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ABSTRACT

The mathematical expectation formed from the first probability

distribution lends itself well to implementation of a filtering

device. This device, or probability filter, is discussed here

conceptually and is computer simulated to obtain characteristics and

performance of information in jamming and non-jamming environments.
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I. INTRODUCTION

An accepted and effective means of extrapolating signal from

noise is by the use of correlation techniques. Cross correlation of

signal with noise produces an improvement factor in favor of the signal

but only upon payment of integration time and fairly complicated hard-

ware. Correlation functions are directly related to the expectation

or mean value of the functions being analyzed. The expectation of two

input ensembles, XI and X2, can be written as follows:

E{X1,X2} = fj XlX2p(Xl,X2;T)dXldX2

where

XI = f
x
(t)

X2 = f
2
(t+x)

and p(Xl,X2;x) = probability that ordinate pairs exist separated by
-?

t seconds.

It is interesting to note that this expectation is equal to the

cross correlation expression if the ensembles are ergodic and thus,

the calculation is less cumbersome. If {X2} is noise, the expectation

of signal with noise, E{X1,X2}, and thus the detrimental effects of

noise, can be driven to zero by cross correlation.

However, this mathematical expectation can be formulated in a

simpler way by using the first probability distribution:

E(X1) E / Xlp(Xl)dXl (1)

where P(X1) = probability that XI exists. In principle, the expec-

tation of XI can be made free of the influence of a disturbance signal,

X2, by establishing a so called Region Of Expectation (R.O.E.) for the

integrand of equation one, This region will be discussed in detail in



IIA. The region will "accept" a predefined expected range of XI ampli-

tudes but reject all others. To accomplish this we could construct

a filtering device implementing equation one and rejecting X2 since it

has random values larger in magnitude than the highest value in the

R.O.E. Such a device may be termed a probability filter.



II. CHARACTERISTICS OF PROBABILITY FILTERING
1

A. IMPLEMENTATION OF THE FILTER

The implementation of equation one and the study of the basic filter

characteristics was accomplished by Figure 1(a). As shown, the filter

is a two-block device composed of a probability weighting function

block and an integration block,, For the feedback loop to cause

to track 0. the probability filter must function independently of the

input signal duration and must be sensitive to all incremental fluctu-

ations in 'v'. Thus, the form of equation one is achieved and the

filter forms the expectation as follows:

E(v) = / vp(v)dv

The probability density function chosen for ' v 1 was the Gaussian den-

sity function with zero mean and unit variance. This function is shown

sketched in Figure 2(a) and computer generated in Figure 3. This den-

sity function is expressed by:

p(v) s — e / 2

/2tt

The integrand, v p (v) , is shown sketched in Figure 2(b) and computer

generated in Figure 4. The Region Of Expectation is crosshatched

in Figure 2(b) and has the following statistical properties:

1. Covers the area between a deviation (o) of minus one and plus

one.

2. Contains 78.6% of the total area of vp(v) .

-'-Still, W. L., "Separate Signal from Noise with Probability
Filters." Control Engineering, p. 147-151, March 1960.
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3. vp(v) evaluated at a = ±1 is equal to the rms value of the

filter input '

v

1

.

4. The variance at ± 1 is equal to the average power in 'v' (pro-

viding 'v' lacks a d-c offset)

.

2 2
5. The variance at ± 1 is the expectation of ' v or E(v ).

This region is important since it contains so much of the "weight"

of the expectation integrand and defines many important values of the

filter input signal. As long as the filter input stays within this

expectation region the device will not attempt non-linear rejection

and will regard the input as "expected".

B. STEP RESPONSE OF FILTER IN SIMPLE FEEDBACK LOOP

Changing Figure 1(a) into the Laplace domain produces the flow

graph shown in Figure 1(b). The transfer function can be obtained

by Mason's Gain Rule:

Q
2
(S)

.. p(v)/s _ p(v)

G
1
(s) l+p(v)/s s+p(v)

The step response of this feedback system can be analyzed by

setting 0- (s) = X/s , where X is the value of the step input referenced

to one standard deviation and is assumed to have a magnitude of 3a,

and taking the inverse Laplace as shown:

-1

2
(t)

