
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2001-09

Simulation of an orthogonal frequency
division multiplexing based underwater
communication system using a physics based
model for the underwater acoustic sound channel

Pittman, Gell Tiger Lee.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/1517

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

SIMULATION OF AN ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
BASED UNDERWATER COMMUNICATION SYSTEM USING A PHYSICS BASED

MODEL FOR THE UNDERWATER ACOUSTIC SOUND CHANNEL

by

Gell Tiger Lee Pittman III

September 2001

 Thesis Advisor: Roberto Cristi
 Co-Advisor: Kevin B. Smith

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Simulation of an Orthogonal Frequency Division Multiplexing
Based Underwater Communication System Using a Physics
Based Model for the Underwater Acoustic Sound Channel
6. AUTHOR(S)
Pittman III, Gell Tiger L.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is
unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The primary thrust of this thesis is the development of a computer-based simulation of an Orthogonal Frequency
Division Multipexing (OFDM) based underwater acoustic communication system. The product will support the
testing and evaluation of various digital signal processing algorithms applicable to underwater acoustic
communication system using OFDM as well as the study of the effects of acoustic channel and communication
system factors of the key parameters of the system such as bit error rate, received signal to noise ratio, frequency
band of employment and overall system bit rate. The underwater acoustic sound channel is modeled using a
physics based parabolic equation approximation. The simulation models the key components in the transmitter and
receiver that contribute to the overall performance of the system. The results of the thesis provide expected values
for system performance in terms of bit rate, bit error rate and received SNR for given frequency bands and are
validated through comparison to theoretically derived expectations and to ocean testing of OFDM underwater
communication systems.

15. NUMBER OF
PAGES

14. SUBJECT TERMS orthogonal frequency division multiplexing, underwater acoustics, acoustic
communication, underwater communication, OFDM, MMPE, parabolic equation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

SIMULATION OF AN ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING BASED UNDERWATER COMMUNICATION SYSTEM

USING A PHYSICS BASED MODEL FOR THE UNDERW A TER ACOUSTIC
SOUND CHANNEL

Gell Tiger L. Pittman III
Lieutenant, United States Navy

B.S., South Dakota School of Mines and Technology, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE
(MAJOR IN ELECTRICAL ENGINEERING)

from the

NAVAL POSTGRADUATE SCHOOL
September 2001

Author: ~//

Q:e11 T~er~. I, ittiitan III

,

/ .../ ~'/"-~\I- .

* Ro'b;;;;;."Cfrs:~esis Aavisor
Approved by

7f~ ~tic~visor

/ I":'.

/

Jeffrey ~orr, Chairman
Department of Electrical and Computer Engineering

III

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The primary thrust of this thesis is the development of a computer-based

simulation of an Orthogonal Frequency Division Multipexing (OFDM) based underwater

acoustic communication system. The product will support the testing and evaluation of

various digital signal processing algorithms applicable to underwater acoustic

communication systems using OFDM as well as the study of the effects of the acoustic

channel and communication system factors on the key parameters of the system such as

bit error rate, received signal to noise ratio, frequency band of employment and overall

system bit rate. The underwater acoustic sound channel is modeled using a physics based

parabolic equation approximation. The simulation models the key components in the

transmitter and receiver that contribute to the overall performance of the system. The

results of the thesis provide expected values for system performance in terms of bit rate,

bit error rate and received SNR for given frequency bands and are validated through

comparison to theoretically derived expectations and to ocean testing of OFDM

underwater communication systems.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. GOALS..1
C. METHODOLOGY ..2
D. BENEFITS..2

II. OFDM THEORY...5
A. OFDM BASICS..5

1. Subcarrier Orthogonality..8
2. Guard Time and Cyclic Extension ...11

B. CHANNEL ANALYSIS ..15

III. OFDM SIMULATION MODEL..21
A. METHODOLOGY ..21
B. TRANSMITTER..23

1. OFDM Parameter Determination ..23
a. Example Calculation...26

2. Signal Generation...28
3. Quantization ...29
4. Decimal to Binary Conversion..30
5. QAM Buffer..30
6. Reed Solomon Encoder..30
7. Block Interleaver..32
8. QAM Modulator ..34
9. IFFT/OFDM Modulator..41
10. Cyclic Extension...42
11. Parallel to Serial Converter ..43
12. Double Side Band Modulator ...43

C. MMPE CHANNEL MODEL..49
D. RECEIVER ..55

1. AWGN Addition...55
2. DSB Demodulator ..56
3. Synchronizer...59
4. Composite Description of Serial to Parallel Conversion

through FFT/OFDM Demodulation...64
5. Acoustic Channel Application ..65
6. Channel Equalization ..65
7. QAM Demodulator ..67
8. Composite Description of Block De-Interleaving through Error

Analysis ...70

IV. RESULTS ...73
A. SYSTEM THEORETICAL PERFORMANCE..73

 viii

1. Single Carrier Analysis..73
2. OFDM (Multi-Carrier) Analysis ..76

B. SIMULATION RESULTS ..78

V. CONCLUSIONS ..89

APPENDIX A. SIMULATION RESULTS..93

APPENDIX B. MMPE RESULTS ...119

APPENDIX C. MATLAB CODE...127
A. TRANSMITTER CODE ..127

1. ofdm_sim_xmitter.m..127
2. parameters.m..132
3. signal_generator.m...135
4. quantization.m..136
5. dec_2_bin.m..136
6. qam_buffer.m...136
7. reedsolomon.m ...137
8. qam_modulator.m..137
9. inverse_fft.m...140
10. cyc_extension.m..141
11. parlel_2_serial.m..141
12. dsb_modulator.m ...141

B. RECEIVER CODE ...143
1. ofdm_sim_receiver.m...143
2. rcvr_dsb_demodulator.m..147
3. synchronizer.m...149

a. peakfinder.m..150
4. mmpe_channel.m ...152
5. equalization.m ..154
6. qam_demodulator.m..155

a. qaskdecomod.m ...157
7. deinterleaver.m...159
8. rsdecoder.m ..160
9. error_check.m ..160

C. PERFORMANCE ANALYSIS CODE ...160
1. ofdm_sim_control_func.m...160
2. ofdm_performance.m ..161
3. perform_plotter.m ...168

LIST OF REFERENCES..185

INITIAL DISTRIBUTION LIST ...187

 ix

LIST OF FIGURES

Figure 2.1. OFDM Basic Block Diagram...5
Figure 2.2. Subcarrier and OFDM Symbol Arrangement. ...7
Figure 2.3. Orthogonality of OFDM Subcarriers. ..8
Figure 2.4. Subcarrier Orthogonality via Subcarrier Spectra [after Ref. 4].9
Figure 2.5. Multipath Effect with zero signal in the Guard Time [after Ref. 4].12
Figure 2.6. OFDM symbol and subcarriers with cyclic extension in the guard interval

[after Ref. 4]...13
Figure 2.7. OFDM Signal with cyclic prefix, 3 subcarriers, 2 ray multipath

environment [after Ref. 4]..14
Figure 2.8. Basic Communication System. ..15
Figure 2.9. Subchannel Decomposition of Channel Frequency Response.........................19
Figure 3.1. OFDM Simulation Block Diagram..22
Figure 3.2. Measured Underwater Acoustic Channel Impulse Response [from Ref. 1]. ...25
Figure 3.3. Information Signal. ..28
Figure 3.4. Quantization Illustration. ...29
Figure 3.5. Reed Solomon Encoder and Block Interleaver. ...34
Figure 3.6. 16 QAM Constellation with In-phase and Quadrature Mapping.....................35
Figure 3.7. QAM Modulator. ...38
Figure 3.8. QAM Modulator with entire Complex OFDM Symbol Structure...................40
Figure 3.9. Interpolated Baseband OFDM Signal. ...44
Figure 3.10. General FIR Filter (Hamming Window Design). ..46
Figure 3.11. Interpolated Baseband OFDM Signal following FIR Filter.47
Figure 3.12. FIR Filter Frequency Response. ..48
Figure 3.13. Modulation Signals. ...49
Figure 3.14. Sound Speed Profile...55
Figure 3.15. DSB Demodulator Signal Processing Effects..59
Figure 3.16. Synchronization Flowchart [after Ref. 4]. ...61
Figure 3.17. OFDM Signal Structure with Synchronizer Observation Intervals.62
Figure 3.18. Correlation Signal Realization, SNR = 17.413 dB, N=2048, R = 5 kbps.........62
Figure 3.19. Acoustic Channel Filter Plots for Realization of Fig. 3.17..............................63
Figure 3.20. Channel Estimates, N=2048, 16 QAM, 5 kbps, fc = 6 kHz, 750=actN67
Figure 3.21. QAM Demodulator. ...68
Figure 3.22. Received Symbol QAM Decoding Process. ..70
Figure 4.1. Channel Bit per Subcarrier Capacity. ..77
Figure 4.2. Bandwidth vs Bit Rate for Q-ary QAM OFDM Signals..................................78
Figure 4.3. Transmission Loss, Bottom Roughness 4 m, Water Depth 100 m.80
Figure 4.4. Acoustic Energy Arrival, Bottom Roughness 4 m, Water Depth 100 m.........81
Figure 4.5. 8 QAM Composite Results. ...82
Figure 4.6. 16 QAM Composite Results. ...82
Figure 4.7. 32 QAM Composite Results. ...83
Figure 4.8. 64 QAM Composite Results. ...83

 x

Figure 4.9. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 5.3 dB...............84
 BER = 1.6 E-2..84
Figure 4.10. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 5.3 dB...............85
Figure 4.11. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 7.4 dB...............86
 BER = 2.5 E-4..86
Figure 4.12. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 7.4 dB...............87
Figure A.1. BER vs SNR for 8 QAM, fc = 8 kHz, R = 5 kbps, Range = 2 km, Rough

= 0m, Water Depth = 100m. ..93
Figure A.2. BER vs SNR for 8 QAM, fc = 8 kHz, R = 5 kbps, Range = 4 km, Rough

= 0m, Water Depth = 100m. ..94
Figure A.3. BER vs SNR for 8 QAM, fc = 10 kHz, R = 6 kbps, Range = 4 km, Rough

= 0m, Water Depth = 100m. ..94
Figure A.4. BER vs SNR for 8 QAM, fc = 10 kHz, R = 6 kbps, Range = 2 km, Rough

= 0m, Water Depth = 100m. ..95
Figure A.5. BER vs SNR for 8 QAM, fc = 8 kHz, R = 5 kbps, Range = 2 km, Rough

= 0m, Water Depth = 100m. ..95
Figure A.6. BER vs SNR for 8 QAM, fc = 12 kHz, R = 7.5 kbps, Range = 4 km,

Rough = 0m, Water Depth = 100m..96
Figure A.7. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough

= 0m, Water Depth = 100m. ..96
Figure A.8. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough

= 2m, Water Depth = 100m. ..97
Figure A..9 BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough

= 4m, Water Depth = 100m. ..97
Figure A.10. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough

= 0m, Water Depth = 100m. ..98
Figure A.11. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough

= 4m, Water Depth = 100m. ..98
Figure A.12. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough

= 0m, Water Depth = 340m. ..99
Figure A.13. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough

= 2m, Water Depth = 100m. ..99
Figure A.14. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough

= 2m, Water Depth = 340m. ..100
Figure A.15. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough

= 0m, Water Depth = 340m. ..100
Figure A.16. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough

= 2m, Water Depth = 340m. ..101
Figure A.17. BER vs SNR for 16 QAM, fc = 12 kHz, R = 10 kbps, Range = 2 km,

Rough = 0m, Water Depth = 100m..101
Figure A.18. BER vs SNR for 16 QAM, fc = 12 kHz, R = 10 kbps, Range = 4 km,

Rough = 0m, Water Depth = 100m..102
Figure A.19. BER vs SNR for 16 QAM, fc = 8 kHz, R = 6.67 kbps, Range = 2 km,

Rough = 0m, Water Depth = 100m..102

 xi

Figure A.20. BER vs SNR for 16 QAM, fc = 8 kHz, R = 6.67 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m..103

Figure A.21. BER vs SNR for 16 QAM, fc = 10 kHz, R = 8 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m..103

Figure A.22. BER vs SNR for 16 QAM, fc = 10 kHz, R = 8 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m..104

Figure A.23. BER vs SNR for 32 QAM, fc = 10 kHz, R = 10 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m..104

Figure A.24. BER vs SNR for 32 QAM, fc = 10 kHz, R = 10 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m..105

Figure A.25. BER vs SNR for 32 QAM, fc = 8 kHz, R = 8.33 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m..105

Figure A.26. BER vs SNR for 32 QAM, fc = 8 kHz, R = 8.33 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m..106

Figure A.27. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m. ..106

Figure A.28. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 100m. ..107

Figure A.29. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 4m, Water Depth = 100m. ..107

Figure A.30. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m. ..108

Figure A.31. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 100m. ..108

Figure A.32. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 4m, Water Depth = 100m. ..109

Figure A.33. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 340m. ..109

Figure A.34. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 340m. ..110

Figure A.35. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 340m. ..110

Figure A.36. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 340m. ..111

Figure A.37. BER vs SNR for 64 QAM, fc = 8 kHz, R = 10 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m..111

Figure A.38. BER vs SNR for 64 QAM, fc = 8 kHz, R = 10 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m..112

Figure A.39. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m. ..112

Figure A.40. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m. ..113

Figure A.41. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 4m, Water Depth = 100m. ..113

 xii

Figure A.42. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m. ..114

Figure A.43. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 100m. ..114

Figure A.44. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 4m, Water Depth = 100m. ..115

Figure A.45. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m. ..115

Figure A.46. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 100m. ..116

Figure A.47. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m. ..116

Figure A.48. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 100m. ..117

Figure B.1 Transmission Loss, Roughness 0 m, Range 2 km ...119
Figure B.2 Acoustic Paths, Roughness 0 m, Range 2 km, fc 7 kHz.................................119
Figure B.3 Transmission Loss, Roughness 2 m, Range 2 km ...120
Figure B.4 Acoustic Paths, Roughness 2 m, Range 2 km, fc 7 kHz.................................120
Figure B.5 Transmission Loss, Roughness 4 m, Range 2 km ...121
Figure B.6 Acoustic Paths, Roughness 4 m, Range 2 km, fc 7 kHz.................................121
Figure B.7 Transmission Loss, Roughness 0 m, Range 2 km ...122
Figure B.8 Acoustic Paths, Roughness 0 m, Range 2 km, fc 7 kHz.................................122
Figure B.9 Transmission Loss, Roughness 2 m, Range 2 km ...123
Figure B.10 Acoustic Paths, Roughness 0 m, Range 2 km, fc 7 kHz.................................123
Figure B.11 Transmission Loss, Roughness 0 m, Range 2 km ...124
Figure B.12 Acoustic Paths, Roughness 0 m, Range 2 km, fc 10 kHz...............................124
Figure B.13 Transmission Loss, Roughness 0 m, Range 2 km ...125
Figure B.14 Acoustic Paths, Roughness 0 m, Range 2 km, fc 12 kHz...............................125
Figure B.15 Transmission Loss, Roughness 0 m, Range 2 km ...126
Figure B.16 Acoustic Paths, Roughness 0 m, Range 2 km, fc 14 kHz...............................126

 xiii

LIST OF TABLES

Table 3.1. Typical Delay Spread Values...24
Table 5.1. Experimental Multicarrier Results [from Ref. 1]...89

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACRONYMS, ABBREVIATIONS & SYMBOLS

ADC Analog to Digital Converter

AWGN Additive White Gaussian Noise

b Number of Bits in an OFDM Symbol

bsc Bits per QAM Symbol

BER Bit Error Rate

d Distance Between Points in a QAM Constellation

dmin Minimum Distance Between Received QAM Constellation Points

at Channel Output

d(n) Demodulating Signal

DAC Digital to Analog Converter

DSBSC Double Side Band Suppressed Carrier

ε Two Dimensional Square QAM Symbol Energy

fc DSB Modulator Carrier Frequency

FIR Finite Impulse Response

FFTsF , Sampling Rate in the FFT Interval

mod.sF Interpolated Sampling Rate

FFT Fast Fourier Transform

scf∆ Subcarrier Spacing

cγ Coding Gain

 xvi

mγ Margin

h(n) Filter Impulse Response

I Interpolation Constant

ICI Inter Symbol Interference

IFFT Inverse Fast Fourier Transform

ISI Inter Symbol Interference

k Reed Solomon Input Symbol Word Length

Γ SNR Gap

LPF Low Pass Filter

MMPE Monterey-Miami Parabolic Equation

n Reed Solomon Code Word Length

Nh Hamming Window FIR Filter Order

N0 Number of Zero Symbols in QAM Modulator

N Number of Subcarriers

actN Number of Active Subcarriers

Nblock Number of OFDM Symbol Blocks

NQAM,I Number of Complex QAM Symbols for Transmission

zerN Number of Zero Subcarriers

OFDM Orthogonal Frequency Division Multiplexing

PE Parabolic Equation

q Number of Bits per QAM Symbol

Q QAM Constellation Size

 xvii

QAM Quadriture Amplitude Modulation

r Coding Rate

R Overall Bit Rate

 Rs OFDM Symbol Rate

SNR Signal to Noise Ratio

SSP Sound Speed Profile

tds Channel Delay Spread

tg Guard Time

T OFDM Symbol Period

TFFT FFT Interval Duration

ω Digital Frequency

pω Pass Band Digital Frequency

sω Stop Band Digital Frequency

W OFDM Signal Bandwidth

xr(n) Received Signal with AWGN

xr,d(n) Demodulated xr(n)

xr,f(n) xr,d(n) after Anti-aliasing LPF

xr,fd(n) xr,f(n) Decimated by D

Nx Matrix of Real Time Domain Samples

cNx , Matrix of Real Time Domain Samples (w/ cyclic extension)

Xh Complex QAM Data Block

Xp,1 Complex QAM Pilot Block

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGEMENTS

First and foremost I am grateful to my beautiful wife and wonderful children for

the support they provided and the sacrifices they made in support of my completing this
work.

Secondly I thank my thesis advisors, Dr. Roberto Cristi and Dr. Kevin Smith, for

their guidance and patience.

Finally in appreciation of CDR Jim Hill, Code 35 Curriculum Officer, and Eva

Anderson, Code 35 Educational Specialist, for their assistance throughout my tour at the
Naval Postgraduate School.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

EXECUTIVE SUMMARY

Communication in the underwater battle space is essential to Netcentric Warfare
concepts in the 21st century. Acoustic communication holds promising capabilities for
connecting the undersea environment. The underwater acoustic sound channel however,
presents challenging obstacles that must be overcome to allow satisfactory acoustic
communication. Possibly the most significant are the frequency selective fading and
multipath natures the underwater channel presents.

Orthogonal Frequency Division Multiplexing (OFDM) is extremely robust to
multipath frequency selective fading channels and therefore is rapidly developing interest
in application to underwater acoustic communication. The primary thrust of this work is
to develop a computer-based simulation of an OFDM based communication system for
the undersea environment. The result will then provide a foundation upon which the key
parameters and capabilities of underwater acoustic communication using OFDM can be
investigated. The immediate benefit of the work is the establishment of the achievable
communication system parameters, common to all communication systems, which are bit
rate, bit error rate, bandwidth and the required signal to noise ratios.

The simulation is performed in the Matlab environment where all major hardware
in the transmitter and receiver are simulated. The underwater acoustic sound channel is
modeled using the physics based parabolic equation approximation. The model is the
Monterey-Miami Parabolic Equation (MMPE) which employs the Split Step Fourier
method. Use of a physics based model vice the typical stochastic model for the acoustic
channel ensures a better realization of the phenomenon that is experienced in the
undersea environment.

The simulation allows for any type of data to be transmitted from analog voice
signals to binary data. Significant flexibility is coded into the simulation to allow for a
wide range of parameter analysis and sensitivity testing. Reed Solomon coding and block
interleaving are applied to achieve several decibels of forward error correction coding
gain. Quadrature amplitude modulation (QAM) is applied with constellation sizes of 8 to
64 points. Double sideband suppressed carrier modulation is used to modulate the
baseband signal to the desired transmission band.

