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PROBABILITY MODELS FOR 
BATTLE DAMAGE ASSESSMENT 

(SIMPLE SHOOT-LOOK-SHOOT AND BEYOND) 

D. P. Gaver 

P. A. Jacobs 

0. Introduction and S ~ n u n a r y  

Battle-damage assessment (BDA) is an aspect of information war (IW) that 

has always promised to add to the efficiency of combat engagements. 

Furthermore, the capability of U.S. forces to carry out BDA in an accurate and 

timely manner has been and will be enhanced as increasingly sophisticated 

C4ISR sensor and communication systems become operational. 

The purpose of this report is to introduce and develop analytical probability 

models for simplified BDA situations. In spite of the precision of modern 

weaponry and sensor/communication systems, shots fired at targets do 

occasionally miss (or cause only partial damage). Consequently a sequence of 

more than one shot may be directed at a particular target to increase the 

probability of kill. The role of BDA in such a setting is to make a judgment as to 

whether further shots are actually necessary; it has impact on both the logistics 

and economics of combat, and may also influence a shooter-defender’s 

vulnerability. But BDA will not be error-free or perfect, nor will it be cost-free. 

Consequently this paper reports some features of tradeoffs between kill 

probability, p ~ ,  and the capacity of a hypothetical BDA system to correctly judge 



the effect of a shot. Sample tradeoffs are illustrated in Table 1 below, and later 

graphically. The reader may skip to Section 3 for a look at illustrative tradeoff 

graphs after examining Section 1 in which the problem addressed here is 

formalized. 

Related work is as follows. Evans (1996), Aviv and Kress (to appear) and 

Manor and Kress (to appear) obtain results for models of BDA in which there is a 

fixed collection of targets with shoot-look-shoot tactics. Gaver, Jacobs and 

Youngren (1997) carry out BDA analyses in a more nearly total dynamic systems 

setting. 

1. Simplest Formulation of a Battle-Damage Assessment Problem 

We advance the following as an ultimately simple formulation. . 

(a) Either defensive shots are taken at a target, or the shots are offensive, as in 

a deep strike action. The probability of kill (total target destruction) on a shot is 

assumed to be a constant, p~ (constancy can be relaxed). The target is either killed 

on one such shot or not; there is no partial damage. This activity is generically 

called Shuuf ing. 

(b) 

is called Looking (or BDA): 

(b-I) b f i  = probability that if the target is killed it is reported killed (no more 

A Battle Damage Assessment (BDA) capability is represented as follows; it 

shots are taken). 

(b-2) b h  = 1 - bf i  = probability that if the target is killed it is (erroneously) 

reported alive. The parameters b h  and bb ,  are conditional probabili- 

ties, applicable only when a kill has actually occurred. Hence b f i+  

b h  = 1. 

(b-3) b, = probability that if the target is missed, i.e. is alive after a shot, it is so 

reported. 
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.. ... . . . . .... . 

(&4) bak = 1 - baa = probability that if a target is alive it is reported as killed. 

Again b, and bd  are conditional probabilities, applicable if the target 

has been shot at and missed, hence is still alive. 

Clearly one wants b& and baa high, i.e. each close to unity. It is possible that these 

probabilities are a net effect (“fusion”) of several kinds of looks. It is assumed 

here that Shooting and Looking are independent chance events, with known and 

constant probabilities p~ and bii, if j designating a, k in general. Note that this 

doesn’t account for the sometimes reasonable possibility that pK(2), the 

probability of 2nd shot kill @yen a first-shot miss) may exceed p ~ ( l ) ,  the reason 

might be that the shooter has more time to achieve a firing solution, the target is 

closer, etc. On the other hand such factors might well change if the target, 

realizing it is under attack, takes evasive action after a first-shot miss; then p ~ ( 2 )  

might be smaller than p~(1) ;  subsequent shots might well differ in their 

probabilities of success also. It is even possible that the target-prey could turn 

into a predator and attack the defender, suddenly reducing p~ to zero by 

destroying same. 

A paper that discusses similar problems, and contains further references, is 

Almeida, Gaver and Jacobs (1995). See also Evans (1996) and Aviv and Kress (to 

appear) and Manor and Kress (to appear). 