X^ b (s+p(v))J
= XI l-e-

p(v),t

The time constant, t, of this response is t = l/p(v) where p(v)

represents the bandwidth of the filter response. This response is

identical to that of a normal RC low-pass filter except that the x

term is not constant but is dependent on the probability density

function, p(v). The output will rise to the value of the input step

12



X, but the rise time constantly changes as the response transitions to

its final value. An intuitive explanation of the response is as

follows. Initially, the input error 'v' is large making p(v) quite

small and t relatively large. The system will, therefore, react in a

sluggish manner until the error is reduced. As the response continues

the error becomes smaller and the t is reduced. The system then reacts

more as a low-pass filter with a small RC time constant and the rate of

rise increases. As the error '
v' falls into the Region Of Expectation

At) will resemble the terminal step response of the low-pass RC

filter. This is shown in Figure 1(c)

.

13



III. PROBABILITY FILTER APPLIED TO
SECOND-ORDER SYSTEM

A. SECOND-ORDER SYSTEM MODEL

In order to investigate in depth the features of a probability

filter a linear, second-order control system was modeled. The Laplace

domain model is shown in Figure 5. The input is mechanically applied

and converted to a voltage. This voltage, after comparison with the

output position voltage, is amplified and converted to motor torque,

A(s). This torque accelerates a drive shaft, sfi(s), through a gear

train. The output shaft position settles to the input value when the

feedback drives the system to a steady-state error, E(s), of zero.

The transfer function of this system is as follows:

1
(S)

s
2
+25s+1560

The model was put into state variable form and computer programmed

utilizing fourth-order Runge-Kucta integration. The system was tested

with various step input values and the expected output responses were

obtained. The rise time (time to reach the maximum value) was constant

for all inputs and the overshoots varied in direct proportion to the

value of the input step.

B. STEP RESPONSE WITH FILTER APPLIED

The probability filter was added between E(s) and V(s) in Figure

5, and the system was again computer programmed in state variable form.

The six state variables utilized were the output position, Q-Ct), and

its first and second derivatives along with the error, E, the Filter

Gaussian density function, P (E) , and the expectation integrand, E*P(E).

14
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Various step inputs referenced to one standard deviation were again

entered into the system,, It was expected that the response for inputs

within the R.O.E. would be linear and similar to those observed in IIIA.

However, all step inputs less than one deviation in magnitude produced

unstable outputs. Most outputs with forcing values greater than one

deviation in magnitude were seen to be marginally stable. The insta-

bility with an input of 0.5a is shown in Figure 6.

1. Correction of Instability

To correct the instability in the filter and also produce the

desired linear response for filter inputs within the R.O.E. various

feedback schemes were attempted. It was found that the source of in-

stability was the integrator block and a feedback loop exclusively

about this block was necessary to stabilize the filtered response over

all input ranges. A standard feedback loop about both blocks was

unsatisfactory for the implementation of stability. Said another way,

the filter needed "leaky" integration for satisfactory operation. The

stabilized filter together with a section of the model system is shown

in Figure 7. For stability in filter integration point 'X' must be

reduced in value by the feedback path. Without feedback this point

has the value of E»P(E). With feedback on the integrator point 'X'

becomes: X = E*p(E) - a / E«p(E)dt

where a / E«p(E)dt forms the necessary reduction term for stability,
o

To achieve the response objectives, a feedback factor, a, of

four was found to be necessary. This value was very critical and had

no tolerance spread. Step responses for inputs within the R.O.E.

were again observed and seen to be practically identical with those

for the same inputs observed in IIIA. The overshoots in both cases

correlated well (within 9%) up to 0.75a and then increased to an 18%

16
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deviation near a. The rise times remained nearly constant at 0.8

seconds (±.05) although these times are larger in magnitude than those

observed for the no-filter case. The model transfer function with

the stabilized filter is:

°2 (S)

m 1560»P(E)
G
l
(s)

s
3
+(25+a)s

2
+(25a)s+1560-p(E)

where a is four and P(E) is the Gaussian density function (discussed

in IIA) with an input of ' E'.

C. STABILIZED FILTER RESPONSE FOR LARGE INPUT DEVIATION

The state space program of IIIB was again utilized to analyze the

step response for large input deviation (i.e. deviation out of the

R.O.E.). The observed responses were comparable to the intuitive

example discussed in IIB but the non-linearities of the filter and the

extended complexity of second-order dynamics created more complex

responses. The filter did cause the system to react in a slow manner

to inputs out of the R.O.E. but created two distinctive output

families. These families, along with the one for the linear R.O.E.