Bit rates achieved range from 4 to 10 kilobits per second (kbps) utilizing from 2
to 6 kilohertz (kHz) of bandwidth depending on the size of the QAM constellation
applied. The transmitted signals occupy frequency bands between 4 and 14 kHz.

The results are validated through a theoretical development of achievable
performance. In addition validation is made through comparison to in water testing of
OFDM.

The results substantiate the feasibility of OFDM as an attractive candidate for
underwater acoustic communication. The product of the work provides validated system
performance expectations as well as a foundation upon which future work in this area can
be performed.

1

I. INTRODUCTION

A. PURPOSE

Netcentric Warfare has moved to the forefront of the Navy’s priorities for the 21st

century. Essential to the concept of Netcentric Warfare is the ability to communicate

quickly, reliably, efficiently and in many cases covertly in all regions of the battle space.

More specifically, key characteristics of the communication capability required are high

data rates, low error rates, environmental robustness and minimally overt acoustic

signatures. The undersea environment is arguably the most challenging region of the

battle space in which to communicate effectively. Current and future goals for

underwater wireless communication involve data flow between submarines, surface units,

unmanned undersea vehicles (UUVs) and ocean surface and ocean bottom

communication buoys in any combination via the underwater sound channel. Research

and development in the fundamental communication methods and protocols that support

Netcentric Warfare concepts will enhance the Navy’s ability to fight successfully in all

areas of the battle space.

Orthogonal Frequency Division Multiplexing (OFDM) possesses characteristics

that have the potential to overcome the adverse effects of frequency selective multipath

fading present in the underwater sound channel. Establishing groundwork in this area to

address the feasibility of OFDM for underwater communication is essential to developing

an underwater communication system that is beneficial to the Navy.

B. GOALS

The primary goal is to develop a computer simulation that will allow for research

into the key parameters, capabilities, and limitations of OFDM in underwater acoustic

communication. The simulation provides a ‘test bed’ for future study of other modulation

methods, forward error correction coding, quantization, signal detection, decoding etc. In

2

developing and validating the simulation the feasibility of OFDM systems in underwater

communication is verified. There is one known experiment with OFDM in the

underwater acoustic sound channel that is used as a standard against which the results of

the simulation are validated. The work was done by Coatelan and Glavieux. [Ref. 1]

While there has been considerable work using OFDM for communication all but

the work of Coatelan and Glavieux [Ref. 1] and that of Kim and Lu [Ref. 2] has been

outside the area of underwater acoustic communication. Kim and Lu [Ref. 2] present a

new broadband underwater channel model that has the capability to model the Doppler

time scaling effect as well as multi-path effects. The propagation path delay is modeled

with two components that generate the simulated Doppler shift determined by the relative

motion between the source and receiver. The simulation work by Kim and Lu [Ref. 2]

represents the only previous work in simulating an underwater acoustic communication

system employing OFDM as the backbone. A physics based model is used to provide a

realistic model of underwater acoustic sound channel.

C. METHODOLOGY

The simulation is run on a PC using Matlab code. The underwater sound channel

is modeled using a physics based, parabolic equation (PE) model, namely the Monterey

Miami Parabolic Equation model.

The simulation is used to conduct experimentation to examine key parameters

such as achievable bit rate and bit error rate, required SNR, transmission range,

robustness to multipath propagation and frequency selective fading, and bandwidth

requirements. The strengths and weaknesses of OFDM applied to underwater acoustic

communications will be identified to assess its feasibility and merit for future work.

D. BENEFITS

Simulation is rapidly becoming a popular method for experimentation with

technology-based systems. One of the biggest advantages of simulation is the ability to

perform countless numbers of experiments under controlled conditions at a minimal cost.

3

Some of the biggest obstacles to simulation are the decision of what level of simulation is

required to accurately capture the real world and validation of the simulation. With all

simulations there must be an initial model. This model suffers from some simplifications

that cause departure from reality. Later improvements will help the model to converge on

the characteristics of the real world system that is being modeled. With that in mind many

design decisions have been made in developing the simulation. The emphasis is on

modeling the aspects of the system which have the greatest impact on the key parameters

of interest.

Finally, the benefit of this thesis is the ability to experiment with OFDM based

communication systems such that the factors influencing the key parameters in

communication can be understood. Understanding these factors will provide the

knowledge necessary to build actual systems for underwater acoustic communication.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. OFDM THEORY

A. OFDM BASICS

Modulating an orthogonal set of subcarriers with Q-ary complex QAM symbols

generates an OFDM signal. The basic OFDM system is shown in Fig. 2.1 below. The

input bit stream is buffered and converted to parallel complex QAM symbols in the QAM

Modulator.

Figure 2.1. OFDM Basic Block Diagram.

The ith subchannel, denoted as Xi,k, where i is the subchannel index and k is the

OFDM symbol index, can be independently modulated as in adaptive modulation

6

schemes or all subcarriers may be modulated in the same manner. The parallel QAM

symbols are then applied to the IFFT, which generates N parallel real samples. The real

samples are then converted to serial format. In this simplified block diagram the receiver

reverses the operations performed by the transmitter.

The QAM modulator buffers the input bits into blocks of size b, where b = RT, T

is the symbol duration in seconds and R is the overall bit rate in bits per second. The

symbol rate then is Rs = 1/T symbols per second. The number of bits per subchannel

determines the size of the QAM constellation, Q. For example with q = 4 bits per

subchannel, Q = 24, which is 16 QAM. In OFDM the frequency spectrum of the signal is

created in the QAM Modulator and then the time domain signal results from passing the

output through the IFFT operation. The complex QAM symbols derived from the binary

code words are sequentially placed in a subcarrier band and OFDM symbol. Figure 2.2

illustrates the organization of four OFDM blocks with eight subcarriers.

7

 Figure 2.2. Subcarrier and OFDM Symbol Arrangement.

The IFFT provides an orthogonal transformation and maintains the energy

contained in the input symbol Xi,k [Ref. 3] Written as an equation, this is

∑∑
==

=
N

n
kn

N

i
ki xX

N 1

2
,

2

1
,

1
. (2.1)

Due to the orthogonality of the IFFT the subcarriers each have an integer number

of cycles within the FFT interval. The number of cycles in the FFT interval for a given

subcarrier differs by one from that of adjacent subcarriers. Note that the terms subchannel

and subcarrier are used interchangeably in OFDM terminology. Figure 2.3 illustrates the

orthogonality of 3 subcarriers in an OFDM symbol. In this example each of the

8

subcarriers has the same magnitude and phase but this is not in general the case. As can

be seen, each subcarrier has an integer number of cycles within the FFT interval.

-1 0 1 2 3 4 5 6 7
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
subcarrier 1
subcarrier 2
subcarrier 3

FFT Interval

Figure 2.3. Orthogonality of OFDM Subcarriers.

1. Subcarrier Orthogonality

The real bandpass OFDM symbol can be expressed as follows:

Ttttttx

Tttttt
T

ifjdtx c

N

Ni

Ni

+><=

+≤≤−+−= ∑
−

−=
+

0,0

000

1
2

2

2

 ,0)(

))},)(2/1(2exp(Re{)(π

 (2.2)

where T is the symbol period, fc is the carrier frequency, N is the number of subcarriers,

di are the complex QAM symbols and t0 is the symbol starting time [Ref. 4]. From Eq.

9

2.2 it can be seen that the OFDM symbol consists of non-zero subcarriers over the

symbol period T. As a result the frequency spectrum of the OFDM symbol consists of the

convolution of dirac delta functions at frequencies corresponding to the individual

subcarrier frequencies with the frequency spectrum of a unit amplitude square wave with

duration T. The frequency spectrum of a unit amplitude square wave is sinc(π fT), which

is zero at all frequencies that are a multiple of 1/T. As a result the spectrum of an OFDM

symbol with overlapping sinc functions is as shown in Figure 2.4. Note that at the

maximum of each sinc, i.e. frequency spectrum of each subcarrier, all other sinc

functions are zero. This is the point where the OFDM receiver calculates the spectral

values for the individual subcarriers. This means that the OFDM receiver is able to

demodulate each subcarrier free of interference from other carriers. Inter Carrier

Interference (ICI) would exist and degrade the received signal if this were not the case.

Note that this analysis is done in the frequency domain of the OFDM signal and therefore

it is ICI rather than Inter Symbol Interference (ISI) that is avoided. [Ref. 4]

Figure 2.4. Subcarrier Orthogonality via Subcarrier Spectra [after Ref. 4].

10

The real bandpass signal of Eq. 2.2 can also be expressed in complex baseband

form as

()

Tttttfortx

Ttttfortt
T
ijdtx

N

Ni

Ni

+><=

+≤≤





 −= ∑

−

−=
+

00

000

1
2

2

2

, ,0)(

 ,2exp)(π
. (2.3)

The complex baseband signal is the inverse Fourier transform of N QAM

symbols. Specifically each OFDM symbol is the inverse Fourier transform of the

columns or blocks of Fig. 2.2. In practice the Inverse Fast Fourier Transform (IFFT) is

applied to the QAM symbols to generate the discrete time OFDM signal written in

equation form as







=∑

−

= N
injdnx

N

i
i π2exp)(

1

0
. (2.4)

where N is the size of the IFFT and is equal to 2* N .[Ref. 2]

Since the output of the IFFT must produce a real signal, the OFDM blocks of Fig.

2.2 must be modified prior to application of the IFFT. From Fourier transform theory it is

known that a complex frequency domain signal that is conjugate symmetric will produce

a real time domain signal upon application of the inverse Fourier transform. Therefore

since the N QAM symbols in each OFDM block represent the information to be

transmitted, and are defined in the frequency domain, the blocks are conjugated and

repeated to produce the conjugate symmetric counterpart of the original OFDM block.

The result is an OFDM block of length N(=2* N) complex QAM symbols. The first N

QAM symbols represent the real frequency portion of the frequency spectrum and the

remaining N QAM symbols represent the imaginary frequencies in the spectrum. Then

upon application of the IFFT to each block of length N complex QAM symbols, a block

of length N real time domain samples is generated which are converted to serial in

preparation for transmission.

11

2. Guard Time and Cyclic Extension

One of the major advantages of OFDM is its robustness to multipath propagation

and the associated delay spread that occurs. The delay spread is the time difference of

arrival of transmitted signals that follow different paths from the source to the receiver

and therefore have different propagation times.

Dividing the input data stream into N subcarriers reduces the symbol duration by

1/ N . To combat the effects of ISI a guard time is incorporated into each OFDM symbol.

The duration of the guard time is chosen to be at least as long as the maximum expected

delay spread. The maximum expected delay spread is the time difference of arrival

between the first and last transmitted signals to arrive at the receiver. This ensures that

multipath receptions of one symbol do not interfere with the receptions of the following

symbol.

One possibility for the guard time is to transmit no signal. However this would

result in ICI, which is crosstalk between carriers that results from a loss of orthogonality.

Recall that orthogonality means that all subcarriers have an integer number of cycles in

the FFT period with adjacent subcarriers having a number of cycles that differ by one.

Integration of a subcarrier which has a non-integer number of cycles in the FFT interval

will result in a loss of orthogonality and therefore signal degradation due to ICI. This

effect is illustrated in Figure 2.5 below.

Figure 2.5 shows 2 subcarriers with the second subcarrier delayed. Note that the

guard time consists of a zero signal. Also note that subcarrier one has exactly two cycles

within the FFT interval while subcarrier two, due to its delay, does not contain an integer

number of cycles within the FFT interval which will cause ICI as discussed above and

indicated in Fig. 2.5. The shaded portion of subcarrier 2 indicates the region of the signal

that causes ICI. One can see that if the subcarriers were extended cyclically in the guard

interval that there would be an integer number of cycles in the FFT interval regardless of

the multipath delay of subcarrier 2. The cyclic extension is implemented by simply

12

extending the length of each OFDM block following the IFFT operation by an amount

greater than or equal to the maximum expected delay spread.

Figure 2.5. Multipath Effect with zero signal in the Guard Time [after Ref. 4].

Figure 2.6 illustrates the cyclic extension of the subcarriers in the guard interval.

The benefit of using a cyclic extension in the guard interval is shown in Figure 2.7, which

shows a 2 ray multipath environment with the amplitude of the second ray half the

amplitude of the first ray. The second ray arrives after the first ray but its delay spread is

less than the duration of the guard interval thus there is no ISI.

13

Figure 2.6. OFDM symbol and subcarriers with cyclic extension in the guard interval

[after Ref. 4].

 In addition, it can be seen that there are an integer number of cycles for rays

within the FFT integration time which maintains the orthogonality of the subcarriers and

prevents ICI. The subcarriers in Fig. 2.7 are BPSK modulated. Therefore only two

possible phases are possible and they differ by 180 degrees. The phase shifts that result

are indicated in the figure. Note that the OFDM receiver would actually see the

summation of all the received paths but the subcarriers are shown separately for

illustration purposes.

14

Figure 2.7. OFDM Signal with cyclic prefix, 3 subcarriers, 2 ray multipath

environment [after Ref. 4].

 As discussed above, the maximum delay spread must not exceed the guard

interval incorporated in the OFDM signal or ISI and a loss of orthogonality will result

causing ICI. Van Nee and Prasad [Ref. 4] show that with the delay spread greater than the

guard interval by less than about three percent, the signal interference is acceptable but at

around 10% delay spread excess the interference is unacceptable for communication

purposes. However OFDM is still significantly more robust to delay spreads that exceed

the value for which the system was designed relative to that for single carrier systems as

error propagation causes abrupt performance degradation in single carrier systems [Ref.

4].

15

B. CHANNEL ANALYSIS

In general communication systems, the input is considered to be the transmitted

signal and the output is the received signal. The received signal is the transmitted signal

modified by the channel and corrupted by additive noise. The channel is usually band

limited and assumed to be linear. It may be either time varying or time invariant. This

concept is illustrated in Figure 2.8 below, where x(n) is the input signal, y(n) is the

output signal, h(n) is the channel impulse response and w(n) is additive gaussian noise.

Figure 2.8. Basic Communication System.

In OFDM, each of the N subchannels is transmitted with its own carrier. Consider

an OFDM symbol defined as





















=

)(

)(
)(

2

1

kX

kX
kX

X

N

k M . (2.5)

where k refers to the OFDM block or symbol. As discussed above, Xk must be modified

to be conjugate symmetric prior to applying the IFFT. Therefore Xk becomes

16



















=

)(

)(
)(

2

1

kX

kX
kX

X

N

k
M . (2.6)

where N = 2* N . The IFFT then modulates the N subcarriers resulting in the real time

domain signal xk ,

[]


















==

)(

)(
)(

2

1

kx

kx
kx

XIFFTx

N

kk
M . (2.7)

The channel is assumed to have a finite impulse response of length L. Therefore a

cyclic extension of length L is applied to the OFDM symbol xk. The OFDM signal

becomes

.

(2.8)

The output from the channel is the convolution of the channel impulse response

with the input signal. Written as an equation this is

17

() () ()nhnxny kk ⊗= . (2.9)

where ⊗ represents circular convolution and yk(n) is the kth received OFDM block. It is

well known that for continuous time signals the linear convolution in the time domain is

equivalent to multiplication in the frequency domain. In order for this to hold in discrete

time one of two conditions must be met. Either the block length N must be infinite or at

least one of the convolved sequences must be periodic with period N. Observe that the

input OFDM signal is periodic with period N due to the application of the cyclic

extension. Therefore the received frequency domain signal is the product of the input

OFDM frequency domain signal and the frequency response of the channel. In equation

form the kth received OFDM symbol, with the subscript k omitted for simplicity, is

NiforXHY iii K2,1 == . (2.10)

where the subscript i refers to the subcarrier. Note that the use of the cyclic prefix reduces

the achievable data rate by a factor of LN
N

+ . However for most applications N>>L so

the loss is negligible relative to the identified benefits of using the cyclic prefix. Most

OFDM systems use the cyclic prefix [Ref. 5 and 6].

The received signal is

.

(2.11)

18

As indicated in Eq. 2.11 the last N values of yk are the convolution of the OFDM

input signal with the channel impulse response. Therefore the received QAM symbols in

the kth block are written as Eq. 2.12 where the last N QAM symbols are the complex

conjugate of the first N QAM symbols and are discarded in the receiver.



















+



















=



















=



















=

3

2

1

22

11

2

1

2

1

W

W
W

XH

XH
XH

y

y
y

FFT

Y

Y
Y

Y

NNNN

k
MMMM (2.12)

Therefore, the received QAM symbol for the ith subchannel and the kth block can

be expressed as

NiforWXHY ikiiki K2,1 ,, =+= (2.13)

where H is defined as





























=



















=

0

0
)(

)2(
)1(

2

1

M

M

M
Lh

h
h

FFT

H

H
H

H

N
. (2.14)

and h(n) is zero padded to length N in taking the IFFT. As a result the effect on the

channel is that it is also divided into narrow subchannels corresponding to the subcarriers.

For large N , the subchannels are very narrow and there is negligible change in iH and

19

iH∠ versus frequency. In other words the frequency selective fading that may be

present is eliminated. Subchannel independence can be shown provided the additive noise

is Gaussian(whether the noise is colored or not) [Ref. 3]. This result is illustrated in Fig.

2.9 below.

The rectangles represent the subchannels that are used by the subcarrier bands.

Each subchannel is assumed flat for large N. In Fig. 2.9, only 11 subcarriers exist

however in practice the number of subcarriers is typically between 500 and 2000. With

this in mind one can see that the frequency response within each of the subchannels

would be flat as the width of the subchannel would be drastically reduced.

Figure 2.9. Subchannel Decomposition of Channel Frequency Response.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

III. OFDM SIMULATION MODEL

The development of a computer-based simulation of an underwater OFDM

communication system is the primary thrust of this thesis. The model simulates most of

the significant hardware that would exist in an actual system. This chapter describes the

details of the model and the theory behind the methods applied. The intent is not to

exhaustively model every component in an actual system but to model those components

and features of a real system that contribute the dominating characteristics of the

system’s performance. It is also understood to be unfeasible and foolish to attempt to

develop a model from scratch that will have the ability to experiment with every possible

design and operating feature of the system. With that in mind, the model was developed

to be comprehensive enough to explore some of the basic specifications common to any

communication system immediately but then to also provide a test bed upon which

further modeling and experimentation could take place.

A. METHODOLOGY

The development of each block in the model followed essentially the same path.

First the topic of interest was explored in the literature to the extent required. The extent

of literature research was a function of the number of choices available to accomplish the

task, the experience of this author in the subject and the relative importance of the block

to the entire model. For example, the modulation and demodulation blocks were only

mildly researched while the topic of forward error correction was researched much more

extensively. Figure 3.1 provides a block diagram of the entire simulation.

22

Figure 3.1. OFDM Simulation Block Diagram.

23

B. TRANSMITTER

The transmitter covers all aspects of signal processing and transmission from

information signal development to Quadrature Amplitude Modulation (QAM), to Double

Side Band Suppressed Carrier (DSBSC) modulation of the signal. Each of the transmitter

blocks of Fig. 3.1 is discussed in the following numbered subsections.

1. OFDM Parameter Determination

In designing a communication system there are several parameters of interest that

must be determined. The final design will be a compromise between conflicting

requirements to achieve the optimal performance. Parameter determination is performed

in the simulation by the Matlab function parameters.m contained in Appendix C. In

general there are three main parameters to determine: bit rate, R, channel delay spread,

tds, and bandwidth, W. Delay spread is a function of the channel and therefore represents

the opening argument in designing the system. The OFDM system must be designed such

that the tolerable delay spread of the system is greater than the delay spread of the

channel to avoid signal degradation. Therefore the guard time, tg, is typically two to four

times the maximum expected delay spread. That is,

dsgds ttt ∗≤≤∗ 42 . (3.1)

The delay spread for the underwater acoustic sound channel is a function of but

not limited to bottom type, transmission range, transmitter and receiver depths and

frequency band. Coatelan and Glavieux [Ref. 1] report measured delay spreads in Table

3.1 below. The table identifies the transmission range between the receiver and the

transmitter, the seafloor composition and the associated tds measured.