Table 1 presents results of models for various shooting tactics described later 

in this section and in Section 2. 
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TABLE 1 
Target Kill Probability and Mean Shots per Target 

as Function of Firing and Assessment Rules and Parameters 

0.3 
0.5 
0.7 
0.9 

0.3 
0.5 
0.7 
0.9 

0.26 
0.38 
0.46 
0.50 

0.41 1.50 
0.63 1.50 
0.81 1.50 
0.95 1.5.0 

0.51 
0.75 
0.91 
0.99 

0.51 
0.75 
0.91 
0.99 

0.27 
0.42 
0.54 
0.63 

0.51 
0.75 
0.91 
0.99 

0.46 2 
0.67 2 
0.82 2 
0.95 2 

0.51 
0.75 
0.91 
0.99 

0.3 
0.5 
0.7 
0.9 

0.3 
0.5 
0.7 
0.9 

0.26 
0.38 
0.46 
0.50 

0.45 1.58 
0.68 1.50 
0.83 1.42 
0.96 1.34 

0.28 
0.45 
0.58 
0.72 

0.59 2.21 
0.77 1.87 
0.89 1.65 
0.97 1.49 

0.3 

0.7 
0.9 

0.5 

s(=)/m(-: 

0.23 
0.34 
0.41 
0.48 

0.27 
0.41 
0.54 
0.65 

0.29 
0.47 
0.65 
0.82 

0.30 
0.49 
0.68 
0.85 

0.3 

0.7 
0.9 

.0.5 

I 

0.26 
0.38 
0.46 
0.50 

iegend: 
i(1) means one shot is fired at each target; 

S(2) means two shots are (always) fired at each target; 
SLS(2) means at most two shots are fired; 
SLS(-) means that shots are fired until BDA asserts a kill; 
b means probability of correct BDA (= bdlB = bfi here for simplicity only); 
s(1) means the long-run kill rate, 1 shot/target; 
k(2) means the long-run kill rate, 2 shots/target; 
s(2) means probability an engaged target is killed, or long-m kill rate per target; 
if at most 2 shots are fired per target (SLS); 
m(2) means mean number of shots per target (SLS); 
s(-) means probability an engaged target is killed if shots are fired until BDA 
asserts a kill; 
m(-) means mean number of shots per target if shoot until BDA asserts a kill. 

0.49 1.66 
0.73 1.50 
0.89 1.34 
0.98 1.18 
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0.30 
0.49 
0.66 
0.83 

0.81 2.79 
0.91 1.92 
0.96 1.48 
0.99 1.21 

0.3 
0.5 
0.7 
0.9 

0.3 
0.5 
0.7 
0.9 

0.26 
0.38 
0.46 

0.50 1.68 
0.74 1.50 
0.90 1.32 

0.30 
0.49 
0.68 

0.90 3.03 
0.95 1.95 
0.98 1.45. 



ConclusiondInsights from Table 1 

Here are some observations that can be made after viewing Table 1. 

(a) For small p~ (0.3,0.5) even poor-mediocre BDA capability (b = 0.5,0.7) can 

leverage up the probability of kill per target engaged quite dramatically, and at 

modest price in shots per target engaged when SLS(2) is employed (shoot, look, 

if failure is stated, shoct once more only). 

(b) While SLS(2) is less effective than is a fire-and-forget salvo of 2 shots it can 

be almost as good even for low p~ and b (BDA success probability), but the shot- 

per-target engaged economy is substantial, and this increases dramatically with 

both p~ and b. 

(c) Use of SLS(-), i.e. firing until the target is reported killed, seems unjustified 

for very low BDA capability (b = 0.5); there will be many wasted shots and much 

leakage at low p ~ .  This (extreme) tactic becomes much more attractive relative to 

SLS(2) as BDA capability increases (b  = 0.7, 0.9, 0.95) particularly when p~ is 

relatively high (0.7 or higher). Under such conditions SLS(-) costs only a little 

more than SLS(2), and much less than a salvo of 2, while leveraging up the kills 

per target engaged considerably when p~ is realistically moderate (0.5,0.7). 

(d) 

jeopardy than will salvoing 2 (or more) and evasively disappearing. 

An unmodeled issue: any form of SLS may well put the firer in greater 

1.1 The Shoot-Look-Shoot Tactic or Decision Rule 

We now describe in more detail one of the most popular and natural tactics of 

a system that has the option of shooting, looking, and finally moving on to 

another target. 

Tactic: Shoot-Look-Shoot, not more than r times (abbreviates SLSW 

This means that if a Look, after say, the first shot, says that kill has occurred, 

then no more shots are fired at that target; note that this may well be wrong, and 
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a valid and valuable target has escaped without further prosecution; such targets 

are sometimes called leakrs, and may be active threats to protected assets. But if r 

shots have been fired, this is the end so far as the particular shooter is concerned. 

