + IC - aAp(r-X,T ) = 0,

which can be written as

ICQ/A = S(r) + [(A'+aQ)/7T] p(r-X,T ). (iv)

Examination of (iv) reveals that it should behave

somewhat like a probability mass function rather than a

cumulative distribution function.

Both S(r) and p(r-X,T ) are probabilities. As r

gets very large, both of these probabilities must go to

zero. Thus the right-hand side of the above equation goes

to zero as r gets large. The only variable on the left-

hand side is Q; therefore, as r gets large, Q must go to

zero.

On the other hand, if r = X, the equation becomes

ICQ/A = S(X) + [(A' + aQ)/Ti] p(0,T ),

which, upon solving for Q, becomes

Q = [ttAS(X) + A'p(0,T )]/[IC - aAp(0,T )] = Q'.

3 . Convergence of the Solution

Figure 3 is an illustration of the relation between

Q and r for a given X. The optimal values of Q and r must

satisfy both curves. Therefore, if the parameters of the

problem are such that Q' is greater than Q, Q and r* will

be found at the intersection of the two curves. But, if Q'

is less than Q, nothing can be said about Q* and r*

.
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Depending upon how far to the right the "bulge" in the

curve labeled (iv) goes, either multiple solutions will

exist or no solutions will exist. The only way to deter-

mine which condition obtains in a specific situation is

to plot both curves.

C. A NUMERICAL EXAMPLE

1 . Computational Procedure

The computational procedure was coded in FORTRAN

for an IBM 360 computer. The procedure used was the one

recommended previously. That is, rather than attempting

to solve three first differences simultaneously, the first

differences for Q and r were solved for specific values of

X. The procedure consisted of a two-stage search across

the cost function. In the first stage, a coarse search

grid was used to locate the neighborhood of the minimum

cost. In the second stage, the grid of the search was

refined within this neighborhood in order to locate the

minimum cost exactly. For the first stage search, values

of X were chosen which were equally spaced from zero to

three standard deviations above the mean of the demand

distribution. The spacing (or grid) was one standard

deviation. The values of Q*(X), r*(X) and the annual cost

were calculated at each X. As soon as the minimum cost

obtained during the first stage was found, the second stage

began. The grid of the search was refined so that values

of Q*(X), p* and the annual cost were calculated for
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each X within one standard deviation above and below the

first stage minimum. Prom this second set of calculations

was identified the minimum cost and the corresponding

values of {Q* (X) ,r* (X) ,X*}

.

For any particular X, the admissable Q values were

constrained to be the integers between the Wilson Q and five

times the demand rate. Admissable values of r were

constrained to be the integers between the X specified and

a value equal to the demand rate plus three standard devi-

ations. The rationale for these bounds is fairly simple.

Reasonable order quantities should be less than five times

the annual demand rate; however, they should also be

greater than the Wilson Q -- the amount which would be

ordered if the model were deterministic. The difference

between the order quantity and the lower bound is a rough

indication of the degree of uncertainty in the model. As

for the bounds on r, the upper bound is that value which

provides about 99% protection against a stockout, and the

lower bound logically follows from the definition of r and

X. The iterative procedure at any value of X was:

a. Calculate the Wilson Q.

b. Use this value of Q and the given X to find r

from the first difference for r inequality (ii), i.e., find

r from Curve (iv) in Figure 3. Note that this involves a

numerical solution.
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c. Use this value of r and the given X to find a

new value for Q from the first difference for Q inequality

(i), i.e., find Q from Curve (iii) in Figure 3.

d. Repeat steps b and c until the values found

converge to the intersection of the two curves.

2 . Problem Parameters and Results

The parameters used for the example were:

tt = $4000.0, A = $75.00,

A' = $ 5.00, a = $ 0.50,

C = $ 50.00, I = 0.20,

A = 50.00, T =
P

0.25,

T
R

0.02, T
L = 0.08.

Optimal values of Q and r and the cost were

calculated for X = , 7 , 14 , . . . , 70. The set of Q, r,

and X in which X equaled seven gave the minimum cost. Next

optimal Q and r were calculated for each X within one stan-

dard deviation of X = 7- The results are tabulated below:
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X Q r
Annual

Variable Cost

30 29 $424.83

1 30 29 423.65

2 31 29 421.64

3 31 28 420.24

4 30 28 418.20

5 31 27 410.87

6 30 27 404.45

7 30 26 397.12

8 30 25 394.18

9 30 25 391.41

10 29 26 388.50

11 29 25 393-52

12 28 26 399.07

13 29 26 401.03

14 29 26 408.41

For this particular example, the minimizing set of

the decision variables is Q* = 29, r* = 26, and X* = 10;

and the minimum average, annual, variable cost is $388.50.

The probability that expediting occurs in a cycle is equal

to 0.19, which is the probability that demand during the

production leadtime is greater than or equal to 16.

Note that Q is equal to 735.39 and that Q' is equal

to 750.25. Therefore, by the test developed in Secti

III, B, 3, the above solution is the unique, optimal soluti

on

" on

to the problem.
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IV. CONCLUSION

The purpose of this thesis was to construct a model of

a continuous review inventory policy which would allow the

option of expediting deliveries. The decision to expedite

is quite common in actual operations; yet this is not

reflected by most inventory policies in use today.

The model which was developed does allow expediting.

It has as its objective the minimization of the average,

annual, variable cost. This is also the objective of most

of the other infinite horizon continuous review inventory

models. In this respect it is similar to these other models,

but it goes beyond them because it more closely resembles

actual operations.

Naturally, drawbacks exist. Every assumption which was

made and every cost which was postulated detract from the

resemblance to reality. The use of an iterative computa-

tional procedure makes the model impractical for an

inventory containing a large number of line items if an

optimal (Q,r,X) policy is necessary for each item. Also,

as was shown, a solution is not always guaranteed.

However, the state of the art has not progressed much

beyond the assumptions of the model and the postulation of

costs. And, in those cases where the assumptions seem

reasonable and the costs can be found, the model provides

a new managerial tool for minimizing the average, annual,

variable cost of operating an inventory policy.
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