24

Bottom

Type

Transmission

Range (m)

Delay Spread

(msec)

Rocky < 1000 < 10

Sludgy 1500 – 2500 <10

Sandy 1500 – 2500 > 20

Unknown 1430 ~20

Table 3.1. Typical Delay Spread Values.

The next step is to determine the OFDM symbol duration. The OFDM symbol

duration is the sum of the cyclic prefix duration and the FFT interval duration. Since the

signal in the cyclic prefix does not contain any new information it is desirable to have the

FFT interval duration much greater than the guard time to maximize the achievable bit

rate. However there is a limit. As T increases, the subcarrier spacing, scf∆ , decreases for

a given bandwidth. Smaller subcarrier spacing results in greater sensitivity to phase errors

and frequency offset. In practice the symbol duration is typically 5 or more times tg,

therefore

gtT *5≥
 . (3.2)

For channels with frequency selective fading, smaller scf∆ values are preferred

as this ensures the subchannel frequency response is flat. Conversely, for channels with

large Doppler spreading characteristics larger scf∆ values are better.

Figure 3.2 below presents correlator output results measured by Coatelan and

Glavieux [Ref. 1]. The results in Fig. 3.2 correspond to the 1430 m acoustic channel of

25

Table 3.1 with a sludgy seafloor and a depth of 90 m. Note that the delay spread in Fig.

3.2 is approximately 20 msec and the first path received is not necessarily the most

energetic one [Ref. 1].

Figure 3.2. Measured Underwater Acoustic Channel Impulse Response [from Ref. 1].

With the guard time and symbol duration established, the number of subcarriers

N can be determined. There are two approaches that can be taken. The first is starting

with a known bandwidth constraint. In this case the number of subcarriers is simply the

available bandwidth, W, divided by the subcarrier spacing, therefore

scf
WN
∆

=
. (3.3)

The other approach, which is the one used in the simulation, is to start with a

desired bit rate, R. Then the number of subcarriers is simply R divided by the number of

bits transmitted by each subcarrier, bsc. That is,

26

scb
RN =

. (3.4)

a. Example Calculation

Suppose that a system is to be designed that would provide a 10 kbps data

rate and the maximum expected delay spread for the acoustic channel of interest is 27

msec. That is,

10=R kbps

27=dst msec

let () 1082744 === dsg tt msec

let () 64810866 === gtT msec

Assume that the system is capable of transmitting 6 bits per subcarrier,

which corresponds to 64-QAM, then

1667
6

310 ≅== E
b
RN
sc

 subcarriers

However since the QAM symbols on each of the subcarriers will be

modulated using the IFFT, it is computationally more efficient to have the number of

subcarriers equal to a power of two. Therefore N is set to 2048 subcarriers but only 1667

of the subcarriers have non-zero values with the remaining subcarriers providing

oversampling to avoid aliasing. In essence the signal itself is unaffected and changing N

only affects the internal signal processing efficiency. Next the FFT interval duration is

calculated as,

540108648 =−=−= gFFT tTT msec

27

Another requirement is that there be an integer number of samples within

both the FFT interval, TFFT, and the entire OFDM symbol, T, in order to maintain

orthogonality of the subcarriers. For this example there must be 2048 samples within the

FFT interval. The FFT sampling rate, Fs,FFT, is then,

793.3
540
2048

, ≅==
FFT

FFTs T
NF kHz

However the number of samples within the OFDM symbol interval, T, is,

6.2457540793.3, =∗=∗= TFn FFTsT

which is not an integer. Therefore the subcarriers will not be orthogonal and signal

degradation will occur. The remedy is to adjust the sampling rate slightly. The sampling

rate is increased to achieve an integer number of samples within the FFT interval and the

OFDM symbol interval. For this example Fs,FFT becomes 3842.6 Hz, which yields

249036486.3842, =−∗=∗= ETFn FFTsT samples

207535406.3842, =−∗=∗= ETFn FFTFFTsFFT samples

41531086.3842, =−∗=∗= EtFn gFFTsg samples

where FFTT nn , and gn are the number of samples in the OFDM symbol interval, the FFT

interval and the guard interval respectively. Note that the OFDM symbol is oversampled

by increasing the sampling rate since there are 2075 vice 2048 samples within the FFT

interval. Synchronization, which will be discussed in the receiver section, will determine

which of the 2075 samples in the FFT interval are to be used for signal reconstruction. As

a result of changing the sampling rate,

5330.0
,

==
FFTs

FFT
FFT F

nT sec

115.0
,

==
FFTs

g
g F

n
t sec

28

and finally,

876.11 ==∆ −
FFTsc Tf Hz

0264.2=∆∗= scfNW kHz

2. Signal Generation

In underwater communication several possible data forms may be transmitted

including video, voice and text format messages. For the simulation, voice data in .wav

format is used as the information signal. Voice data was chosen as it requires an analog

signal to be converted to binary format via sampling, quantization and decimal to binary

conversion. Once the data is in binary form the original form of the data is irrelevant to

the OFDM system. Figure 3.3 presents the information signal used in the simulation. The

upper plot is the discrete time signal. The sampling rate of the analog voice signal is

11.025 kHz and the data is quantized using 8 bits per sample. The lower plot is the

frequency spectrum of the transmitted signal.

Figure 3.3. Information Signal.

29

3. Quantization

The sampled information signal is then quantized using uniform quantization. The

level of quantization is adjustable but 8-bit quantization is primarily used in the

simulation which results in 256 quantization levels. Quantization is performed by the

Matlab function quantization.m contained in Appendix C.

The output of the quantizer is a stream of decimals from 0 to M-1 where M is 2bits

and bits is the number of bits per binary digits per quantization level. The decimal value

corresponds to the quantization level for which the sampled value of the information

signal was nearest. The quantizer also outputs a codebook that identifies the quantization

level corresponding to the decimal value for signal reconstruction. Figure 3.4 clarifies the

quantization process with a simple 2-bit example.

Figure 3.4. Quantization Illustration.

30

4. Decimal to Binary Conversion

Decimal to binary conversion is performed by the Matlab code

binary_conversion.m contained in Appendix C. The process involves straightforward

conversion of a base 10 integer to the corresponding base 2 representation.

5. QAM Buffer

QAM modulation involves the mapping of bits to a QAM constellation. The size

of the constellation, Q, is a function of the number of bits per QAM symbol.

qQ 2= (3.5)

In general the number of bits per QAM symbol will not be the same as the

number of bits per quantization level. Therefore it is necessary to buffer the bits prior to

mapping to a QAM constellation. The Matlab code qam_buffer.m contained in Appendix

C performs the buffering operation. This involves converting the bit stream from the

decimal to binary conversion process into a matrix of bits. Each row in the matrix

represents a QAM symbol in binary form and the number of columns per row is q. The

number of rows is a function of the size of the data to be transmitted. Since the matrix

must be square in order to convert all bits to a QAM symbol, up to q-1 zeroes are added

to the data.

6. Reed Solomon Encoder

Due to the multipath, frequency selective fading nature of the underwater acoustic

sound channel the subcarriers will arrive with different amplitudes. Some subcarriers may

experience severe enough fading that they are lost entirely. As a result the bit error for

those subchannels will approach ½ and will dominate the BER performance of the entire

system[Ref. 4].

Forward error correction coding is used to combat the severe fading affect. The

coding is applied across all subcarriers such that the errors of the weak subcarriers can be

31

corrected. The performance of the system is then a function of the average received

power vice the received power of the weak subcarriers [Ref. 2].

In the simulation block coding is applied, specifically Reed Solomon block

coding which is performed at the symbol level. Coding involves the addition of redundant

symbols to increase the Hamming distance between symbols. In general a message of

length k is added thereby creating a code word of length n. The coding rate r is defined as

k/n. The minimum Hamming distance, dmin, is the minimum number of different symbols

between any 2 code words.

For a given code with an associated dmin, t errors can be corrected by the code

where t is







 −≤

2
1mindfloort . (3.6)

where the floor function denotes rounding down to the nearest integer[Ref. 2]. The

minimum Hamming distance has an upper bound defined by the number of redundant

symbols as

1min +−≤ knd . (3.7)

In terms of bit level codes, only repetition and single parity check codes reach this

upper bound. Reed Solomon is a class of non-binary codes that reach this upper

bound.[Ref. 4]

 Reed Solomon codes are defined for code words of length n symbols associated

with m bits per symbol where

12 −= mn . (3.8)

The required message length, k, is related to message and the number of bits per

symbol as

min2 dk m −= . (3.9)

32

Associated with the number of symbol errors the code can correct is the number

of bits the code is capable of correcting, tb, defined as







 −∗≤

2
knfloormt b . (3.10)

Equation 3.10 is true provided the bit errors occur within the maximum

correctable number of symbol errors. For example consider a code designed to be able to

correct 3 symbol errors with 4 bits per symbol. The code will not be able to correct an

arbitrary occurrence of 4 bit errors as they may occur in 4 different symbols. As a result

Reed Solomon codes are useful for ‘bursty’ error channels such as the multipath,

frequency selective fading underwater acoustic channel since the errors are concentrated

in a few of the subcarriers that are deeply faded.

The Reed Solomon encoder receives QAM coded decimals in serial format from

the QAM buffer. The vector of decimal symbols must be reordered to a k column square

matrix. Therefore subsymbols may need to be added to create a square matrix, in which

case they are added to the beginning of the vector.

7. Block Interleaver

The frequency selective fading causes varying amplitudes of the subcarriers

where some of the carriers will be unreliable due to severe fading. As a result burst errors

vice random errors will occur over the weak subcarriers. Most FEC codes are designed

for random errors not burst errors[Ref. 4]. The transmitter permutes the data such that the

adjacent symbols are separated by several blocks after interleaving. The receiver

performs the inverse operation.

As discussed Reed Solomon codes are designed to correct a certain number of

errors per block. The interleaving must distribute the subsymbols across several blocks

such that the bursts caused by the severely faded subcarriers appear random in the

receiver after de-interleaving. Therefore rather than having bursts of symbol errors within

33

each block corresponding to the severely faded subcarriers, the errors within each block

will be randomly distributed which is optimal for the Reed Solomon decoding algorithm.

The interleaving process is essentially a reordering of the data and is performed

by the reshape.m command in Matlab.

The input data to the interleaver is an n column matrix where the data is ordered

in time sequence across the rows. Therefore the sequential order of the data in the matrix

begins at row 1, column 1, then proceeds across row 1 to column n, then to row 2,

column 1 etc.

The reshape function takes the data column wise such that the subsymbols are

interleaved in frequency. The process is illustrated in Fig. 3.5 with n equal to 7 and k

equal to 3. In the simulation the length of the input vector A is on the order 104, n is at

most 64, and the number of active subcarriers per OFDM symbol is typically less than

103 . Therefore the interleaving is over several blocks as desired.

34

Figure 3.5. Reed Solomon Encoder and Block Interleaver.

8. QAM Modulator

QAM Modulation maps the QAM coded decimals representing points on a QAM

constellation into real and imaginary components. The real component is called the in-

phase component, and the imaginary component is called the Quadrature component of

the signal. The mapping from decimal to real and imaginary components is illustrated in

Fig. 3.6 below.

35

Figure 3.6. 16 QAM Constellation with In-phase and Quadrature Mapping.

The Cartesian coordinates of in-phase and Quadrature components are converted

to polar coordinates prior to creating the OFDM symbol blocks. The QAM Modulator

creates the frequency spectrum of the signal using the complex QAM symbols now in

magnitude and phase components. The goal is to generate blocks of complex QAM

symbols such that applying them to the IFFT operation results in a real signal. The IFFT

is given by

∑
=

−
=

N

i

in
N

j

in eX
N

x
1

21 π

. (3.11)

where N is the length of the DFT. The discrete time signal xn will be real provided the

following condition of conjugate symmetry holds for the frequency domain signal Xi,

36

{ }
{ }













+=

+=

=
=

=

∗
+−

+

+

NNiX

NiX

iX
NiX

X

iN

N

N

i

i

K

K

2

1 Im

1 Re
2

1

1

1

. (3.12)

The OFDM blocks are then formed by sequentially filling the active subcarriers in

each block with the complex QAM symbols.

In the parameter determination algorithm the number of active subcarriers, actN ,

and the number of zero subcarriers, zerN , are determined. The zero subcarriers are

required to prevent aliasing from signal power near the Nyquist sampling rate which

corresponds to N . The number of data blocks, Nblock required to transmit a given amount

of data is given by the number of complex QAM symbols to be transmitted divided by

the number of active subcarriers rounded up to the nearest integer. As a result of

rounding up to get the Nblock, there is a surplus of active subcarriers relative to the number

of QAM symbols to be transmitted. In future work this surplus could be filled with

protocol information. The surplus subcarriers are filled with zero symbols in the

simulation.

The original design placed the required number of zeroes at the beginning of the

first block. However, this was found to be a poor choice as it results in an uneven power

distribution across the frequency spectrum. The current design spreads the zero symbols

across the frequency band used for transmission.

The number and location of zero symbols to be inserted are determined according

to

iQAMactblock NNNN ,0 * −= . (3.13)

where 0N is the total number of zero symbols to be inserted and iQAMN , is the total

number of complex QAM symbols to be transmitted. In general 0N will not be a multiple

of Nblock, therefore the number of zero symbols inserted will not be the same for each

37

OFDM block. The following method is used to determine the number of zeroes inserted

into each OFDM block.

colblockcol

block
col

ZNNZ
N

NfloorZ

*)1(01,

0

−−=









=

 (3.14)

where 1,colZ is the number of zero symbols inserted into the first OFDM block and Zcol is

the number of zero symbols inserted into the remainder of the OFDM blocks. The

process is illustrated in Fig. 3.7 below.

Application of Eq. 3.12 to the N QAM symbols in each of the OFDM blocks

results in OFDM symbols which are conjugate symmetric. The conjugate symmetry will

ensure that each of the OFDM blocks of complex QAM symbols will result in N(N2=)

real samples upon application of the IFFT. The result is shown in Fig. 3.8 with the same

parameters as introduced in Fig. 3.7. The symbol ∗ in Fig. 3.8 refers to complex

conjugation.

38

Figure 3.7. QAM Modulator.

The QAM Modulator also creates the pilot blocks which are used for channel

estimation and equalization. Although the theory behind channel estimation and

equalization will be discussed later, the creation of the pilot blocks is presented here.

In simple terms the pilot blocks are symbols known to the receiver that are used to

estimate the channel frequency response. In the simulation two pilot blocks are

implemented and make up the first two OFDM symbols that are transmitted. The pilot

blocks are made up of pseudo random complex OFDM symbols which are determined as

follows.

The data used to create the pilot blocks comes from the data blocks illustrated in

Fig. 3.7. Each complex QAM symbol is drawn from the data blocks and placed in the

first pilot block as follows,

39

()




=
+==

1,N ,N c
1,N ,1N r),(,

blockblock
1,

K

Kactact
hp forcrXrcX

.(

3.15)

Equation 3.12 is applied to the first N complex QAM symbols creating a length

N block of complex QAM symbols that is conjugate symmetric. Reversing the order of

the first pilot block creates the second pilot block.

The final effect of the QAM Modulator is that by adding the complex conjugate

counterpart to each of the N complex QAM symbol blocks the input data is effectively

interpolated. Typically interpolation involves the insertion of one or more zeroes in a

time sequence with the effect of increasing the sampling rate and ‘compressing’ the

frequency spectrum of the sequence. In the QAM Modulator the interpolation constant is

2 as the number of data points is doubled. The result is that the sampling rate, Fs,FFT, is

doubled. Therefore the new sampling rate in the FFT interval is,

FFTss FF ,
' 2= (3.16)

40

Figure 3.8. QAM Modulator with entire Complex OFDM Symbol Structure.

41

9. IFFT/OFDM Modulator

The IFFT is used to modulate the complex QAM symbols to the subcarrier

frequencies. In other words each subcarrier is modulated by the corresponding complex

QAM symbol.

The IFFT can be expressed as

() () NnforWkX
N

nx kn
N

N

K2,1 1
1

== −∑ (3.17)

where

N
j

N eW
π2

−
= . (3.18)

The IFFT can also be expressed in matrix form as

 NNN XW
N

x ∗= 1
. (3.19)

where NN
N CW ×∈ and MN

N CX ×∈ therefore MN
N Rx ×∈ for NX conjugate symmetric

as defined in Eq. 3.12.

Note that C refers to the complex subspace and R refers to the real subspace and

the M refers to the number of columns in the matrix. In the simulation M is Nblock. The

output from the IFFT is a matrix of real samples with each column representing a

baseband real OFDM symbol. Columns 1 and 2 are the pilot symbols and the remaining

columns contain the information to be transmitted.

42

10. Cyclic Extension

The need for the cyclic extension was discussed in Chapter II. The

implementation of the cyclic prefix in the simulation is quite simple. First the required

length of the cyclic extension is determined by

)('
sg FtroundL ∗= (3.20)

where L is the number of discrete time samples that must be prefixed to each real OFDM

symbol.

Recall that Nx from the IFFT is an N x Nblock matrix of real time samples

therefore the cyclic extension results in a matrix that is N+L x Nblock with the first L

samples being identical to the last L samples in each column. Therefore the resulting

matrix is

()
()

22,1

),(

),2(
),1(
),(

,
,1

)(, +=
































−

+−

= block

N

N

N

N

N

N

cN Nifor

iNx

ix
ix
iNx

iLNx
iLNx

ix K

M

M

.

(3.21)

The columns of the matrix of Eq. 3.21 represent the real baseband OFDM signals

that are to be transmitted.

43

11. Parallel to Serial Converter

The parallel to serial converter simply reshapes cNx , to a vector of length

(Nblock+2)*(N+L). In the simulation, round-off error causes the output from the IFFT to

contain small imaginary components. Therefore the real part of the serial time samples is

taken.

12. Double Side Band Modulator

After serial conversion the signal is baseband and must be modulated to the

desired transmission band. The modulation is performed in discrete time to take

advantage of the ability to use high order digital filters.

In order to prevent aliasing the signal must be interpolated. The interpolation

factor, I, is determined as

()
'

2

s

c

F
WfI +=

 (3.22)

where fc is the carrier frequency.

Interpolation is performed by inserting I-1 zeroes between each sample. The

interpolated signal can be expressed as

() ()




 ±±=

=
otherwise 0

2,,0 IImI
mx

my
 (3.23)

where x(n) is the baseband signal and y(m) is the baseband signal following interpolation

by the factor I. The increased sampling rate is then

'
mod, ss IFF =

. (3.24)

44

Figure 3.9 illustrates the effect of interpolation on the signal. The signal of Fig. 3.9 is for

a 5 kbps transmission rate using 16-QAM. There are 1024 subcarriers with 750 active

subcarriers which results in a bandwidth, W, of 1.501 kHz. The baseband signal is

interpolated by a factor of 4 as shown in the lower graph of Fig. 3.9.

Figure 3.9. Interpolated Baseband OFDM Signal.

The interpolated signal, y(m), must be filtered to remove the unwanted spectral

energy above the OFDM signal bandwidth, W, as seen in Fig. 3.9. A digital Finite

Impulse Response (FIR) filter is used. The FIR filter is designed using a Hamming

window with the following parameters.

45

()

()

1)N is tscoefficien of(number order filter 8

frequency digital band stop2375.1

frequency digital band pass 22.1

h

mod,
s

mod.

+≡
−

=

≡=

≡=

ps
h

s

s
p

N

F
W

F
W

ωω
π

πω

πω

The filter parameters are shown for a general FIR filter designed using the

Hamming window method in Fig. 3.10. The variable ω , is the digital frequency defined

as

sF
fπω 2=

 (3.25)

where f refers to the analog frequency and Fs is the sampling rate used to sample the

continuous time signal. The output of the FIR filter is defined as,

() () ()nynhny f ∗= (3.26)

where h(n) is the impulse response of the FIR filter and symbol * refers to linear

convolution.

Figure 3.11 shows the effect of the FIR filter on the interpolated baseband

spectrum shown in the lower graph of Fig. 3.9. The interpolated baseband frequency

spectrum is repeated in the upper graph of Fig. 3.11. The lower graph shows the

frequency spectrum of the interpolated baseband frequency spectrum following filtering.

The transmission parameters are the same as for Fig. 3.9. The frequency response of the

FIR filter is shown in Fig. 3.12.