Another target is selected and the process is re-initiated. Note that we do not 

adjust the number of repeated shots at a target to its, perhaps gradually 

perceived, value, alone or in comparison with other target opportunities that 

may appear. Such problems will be formulated and addressed in another place. 

Versions of such problems have been treated in the NPS Master's Degree in 

Operations Research thesis by Song (1996). 

1.2 Measures of Effectiveness 

We mention now a number of different measures of our simple system's 

effectiveness. 

(A) Long-run Rate of Kills per Shot (inverse of Shots per Kill). Let K(t)  be 

the random number of target kills actually achieved in t shots. Then a plausible 

measure of, say, an SLS(r) policy with parameters p~ and bq is the per-shot 

(mean) kill rate K ( t ) / f .  Suppose a great many targets are engaged, so t becomes 

large. Then it becomes interesting to examine the long-run kill rate (LRKR): 

E["(f);r] F(r)= lim 
f+= t 

It turns out that the above can be evaluated explicitly using renewal-reward themy, 

6. Ross (1983). We quote the results subsequently. 

Notice that maximizing the LRKR as a function of r or p ~ ,  or b;i may not be an 

optimum strategy. If r is made large in order to, say, attempt to compensate for 

weak BDA capability, then unnecessary "overkill" shots are likely and the 

defense system tends to waste attention that might be better spent elsewhere. 

This effort could be especially counterproductive if there are several /many 
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targets concentrated in time and space, and the objective is to prevent any from 

getting through the defense layer considered. 

In a later section we present several tables and graphs that illustrate the 

tradeoffs between kill probability and BDA capability (probability of correct 

assessment of a shot's effect). These are given for selected values of Long Run 

Kill Rate, and refer only to the Shoot-Look-Shoot policy in which r = 2. However 

our formulas allow exploration of such tradeoffs for any values of Y and kill and 

classification parameters. 

(B) Probability of Kill per Target Engaged. This is seen to be dependent 

upon both the probability of kill by an individual shot, and also upon the 

probability with which the BDA system assesses the outcome. If, for example, b d  

is large then too few shots are taken at a target. See Table 1 for information as to 

how "good BDA" can efficiently leverage up the probability of kill per target 

engaged. 

(0 Shots Wasted. The mean or expected number of shots or bombs wasted 

on already-dead targets is easily calculated under the assumptions of OUT BDA 

model. 

Other measures may also be relevant and interesting. 

2. Calculating the Long-Run Kill Rate (LRKR): An Application of 
Renewal-Reward Theory 

In this section we address the evaluation of MOE(A), the LRKR in terms of 

the basic parameters. To do so incidentally involves evaluation of MOE(B) and 

other relevant quantities. The method uses the viewpoint of rmaual-reward fheory, 

for an exposition of which see Ross (19831, Chapter 3. 

Think of each defense encounter with a new target as a cycle of random 

duration, or number of shots, C(r). A new target is first fired on/engaged with 
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one shot and the result judged; if the verdict is that a miss has m a n e d  another 

shot is fired, and its result judged, and so on until either (i) the judgment is that a 

kill has occurred or (ii) r shots have been expended, whichever occurs first. This 

event mark a cycle termination, whereupon another cycle is initiated (new target 

is prosecuted). Of course if targets occur infrequently in time the new-target 

encounter may be delayed, but not in terms of expended shots. 

The result to be used is this. Suppose 

1 

0 

if a target kill occurs in cycle n; 

if no target kill occurs in cycle n; 
(2.1) 

Kn is the reward. Cn is the duration of cycle n, measured in number of shots. It is 

clear that {Cn, n = I, 2, ...I is a sequence of iid random variables, as is {Kn, 

n = 1,2, . . .), but they are not necessarily independent. Renewal-reward theory 

states that LRKR is given by 

Thus we need to evaluate both s(r)  = €[&I and m(r)  = E[C,]. A backward- 

equation or first-step approach can be used for both. 

To evaluate s(r) = E[&] = P& = 1) argue that on the first shot either (i) the 

target is killed, an event of probability p ~ ,  or (ii) the target is not killed and this is 

correctly recognized, after which the process starts over but with r - 1 shots to go; 

the probability of this latter event is (1 - pr<)baas(r - 1). Thus 

s(r) = 1 - p K  + (1 - pK)b,s(r - 1). (2.3) 

This first-order difference equation can be easily solved; subject to initial 

condition s(1) = p ~ ,  
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For T = 2, a usual situation, 

s(2) = P K p +  (1 - P K ) b , ]  P K [ 2  - PK]* (2.5) 

It is seen that in any case S(Y) I I, and that if duesn'f depend on the kill classificafion 

probabilities b& b h ,  which is initially surprising; it does depend on the probability 

of recognizing that an alive target remains alive after a missed shot. 