,

are shown in Table 1. The table represents data taken over the range

of input deviation from zero to 3.5. The Pure Probability Effect

family is characterized by a relatively constant overshoot of 0.344

to 0.347a. Data taken for input deviation between 3.5 and 4.0 also

exhibited the relatively constant overshoot phenomenon of Family III

but the magnitudes were slightly smaller. A computer generated ex-

ample of each family response is shown in Figures 8, 9, and 10. It

can be seen that as the input deviates more and more from the R.O.E.

boundary value of o the rise time increases rapidly. Between the rise

time and the settling time of steady state the response is linear

19



Table 1

Fami ly
Number Type

Input
Range
(o)

Rise Time
Range
(Sec)

Overshoot
Range
(a)

Linear o<a<l
Constant

at

0.8

.172-. 28

Hybrid l<p<1.9

0.85
to

1.2
.286-. 343

Pure
Probability
Effect

1.9<p<.3.5
1.25
to

9.49

Constant
at

0.346

20
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and oscillates with exponential decay toward the final value. Rise

time and overshoot characteristics of the system with the filter in-

cluded were seen to be strongly dependent on the inputs and parameters

of the system as well as the choice of feedback magnitude for the

integrator block. Given,

a = The integrator feedback factor

3 = The input step in range o<o<.4.0.

Y = The input step in range o<o<1.9.

6 = Parameter array describing system dynamics.

(p = The Rise Time for responses with filter in system.

$ = The overshoot for responses with filter in system.

Then, it was found experimentally that:

9 - f(6, a, 3)

and ^ = g(6, a, y)

The effect of the independent variables on (p and ^ is complicated and

was not studied in depth to obtain an exact formulation.

D. ERROR DUE TO NUMERICAL INTEGRATION

According to the Final Value Theorem from Laplace Transform theory

the steady-state error of the model system response with a step input

is zero. Utilizing numerical integration techniques, however, pro-

duced finite error values at steady state. For the model used in this

analysis the errors were essentially negligible for inputs below a

but reached values peaking at 6x10 a for higher inputs. These errors

may be factors to be considered if a computer directing a control

system is called upon to make precise, logical decisions based on

numerical integration results. It was found that the system

24



steady-state errors with the probability filter added were appreciably

less than those errors for the no-filter case in the region o<o<2.7.

E. SUMMARY

For a given system, 6, the a filter feedback term must be manipu-

lated to produce the desired family of responses over the entire 3

input range. For a given set of engineering requirements, it may also

be necessary to optimize 5 in order to realize desired characteristics

for the response families. For the filter to be effective the response

in the R.O.E., where the desired signal is situated, must be made very

nearly linear and the response to inputs out of this range must be

sluggish. This provides in theory a filtering scheme that readily

responds to desirable inputs and rejects unwanted information since

the rise time before reaching an effective value is so large.

25



IV . PROBABILITY FILTERING IN JAMMING ENVIRONMENT

A. ANALYSIS MODEL

The preceding portions of this study have discussed the theory and

proper implementation of the probability filter. It now remains to

discuss the filter's performance when an "expected" or information

signal is subjected to noise jamming. The model used for this experi-

ment consisted of two transfer functions formulated to represent two

envelope detectors. One of the detectors had a stabilized probability

filter for its front end and one did not. It was assumed that the

inputs to these transfer function "detectors" were intermediate-fre-

quency (i-f) radar echoes. A pulse train was established to represent

a high data rate of long duration echoes, each having a magnitude of

0.5 volts (well within the R.O.E.). In the model simulation the pulse

duration was ten seconds and the pulse repetition time was 15 seconds.

This model was computer programmed utilizing the IBM 360 Digital Simu-

lation Language (DSL) with the integration being accomplished by the

fifth-order Milne predictor-corrector method. This language was used

primarily because it offers a wide range of noise generation options.

Included are Gaussian noise with variable deviation, and uniform dis-

tribution noise with variable ranges. The ability to simulate these

various noise voltages at the front end of the model detectors is a

very good approximation to what happens when an actual receiver is

subjected to certain jamming conditions. One effective method of

producing Gaussian statistics at the output of a receiver filter is

to jam with a signal whose carrier is frequency modulated by wide band

noise. Similarly, jamming devices attempt to obtain a uniform or

26



"whitened" jamming power spectrum by multiplying the voltages of a

Gaussian noise modulated carrier, X, by the well known Error Function,

2

£_ / e du.
i— °

In a noiseless environment both detectors produced almost identical

outputs to the pulse train input. Thus, without noise, both detectors

were practically identical in performance. This is shown in Figure 11.