After interpolation and filtering, the signal is ready for modulation to the desired

carrier frequency. The modulation is performed by discrete time domain multiplication

with a cosine modulating signal. The modulating signal is defined as

46

() 









=

mod,

2cos
s

c

F
nfnm π

 (3.27)

where n is defined from 1 to the number of samples contained in the signal to be

modulated, yf(n).

Figure 3.10. General FIR Filter (Hamming Window Design).

47

The frequency spectrum of the cosine modulating signal consists of dirac delta

functions at the absolute value of the carrier frequency on both the real and the imaginary

frequency axis. The modulation is expressed in discrete time as

() () ()nynmny f×=mod . (3.28)

Figure 3.11. Interpolated Baseband OFDM Signal following FIR Filter.

The effect of modulation on yf is shown in Fig. 3.13. The upper graph in Fig. 3.13

repeats the frequency spectrum of the baseband OFDM signal prior to interpolation. The

center graph is the frequency spectrum of the modulating signal which illustrates the

dirac delta functions at the carrier frequency. Finally the lower graph is the frequency

spectrum of the modulated OFDM signal. This is the form of the signal that is transmitted

through the channel. In practice the signal would be applied to a Digital to Analog

converter (DAC) and an associated low pass filter (LPF). For the simulation these

48

components are assumed to be a part of the channel transfer function. Similarly, an

Analog to Digital Converter (ADC) and associated LPF would be used in practice to

return the signal to discrete time following transmission through the channel. These are

also assumed to be included in the channel transfer function.

Figure 3.12. FIR Filter Frequency Response.

49

Figure 3.13. Modulation Signals.

The DSB Modulator completes the transmitter for the simulation. The next effect

on the signal in practice would be the channel. However in the simulation the channel

transfer function is not applied until after demodulation in the receiver for reasons that

will be discussed later.

C. MMPE CHANNEL MODEL

MMPE is the Monterey-Miami Parabolic Equation model. It provides an

approximate solution to the Helmholtz equation based on the efficient split-step Fourier

(SSF) marching algorithm. The Helmholtz equation is derived from the solution of the

linear, three-dimensional, lossless, homogeneous wave equation describing the

propagation of small amplitude acoustic signals in an ideal fluid [Ref. 6]. The velocity

potential is assumed to have a time-harmonic solution, or in other words, the acoustic

field is generated by a continuous wave source. The value of a time harmonic field at any

50

point and time in space is a function of only one frequency. Time harmonic solutions are

important because solutions to the wave equation with arbitrary time dependence can be

found through application of Fourier transform techniques to the time harmonic solutions

[Ref. 7].

The following development follows the work by Houdeshell. [Ref. 8] The linear

wave equation is given in Eq. 3.29 with the complex acoustic pressure field given as Eq.

3.30,

01
2

2

2
2 =

∂
∂+∇

t
P

c
P

 (3.29)

() () tjerptrP ω−= , (3.30)

where P is the complex acoustic pressure field and p is the amplitude of the acoustic

pressure. The Helmholtz equation is then

() () 02

2
2 =−∇ rp

c
rp ω

. (3.31)

A cylindrical coordinate system is used in the solution. Therefore the position

vector, r , is a function of range, r, depth, z, and the azimuthal angle, φ . The azimuthal

dependence of the acoustic field is minor and ignored in the solution. Therefore p is a

function of range and depth only, i.e. p(r,z).

Let the complex acoustic pressure be defined as

() tjezrptzrP ωω −= ,),,((3.32)

and

() ()zru
r

zrp ,1, = (3.33)

51

where the
r

1 term accounts for azimuthal spreading and u(r,z) defines the two

dimensional acoustic pressure field. Substituting Eqs. 3.32 and 3.33 into the Helmholtz

equation yields the uncoupled azimuthal approximation, which is

0
4

1
2

22
2

2

2

2

=







++

∂
∂+

∂
∂ u

rk
nk

z
u

r
u

o
o . (3.34)

The following operators, denoted by the subscript, op, are defined as

 rP op ∂
∂= (3.35)

and

1++= εµopQ (3.36)

where

12 −= nε (3.37)

and

2

2

2

1
zk o ∂

∂=µ . (3.38)

Then Eq. 3.32 can be rewritten as

() 0222 =+ uQkP opoop . (3.39)

If u is defined as

Ψ= − 2
1

opQu (3.40)

then the outgoing wave can be shown to satisfy [Ref. 9]

52

Ψ=
∂
Ψ∂− −

opo Q
r

jk 1
 (3.41)

which is the fundamental equation of all PE models. The numeric solution algorithm is

developed by breaking the acoustic field into a slowly modulating envelope or field

function and a rapidly varying phase term. The field function, ()zr,ψ , is defined as

rjk oeψ=Ψ (3.42)

which can be related to the acoustic pressure as

() () rjk
op

o
op

oezrQ
r

RPzrp ,, 2
1

ψ−= . (3.43)

The parabolic equation for the field function is

ψψψψ
opoopoo HjkQjkjk

r
−=+−=

∂
∂

 (3.44)

where

opop QH −= 1
. (3.45)

The solution to the field function can then be marched outward in range according

to

() () ()rrrr ψψ Φ=∆+ (3.46)

where the propagator, ()rΦ , which is a unitary operator, steps the solution out in range.

The split-step Fourier method is used to apply the unitary operator. The operator, Hop, is

separated by using the wide-angle approximation [Ref. 10]of the square root operation

such that

53

opopop UTH +≈ (3.47)

where

()1−−= nU op (3.48)

and

() 2

2

22
111

zk
kT

o
op ∂

∂+−=
. (3.49)

Therefore the propagator may be expressed as [Ref. 11]

() () ()rU
r

jkrTjkrrU
r

jk opoopoopo eeer 22
∆

−∆−∆+
∆

−
=Φ (3.50)

The PE/SSF method applies the operator

opo Trjke
ˆ∆−

 (3.51)

in the kz domain where the operator, opT̂ , is defined as

2

11ˆ








−−=

o

z
op k

kT . (3.52)

The following convention is used for the FFT

54

() (){ }

() (){ }zIFFTk
and

kFFTz

z

z

ψψ

ψψ

=

=

. (3.53)

Finally, the PE/SSF method is implemented as

() () () () ()




















=∆+
∆

−∆−∆+
∆

−
rzeIFFTeFFTerrz

rzU
r

jkkTrjkrrzU
r

jk opozopoopo , ,
,

2
ˆ,

2 ψψ

.
(3.54)

The MMPE model provides multiple outputs to the user. The primary output for

use with the OFDM simulation is the complex acoustic pressure. The MMPE model used

in the simulation is a 2D model in range and depth since the azimuthal dependence was

neglected thereby omitting the third dimension. The solution is a grid of points from

which the complex acoustic pressure can be evaluated. The complex acoustic pressure

output for a given point in the grid is a function of frequency. The application of this data

to the OFDM signal is discussed in the receiver section covering the application of the

acoustic channel.

The source depth for the shallow water (100 m) acoustic channels was 30 m and

100 m for the deep water (340 m) acoustic channels. The receiver depth varied with the

results of the acoustic channel evaluation. The receiver depth was chosen by determining

the depth with the greatest average acoustic pressure amplitude across the frequency band

evaluated. The sound speed profile (SSP) used for all acoustic channels is from the

Atlantic Ocean just off the eastern coast and is shown in Figure 3.14.

55

Figure 3.14. Sound Speed Profile.

D. RECEIVER

The functional blocks in the receiver were presented in Fig. 3.1. For the most part

the blocks of the receiver simply undo the work of the transmitter to convert the

information back to its original form. Additional blocks in the receiver include the

channel estimation and equalization blocks, additive white gaussian noise (AWGN),

synchronization and bit error analysis.

1. AWGN Addition

The simulation assumes the background noise present in the channel is AWGN.

The signal power is calculated as

56

K

ix
P

K

i
s

∑
== 1

2)(

 (3.55)

where K is the length of the received signal. The noise power to be added is then

calculated as,

1010
SNR
s

n
PP =

 (3.56)

where SNR is the desired SNR in dB. The received signal is then

() () ()nwnxnxr += (3.57)

where x(n) is the noise free signal at the input to the receiver, which is the output of the

transmitter and w(n) is AWGN.

2. DSB Demodulator

The received signal is first demodulated using a cosine signal, as presented in Eq.

3.26, then the demodulated signal is filtered and decimated. The LPF is designed such

that spectral components above the known carrier frequency plus the bandwidth of the

transmitted signal are removed. Then decimation by D is performed to reduce the number

of samples and the sampling rate.

The reader should note that in the current flowchart of the simulation, some

processing of the received signal occurs before the acoustic channel model is applied.

This is because without source or receiver motion the MMPE model can be applied

directly to the complex QAM symbols in each of the OFDM blocks. In reality the

channel effects would alter the signal after transmission and before reception. In future

work source and receiver motion will be modeled. At that point the application of the

57

MMPE model will take place between transmission and reception. Therefore the blocks

such as the DSB Modulator and Demodulator have been left in the simulation even

though they are not essential in the current form.

Signal detection theory is not addressed in this thesis. As such it is assumed that

the signal is detected by some means and the stream of data containing the signal is

processed. The simulation is designed such that the received signal of finite length

contains the transmitted signal of some length less than the length of the received signal.

The information is assumed to be received in an AWGN environment. The DSB

Demodulator demodulates the entire received signal to baseband. The synchronizer is

responsible for identifying where the information lies within the received signal. Only the

portion of the received signal containing information, i.e. the transmitted signal, is

processed in the remainder of the receiver.

The demodulating signal is expressed as

() 









=

mod,

2cos
s

c

F
nfnd π

 (3.58)

where n is defined from 1 to the length of the received signal, xr(n). The demodulated

signal is then the product of the received signal with the demodulating signal, that is,

() () ()ndnxnx rdr ×=, . (3.59)

The signal is baseband and real at this point. Next the signal must be decimated to

reduce the number of samples and the sampling rate by the decimation factor, D. First the

signal must be passed through an antialiasing LPF to remove spectral components above

D
π . The LPF is again designed using the Hamming window method with the following

parameters:

58

()

()

1)N is tscoefficien of(number order filter 8

frequency digital band stop225.1

frequency digital band pass 21.1

h

mod,
s

mod.

+≡
−

=

≡=

≡=

ps
h

s

s
p

N

F
W

F
W

ωω
π

πω

πω

where reference can be made to Fig. 3.10 for the general filter characteristics. The output

of the filter is

() () ()nxnhnx drfr ,, ∗= (3.60)

where h(n) is the impulse response of the LPF and * represents linear convolution. The

final step in the DSB Demodulator is decimation of the signal. Decimation by a factor D

results in the expression

() ()mDxmx frfdr ,, = . (3.61)

The effects of the DSB Demodulator are illustrated in Fig. 3.15. The signal

parameters of Fig. 3.15 are the same as those of Fig. 3.9. The bit rate is 5 kbps using 16

QAM and the decimation factor is D is 4. The baseband bandwidth is 1.501 kHz.

59

Figure 3.15. DSB Demodulator Signal Processing Effects.

3. Synchronizer

In order to demodulate the subcarriers an OFDM receiver must first perform

synchronization. There are two tasks related to synchronization. The first is determining

the location of the OFDM symbol blocks. The second is estimating and correcting for

frequency offset of the subcarriers. In addition coherent receivers also require the carrier

phase of the DSB Modulator to be synchronized. In the simulation the phase of the DSB

Modulator is assumed to be synchronized by the OFDM receiver.

Recall from the discussion on OFDM theory that the subcarriers will remain

orthogonal in the receiver only if the transmitter and receiver use exactly the same

frequencies. If not then ICI will occur. Practical oscillators possess phase noise, which

results in varying subcarrier center frequencies since the frequency is the time derivative

of the phase. In practical systems with non-ideal oscillators this is an unavoidable source

of ICI in OFDM systems. However Van Nee and Prasad [Ref. 4] indicate that this source

60

can be minimized to acceptable levels through a well-designed system. In the simulation

phase noise is not modeled and therefore assumed negligible. The sensitivity of OFDM

systems to phase noise and frequency offset is one of the major disadvantages of OFDM

relative to single carrier systems. In single carrier systems phase noise and frequency

offset degrade SNR but do not produce interference [Ref. 4]. Van Nee and Prasad [Ref.

4] provide a detailed discussion of these two effects in OFDM systems.

Frequency offset is caused not only by phase noise of local oscillators in the

transmitter but also by Doppler shift due to non-zero relative motion between the source

and the receiver. The simulation assumes the transmitter and receiver are stationary.

Therefore frequency offsets are not addressed in this thesis.

While OFDM systems are relatively sensitive to frequency issues they are quite

robust to timing errors. Symbol timing may vary by as much as the duration of the guard

interval, tg, without producing ISI or ICI. However an optimal timing instant exists which

provides for maximum multipath robustness. Any deviation from the optimal timing

instant reduces the delay spread tolerance the system was designed to handle. OFDM

systems attempt to minimize the timing error relative to the guard interval.

The cyclic extension is used to perform symbol synchronization in the simulation.

Recall that the first tg samples received will be the same as the last tg samples for each

OFDM block due to the cyclic extension. Therefore correlation streams of data tg samples

long with streams of the same length but delayed by the duration of the FFT interval will

identify the location of the OFDM blocks.

The synchronization block diagram is presented in [Ref. 4] and modified slightly

for the purposes of the simulation to the form shown in Fig. 3.16.

61

Figure 3.16. Synchronization Flowchart [after Ref. 4].

Recall that tg is the guard time in continuous time and L is the discrete time

number of samples corresponding to tg for the applicable sampling rate. Figure 3.17

illustrates the structure of an OFDM signal in serial form to clarify the cross correlation

used in the synchronizer. Fig. 3.17 identifies the observation intervals of length N+L

which slide over the received signal in discrete time. The first and last L samples in the

observation interval will be the same when the interval falls exactly across an OFDM

symbol labeled as frames in Fig. 3.17. At this point the cross correlation terms will be the

greatest. When the observation interval includes samples from two different frames such

that the first and last L samples are independent the cross correlation function will have a

peak much lower than when the interval is exactly over one frame. In fact in the limit as

the number of samples over which the cross correlation is performed is very large the

ratio of the sidelobe-to-peak amplitude will go to zero [Ref. 4]. Figure 3.18 provides a

realization of the correlation signal identified in Fig. 3.16 for an OFDM signal with six

OFDM blocks where the first two blocks are the channel estimation blocks.

62

Figure 3.17. OFDM Signal Structure with Synchronizer Observation Intervals.

Figure 3.18. Correlation Signal Realization, SNR = 17.413 dB, N=2048, R = 5 kbps.

The peak finding algorithm uses five threshold levels to determine the existence

of peaks in the correlation signal. The threshold levels are adjustable and based on the

maximum value found in the correlation signal. In the realization of Fig. 3.18 the

63

threshold levels are 0.4, 0.45, 0.50, 0.55 and 0.60 of the maximum of the correlation

signal. The algorithm requires that for a value to qualify as a peak it must first define an

inflection point in the correlation signal. Second the value must register as a peak at all

threshold levels. The impulse response and frequency response of the acoustic channel

model applied to the transmitted signal in realizing the correlation signal in Fig. 3.18 is

shown in Fig. 3.19. The impulse response of Fig. 3.19 clearly indicates the existence of

three distinct receptions due to the multipath environment. Also note that the frequency

response of Fig. 3.19 illustrates frequency selective fading and nearly linear phase

response.

Figure 3.19. Acoustic Channel Filter Plots for Realization of Fig. 3.17.

Van Nee and Prasad [Ref. 4] discuss optimal timing by analyzing the correlation

signal power. The idea is to take the samples that lie within the OFDM symbol that also

have the greatest power and therefore the greatest SNR. In the simulation the signal

power is not analyzed since the correlator synchronizer, while computationally intensive,

was very successful at identifying the boundaries of the OFDM symbols. In most cases

the correct symbol boundaries were found to within a few percent error relative to the

length of the cyclic prefix, L. Future work might look at the benefits of using the optimal

timing instant. Additionally, the correlator synchronizer used here is computationally

intensive and a less demanding algorithm would be desirable for practical application. In

64

that case the optimal timing instant would be of greater value as a less intense timing

synchronization method would likely be less accurate. A low complexity

synchronization method that seems to be of value in OFDM is presented by van de Beek

et al.[Ref. 12]. The synchronization is performed by the Matlab functions peakfinder.m

and synchronizer.m contained in Appendix C.

4. Composite Description of Serial to Parallel Conversion through

FFT/OFDM Demodulation

The serial to parallel (S/P) converter takes the reduced length signal from the

synchronizer and converts it to parallel form. The resulting matrix of samples will have

the number of rows corresponding to the block length determined by the synchronizer

and the number of columns will be the number of OFDM symbols found by the

synchronizer. Recall that each peak in the correlation signal corresponds to the start of an

OFDM symbol. The matrix of real time samples from the S/P converter contain the cyclic

prefix which is removed from each OFDM symbol, i.e. column in the matrix, by the

cyclic extension removal block.

The OFDM Demodulator simply performs an N point FFT of the matrix from the

cyclic extension removal block. The FFT can be expressed as

() () NforWnxkX kn
N

N

K2,1k
1

==∑ . (3.62)

The FFT can also be expressed in matrix form as

 NNN xWX = (3.63)

where NN
N CW ×∈ and MN

N Rx ×∈ therefore MN
N CX ×∈ . The resulting matrix of

complex samples represent the transmitted complex QAM symbols. The OFDM symbols

making up each column of the matrix are conjugate symmetric and only the active

subcarriers are of interest for receiving the information in the signal.

65

5. Acoustic Channel Application

The output of the MMPE model used in the simulation is in the form of a complex

transfer function. The transfer function is applied directly to the complex QAM symbols

present after the OFDM demodulator. The generic output from the MMPE model is a

grid of points in depth and range. The desired output is chosen for a given point. The

complex transfer function represents the complex acoustic pressure as a function of

frequency present at the chosen point in the grid.

The transfer function contains values for the frequencies between fc and fc +

scfN∆ . This band represents the frequencies that would lie in the real frequency region

of the baseband signal corresponding to the signal modulated to fc. Recall that only the

active subcarriers carry non-zero signal power and therefore determine the bandwidth of

the transmitted signal. In order to apply the transfer function to the complex QAM

symbols it must be made conjugate symmetric by application of Eq. 3.12. The complex

QAM symbols after application of the transfer function is

HXY ∗= . . (3.64)

where)2(+×∈ blockNNCX and 1×∈ NCH therefore)2(+×∈ blockNNCY . The variable X

represents the matrix of complex QAM symbols after the OFDM demodulator, H

represents the complex transfer function and Y is the output. The .* in Eq. 3.64

indicates array multiplication such that each column of X is weighted by the vector

H . The number of columns in Y and X is 2+blockN due to the 2 blocks of complex

QAM symbols used for channel estimation and equalization.

6. Channel Equalization

The channel equalization scheme simply attempts to invert the effects of the

channel such that the complex QAM symbols after equalization will be the same as those

66

that were generated in the transmitter. The first two OFDM symbols are used to estimate

the channel transfer function. The generation of the channel estimation blocks was

discussed in the QAM Modulator section. The channel estimate is

X
XH r

est =
 (3.65)

where Xr represents the received complex QAM symbols in the channel estimation

blocks, X is the complex QAM symbols present in the QAM Modulator of the transmitter

and Hest is an N by 2 matrix of complex values representing estimates of the magnitude

and phase of the channel transfer function at frequencies corresponding to the subcarrier

center frequencies. Array division is implied in Eq. 3.65. The values of X are assumed to

be known at the receiver. Each row of Hest is averaged to give a vector of values

representing the estimate of the channel transfer function. That is,

() () NrforrHrHrH estest
est ...2,1

2
)2,(1,' =+= (3.66)

In the simulation the estimates of the channel transfer function are performed over

the active subcarriers only rather than over all N as using the zero subcarriers would

result in division by zero in Hest.

Finally the complex QAM symbols are equalized by defining

'
est

r
eq H

XX =
 (3.67)

where the division is array division such that the columns of Xr are weighted by the

inverse of '
estH .