Next consider m(r) = E[C,]. Again condition on the first shot's outcome. If, (i), 

the target is killed and this is correctly recognized, or, if missed, and this 

incorrectly classed as a kill, then the first component of the cycle-length 

expectation is 1 - (p~bwc  + (I - p ~ ) b d ) .  If, (ii), the target is missed and this correctly 

classified then the second component can be expressed as [1+ m(r - 1)](1- p ~ ) b , ,  

since in effect the process restarts (the Markov property) but with one fewer 

possible shots. Finally (iii) suppose the first shot kills the target and that kill goes 

unrecognized; then the final expected cycle component is seen to be 
[ 1+ m*(r - l)]p~bh, where m*(x) is the mean of the number of shots to either call a 

killed target killed, or x, whichever occurs first. Adding, we conclude that 

= 1 + m(r - l)(l- pK)bm + m*(r - l)PKbk,, 

a first-order difference equation. The function m*(x) satisfies 

m*(x) = 1 - b& + [1+ m*(x - l)]bh = 1 + m*(x - l )bh,  (2.7) 

which is solved by simple recursion from m*(l) = 1; 

9 



If this is substituted into (2.6) and the latter solved subject to m(1) = 1 by 

successive substitution and series summation there results this formula: 

For T = 2 this can be seen to equal 

m(r)=1+PKbkn+(1-PK)bna (2.10) 

An explicit, but messy formula is now available for the long-run kill rate; 

from (2.2) it is just 

For r = 2 it becomes 

(2.11) 

. An interesting extreme case is one in which shots are fired, or bombs 

dropped, until BDA asserts that a kill has occurred. This is equivalent to letting 

r 00 in (2.4) to get s(-), and also in (2.9) to get m(-); alternatively do this latter 

in (2.6) and (2.8). The results: 

(2.12) 
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(2.13) 

These formulas are derived independently in Appendix A. From these we obtain 

An additional measure of performance is the expected number of wasted shots 

per target engaged: the expected number of shots that are fired after the target is 

killed. It is 

w(-) = (1 - b&& I 

which can be sobering if bfi  happens to be small. 

(2.15) 

3. Illustrations of Tradeoffs 

To illustrate the message of our formulas, look at this example: for LRKR(2), 

i.e. Shoot-Look-Shoot, examine the tradeoff between p~ and a simplified 

expression of sensor-look czipability: b = bm = b&. That is, assume that both error 

probabilities bcJc and b h  are equal (to 1 - b). Then fix the value of long-run kills per 

shot at L and examine the tradeoff between p~ and b. Figures 1,2, and 3 depict 

this tradeoff for increasing L values (L = 0.5,0.75,0.9). The formula used appears 

at the top of each graph; it comes from (2.11) by fixing L and solving for b as a 

function (quadratic) of PK. 

The lesson is that there is a tradeoff: larger b can compensate for smaller p ~ ,  

but, as required L increases, the feasible ranges for which the tradeoff exists (to 

realize L )  decreases: both p~ and b must be generally higher to achieve L = 0.9 

than they need to be to obtain L = 0.5. Both formulas (2.11) and (2.14) show that 



kills per shot, L, can never exceed p ~ ,  but kills per target engaged, given by s(r), can 

become arbitrarily close to one if r is large; see (2.12) with baa approaching unity. 

To further explore this last point suppose p~ is relatively low and it is desired 

to leverage the kills/item targeted (not per shot fired, or bomb dropped) to a 

higher level. Ways to do this are: 

(a) 

per target. Then the long-run kill rate per target engaged is 

Shoot a salvo of exactly 2 shots at the target (no BDA), or drop 2 bombs 

k(2) = 1 - (1 - pK>? (3.2) 

The long-run cost in shots per target engaged is f(2) = 2; in general if a fixed 

number of shots, r, is fired fir) = r. 

(b) Shoot-Look-Shoot (2). The long-run kill rate per target engaged is 

s(2) = P K [ I +  (I- PK )b] 

m(2) = 1 + PK(1-  b) + (1 - pK)b.  

(3.3) 

and the mean number of shots per target engaged is 

(3.4) 

Since there is always the probability 1 - b of making an error and not shooting a 

needed second shot (or shooting a superfluous one), the probability of target kill 

s(2) is never greater than k(2), being equal to it only when bga = 1. (There is no 

BDA, so there are no BDA errors.) 