B. PRESENTATION OF DATA

The first test conducted was the application of Gaussian noise of

unit variance to both detectors. The detector without the filter

attempted to track the signal but exhibited erratic oscillations,

going negative upon occasion during the information pulse duration.

The output remained in a corridor between 0.348 and 0.652 volts for

only 40% of the pulse duration. The probability filter detector, on

the other hand, attempted to track the information voltage of 0.5

volts relatively smoothly and oscillated about this value for the

duration of the signal. When the information pulse terminated, the

detector output "wiggled" toward the zero level and remained there,

or below, until the next pulse. The maximum deviation of the output

about the 0.5-volt input was 0.152 volts. The output oscillated in

the corridor between 0.348 and 0.652 volts for 70% of the pulse duration.

After 8.52 seconds of pulse time the output suddenly dipped to a low

value of 0.079 volts but promptly rose to within the corridor where it

remained until the termination of the input pulse. After initial

orientation, the filter was able to track, quite smoothly, successive

pulses from the information train.
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The filter feedback factor, a , for the above test was four. The same

noise jamming was also applied with the feedback factor set at six.

Since the detector was designed to have a linear response in the R.O.E.

with an a of four the increase in feedback destroyed this condition.

However, it was found that the information tracking ability of the

filter in the presense of noise was increased. The response stayed

in a smaller corridor than before, 0.348-0.63 volts, for 75% of the

pulse duration and tracked succeeding pulses with reduced overshoots.

This improvement was observed up to an a of eight and appears to be a

method of "fine tuning" the filter response in noisy situations pro-

viding the sacrifice of linearity and, hence, the proper reproduction

of noiseless information is acceptable.

The second test was the injection into the probability detector

of heavy Gaussian noise along with the echo pulse train. The density

function of the noise had a variance of sixteen. In the presence of

this major disturbance the filter was not able to pick out the infor-

mation pulses but stayed "quiet" and did not respond to positive noise

voltages. Thus, the noise was able to suppress the information volt-

ages but could not make the detector overflow with erroneous tracking.

The filter was next subjected to a uniform noise jamming spectrum

covering the range -2 to +2 volts. In the presence of this effective

form of jamming the filter was not able to "readout" the pulse train

very accurately, but did not give many false alarm jumps above the

0.5 volt level. The maximum false alarm level indicated was 1.18 volts

and occurred during the first pulse. The detector seemed better able

to track the second and succeeding pulses and oscillated in a corridor

between 0.2 and 0.8 volts for most of the pulse durations.

29



Probability filtering was also tested with the same uniform noise

jamming discussed above but without the information pulse train. The

output of the filtered detector was viewed over an interval of 20

seconds and throughout the observation time the response attempted to

seek the zero level. The maximum deviation above the zero level was

0.105 volts and the signal remained in a corridor bounded by zero and

0.04 volts for 87% of the viewing interval. Thus, since no voltages

within the R.O.E. were persistent enough to persuade the filter that

an "expected" value was present the device "tracked" the zero, no-

information level.

30



V. CONCLUSION

The concept of probability filtering can be an effective and

relatively simple way of achieving signal recognition under non-ideal

reception conditions. In order to implement such a filtering device

inherent stability problems must be overcome. For stability, the

filter should be accurately matched to the system it is supporting

by manipulation of the integration block feedback. In addition, linear

and non-linear response ranges must be achieved through knowledge of

expected filter inputs and choice of a proper probability density

function. If the filter can be stabilized properly good noise rejection

and signal tracking can be expected. In the presence of Gaussian noise

with an rms value twice as large as the information signal amplitude,

the signal detection with probability filtering was seen to be almost

twice as effective as that without filtering. With very heavy jamming

applied the filter was not able to track the signal but did not give

erroneous information and remained dormant.

Due to its good noise suppression characteristics the filter may

also serve a useful function as the front end of correlation filters,

reducing the computer matrix calculations of the system.

The non-linear construction blocks of the filter negate strict re-

quirements on linearity in power sources and other components of the

system being filtered. Non-linear behavior of devices may also be

exploited to act as the filter's weighting function, giving the system

designer added flexibility in realizing performance specifications.
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