A realization of the channel estimates is shown in Fig. 3.20. The magnitude of the

channel estimate for the two channel estimation blocks and the mean of the two estimates

is plotted versus the FFT bin number which is analogous with subcarrier number or

67

frequency. The plot is discontinuous at high and low bin numbers due to division by zero

that would result where the zero symbols are interspersed to evenly shape the power

distribution as discussed in the QAM Modulator section. The plots are over the active

subcarriers only. Note that Hmean in Fig. 3.20 refers to the mean of the two channel

estimates Hsys(1) and Hsys(2).

Figure 3.20. Channel Estimates, N=2048, 16 QAM, 5 kbps, fc = 6 kHz, 750=actN .

7. QAM Demodulator

The QAM demodulator transforms the received complex QAM symbols to points

on a Q-ary QAM constellation. Therefore the output will be integers from 0 to Q-1.

The first step is to strip the first 1+actN symbols from each block as these are

the symbols that carry the transmitted information. This implies that the receiver knows

the number of active subcarriers. This information is assumed to be contained in protocol

68

information that would be carried as overhead in the transmission system. Recall that the

zero symbols that were added in the QAM modulator are for data management purposes

and could just as well be protocol information. Protocol is not addressed in this thesis but

is assumed to be present in making some assumptions that are required in the receiver.

The zero symbols are removed and the magnitude and phase of each symbol is

determined and converted to Cartesian coordinates. The real and imaginary components

of the received symbols correspond to the in-phase and Quadrature components

respectively. The operation of the QAM Demodulator up to this point is illustrated in Fig.

3.21.

Figure 3.21. QAM Demodulator.

The next step is to map the in-phase and Quadrature components to Q-ary QAM

constellation points. The mapping of constellation points to in-phase and Quadrature

components was explained in the QAM modulator. In that case the constellation point

69

was exact and resulted in integer values for the in-phase and Quadrature components.

However in mapping back to QAM constellation points the in-phase and Quadrature

components will not in general be integer values. Therefore an algorithm is required to

determine the constellation point to which the received symbol most closely corresponds.

This operation is performed by the Matlab function qaskdecomod.m contained in

Appendix C. A 2 by Q matrix containing the in-phase and Quadrature values

corresponding to each point in a Q-ary QAM constellation is created. The in-phase and

Quadrature components of the received symbols are compared to the vectors in the

constellation matrix to determine the constellation point that is nearest to the received

symbol. The received symbol is mapped to this constellation point by its corresponding

integer value. The process is illustrated in Fig. 3.22. The example in Fig. 3.22 is for a

constellation size of 4 for simplicity although 4-ary QAM constellations are not used for

data transmission in the simulation. The error analysis is performed for each received

symbol resulting in a mapping of an integer from 0 to Q-1 for each in-phase and

Quadrature component pair. Therefore the output of the QAM Demodulator is a vector of

integer values of length 0* NNN blockact − .

70

Figure 3.22. Received Symbol QAM Decoding Process.

8. Composite Description of Block De-Interleaving through Error

Analysis

The Block De-interleaver simply undoes the interleaving of data performed by the

Block Interleaver in the transmitter. It is assumed that the receiver knows the code word

length of the Reed Solomon code as the code vector supplied to the deinterleaver is

reshaped into a matrix with n columns in preparation for Reed Solomon decoding.

The Reed Solomon decoder applies an algorithm in the Matlab communications

toolbox, rsdeco.m, in decoding. Recall the code word length is n and the message length

is k. Therefore the input matrix has n columns and the output matrix has k columns where

each row corresponds to a codeword when coded and a message when decoded.

The integers representing QAM symbols must be converted to binary to continue

the signal reconstruction. Each integer is converted to a binary word with q bits where q

71

is the number of bits per QAM symbol. The output of this block is a vector of binary

digits.

The quantization buffer simply reshapes the bit stream to a matrix with eight

columns, since 8-bit quantization was performed in the transmitter. As stated earlier the

level of quantization is adjustable and determined by the variable bits in the transmitter.

In general the bit stream is reshaped to a bits column matrix in preparation for signal

reconstruction.

Signal reconstruction consists of two steps. The first is the conversion of the

binary words of length bits to integers. Second the integer values are mapped to the

corresponding value of the information signal in the transmitter. Refer back to Fig. 3.4

which is the illustration of the quantization process.

The BER is determined by comparing the transmitted and received bit streams.

An error occurs when the received bit is different than the corresponding transmitted bit.

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

IV. RESULTS

The results of the thesis are divided into 2 major sections. The first section

develops the theoretical performance of an OFDM system. The second presents the

results of the OFDM simulation for several combinations of system and acoustic channels

parameters.

A. SYSTEM THEORETICAL PERFORMANCE

The theoretical performance of the system is first analyzed by considering a single

carrier system. An OFDM system is equivalent to a set of independent and ISI free single

carrier QAM systems. Therefore a large part of the analysis of an OFDM system can be

performed by analyzing a single carrier QAM system. The single carrier analysis is

extended to the multicarrier, OFDM, system to complete the analysis.

1. Single Carrier Analysis

The energy per two-dimensional symbol in a square QAM constellation is given

by

2

6
1 dQ −=ε (4.1)

where d is the distance between points in the QAM constellation and Q is the size of the

QAM constellation. All points in the constellation are equally likely and the constellation

is centered at the origin and therefore has zero mean. Equation 4.1 is exact only for

square QAM constellations but is still a good approximation for the average transmit

energy for non-square QAM constellations [Ref. 1]. For an ISI free channel with gain,

H , the probability of two dimensional symbol error is approximately







≤

σ2
4 mindQP erfe (4.2)

74

where dmin is the minimum distance between QAM constellation points at the output of

the channel and Qerf(x) is the error function, each of which are defined as[Ref. 3]

22
min Hdd = (4.3)

and

() ∫
∞ −

=
x

u

erf duexQ 2

2

2
1
π . (4.4)

The probability of symbol error per dimension, which is Pe/2, for communication

systems should be less than 10-4. Therefore the following requirement must be met,

() () ()dBdBdB
d

cm γγ
σ

−+=





 8.11

2

2
min

. (4.5)

The variable mγ is the margin, which provides for additional performance in order

to overcome unpredictable channel degradations and cγ is the coding gain. Note that

when 0== cm γγ the system is uncoded and has no margin. Therefore 11.8 dB is the

argument required in the Q(.) function to get 4102
−=eP . Coding increases dmin and

therefore reduces the 11.8 dB by the amount of coding gain. Using a margin increases the

11.8 dB required by the amount of margin desired. [Ref. 3]

Equation 4.1 can be rewritten as

2
min

26
1

d
H

Q
ε

+= (4.6)

which leads to the definition of SNR gap, or normalized SNR, Γ ,

75

2

2
min

4
3

σ
d=Γ

 (4.7)

where 2σ is the variance or power of the AWGN.

Therefore, for the target of 4102
−=eP , the following expression can be written

for the SNR gap,

() ()dBdB cm 8.113 γγ −+=Γ . (4.8)

Then by taking the base 2 log of Eq. 4.6 and substituting into Equation 4.7 for

dmin, the number of bits that can be carried by QAM at the target Pe/2 is calculated as

() 







Γ
+== SNRQb

eP 1loglog 22 (4.9)

where the channel output SNR is defined as

2

2

2σ
ε H

SNR = . (4.10)

Note that Eq. 4.9 is the Shannon-Hartley theoretical channel capacity with the

SNR reduced by a factor of the SNR gap. As the SNR gap goes to 1 (0 dB) the achievable

data rate of the system approaches capacity. As can be seen, the SNR gap is a measure of

the degradation of the system from optimal. The number of bits that can be carried by a

QAM system as computed using Eq. 4.9 will not be an integer but is typically rounded

down to the nearest integer. If a square QAM constellation is desired then it is rounded

down to the nearest even integer. The SNR gap for any QAM system with probability of

one dimensional symbol error equal to 10-4 is

cm γγ −+=Γ 029.7 (4.11)

76

2. OFDM (Multi-Carrier) Analysis

With the single carrier analysis complete, multi-carrier analysis can now be

performed as an extension of the single carrier results. In a generic multicarrier system

the probability of error is an average of the probability of error for each of the

subchannels. Therefore the overall probability of error will be dominated by the weakest

subcarriers. [Ref. 3]

This weakness was pointed out earlier in the thesis. Forward error correction

coding with block interleaving is used to average out the probability of error over the

active subcarriers. Therefore in the following analysis the probability of error is assumed

equal over all subchannels. Directly applying the single carrier analysis yields the

following results for the ith subchannel

2

22

2

2
min,

44
3

i

iii dHd

i σσ
==Γ

 (4.12)

where the subscript i denotes any values that are subchannel dependent. The maximum

number of bits that can be carried on the ith subchannel with a given margin and coding

gain is









Γ
+= i

iP
SNRb

e
1log 2, (4.13)

where

2
2

2 i

i
ii HSNR

σ
ε= . (4.14)

The subsymbol energy, iε , is held constant over all subchannels that are active

and is zero on the inactive subchannels. The water pouring distribution (see Proakis [Ref.

13] or Gallager [Ref. 14]), is a better energy distribution but Cioffi has determined that

77

the on/off energy distribution is very close to optimal yet is much easier to compute and

implement. [Ref. 3]

Figure 4.1 plots curves of bPe versus received channel SNR for three different

values of one-dimensional probability of symbol error, Pe1. Figure 4.1 assumes that the

coding gain is equal to the margin which may be zero. Therefore actual results in

simulation or that may be seen in real world application may shift left or right as a

function of the margin and coding gain. If the coding gain is greater than the margin the

curves will shift left thereby predicting greater numbers of bits per subcarrier at a given

received SNR. The coding gain achieved in the simulation is not calculated but is

assumed to be around 6 to 8 dB which will be shown to be accurate in the following

results.

Figure 4.1. Channel Bit per Subcarrier Capacity.

The bit rate, R, of the total system is then simply the product of the active

subcarriers with the number of bits per subcarrier divided by the OFDM symbol period,

78

T. Since all active subcarriers have the same number of bits, bsc, which is rounded down

to the nearest integer below iPe
b , , the system bit rate is

T
b

T

b
R

actN

i
sc

==
∑

= 1
. (4.15)

Figure 4.2 plots system bandwidth versus bit rate for several sizes of QAM

constellations.

Figure 4.2. Bandwidth vs Bit Rate for Q-ary QAM OFDM Signals.

B. SIMULATION RESULTS

The remainder of this chapter presents the results of the simulation over the

acoustic channel models developed. The main parameters of the acoustic channel are the

water depth, the bottom roughness in meters of standard deviation, the range between the

79

receiver and the transmitter and the frequency band over which the model is evaluated.

The water depths evaluated are either 100 m or 340 m. Three different bottom roughness

values of 0, 2 and 4 m standard deviation were evaluated. The ranges evaluated were

either 2 km or 4 km.

Two of the available forms of output from the MMPE model are included for

every acoustic model evaluated. The first is a plot of transmission loss as a function of

frequency and depth. The second is a plot of transmission loss versus depth and time.

These plots show the ray paths present in the water column over time such that for a

given depth the multipath arrivals are apparent.

While each acoustic model was evaluated for ranges of 2 and 4 km, only the plots

for 2 km ranges are provided. Figure 4.3 shows the transmission loss for the acoustic

channel that is 100 m deep and has a bottom roughness of 4 m. The effect of the bottom

roughness on the acoustic energy is clearly seen in Figure 4.3 and can be compared with

the transmission loss curves of the same acoustic channel with less bottom roughness,

which are Figures B.1 and B.3, to further illustrate the effect. Note the interference

patterns and blending of transmission near the interface that is much less pronounced as

the bottom roughness goes down. Figure 4.4 shows the acoustic energy arrival as a

function of time and depth for the same acoustic channel. The severe multipath

environment present in shallow water acoustic channels is readily apparent in Figure 4.4.

All other acoustic channel plots are found in Appendix B.

The simulation was performed for several combinations of bit rate, center

frequency and constellation sizes. Each combination was simulated 10 times and then the

mean of the result was taken. The primary output of the simulation and this thesis are

plots of BER versus received SNR. Recall that the simulation is performed with the

margin, mγ , set equal to zero. Accepted values for mγ range from 6 to 12 dB, with

Cioffi [Ref. 3] recommending 6 dB.

80

Figure 4.3. Transmission Loss, Bottom Roughness 4 m, Water Depth 100 m.

The margin can be considered as an adjustment for simulations to shift the results

towards what can be expected in reality. Recall also that the coding gain, cγ , is estimated

to be 4 to 6 dB. Therefore, since the coding gain is included in the results of the

simulation, in order to check the results versus the theoretical prediction of Fig. 4.1 the

BER versus received SNR must be shifted to the right by approximately 11 dB.

81

Figure 4.4. Acoustic Energy Arrival, Bottom Roughness 4 m, Water Depth 100 m.

The raw results are provided in Appendix A. In these plots each data point

indicates the result of one run of the simulation. The solid red line is the mean of the 10

runs performed. The composite results are provided in Figures 4.5 through 4.8 for QAM

constellation sizes of 8, 16, 32 and 64. Each solid line in the figures is the mean of the

corresponding series of 10 runs plotted individually in Appendix A. Figure 4.5 presents

the results for all evaluations using 8-ary QAM.

82

Figure 4.5. 8 QAM Composite Results.

Figure 4.6. 16 QAM Composite Results.

83

Figure 4.7. 32 QAM Composite Results.

Figure 4.8. 64 QAM Composite Results.

84

Figure 4.9 provides an appreciation for the nature of the decoded signal and its

frequency spectrum with respect to the information signal and its frequency spectrum.

Figure 4.9. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 5.3 dB

BER = 1.6 E-2.

The BER is unacceptable by communication system standards. The information

signal for the simulation is a voice stream. Playback of the received signal at the BER of

Figure 4.9 contains minor static but is clearly understandable. The zoomed-in subplots

show the deviation of the received information signal spectrum from the transmitted

information signal spectrum. One can see that where there is significant power in the

frequency spectrum of the transmitted information signal the received spectrum is very

near that of the transmitted spectrum. Comparing the time domain plots of the transmitted

and received information signals one can see the deviations of the received signal relative

to the original information signal. Figure 4.10 shows the received QAM constellation for

85

the realization of Figure 4.9 after channel estimation and equalization but prior to Reed

Solomon decoding.

Figure 4.10. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 5.3 dB

BER = 1.6 E-2.

Figures 4.11 and 4.12 provide a contrast to the realizations of Figures 4.9 and 4.10

at a greater received SNR of 7.4 dB and the resulting smaller BER of 2.5 E-4. The BER

is still greater than the acceptable limit of 1 E-4. However one can see that the received

signal is essentially an exact replica of the transmitted information signal. Also the

powerful effect of the FEC can be seen from the noisy constellations of Figures 4.10 and

4.12.

86

Figure 4.11. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 7.4 dB

BER = 2.5 E-4.

Note that the zoomed plots of the frequency spectrums of Fig. 4.11 show that the

received spectra is essentially the same as that of the transmitted information signal

spectrum even in the areas of the spectrum where the transmitted information signal has

relatively low power.

87

Figure 4.12. 16 QAM Signal Realization, fc = 6 kHz, R = 5 kbps, SNR = 7.4 dB

BER = 2.5 E-4.

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

V. CONCLUSIONS

The primary thrust of this thesis was to develop a computer simulation of an

OFDM system for underwater acoustic communication using a PE based model of the

acoustic channel. The simulation was validated by comparison of the results of the

simulations with the known theoretical results established in this thesis and those from

ocean experiments. The comparison of the results with what is expected from the theory

was made in conjunction with presenting the results. Coatelan and Glavieux [Ref. 5]

experimented with a OFDM communication system in shallow water acoustic channels

with results as shown in Table 5.1. The QAM constellation size used by Coatelan and

Glavieux [Ref. 1] is not known. Note that the water depth of the experiments is much

shallower than for the acoustic channels used in the simulations of this thesis. The FEC

code employed in the experiments, which uses rate ½ convolutional coding with a

constraint length of seven as well as a soft Viterbi decoder working on a 64 state trellis

[Ref. 1], is more advanced than that of the simulation, however the coding gain is likely

within a couple of dB of the coding gain for the simulation as more than a few dB of

coding gain improvement beyond 5 dB is difficult to obtain. Comparing the composite

results presented earlier for the 8 and 16 QAM constellations and applying a margin of 6

to 12 dB one can see that simulation results are comparable to the experimental results of

Table 5.1.

Table 5.1. Experimental Multicarrier Results [from Ref. 1].

90

The benefits of the work are the verification of the feasibility of using OFDM as a

method of underwater acoustic communication and to provide a test-bed for future work

to develop improved methods for the blocks that make up the OFDM system.

There is significant opportunity for future work in this area. Many of the

algorithms applied in the OFDM system are simple and could be improved to enhance the

performance of the OFDM system.

The modulation is DSBSC which uses twice the bandwidth of an Upper Side

Band (USB) system. There are no obvious reasons why USB modulation could not be

used to improve the spectral efficiency. This idea also has benefit in working on a multi-

user application of OFDM.

Communication system protocols must be established to make the system useful

for real world application and appears to have been neglected so far in the area of

underwater acoustic communication. The IEEE standard 802.11 and the European digital

terrestrial TV broadcast uses OFDM and has established protocols that may be applicable

to underwater communication systems.

Synchronization algorithms have significant merit for future study and

improvement. This study does not involve Doppler effects since it assumes that the

transmitter and receiver are stationary.

The application of the channel transfer function must be modified in modeling

source or receiver motion. Frequency offset due to wave action and phase noise are not

simulated either. Both of these are real concerns in development of an actual system and

are worthy of simulation and analysis. The synchronization method must be modified in

the simulation to account for phase issues. In addition the synchronization method is very

computationally intensive and simplification of the system would benefit the simulation

and any resulting real system.

Channel estimation and equalization assumes a linear time invariant acoustic

channel. The channel is known to be time varying with the rate of variance usually low

but still of concern. Therefore a method of updating the channel estimation is necessary.

Also while the estimation method used in the simulation is very robust there may be

91

better methods that use less bandwidth. FEC coding applied is elementary and can be

improved.

Thus far work to improve the system and the degree of reality of the simulation

have been discussed. Of equal importance is the study of the key parameters on the

system performance. The peak to average power ratio of the transmit signal is of concern

in OFDM and has not been addressed in this thesis.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

APPENDIX A. SIMULATION RESULTS

The figures in this appendix represent the results of the simulation for all of the

acoustic channels evaluated. The parameters of the system are provided in each figure as

well as the main channel parameters. Each figure includes a zoomed inset which

illustrates the BER performance near the target level of 10-4.

Figure A.1. BER vs SNR for 8 QAM, fc = 8 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

94

Figure A.2. BER vs SNR for 8 QAM, fc = 8 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m.

Figure A.3. BER vs SNR for 8 QAM, fc = 10 kHz, R = 6 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m.

95

Figure A.4. BER vs SNR for 8 QAM, fc = 10 kHz, R = 6 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

Figure A.5. BER vs SNR for 8 QAM, fc = 8 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

96

Figure A.6. BER vs SNR for 8 QAM, fc = 12 kHz, R = 7.5 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m.

Figure A.7. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

97

Figure A.8. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 100m.

Figure A..9 BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 4m, Water Depth = 100m.

98

Figure A.10. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m.

Figure A.11. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 4m, Water Depth = 100m.

99

Figure A.12. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 340m.

Figure A.13. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 100m.

100

Figure A.14. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 340m.

Figure A.15. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 340m.

101

Figure A.16. BER vs SNR for 16 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 340m.

Figure A.17. BER vs SNR for 16 QAM, fc = 12 kHz, R = 10 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m.

102

Figure A.18. BER vs SNR for 16 QAM, fc = 12 kHz, R = 10 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m.

Figure A.19. BER vs SNR for 16 QAM, fc = 8 kHz, R = 6.67 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m.

103

Figure A.20. BER vs SNR for 16 QAM, fc = 8 kHz, R = 6.67 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m.

Figure A.21. BER vs SNR for 16 QAM, fc = 10 kHz, R = 8 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m.

104

Figure A.22. BER vs SNR for 16 QAM, fc = 10 kHz, R = 8 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m.