(c) Shoot-Look-Shoot (-1. Here we get for the probability that a target is 

killed from expression (2.12), 

s(-) = PK 
l-(l-pK)b 

which can become arbitrarily close to unity for 

number of shots per target engaged is, from (2.13), 

(3.5) 

fixed PK if b + 1. The mean 
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(3.6) 

If the target or threshold desired kill probability is E c 1- ( 1 - p ~ ) ~  then 

option (a) will achieve it, but at a price of unnecessary shots. E.G. if E = 0.85 then 

a lower threshold value for PK is p~ = 0.61 but at a cost of 2 shots per target. If 

option @I) is adopted with b = 1.0 and if p~ = 0.61 then E = 0.85 is achieved but at 

the cost in shots per target of m(2) = 2 - PK = 2 - 0.61 = 1.39, decisively below 2. If 

p~ = 0.7 then a BDA success rate of at least b = 0.71 is required, and the cost in 

shots per target is m(2) = 1 + 0.7(1- 0.71) + 0.3(0.71) = 1.42, still well below 2. 

Discussion 

The leverage of per-target kill probability by good BDA (relatively high 

b =baa = b h )  is well-illustrated in Table 1, e.g. by observing the effect of 

increasing b on small PK, PK = 0.3, for SLS(2) and SLS(=): even for b = 0.7 the 

probability of kill per target engaged is nearly doubled and in less than an 

average of 2 shots (SLS(2); 1.61, or a little more (SLS(-); 2.2). Even a relatively 

small b-value, e.g. b = 0.5, has a noticeable effect, doing almost as well using 

SLS(2) and S(2) and at 75% of the number of shots. 

In many ways this analysis is oversimplified, and is clearly incomplete. For 

instance, we do not here consider the delay and traffic handling capacity of the 

BDA service system, nor its cost. In Appendix B we do specify some convenient, 

if tentative, analytical expressions for probability levels as a function of cost of 

system acquisition. Further such issues will be addressed in subsequent work. 
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Appendix A 

Self-contained Derivation of Mean Cycle Length 
When I = - (Shoot Until Target Judged Killed) 

Let ma(=) be the mean number of shots fired (bombs dropped) until an 

initially active (or alive) target is judged dead (the judgment may be in error). Let 

md-) be the mean number of shots fired until a killed target is (finally) judged 

dead. Let sa(-) be the probability that an initially active (new) target is dead when 

it is judged dead, and let Sa(=) be the probability that an initially active target is 

nof dead when it is judged dead; this is the probability that leakage occurs. 

Start with the mean cycle length for new targets, ma(-). Then, conditionally 

on the outcome of the first shot and its judged effect, 

with prob. pKbE + (1 - p ~ ) b &  

withprob. ( 1 - p ~ ) b ~  

1 + mk(w), with prob. p ~ b h  

14 



Similar equations can be written for sa(-) and Sat-): 

(1 with prob. m< 
sfA-1 = i sa  (-) with pr ob. (1 - p ~ ) b ~ .  

Consequently, 

Consequently, 

1 with prob. (1 - pK)buk 

S,(-) with prob. (1- p ~ ) b , .  

These agree with results obtained by letting Y 3 - in our previous formulas. 
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Appendix B 

Parametric Models for the Cost of Achieving Probabilities 

Suppose a higher value of kill probability, p ~ ,  or of correct BDA, bfi and/or 

bm can be obtained at increased acquisition cost, D (in dollars). It is convenient to 

represent the cost-related payoff in terms of probabilities by parametric cost 

functions. Here are some possibly useful examples; they can be recognized as 

logistic transfomations: 

a > 0, Do(K) > 0,O S p(-)  5 1. Notice that if acquisition cost becomes large (D + -) 
then kill probability reaches a limit, p(-), which is no greater than 1; if D = Do the 

resulting pr<-value is 1/2 of its ultimate. The parameter a controls the sharpness 

of the response of pr<(D) to increases in expenditure, D: if a is very small (eg. 1 /2) 

the approach to p(- )  is quite slow; if a becomes large, expenditures below Do 

have small effect, while if above Do they produce considerable payoff. 

Similar models can be hypothesized for the C4ISR assets that generate BDA 

arid 

The constants play the same roles as those for (B.1). There is no need that any be 

the same. 
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It is a straightforward non-linear optimization problem to allocate expendi- 

tures to elements of a defense system that will, for example, maximize the long- 

run expected number of targets killed per do22ar expended. 
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