Figure A.23. BER vs SNR for 32 QAM, fc = 10 kHz, R = 10 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m.

105

Figure A.24. BER vs SNR for 32 QAM, fc = 10 kHz, R = 10 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m.

Figure A.25. BER vs SNR for 32 QAM, fc = 8 kHz, R = 8.33 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m.

106

Figure A.26. BER vs SNR for 32 QAM, fc = 8 kHz, R = 8.33 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m.

Figure A.27. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

107

Figure A.28. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 100m.

Figure A.29. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 4m, Water Depth = 100m.

108

Figure A.30. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m.

Figure A.31. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 100m.

109

Figure A.32. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 4m, Water Depth = 100m.

Figure A.33. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 340m.

110

Figure A.34. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 340m.

Figure A.35. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 340m.

111

Figure A.36. BER vs SNR for 32 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 340m.

Figure A.37. BER vs SNR for 64 QAM, fc = 8 kHz, R = 10 kbps, Range = 2 km,
Rough = 0m, Water Depth = 100m.

112

Figure A.38. BER vs SNR for 64 QAM, fc = 8 kHz, R = 10 kbps, Range = 4 km,
Rough = 0m, Water Depth = 100m.

Figure A.39. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

113

Figure A.40. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

Figure A.41. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 4m, Water Depth = 100m.

114

Figure A.42. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m.

Figure A.43. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 100m.

115

Figure A.44. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 4m, Water Depth = 100m.

Figure A.45. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 0m, Water Depth = 100m.

116

Figure A.46. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 2 km, Rough
= 2m, Water Depth = 100m.

Figure A.47. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 0m, Water Depth = 100m.

117

Figure A.48. BER vs SNR for 64 QAM, fc = 6 kHz, R = 5 kbps, Range = 4 km, Rough
= 2m, Water Depth = 100m.

118

THIS PAGE INTENTIONALLY LEFT BLANK

119

APPENDIX B. MMPE RESULTS

Figure B.1 Transmission Loss, Roughness 0 m, Range 2 km

Figure B.2 Acoustic Paths, Roughness 0 m, Range 2 km, fc 7 kHz

120

Figure B.3 Transmission Loss, Roughness 2 m, Range 2 km

Figure B.4 Acoustic Paths, Roughness 2 m, Range 2 km, fc 7 kHz

121

Figure B.5 Transmission Loss, Roughness 4 m, Range 2 km

Figure B.6 Acoustic Paths, Roughness 4 m, Range 2 km, fc 7 kHz

122

Figure B.7 Transmission Loss, Roughness 0 m, Range 2 km

Figure B.8 Acoustic Paths, Roughness 0 m, Range 2 km, fc 7 kHz

123

Figure B.9 Transmission Loss, Roughness 2 m, Range 2 km

Figure B.10 Acoustic Paths, Roughness 0 m, Range 2 km, fc 7 kHz

124

Figure B.11 Transmission Loss, Roughness 0 m, Range 2 km

Figure B.12 Acoustic Paths, Roughness 0 m, Range 2 km, fc 10 kHz

125

Figure B.13 Transmission Loss, Roughness 0 m, Range 2 km

Figure B.14 Acoustic Paths, Roughness 0 m, Range 2 km, fc 12 kHz

126

Figure B.15 Transmission Loss, Roughness 0 m, Range 2 km

Figure B.16 Acoustic Paths, Roughness 0 m, Range 2 km, fc 14 kHz

127

APPENDIX C. MATLAB CODE

A. TRANSMITTER CODE

1. ofdm_sim_xmitter.m

%LT Tiger Pittman

%UWA OFDM Thesis m-file

%Last modified 4/16/01

clear all, close all

fn = 0; %running figure number index

synchdec = 0;

%logic variable for synchronization, 0 == perfect synchronization,

%1 == synchronization using cyclic prefix correlator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

zero_fraction = .0250; %fraction of subcarriers that

%carry zeroes, near Fs/2 to avoid pseudo-aliasing effects

[N_bar, N_subc_act, N_zerc, guard_time, T, T_fft, Fs_fft, zero_fraction, W, fc,
m, SNR, delay_spread] = parameters(zero_fraction);

%takes input from user to determine key parameters in the OFDM system

%including the number of active subcarriers, guard time(correlates to cyclic
prefix length)

%OFDM symbol period(T, includes the FFT/IFFT interval and the guard time),

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

noise = 1;

%logic variable for noise addition

noise_factor = 0.35;

%if noise == 1 then AWGN is added with following SNR to received signal

%otherwise no noise is added

SNR_awgn = SNR*noise_factor;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

128

modulate = 2;

%if modulate = 2 then double side band modulation is performed, otherwise

%no modulation is performed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

decision = 2;

%determines the information signal to be used

%1 is for sinusoidal signals

%2 is for a converted voice wave file

%3 is for a ramp function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Signal generation

pts = 2^13; %number of sample points (same as number of quant
values)

Fs=250; %sampling frequency

f1 = 50; %tonal frequency

f2 = 95;

a1 = 1; %amplitude

a2 = 0;

factor = 20;

[info_sig, fn] = signal_generator(pts,Fs,f1,f2,a1,a2,decision, factor, fn);

%calls to get discrete time analog signal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Quantization

bits = 2^3; %number of bits used in converting symbol(integer) to
binary

disp([num2str(bits),' bit uniform quantization is performed resulting in ',
num2str(2^bits),' quantization levels.'])

[quant_sig, codebook] = quantization(info_sig, bits);

%performs UNIFORM quantization of info_sig to create a

%discrete time, discrete valued signal, quant_sig(i)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

129

%Conversion (quantized to binary)

bit_matrix = binary_conversion(quant_sig, bits);

%pts by bits matrix of binary data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%reshape (binary matrix to vector)

bit_stream = reshape(bit_matrix.', 1, size(bit_matrix,1)*size(bit_matrix,2));

%converts bit_matrix to bit stream for DMT use

%note: bit_matrix is transposed since the reshape command operates columnwise

%but the data in bit_matrix is oriented row wise

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%QAM and Reed Solomon parameters

N = 2^m - 1; %Code word length for Reed_Solomon symbol encoding

q = m; %number of bits per QAM symbol, must be <= m

Q = 2^q; %QAM constellation size, i.e. number of different
QAM symbols

%Note: as long as q is even, the QAM constellation is Gray coded (Desired)

if (Q == 2^6);

 k = 47; %RS message length of Qary - QAM symbols

elseif (Q == 2^5)

 k = 23;

elseif (Q == 2^4)

 k = 7;

elseif (Q == 2^3)

 k = 3;

elseif (Q == 2^2)

 k = 1;

else

 error('QAM constellation size improperly determined')

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%QAM Mapping (binary word to QAM index)

130

qam_coded_dec = qam_buffer(bit_stream, q);

%buffers bit_stream to q column matrix and converts

%to decimal format vector with values 0 to Q-1 of length

%ceil(length(bit_stream)/q)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Reed Solomon encoding

if (Q >= 2^3)

[rs_code, zero_symbols] = reedsolomon(qam_coded_dec, N, k);

%encodes QAM symbols using Reed Solomon coding

%rs_code is a matrix with each row of length N

else

 rs_code = qam_coded_dec;

 zero_symbols = 0;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Data reshape (matrix to vector)

code_stream = reshape(rs_code, size(rs_code,1)*size(rs_code,2), 1);

%reshapes rs_code into column vector for QAM modulation

%NOTE: the reshape command takes data columnwise. However rs_code

%is not transposed in the reshape command. This effectively

%interleaves the symbols since the subsymbols are not taken

%in sequence

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%QAM Modulation

[X, data_carriers, zero_fill] = qam_modulator(code_stream, N_bar, N_subc_act,
N_zerc, Q);

%X is the N(=2*N_bar) row by data_blocks column matrix representing

%the spectrum of the transmitted signal

Fs_prime = 2*Fs_fft;

%sampling rate doubles due to the doubling of the size of the data which

%takes place when X is created conjugate symmetric

131

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%IFFT (converts complex QAM symbols into real time domain sequence)

x = inverse_fft(X);

%N by data_blocks matrix of real time domain samples

%parallel output of the IFFT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Cyclic extension application

L = round(guard_time*Fs_prime);

%L = 2^ceil(log2(guard_time*Fs_prime)); %expected length of the
impulse response of the channel

%computed using the guard time and the sampling rate at the IFFT

%this is the number of smaples in the guard time, or cyclic extension period,
which must also be an integer

x_cyclic = cyc_extension(x, N_bar, L);

%inserts a cyclic extension on each of the blocks(symbols)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Data reshape (2*N_bar by data_blocks matrix to vector)

xmit_sig = parlel_2_serial(x_cyclic);

%serial time domain samples, length N*data blocks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Modulation (baseband signal modulation to carrier frequency)

if (modulate == 1)

[mod_xmit_sig, Fs_xmit, f_m, fn] = usb_modulator(xmit_sig, fc, Fs_prime, W,
zero_fraction, fn);

%modulates baseband signal xmit_sig to modulation frequency, fc

%xmit_sig is interpolated to increase Fs to Fs_xmitin order to modulate w/out
aliasing

elseif (modulate == 2)

[mod_xmit_sig, Fs_xmit, f_m, n_lpf2, len_xint, fn] = dsb_modulator(xmit_sig, fc,
Fs_prime, W, zero_fraction, fn);

%modulates the baseband signal using double side band modulation

132

end

2. parameters.m

function [N_bar, N_subc_act, N_zerc, guard_time, T, T_fft, Fs_fft, zero_fraction,
W, fc, m, SNR, delay_spread] = parameters(zero_fraction)

%This function uses input data to determine key parameters in the OFDM signal
generation.

%Last modified 7/3/01.

R = 1000*(5.0+0/3);%input('What is the desired data rate (kbps)? ');

W_max = 1000*7;

fc = 1000*6;

delay_spread = 1e-3*25;

Pe = .0001;

%one dimensional symbol error probability, 2 D symbol error probability = 2*Pe

SNR_gap3 = 20*log10(sqrt(2)*erfinv(1-Pe))

SNR_gap = SNR_gap3 - 10*log10(3)

SNR = 21;

b_Pe = log2(1 + 10^(SNR/10)/10^(SNR_gap/10));

%bits per subsymbol that can be carried at given Pe, SNR_gap, coding gain =
margin dB and SNR

guard_time = 4*delay_spread;

%guard time required to prevent ISI (sec)

T = 6*guard_time;

%OFDM symbol period including the cyclic prefix

Rs = 1/T;

%OFDM symbol rate (symbols/sec)

b_ofdm = R*T;

%bits per OFDM symbol required to get desired rate

N_subc_act = ceil(round(b_ofdm)/floor(b_Pe));

%number of subcarriers required for desired data rate at achievable b_Pe

%these are data carrying subcarriers

power2 = 2^ceil(log2(N_subc_act));

%determines the next power of 2 above N_subc_act

133

if (((power2-N_subc_act)/power2) >= zero_fraction)

 N_bar = power2;

else

 N_bar = 2^ceil(log2(N_subc_act) + 1);

end

N_zerc = N_bar - N_subc_act;

%number of zero subcarriers

zero_fraction = N_zerc/N_bar;

%fraction of subcarriers that carry zeroes

T_fft = T - guard_time;

%FFT/IFFT period

Fs_fft = N_bar/(T_fft);

%first guess at FFT sampling rate in FFT interval

%based on guard time = 4*expected delay time and an OFDM symbol period of

%6*guard time

%this is half the sampling rate required at the DAC and LPF since the

%IFFT doubles the number of samples thereby effectively interpolating by 2

%and doubling the sampling rate

n_samp = Fs_fft*T;

%number of samples in the OFDM symbol period based on Fs_fft

%must also be an integer to ensure that the subcarriers are orthogonal

if (isposint(n_samp)~=1)

 while (isposint(n_samp)~=1)

 Fs_fft = Fs_fft + 2;

 n_samp = Fs_fft*T;

 end

end

%revises the sampling rate slightly in the FFT interval such that there are an
integer

%number of samples in the OFDM symbol period

T_fft = N_bar/Fs_fft;

%revises the FFT/IFFT interval length based on the sampling rate

%such that there will be an integer number of samples in the interval

134

guard_time = T - T_fft;

%revises the guard time based on the new T_fft and the known T

format long e

SC_del_f = (T-guard_time)^-1

%subcarrier spacing (Hz)

format short e

W_mmpe = SC_del_f*N_bar

W = SC_del_f*N_subc_act;

%bandwidth in Hz

if (W > W_max)

 disp('Unable to meet requirements with given bandwidth limitation')

end

%system parameters output

m = floor(b_Pe);

if (m==5|m==3)

 disp('QAM constellation is not Gray coded')

end

disp('!!!!!!!!!!! RESULTS !!!!!!!!!!!!!!!')

disp(['System bandwidth for DSBSC transmission is ',num2str(2*W/1000),'
(kHz)'])

fmax = fc + W;

fmin = fc-W;

if (fmax>7e3|fmin<200)

 disp('Frequency spectrum of system is outside the bandwidth of the known
channel transfer function')

end

disp(['System Transmission Band for USBSC is ', num2str(fmin/1000),' (kHz) to ',
num2str(fmax/1000),' (kHz).'])

disp(['Maximum Delay Spread is ', num2str(delay_spread*1000),' (msec)'])

disp(['System uses ', num2str(N_subc_act),' active subcarriers with
',num2str(N_bar),' total subcarriers.'])

disp(['The subcarrier bandwidth is ', num2str(SC_del_f), ' (Hz).'])

disp(['OFDM symbol duration is ', num2str(T*1000),' (msec).'])

disp(['OFDM Symbol rate is ', num2str(Rs),' (symbols/sec).'])

135

disp(['Number of bits per subcarrier is ',num2str(m),'.'])

disp(['System bit rate is ', num2str(R/1000), ' (kbps).'])

disp(['System Bandwidth Efficiency is ',num2str(R/(W*2)),'.'])

disp(['System carries ', num2str(floor(b_Pe)*N_subc_act),' bits per OFDM
symbol.'])

3. signal_generator.m

function [x, fn] = signal_generator(pts,Fs,f1,f2,a1,a2,decision, factor, fn)

%This function generates a discrete time analog signal.

%The signal is a vector of length pts, from the superposition of

%2 unit amplitude sinusoidal signals of frequency f1 and f2, sampled

%at Fs Hz.

%Last modified 5/15/01

%global fn

if decision == 1

n=0:pts-1;

x = a1*sin(2*pi*f1*n/Fs)+ a2*cos(2*pi*f2*n/Fs); %information signal

spec_info_sig = fft(x,2048);

fn = fn+1; figure(fn), plot(abs(spec_info_sig))

title('FFT of sampled information signal (info sig)')

elseif decision ==2

s = wavread('numnuts');

l = round(length(s)/factor);

x = s(1:l);

elseif decision == 3

 x = [zeros(1,100), 0:.2:1, ones(1,100), 1:-.2:0, zeros(1,100)];

 spec_info_sig = fft(x,2048);

 fn = fn+1; figure(fn), plot(abs(spec_info_sig))

 title('FFT of sampled information signal (info sig)')

end

136

4. quantization.m

function [symbol, codebook] = quantization(info_sig, bits)

%Last modified 3/19/01

M = 2^bits; %number of uniform quantization levels

%must determine the method for partitioning to use in general

max_sample = max(abs(info_sig));

%absolute maximum value of input signal

part=-(M-1)/M*max_sample:2/M*max_sample:(M-1)/M*.9*max_sample;
 %partitions

codebook = -((M-1)*2 + 1)/(2*M)*max_sample:2/M*max_sample:((M-
1)*2+1)/(2*M)*max_sample;

symbol = quantiz(info_sig, part);

5. dec_2_bin.m

function bit_stream = dec_2_bin(qam_sym, bits, q)

%Last modified 3/19/01

bit_matrix = de2bi(qam_sym',q);

%binary matrix length(qam_sym) by q

bit_stream_long = reshape(bit_matrix, length(qam_sym)*q, 1);

num_zero_bits = length(qam_sym)*q - floor((length(qam_sym)*q)/bits)*bits;

%number of zero bits inserted in xmitter

bit_stream = bit_stream_long(num_zero_bits+1:length(bit_stream_long));

6. qam_buffer.m

function qam_dec = qam_buffer(bit_stream, q)

%This function buffers the bit stream into a matrix form for QAM encoding.

%Last modified 3/19/01

add_length = q*(ceil(length(bit_stream)/q))-length(bit_stream);

%determines the number of zeroes needed to be added to bit_stream

%such that buffered matrix will be rectangular and include all of the data.

bit_stream_long = [zeros(1,add_length),bit_stream];

%bit_stream with zeroes added to left end i.e. at 1,2,3...

buffer_mat = reshape(bit_stream_long,length(bit_stream_long)/q,q);

137

%buffers bit_stream into q column matrix for QAM modulation

%data is reshaped columnwise

qam_dec = bi2de(buffer_mat); %converts buffered binary data to
corresponding

%decimal integer where the integers are from 0 to Q-1(2^q - 1)

%this reduces the sampling frequency since there are now less samples

%least sig bit assumed in column 1

7. reedsolomon.m

function [code, zero_symbols] = reedsolomon(qam_coded_dec, N, k)

%This function performs Reed Solomon encoding of the decimal format

%Gray coded Qary QAM symbols in qam_coded_dec

%k is the message length in symbols, N is the code word length in symbols

%Last modified 3/19/01

full_blocks = floor(length(qam_coded_dec)/k);

%number k length blocks filled with data

zero_symbols = (full_blocks + 1)*k - length(qam_coded_dec);

%number of zero blocks needed to fill final block

qam_coded_dec_long = [zeros(zero_symbols,1);qam_coded_dec];

%QAM code with zeroes at top of column vector

qam_k_mat = reshape(qam_coded_dec_long,full_blocks+1,k);

%full_blocks + 1 row by k column QAM symbol matrix for block coding

code = encode(qam_k_mat, N, k, 'rs/decimal');

%full_blocks + 1 row by N column matrix of Qary-QAM encoded symbols

%RS encoded

8. qam_modulator.m

function [X, data_carriers, zero_fill] = qam_modulator(code_stream, N_bar,
N_subc_act, N_zerc, Q)

%Last modified 5/15/01

[inphase, quad] = qaskenco(code_stream,Q);

%encodes integer decimals into quadriture and inphase components of Q-ary
QAM

138

[phase_qam, mag_qam] = cart2pol(inphase,quad);

%converts QAM subsymbols to magnitude and phase(radians) for IFFT

zero_carriers = N_zerc; %ceil(zero_fraction*N_bar);

%number of zero subcarriers near Fs/2

data_carriers = N_bar - zero_carriers;

%number of subcarriers with encoded data

data_blocks = ceil(length(phase_qam)/data_carriers);

%number of blocks(i.e. symbols) neeeded for given N_bar and zero fraction

zero_fill = data_blocks*data_carriers - length(phase_qam);

col_z = floor(zero_fill/data_blocks);

%number of zeroes to be added into QAM symbol matrix for columns 2 :
data_blocks

col_1z = zero_fill - (data_blocks-1) * col_z;

%number of zeroes to be added to the first column in the QAM symbol matrix

zero_fill = [col_1z, ones(1, data_blocks+2-1)*col_z];

phase_c1 = phase_qam(1:(data_carriers - col_1z));

phase_col = phase_qam(1+(data_carriers - col_1z):length(phase_qam));

col_phase_mat = reshape(phase_col, data_carriers - col_z, data_blocks-1);

mag_c1 = mag_qam(1:(data_carriers - col_1z));

mag_col = mag_qam(1+(data_carriers - col_1z):length(mag_qam));

col_mag_mat = reshape(mag_col, data_carriers - col_z, data_blocks-1);

tpc1 = [phase_c1(1:col_1z).';zeros(1,col_1z)];

tpc2 = reshape(tpc1, 2*col_1z, 1);

phasec10 = [tpc2; phase_c1(col_1z+1:length(phase_c1))];

tmc1 = [mag_c1(1:col_1z).';zeros(1,col_1z)];

tmc2 = reshape(tmc1, 2*col_1z, 1);

magc10 = [tmc2; mag_c1(col_1z+1:length(mag_c1))];

for col = 1 : data_blocks - 1

 tpcola = [col_phase_mat(1:col_z, col).'; zeros(1, col_z)];

 tpcolb = reshape(tpcola, 2*col_z, 1);

 phasecol0(:,col) = [tpcolb;col_phase_mat(col_z+1:size(col_phase_mat,1), col)];

 tmcola = [col_mag_mat(1:col_z, col).'; zeros(1, col_z)];

 tmcolb = reshape(tmcola, 2*col_z, 1);

139

 magcol0(:,col) = [tmcolb;col_mag_mat(col_z+1:size(col_mag_mat,1), col)];

end

phase_qam_mat = [phasec10, phasecol0];

mag_qam_mat = [magc10, magcol0];

for k = 1:data_blocks

 X_half(:,k) = zeros(N_bar+1,1);

 for i=1:data_carriers;

 X_half(i+1,k) = mag_qam_mat(i,k).*exp(j.*phase_qam_mat(i,k));

 end

 X_half(1,k) = real(X_half(data_carriers+1,k));

 X_half(data_carriers+1,k) = imag(X_half(data_carriers+1,k));

 X(:,k) = [X_half(:,k); conj(flipud(X_half(2:N_bar,k)))];

end

count = 0;

for r = data_carriers+1:-1:1

 for c = size(X_half,2):-1:1

 count = count + 1;

 X_pilot_half(count,1) = X_half(r,c);

 end

end

X_half(:,data_blocks+1) = zeros(N_bar+1,1);

X_half(:,data_blocks+2) = zeros(N_bar+1,1);

X_half(2:data_carriers+1,data_blocks+1) = X_pilot_half(1 : data_carriers);

X_half(1,data_blocks+1) = real(X_half(data_carriers+1,data_blocks+1));

X_half(data_carriers+1,data_blocks+1) =
imag(X_half(data_carriers+1,data_blocks+1));

X_half(1:data_carriers+1,data_blocks+2) =
flipud(X_half(1:data_carriers+1,data_blocks+1));

for c = 1:2

 for r = 1:data_carriers+1

 if X_half(r,2) == 0

 X_half(r,data_blocks+c) = 0;

 end

140

 end

end

for k = data_blocks+1:data_blocks+2

 X(:,k) = [X_half(:,k); conj(flipud(X_half(2:N_bar,k)))];

end

X_pilots = X(:, data_blocks+1:size(X,2));

X = [X_pilots, X(:,1:data_blocks)];

for k = 1:data_blocks+2

 for i=1:data_carriers;

 if (k <= data_blocks)

 X_half(i+1,k) = mag_qam_mat(i,k).*exp(j.*phase_qam_mat(i,k));

 %creates first half of complex symbol, other half is the
conjugate

 %symmetric counterpart

 else

 X_half(i+1,k) = 1;

 end

 end

 X_half(1,k) = real(X_half(data_carriers+1,k));

 %first channel is the real part of the last symbol

 if k <= data_blocks

 X_half(data_carriers+1,k) = imag(X_half(data_carriers+1,k));

 end

 X(:,k) = [X_half(:,k); conj(flipud(X_half(2:N_bar,k)))];

end

9. inverse_fft.m

function x_n = inverse_fft(X)

%Last modified 4/13/01

x_n = ifft(X);

%N time domain samples, real valued from symmetric freq spectrum, X

%x_n is a matrix the same size as X, representing the time domain samples

141

%to be transmitted for each block

max_imag = max(max(imag(x_n)));

if (max_imag>=1e-14)

 error('Time domain output from IFFT not real to machine accuracy')

end

10. cyc_extension.m

function x_cycex = cyc_extension(x, N_bar,L)

%Last modified 3/19/01

for i = 1:size(x,2)

x_cycex(:,i) = [x(2*N_bar-L+1:2*N_bar,i);x(:,i)];

end

11. parlel_2_serial.m

function x_ser = parlel_2_serial(x_cyclic)

%This function converts the parallel output of the IFFT to serial form.

%x_ser(1) represents the last sample to be transmitted

%Last modified 3/19/01

x = reshape(x_cyclic, 1, size(x_cyclic,1)*size(x_cyclic,2));

x_ser = real(x);

%real command necessary to correct for small imaginary

%components in x from machine error

%converts symbol from parallel to serial w/ x(N,data_blocks)leading the signal

%and x(1,1) trailing

12. dsb_modulator.m

function [mod_sig, Fs_mod, f_m, n_lpf2, len_xint, fn] = dsb_modulator(xmit_sig,
fc, Fs_prime, W, zero_fraction, fn);

%This function modulates the baseband signal, xmit_sig to the carrier frequency,
fc, using

%double sideband suppressed carrier (DSBSC) modulation.

142

%The baseband signal is interpolated as necessary to meet Nyquist frequency
requirements

%Last modified 4/5/01

%plots

N=8192; %fft length

f_p=(0:N-1)*Fs_prime/N; %index for plotting fft's

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%

%ERROR CHECK TO ENSURE NO ALIASING

if (fc < W)

 error('Aliasing will occur due to improper fc and W combination. fc must be
greater than W.')

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%

% UPSAMPLING TO INCREASE THE SAMPLING RATE

K = 1.0;

% margin above the Nyquist rate

I = ceil(2*K*(fc+W)/Fs_prime);

%interpolation constant

[x_int, fn] = interp_mod(xmit_sig, I, fn);

%interpolated xmit signal, baseband, DSB

len_xint = length(x_int);

Fs_mod = I*Fs_prime;

% sampling frequency of xmitted and modulated signal

f_m = (0:N-1)*Fs_mod/N;

%frequency index for interpolated signal spectrum

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%

%POST INTERPOLATION LPF

fracpass2 = 1.2;

% fraction of W for pass band

fracstop2 = 1.375;

% fraction of W for stop band

143

digf_pass2 = 2*pi*fracpass2*W/(Fs_mod); % relative pass frequency

digf_stop2 = 2*pi*fracstop2*W/(Fs_mod); % relative stop frequency

xtion2 = digf_stop2-digf_pass2; %transition region width

fpass2 = fracpass2*W/(.5*Fs_mod);

%fraction of Fs/2 for cutoff frequency in FIR filter from fir1.m

n_lpf2 = round(8*pi/xtion2); %hamming filter order

if (isposint(n_lpf2/2) ~= 1) %ensures filter has odd number of
coefficients

 n_lpf2 = n_lpf2+1;

end

[Nh2,Dh2] = fir1(n_lpf2 , fpass2); %Hamming LP filter numerator and
denominator coefficients

x_int_lpf = conv(Nh2, x_int);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%

mod = cos(2*pi*fc/Fs_mod*[1:length(x_int_lpf)]);

mod_sig = mod.*x_int_lpf;

mod_sig_spec = fft(mod_sig, N);%, 2^ceil(log2(length(mod_sig))));

xmit_sig_spec = fft(xmit_sig, N);%, 2^ceil(log2(length(xmit_sig))));

B. RECEIVER CODE

1. ofdm_sim_receiver.m

%LT Tiger Pittman

%OFDM Simulation: receiver

%Last Modified 5/16/01

depth = 0;

%depth = 0 corresponds to shallow water model, 100m depth

%depth = 1 corresponds to deep water model, 340m depth

range = 1;

%range 0 corresponds to 2 km transmission range, 1 to 4 km range

rough = 0;

144

%can be 0,2 or 4

%0 for all allowed fc, 2 for deep water and fc = 7 only,

%2 and 4 for shallow water at fc = 7 only

recvd_sig = mod_xmit_sig;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%ADDITIVE WHITE GAUSSIAN NOISE

if noise == 1

%Ps=(sum(recvd_sig(1:1000).^2)/1000);

Ps=(sum(recvd_sig(1:length(recvd_sig)).^2)/length(recvd_sig));

Pn = Ps/((10^(SNR_awgn/10)));

awgn = randn(1,length(recvd_sig))*sqrt(Pn);

recvd_sig = recvd_sig + awgn;

% verification of SNR in time domain

Pnoise=(sum(awgn(1:1000).^2)/1000);

SNR_est=10*log10(Ps/Pnoise); % checks SNR

display(SNR_est)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%DEMODULATION, (includes low pass filtering and decimation)

if (modulate == 1)

 [recvd_sig, fn] = rcvr_usb_demod(recvd_sig, Fs_xmit, fc, mod_xmit_sig,
W, Fs_prime, fn);

elseif (modulate == 2)

 [recvd_sig, fn] = rcvr_dsb_demod(recvd_sig, Fs_xmit, fc, mod_xmit_sig, W,
Fs_prime, n_lpf2, len_xint, synchdec, fn);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%performs time and frequency synchronization

block_length = size(x_cyclic,1);

num_blocks = size(X,2);

if synchdec == 1

145

 [sync_sig, synch, fn] = synchronizer(recvd_sig, block_length, num_blocks,
N_bar, L, SNR_awgn, fn);

else

 sync_sig = recvd_sig;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%Serial to parallel conversion

par_sig_r = ser_2_parlel(sync_sig, L, N_bar);

%parallel blocks(symbols) of received data with cyclic extension

%still attached at top of each symbol(column)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%Cyclic extension removal

par = par_sig_r(L + 1:2*N_bar + L, :);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%FFT of received signal

X_r_eb = fft(par);

%FFT of received symbols, includes channel equalization blocks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%Channel application

[X_r_ebch, rcvr_depth, fn] = mmpe_channel(X_r_eb, N_bar, N_subc_act, fc,
depth, range, rough, fn);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%performs channel equalization

X_r = equalization(X_r_ebch, X, N_subc_act, N_bar, fn);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%QAM Demodulator

[code, inphase_r, quad_r, fn] = qam_demodulator(X_r, N_bar, zero_fraction, Q,
data_carriers, N, zero_fill, fn);

%demodulates X_r to give Reed Solomon encoded integers, 0:Q-1

146

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

code_deint = deinterleaver(code, N);

%deinterleaves the received symbols

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

if (Q >= 2^3)

 qam_sym = rsdecoder(code_deint, N, k, zero_symbols);

 %decodes RS encoded symbols

else

 qam_sym = code_deint;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

bit_stream_r = dec_2_bin(qam_sym, bits, q);

%reshapes qam_sym to q column matrix for conversion to binary

%removes zero bits inserted in xmitter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

buffer_r = reshape(bit_stream_r, bits, length(bit_stream_r)/bits)';

%reshapes bit_stream_r to bits column matrix for conversion to

%decimal integers for signal reconstruction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

quant_int = bi2de(buffer_r);

%converts binary words of length bits to decimal integer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%

info_sig_r = codebook(quant_int + 1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

signals2(info_sig, info_sig_r, code, code_stream, Q, X_r, fn)

BER = error_check(bit_stream, bit_stream_r);

147

2. rcvr_dsb_demodulator.m

function [dec_f_rsig, fn] = rcvr_dsb_demod(recvd_sig, Fs_xmit, fc,
mod_xmit_sig, W, Fs_prime, n_lpf2, len_xint, synchdec, fn);

%This function demodulates the DSBSC signal from the channel transfer function

%Last modified 5/9/01

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%DEMODULATION

demodsig = cos(2*pi*fc*(1:length(recvd_sig))/Fs_xmit);

%demodulating signal to combine upper side band spectrums to recreate

%baseband signal

demod_rec_sig = recvd_sig.*demodsig;

%demodulated time domain signal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N = 2*8192; %length(demod_rec_sig);

f = (0:N-1)*Fs_xmit/N; %index for plotting fft's

%frequency index of received signal spectrum

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%LOW PASS FILTERING

fracpass = 1.075;

% fraction of W for pass band

fracstop = 1.2;

% fraction of W for stop band

digf_pass=2*pi*fracpass*W/(Fs_xmit); % relative pass frequency

digf_stop=2*pi*fracstop*W/(Fs_xmit); % relative stop frequency

if (digf_stop>=.99*pi)

 error('Stop band exceeds .99 of the Sampling frequency')

end

xtion=digf_stop-digf_pass; %transition region width

fpass = fracpass*W/(.5*Fs_xmit);

%fraction of Fs/2 for cutoff frequency in FIR filter from fir1.m

148

n_lpf = round(8*pi/xtion); %hamming filter order

if (isposint(n_lpf/2) ~= 1) %ensures filter has odd number of
coefficients

 n_lpf = n_lpf+1;

end

[Nh,Dh] = fir1(n_lpf, fpass); %Hamming LP filter numerator and
denominator coefficients

filt_rsig = conv(Nh, demod_rec_sig);

if synchdec == 0

time_delay_mod = n_lpf2;

time_delay_demod = n_lpf;

time_delay_tot = floor(time_delay_mod/2) + floor(time_delay_demod/2);

filt_rsig = filt_rsig(1, time_delay_tot+1:len_xint+time_delay_tot);
 %THIS COMMAND PERFORMS PERFECT SYNCHRONIZATION

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%DECIMATION

D = round(Fs_xmit/Fs_prime);

if (isposint(D)~=1)

 error('Decimation factor not an integer')

end

if (isposint(length(filt_rsig)/D)~=1)

 if D == 2

 filt_rsig = [filt_rsig, 0]; %appends zero to signal so that it will decimate
evenly

 elseif D >= 3

 len1 = length(filt_rsig) + 1;

 len2 = length(filt_rsig) + 2;

 len3 = length(filt_rsig) + 3;

 if isposint(len1/D)

 filt_rsig = [filt_rsig, 0];

 elseif isposint(len2/D)

 filt_rsig = [filt_rsig, 0 0];

149

 else

 filt_rsig = [filt_rsig, 0 0 0];

 end

 end

end

if D>=5

 error('Interpolation/Decimation factors greater than 4 requires code adjustment
in rcvr_dsb_demod.m')

end

dec_mat = reshape(filt_rsig, D, length(filt_rsig)/D);

dec_f_rsig = dec_mat(1,:);

%decimated received signal, returns the sampling frequency to Fs_prime =
Fs_xmit/D

f_p = (0:N-1)*Fs_prime/N; %index for plotting fft's

%frequency index of received signal spectrum

3. synchronizer.m

function [sync_sig, synch, fn] = synchronizer(recvd_sig, block_length,
num_blocks, N_bar, L, SNR_awgn, fn)

%Correlator synchronizer

%last modified 6/21/2001

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%ADDITIVE WHITE GAUSSIAN NOISE

%Ps=(sum(recvd_sig(1:1000).^2)/1000);

Ps=(sum(recvd_sig(1:length(recvd_sig)).^2)/length(recvd_sig));

%n=0:1:N-1;

%S=sin(2*pi*16.6*n/FS)+sin(2*pi*17.9*n/FS);

Pn = Ps/((10^(SNR_awgn/10)));

awgn = randn(1,length(recvd_sig))*sqrt(Pn);

% verification of SNR in time domain

Pnoise=(sum(awgn(1:1000).^2)/1000);

SNR_est_synch=10*log10(Ps/Pnoise); % checks SNR

150

display(SNR_est_synch)

leng_noise1 = 1000;

leng_noise2 = 1500;

r = [sqrt(Pn)*randn(1, leng_noise1), recvd_sig, sqrt(Pn)*randn(1, leng_noise2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

for k = 1:length(r)-2*N_bar-2*L+1 %loops over entire length of data

 r_sig = r(1, k:k+L-1);

 r_del_conj_sig = conj(r(1, k+2*N_bar:k+2*N_bar+L-1));

 corr_sig(k) = max(xcorr(r_sig, r_del_conj_sig));

end

[synch, fn] = peakfinder(corr_sig, fn);

%last block identifies the ofdm block length

%previous blocks identify the discrete time prior to the beginning of the data
blocks

%i.e. synch(1) is the beginning of the first data block and synch(end) is the ofdm
block length

%performance check

block_length_error = abs(block_length - synch(length(synch)));

peak_count_error = num_blocks - (length(synch) - 1);

block_start_error = abs(leng_noise1 + 1 - synch(1));

disp(['Block length error = ', num2str(block_length_error),' discrete time units.'])

disp(['Peaks missed = ', num2str(peak_count_error),'.'])

sync_sig = r(synch(1)+1 : synch(1) + 1 + num_blocks*block_length - 1);

a. peakfinder.m

function [synch, fn] = peakfinder(corr_sig, fn)

%last modified 5/16/01

peak_index = 0;

%peaks = find(corr_sig>mn + 2.5*sd);

fracnum = 0;

t1 = .4; t2 = .6; dt = .05; %threshholds and differential

for fraction = t1:dt:t2

151

 fracnum = fracnum + 1;

 %fraction = 0.7;

peaks = find(corr_sig > fraction*max(corr_sig));

count = 0;

peaknum = 0;

while count < length(peaks)

 same_peak = 1;

 peaknum = peaknum + 1; %index for number of peaks found

 lookstart = count + 1;

 while same_peak == 1;

 count = count + 1;

 if (count >= length(peaks))

 break

 end

 if (peaks(1+count) - peaks(count) == 1)

 same_peak = 1;

 else

 same_peak = 0;

 end

 end

 %while and if loop determine the indices of corr_sig
corresponding to the 1st peak which is where

 %the first OFDM symbol begins

 %count-1 after while loop is the last index of the 1st peak,

 nextpeakstart = count + 1;

 [mag_peak(peaknum), peak(peaknum)] =
max(corr_sig(peaks(lookstart):peaks(count)));

 peak_index(fracnum, peaknum) = peak(peaknum) +
peaks(lookstart) - 1;

end

end

%disp(fraction)

%disp(peak_index)

152

numtruepeaks = 0;

for l = 1:size(peak_index,2)

 if peak_index(1,l) ~= 0

 matches = find(peak_index(1,l) ==
peak_index(2:size(peak_index,1),:));

 if length(matches) == size(peak_index,1) - 1

 numtruepeaks = numtruepeaks + 1;

 truepeakindex(numtruepeaks) = peak_index(1,l);

 end

 end

end

%break

block_length = truepeakindex(2) - truepeakindex(1) - 1;

synch = [truepeakindex, block_length];

fn=fn+1; figure(fn), plot(corr_sig), title('Correlator Synchronizer Output'),
hold on

plot(truepeakindex, corr_sig(truepeakindex), 'r*')

for k = t1:dt:t2

 line([1, length(corr_sig)], [k*max(corr_sig), k*max(corr_sig)])

end

hold off

4. mmpe_channel.m

function [X_ch, rcvr_depth, fn] = mmpe_channel(X_r_eb, N_bar, N_subc_act, fc,
depth, range, rough, fn)

%This function applies the transfer function from the MMPE model to the
received

%QAM symbols. X_r_ebch(:,i) = X_r_eb(:,i).*H(z), where i is the OFDM block
index

%

%Last modified 6/4/01

if N_bar == 1024

 if fc ~= 6e3

 error('Carrier frequency does not correspond to model carrier frequency')

153

 end

 if (depth == 0 & range == 0 & rough == 0)

 load f7r02k.mat;

 elseif (depth == 0 & range == 0 & rough == 2)

 load f7r22k.mat;

 elseif (depth == 0 & range == 0 & rough == 4)

 load f7r42k.mat;

 elseif (depth == 0 & range == 1 & rough == 0)

 load f7r04k.mat;

 elseif (depth == 0 & range == 1 & rough == 2)

 load f7r24k.mat;

 elseif (depth == 0 & range == 1 & rough == 4)

 load f7r44k.mat;

 elseif (depth == 1 & range == 0 & rough == 0)

 load f7r02kd.mat;

 elseif (depth == 1 & range == 0 & rough == 2)

 load f7r22kd.mat;

 elseif (depth == 1 & range == 1 & rough == 0)

 load f7r04kd.mat;

 elseif (depth == 1 & range == 1 & rough == 2)

 load f7r24kd.mat;

 end

elseif N_bar == 2048

 if (fc == 8e3 & range == 0)

 load f10r02k.mat;

 elseif (fc == 8e3 & range == 1)

 load f10r04k.mat;

 elseif (fc == 10e3 & range == 0)

154

 load f12r02k.mat;

 elseif (fc == 10e3 & range == 1)

 load f12r04k.mat;

 elseif (fc == 12e3 & range == 0)

 load f14r02k.mat;

 elseif (fc == 12e3 & range == 1)

 load f14r04k.mat;

 end

end

r = size(press,1); %number of depths in model, first half are in
acoustic channel, i.e. water

[v dep_index] = max(sum(abs(press(1:r/2,:)),2)); %dep_index indetifies
the depth with the greatest

%return over all frequencies

H = press(dep_index,:); %places the receiver at the optimal depth

%H = press(10,:);

H_half = zeros(length(H)+1,1);

for k = 1:length(H)

 H_half(k+1) = H(k);

end

H_half(1) = real(H_half(length(H_half)));

H_half(length(H_half)) = imag(H_half(length(H_half)));

H_full = [H_half; conj(flipud(H_half(2:N_bar)))];

%transfer function to be applied to received QAM symbols

h = flipud(ifft(H_full));

rcvr_depth = (1-depth)*(dep_index/(r/2))*100 + depth*(dep_index/(r/2))*340;

%receiver depth in meters

for k = 1:size(X_r_eb,2)

 X_ch(:,k) = X_r_eb(:,k).*H_full;

End

5. equalization.m

function X_r = equalization(X_r_eb, X, N_subc_act, N_bar, fn)

155

%performs channel equalization using pilot blocks

%last modified 5/15/01

H_est_mat_real = X_r_eb(1:N_subc_act+1, 1:2)./ ...

 X(1:N_subc_act+1, 1:2);

H_est_mat_imag = X_r_eb(size(X_r_eb,1) - N_subc_act + 1: size(X_r_eb,1),
1:2)./ ...

 X(size(X,1) - N_subc_act + 1: size(X,1), 1:2);

%estimate of channel freqency response from 2 unit magnitude OFDM blocks

%estimate is the average of the 2 columns and is used for channel equalization

%real is estimate for first N_subc_act subcarriers, and imag is for last N_subc_act
subcarriers

%equalization is only performed over the active subcarriers

H_est_real = mean(H_est_mat_real.').';

H_est_imag = mean(H_est_mat_imag.').';

%2*N_subc_act column vector representing the channel estimate over the actice
subcarriers

X_r = X_r_eb(:, 3:size(X_r_eb,2));

%removes channel estimation blocks assuming the first 2 blocks are the pilot
blocks and no others

for k1 = 1:size(X_r,2);

 X_r_real(:,k1) = X_r(1:N_subc_act+1,k1)./H_est_real;

 X_r_imag(:,k1) = X_r(size(X_r,1) - N_subc_act + 1:
size(X_r,1),k1)./H_est_imag;

 X_r(:,k1) = [X_r_real(:,k1); zeros(2*N_bar - 2*N_subc_act - 1,1);
X_r_imag(:,k1)];

end

%equalizes the data for the channel

6. qam_demodulator.m

function [code, inphase_r, quad_r, fn] = qam_demodulator(X_r, N_bar,
zero_fraction, Q, data_carriers, N, zero_fill, fn)

%Last modified 5/11/01

X_half_r = X_r(1:data_carriers+1,:);

%strips conjugate symmetric and zero subcarriers from data

156

for k = 1: size(X_half_r,2)

 for i = 1:data_carriers

 mag_r(i,k) = abs (X_half_r(i+1,k));

 %determines the magnitude of the QAM symbol

 phase_r(i,k) = angle(X_half_r(i+1,k));

 %determines the phase of the QAM symbol

 end

 mag_r(data_carriers,k) = sqrt(X_half_r(1,k)^2 +
real(X_half_r(data_carriers+1,k))^2);

 %combines the Re(N_bar+1) and the Imag(N_bar+1) that were separated

 %in the qam modulator to get the magnitude if the final symbol

 phase_r(data_carriers,k) = atan2(real(X_half_r(data_carriers+1,k)),
X_half_r(1,k));

 %combines the Re and Im at N_bar + 1 to get the phase for the final
symbol

 %real command necessary to account for small imaginary component
resulting from

 %machine error

end

%result of these 2 loops is a data_carrier row matrix representing the QAM
modulated

%symbols where each column is the kth symbol and each row is the ith
subsymbol

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tmag1(:,1) = mag_r(1:2:zero_fill(1)*2,1);

tphase1(:,1) = phase_r(1:2:zero_fill(1)*2,1);

for col = 2:size(X_r,2)

 tmagcol(:,col-1) = mag_r(1:2:zero_fill(col)*2,col);

 tphasecol(:,col-1) = phase_r(1:2:zero_fill(col)*2,col);

end

mag_r_vec1(:,1) = [tmag1(:,1); mag_r(zero_fill(1)*2+1:length(mag_r),1)];

phase_r_vec1(:,1) = [tphase1(:,1); phase_r(zero_fill(1)*2+1:length(phase_r),1)];

for col = 2:size(X_r,2)

157

 mag_matcol(:,col-1) = [tmagcol(:,col-1);
mag_r(zero_fill(col)*2+1:length(mag_r),col)];

 phase_matcol(:,col-1) = [tphasecol(:,col-1);
phase_r(zero_fill(col)*2+1:length(phase_r),col)];

end

mag_r_veccol = reshape(mag_matcol, size(mag_matcol,1)*size(mag_matcol,2),
1);

phase_r_veccol = reshape(phase_matcol,
size(phase_matcol,1)*size(phase_matcol,2), 1);

mag_r_vec_short = [mag_r_vec1; mag_r_veccol];

phase_r_vec_short = [phase_r_vec1; phase_r_veccol];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[inphase_r, quad_r] = pol2cart(phase_r_vec_short, mag_r_vec_short);

%converts the mag and phase values to in phase and quadriture components

%for QAM demodulation

minmax = [min(inphase_r), max(inphase_r); min(quad_r), max(quad_r)];

code = qaskdecomod(inphase_r, quad_r, Q, minmax);

%decodes the QAM symbols into integers 0:Q-1

a. qaskdecomod.m

function [msg]=qaskdecomod(x,y,m,minmax)

%QASKDECO Decodes QASK mapped signal back to integer symbols.

% MSG = QASKDECO(X, Y, M) decodes the message signal MSG
from the

% in-phase component X and quadrature component Y with the M-ary

% number M. M must equal 2^K with K being an positive integer. The

% minimum and the maximum numbers are assumed to be the same as
in the

% output from QASKENCO.

%

% MSG = QASKDECO(X, Y, M, MINMAX) decodes the information
where

% the maximum and minimum values of X and Y are given in
MINMAX

158

% by the form:

% | X_min X_max |

% MINMAX = | |

% | Y_min Y_max |

%

% See also QASKENCO.

% Last modified 5/11/01

scale = 0; %logic statement to scale received symbols, 1 = yes, o/w =
no

%if scale == 0

% disp('NO SCALING OF RECEIVED QAM CONSTELLATION
PERFORMED IN QAM DECODER')

%end

error(nargchk(1,4,nargin));

if (nargin <= 2) | (nargin > 4)

 error('Wrong number of input arguments.')

end;

M = m;

if isstr(m)

 error(['QASK constellation has changed to use Gray code. ', ...

 sprintf('\n'),...

 'Use COMMUPDT(''FILENAME'') to update your SIMULINK
model'...

 sprintf('\n'),...

 'before the simulation.']);

end;

K = log(m) ./ log(2);

if m ~= 2^K

 error('M must equal to 2^K where K is an integer.')

end;

xx = constlay(K, 1);

[leny, lenx] = size(xx);

if (nargin == 4)

159

 [xmat,ymat] = qaskenco(M);

 %xmat and ymat are the inphase and quad components, respectively, of
the Mary QAM

 %constellation

 MAT = [xmat.';ymat.'];

 %2 by M matrix of vectors in 2D representing the M Qam symbols in
the constelation

 for k=1:length(x)

 E = [x(k); y(k)]*ones(1,length(xmat)) - MAT;

 [v, index] = min([1,1]*abs(E));

 msg(k) = index-1;

 end

 end;

[x_m, x_n] = size(x);

[y_m, y_n] = size(y);

if min(x_m, x_n) * min(y_m, y_n) ~= 1

 error('Input X and Y must be vectors.');

end;

if x_m > x_n

 msg = msg';

end;

7. deinterleaver.m

function deint_mat = deinterleaver(code, N)

%Last modified 3/19/01

rows = length(code)/N;

%number of rows in matrix for RS decoding

deint_mat = reshape(code, rows, N);

%matrix of symbols deinterleaved, ready for RS decoder

160

8. rsdecoder.m

function decode = rsdecoder(code_deint, N, k, zero_symbols)

%Last modified 3/19/01

deco = rsdeco(code_deint, N, k, 'rs/decimal');

%message length k columns matrix

deco2 = reshape(deco, 1, size(deco,1)*size(deco,2));

%converts to row vector

decode = deco2(zero_symbols+1:length(deco2));

%removes zeroes added in transmitter

%zero symbols passed from xmitter function reedsolomon.m

9. error_check.m

function ber = error_check(bs, bsr)

%This function determines the Bit Error Rate (BER) for the system.

%last modified 7/2/01

be = 0;

for l = 1:length(bs)

 be = be + (bs(l)~=bsr(l));

end

ber = be/l;

C. PERFORMANCE ANALYSIS CODE

1. ofdm_sim_control_func.m

function [BER, SNR_est] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth)

%Control m-file for ofdm simulation

fn = 0;

modulate = 2; %DSBSC modulation logic control value

noise = 1;

161

for avn = 1:10

count = 0;

for noise_factor = .15:.01:.65

 count = count + 1;

 synchdec = 0; %synchronization logic control value, 0 == NO, 1
== YES

 [zero_fill, Q, N, data_carriers, N_bar, N_subc_act, zero_symbols, k, bits,
info_sig, code_stream, bit_stream, X, mod_xmit_sig, ...

 Fs_prime, Fs_xmit, fn, block_length, zero_fraction, SNR_awgn, chan_app,
W, n_lpf2, len_xint, L, q, codebook] = ...

 ofdm_sim_xmitter_func(synchdec, noise, noise_factor, fn, R, fc, SNR);

 [SNR_est(count,avn), BER(count,avn)] = ofdm_sim_receiver_func(W,
zero_fill, Q, N, data_carriers, N_bar, N_subc_act, zero_symbols, k, bits, info_sig,
...

 code_stream, bit_stream, X, mod_xmit_sig, Fs_prime, Fs_xmit, fn,
block_length, zero_fraction, SNR_awgn, ...

 depth, range, rough, chan_app, modulate, noise, fc, synchdec, n_lpf2,
len_xint, L, q, codebook);

end

end

2. ofdm_performance.m

%OFDM performance analysis m-file

%runs ofdm sim control func m-file over all mmpe channels

%last modified 6/28/01

warning off

clear all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%8-ary QAM PERFORMANCE

SNR = 17

fc = 8e3

R = 5e3

count = 0;

162

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

fc = 10e3

R = 6e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

fc = 12e3

R = 7.5e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

163

clear BERw SNR_estw

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%16-ary QAM PERFORMANCE

SNR = 21

fc = 6e3

R = 5e3

depth = 0;

for range = 0:1 %0 == 2 km, 1 == 4 km

 for rough = 0:2:4

 count = count + 1;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end %rough

end %range

clear BERw SNR_estw

depth = 1;

for range = 0:1 %0 == 2 km, 1 == 4 km

 for rough = 0:2:2

 count = count + 1;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end %rough

end %range

clear BERw SNR_estw

fc = 12e3

R = 10e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

164

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

fc = 8e3

R = (6+2/3)*1e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

fc = 10e3

R = (8+0/3)*1e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

165

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%32-ary QAM PERFORMANCE

SNR = 25

fc = 10e3

R = (10+0/3)*1e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

fc = 8e3

R = (8+1/3)*1e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

fc = 6e3

R = (5+0/3)*1e3

depth = 0;

for range = 0:1 %0 == 2 km, 1 == 4 km

 for rough = 0:2:4

166

 count = count + 1;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end %rough

end %range

clear BERw SNR_estw

fc = 6e3

R = (5+0/3)*1e3

depth = 1;

for range = 0:1 %0 == 2 km, 1 == 4 km

 for rough = 0:2:2

 count = count + 1;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end %rough

end %range

clear BERw SNR_estw

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%64ary QAM PERFORMANCE

SNR = 27

fc = 8e3

R = (10+0/3)*1e3

for range = 0:1 %0 == 2 km, 1 == 4 km

 count = count + 1;

 rough = 0;

 depth = 0;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

167

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end

clear BERw SNR_estw

fc = 6e3

R = (5+0/3)*1e3

depth = 0;

for range = 0:1 %0 == 2 km, 1 == 4 km

 for rough = 0:2:4

 count = count + 1;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end %rough

end %range

clear BERw SNR_estw

fc = 6e3

R = (5+0/3)*1e3

depth = 1;

for range = 0:1 %0 == 2 km, 1 == 4 km

 for rough = 0:2:2

 count = count + 1;

 [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

 BER(:,:,count) = BERw;

 SNR_est(:,:,count) = SNR_estw;

end %rough

end %range

clear BERw SNR_estw

warning on

save perform BER SNR_est

168

3. perform_plotter.m

%m-file to plot BER vs SNR_est for performance results

clear all

load perform

fn = 0;

close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%8 QAM

for l = 1:6

 mn_ber8(:,l) = mean(BER(:,:,l),2);

 mn_snr8(:,l) = mean(SNR_est(:,:,l),2);

end

fnc = 0

fnc = fnc+1

figure(fnc)

plot(mn_snr8,mn_ber8)

title('8 QAM Composite Results')

xlabel('SNR (dB)'), ylabel('BER')

legend('1', '2', '3', '4', '5', '6')

%%%%%%%%%%%%%%%%%%%%%%%%%

%16 QAM

for l = 7:22

 mn_ber16(:,l) = mean(BER(:,:,l),2);

 mn_snr16(:,l) = mean(SNR_est(:,:,l),2);

end

fnc = fnc+1

figure(fnc)

plot(mn_snr16,mn_ber16)

title('16 QAM Composite Results')

xlabel('SNR (dB)'), ylabel('BER')

legend('1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16')

%%%%%%%%%%%%%%%%%%%%%%%%%%%

169

%32 QAM

for l = 23:36

 mn_ber32(:,l) = mean(BER(:,:,l),2);

 mn_snr32(:,l) = mean(SNR_est(:,:,l),2);

end

fnc = fnc+1

figure(fnc)

plot(mn_snr32,mn_ber32)

title('32 QAM Composite Results')

xlabel('SNR (dB)'), ylabel('BER')

legend('1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14')

%%%%%%%%%%%%%%%%%%%%%%%%%

%64 QAM

for l = 37:48

 mn_ber64(:,l) = mean(BER(:,:,l),2);

 mn_snr64(:,l) = mean(SNR_est(:,:,l),2);

end

fnc = fnc+1

figure(fnc)

plot(mn_snr64,mn_ber64)

title('64 QAM Composite Results')

xlabel('SNR (dB)'), ylabel('BER')

legend('1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12')

%break

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%8-ary QAM PERFORMANCE

SNR = 17

fc = 8e3

R = 5e3

%%%

fn = fn + 1; figure(fn), orient tall

170

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 10e3

R = 6e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

171

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 12e3

R = 7.5e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%16-ary QAM PERFORMANCE

SNR = 21

fc = 6e3

R = 5e3

%%%

172

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 2, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 4, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

173

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 2, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 4, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

%depth = 0;

%for range = 0:1 %0 == 2 km, 1 == 4 km

% for rough = 0:2:4

% count = count + 1;

% [BERw, SNR_estw] = ofdm_sim_control_func(SNR, fc, R, rough, range,
depth);

% BER(:,:,count) = BERw;

% SNR_est(:,:,count) = SNR_estw;

%end %rough

%end %range

%clear BERw SNR_estw

%%%

fn = fn + 1; figure(fn), orient tall

174

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 2, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 2, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

175

%%%

fc = 12e3

R = 10e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 8e3

R = (6+2/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

176

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 10e3

R = (8+0/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

177

%32-ary QAM PERFORMANCE

SNR = 25

fc = 10e3

R = (10+0/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 8e3

R = (8+1/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

178

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 6e3

R = (5+0/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 2, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

179

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 4, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 2, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 4, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

180

%%%

fc = 6e3

R = (5+0/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 2, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

181

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 2, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%64ary QAM PERFORMANCE

SNR = 27

fc = 8e3

R = (10+0/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 6e3

182

R = (5+0/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 2, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 4, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

183

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 2, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 4, Water Depth = 100 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fc = 6e3

R = (5+0/3)*1e3

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 0, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

184

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 2 km, Rough = 2, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 0, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

%%%

fn = fn + 1; figure(fn), orient tall

plot(SNR_est(:,:,fn), BER(:,:,fn), 'b.')

hold on

plot(mean(SNR_est(:,:,fn),2), mean(BER(:,:,fn),2), 'r-')

hold off

title(['SNR = ',num2str(SNR), 'dB, f_c = ',num2str(fc/1000),'kHz, R =
',num2str(R/1000),'kbps, Range = 4 km, Rough = 2, Water Depth = 340 m'])

xlabel('SNR (dB)'), ylabel('BER')

185

LIST OF REFERENCES

1. S. Coatelan and A. Glavieux, “ Design and Test of a Multi-carrier
Transmission System on the Shallow Water Acoustic Channel,” OCEANS ’94
‘Oceans Engineering for Today’s Technology and Tomorrow’s Preservation’
Proceedings, Vol. 3, pp. III-472 – III-477, 1994.

2. Kim, Byung-Chul and Lu, I-Tai, “Parameter Study of Underwater
Communication,” OCEANS 2000 MTS/IEEE Conference and Exhibition, Vol.
2, pp. 1251-1255, 11-14 September 2000.

3. J. M. Cioffi, “A Multicarrier Primer,” Tutorial, Amati Communications
Corporation and Stanford University. (unpublished)

4. R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications,
Artech House, Boston, 2000.

5. J.A.C. Bingham, “Multicarrier Modulation for Data Transmission: An Idea
Whose Time has come,” IEEE Communications Magazine, 28(4):5-14, April
1990.

6. J.M. Wozencraft and P.H. Moose, “Modulation and Coding for In-Band
Digital Audio Broadcast using Multi-Frequency Modulation,” National
Association of Broadcasters 1991 Conference Proceedings, see also Radio
1991 Proceedings (San Francisco, 9/91), Las Vegas, April 1991.

7. L. J. Ziomek, Fundamentals of Acoustic Field Theory and Space Time Signal
Processing, CRC Press, Boca Raton Fl, 1995.

8. J. E. Houdeshell, “Bandwidth Optimization of Underwater Acoustic
Communication Systems,” Master’s Thesis, Naval Postgraduate School,
Monterey, California, 2001.

186

9. Tappert, F. D. “The parabolic approximation method,” in Lecture Notes in
Physics, Vol. 70, Wave propogation and Under Water Acoustics, eds. J.B.
Keller and J.S. Papadakis, Springer-Verlag, New York, 1977, pp.224-287.

10. Thomson, D. J. and Chapman, N.R. (1983). “A wide-angle split step
algorithm for the parabolic equation,” J. Acoust. Soc. Am., Volume 74, pp.
1848-1854.

11. Smith, Kevin B. (2001), “Convergence, Stability, and Variability of Shallow
Water Acoustic Predictions Using the Split-Step Fourier Parabolic Equation
Model,” J. Comp. Acoust., Vol.9, No. 1, pp. 243-285.

12. J. van de Beek and others, “Low-Complex Frame Synchronization in OFDM
Systems,” Proceedings of Fourth IEEE International Conference on
Universal Personal Communications, pp. 982-986, 1995.

13. J. G. Proakis, Digital Communications, 4th Ed., McGraw-Hill, New York,
2001.

14. R. G. Gallager, Information Theory and Reliable Communication, Wiley, New
York, 1968.

187

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center..2

Ft. Belvoir, Virginia

2. Dudley Knox Library...2
Naval Postgraduate School
Monterey, California

3. Chairman, Code EC ...1
Naval Postgraduate School
Monterey, California
jknorr@nps.navy.mil

4. Prof. Roberto Cristi..2
Naval Postgraduate School
Monterey, California
rcristi@nps.navy.mil

5. Prof. Kevin B. Smith..2
Naval Postgraduate School
Monterey, California
kbsmith@nps.navy.mil

6. LT Tiger Pittman..3
Naval Postgraduate School
Monterey, California
glpittma@nps.navy.mil

